FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Wallace, L Lucieer, A Malenovsky, Z Turner, D Vopenka, P AF Wallace, Luke Lucieer, Arko Malenovsky, Zbynek Turner, Darren Vopenka, Petr TI Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds SO FORESTS LA English DT Article DE digital terrain model; tree height; canopy cover; forest structure; unmanned aerial vehicle (UAV); LIDAR airborne laser scanning; structure from motion ID UNMANNED AERIAL VEHICLE; TREE DETECTION; INVENTORY; IMAGERY; LIDAR; CANOPY; SYSTEM; BIODIVERSITY; COMPLEXITY; METRICS AB This study investigates the potential of unmanned aerial vehicles (UAVs) to measure and monitor structural properties of forests. Two remote sensing techniques, airborne laser scanning (ALS) and structure from motion (SfM) were tested to capture three-dimensional structural information from a small multi-rotor UAV platform. A case study is presented through the analysis of data collected from a 30 x 50 m plot in a dry sclerophyll eucalypt forest with a spatially varying canopy cover. The study provides an insight into the capabilities of both technologies for assessing absolute terrain height, the horizontal and vertical distribution of forest canopy elements, and information related to individual trees. Results indicate that both techniques are capable of providing information that can be used to describe the terrain surface and canopy properties in areas of relatively low canopy closure. However, the SfM photogrammetric technique underperformed ALS in capturing the terrain surface under increasingly denser canopy cover, resulting in point density of less than 1 ground point per m(2) and mean difference from ALS terrain surface of 0.12 m. This shortcoming caused errors that were propagated into the estimation of canopy properties, including the individual tree height (root mean square error of 0.92 m for ALS and 1.30 m for SfM). Differences were also seen in the estimates of canopy cover derived from the SfM (50%) and ALS (63%) pointclouds. Although ALS is capable of providing more accurate estimates of the vertical structure of forests across the larger range of canopy densities found in this study, SfM was still found to be an adequate low-cost alternative for surveying of forest stands. C1 [Wallace, Luke; Lucieer, Arko; Malenovsky, Zbynek; Turner, Darren] Univ Tasmania, Sch Land & Food, Hobart, Tas 7001, Australia. [Wallace, Luke] RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3000, Australia. [Malenovsky, Zbynek] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vopenka, Petr] Czech Univ Life Sci Prague, Fac Forestry & Wood Sci, Dept Forest Management, Prague 6, Czech Republic. RP Wallace, L (reprint author), Univ Tasmania, Sch Land & Food, Hobart, Tas 7001, Australia.; Wallace, L (reprint author), RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3000, Australia. EM Luke.Wallace2@rmit.edu.au; Arko.Lucieer@utas.edu.au; zbynek.malenovsky@gmail.com; Darren.Turner@utas.edu.au; vopenka@fld.czu.cz RI Malenovsky, Zbynek/A-7819-2011; OI Malenovsky, Zbynek/0000-0002-1271-8103; Turner, Darren/0000-0002-3029-6717 FU ARC Discovery project "airLIFT" [DP140101488]; National Agency for Agriculture Research project [QJ1520187]; Winifred Violet Scott Trust; Australian Antarctic Science Grant scheme FX The contribution of Z. Malenovsky was supported by the ARC Discovery project "airLIFT" (DP140101488). The contribution of P. Vopenka was supported by the National Agency for Agriculture Research project (No. QJ1520187). The authors would like to acknowledge Ben Van der Jagt for assistance in collecting field data. The Winifred Violet Scott Trust and Australian Antarctic Science Grant scheme are acknowledged for providing funding to purchase the infrastructure used in this project. We thank Tony Veness, the UTAS Central Science Laboratory, the UTAS Engineering workshop, and the Australian Antarctic Division workshop for their assistance in the sensor integration. NR 38 TC 10 Z9 11 U1 22 U2 51 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1999-4907 J9 FORESTS JI Forests PD MAR PY 2016 VL 7 IS 3 DI 10.3390/f7030062 PG 16 WC Forestry SC Forestry GA DI7RX UT WOS:000373700800018 ER PT J AU Thomas, BF Behrangi, A Famiglietti, JS AF Thomas, Brian F. Behrangi, Ali Famiglietti, James S. TI Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States SO WATER LA English DT Article DE sustainable groundwater management; groundwater recharge; climate change; precipitation intensity ID CLIMATE-CHANGE IMPACTS; NORTH-AMERICAN MONSOON; MURRAY-DARLING BASIN; SENSITIVITY-ANALYSIS; EPISODIC RECHARGE; ARID REGIONS; WATER; FLOW; AUSTRALIA; AQUIFER AB Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate. C1 [Thomas, Brian F.; Behrangi, Ali; Famiglietti, James S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. RP Thomas, BF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Brian.F.Thomas@jpl.nasa.gov; Ali.Behrangi@jpl.nasa.gov; James.Famiglietti@jpl.nasa.gov OI Thomas, Brian/0000-0003-0080-7958 FU National Aeronautics and Space Administration; GRACE Science Team; Jet Propulsion Laboratory Research and Technology Development programs FX The authors wish to thank state water resource agencies in the study area for data access. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support from the GRACE Science Team and the Jet Propulsion Laboratory Research and Technology Development programs is gratefully acknowledged. NR 85 TC 3 Z9 3 U1 6 U2 10 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4441 J9 WATER-SUI JI Water PD MAR PY 2016 VL 8 IS 3 DI 10.3390/w8030090 PG 15 WC Water Resources SC Water Resources GA DI7OR UT WOS:000373691200030 ER PT J AU Harrold, ZR Skidmore, ML Hamilton, TL Desch, L Amada, K van Gelder, W Glover, K Roden, EE Boyd, ES AF Harrold, Zoe R. Skidmore, Mark L. Hamilton, Trinity L. Desch, Libby Amada, Kirina van Gelder, Will Glover, Kevin Roden, Eric E. Boyd, Eric S. TI Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HAUT-GLACIER-DAROLLA; ANTARCTIC ICE-SHEET; HIGH ARCTIC GLACIER; PYRITE OXIDATION; MICROBIAL COMMUNITIES; OXIDIZING BACTERIA; SULFIDE OXIDATION; SP-NOV; BENEATH; ENVIRONMENTS AB Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32-), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32- that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42-) several orders of magnitude higher than those of S2O32-. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32-, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32- as the electron donor was lower at 5.1 degrees C than 14.4 degrees C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32--oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32- by RG5- like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. C1 [Harrold, Zoe R.; Skidmore, Mark L.; van Gelder, Will; Glover, Kevin] Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA. [Hamilton, Trinity L.] Univ Cincinnati, Dept Biol Sci, Cincinnati, OH USA. [Desch, Libby; Amada, Kirina; Boyd, Eric S.] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA. [Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI USA. [Roden, Eric E.; Boyd, Eric S.] NASA, Astrobiol Inst, Mountain View, CA USA. RP Boyd, ES (reprint author), Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA.; Boyd, ES (reprint author), NASA, Astrobiol Inst, Mountain View, CA USA. EM eboyd@montana.edu FU National Aeronautics and Space Administration (NASA) [NNX10AT31G, NNA15BB02A] FX National Aeronautics and Space Administration (NASA) provided funding to Mark L. Skidmore and Eric S. Boyd under grant number NNX10AT31G. NASA provided funding to Eric S. Boyd under grant number NNA15BB02A. NR 50 TC 3 Z9 3 U1 6 U2 21 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2016 VL 82 IS 5 BP 1486 EP 1495 DI 10.1128/AEM.03398-15 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DI2PL UT WOS:000373338800013 ER PT J AU Wang, YM Zhou, ZJ Zhang, J Liu, K Liu, R Shen, CL Chamberlin, PC AF Wang, Yuming Zhou, Zhenjun Zhang, Jie Liu, Kai Liu, Rui Shen, Chenglong Chamberlin, Phillip C. TI THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: UV radiation ID CORONAL MASS EJECTIONS; ULTRAVIOLET LATE-PHASE; ATOMIC DATABASE; EMISSION-LINES; VARIABILITY; IRRADIANCE; ERUPTION; CHIANTI; PLASMA AB The Solar Dynamics Observatory (SDO)/EUV. Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could. potentially be useful for. extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on. distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0. class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares. the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which. unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections. C1 [Wang, Yuming; Zhou, Zhenjun; Liu, Kai; Liu, Rui; Shen, Chenglong] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Wang, Yuming; Shen, Chenglong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. [Zhang, Jie] George Mason Univ, Sch Phys Astron & Computat Sci, 4400 Univ Dr,MSN 6A2, Fairfax, VA 22030 USA. [Liu, Rui] Collaborat Innovat Ctr Astronaut Sci & Technol, Hefei 230026, Peoples R China. [Chamberlin, Phillip C.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Div, Greenbelt, MD 20771 USA. RP Wang, YM (reprint author), Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.; Wang, YM (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. EM ymwang@ustc.edu.cn RI Chamberlin, Phillip/C-9531-2012; Liu, Rui/B-4107-2012; Liu, Kai/I-3999-2016; Wang, Yuming/A-8968-2012; Shen, Chenglong/P-8093-2015; shen, Chenglong/C-7588-2013 OI Chamberlin, Phillip/0000-0003-4372-7405; Liu, Rui/0000-0003-4618-4979; Wang, Yuming/0000-0002-8887-3919; shen, Chenglong/0000-0002-3577-5223 FU NSFC [41131065, 41574165, 41421063, 41274173, 41222031, 41404134, 41474151]; CAS (Key Research Program) [KZZD-EW-01]; CAS (100-Talent Program); MOST 973 key project [2011CB811403]; fundamental research funds for the central universities; NASA FX We acknowledge use of data from the SDO, STEREO, SOHO, and GOES spacecraft. SDO is a mission of NASA's Living With a Star Program, STEREO is the third mission in NASA's Solar Terrestrial Probes program, and SOHO is a mission of international cooperation between ESA and NASA. The TDS charts for all the events involved in this study could be found at http://space.ustc.edu.cn/dreams/shm/tds (the MEGS-A-only TDS) and http://space.ustc.edu.cn/dreams/shm/tds-c09 (the extended TDS). This work is supported by grants from the NSFC (41131065, 41574165, 41421063, 41274173, 41222031, 41404134, and 41474151), CAS (Key Research Program KZZD-EW-01 and 100-Talent Program), MOST 973 key project (2011CB811403), and the fundamental research funds for the central universities. NR 34 TC 0 Z9 0 U1 13 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2016 VL 223 IS 1 AR 4 DI 10.3847/0067-0049/223/1/4 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI0TB UT WOS:000373208900004 ER PT J AU Snyder, J Son, AR Hamid, Q Wu, HL Sun, W AF Snyder, Jessica Son, Ae Rin Hamid, Qudus Wu, Honglu Sun, Wei TI Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system SO BIOFABRICATION LA English DT Article DE bioprinting; heterogeneous co-culture; rotary cell culture system; in vitro liver model; cell-laden droplet ID IN-VITRO; SIMULATED MICROGRAVITY; FREEFORM FABRICATION; ENDOTHELIAL-CELLS; COCULTURE SYSTEM; LIVER; SCAFFOLDS; HEPATOCYTES; NANOPARTICLES; PROLIFERATION AB Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 mu m, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy. C1 [Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Sun, Wei] Drexel Univ, Mech Engn & Mech, Philadelphia, PA 19104 USA. [Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Sun, Wei] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. RP Sun, W (reprint author), Drexel Univ, Mech Engn & Mech, Philadelphia, PA 19104 USA.; Sun, W (reprint author), Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. EM sunwei@drexel.edu RI Son, Aerin/D-4520-2017 FU National Space Biomedical Research Institute's Summer Intern Program FX With sincere respect and gratitude, the authors acknowledge the National Space Biomedical Research Institute's Summer Intern Program for support of this collaboration. NR 56 TC 1 Z9 1 U1 17 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1758-5082 EI 1758-5090 J9 BIOFABRICATION JI Biofabrication PD MAR PY 2016 VL 8 IS 1 AR 015002 DI 10.1088/1758-5090/8/1/015002 PG 15 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA DI1WZ UT WOS:000373289000006 PM 26759993 ER PT J AU Harrivel, AR Weissman, DH Noll, DC Huppert, T Peltier, SJ AF Harrivel, Angela R. Weissman, Daniel H. Noll, Douglas C. Huppert, Theodore Peltier, Scott J. TI Dynamic filtering improves attentional state prediction with fNIRS SO BIOMEDICAL OPTICS EXPRESS LA English DT Article ID NEAR-INFRARED SPECTROSCOPY; MULTISOURCE INTERFERENCE TASK; FUNCTIONAL CONNECTIVITY; BRAIN ACTIVATION; DEFAULT-MODE; SLEEP-DEPRIVATION; CEREBRAL HEMODYNAMICS; OPTICAL TOMOGRAPHY; RESTING BRAIN; FOCAL CHANGES AB Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%). (C)2016 Optical Society of America C1 [Harrivel, Angela R.] NASA, Langley Res Ctr, Crew Syst & Aviat Operat Branch, Hampton, VA 23681 USA. [Harrivel, Angela R.; Noll, Douglas C.; Peltier, Scott J.] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA. [Harrivel, Angela R.; Noll, Douglas C.; Peltier, Scott J.] Univ Michigan, Funct MRI Lab, Ann Arbor, MI 48109 USA. [Weissman, Daniel H.] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA. [Huppert, Theodore] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA. RP Harrivel, AR (reprint author), NASA, Langley Res Ctr, Crew Syst & Aviat Operat Branch, Hampton, VA 23681 USA.; Harrivel, AR (reprint author), Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA.; Harrivel, AR (reprint author), Univ Michigan, Funct MRI Lab, Ann Arbor, MI 48109 USA. EM angela.r.harrivel@nasa.gov FU University of Michigan fMRI Laboratory; Vehicle Systems Safety Technologies Project FX This work was supported by the University of Michigan fMRI Laboratory and the Vehicle Systems Safety Technologies Project, led by the Langley Research Center, in NASA's Aviation Safety Program. Colleagues at the NASA Glenn and Langley Research Centers are appreciated, especially Jeffrey Mackey, Daniel Gotti (who drew Fig. 3) and Padetha Tin for head probe design and assembly. NR 95 TC 0 Z9 0 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2156-7085 J9 BIOMED OPT EXPRESS JI Biomed. Opt. Express PD MAR 1 PY 2016 VL 7 IS 3 BP 979 EP 1002 DI 10.1364/BOE.7.000979 PG 24 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA DG4JR UT WOS:000372039000020 PM 27231602 ER PT J AU McKenna-Lawlor, S Ip, W Jackson, B Odstrcil, D Nieminen, P Evans, H Burch, J Mandt, K Goldstein, R Richter, I Dryer, M AF McKenna-Lawlor, S. Ip, W. Jackson, B. Odstrcil, D. Nieminen, P. Evans, H. Burch, J. Mandt, K. Goldstein, R. Richter, I. Dryer, M. TI Space Weather at Comet 67P/Churyumov-Gerasimenko Before its Perihelion SO EARTH MOON AND PLANETS LA English DT Article DE Interplanetary scintillation technique; ENLIL modelling; Coronal mass ejections; Comet Churyumov-Gerasimenko; Rosetta Mission ID CORONAL MASS EJECTIONS; ROSETTA PLASMA CONSORTIUM; 3-DIMENSIONAL PROPAGATION; SOLAR; MISSION; SODIUM; MOON; ACCELERATION; TOMOGRAPHY; STREAMER AB Interplanetary scintillation observations, as well as the ENLIL 3D-MHD model when employed either separately or in combination with the observations, enable the making of predictions of the solar wind density and speed at locations in the inner heliosphere. Both methods are utilized here to predict the arrival at the Rosetta spacecraft and its adjacent comet 67P/Churyumov-Gerasimenko of, flare related, interplanetary propagating shocks and coronal mass ejections in September 2014. The predictions of density and speed variations at the comet are successfully matched with signatures recorded by the magnetometer and the ion and electron sensor instruments in the Rosetta Plasma Package, thereby providing confidence that the signatures recorded aboard the spacecraft were solar related. The plasma perturbations which were detected some 9-10 days after significant flaring in September 2014 are interpreted to have been signatures of the arrivals of three coronal mass ejection related shocks at the comet. Also, a solar energetic particle event was recorded at 3.7 AU within similar to 30 min of the onset of a flare by the Standard Radiation Monitor aboard Rosetta. C1 [McKenna-Lawlor, S.] NUI Maynooth, Space Technol Ireland Ltd, Maynooth, Kildare, Ireland. [Ip, W.] Natl Cent Univ, 300 Chung Da Rd, Chungli 32054, Taiwan. [Jackson, B.] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Odstrcil, D.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Nieminen, P.; Evans, H.] ESAs European Space Res & Technol Ctr, Noordwijk, Netherlands. [Burch, J.; Mandt, K.; Goldstein, R.] SW Res Inst, 6220 Culebra Rd, San Antonio, TX USA. [Richter, I.] Tech Univ Carolo Wilhelmina Braunschweig, Mendelssohnstr 3, D-38116 Braunschweig, Germany. [Dryer, M.] NOAA, Space Weather Predict Ctr RET, Boulder, CO 80305 USA. RP McKenna-Lawlor, S (reprint author), NUI Maynooth, Space Technol Ireland Ltd, Maynooth, Kildare, Ireland. EM stil@nuim.ie OI Mandt, Kathleen/0000-0001-8397-3315 NR 48 TC 2 Z9 2 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-9295 EI 1573-0794 J9 EARTH MOON PLANETS JI Earth Moon Planets PD MAR PY 2016 VL 117 IS 1 BP 1 EP 22 DI 10.1007/s11038-015-9479-5 PG 22 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geology GA DI0DY UT WOS:000373166500001 ER PT J AU Morton, DC Noojipady, P Macedo, MM Gibbs, H Victoria, DC Bolfe, EL AF Morton, Douglas C. Noojipady, Praveen Macedo, Marcia M. Gibbs, Holly Victoria, Daniel C. Bolfe, Edson L. TI Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS LA English DT Article DE Zoning; Utilization; Amazon; Soya; Potentially available cropland (PAC) ID LAND-USE; SOY MORATORIUM; DEFORESTATION; INTENSIFICATION; GLOBALIZATION; DETERMINANTS; AMERICA; POLICY; COVER; BASIN AB Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing, global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001-2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0-2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture-soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC) without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for further legal expansion of crop production in Mato Grosso. Dynamics of cropland expansion from more than a decade of satellite observations indicated narrow ranges of suitability criteria, restricting PAC under current policy conditions, and emphasizing the advantages of field-scale information to assess suitability and utilization. Published by Elsevier Ltd. C1 [Morton, Douglas C.; Noojipady, Praveen] NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. [Noojipady, Praveen] Univ Maryland, College Pk, MD 20742 USA. [Noojipady, Praveen] Natl Wildlife Federat, Nat Advocacy Ctr, Washington, DC 20006 USA. [Macedo, Marcia M.] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Gibbs, Holly] Univ Wisconsin, Madison, WI 53706 USA. [Victoria, Daniel C.] Brazilian Agr Res Corp Embrapa, Satellite Monitoring, BR-13070115 Campinas, SP, Brazil. [Bolfe, Edson L.] Brazilian Agr Res Corp Embrapa, Secretariat Intelligence & Macrostrategy, BR-70770901 Brasilia, DF, Brazil. RP Morton, DC (reprint author), NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. EM douglas.morton@nasa.gov RI Morton, Douglas/D-5044-2012 FU NASA; Norwegian Agency for Development Cooperation (NORAD) [QZA-0465, QZA-13/0075]; Science Without Borders Visiting Scientist Fellowship FX Funding for this study was provided by NASA, the Norwegian Agency for Development Cooperation (NORAD, Grants QZA-0465 and QZA-13/0075), and a Science Without Borders Visiting Scientist Fellowship (D.C. Morton), administered by the Brazilian National Counsel of Scientific and Technological Development (CNPq) for the Brazilian Ministry of Science, Technology, and Innovation (MCTI). We are grateful to Drs. Britaldo Soares-Filho and Laura Hess for their willingness to share data on crop suitability and land cover. NR 46 TC 1 Z9 1 U1 6 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-3780 EI 1872-9495 J9 GLOBAL ENVIRON CHANG JI Glob. Environ. Change-Human Policy Dimens. PD MAR PY 2016 VL 37 BP 92 EP 101 DI 10.1016/j.gloenvcha.2016.02.001 PG 10 WC Environmental Sciences; Environmental Studies; Geography SC Environmental Sciences & Ecology; Geography GA DH4NL UT WOS:000372762600008 ER PT J AU Benjamins, VR Bobrow, D Doyle, R Hendler, J Kambhampati, S Raphael, B Wang, FY AF Benjamins, V. Richard Bobrow, Dan Doyle, Richard Hendler, James Kambhampati, Subbarao Raphael, Bert Wang, Fei-Yue TI Marvin Minsky, 9 August 1927-24 January 2016 IN MEMORIAM SO IEEE INTELLIGENT SYSTEMS LA English DT Biographical-Item C1 [Benjamins, V. Richard] Univ Amsterdam, Standard Part Artificial Intelligence Cognit Sci, NL-1012 WX Amsterdam, Netherlands. [Doyle, Richard] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hendler, James] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Kambhampati, Subbarao] Arizona State Univ, Tempe, AZ 85287 USA. RP Benjamins, VR (reprint author), Univ Amsterdam, Standard Part Artificial Intelligence Cognit Sci, NL-1012 WX Amsterdam, Netherlands. NR 1 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1541-1672 EI 1941-1294 J9 IEEE INTELL SYST JI IEEE Intell. Syst. PD MAR-APR PY 2016 VL 31 IS 2 BP 3 EP 5 PG 3 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DH8DI UT WOS:000373023300001 ER PT J AU Krieger, G Moreira, A Zink, M Shimada, M Hensley, S AF Krieger, Gerhard Moreira, Alberto Zink, Manfred Shimada, Masanobu Hensley, Scott TI Foreword to the Special Issue on Synthetic Aperture Radar (SAR): New Techniques, Missions and Applications SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Editorial Material C1 [Krieger, Gerhard; Moreira, Alberto; Zink, Manfred] German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Wessling, Germany. [Shimada, Masanobu] Tokyo Denki Univ, Sch Sci & Engn, Hiki, Saitama 3500394, Japan. [Hensley, Scott] Jet Prop Lab, Pasadena, CA 91109 USA. RP Krieger, G (reprint author), German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Wessling, Germany. RI Moreira, Alberto/C-1147-2013 OI Moreira, Alberto/0000-0002-3436-9653 NR 28 TC 0 Z9 0 U1 4 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD MAR PY 2016 VL 9 IS 3 SI SI BP 967 EP 970 DI 10.1109/JSTARS.2016.2524918 PG 4 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DH8ON UT WOS:000373054100001 ER PT J AU Milillo, P Riel, B Minchew, B Yun, SH Simons, M Lundgren, P AF Milillo, Pietro Riel, Bryan Minchew, Brent Yun, Sang-Ho Simons, Mark Lundgren, Paul TI On the Synergistic Use of SAR Constellations' Data Exploitation for Earth Science and Natural Hazard Response SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article; Proceedings Paper CT 10th European Conference on Synthetic Aperture Radar (EUSAR) CY JUN 02-06, 2014 CL Berlin, GERMANY SP ITG, VDE, DLR, Airbus Def & Space, Fraunhofer, EUREL, URSI, DGON, IEEE GRSS, IEEE AESS DE COSMO-SkyMed (CSK); Earth science; interferometric SAR (InSAR); natural hazards ID ANTARCTIC ICE-SHEET; CALDERA; INTERFEROMETRY; COLLAPSE; STRESS; AREAS; SHELF; FLOW AB Several current and expected future SAR satellites missions (e.g., TanDEM-X (TDX)/PAZ, COSMO-SkyMed (CSK), and Sentinel-1A/B) are designed as constellations of SAR sensors. Relative to single satellite systems, such constellations can provide greater spatial coverage and temporal sampling, thereby enabling better control on interferometric decorrelation and lower latency data access. These improvements lead to more effective near real-time disaster monitoring, assessment and response, and a greater ability to constrain dynamically changing physical processes. Using observations from the CSK system, we highlight examples of the potential for such imaging capabilities to enable advances in Earth science and natural hazards response. C1 [Milillo, Pietro; Riel, Bryan; Minchew, Brent; Simons, Mark] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Milillo, Pietro] Univ Basilicata, Sch Engn, I-85100 Potenza, Italy. [Yun, Sang-Ho; Lundgren, Paul] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Milillo, P (reprint author), CALTECH, Seismol Lab, Pasadena, CA 91125 USA.; Milillo, P (reprint author), Univ Basilicata, Sch Engn, I-85100 Potenza, Italy. EM pietro.milillo@unibas.it OI Milillo, Pietro/0000-0002-1171-3976; Simons, Mark/0000-0003-1412-6395 FU California Institute of Technology under National Aeronautics and Space Administration FX COSMO-SkyMed data products processed at JPL under license from ASI as part of a collaborative project between CIDOT and JPL/Caltech. Original COSMO-SkyMed product-ASI-Agenzia Spaziale Italiana-(2014-2015). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work of P. Milillo was done while he was a Special Student at Caltech. NR 39 TC 6 Z9 6 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD MAR PY 2016 VL 9 IS 3 SI SI BP 1095 EP 1100 DI 10.1109/JSTARS.2015.2465166 PG 6 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DH8ON UT WOS:000373054100013 ER PT J AU Boyce, BL Kramer, SLB Bosiljevac, TR Corona, E Moore, JA Elkhodary, K Simha, CHM Williams, BW Cerrone, AR Nonn, A Hochhalter, JD Bomarito, GF Warner, JE Carter, BJ Warner, DH Ingraffea, AR Zhang, T Fang, X Lua, J Chiaruttini, V Maziere, M Feld-Payet, S Yastrebov, VA Besson, J Chaboche, JL Lian, J Di, Y Wu, B Novokshanov, D Vajragupta, N Kucharczyk, P Brinnel, V Dobereiner, B Munstermann, S Neilsen, MK Dion, K Karlson, KN Foulk, JW Brown, AA Veilleux, MG Bignell, JL Sanborn, SE Jones, CA Mattie, PD Pack, K Wierzbicki, T Chi, SW Lin, SP Mahdavi, A Predan, J Zadravec, J Gross, AJ Ravi-Chandar, K Xue, L AF Boyce, B. L. Kramer, S. L. B. Bosiljevac, T. R. Corona, E. Moore, J. A. Elkhodary, K. Simha, C. H. M. Williams, B. W. Cerrone, A. R. Nonn, A. Hochhalter, J. D. Bomarito, G. F. Warner, J. E. Carter, B. J. Warner, D. H. Ingraffea, A. R. Zhang, T. Fang, X. Lua, J. Chiaruttini, V. Maziere, M. Feld-Payet, S. Yastrebov, V. A. Besson, J. Chaboche, J. -L. Lian, J. Di, Y. Wu, B. Novokshanov, D. Vajragupta, N. Kucharczyk, P. Brinnel, V. Doebereiner, B. Muenstermann, S. Neilsen, M. K. Dion, K. Karlson, K. N. Foulk, J. W., III Brown, A. A. Veilleux, M. G. Bignell, J. L. Sanborn, S. E. Jones, C. A. Mattie, P. D. Pack, K. Wierzbicki, T. Chi, S. -W. Lin, S. -P. Mahdavi, A. Predan, J. Zadravec, J. Gross, A. J. Ravi-Chandar, K. Xue, L. TI The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Fracture; Rupture; Tearing; Deformation; Plasticity; Metal; Alloy; Simulation; rediction; Modeling ID POLYCRYSTALLINE AL 6061-T6; KERNEL PARTICLE METHODS; STRENGTH STEEL SHEETS; HIGH-STRAIN-RATE; CRACK-PROPAGATION; ROOM-TEMPERATURE; DAMAGE; MODEL; BEHAVIOR; DEFORMATION AB Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5-68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti-6Al-4V sheet under both quasi-static and modest-rate dynamic loading (failure in 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods. C1 [Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.; Corona, E.; Neilsen, M. K.; Bignell, J. L.; Sanborn, S. E.; Jones, C. A.; Mattie, P. D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Moore, J. A.] Northwestern Univ, Evanston, IL USA. [Elkhodary, K.] Amer Univ Cairo, New Cairo, Egypt. [Simha, C. H. M.; Williams, B. W.] Nat Resources Canada, CanmetMAT, Hamilton, ON, Canada. [Cerrone, A. R.] GE Global Res Ctr, Niskayuna, NY USA. [Nonn, A.] Ostbayer Tech Hsch, Regensburg, Germany. [Hochhalter, J. D.; Bomarito, G. F.; Warner, J. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Carter, B. J.; Warner, D. H.; Ingraffea, A. R.] Cornell Univ, Ithaca, NY USA. [Zhang, T.; Fang, X.; Lua, J.] Global Engn & Mat Inc, Princeton, NJ USA. [Chiaruttini, V.; Feld-Payet, S.; Chaboche, J. -L.] Univ Paris Saclay, Onera, Chatillon, France. [Maziere, M.; Yastrebov, V. A.; Besson, J.] PSL Res Univ, MINES ParisTech, Ctr Mat, CNRS UMR 7633, Evry, France. [Lian, J.; Di, Y.; Wu, B.; Novokshanov, D.; Vajragupta, N.; Kucharczyk, P.; Brinnel, V.; Doebereiner, B.; Muenstermann, S.] Rhein Westfal TH Aachen, Aachen, Germany. [Dion, K.; Karlson, K. N.; Foulk, J. W., III; Brown, A. A.; Veilleux, M. G.] Sandia Natl Labs, Livermore, CA USA. [Pack, K.; Wierzbicki, T.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Chi, S. -W.; Lin, S. -P.; Mahdavi, A.] Univ Illinois, Chicago, IL USA. [Predan, J.; Zadravec, J.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Gross, A. J.; Ravi-Chandar, K.] Univ Texas Austin, Austin, TX 78712 USA. [Xue, L.] Thinkviewer LLC, Sugar Land, TX USA. RP Boyce, BL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM blboyce@sandia.gov; slkrame@sandia.gov; trbosil@sandia.gov; ecorona@sandia.gov; johnallanmoore@gmail.com; khalile@aucegypt.edu; Hari.Simha@NRCan-RNCan.gc.ca; Bruce.Williams@NRCan-RNCan.gc.ca; albert.cerrone@ge.com; aida.nonn@oth-regensburg.de; jacob.d.hochhalter@nasa.gov; geoffrey.f.bomarito@nasa.gov; james.e.warner@nasa.gov; bjc21@cornell.edu; reddhw52@cornell.edu; ari1@cornell.edu; tzhang@gem-innovation.com; xfang@gem-innovation.com; jlua@gem-innovation.com; vincent.chiaruttini@onera.fr; matthieu.maziere@mines-paristech.fr; sylvia.feld-payet@onera.fr; vladislav.yastrebov@mines-paristech.fr; jacques.besson@mines-paristech.fr; jean-louis.chaboche@onera.fr; junhe.lian@iehk.rwth-aachen.de; yidu.di@iehk.rwth-aachen.de; bo.wu@iehk.rwth-aachen.de; denis.novokshanov@iehk.rwth-aachen.de; napat.vajragupta@iehk.rwth-aachen.de; pawel.kucharczyk@iehk.rwth-aachen.de; victoria.brinnel@iehk.rwth-aachen.de; benedikt.doebereiner@iehk.rwth-aachen.de; sebastian.muenstermann@iehk.rwth-aachen.de; mkneils@sandia.gov; kdion@sandia.gov; knkarls@sandia.gov; jwfoulk@sandia.gov; aabrown@sandia.gov; mgveill@sandia.gov; jbignel@sandia.gov; sesanbo@sandia.gov; cajone@sandia.gov; pdmatti@sandia.gov; kpack@mit.edu; wierz@mit.edu; swchi@uic.edu; slin46@ford.com; amahda2@uic.edu; jozef.predan@um.si; zadravec.jozef@gmail.com; andrew.gross@mail.utexas.edu; ravi@utexas.edu; xue@alum.mit.edu RI Besson, Jacques/A-4144-2008; Munstermann, Sebastian/E-5480-2012; Xue, Liang/A-1266-2007; Warner, Derek/A-2303-2012; Lian, Junhe/C-5492-2009 OI Besson, Jacques/0000-0003-1975-2408; Munstermann, Sebastian/0000-0002-6251-2429; Xue, Liang/0000-0003-0468-0624; Lian, Junhe/0000-0003-0323-3486 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Naval Research: MURI [N00014-06-1-0505-A00001]; Office of Naval Research: FNC Project [N00014-08-1-0189]; Office of Naval Research [N00014-11-C-0487]; National Science Foundation [CMMI-1532528] FX BLB and HEF would like to thank Dr. James Redmond for managing Sandia's role in this work through the DOE Advanced Scientific Computing program. SLBK and TRB would like to thank Dr. Dennis Croessmann and Dr. David Epp for their management role supporting the experimental efforts at Sandia for this work through the NNSA Weapon System Engineering and Assessment Technology Engineering Campaign. JLB, SES, and CAJ would like to thank DOE/NE and Ryan Bechtel for partially supporting their participation in this challenge. The Sandia authors would like to thank the follow-ing individuals for providing laboratory support of the experiments: Thomas Crenshaw, John Laing, Jhana Gearhart, Mathew Ingraham, Artis Jackson, Darren Pendley, Jack Heister, and Alice Kilgo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work of AJG and KRC at the University of Texas was performed during the course of an investigation into ductile failure under two related research programs funded by the Office of Naval Research: MURI Project N00014-06-1-0505-A00001 and FNC Project: N00014-08-1-0189; this support is gratefully acknowledged. The authors from GEM are grateful for the support provided by the Office of Naval Research (N00014-11-C-0487) for which Dr. Paul Hess and Dr. Ken Nahshon serve as the technical monitors. KP and TW are grateful to Dr. Borja Erice at Ecole Polytechnique for the development of the user material subroutine; thanks are also due to Dr. Christian C. Roth at MIT for a valuable discussion. The authors gratefully acknowledge financial support from the National Science Foundation (Grant Number CMMI-1532528, "Summit on Predictive Modeling of Ductile Failure") towards holding a Summit to discuss and distill the results reported in this article. NR 68 TC 8 Z9 8 U1 14 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 EI 1573-2673 J9 INT J FRACTURE JI Int. J. Fract. PD MAR PY 2016 VL 198 IS 1-2 BP 5 EP 100 DI 10.1007/s10704-016-0089-7 PG 96 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA DH4KV UT WOS:000372755800002 ER PT J AU Cerrone, AR Nonn, A Hochhalter, JD Bomarito, GF Warner, JE Carter, BJ Warner, DH Ingraffea, AR AF Cerrone, A. R. Nonn, A. Hochhalter, J. D. Bomarito, G. F. Warner, J. E. Carter, B. J. Warner, D. H. Ingraffea, A. R. TI Predicting failure of the Second Sandia Fracture Challenge geometry with a real-world, time constrained, over-the-counter methodology SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Ti-6Al-4V; Failure locus curve; Sandia Fracture Challenge; Anisotropic yielding ID DUCTILE FRACTURE; GROWTH AB An over-the-counter methodology to predict fracture initiation and propagation in the challenge specimen of the Second Sandia Fracture Challenge is detailed herein. This pragmatic approach mimics that of an engineer subjected to real-world time constraints and unquantified uncertainty. First, during the blind prediction phase of the challenge, flow and failure locus curves were calibrated for Ti-6Al-4V with provided tensile and shear test data for slow (0.0254 mm/s) and fast (25.4 mm/s) loading rates. Thereafter, these models were applied to a 3D finite-element mesh of the non-standardized challenge geometry with nominal dimensions to predict, among other items, crack path and specimen response. After the blind predictions were submitted to Sandia National Labs, they were improved upon by addressing anisotropic yielding, damage initiation under shear dominance, and boundary condition selection. C1 [Cerrone, A. R.] GE Global Res Ctr, Niskayuna, NY USA. [Nonn, A.] Ostbayer Tech Hsch, Regensburg, Germany. [Hochhalter, J. D.; Bomarito, G. F.; Warner, J. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Carter, B. J.; Warner, D. H.; Ingraffea, A. R.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Cerrone, AR (reprint author), GE Global Res Ctr, Niskayuna, NY USA. EM Albert.Cerrone@ge.com RI Warner, Derek/A-2303-2012 NR 12 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 EI 1573-2673 J9 INT J FRACTURE JI Int. J. Fract. PD MAR PY 2016 VL 198 IS 1-2 BP 117 EP 126 DI 10.1007/s10704-016-0086-x PG 10 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA DH4KV UT WOS:000372755800004 ER PT J AU Kerr, JE Arndt, GD Byerly, DL Rubinovitz, R Theriot, CA Stangel, I AF Kerr, J. E. Arndt, G. D. Byerly, D. L. Rubinovitz, R. Theriot, C. A. Stangel, I. TI FT-Raman Spectroscopy Study of the Remineralization of Microwave-Exposed Artificial Caries SO JOURNAL OF DENTAL RESEARCH LA English DT Article DE dental caries; tooth remineralization; in vitro techniques; microbiology; Raman spectroscopy; x-ray computerized tomography ID STREPTOCOCCUS-MUTANS; MILLIMETER WAVES; DENTAL DIAGNOSIS; ENAMEL; ADULTS; LESIONS; MODEL AB Dental caries is a microbially mediated disease that can result in significant tooth structure degradation. Although the preponderance of lesions is treated by surgical intervention, various strategies have been developed for its noninvasive management. Here, we use a novel approach for noninvasive treatment based on killing Streptococcus mutans with high-frequency microwave energy (ME). The rationale for this approach is based on modulating the pH of caries to a physiological state to enable spontaneous tooth remineralization from exogenous sources. In the present study, after demonstrating that ME kills > 99% of S. mutans in planktonic cultures, 8 enamel slabs were harvested from a single tooth. Baseline mineral concentration at each of 12 points per slab was obtained using Fourier transform (FT)-Raman spectroscopy. Surface demineralization was subsequently promoted by subjecting all samples to an S. mutans acidic biofilm for 6 d. Half of the samples were then exposed to high-frequency ME, and the other half were used as controls. All samples were next subjected to a remineralization protocol consisting of two 45-min exposures per 24-h period in tryptic soy broth followed by immersion in a remineralizing solution for the remaining period. After 10 d, samples were removed and cleaned. FT-Raman spectra were again obtained at the same 12 points per sample, and the mineral concentration was determined. The effect of the remineralization protocol on the demineralized slabs was expressed as a percentage of mineral loss or gain relative to baseline. The mineral concentration of the microwave-exposed group collectively approached 100% of baseline values, while that of the control group was in the order of 40%. Differences between groups were significant (P = 0.001, Mann-Whitney U test). We concluded that killing of S. mutans by ME promotes effective remineralization of S. mutans-demineralized enamel compared with controls. C1 [Kerr, J. E.] Notre Dame Maryland Univ, Dept Biol, Baltimore, MD USA. [Arndt, G. D.; Byerly, D. L.] NASA, Biomed Engn Explorat Space Technol Lab, Engn Lab, Lyndon B Johnson Space Ctr, Houston, TX USA. [Rubinovitz, R.] Thermo Fisher Sci, Lanham, MD USA. [Theriot, C. A.] Univ Texas Med Branch, Dept Prevent Med & Community Hlth, Galveston, TX 77555 USA. [Stangel, I.] BioMat Sci, 5612 Glenwood Rd, Bethesda, MD 20817 USA. RP Stangel, I (reprint author), BioMat Sci, 5612 Glenwood Rd, Bethesda, MD 20817 USA. EM stangel@biomatsciences.com FU National Science Foundation [1215100]; Notre Dame of Maryland University Council for Faculty Research and Development [CFRD1001] FX This research was funded by National Science Foundation grant #1215100 and Notre Dame of Maryland University Council for Faculty Research and Development grant #CFRD1001 (J.E. Kerr). The authors further acknowledge Micro Photonics (Allentown, PA, USA) for its work in generating the micro-computed tomography image used in this publication. G.D. Arndt, D. Byerly, and I. Stangel have a filed patent application based on the work reported in this article. The authors declare no other potential conflicts of interest with respect to the authorship and/or publication of this article. NR 36 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-0345 EI 1544-0591 J9 J DENT RES JI J. Dent. Res. PD MAR PY 2016 VL 95 IS 3 BP 342 EP 348 DI 10.1177/0022034515619370 PG 7 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA DH8YJ UT WOS:000373082500013 PM 26647390 ER PT J AU Harris, HS Benson, SR James, MC Martin, KJ Stacy, BA Daoust, PY Rist, PM Work, TM Balazs, GH Seminoff, JA AF Harris, Heather S. Benson, Scott R. James, Michael C. Martin, Kelly J. Stacy, Brian A. Daoust, Pierre-Yves Rist, Paul M. Work, Thierry M. Balazs, George H. Seminoff, Jeffrey A. TI VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA) SO JOURNAL OF ZOO AND WILDLIFE MEDICINE LA English DT Article DE Body condition; Dermochelys coriacea; fat; health; leatherback sea turtle; ultrasound ID THICKNESS; LIPIDS AB Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-908) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species. C1 [Harris, Heather S.; Benson, Scott R.; Seminoff, Jeffrey A.] Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA. [James, Michael C.] Fisheries & Oceans Canada, Bedford Inst Oceanog, 1 Challenger Dr, Dartmouth, NS B2Y 4A2, Canada. [Martin, Kelly J.] Loggerhead Marinelife Ctr, 14200 US Highway 1, Juno Beach, FL 33408 USA. [Stacy, Brian A.] Natl Marine Fisheries Serv, Off Protected Resources, POB 110885, Gainesville, FL 32611 USA. [Daoust, Pierre-Yves; Rist, Paul M.] Univ Prince Edward Isl, Atlantic Vet Coll, 550 Univ Ave, Charlottetown, PE C1A 4P3, Canada. [Work, Thierry M.] US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, 300 Ala Moana Blvd,Room 5231, Honolulu, HI 96850 USA. [Balazs, George H.] Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd, Honolulu, HI 96818 USA. [Martin, Kelly J.] Project Leatherback Inc, 3330 Fairchild Gardens Ave 31061, Palm Beach Gardens, FL 33410 USA. RP Harris, HS (reprint author), Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA. EM heathersharris@gmail.com FU California Department of Fish and Wildlife's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis FX This project was supported in part by the California Department of Fish and Wildlife's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis. Field work was conducted under permits from the National Oceanic and Atmospheric Administration (NOAA) (1596-01, 1596-03, and 15634), the Florida Fish and Wildlife Conservation Commission Marine Turtle Permit (157), and Fisheries and Oceans Canada License 332697. All live animal procedures were approved by Institutional Animal Care and Use Committee (IACUC) through Moss Landing Marine Laboratories/San Jose State University Research Foundation (974). The authors thank C. Harms, M. Boor, J. Mellish, and C. Harvey-Clark for valuable scientific input; C. Fahy from the NOAA West Coast Regional Office; J. Douglas from the Moss Landing Marine Laboratories; the in-water capture and aerial teams from NOAA Southwest Fisheries Science Center and Canadian Sea Turtle Network; the necropsy teams from the California Department of Fish and Wildlife's Marine Wildlife Veterinary Care and Research Center, Atlantic Veterinary College, and NOAA Pacific Islands Fisheries Science Center, especially T. Jones; C. Innis, J. Cavin, and the New England Aquarium Departments of Animal Health and Rescue and Rehabilitation; C. Johnson and the leatherback field research team from the Loggerhead Marinelife Center; marine wildlife stranding networks in the United States and Canada; and the NOAA Pacific Islands longline fisheries observer program. NR 15 TC 0 Z9 0 U1 2 U2 3 PU AMER ASSOC ZOO VETERINARIANS PI YULEE PA 581705 WHITE OAK ROAD, YULEE, FL 32097 USA SN 1042-7260 EI 1937-2825 J9 J ZOO WILDLIFE MED JI J. Zoo Wildl. Med. PD MAR PY 2016 VL 47 IS 1 BP 275 EP 279 PG 5 WC Veterinary Sciences SC Veterinary Sciences GA DI0TU UT WOS:000373211000031 PM 27010287 ER PT J AU Freissinet, C Getty, SA Trainer, MG Glavin, DP Mahaffy, PR McLain, HL Benna, M AF Freissinet, C. Getty, S. A. Trainer, M. G. Glavin, D. P. Mahaffy, P. R. McLain, H. L. Benna, M. TI Evaluation of the robustness of chromatographic columns in a simulated highly radiative Jovian environment SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Capillary columns stationary phases; Radiations; Electrons; Icy moons; Gas chromatography mass spectrometry; Organics ID IN-SITU ANALYSIS; GAS-CHROMATOGRAPHY; COMETARY NUCLEUS AB Gas chromatography mass spectrometry (GCMS) is currently the most widely used analytical method for in situ investigation of organic molecules in space environments. Various types of GC column stationary phases have been, are currently, or will be used at the different solar system bodies including Mars, the Moon, Titan and comets. However, GCMS use in highly radiative environments such as Jupiter and its moons has never been explored and raises questions on the robustness of GC columns and stationary phases to extreme radiation. In this study, several types of GC columns were irradiated by high-energy electrons and protons in order to simulate the harsh conditions of a journey through Jupiter's radiation belts. Post-irradiation characterization shows that the three types of columns investigated, DB-5MS, CP-Chirasil-Dex CB and GS-GasPro, maintained their peak resolution and general separation performance after the radiation exposure. These results demonstrate that GCMS techniques can be applied to study the space environment of Jupiter's icy moons with no need for substantial radiation shielding of the columns. (c) 2016 Elsevier Ltd. All rights reserved. C1 [Freissinet, C.; Getty, S. A.; Trainer, M. G.; Glavin, D. P.; Mahaffy, P. R.; McLain, H. L.; Benna, M.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Freissinet, C.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN 37830 USA. [Benna, M.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. RP Freissinet, C (reprint author), NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. EM caroline.freissinet@nasa.gov RI Benna, Mehdi/F-3489-2012; Glavin, Daniel/D-6194-2012 OI Glavin, Daniel/0000-0001-7779-7765 NR 14 TC 1 Z9 1 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAR PY 2016 VL 122 BP 38 EP 45 DI 10.1016/j.pss.2016.01.004 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH4RS UT WOS:000372773700004 ER PT J AU Litvak, ML Mitrofanov, IG Sanin, AB Bakhtin, BN Bodnarik, JG Boynton, WV Chin, G Evans, LG Harshman, K Livengood, TA Malakhov, A Mokrousov, MI McClanahan, TP Sagdeev, R Starr, R AF Litvak, M. L. Mitrofanov, I. G. Sanin, A. B. Bakhtin, B. N. Bodnarik, J. G. Boynton, W. V. Chin, G. Evans, L. G. Harshman, K. Livengood, T. A. Malakhov, A. Mokrousov, M. I. McClanahan, T. P. Sagdeev, R. Starr, R. TI The variations of neutron component of lunar radiation background from LEND/LRO observations SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Neutrons; Moon; LEND ID DETECTOR EXPERIMENT LEND; MARS-ODYSSEY; RECONNAISSANCE ORBITER; GAMMA-RAY; INSTRUMENT SUITE; SOLAR MODULATION; COSMIC-RAYS; WATER ICE; HYDROGEN; MOON AB Lunar neutron flux data measured by the Lunar Exploration Neutron Detector (LEND) onboard NASA's Lunar Reconnaissance Orbiter (LRO) were analyzed for the period 2009-2014. We have re-evaluated the instrument's collimation capability and re-estimated the neutron counting rate measured in the Field of View (FOV) of the LEND collimated detectors, and found it to be 1.0 +/- 0.1 counts per second. We derived the spectral density of the neutron flux for various lunar regions using our comprehensive numerical model of orbital measurements. This model takes into account the location of the LEND instrument onboard LRO to calculate the surface leakage neutron flux and its propagation to the instrument detectors. Based on this we have determined the lunar neutron flux at the surface to be similar to 2 neutrons/[cm(2) sec] in the epithermal energy range, 0.4 eV to 1 key. We have also found variations of the lunar neutron leakage flux with amplitude as large as a factor of two, by using multi-year observations to explore variations in the Galactic Cosmic Ray (GCR) flux during the 23rd-24th solar cycles. (c) 2016 Elsevier Ltd. All rights reserved. C1 [Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Bakhtin, B. N.; Malakhov, A.; Mokrousov, M. I.] RAS, Space Res Inst, Profsouznaya St 84-32, Moscow 117997, Russia. [Bodnarik, J. G.; Boynton, W. V.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Chin, G.; Evans, L. G.; Livengood, T. A.; McClanahan, T. P.; Starr, R.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Evans, L. G.] Comp Sci Corp, Lanham, MD 20706 USA. [Livengood, T. A.; Sagdeev, R.] Univ Maryland, College Pk, MD 20742 USA. [Starr, R.] Catholic Univ Amer, Washington, DC 20064 USA. RP Litvak, ML (reprint author), RAS, Space Res Inst, Profsouznaya St 84-32, Moscow 117997, Russia. EM mlitvak.iki@gmail.com FU Russian Science Foundation [14-22-00249] FX This work is supported by the Grant# 14-22-00249 from Russian Science Foundation. NR 40 TC 2 Z9 3 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAR PY 2016 VL 122 BP 53 EP 65 DI 10.1016/j.pss.2016.01.006 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH4RS UT WOS:000372773700006 ER PT J AU Ajello, M Albert, A Atwood, WB Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Carave, PA Cecchi, C Chekhtman, A Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Di Venere, L Drell, PS Favuzzi, C Ferrara, EC Fusco, P Gargano, F Gasparrini, D Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Grenier, IA Guiriec, S Gustafsson, M Harding, AK Hewitt, JW Hill, AB Horan, D Jogler, T Johannesson, G Johnson, AS Kamae, T Karwin, C Knodlseder, J Kuss, M Larsson, S Latronico, L Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Magill, J Maldera, S Malyshev, D Manfreda, A Mayer, M Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Pesce-Rollins, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Sanchez-Conde, M Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Spada, F Spandre, G Spinelli, P Suson, DJ Tajima, H Takahashi, H Thayer, JB Torres, DF Tosti, G Troja, E Uchiyama, Y Vianello, G Winer, BL Wood, KS Zaharijas, G Zimmer, S AF Ajello, M. Albert, A. Atwood, W. B. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Carave, P. A. Cecchi, C. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Di Venere, L. Drell, P. S. Favuzzi, C. Ferrara, E. C. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Grenier, I. A. Guiriec, S. Gustafsson, M. Harding, A. K. Hewitt, J. W. Hill, A. B. Horan, D. Jogler, T. Johannesson, G. Johnson, A. S. Kamae, T. Karwin, C. Knoedlseder, J. Kuss, M. Larsson, S. Latronico, L. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Magill, J. Maldera, S. Malyshev, D. Manfreda, A. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Sanchez-Conde, M. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Spada, F. Spandre, G. Spinelli, P. Suson, D. J. Tajima, H. Takahashi, H. Thayer, J. B. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Vianello, G. Winer, B. L. Wood, K. S. Zaharijas, G. Zimmer, S. TI FERMI-LAT OBSERVATIONS OF HIGH-ENERGY gamma-RAY EMISSION TOWARD THE GALACTIC CENTER SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; Galaxy: center; gamma-rays: general; gamma-rays: ISM; radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; RADIAL-DISTRIBUTION; DARK-MATTER; COSMIC-RAYS; SOURCE CATALOG; SUPERNOVA-REMNANTS; EGRET OBSERVATIONS; OUTER GALAXY; CONSTRAINTS; GRADIENT AB The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a 15 degrees x 15 degrees region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the.-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner similar to 1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15 degrees x 15 degrees region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with gamma-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM. C1 [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Barbiellini, G.; Longo, F.; Zaharijas, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Zaharijas, G.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bechtol, K.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Bellazzini, R.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Buehler, R.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Carave, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Sanchez-Conde, M.; Zimmer, S.] Stockholm Univ, Dept Phys, Alballova, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Li, L.; Sanchez-Conde, M.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, Alballova, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, Box 50005, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Dept Fis, Ave Vicuna Mackenna 4860, Santiago, Chile. [Grenier, I. A.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Gustafsson, M.] Univ Gottingen, Inst Theoret Phys, Fac Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. [Hewitt, J. W.] Univ N Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland. [Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Karwin, C.; Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] CSIC, Inst Space Sci IEEC, Campus UAB, E-08193 Barcelona, Spain. [Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mitthumsiri, W.] Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ohno, M.; Takahashi, H.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ormes, J. F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzano, M.] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Parkinson, P. M. Saz] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France. [Siskind, E. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Smith, D. A.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Suson, D. J.] ICREA, Barcelona, Spain. [Tajima, H.] 3-34-1 Nishi Ikebukuro,Toshima Ku, Tokyo 1718501, Japan. [Torres, D. F.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Uchiyama, Y.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Uchiyama, Y.] Univ Trieste, I-34127 Trieste, Italy. [Winer, B. L.] Univ Nova Gorica, Lab Astroparticle Phys, Vipayska 13, SI-5000 Nova Gorica, Slovenia. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. RP Murgia, S; Porter, TA (reprint author), Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA.; Porter, TA (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.; Porter, TA (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.; Murgia, S (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. EM smurgia@uci.edu; tporter@stanford.edu RI Moskalenko, Igor/A-1301-2007; Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Orlando, E/R-5594-2016; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017; OI Moskalenko, Igor/0000-0001-6141-458X; Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X; Sgro', Carmelo/0000-0001-5676-6214; Zaharijas, Gabrijela/0000-0001-8484-7791; Hill, Adam/0000-0003-3470-4834; Ajello, Marco/0000-0002-6584-1703 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; NASA [NNX 09AC15G, NNX 10AE78G, NNX 13AC47G] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; GALPROP development is partially funded via NASA grants NNX 09AC15G, NNX 10AE78G, and NNX 13AC47G. NR 67 TC 50 Z9 50 U1 9 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 44 DI 10.3847/0004-637X/819/1/44 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400044 ER PT J AU Arcavi, I Wolf, WM Howell, DA Bildsten, L Leloudas, G Hardin, D Prajs, S Perley, DA Svirski, G Gal-Yam, A Katz, B McCully, C Cenko, SB Lidman, C Sullivan, M Valenti, S Astier, P Balland, C Carlberg, RG Conley, A Fouchez, D Guy, J Pain, R Palanque-Delabrouille, N Perrett, K Pritchet, CJ Regnault, N Rich, J Ruhlmann-Kleider, V AF Arcavi, Iair Wolf, William M. Howell, D. Andrew Bildsten, Lars Leloudas, Giorgos Hardin, Delphine Prajs, Szymon Perley, Daniel A. Svirski, Gilad Gal-Yam, Avishay Katz, Boaz McCully, Curtis Cenko, S. Bradley Lidman, Chris Sullivan, Mark Valenti, Stefano Astier, Pierre Balland, Cristophe Carlberg, Ray G. Conley, Alex Fouchez, Dominique Guy, Julien Pain, Reynald Palanque-Delabrouille, Nathalie Perrett, Kathy Pritchet, Chris J. Regnault, Nicolas Rich, James Ruhlmann-Kleider, Vanina TI RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA-SUPERLUMINOUS SUPERNOVA GAP SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: individual (PTF10iam, SNLS04D4ec, SNLS05D2bk, SNLS06D1hc, Dougie) ID WHITE-DWARF MODELS; CORE-COLLAPSE SUPERNOVAE; GAMMA-RAY BURSTS; EXPANDING PHOTOSPHERE METHOD; STAR-FORMING GALAXIES; TIME LIGHT CURVES; SHOCK-BREAKOUT; IA SUPERNOVAE; LEGACY SURVEY; CIRCUMSTELLAR INTERACTION AB We present observations of four rapidly rising (t(rise) approximate to 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M-peak approximate to-20)-one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Ha emission, but an unusual absorption feature, which can be interpreted as either high velocity Ha (though deeper than in previously known cases) or Si II (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a "Type 1.5 SN" scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature. C1 [Arcavi, Iair; Howell, D. Andrew] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA. [Arcavi, Iair; Bildsten, Lars; McCully, Curtis; Valenti, Stefano] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Wolf, William M.; Howell, D. Andrew; Bildsten, Lars; McCully, Curtis; Valenti, Stefano] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Leloudas, Giorgos; Perley, Daniel A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Manes Vej 30, DK-2100 Copenhagen, Denmark. [Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] CNRS, IN2P3, LPNHE, F-75005 Paris, France. [Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] Univ Paris 06, F-75005 Paris, France. [Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] Univ Paris 07, F-75005 Paris, France. [Prajs, Szymon; Sullivan, Mark] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Svirski, Gilad] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Cenko, S. Bradley] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Lidman, Chris] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Carlberg, Ray G.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H8, Canada. [Conley, Alex] Univ Colorado, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. [Fouchez, Dominique] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Palanque-Delabrouille, Nathalie; Rich, James; Ruhlmann-Kleider, Vanina] CEA Saclay, DSM, IRFU, SPP, F-91191 Gif Sur Yvette, France. [Perrett, Kathy] DRDC Ottawa, 3701 Carling Ave, Ottawa, ON K1A 0Z4, Canada. [Pritchet, Chris J.] Univ Victoria, Dept Phys & Astron, POB 3055, Victoria, BC V8W 3P6, Canada. RP Arcavi, I (reprint author), Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA.; Arcavi, I (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. EM iarcavi@lcogt.net OI Wolf, William/0000-0002-6828-0630; Sullivan, Mark/0000-0001-9053-4820 FU ESO program [176. A-0589]; National Science Foundation [1313484, PHY 11-25915, AST 11-09174]; Israeli Science Foundation; EU/FP7/ERC grant; BSF; GIF; Minerva; "Quantum universe" I-Core program of the planning and budgeting committee; ISF; Kimmel Investigator award; Danish National Research Foundation; W. M. Keck Foundation; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We thank J. Silverman and J. Johansson for helpful discussions and S. Sim and M. Kromer for sharing their white dwarf detonation models. This paper is based on observations obtained at the Cerro Paranal Observatory (ESO program 176. A-0589) and with the Samuel Oschin Telescope as part of the Palomar Transient Factory project. We are grateful for the assistance of the staffs at the various observatories where data were obtained. This work made use of the astronomy & astrophysics package for Matlab (Ofek 2014). Some of the work presented here is supported by the National Science Foundation under Grant No. 1313484. I.A. and A.G. acknowledge support by the Israeli Science Foundation and an EU/FP7/ERC grant. A.G. further acknowledges grants from the BSF, GIF, and Minerva, as well as the "Quantum universe" I-Core program of the planning and budgeting committee and the ISF, and a Kimmel Investigator award. The work of W.M.W. and L.B. was supported by the National Science Foundation under grants PHY 11-25915 and AST 11-09174. The Dark Cosmology Centre is funded by the Danish National Research Foundation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some data are based on observations obtained at the Gemini Observatory processed using the Gemini IRAF package, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina). This work made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 138 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 35 DI 10.3847/0004-637X/819/1/35 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400035 ER PT J AU Civano, F Marchesi, S Comastri, A Urry, MC Elvis, M Cappelluti, N Puccetti, S Brusa, M Zamorani, G Hasinger, G Aldcroft, T Alexander, DM Allevato, V Brunner, H Capak, P Finoguenov, A Fiore, F Fruscione, A Gilli, R Glotfelty, K Griffiths, RE Hao, H Harrison, FA Jahnke, K Kartaltepe, J Karim, A LaMassa, SM Lanzuisi, G Miyaji, T Ranalli, P Salvato, M Sargent, M Scoville, NJ Schawinski, K Schinnerer, E Silverman, J Smolcic, V Stern, D Toft, S Trakhenbrot, B Treister, E Vignali, C AF Civano, F. Marchesi, S. Comastri, A. Urry, M. C. Elvis, M. Cappelluti, N. Puccetti, S. Brusa, M. Zamorani, G. Hasinger, G. Aldcroft, T. Alexander, D. M. Allevato, V. Brunner, H. Capak, P. Finoguenov, A. Fiore, F. Fruscione, A. Gilli, R. Glotfelty, K. Griffiths, R. E. Hao, H. Harrison, F. A. Jahnke, K. Kartaltepe, J. Karim, A. LaMassa, S. M. Lanzuisi, G. Miyaji, T. Ranalli, P. Salvato, M. Sargent, M. Scoville, N. J. Schawinski, K. Schinnerer, E. Silverman, J. Smolcic, V. Stern, D. Toft, S. Trakhenbrot, B. Treister, E. Vignali, C. TI THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; cosmology: observations; galaxies: evolution; quasars: general; surveys; X-rays: general ID WIDE-FIELD SURVEY; ACTIVE GALACTIC NUCLEI; EVOLUTION SURVEY COSMOS; MS SOURCE CATALOGS; X-RAY SURVEY; XMM-NEWTON; BLACK-HOLE; NUMBER COUNTS; STRIPE 82; LOG S AB The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg(2) of the COSMOS field with an effective exposure of similar or equal to 160 ks over the central 1.5 deg(2) and of similar or equal to 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 x 10(-5). We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 x 10(-16), 1.5 x 10(-15), and 8.9 x 10(-16) erg cm(-2) s(-1)in the 0.5-2, 2-10, and 0.5-10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >10(22) cm(-2) from the hardness ratio (HR) is similar to 50(-16)(+17)%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%-10%. For the first time we compute number counts for obscured (HR > -0.2) and unobscured (HR < -0.2) sources and find significant differences between the two populations in the soft band. Due to the unprecedent large exposure, COSMOS-Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come. C1 [Civano, F.; Marchesi, S.; Urry, M. C.; LaMassa, S. M.] Yale Univ, Ctr Astron & Astrophys, 260 Whitney Ave, New Haven, CT 06520 USA. [Civano, F.; Marchesi, S.; Elvis, M.; Aldcroft, T.; Fruscione, A.; Glotfelty, K.; Hao, H.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Marchesi, S.; Brusa, M.; Lanzuisi, G.; Vignali, C.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Comastri, A.; Cappelluti, N.; Brusa, M.; Zamorani, G.; Gilli, R.; Lanzuisi, G.; Vignali, C.] INAF Osservatorio Astronom Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Puccetti, S.] ASDC ASI, Via Politecn, I-00133 Rome, Italy. [Hasinger, G.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Ctr Extragalact Astron, South Rd, Durham DH1 3LE, England. [Allevato, V.; Finoguenov, A.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland. [Brunner, H.; Salvato, M.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Capak, P.] IPAC, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Capak, P.; Scoville, N. J.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Fiore, F.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Griffiths, R. E.] Univ Hawaii, Div Nat Sci, Dept Phys & Astron, 200 W Kawili St, Hilo, HI 96720 USA. [Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA. [Jahnke, K.; Schinnerer, E.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Kartaltepe, J.] Natl Opt Astron Observ, 950N Cherry Ave, Tucson, AZ 85719 USA. [Kartaltepe, J.] Rochester Inst Technol, Sch Phys & Astron, 84 Lomb Mem Dr, Rochester, NY 14623 USA. [Karim, A.] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Miyaji, T.] Univ Nacl Autonoma Mexico, Inst Astron Sede Ensenada, Km 103,Carret Tijunana Ensenada, Ensenada, Baja California, Mexico. [Miyaji, T.] Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Ranalli, P.] Natl Observ Athens, AASARS, Penteli 15236, Greece. [Sargent, M.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Schawinski, K.; Trakhenbrot, B.] Swiss Fed Inst Technol, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Schinnerer, E.] Natl Radio Astron Observ, Pete V Domenici Sci Operat Ctr, 1003 Lopezville Rd, Socorro, NM 87801 USA. [Silverman, J.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Smolcic, V.] Univ Zagreb, Dept Phys, Bijeniaa Cesta 32, HR-10000 Zagreb, Croatia. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Toft, S.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Mariesvej 30, DK-2100 Copenhagen, Denmark. [Treister, E.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile. RP Civano, F (reprint author), Yale Univ, Ctr Astron & Astrophys, 260 Whitney Ave, New Haven, CT 06520 USA. RI Ranalli, Piero/K-6363-2013; OI Ranalli, Piero/0000-0003-3956-755X; Lanzuisi, Giorgio/0000-0001-9094-0984; Cappelluti, Nico/0000-0002-1697-186X; Zamorani, Giovanni/0000-0002-2318-301X; Urry, Meg/0000-0002-0745-9792; Trakhtenbrot, Benny/0000-0002-3683-7297; Schinnerer, Eva/0000-0002-3933-7677 FU NASA [G07-8136A, NAS8-03060, NNX15AE61G]; PRIN-INAF; FP7 Career Integration Grant "eEASy" [CIG 321913]; UNAM-DGAPA [PAPIIT IN104113]; CONACyT [179662]; Collaborative Research Council [956]; Deutsche Forschungsgemeinschaft; Greek General Secretariat of Research and Technology; Science and Technology Facilities Council [ST/I001573/1]; Swiss National Science Foundation [PP00P2_138979/1]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; FONDECYT [1120061]; CONICYT [ACT1101]; European Union [337595, 333654]; Danish National Research Foundation FX This work was supported in part by NASA Chandra grant number G07-8136A (F.C., S.M., V.A., M.E., H.S.); PRIN-INAF 2014 "Windy Black Holes combing galaxy evolution" (A.C., M.B., G.L. and C.V.); the FP7 Career Integration Grant "eEASy": "Supermassive blackholes through cosmic time: from current surveys to eROSITA-Euclid Synergies"(CIG 321913; M.B. and G.L.); UNAM-DGAPA Grant PAPIIT IN104113 and CONACyT Grant Cientifica Basica #179662 (T.M.); Collaborative Research Council 956, sub-project A1, funded by the Deutsche Forschungsgemeinschaft (A.K.); NASA contract NAS8-03060 (T.A., A.F., K.G.); the Greek General Secretariat of Research and Technology in the framework of the Programme of Support of Postdoctoral Researchers (P.R.); NASA award NNX15AE61G (R.G.); the Science and Technology Facilities Council through grant code ST/I001573/1 (D.M.A.); the Swiss National Science Foundation Grant PP00P2_138979/1 (K.S.); the Center of Excellence in Astrophysics and Associated Technologies (PFB 06), by the FONDECYT regular grant 1120061 and by the CONICYT Anillo project ACT1101 (E.T.); the European Union's Seventh Framework Programme under grant agreements 337595 (ERC Starting Grant, "CoSMass") and 333654 (CIG, AGN feedback; V.S.). S.T. is part of The Dark Cosmology Centre, funded by the Danish National Research Foundation. B.T. is a Zwicky Fellow. NR 64 TC 18 Z9 18 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 62 DI 10.3847/0004-637X/819/1/62 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400062 ER PT J AU Cromartie, HT Camilo, F Kerr, M Deneva, JS Ransom, SM Ray, PS Ferrara, EC Michelson, PF Wood, KS AF Cromartie, H. T. Camilo, F. Kerr, M. Deneva, J. S. Ransom, S. M. Ray, P. S. Ferrara, E. C. Michelson, P. F. Wood, K. S. TI SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (PSR J0251+26, PSR J1048+2339, PSR, J1805+06, PSR J1824+10, PSR J1909+21, PSR J2052+1218) ID LARGE-AREA TELESCOPE; SOURCE CATALOG; BINARY; DETECTABILITY AB We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period <= 8.1 hr), while the sixth is a more typical neutron star-white dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched. C1 [Cromartie, H. T.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Kerr, M.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Deneva, J. S.; Ray, P. S.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ransom, S. M.] NRAO, Charlottesville, VA 22903 USA. [Ferrara, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Michelson, P. F.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Michelson, P. F.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. RP Cromartie, HT (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. EM thankful@virginia.edu OI Ray, Paul/0000-0002-5297-5278 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Fermi LAT Collaboration FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the KA Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 30 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 34 DI 10.3847/0004-637X/819/1/34 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400034 ER PT J AU Garcia, JA Grinberg, V Steiner, JF McClintock, JE Pottschmidt, K Rothschild, RE AF Garcia, Javier A. Grinberg, Victoria Steiner, James F. McClintock, Jeffrey E. Pottschmidt, Katja Rothschild, Richard E. TI AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: detectors; space vehicles: instruments; X-rays: individual (Crab, XTE J1752-223, GX 339-4) ID RAY-TIMING-EXPLORER; HARD X-RAY; CRAB-NEBULA AB We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37. million counts in total for Cluster. A and 39. million counts for Cluster. B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster. A is free of instrumental artifacts while that of Cluster B contains significant features with amplitudes similar to 1%; the most prominent is in the energy range 30-50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster. B, via an iterative procedure we created the calibration tool HEXBCORR for correcting any Cluster. B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster. B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper. C1 [Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Grinberg, Victoria; Steiner, James F.] MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA. [Pottschmidt, Katja] UMBC, Dept Phys, Baltimore, MD 21250 USA. [Pottschmidt, Katja] UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, Katja] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rothschild, Richard E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Garcia, JA; Steiner, JF; McClintock, JE (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.; Grinberg, V; Steiner, JF (reprint author), MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA.; Pottschmidt, K (reprint author), UMBC, Dept Phys, Baltimore, MD 21250 USA.; Pottschmidt, K (reprint author), UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.; Pottschmidt, K (reprint author), CRESST, Greenbelt, MD 20771 USA.; Pottschmidt, K (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Rothschild, RE (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM javier@head.cfa.harvard.edu; grinberg@space.mit.edu; jsteiner@mit.edu; jem@cfa.harvard.edu; katja@milkyway.gsfc.nasa.gov; rrothschild@ucsd.edu FU CGPS grant from Smithsonian Institution; NASA Hubble Fellowship [HST-HF-51315.01]; NASA Einstein Fellowship [PF5-160144]; NASA through Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060] FX We thank an anonymous referee for several helpful comments. J.G. and J.E.M. acknowledge the support of a CGPS grant from the Smithsonian Institution. J.F.S. has been supported by NASA Hubble Fellowship grant HST-HF-51315.01 and NASA Einstein Fellowship grant PF5-160144. V.G. acknowledges support provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. NR 15 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 76 DI 10.3847/0004-637X/819/1/76 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400076 ER PT J AU Guiriec, S Gonzalez, MM Sacahui, JR Kouveliotou, C Gehrels, N McEnery, J AF Guiriec, S. Gonzalez, M. M. Sacahui, J. R. Kouveliotou, C. Gehrels, N. McEnery, J. TI CGRO/BATSE DATA SUPPORT THE NEW PARADIGM FOR GRB PROMPT EMISSION AND THE NEW L-i(nTh)-E-peak,i(nTh,rest) RELATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; black hole physics; distance scale; gamma-ray burst: general; radiation mechanisms: non-thermal; radiation mechanisms: thermal ID GAMMA-RAY BURSTS; SYNCHROTRON SHOCK MODEL; SPECTRAL COMPONENT; FERMI OBSERVATIONS; PEAK ENERGY; LUMINOSITY RELATION; COSMIC FIREBALLS; THERMAL EMISSION; EVOLUTION; BATSE AB The paradigm for gamma-ray burst (GRB) prompt emission is changing. Since early in the Compton Gamma Ray Observatory (CGRO) era, the empirical Band function has been considered a good description of the keV-MeV.-ray prompt emission spectra despite the fact that its shape was very often inconsistent with the theoretical predictions, especially those expected in pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission would be a combination of three main emission components: (i) a thermal-like component that we have interpreted so far as emission from the jet photosphere, (ii) a non-thermal component that we have interpreted so far as either synchrotron radiation from the propagating and accelerated charged particles within the jet or reprocessed jet photospheric emission, and (iii) an additional non-thermal (cutoff) power law (PL) extending from low to high energies in gamma-rays and most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs, namely GRBs 941017, 970111, and 990123, observed with the Burst And Transient Source Experiment (BATSE) on board CGRO with the new model. We conclude that BATSE data for these three GRBs are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate components during the prompt phase with similar spectral parameters as those reported from Fermi data. In addition, the analysis of the BATSE GRBs with the new prompt emission model results in a relation between the time-resolved energy flux of the non-thermal component, F-i(nTh), and its corresponding nu F-nu spectral peak energy, E-peak,i(nTh) (i.e., F-i(nTh)-E-peak,i(nTh)), which has a similar index-when fitted to a PL-as the one initially derived from Fermi data. For GRBs with known redshifts (z) this results in a possible universal relation between the luminosity of the non-thermal component, L-i(nTh), and its corresponding nu F nu spectral peak energy in the rest frame, E-peak,i(NT,rest) (i.e., L-i(nTh)-E-peak,i(NT,rest)). We estimated the redshifts of GRBs 941017 and 970111 using GRB 990123-with z = 1.61-as a reference. The estimated redshift for GRB 941017 is typical for long GRBs and the estimated redshift for GRB 970111 is right in the range of the expected values for this burst. C1 [Guiriec, S.; Gehrels, N.; McEnery, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guiriec, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Guiriec, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guiriec, S.] CRESST, Los Angeles, CA USA. [Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Sacahui, J. R.] INPE, Ave Astronautas 1758, BR-12227010 So Jos Dos Campos, SP, Brazil. [Kouveliotou, C.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Sacahui, J. R.] Univ San Carlos, Escuela Ciencias Fis & Matemat, Ciudad Univ,Zona 12, Guatemala City, Guatemala. [Guiriec, S.] NASA, Postdoctoral Program, Greenbelt, MD 20771 USA. RP Guiriec, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Guiriec, S (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA.; Guiriec, S (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Guiriec, S (reprint author), CRESST, Los Angeles, CA USA.; Guiriec, S (reprint author), NASA, Postdoctoral Program, Greenbelt, MD 20771 USA. EM sylvain.guiriec@nasa.gov FU NASA Postdoctoral Program (NPP) at the NASA/Goddard Space Flight Center; NASA [NNH11ZDA001N, NNH13ZDA001N]; DGAPA UNAM [IG100414-3] FX S.G. was supported by the NASA Postdoctoral Program (NPP) at the NASA/Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, as well as by the NASA grants NNH11ZDA001N and NNH13ZDA001N, awarded to S.G. during cycles 5 and 7 of the NASA Fermi Guest Investigator Program. M.M.G. was supported by DGAPA UNAM grant number IG100414-3. NR 60 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 79 DI 10.3847/0004-637X/819/1/79 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400079 ER PT J AU He, CC Keek, L AF He, C. -C. Keek, L. TI ANISOTROPY OF X-RAY BURSTS FROM NEUTRON STARS WITH CONCAVE ACCRETION DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: neutron; X-rays: binaries; X-rays: bursts ID THERMONUCLEAR BURSTS; ANGULAR-DISTRIBUTION; SPECTRAL EVOLUTION; LIGHT CURVES; BLACK-HOLES; MASS; REFLECTION; BINARIES; SUPERBURST; DISCOVERY AB Emission from neutron stars and accretion disks in low-mass X-ray binaries is anisotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk make the observed flux dependent on the inclination angle of the disk with respect to the line of sight. This is of importance for the interpretation of thermonuclear X-ray bursts from neutron stars. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star's equation of state. Previous predictions of the anisotropy factors assumed a geometrically flat disk. Detailed observations of two so-called superbursts allowed for the direct and the reflected burst fluxes to each be measured separately. The reflection fraction was much higher than what the anisotropies of a flat disk can account for. We create numerical models to calculate the anisotropy factors for different disk shapes, including concave disks. We present the anisotropy factors of the direct and reflected burst fluxes separately, as well as the anisotropy of the persistent flux. Reflection fractions substantially larger than unity are produced in the case where the inner accretion disk increases steeply in height, such that part of the star is blocked from view. Such a geometry could possibly be induced by the X-ray burst if X-ray heating causes the inner disk to puff up. C1 [He, C. -C.] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China. [Keek, L.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Keek, L.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Keek, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP He, CC (reprint author), Jilin Univ, Coll Phys, Changchun 130012, Peoples R China. EM jordanhe1994@gmail.com OI He, Chong-Chong/0000-0002-2332-8178 FU Undergraduate Education Office of Jilin University in Changchun, China; NASA [NNG06E090A] FX The authors thank D. Ballantyne and T. Strohmayer for helpful discussions, and acknowledge the Center for Relativistic Astrophysics at Georgia Institute of Technology, where this study was initiated. C.C.H. is supported by the Undergraduate Education Office of Jilin University in Changchun, China, which also supports this publication. L.K. is supported by NASA under award number NNG06E090A. L.K. thanks the International Space Science Institute in Bern, Switzerland for hosting an International Team on X-ray bursts. NR 59 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 47 DI 10.3847/0004-637X/819/1/47 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400047 ER PT J AU Kopparapu, RK Wolf, ET Haqq-Misra, J Yang, J Kasting, JF Meadows, V Terrien, R Mahadevan, S AF Kopparapu, Ravi Kumar Wolf, Eric T. Haqq-Misra, Jacob Yang, Jun Kasting, James F. Meadows, Victoria Terrien, Ryan Mahadevan, Suvrath TI THE INNER EDGE OF THE HABITABLE ZONE FOR SYNCHRONOUSLY ROTATING PLANETS AROUND LOW-MASS STARS USING GENERAL CIRCULATION MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: terrestrial planets ID MAIN-SEQUENCE STARS; SUPER-EARTHS; M DWARFS; ATMOSPHERIC CIRCULATION; EVOLUTION; SIMULATIONS; PARAMETERS; DEPENDENCE; LIMIT; 667C AB Terrestrial planets at the inner edge of the habitable zone (HZ) of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the HZ for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar cloud deck are sensitive to the precise rotation rate of the planet. Around mid-to-late M-dwarf stars with low metallicity, planetary rotation rates at the inner edge of the HZ become faster, and the inner edge of the HZ is farther away from the host stars than in previous GCM studies. For an Earth-sized planet, the dynamical regime of the substellar clouds begins to transition as the rotation rate approaches similar to 10 days. These faster rotation rates produce stronger zonal winds that encircle the planet and smear the substellar clouds around it, lowering the planetary albedo, and causing the onset of the water-vapor greenhouse climatic instability to occur at up to similar to 25% lower incident stellar fluxes than found in previous GCM studies. For mid-to-late M-dwarf stars with high metallicity and for mid-K to early-M stars, we agree with previous studies. C1 [Kopparapu, Ravi Kumar; Kasting, James F.] Penn State Univ, Dept Geosci, 443 Deike Bldg, University Pk, PA 16802 USA. [Kopparapu, Ravi Kumar] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA. [Kopparapu, Ravi Kumar; Haqq-Misra, Jacob; Kasting, James F.; Meadows, Victoria] NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA. [Kopparapu, Ravi Kumar; Kasting, James F.; Terrien, Ryan; Mahadevan, Suvrath] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Kopparapu, Ravi Kumar; Haqq-Misra, Jacob] Blue Marble Space Inst Sci, 1001 4th Ave,Suite 3201, Seattle, WA 98154 USA. [Wolf, Eric T.] Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, Campus Box 392, Boulder, CO 80309 USA. [Yang, Jun] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Meadows, Victoria] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Terrien, Ryan; Mahadevan, Suvrath] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. RP Kopparapu, RK (reprint author), Penn State Univ, Dept Geosci, 443 Deike Bldg, University Pk, PA 16802 USA.; Kopparapu, RK (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA.; Kopparapu, RK (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA.; Kopparapu, RK (reprint author), Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.; Kopparapu, RK (reprint author), Blue Marble Space Inst Sci, 1001 4th Ave,Suite 3201, Seattle, WA 98154 USA. FU NASA Astrobiology Institute's Virtual Planetary Laboratory; NASA [NNH05ZDA001C]; Virtual Planetary Laboratory [NNX11AC95G,S03]; NASA Planetary Atmospheres Program [NNH13ZDA001N-PATM]; NSF [AST 1006676, AST 1126413, AST 1310885]; Center for Exoplanets and Habitable Worlds; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; Penn State Astrobiology Research Center; National Aeronautics and Space Administration (NASA) Astrobiology Institute; National Science Foundation [CNS-0821794]; University of Colorado at Boulder FX The authors would like to thank Daniel Koll and Dorian Abbot for kindly providing the aquaplanet patch for CESM, and responding to our inquiries, that enabled us to accomplish this work. The authors appreciate constructive comments and suggestions from an anonymous reviewer that improved the manuscript. The authors also thank Michael Way and Tony Del Ginio from NASA GISS for providing detailed comments on an earlier version of the manuscript. RK, JFK and VM gratefully acknowledge funding from NASA Astrobiology Institute's Virtual Planetary Laboratory lead team, supported by NASA under cooperative agreement NNH05ZDA001C. JH-M acknowledges support from the Virtual Planetary Laboratory under award NNX11AC95G,S03. ETW thanks NASA Planetary Atmospheres Program award NNH13ZDA001N-PATM. SM and RT acknowledge support from NSF grants AST 1006676, AST 1126413, and AST 1310885. This work was partially supported by funding from the Center for Exoplanets and Habitable Worlds. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. This work was also partially supported by the Penn State Astrobiology Research Center and the National Aeronautics and Space Administration (NASA) Astrobiology Institute. The authors acknowledge the Research Computing and Cyberinfrastructure unit of Information Technology Services at The Pennsylvania State University for providing advanced computing resources and services that have contributed to the research results reported in this paper. http://rcc.its.psu.edu. This work was also facilitated through the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system, supported in part by the University of Washington eScience Institute. This work also utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado at Boulder. NR 40 TC 11 Z9 11 U1 4 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 84 DI 10.3847/0004-637X/819/1/84 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400084 ER PT J AU Levan, AJ Tanvir, NR Brown, GC Metzger, BD Page, KL Cenko, SB O'Brien, PT Lyman, JD Wiersema, K Stanway, ER Fruchter, AS Perley, DA Bloom, JS AF Levan, A. J. Tanvir, N. R. Brown, G. C. Metzger, B. D. Page, K. L. Cenko, S. B. O'Brien, P. T. Lyman, J. D. Wiersema, K. Stanway, E. R. Fruchter, A. S. Perley, D. A. Bloom, J. S. TI LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; supernovae: general ID TIDAL DISRUPTION EVENT; MASSIVE BLACK-HOLE; CORE-COLLAPSE SUPERNOVAE; LIGHT CURVES; SUPERLUMINOUS-SUPERNOVA; RELATIVISTIC JET; GALACTIC NUCLEI; DWARF GALAXY; HOST GALAXY; BURSTS AB We present late time multi-wavelength observations of Swift J1644+ 57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to > 4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t(-70). Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L-X similar to 5 x 10(42) erg s(-1) and are marginally inconsistent with a continuing decay of t(-5/3), similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M-BH = 3 x 10(6) M-circle dot, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of M-R similar to -22 to -23. The luminosity of the bump is significantly higher than seen in other, nonrelativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares. C1 [Levan, A. J.; Brown, G. C.; Lyman, J. D.; Stanway, E. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Tanvir, N. R.; Page, K. L.; O'Brien, P. T.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Metzger, B. D.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Fruchter, A. S.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Perley, D. A.] CALTECH, Dept Astron, MC 249-17,1200 East Calif Blvd, Pasadena, CA 91125 USA. [Perley, D. A.] Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Bloom, J. S.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. RP Levan, AJ (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM A.J.Levan@warwick.ac.uk OI Stanway, Elizabeth/0000-0002-8770-809X FU STFC; NASA [NAS 5-26555]; HST programs [GO 12447, 12378, 12764]; ESA Member States; NASA; UK Space Agency; [12900486]; [13708437]; [15700509] FX We thank the referee for constructive comments on the paper. A. J. L., N. R. T., K. W., and P. T. O. thank STFC for support. K. L. P. thanks the UK Space Agency. We thank Matt Mountain, Harvey Tannenbaum, and Norbert Schartel and the teams from STScI, CXC, and ESAC for the approval and rapid scheduling of DDT observations with HST, Chandra and XMM-Newton respectively.; Based on observations made with the NASA/ESA Hubble Space Telescope, obtained [from the Data Archive] at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with HST programs GO 12447, 12378 and 12764.; The scientific results reported in this article are based to a significant degree on observations made by the Chandra X-ray Observatory. The observations reported are from program numbers 12900486, 13708437, and 15700509.; Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.; This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester, funded by the UK Space Agency. NR 97 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 51 DI 10.3847/0004-637X/819/1/51 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400051 ER PT J AU Olshevsky, V Deca, J Divin, A Peng, IB Markidis, S Innocenti, ME Cazzola, E Lapenta, G AF Olshevsky, Vyacheslav Deca, Jan Divin, Andrey Peng, Ivy Bo Markidis, Stefano Innocenti, Maria Elena Cazzola, Emanuele Lapenta, Giovanni TI MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; planets and satellites: magnetic fields; plasmas ID HYBRID DRIFT INSTABILITY; LUNAR-PROSPECTOR; KINEMATIC RECONNECTION; FIELD TOPOLOGY; CURRENT SHEET; SOLAR-WIND; SURFACE; MOON; MAGNETOPAUSE; MAGNETOSPHERE AB We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind,. and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross. sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data. C1 [Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni] Katholieke Univ Leuven, Ctr Math Plasma Astrophys CmPA, Leuven, Belgium. [Deca, Jan] Univ Colorado, LASP, Boulder, CO 80309 USA. [Divin, Andrey] St Petersburg State Univ, St Petersburg 199034, Russia. [Peng, Ivy Bo; Markidis, Stefano] KTH Royal Inst Technol, High Performance Comp & Visualizat HPCViz, Stockholm, Sweden. [Olshevsky, Vyacheslav] NAS, Main Astron Observ, Kiev, Ukraine. [Deca, Jan] NASA, Inst Modeling Plasma Atmospheres & Cosm Dust, SSERVI, Boulder, CO USA. RP Olshevsky, V (reprint author), Katholieke Univ Leuven, Ctr Math Plasma Astrophys CmPA, Leuven, Belgium.; Olshevsky, V (reprint author), NAS, Main Astron Observ, Kiev, Ukraine. EM sya@mao.kiev.ua RI Divin, Andrey/E-4501-2015; OI Divin, Andrey/0000-0002-5579-3066; Lapenta, Giovanni/0000-0002-3123-4024 FU Onderzoekfonds KU Leuven (Research Fund KU Leuven); Air Force Office of Scientific Research; Air Force Materiel Command; USAF [FA9550-14-1-0375]; NASA's Solar System Exploration Research Virtual Institutess (SSERVI) Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT); FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen) [12O5215N]; NASA MMS Grant [NNX08AO84G]; European Commission [ICT-610476]; PRACE [2011050747, 2013091928] FX The work is supported by the Onderzoekfonds KU Leuven (Research Fund KU Leuven). V.O. is supported by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award No. FA9550-14-1-0375. J.D. is supported by NASA's Solar System Exploration Research Virtual Institutess (SSERVI) Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT). M.E.I. is supported by the FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen) postdoctoral fellowship (12O5215N). G.L. acknowledges support from the NASA MMS Grant No. NNX08AO84G. This research has received funding from the European Commission's FP7 Program with the grant agreement DEEP-ER (project ICT-610476, http://www.deep-er.eu/) The simulations were conducted on the computational resources provided by the PRACE Tier-0 projects 2011050747 (Curie) and 2013091928 (SuperMUC). A great part of this work was done during the Nordita program on Magnetic Reconnection in Plasmas 2015. Authors are thankful to Mikhail Sitnov for useful discussions. NR 83 TC 2 Z9 2 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 52 DI 10.3847/0004-637X/819/1/52 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400052 ER PT J AU Opitz, D Tinney, CG Faherty, JK Sweet, S Gelino, CR Kirkpatrick, JD AF Opitz, Daniela Tinney, C. G. Faherty, Jacqueline K. Sweet, Sarah Gelino, Christopher R. Kirkpatrick, J. Davy TI SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS) SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; brown dwarfs; methods: observational; stars: low-mass; techniques: image processing ID HUBBLE-SPACE-TELESCOPE; INFRARED-SURVEY-EXPLORER; LOW-MASS BINARY; BROWN DWARF; L/T TRANSITION; T/Y TRANSITION; T-DWARFS; WIDE; DISCOVERY; WISE AB The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L-and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L-and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than similar to 0.5-1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10(42) erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs. C1 [Opitz, Daniela; Tinney, C. G.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Opitz, Daniela; Tinney, C. G.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Faherty, Jacqueline K.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Faherty, Jacqueline K.] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10034 USA. [Sweet, Sarah] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Gelino, Christopher R.; Kirkpatrick, J. Davy] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Gelino, Christopher R.] CALTECH, NASA, Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA. RP Opitz, D (reprint author), Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia.; Opitz, D (reprint author), Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. EM daniela.opitz@student.unsw.edu.au OI Opitz, Daniela/0000-0003-4960-1248; Tinney, Christopher/0000-0002-7595-0970 FU ARC Australian Professorial Fellowship [DP0774000]; ARC [DP130102695]; CONICYT Becas Chile [72130434]; Guaranteed Time program [GS-2014B-C-1]; [GS-2014A-Q-4]; [GS-2013B-Q-26] FX We gratefully acknowledge the support of ARC Australian Professorial Fellowship grant DP0774000 and ARC Discovery Outstanding Researcher Award DP130102695. D.O. is also supported by CONICYT Becas Chile 72130434. This paper is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). Time has been awarded through Australia and USA via programs GS-2014A-Q-4, GS-2013B-Q-26 and also via Guaranteed Time program GS-2014B-C-1. We would like to acknowledge the high standard of support offered by the Gemini queue observing team who acquired most of the data used in this paper. The authors would like to especially acknowledge the extraordinary quality of the instrument delivered for use by our team (and others) by the GSAOI Principal Investigator Professor Peter McGregor and his team at the Australian National University. We thank Dr. R. Sharp for his assistance in acquiring data for this program during GSAOI Guaranteed Time. We also thank Dr. D. Wright for helpful comments and suggestions on this manuscript. NR 50 TC 2 Z9 2 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 17 DI 10.3847/0004-637X/819/1/17 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400017 ER PT J AU Ricci, C Bauer, FE Treister, E Romero-Canizales, C Arevalo, P Iwasawa, K Privon, GC Sanders, DB Schawinski, K Stern, D Imanishi, M AF Ricci, C. Bauer, F. E. Treister, E. Romero-Canizales, C. Arevalo, P. Iwasawa, K. Privon, G. C. Sanders, D. B. Schawinski, K. Stern, D. Imanishi, M. TI NuSTAR UNVEILS A HEAVILY OBSCURED LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN THE LUMINOUS INFRARED GALAXY NGC 6286 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: interactions; infrared: galaxies; X-rays: galaxies; X-rays: general ID MU-M SPECTROSCOPY; EMISSION-LINE SPECTRA; SKY LIRG SURVEY; SIMILAR-TO 2; HARD X-RAY; SPITZER-SPACE-TELESCOPE; PHOTON IMAGING CAMERA; COMPTON-THICK AGN; DEEP-FIELD-SOUTH; XMM-NEWTON AB We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (N-H similar or equal to(0.95-1.32) x 10(24) cm(-2)) with a column density consistent with being Compton-thick (CT, log (N-H/cm(-2)) >= 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV similar to 3 -20 x 10(41) erg s(-1)) and contributes less than or similar to 1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations. C1 [Ricci, C.; Bauer, F. E.; Romero-Canizales, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Ricci, C.; Bauer, F. E.; Treister, E.] EMBIGGEN Anillo, Santiago, Chile. [Bauer, F. E.; Romero-Canizales, C.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Treister, E.; Privon, G. C.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile. [Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile. [Iwasawa, K.] Univ Barcelona, IEEC UB, ICREA, Marti & Franques 1, E-08028 Barcelona, Spain. [Iwasawa, K.] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, Marti & Franques 1, E-08028 Barcelona, Spain. [Privon, G. C.; Sanders, D. B.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Schawinski, K.] Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Imanishi, M.] Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Imanishi, M.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Imanishi, M.] Grad Univ Adv Studies SOKENDAI, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan. RP Ricci, C (reprint author), Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.; Ricci, C (reprint author), EMBIGGEN Anillo, Santiago, Chile. EM cricci@astro.puc.cl FU CONICYT-Chile ["EMBIGGEN" Anillo ACT1101]; FONDECYT [1141218, 315238, 3150361]; Basal-CATA [PFB-06/2007]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; Swiss National Science Foundation [PP00P2_138979/1]; JSPS KAKENHI [23540273, 15K05030] FX We thank the anonymous referee for comments that helped us to improve the quality of our manuscript, and the NuSTAR Cycle 1 TAC for the NuSTAR data on which this paper is based. C. R. acknowledges C. S. Chang, H. Inami, P. Gandhi and S. Satyapal for their useful discussions. We thank Adam Block (Mount Lemmon SkyCenter/University of Arizona) for allowing us to publish his optical image of NGC 6286/NGC 6285. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA), and of the NASA/IPAC Infrared Science Archive and NASA/IPAC Extragalactic Database (NED), which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge financial support from the CONICYT-Chile grants "EMBIGGEN" Anillo ACT1101 (C. R., F. E. B., E. T.), FONDECYT 1141218 (C. R., F. E. B.), FONDECYT 315238 (C. R. C.), FONDECYT 3150361 (G. P.), Basal-CATA PFB-06/2007 (C. R., F. E. B., E. T.), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F. E. B., C. R. C.). K. S. gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2_138979/1. M. I. was supported by JSPS KAKENHI Grant Number 23540273 and 15K05030. NR 145 TC 3 Z9 3 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 4 DI 10.3847/0004-637X/819/1/4 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400004 ER PT J AU Rutkowski, MJ Scarlata, C Haardt, F Siana, B Henry, A Rafelski, M Hayes, M Salvato, M Pahl, AJ Mehta, V Beck, M Malkan, M Teplitz, HI AF Rutkowski, Michael J. Scarlata, Claudia Haardt, Francesco Siana, Brian Henry, Alaina Rafelski, Marc Hayes, Matthew Salvato, Mara Pahl, Anthony J. Mehta, Vihang Beck, Melanie Malkan, Matthew Teplitz, Harry I. TI LYMAN CONTINUUM ESCAPE FRACTION OF STAR-FORMING DWARF GALAXIES AT z similar to 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: starburst; galaxies: star formation; ultraviolet: galaxies ID HUBBLE-SPACE-TELESCOPE; SPECTROSCOPIC PARALLEL SURVEY; DUST INFRARED-EMISSION; HIGH-REDSHIFT; LY-ALPHA; LUMINOSITY FUNCTION; STARBURST GALAXIES; INTERGALACTIC MEDIUM; COSMIC REIONIZATION; RADIATIVE-TRANSFER AB To date, no direct detection of Lyman continuum emission has been measured for intermediate-redshift (z similar to 1) star-forming galaxies. We combine Hubble Space Telescope grism spectroscopy with GALEX UV and ground-based optical imaging to extend the search for escaping Lyman continuum to a large (similar to 600) sample of z similar to 1 low-mass (log((M) over bar) similar or equal to 9.3M(circle dot)), moderately star-forming ((Psi) over bar less than or similar to 10M(circle dot) yr(-1)) galaxies selected initially on H alpha emission. The characteristic escape fraction of LyC from star-forming galaxies (SFGs) that populate this parameter space remains weakly constrained by previous surveys, but these faint (sub-L-star) SFGs are assumed to play a significant role in the reionization of neutral hydrogen in the intergalactic medium (IGM) at high redshift z > 6. We do not make an unambiguous detection of escaping LyC radiation from this z similar to 1 sample, individual non-detections to constrain the absolute Lyman continuum escape fraction, f(esc) < 2.1% (3 sigma). We measure an upper limit of f(esc) < 9.6% from a sample of SFGs selected on high H alpha equivalent width (EW > 200 angstrom), which are thought to be close analogs of high redshift sources of reionization. For reference, we also present an emissivity-weighted escape fraction that is useful for measuring the general contribution SFGs to the ionizing UV background. In the discussion, we consider the implications of these intermediate redshift constraints for the reionization of hydrogen in the IGM at high (z > 6) redshift. If we assume our z similar to 1 SFGs, for which we measure this emissivity-weighted f(esc), are analogs to the high redshift sources of reionization, we find it is difficult to reconcile reionization by faint (MUV less than or similar to -13) SFGs with a low escape fraction (f(esc) < 3%), with constraints from independent high redshift observations. If f(esc) evolves with redshift, reionization by SFGs may be consistent with observations from Planck. C1 [Rutkowski, Michael J.; Scarlata, Claudia; Pahl, Anthony J.; Mehta, Vihang; Beck, Melanie] Univ Minnesota, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA. [Haardt, Francesco] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy. [Siana, Brian] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Henry, Alaina; Rafelski, Marc] Goddard Space Flight Ctr, Astrophys Sci Div, Code 665, Greenbelt, MD 20771 USA. [Hayes, Matthew] Stockholm Univ, Alballova Univ Ctr, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Salvato, Mara] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Salvato, Mara] Excellence Cluster, D-85748 Garching, Germany. [Malkan, Matthew] Univ Calif Los Angeles, Astron Div, Los Angeles, CA 90095 USA. [Teplitz, Harry I.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Henry, Alaina; Rafelski, Marc] NASA, Postdoctoral Program, Washington, DC USA. RP Rutkowski, MJ (reprint author), Univ Minnesota, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA. EM rutkowsk@astro.umn.edu FU Swedish Research Council (Vetenskapsradet); Swedish National Space Board (SNSB); Knut and Alice Wallenberg Foundation; NASA [NNX13AI55G, NAS5-26555]; HST-AR Program [12821.01]; NASA/ESA HST [GO 12177, 12328]; NASA Office of Space Science [NNX13AC07G] FX We thank the referee, B. Robertson, for helpful comments that improved the discussion and conclusions presented in this work. We also thank S. Finkelstein for helpful discussion. M.H. acknowledges the support of the Swedish Research Council (Vetenskapsradet), the Swedish National Space Board (SNSB), and the Knut and Alice Wallenberg Foundation. This research was supported by NASA NNX13AI55G and HST-AR Program #12821.01, using observations taken by the 3D-HST Treasury program (GO 12177 & 12328) with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. GALEX and HST data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST) maintained by the STScI. Support for MAST for non HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. This research has made use of NASA's Astrophysics Data System Bibliographic Services. NR 106 TC 8 Z9 8 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 81 DI 10.3847/0004-637X/819/1/81 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400081 ER PT J AU Schnittman, JD Krolik, JH Noble, SC AF Schnittman, Jeremy D. Krolik, Julian H. Noble, Scott C. TI DISK EMISSION FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF SPINNING BLACK HOLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; X-rays: binaries ID CONTINUUM-FITTING METHOD; X-RAY-POLARIZATION; ACCRETION DISK; CYGNUS X-1; RADIATION; BINARIES; EXTREME; SPECTRA; MODELS; FLOWS AB We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R similar to 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin. C1 [Schnittman, Jeremy D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krolik, Julian H.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Noble, Scott C.] Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. RP Schnittman, JD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Krolik, JH (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.; Noble, SC (reprint author), Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. EM jeremy.schnittman@nasa.gov; jhk@pha.jhu.edu; scott-noble@utulsa.edu FU NASA [NNX14AB43G, ATP12-0139]; NSF [AST-0908336] FX We would like to thank T. Kallman for helpful discussions. This work was partially supported by NASA grants NNX14AB43G and ATP12-0139 and NSF grant AST-0908336. NR 42 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 48 DI 10.3847/0004-637X/819/1/48 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400048 ER PT J AU Stock, DJ Choi, WDY Moya, LGV Otaguro, JN Sorkhou, S Allamandola, LJ Tielens, AGGM Peeters, E AF Stock, D. J. Choi, W. D. -Y. Moya, L. G. V. Otaguro, J. N. Sorkhou, S. Allamandola, L. J. Tielens, A. G. G. M. Peeters, E. TI POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG AND SIMPLE DIAGNOSTICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; H II regions; infrared: ISM; ISM: molecules; photon-dominated region (PDR) ID PHOTON-DOMINATED REGION; MU-M EMISSION; ULTRACOMPACT HII-REGIONS; BLIND SIGNAL SEPARATION; H-II REGIONS; PHOTODISSOCIATION REGIONS; SPECTROSCOPIC DATABASE; INTERSTELLAR-MEDIUM; RECOMBINATION LINE; INFRARED OBSERVATIONS AB We present a sample of resolved galactic H. II regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5-15 mu m. For each object we have spectral maps at a spatial resolution of similar to 4 '' in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 mu m, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 mu m. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H. II regions and the second the reflection nebulae (RNe). Three sources-the reflection nebula NGC. 7023, the Horsehead nebula PDR (an interface between the H. II region IC 434 and the Orion B molecular cloud), and M17-resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC. 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC. 7023 observations. C1 [Stock, D. J.; Choi, W. D. -Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Allamandola, L. J.] NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. [Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Peeters, E.] SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. RP Stock, DJ (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM dstock4@uwo.ca FU NSERC; ERC from European Research Council [246976]; Dutch Science Agency, NWO as part of the Dutch Astrochemistry Network; Dutch Science Agency, NWO; NASA FX D.J.S. and E.P. acknowledge support from an NSERC Discovery Grant and an NSERC Discovery Accelerator Grant. W.D.Y.C. and S.S. acknowledge support from NSERC Undergraduate Student Research Awards.; L.J.A. is grateful for an appointment at NASA Ames Research Center through the Bay Area Environmental Research Institute (NNX14AG80A). Studies of interstellar chemistry at Leiden Observatory are supported through advanced-ERC grant 246976 from the European Research Council, through a grant by the Dutch Science Agency, NWO, as part of the Dutch Astrochemistry Network, and through the Spinoza premie from the Dutch Science Agency, NWO.; This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 73 TC 5 Z9 5 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 65 DI 10.3847/0004-637X/819/1/65 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400065 ER PT J AU Wakeford, HR Sing, DK Evans, T Deming, D Mandell, A AF Wakeford, H. R. Sing, D. K. Evans, T. Deming, D. Mandell, A. TI MARGINALIZING INSTRUMENT SYSTEMATICS IN HST WFC3 TRANSIT LIGHT CURVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; planets and satellites: atmospheres; techniques: spectroscopic ID HUBBLE-SPACE-TELESCOPE; TRANSMISSION SPECTRAL SURVEY; FIELD CAMERA 3; SIZED EXOPLANET; WATER-VAPOR; ATMOSPHERE; SPECTROSCOPY; WASP-12B; ABSORPTION; INFERENCE AB Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 mu m probe primarily the H2O absorption band at 1.4 mu m, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as R-p/R-*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta(lambda)(lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres. C1 [Wakeford, H. R.; Mandell, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wakeford, H. R.; Sing, D. K.; Evans, T.] Univ Exeter, Exeter EX4 4QL, Devon, England. [Deming, D.] Univ Maryland, College Pk, MD 20742 USA. RP Wakeford, HR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Wakeford, HR (reprint author), Univ Exeter, Exeter EX4 4QL, Devon, England. EM hannah.wakeford@nasa.gov OI Sing, David /0000-0001-6050-7645; Wakeford, Hannah/0000-0003-4328-3867 FU European Research Council under European Unions/ERC [336792] FX The authors would like to thank N. Gibson for useful comments and discussions on this paper and the analysis technique presented. H.R. Wakeford acknowledges support by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. H.R. Wakeford, D. K. Sing, and T. Evans acknowledge funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336792. This work is based on observations made with the NASA/ESA Hubble Space Telescope. This research has made use of NASAs Astrophysics Data System and components of the IDL astronomy library. NR 34 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 10 DI 10.3847/0004-637X/819/1/10 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400010 ER PT J AU Weiss, LM Rogers, LA Isaacson, HT Agol, E Marcy, GW Rowe, JF Kipping, D Fulton, BJ Lissauer, JJ Howard, AW Fabrycky, D AF Weiss, Lauren M. Rogers, Leslie A. Isaacson, Howard T. Agol, Eric Marcy, Geoffrey W. Rowe, Jason F. Kipping, David Fulton, Benjamin J. Lissauer, Jack J. Howard, Andrew W. Fabrycky, Daniel TI REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: composition; planets and satellites: detection; planets and satellites: fundamental parameters; planets and satellites: terrestrial planets; techniques: radial velocities ID SUPER-EARTH; SIZED EXOPLANET; CANDIDATES; ROCKY; SYSTEM; III.; FRAMEWORK; EXOMOONS; COROT-7; ORBITS AB Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014 to 2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (R-p = 1.47 R-circle plus) has mass 3.72 +/- 0.42 M-circle plus and density 6.46 +/- 0.73 g cm(-3). Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17 +/- 0.11 of the planet mass. For Kepler-10c (R-p = 2.35 R-circle plus) we measure mass 13.98 +/- 1.79 M-circle plus and density 5.94 +/- 0.76 g cm(-3), significantly lower than the mass computed in Dumusque et al. (17.2 +/- 1.9 M-circle plus). Our mass measurement of Kepler-10c rules out a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium (0.2% of the mass, 16% of the radius) or super-ionic water (28% of the mass, 29% of the radius). However, we note that analysis of only HIRES data yields a higher mass for planet b and a lower mass for planet c than does analysis of the HARPS-N data alone, with the mass estimates for Kepler-10 c being formally inconsistent at the 3 sigma level. Moreover, dividing the data for each instrument into two parts also leads to somewhat inconsistent measurements for the mass of planet c derived from each observatory. Together, this suggests that time-correlated noise is present and that the uncertainties in the masses of the planets (especially planet c) likely exceed our formal estimates. Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72. X. The TTVs and RVs are consistent with KOI-72. X having an orbital period of 24, 71, or 101 days, and a mass from 1 to 7 M-circle plus. C1 [Weiss, Lauren M.; Isaacson, Howard T.; Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Rogers, Leslie A.] CALTECH, Div Geol & Planetary Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Agol, Eric] NASA, Astrobiol Inst, Virtual Planetary Lab, Pasadena, CA 91125 USA. [Agol, Eric] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Rowe, Jason F.; Lissauer, Jack J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kipping, David] Harvard Univ, Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Fulton, Benjamin J.; Howard, Andrew W.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Fabrycky, Daniel] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. RP Weiss, LM (reprint author), Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. EM lweiss@berkeley.edu OI Fabrycky, Daniel/0000-0003-3750-0183; /0000-0002-0802-9145 FU National Science Foundation via Dynamics of Exoplanets workshop at the Kavli Institute for Theoretical Physics in Santa Barbara, CA [NSF PHY11-25915] FX LMW gratefully acknowledges support from Kenneth and Gloria Levy. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 via the Dynamics of Exoplanets workshop at the Kavli Institute for Theoretical Physics in Santa Barbara, CA. We thank Tsevi Mazeh for informative discussions regarding time correlated noise. The authors wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Maunakea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. NR 51 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 83 DI 10.3847/0004-637X/819/1/83 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400083 ER PT J AU Wicks, RT Alexander, RL Stevens, M Wilson, LB Moya, PS Vinas, A Jian, LK Roberts, DA O'Modhrain, S Gilbert, JA Zurbuchen, TH AF Wicks, R. T. Alexander, R. L. Stevens, M. Wilson, L. B., III Moya, P. S. Vinas, A. Jian, L. K. Roberts, D. A. O'Modhrain, S. Gilbert, J. A. Zurbuchen, T. H. TI A PROTON-CYCLOTRON WAVE STORM GENERATED BY UNSTABLE PROTON DISTRIBUTION FUNCTIONS IN THE SOLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE instabilities; plasmas; solar wind; waves ID MAGNETIC-FIELD; 1 AU; TEMPERATURE ANISOTROPY; SPECTRAL-ANALYSIS; TURBULENCE; PLASMA; POWER; INSTABILITIES; STEREO; SUN AB We use audification of 0.092 s cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes >0.1 nT near. the ion gyrofrequency (similar to 0.1 Hz) with duration longer than 1 hr during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona. C1 [Wicks, R. T.] UCL, Mullard Space Sci Lab, Gower St, London WC1E 6BT, England. [Alexander, R. L.; O'Modhrain, S.; Gilbert, J. A.; Zurbuchen, T. H.] Univ Michigan, Ann Arbor, MI 48109 USA. [Stevens, M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Wilson, L. B., III; Jian, L. K.; Roberts, D. A.] NASA, Goddard Space Flight Ctr, Code 672, Greenbelt, MD 20771 USA. [Moya, P. S.; Vinas, A.] NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. [Moya, P. S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Jian, L. K.] Univ Maryland, Dept Astron, GPHI, College Pk, MD 20742 USA. RP Wicks, RT (reprint author), UCL, Mullard Space Sci Lab, Gower St, London WC1E 6BT, England. EM r.wicks@ucl.ac.uk RI Wicks, Robert/A-1180-2009; Jian, Lan/B-4053-2010; Moya, Pablo/C-3163-2011; Wilson III, Lynn/D-4425-2012; Gilbert, Jason/I-9020-2012 OI Wicks, Robert/0000-0002-0622-5302; Jian, Lan/0000-0002-6849-5527; Moya, Pablo/0000-0002-9161-0888; Wilson III, Lynn/0000-0002-4313-1970; Gilbert, Jason/0000-0002-3182-7014 FU NASA Postdoctoral Program at the Goddard Space Flight Center; Conicyt-Becas Chile Postdoctoral Fellowship; Heliophysics Guest Investigator grant; NASA [NNX13AI65G] FX R.T.W. was supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities. R.T.W. and D.A.R. acknowledge a Heliophysics Guest Investigator grant to NASA GSFC for support P.S.M. thanks the Conicyt-Becas Chile Postdoctoral Fellowship for financial support. L.K.J. was supported by NASA grant NNX13AI65G. Wind data were obtained from the SPDF Web site http://spdf.gsfc.nasa.gov. The authors thank L. Matteini for useful discussions. NR 42 TC 2 Z9 2 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 6 DI 10.3847/0004-637X/819/1/6 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400006 ER PT J AU Xu, D Li, D Yue, NN Goldsmith, PF AF Xu, Duo Li, Di Yue, Nannan Goldsmith, Paul F. TI EVOLUTION OF OH AND CO-DARK MOLECULAR GAS FRACTION ACROSS A MOLECULAR CLOUD BOUNDARY IN TAURUS SO ASTROPHYSICAL JOURNAL LA English DT Article DE evolution; ISM: clouds; ISM: individual objects (Taurus); ISM: molecules ID INTERSTELLAR DUST CLOUDS; DIFFUSE CLOUDS; MAGNETOHYDRODYNAMIC SHOCKS; LINE EMISSION; EXCITATION; COLLISIONS; HYDROGEN; MASERS; RATIO; CH AB We present observations of (CO)-C-12 J = 1-0, (CO)-C-13 J = 1-0, H I, and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. Based on a photodissociation region (PDR) model that reproduces CO and [C I] emission from the same region, we modeled the three OH transitions, 1612, 1665, and 1667 MHz successfully through escape probability non-local thermal equilibrium radiative transfer model calculations. We could not reproduce the 1720 MHz observations, due to unmodeled pumping mechanisms, of which the most likely candidate is a C-shock. The abundance of OH and CO-dark molecular gas is well-constrained. The OH abundance [OH]/[H-2] decreases from 8 x 10(-7) to 1 x 10(-7) as A, increases from 0.4 to 2.7 mag following an empirical law: [OH]/[H-2] = 1.5 x 10(-7) + 9.0 x 10(-7) x exp(-A(v) /0.81), which is higher than PDR model predictions for low-extinction regions by a factor of 80. The overabundance of OH at extinctions at or below 1 mag is likely the result of a C-shock. The dark gas fraction (DGF, defined as the fraction of molecular gas without detectable CO emission) decreases from 80% to 20% following a Gaussian profile: DGF = 0.90 x exp (-(A(v) - 0.79/0.71)(2)). This trend of the DGF is consistent with our understanding that the DGF drops at low visual extinction due to photodissociation of H-2 and drops at high visual extinction due to CO formation. The DGF peaks in the extinction range where H-2 has already formed and achieved self-shielding but (CO)-C-12 has not. Two narrow velocity components with a peak-to-peak spacing of similar to 1 km s(-1) were clearly identified. Their relative intensity and variation in space and frequency suggest colliding streams or gas flows at the boundary region. C1 [Xu, Duo; Li, Di; Yue, Nannan] Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China. [Xu, Duo; Yue, Nannan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Li, Di] Chinese Acad Sci, Key Lab Radio Astron, Beijing 100012, Peoples R China. [Goldsmith, Paul F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Xu, D; Li, D (reprint author), Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China.; Xu, D (reprint author), Univ Chinese Acad Sci, Beijing 100049, Peoples R China.; Li, D (reprint author), Chinese Acad Sci, Key Lab Radio Astron, Beijing 100012, Peoples R China. EM xuduo117@nao.cas.cn; dili@nao.cas.cn RI Goldsmith, Paul/H-3159-2016; OI Xu, Duo/0000-0001-6216-8931 FU China Ministry of Science and Technology under State Key Development Program for Basic Research (973 program) [2012CB821802]; National Natural Science Foundation of China [11373038, 11373045]; Chinese Academy of Sciences [XDB09010302]; Guizhou Scientific Collaboration Program [20130421] FX This work is partly supported by the China Ministry of Science and Technology under State Key Development Program for Basic Research (973 program) No. 2012CB821802, the National Natural Science Foundation of China No. 11373038, No. 11373045, and the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences, Grant No. XDB09010302. This work was carried out in part at the Jet Propulsion Laboratory, which is operated for NASA by the California Institute of Technology. Di Li acknowledges support from the Guizhou Scientific Collaboration Program (#20130421). We are grateful to Carl Heiles and Z.Y. Ren for their kind and valuable advice and support. We would like to thank the anonymous referee for the careful inspection of the manuscript and constructive comments particularly the important suggestions to add the comparison with PDR model for similar G0 and nH values to improve the quality of this study. NR 38 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 22 DI 10.3847/0004-637X/819/1/22 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400022 ER PT J AU Yusef-Zadeh, F Wardle, M Schodel, R Roberts, DA Cotton, W Bushouse, H Arendt, R Royster, M AF Yusef-Zadeh, F. Wardle, M. Schoedel, R. Roberts, D. A. Cotton, W. Bushouse, H. Arendt, R. Royster, M. TI SGR A* AND ITS ENVIRONMENT: LOW-MASS STAR FORMATION, THE ORIGIN OF X-RAY GAS AND COLLIMATED OUTFLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; Galaxy: center ID SUPERMASSIVE BLACK-HOLE; GALACTIC-CENTER REGION; SUPERNOVA-REMNANT SAGITTARIUS; STELLAR WINDS; PROPER MOTIONS; FLARING ACTIVITY; HIGH-RESOLUTION; CENTRAL PARSEC; IONIZED-GAS; YOUNG STARS AB We present high-resolution multiwavelength radio continuum images of the region within 150 '' of Sgr. A*, revealing a number of new extended features and stellar sources in this region. First, we detect a continuous 2 '' east-west ridge of radio emission, linking Sgr. A* and a cluster of stars associated with IRS 13 N and IRS 13E. The ridge suggests that an outflow of east-west blob-like structures is emerging from Sgr. A*. In particular, we find arc-like radio structures within the ridge with morphologies suggestive of photoevaporative protoplanetary disks. We use infrared K-s and L' fluxes to show that the emission has similar characteristics to those of a protoplanetary disk irradiated by the intense radiation field at the Galactic center. This suggests that star formation has taken place within the S-cluster 2 ''. from Sgr. A*. We suggest that the diffuse X-ray emission associated with Sgr A* is due to an expanding hot wind produced by the mass loss from B-type main sequence stars, and/or the disks of photoevaporation of low mass young stellar objects (YSOs) at a rate of similar to 10(-6) M-circle dot yr(-1). The proposed model naturally reduces the inferred accretion rate and is an alternative to the inflow-outflow style models to explain the underluminous nature of Sgr A*. Second, on a scale of 5. from Sgr A*, we detect new cometary radio and infrared sources at a position angle PA similar to 50 degrees which is similar to that of two other cometary sources X3 and X7, all of which face Sgr A*. In addition, we detect a striking tower of radio emission at a PA similar to 50 degrees-60 degrees along the major axis of the Sgr A East supernova remnant shell on a scale of 150 '' from Sgr A*. We suggest that the cometary sources and the tower feature are tracing interaction sites of a mildly relativistic jet from Sgr A* with the atmosphere of stars and the nonthermal Sgr A East shell at a PA similar to 50 degrees-60 degrees with (M) over dot similar to 1 x 10(-7) M-circle dot yr(-1), and opening angle 10 degrees. Lastly, we suggest that the east-west ridge of radio emission traces an outflow that is potentially associated with past flaring activity from Sgr A*. The position angle of the outflow driven by flaring activity is close to -90 degrees. C1 [Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.] Northwestern Univ, Dept Phys & Astron, CIERA, Evanston, IL 60208 USA. [Wardle, M.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia. [Schoedel, R.] CSIC, Inst Astrofis Andalucia, Glorieta Astron, E-18008 Granada, Spain. [Cotton, W.] Natl Radio Astron Observ, Edgemont Rd, Charlottesville, VA 22903 USA. [Bushouse, H.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Arendt, R.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. RP Yusef-Zadeh, F (reprint author), Northwestern Univ, Dept Phys & Astron, CIERA, Evanston, IL 60208 USA. FU NSF [AST-0807400, AST-1517246]; European Research Council under Europeans Unions/ERC [614922] FX This work is partially supported by grants AST-0807400 and AST-1517246 from the NSF. The research leading to these results has also received funding from the European Research Council under the Europeans Unions Seventh Framework Programme (FP/2007-2013)/ERC grant agreement No. 614922. NR 84 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 60 DI 10.3847/0004-637X/819/1/60 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400060 ER PT J AU ZuHone, JA Markevitch, M Zhuravleva, I AF ZuHone, J. A. Markevitch, M. Zhuravleva, I. TI MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H (vol 817, 110, 2016) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [ZuHone, J. A.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [ZuHone, J. A.; Markevitch, M.] NASA, Astrophys Sci Div, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Zhuravleva, I.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Zhuravleva, I.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. RP ZuHone, JA (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; ZuHone, JA (reprint author), NASA, Astrophys Sci Div, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 88 DI 10.3847/0004-637X/819/1/88 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400088 ER PT J AU Witrisal, K Meissner, P Leitinger, E Shen, Y Gustafson, C Tufvesson, F Haneda, K Dardari, D Molisch, AF Conti, A Win, MZ AF Witrisal, Klaus Meissner, Paul Leitinger, Erik Shen, Yuan Gustafson, Carl Tufvesson, Fredrik Haneda, Katsuyuki Dardari, Davide Molisch, Andreas F. Conti, Andrea Win, Moe Z. TI High-Accuracy Localization for Assisted Living 5G systems will turn multipath channels from foe to friend SO IEEE SIGNAL PROCESSING MAGAZINE LA English DT Article ID WIDE-BAND LOCALIZATION; COOPERATIVE LOCALIZATION; MULTIPATH EXPLOITATION; FUNDAMENTAL LIMITS; PART I; PROPAGATION; ENVIRONMENTS; NETWORKS; CHANNELS; SIGNALS C1 [Witrisal, Klaus] Graz Univ Technol, A-8010 Graz, Austria. [Meissner, Paul] Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria. [Shen, Yuan] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China. [Shen, Yuan] IEEE ComSoc Radio Commun Comm, Beijing, Peoples R China. [Gustafson, Carl; Tufvesson, Fredrik] Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden. [Tufvesson, Fredrik] Lund Univ, Dept Wireless Propagat Grp, S-22100 Lund, Sweden. [Haneda, Katsuyuki] Aalto Univ, Sch Elect Engn, Espoo, Finland. [Dardari, Davide] Univ Bologna, I-40126 Bologna, Italy. [Dardari, Davide; Win, Moe Z.] MIT, Cambridge, MA 02139 USA. [Molisch, Andreas F.] Univ So Calif, Elect Engn, Los Angeles, CA 90089 USA. [Molisch, Andreas F.] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA. [Molisch, Andreas F.; Win, Moe Z.] Amer Assoc Advancement Sci, Washington, DC USA. [Molisch, Andreas F.; Win, Moe Z.] Inst Engn & Technol, Beijing, Peoples R China. [Molisch, Andreas F.] Natl Acad Inventors, Cambridge, MA USA. [Conti, Andrea] Univ Ferrara, I-44100 Ferrara, Italy. [Win, Moe Z.] Wireless Commun & Network Sci Lab, Boston, MA USA. [Win, Moe Z.] AT&T Res Labs, Middletown, NJ USA. [Win, Moe Z.] Jet Prop Lab, Pasadena, CA USA. [Win, Moe Z.] IEEE, Piscataway, NJ USA. RP Witrisal, K (reprint author), Graz Univ Technol, A-8010 Graz, Austria.; Meissner, P (reprint author), Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria.; Shen, Y (reprint author), Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China.; Shen, Y (reprint author), IEEE ComSoc Radio Commun Comm, Beijing, Peoples R China.; Gustafson, C (reprint author), Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden.; Tufvesson, F (reprint author), Lund Univ, Radio Syst, S-22100 Lund, Sweden.; Tufvesson, F (reprint author), Lund Univ, Dept Wireless Propagat Grp, S-22100 Lund, Sweden.; Haneda, K (reprint author), Aalto Univ, Sch Elect Engn, Espoo, Finland.; Dardari, D (reprint author), Univ Bologna, I-40126 Bologna, Italy.; Dardari, D; Win, MZ (reprint author), MIT, Cambridge, MA 02139 USA.; Molisch, AF (reprint author), Univ So Calif, Elect Engn, Los Angeles, CA 90089 USA.; Molisch, AF (reprint author), Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA.; Molisch, AF; Win, MZ (reprint author), Amer Assoc Advancement Sci, Washington, DC USA.; Molisch, AF; Win, MZ (reprint author), Inst Engn & Technol, Beijing, Peoples R China.; Conti, A (reprint author), Univ Ferrara, I-44100 Ferrara, Italy.; Win, MZ (reprint author), Wireless Commun & Network Sci Lab, Boston, MA USA.; Win, MZ (reprint author), AT&T Res Labs, Middletown, NJ USA.; Win, MZ (reprint author), Jet Prop Lab, Pasadena, CA USA.; Win, MZ (reprint author), IEEE, Piscataway, NJ USA. EM witrisal@tugraz.at; paul.meissner@ieee.org; erik.leitinger@tugraz.at; shenyuan_ee@mail.tsinghua.edu.cn; carl.gustafson@eit.lth.se; fredrik.tufvesson@eit.lth.se; katsuyuki.haneda@aalto.fi; davide.dardari@unibo.it; andreas.molisch@ieee.org; a.conti@ieee.org; moewin@mit.edu RI Shen, Yuan/C-1823-2013 OI Shen, Yuan/0000-0001-8153-1193 FU Austrian Research Promotion Agency (FFG) within project REFlex [845630]; Austrian Research Promotion Agency (FFG) within Austrian COMET Competence Center FTW; Italian MIUR project GRETA [2010WHY5PR]; Office of Naval Research [N00014-11-1-0397]; NSF; KACST FX The work of K. Witrisal, P. Meissner, and E. Leitinger was partly supported by the Austrian Research Promotion Agency (FFG) within the project REFlex (project number 845630) and within the Austrian COMET Competence Center FTW. The work of D. Dardari and A. Conti was supported in part by the Italian MIUR project GRETA under grant 2010WHY5PR. The work of Y. Shen and M.Z. Win was supported in part by the Office of Naval Research under grant N00014-11-1-0397. The work of A.F. Molisch was supported by ONR, NSF, and KACST. NR 47 TC 5 Z9 5 U1 3 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1053-5888 EI 1558-0792 J9 IEEE SIGNAL PROC MAG JI IEEE Signal Process. Mag. PD MAR PY 2016 VL 33 IS 2 BP 59 EP 70 DI 10.1109/MSP.2015.2504328 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA DG9JG UT WOS:000372398000009 ER PT J AU Smith, GL Daniels, J Priestley, K Thomas, S Lee, RB AF Smith, G. Louis Daniels, Janet Priestley, Kory Thomas, Susan Lee, Robert B., III TI Measurement of the Point Response Functions of CERES Scanning Radiometers SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Aqua; calibration; Clouds and the Earth's Radiation Energy System (CERES); Earth radiation budget; National Polar-orbiting Partnersship (NPP); point response function (PRF); point spread function; radiometry; Terra ID RADIANT ENERGY SYSTEM; RADIATION BUDGET; CLOUDS; VALIDATION; PERFORMANCE; SPACECRAFT; SENSORS; TRMM AB Some applications of data from the Clouds and the Earth's Radiant Energy System (CERES) scanning radiometer require the use of the point response function (PRF), which describes the influence of radiance from each point on the measurement. A radiance source for the measurement of the PRF of the CERES instruments was built and installed into the Radiometric Calibration Facility, in which the CERES instruments have been calibrated. The design and application of the PRF source and the computation of the PRF from these measurements are described. In order to compare the PRF based on measurements with the theoretical PRF, it is necessary to account for the finite size of the beam from the source. The use of the PRF source and the analysis of the data are demonstrated by application to the FM-5 instrument. The measured results compare well with theory for the CERES instruments and are presented for FM-5. C1 [Smith, G. Louis; Daniels, Janet; Thomas, Susan] Sci Applicat Int Corp, Hampton, VA 23666 USA. [Priestley, Kory] NASA, Langley Res Ctr, Hampton, VA USA. [Lee, Robert B., III] Hampton Univ, Hampton, VA 23668 USA. RP Smith, GL (reprint author), Sci Applicat Int Corp, Hampton, VA 23666 USA. EM g.l.smith@larc.nasa.gov FU Science Directorate of Langley Research Center; Science Mission Directorate of the Earth Science Division of NASA FX The authors would like to thank M. Frink and T. Evert of TRW Space Technology Division, presently Northrop Grumman Space Division, for the design of the point response function source; the Science Directorate of Langley Research Center and the Science Mission Directorate of the Earth Science Division of NASA, for the support of the CERES Project; and the people of Northrop Grumman Space Technology, under the leadership of S. Carman and T. Evert, for the excellent work performed to achieve the performance that has been demonstrated by the CERES instruments. NR 27 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1260 EP 1266 DI 10.1109/TGRS.2015.2476759 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400002 ER PT J AU Aksoy, M Johnson, JT Misra, S Colliander, A O'Dwyer, I AF Aksoy, Mustafa Johnson, Joel T. Misra, Sidharth Colliander, Andreas O'Dwyer, Ian TI L-Band Radio-Frequency Interference Observations During the SMAP Validation Experiment 2012 SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave radiometry; radio-frequency interference (RFI) ID RADIO-FREQUENCY INTERFERENCE; MICROWAVE RADIOMETRY; MITIGATION; RFI; DETECTOR; KURTOSIS; TIME AB Radio-frequency interference (RFI) observations for L-band microwave radiometry during the SMAP Validation Experiment 2012 (SMAPVEX12) airborne campaign are reported in this paper. The soil moisture measurement campaign was conducted in summer 2012 near Winnipeg, MB, Canada, with additional RFI flights over Denver, CO, USA. The Passive Active L-Band sensor (PALS) radiometer of the Jet Propulsion Laboratory was used with a full-bandwidth direct sampling digital backend to measure and store predetection data that is fully resolved in time and frequency. Overviews of SMAPVEX12 and the receiver and digital backend used to collect data are presented, along with the data processing techniques used for RFI detection. Properties of the observed RFI are examined and compared with the results of previous studies. Finally, implications of the results are explained considering current missions such as NASA's Soil Moisture Active Passive Mission. C1 [Aksoy, Mustafa; Johnson, Joel T.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Aksoy, Mustafa; Johnson, Joel T.] Ohio State Univ, Electrosci Lab, Columbus, OH 43210 USA. [Misra, Sidharth; Colliander, Andreas; O'Dwyer, Ian] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Aksoy, M (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.; Aksoy, M (reprint author), Ohio State Univ, Electrosci Lab, Columbus, OH 43210 USA. EM aksoy.2@osu.edu NR 17 TC 0 Z9 0 U1 4 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1323 EP 1335 DI 10.1109/TGRS.2015.2477686 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400007 ER PT J AU Lei, N Chen, XX Xiong, XX AF Lei, Ning Chen, Xuexia Xiong, Xiaoxiong TI Determination of the SNPP VIIRS SDSM Screen Relative Transmittance From Both Yaw Maneuver and Regular On-Orbit Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Bidirectional reflectance distribution function (BRDF) degradation; radiometric calibration; reflective solar bands (RSBs); screen transmittance; Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS); solar diffuser (SD); yaw maneuver ID IMAGING RADIOMETER SUITE; REFLECTIVE SOLAR BANDS; CALIBRATION; PERFORMANCE AB The Visible Infrared Imaging Radiometer Suite aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function (BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor. The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance. To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDF degradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time. C1 [Lei, Ning; Chen, Xuexia] Sigma Space Corp, Lanham, MD 20706 USA. [Lei, Ning; Chen, Xuexia] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Lei, N (reprint author), Sigma Space Corp, Lanham, MD 20706 USA.; Lei, N (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM ning.lei@ssaihq.com NR 12 TC 5 Z9 5 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1390 EP 1398 DI 10.1109/TGRS.2015.2480039 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400012 ER PT J AU Murphy, JM Le Moigne, J Harding, DJ AF Murphy, James M. Le Moigne, Jacqueline Harding, David J. TI Automatic Image Registration of Multimodal Remotely Sensed Data With Global Shearlet Features SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Harmonic analysis; image registration; lidar; multimodal image analysis; shearlets; wavelets ID MUTUAL INFORMATION; WAVELET TRANSFORM; SENSING IMAGERY; ALGORITHM; REPRESENTATIONS; OPTIMIZATION; COMPRESSION; EIGENMAPS; SIFT AB Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard but are sometimes not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered and then performs least-squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, although approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared with wavelet features alone. C1 [Murphy, James M.] Duke Univ, Dept Math & Informat Initiat Duke, Durham, NC 27708 USA. [Le Moigne, Jacqueline; Harding, David J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Murphy, JM (reprint author), Duke Univ, Dept Math & Informat Initiat Duke, Durham, NC 27708 USA. EM jmmurphy11@gmail.com RI Harding, David/F-5913-2012 NR 48 TC 2 Z9 2 U1 6 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1685 EP 1704 DI 10.1109/TGRS.2015.2487457 PG 20 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400035 ER PT J AU Varonen, M Reeves, R Kangaslahti, P Samoska, L Kooi, JW Cleary, K Gawande, RS Akgiray, A Fung, A Gaier, T Weinreb, S Readhead, ACS Lawrence, C Sarkozy, S Lai, R AF Varonen, Mikko Reeves, Rodrigo Kangaslahti, Pekka Samoska, Lorene Kooi, Jacob W. Cleary, Kieran Gawande, Rohit S. Akgiray, Ahmed Fung, Andy Gaier, Todd Weinreb, Sander Readhead, Anthony C. S. Lawrence, Charles Sarkozy, Stephen Lai, Richard TI An MMIC Low-Noise Amplifier Design Technique SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Cryogenic; InP HEMT; low-noise amplifiers (LNAs); monolithic microwave integrated circuit (MMIC) ID BAND; TEMPERATURE; POWER; GHZ; THZ AB In this paper we discuss the design of low-noise amplifiers (LNAs) for both cryogenic and room-temperature operation in general and take the stability and linearity of the amplifiers into special consideration. Oscillations that can occur within a multi-finger transistor are studied and verified with simulations and measurements. To overcome the stability problem related to the multi-finger transistor design approach a parallel two-finger unit transistor monolithic microwave integrated circuit LNA design technique, which enables the design of wideband and high-linearity LNAs with very stable, predictable, and repeatable operation, is proposed. The feasibility of the proposed design technique is proved by demonstrating a three-stage LNA packaged in a WR10 waveguide housing and fabricated using a 35-nm InP HEMT technology that achieves more than a 20-dB gain from 75 to 116 GHz and 26-33-K noise temperature from 85 to 116 GHz when cryogenically cooled to 27 K. C1 [Varonen, Mikko; Kangaslahti, Pekka; Samoska, Lorene; Kooi, Jacob W.; Gawande, Rohit S.; Fung, Andy; Gaier, Todd; Lawrence, Charles] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Varonen, Mikko] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland. [Varonen, Mikko] LNAFIN Inc, Helsinki 00550, Finland. [Reeves, Rodrigo; Cleary, Kieran; Readhead, Anthony C. S.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Reeves, Rodrigo] Univ Concepcion, CePIA, Dept Astron, 160-C, Casilla, Chile. [Akgiray, Ahmed; Weinreb, Sander] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. [Akgiray, Ahmed] Ozyegin Univ, Dept Elect Engn, TR-34794 Istanbul, Turkey. [Sarkozy, Stephen; Lai, Richard] Northrop Grumman Corp, Redondo Beach, CA 90278 USA. RP Varonen, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Varonen, M (reprint author), Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland.; Varonen, M (reprint author), LNAFIN Inc, Helsinki 00550, Finland. EM mikko.varonen@aalto.fi FU Jet Propulsion Laboratory, California Institute of Technology; Oak Ridge Associated Universities under NASA Postdoctoral Program (NPP); Academy of Finland; Alfred Kordel Foundation; National Aeronautics and Space Administration FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work of M. Varonen was supported by Oak Ridge Associated Universities under the NASA Postdoctoral Program (NPP), by the Academy of Finland, and by the Alfred Kordel Foundation. NR 30 TC 1 Z9 1 U1 5 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD MAR PY 2016 VL 64 IS 3 BP 826 EP 835 DI 10.1109/TMTT.2016.2521650 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA DH0QL UT WOS:000372488600016 ER PT J AU Coltin, B McMichael, S Smith, T Fong, T AF Coltin, Brian McMichael, Scott Smith, Trey Fong, Terrence TI Automatic boosted flood mapping from satellite data SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID MODIS; RESOLUTION; DERIVATION; SURFACE; CLOUD; MASK AB Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-theart algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions. C1 [Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence] NASA Ames, Intelligent Robot Grp, Moffett Field, CA USA. RP Coltin, B (reprint author), NASA Ames, Intelligent Robot Grp, Moffett Field, CA USA. EM brian.j.coltin@nasa.gov NR 34 TC 1 Z9 1 U1 2 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PD MAR PY 2016 VL 37 IS 5 BP 993 EP 1015 DI 10.1080/01431161.2016.1145366 PG 23 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA DH4ZY UT WOS:000372795700001 ER PT J AU Goldin, D Lukashin, C AF Goldin, D. Lukashin, C. TI Empirical Polarization Distribution Models for CLARREO-Imager Intercalibration SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Spectral analysis/models/distribution; Physical Meteorology and Climatology; Error analysis; Mathematical and statistical techniques; Observational techniques and algorithms; Instrumentation/sensors; Radiances; Satellite observations; Remote sensing ID INTER-CALIBRATION; INSTRUMENT; SCATTERING; OCEAN; LIGHT AB Polarization effects bias the performance of various existing passive spaceborne instruments, such as MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS), as well as geostationary imagers. It is essential to evaluate and correct for these effects in order to achieve the required accuracy of the total reflectance at the top of the atmosphere. In addition to performing highly accurate decadal climate change observations, one of the objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission recommended by the National Research Council for launch by NASA is to provide the on-orbit intercalibration with the imagers over a range of parameters, including polarization. Whenever the on-orbit coincident measurements are not possible, CLARREO will provide the polarization distributions constructed using the adding-doubling radiative transfer model (ADRTM), which will cover the entire reflected solar spectrum. These ADRTM results need to be validated using real data. To this end the empirical polarization distribution models (PDMs) based on the measurements taken by the Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) mission were developed. Examples of such PDMs for the degree of polarization and the angle of linear polarization for the cloudless ocean scenes are shown here. These PDMs are compared across the three available PARASOL polarization bands, and the effect of aerosols on them is examined. The PDM-derived dependence of the reflectance uncertainty on the degree of polarization for imagers, such as MODIS or VIIRS, after their intercalibration with the CLARREO instrument is evaluated. The influence of the aerosols on the reflectance uncertainty is examined. Finally, the PDMs for the angle of linear polarization is cross-checked against the single-scattering approximation. C1 [Goldin, D.] Sci Syst & Applicat Inc, Hampton, VA USA. [Goldin, D.; Lukashin, C.] NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA. RP Goldin, D (reprint author), NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA. EM daniel.goldin@nasa.gov RI Richards, Amber/K-8203-2015 FU NASA CLARREO project FX We gratefully acknowledge Francois-Marie Breon for the helpful comments on the PARASOL data and Wenying Su for the discussion of the aerosol-related measurements. We would also like to thank the PARASOL data distribution centers at CNES and ICARE, France, for providing the data and guidance on its use. This study was funded by the NASA CLARREO project. NR 18 TC 0 Z9 0 U1 5 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD MAR PY 2016 VL 33 IS 3 BP 439 EP 451 DI 10.1175/JTECH-D-15-0165.1 PG 13 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DH4VZ UT WOS:000372785000003 ER PT J AU Doelling, DR Sun, M Nguyen, LT Nordeen, ML Haney, CO Keyes, DF Mlynczak, PE AF Doelling, David R. Sun, Moguo Le Trang Nguyen Nordeen, Michele L. Haney, Conor O. Keyes, Dennis F. Mlynczak, Pamela E. TI Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Climate records; Remote sensing; Satellite observations; Observational techniques and algorithms; Instrumentation/sensors; Sampling ID ANGULAR-DISTRIBUTION MODELS; ENERGY SYSTEM INSTRUMENT; TEMPORAL INTERPOLATION; INFRARED CHANNELS; INTER-CALIBRATION; DIURNAL-VARIATION; METEOSAT DATA; PART I; RADIATION; SATELLITE AB The Clouds and the Earth's Radiant Energy System (CERES) project has provided the climate community 15 years of globally observed top-of-the-atmosphere fluxes critical for climate and cloud feedback studies. To accurately monitor the earth's radiation budget, the CERES instrument footprint fluxes must be spatially and temporally averaged properly. The CERES synoptic 1 degrees (SYN1deg) product incorporates derived fluxes from the geostationary satellites (GEOs) to account for the regional diurnal flux variations in between Terra and Aqua CERES measurements. The Edition 4 CERES reprocessing effort has provided the opportunity to reevaluate the derivation of longwave (LW) fluxes from GEO narrowband radiances by examining the improvements from incorporating 1-hourly versus 3-hourly GEO data, additional GEO infrared (IR) channels, and multichannel GEO cloud properties. The resultant GEO LW fluxes need to be consistent across the 16-satellite climate data record. To that end, the addition of the water vapor channel, available on all GEOs, was more effective than using a reanalysis dataset's column-weighted relative humidity combined with the window channel radiance. The benefit of the CERES LW angular directional model to derive fluxes was limited by the inconsistency of the GEO cloud retrievals. Greater success was found in the direct conversion of window and water vapor channel radiances into fluxes. Incorporating 1-hourly GEO fluxes had the greatest impact on improving the accuracy of high-temporal-resolution fluxes, and normalizing the GEO LW fluxes with CERES greatly reduced the monthly regional LW flux bias. C1 [Doelling, David R.] NASA, Langley Res Ctr, 21 Langley Blvd,MS 420, Hampton, VA 23681 USA. [Sun, Moguo; Le Trang Nguyen; Nordeen, Michele L.; Haney, Conor O.; Keyes, Dennis F.; Mlynczak, Pamela E.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Doelling, DR (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,MS 420, Hampton, VA 23681 USA. EM david.r.doelling@nasa.gov FU NASA CERES project FX This work was funded by the NASA CERES project. The validation effort could not have been accomplished without the help of the CERES TISA team. CERES SYN1deg Edition 3 data were obtained from the NASA Langley Research Center EOSDIS Distributed Active Archive Center. GERB Edition 1 Level 2 ARG data were obtained from the GERB Ground Segment Processing System at Rutherford Appleton Laboratory. The GEOS-5 data used in this study/project were provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. NR 35 TC 1 Z9 1 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD MAR PY 2016 VL 33 IS 3 BP 503 EP 521 DI 10.1175/JTECH-D-15-0147.1 PG 19 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DH4XS UT WOS:000372789500001 ER PT J AU Suhir, E Ghaffarian, R Nicolics, J AF Suhir, E. Ghaffarian, R. Nicolics, J. TI Predicted stresses in ball-grid-array (BGA) and column-grid-array (CGA) interconnections in a mirror-like package design SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article AB There is an obvious incentive for using bow-free (temperature change insensitive) assemblies in various areas of engineering, including electron device and electronic packaging fields. The induced stresses in a bow-free assembly could be, however, rather high, considerably higher than in an assembly, whose bow is not restricted. The simplest and trivial case of a bow-free assembly is a tri-component body, in which the inner component is sandwiched between two identical outer components ("mirror" structure), is addressed in our analysis, and a simple and physically meaningful analytical stress model is suggested. It is concluded that if acceptable stresses (below yield stress of the solder material) are achievable, a mirror (bow-free, temperature-change-insensitive) design should be preferred, because it results in an operationally stable performance of the system. C1 [Suhir, E.] Portland State Univ, Portland, OR 97207 USA. [Suhir, E.] Vienna Univ Technol, A-1060 Vienna, Austria. [Suhir, E.] Ariel Univ, Ariel, Israel. [Suhir, E.] ERS Co LLC, 727 Alvina Ct, Los Altos, CA 94024 USA. [Ghaffarian, R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Nicolics, J.] Vienna Univ Technol, Inst Sensor & Actuator Syst, Dept Appl Elect Mat, Gusshausstr 27-29, A-1040 Vienna, Austria. RP Suhir, E (reprint author), Portland State Univ, Portland, OR 97207 USA.; Suhir, E (reprint author), Vienna Univ Technol, A-1060 Vienna, Austria.; Suhir, E (reprint author), Ariel Univ, Ariel, Israel.; Suhir, E (reprint author), ERS Co LLC, 727 Alvina Ct, Los Altos, CA 94024 USA. EM suhire@aol.com; reza.ghaffarian@jpl.nasa.gov; johann.nicolics@tuwien.ac.at NR 23 TC 1 Z9 1 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 EI 1573-482X J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD MAR PY 2016 VL 27 IS 3 BP 2430 EP 2441 DI 10.1007/s10854-015-4042-8 PG 12 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA DG6CW UT WOS:000372170800036 ER PT J AU Kisiel, Z Pszczolkowski, L Bialkowska-Jaworska, E Charnley, SB AF Kisiel, Zbigniew Pszczolkowski, Lech Bialkowska-Jaworska, Ewa Charnley, Steven B. TI Millimetre wave rotational spectrum of glycolic acid SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Rotational spectrum; Millimetre wave spectrum; Excited vibrational states; Interstate perturbations; Coriolis and Fermi resonances ID HOT MOLECULAR CORES; VALENCE FORCE-FIELD; MICROWAVE-SPECTRUM; PYRUVIC-ACID; CARBONACEOUS METEORITES; DIETHYL-ETHER; FORMIC-ACID; LACTIC-ACID; INTERSTELLAR; SPECTROSCOPY AB The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(-1) have been measured and their analysis is reported. The data sets for the ground state, v(21) = I, and v(21) = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v(21) mode is close to 100 cm(-1). The existence of the less stable AAT conformer in the near 50 degrees C sample used in our experiment was also confirmed and additional transitions have been measured. (C) 2016 Elsevier Inc. All rights reserved. C1 [Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland. [Charnley, Steven B.] NASA, Goddard Space Flight Ctr, Astrochem Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Kisiel, Z (reprint author), Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland. EM kisiel@ifpan.edu.pl RI Kisiel, Zbigniew/K-8798-2016; Bialkowska-Jaworska, Ewa/R-9282-2016; Pszczolkowski, Lech/S-3018-2016 OI Kisiel, Zbigniew/0000-0002-2570-3154; FU Polish National Science Centre [DEC/2011/02/A/ST2/00298]; NASA Goddard Center for Astrobiology FX The Warsaw authors acknowledge financial support from a grant from the Polish National Science Centre, decision number DEC/2011/02/A/ST2/00298. This work was partially supported by the NASA Goddard Center for Astrobiology. NR 51 TC 0 Z9 0 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAR PY 2016 VL 321 BP 13 EP 22 DI 10.1016/j.jms.2016.01.014 PG 10 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA DG9DW UT WOS:000372384000003 ER PT J AU Nyquist, LE Shih, CY McCubbin, FM Santos, AR Shearer, CK Peng, ZX Burger, PV Agee, CB AF Nyquist, Laurence E. Shih, Chi-Yu McCubbin, Francis M. Santos, Alison R. Shearer, Charles K. Peng, Zhan X. Burger, Paul V. Agee, Carl B. TI Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID TRACE-ELEMENTS; METEORITE; PETROGENESIS; EVOLUTION; REGOLITH; MAGMAS; CRUST; GEOCHEMISTRY; MICROPROBE; ABUNDANCES AB The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both Sm-147-Nd-143 and Sm-146-Nd-142 age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously similar to 4.44Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35-4.45Ga) for U-Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous-textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb-Sr system was detected, and no age significance could be gleaned from our Rb-Sr data. The disturbance to the Rb-Sr system may be due to a thermal event recorded by bulk-rock K-Ar ages of 1.56Ga and U-Pb ages of phosphates at about 1.35-1.5Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP-rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites. C1 [Nyquist, Laurence E.; McCubbin, Francis M.] NASA, Johnson Space Ctr, Mailcode 11,2101 NASA Pkwy, Houston, TX 77058 USA. [Shih, Chi-Yu; Peng, Zhan X.] NASA, Jacobs, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. [McCubbin, Francis M.; Santos, Alison R.; Shearer, Charles K.; Burger, Paul V.; Agee, Carl B.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Santos, Alison R.; Shearer, Charles K.; Burger, Paul V.; Agee, Carl B.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP McCubbin, FM (reprint author), NASA, Johnson Space Ctr, Mailcode 11,2101 NASA Pkwy, Houston, TX 77058 USA.; McCubbin, FM (reprint author), Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. EM francis.m.mccubbin@nasa.gov FU NASA LASER Program through RTOP [10-LASER10-0054]; Mars Fundamental Research Program [NNX13AG44G]; NASA Cosmochemistry Program [NNX13AH85G, NNX14AI23G] FX This article was improved by reviews from Lars Borg and an anonymous reviewer. We also thank Ian Franchi and Timothy Jull for the editorial handling of the article. LEN and C-YS acknowledge support from the NASA LASER Program during this study through RTOP 10-LASER10-0054 to LEN. FMM acknowledges support from the Mars Fundamental Research Program during this study through grant NNX13AG44G. CKS and PVB acknowledge support from the NASA Cosmochemistry Program during this study through grant NNX13AH85G to CKS. CBA and ARS acknowledge support from the NASA Cosmochemistry Program during this study through grant NNX14AI23G to CBA. NR 46 TC 10 Z9 10 U1 7 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2016 VL 51 IS 3 BP 483 EP 498 DI 10.1111/maps.12606 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DH1PJ UT WOS:000372556800003 ER PT J AU Searby, N Ross, K AF Searby, Nancy Ross, Kenton TI Increasing the Impacts of Capacity Building for Remote Sensing Applications SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING LA English DT Editorial Material C1 [Searby, Nancy] NASA Headquarters, NASA Appl Sci Program, Capac Bldg Program, Washington, DC USA. [Ross, Kenton] NASA, Langley Res Ctr, NASA DEVELOP Program, Hampton, VA 23665 USA. RP Searby, N (reprint author), NASA Headquarters, NASA Appl Sci Program, Capac Bldg Program, Washington, DC USA.; Ross, K (reprint author), NASA, Langley Res Ctr, NASA DEVELOP Program, Hampton, VA 23665 USA. EM nancy.d.searby@nasa.gov; kenton.w.ross@nasa.gov NR 0 TC 1 Z9 1 U1 0 U2 3 PU AMER SOC PHOTOGRAMMETRY PI BETHESDA PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA SN 0099-1112 J9 PHOTOGRAMM ENG REM S JI Photogramm. Eng. Remote Sens. PD MAR PY 2016 VL 82 IS 3 BP 179 EP 180 PG 2 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA DH1QH UT WOS:000372559500002 ER PT J AU Schultz, KW Sachs, MK Heien, EM Rundle, JB Turcotte, DL Donnellan, A AF Schultz, Kasey W. Sachs, Michael K. Heien, Eric M. Rundle, John B. Turcotte, Don L. Donnellan, Andrea TI Simulating Gravity Changes in Topologically Realistic Driven Earthquake Fault Systems: First Results SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Numerical simulation; co-seismic gravity changes; virtual California; earthquakes; statistics ID PHYSICAL MODEL; TENSILE FAULTS; HALF-SPACE; DEFORMATION; CALIFORNIA; SHEAR AB Currently, GPS and InSAR measurements are used to monitor deformation produced by slip on earthquake faults. It has been suggested that another method to accomplish many of the same objectives would be through satellite-based gravity measurements. The Gravity Recovery and Climate Experiment (GRACE) mission has shown that it is possible to make detailed gravity measurements from space for climate dynamics and other purposes. To build the groundwork for a more advanced satellite-based gravity survey, we must estimate the level of accuracy needed for precise estimation of fault slip in earthquakes. We turn to numerical simulations of earthquake fault systems and use these to estimate gravity changes. The current generation of Virtual California (VC) simulates faults of any orientation, dip, and rake. In this work, we discuss these computations and the implications they have for accuracies needed for a dedicated gravity monitoring mission. Preliminary results are in agreement with previous results calculated from an older and simpler version of VC. Computed gravity changes are in the range of tens of mu Gal over distances up to a few hundred kilometers, near the detection threshold for GRACE. C1 [Schultz, Kasey W.; Sachs, Michael K.; Rundle, John B.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Heien, Eric M.; Rundle, John B.; Turcotte, Don L.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Heien, Eric M.] Univ Calif Davis, Computat Infrastruct Geodynam, Davis, CA 95616 USA. [Donnellan, Andrea] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Schultz, KW (reprint author), Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. EM kwschultz@ucdavis.edu FU National Aeronautics and Space Administration (NASA) Earth and Space Science [NNX11AL92H] FX This research was supported by National Aeronautics and Space Administration (NASA) Earth and Space Science fellowship Number NNX11AL92H. NR 19 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD MAR PY 2016 VL 173 IS 3 SI SI BP 827 EP 838 DI 10.1007/s00024-014-0926-4 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG8AP UT WOS:000372305100007 ER PT J AU Borucki, WJ AF Borucki, William J. TI KEPLER Mission: development and overview SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE Kepler Mission; extrasolar planets; spacecraft instrumentation ID TRANSIT TIMING VARIATIONS; SUN-LIKE STAR; MAIN-SEQUENCE STARS; EXTRA-SOLAR PLANETS; LOW-DENSITY PLANETS; EARTH-SIZE PLANETS; R-CIRCLE-PLUS; 1ST 16 MONTHS; HABITABLE-ZONE; TERRESTRIAL PLANETS AB The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. C1 [Borucki, William J.] NASA, Ames Res Ctr, Sci Directorate, Moffett Field, CA 94035 USA. RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Sci Directorate, Moffett Field, CA 94035 USA. EM William.J.Borucki@nasa.gov FU NASA's Science Mission Directorate FX Kepler was competitively selected PI-led as the tenth Discovery mission with funding provided by NASA's Science Mission Directorate. Many organizations contributed to the success of the Kepler Mission. They include Ames Research Center, Ball Aerospace and Technologies Corporation, California Institute of Technology, Carnegie Institute of Washington, Harvard-Smithsonian Center for Astrophysics, Jet Propulsion Laboratory, W M Keck Observatory, Laboratory for Atmospheric and Space Physics, Lawrence Hall of Science, Lowell Observatory, NASA Goddard Space Flight Center, NASA Headquarters, NASA Kennedy Spaceflight Center, and NASA Marshall Space Flight Center, SETI Institute, Space Telescope Science Institute, University of California Berkeley, University of Texas Austin, and University of Washington Seattle. At Ames, the dedicated people in Mission Operations, Science Office, and Science Operation Center provided the calibrated data that allowed the worldwide science community to make discoveries that enlightened our view of exoplanets and exoplanet systems. The author wishes to acknowledge the many contributions to this paper from team members; especially to Doug Caldwell, William Chaplin, Edna DeVore, Alan Gould, Jon Jenkins, Sean Seeder, Charlie Sobeck, and Joe Twicken. The comments on the manuscript by Edna DeVore, Jack Lissauer, Mark Marley, Jason Rowe, and two anonymous referees are greatly appreciated. NR 193 TC 4 Z9 4 U1 10 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD MAR PY 2016 VL 79 IS 3 AR 036901 DI 10.1088/0034-4885/79/3/036901 PG 49 WC Physics, Multidisciplinary SC Physics GA DH2BF UT WOS:000372588400003 PM 26863223 ER PT J AU Acar, E Tobe, H Karaca, HE Noebe, RD Chumlyakov, YI AF Acar, E. Tobe, H. Karaca, H. E. Noebe, R. D. Chumlyakov, Y. I. TI Microstructure and shape memory behavior of [111]-oriented NiTiHfPd alloys SO SMART MATERIALS AND STRUCTURES LA English DT Article DE shape memory alloys; microstructure; elastic energy storage; NiTiHfPd; superelasticity ID MARTENSITIC-TRANSFORMATION; SINGLE-CRYSTALS; NI; PSEUDOELASTICITY; PRECIPITATION; DEPENDENCE; STRENGTH; AL AB The relationship between the microstructure and shape memory properties of [111]-oriented Ni45.3Ti29.7Hf20Pd5 (at%) single crystals was explored. In this precipitation-strengthened alloy, the size and volume fraction of precipitates and interparticle distances govern the martensite morphology and the ensuing shape memory responses. Aging of the solution-treated material, leading to a microstructure of fine, closely spaced precipitates, resulted in a material capable of a shape memory strain of 2.15% at 1000 MPa in compression. Larger precipitates formed after aging the as-grown single crystals (without a prior solution treatment) resulting in a shape memory strain of 2.5% at this same stress level in constant-stress thermal cycling experiments. Superelastic strains of 4% in compression without any residual strain were possible under various microstructural conditions and the stress hysteresis could be varied between nearly 500 and 1000 MPa depending on the microstructure. C1 [Acar, E.] Erciyes Univ, Dept Aircraft Engn, TR-38039 Kayseri, Turkey. [Tobe, H.; Karaca, H. E.] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. [Noebe, R. D.] NASA Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. [Chumlyakov, Y. I.] Tomsk State Univ, Siberian Phys Tech Inst, Tomsk 634050, Russia. RP Karaca, HE (reprint author), Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. EM karacahaluk@uky.edu RI Chumlyakov, Yuriy/R-6496-2016 FU NASA Transformative Aeronautics Concepts Program (TACP) under the Transformational Tools & Technologies Project; NASA EPSCOR program [NNX11AQ31A, KSEF-148-502-15-355, NSF CMMI-1538665]; RSF program [14-29-00012]; Erciyes University FX This work was supported in part by the NASA Transformative Aeronautics Concepts Program (TACP) under the Transformational Tools & Technologies Project, the NASA EPSCOR program under Grant NNX11AQ31A, KSEF-148-502-15-355, NSF CMMI-1538665, RSF program under grant no. 14-29-00012 and Erciyes University. NR 45 TC 0 Z9 0 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 EI 1361-665X J9 SMART MATER STRUCT JI Smart Mater. Struct. PD MAR PY 2016 VL 25 IS 3 AR 035011 DI 10.1088/0964-1726/25/3/035011 PG 9 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA DG8MP UT WOS:000372338600012 ER PT J AU Scheidler, JJ Asnani, VM Dapino, MJ AF Scheidler, Justin J. Asnani, Vivake M. Dapino, Marcelo J. TI Dynamically tuned magnetostrictive spring with electrically controlled stiffness SO SMART MATERIALS AND STRUCTURES LA English DT Article DE dynamic stiffness tuning; dynamic delta-E effect; Galfenol; Terfenol-D; vibration control ID VIBRATION CONTROL; TERFENOL-D; ABSORBER AB This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod's diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring's stiffness is investigated by measuring the Terfenol-D rod's strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring's rise time is <1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic DE effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input. C1 [Scheidler, Justin J.; Dapino, Marcelo J.] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. [Asnani, Vivake M.] NASA Glenn Res Ctr, Rotating & Dr Syst Branch, Mat & Struct Div, Cleveland, OH 44135 USA. RP Scheidler, JJ; Dapino, MJ (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. EM scheidler.8@osu.edu; dapino.1@osu.edu FU NASA Aeronautics Scholarship Program [NNX14AE24H]; NASA's Revolutionary Vertical Lift Technology (RVLT) Project; member organizations of the Smart Vehicle Concepts Center (www.SmartVehicleCenter.org) a National Science Foundation Industry/University Cooperative Research Center FX This work was supported by the NASA Aeronautics Scholarship Program (grant # NNX14AE24H). Additional support was provided by NASA's Revolutionary Vertical Lift Technology (RVLT) Project and the member organizations of the Smart Vehicle Concepts Center (www.SmartVehicleCenter.org) a National Science Foundation Industry/University Cooperative Research Center. NR 37 TC 3 Z9 3 U1 5 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 EI 1361-665X J9 SMART MATER STRUCT JI Smart Mater. Struct. PD MAR PY 2016 VL 25 IS 3 AR 035007 DI 10.1088/0964-1726/25/3/035007 PG 10 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA DG8MP UT WOS:000372338600008 ER PT J AU Doll, P Douville, H Guntner, A Muller Schmied, H Wada, Y AF Doell, Petra Douville, Herve Guentner, Andreas Mueller Schmied, Hannes Wada, Yoshihide TI Modelling Freshwater Resources at the Global Scale: Challenges and Prospects SO SURVEYS IN GEOPHYSICS LA English DT Review DE Global hydrological model; Climate data; Water abstraction; Model uncertainty; Calibration; Remote sensing data ID CLIMATE-CHANGE IMPACT; HYDROLOGICAL MODEL; LAND-SURFACE; SOIL-MOISTURE; PARAMETER-ESTIMATION; DATA ASSIMILATION; RIVER RUNOFF; GRACE DATA; GROUNDWATER; CYCLE AB Quantification of spatially and temporally resolved water flows and water storage variations for all land areas of the globe is required to assess water resources, water scarcity and flood hazards, and to understand the Earth system. This quantification is done with the help of global hydrological models (GHMs). What are the challenges and prospects in the development and application of GHMs? Seven important challenges are presented. (1) Data scarcity makes quantification of human water use difficult even though significant progress has been achieved in the last decade. (2) Uncertainty of meteorological input data strongly affects model outputs. (3) The reaction of vegetation to changing climate and CO2 concentrations is uncertain and not taken into account in most GHMs that serve to estimate climate change impacts. (4) Reasons for discrepant responses of GHMs to changing climate have yet to be identified. (5) More accurate estimates of monthly time series of water availability and use are needed to provide good indicators of water scarcity. (6) Integration of gradient-based groundwater modelling into GHMs is necessary for a better simulation of groundwater-surface water interactions and capillary rise. (7) Detection and attribution of human interference with freshwater systems by using GHMs are constrained by data of insufficient quality but also GHM uncertainty itself. Regarding prospects for progress, we propose to decrease the uncertainty of GHM output by making better use of in situ and remotely sensed observations of output variables such as river discharge or total water storage variations by multi-criteria validation, calibration or data assimilation. Finally, we present an initiative that works towards the vision of hyperresolution global hydrological modelling where GHM outputs would be provided at a 1-km resolution with reasonable accuracy. C1 [Doell, Petra; Mueller Schmied, Hannes] Goethe Univ Frankfurt, Inst Phys Geog, D-60629 Frankfurt, Germany. [Douville, Herve] Meteo France, Ctr Natl Rech Meteorol, 42 Av Coriolis, F-31057 Toulouse, France. [Guentner, Andreas] German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Univ Utrecht, Fac Geosci, Dept Phys Geog, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. RP Doll, P (reprint author), Goethe Univ Frankfurt, Inst Phys Geog, D-60629 Frankfurt, Germany. EM p.doell@em.uni-frankfurt.de; herve.douville@meteo.fr; guentner@gfz-potsdam.de; y.wada@uu.nl RI Guntner, Andreas/C-9892-2011; Doll, Petra/A-3784-2009; Muller Schmied, Hannes/K-6231-2013 OI Guntner, Andreas/0000-0001-6233-8478; Doll, Petra/0000-0003-2238-4546; Muller Schmied, Hannes/0000-0001-5330-9923 NR 115 TC 9 Z9 10 U1 15 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAR PY 2016 VL 37 IS 2 SI SI BP 195 EP 221 DI 10.1007/s10712-015-9343-1 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG7OK UT WOS:000372273400002 ER PT J AU Chen, JL Famiglietti, JS Scanlon, BR Rodell, M AF Chen, Jianli Famiglietti, James S. Scanlon, Bridget R. Rodell, Matthew TI Groundwater Storage Changes: Present Status from GRACE Observations SO SURVEYS IN GEOPHYSICS LA English DT Review DE Groundwater; GRACE; Satellite gravity; Groundwater depletion; Land surface model; Well data ID CLIMATE EXPERIMENT GRACE; SATELLITE GRAVITY MEASUREMENTS; HIGH-PLAINS AQUIFER; SEA-LEVEL RISE; LAND SUBSIDENCE; MIDDLE-EAST; ICE-SHEET; DEPLETION; WATER; RECOVERY AB Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray-Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed. C1 [Chen, Jianli] Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. [Famiglietti, James S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Scanlon, Bridget R.] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78759 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. RP Chen, JL (reprint author), Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. EM chen@csr.utexas.edu RI Rodell, Matthew/E-4946-2012; Scanlon, Bridget/A-3105-2009 OI Rodell, Matthew/0000-0003-0106-7437; Scanlon, Bridget/0000-0002-1234-4199 FU NASA GRACE Science Program [NNX12AJ97G]; NASA ESI Program [NNX12AM86G]; NSF OPP Program [ANT-1043750] FX This study was supported by the NASA GRACE Science Program (NNX12AJ97G), NASA ESI Program (NNX12AM86G), and NSF OPP Program (under Grants ANT-1043750). NR 70 TC 11 Z9 11 U1 12 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAR PY 2016 VL 37 IS 2 SI SI BP 397 EP 417 DI 10.1007/s10712-015-9332-4 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG7OK UT WOS:000372273400009 ER PT J AU Wada, Y AF Wada, Yoshihide TI Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects SO SURVEYS IN GEOPHYSICS LA English DT Review DE Groundwater depletion (GWD); Climate variability; Socioeconomic development; Water scarcity; Sustainability; Projections ID IRRIGATION WATER REQUIREMENTS; LAND-SURFACE MODEL; SEA-LEVEL RISE; SHARED SOCIOECONOMIC PATHWAYS; NORTH-AMERICAN DROUGHT; US HIGH-PLAINS; CLIMATE-CHANGE; FRESH-WATER; ANTHROPOGENIC IMPACTS; MULTIMODEL ENSEMBLE AB Except for frozen water in ice and glaciers, groundwater is the world's largest distributed store of freshwater and has strategic importance to global food and water security. In this paper, the most recent advances quantifying groundwater depletion (GWD) are comprehensively reviewed. This paper critically evaluates the recently advanced modeling approaches estimating GWD at regional and global scales, and the evidence of feedbacks to the Earth system including sea-level rise associated with GWD. Finally, critical challenges and opportunities in the use of groundwater are identified for the adaption to growing food demand and uncertain climate. C1 [Wada, Yoshihide] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Univ Utrecht, Dept Phys Geog, Fac Geosci, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. RP Wada, Y (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.; Wada, Y (reprint author), Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA.; Wada, Y (reprint author), Univ Utrecht, Dept Phys Geog, Fac Geosci, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. EM y.wada@uu.nl FU Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship [JSPS-2014-878] FX The International Space Science Institute (ISSI) in Bern, Switzerland, and specifically Anny Cazenave and Nicolas Champollion, and acknowledged for hosting the ISSI Workshop on Remote Sensing and Water Resources. I wish to thank two anonymous reviewers for their constructive and thoughtful suggestions, which substantially helped to improve the quality of the manuscript. Y. Wada is supported by Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship (Grant No. JSPS-2014-878). NR 191 TC 4 Z9 4 U1 11 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAR PY 2016 VL 37 IS 2 SI SI BP 419 EP 451 DI 10.1007/s10712-015-9347-x PG 33 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG7OK UT WOS:000372273400010 ER PT J AU Frank, EA Maier, WD Mojzsis, SJ AF Frank, Elizabeth A. Maier, Wolfgang D. Mojzsis, Stephen J. TI Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths SO CONTRIBUTIONS TO MINERALOGY AND PETROLOGY LA English DT Article DE Late Veneer; Komatiites; Highly siderophile elements; Platinum group elements; Mantle evolution; Eoarchean ID NUVVUAGITTUQ SUPRACRUSTAL BELT; PLATINUM-GROUP ELEMENTS; EARLY EARTH DIFFERENTIATION; TUNGSTEN ISOTOPIC EVIDENCE; SOUTHERN WEST GREENLAND; LATE HEAVY BOMBARDMENT; ACASTA GNEISS COMPLEX; GREENSTONE-BELT; GIANT IMPACT; CORE FORMATION AB Plume-derived, Mg-rich, volcanic rocks (komatiites, high-Mg basalts, and their metamorphic equivalents) can record secular changes in the highly siderophile element (HSE) abundances of mantle sources. An apparent secular time-dependent enrichment trend in HSE abundances from Paleoarchean to Paleoproterozoic mantle-derived rocks could represent the protracted homogenization of a Late Veneer chondritic contaminant into the pre-Late Veneer komatiite source. To search for a possible time dependence of a late accretion signature in the Eoarchean mantle, we report new data from rare >3700 Myr-old mafic and ultramafic schists locked in supracrustal belts from the Inukjuak domain (Quebec, Canada) and the Akilia association (West Greenland). Our analysis shows that some of these experienced HSE mobility and/or include a cumulate component (Touboul et al. in Chem Geol 383: 63-75, 2014), whereas several of the oldest samples show some of the most depleted HSE abundances measured for rocks of this composition. We consider these new data for the oldest documented rocks of komatiite protolith in light of the Late Veneer hypothesis. C1 [Frank, Elizabeth A.; Mojzsis, Stephen J.] Univ Colorado, Ctr Lunar Origin & Evolut, Dept Geol Sci, NASA,Lunar Sci Inst, 2200 Colorado Ave,UCB 399, Boulder, CO 80309 USA. [Maier, Wolfgang D.] Cardiff Univ, Sch Earth & Ocean Sci, Main Bldg,Pk Pl, Cardiff CF10 3AR, S Glam, Wales. [Mojzsis, Stephen J.] Hungarian Acad Sci, Inst Geol & Geochem Res, Budaorsi Ut 45, H-1112 Budapest, Hungary. [Frank, Elizabeth A.] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. RP Frank, EA; Mojzsis, SJ (reprint author), Univ Colorado, Ctr Lunar Origin & Evolut, Dept Geol Sci, NASA,Lunar Sci Inst, 2200 Colorado Ave,UCB 399, Boulder, CO 80309 USA.; Mojzsis, SJ (reprint author), Hungarian Acad Sci, Inst Geol & Geochem Res, Budaorsi Ut 45, H-1112 Budapest, Hungary.; Frank, EA (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM efrank@carnegiescience.edu; mojzsis@colorado.edu FU NASA Earth and Space Science Fellowship (NESSF), "Exploring the Darkest of the Dark Ages"; Zonta International Amelia Earhart Fellowship; NASA Lunar Science Institute through Center for Lunar Origin and Evolution (CLOE); NASA Exobiology Program; John Templeton Foundation FX We have benefitted from discussions and debates on the topics presented herein with (in alphabetical order): N. Arndt, W. Bottke, R. Brasser, S. Marchi, A. Morbidelli, R. Walker, S. Werner, and M. Willbold. We further thank N. Arndt for his constructive comments on an earlier version of this manuscript. We also thank S.-J. Barnes and D. Savard at the Universite du Quebec a Chicoutimi for performing the HSE analyses. E.A.F. was supported by a NASA Earth and Space Science Fellowship (NESSF), "Exploring the Darkest of the Dark Ages," and the Zonta International Amelia Earhart Fellowship. S.J.M. acknowledges support from the NASA Lunar Science Institute through the Center for Lunar Origin and Evolution (CLOE) and the NASA Exobiology Program. A substantial portion of this manuscript was completed while S.J.M. held a Distinguished Research Professorship in Budapest at the Research Center for Astronomy and Earth Sciences of the Hungarian Academy of Sciences. This is a contribution of the Collaborative for Research in Origins (CRiO), which is funded by the John Templeton Foundation. NR 95 TC 1 Z9 1 U1 7 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0010-7999 EI 1432-0967 J9 CONTRIB MINERAL PETR JI Contrib. Mineral. Petrol. PD MAR PY 2016 VL 171 IS 3 AR 29 DI 10.1007/s00410-016-1243-y PG 16 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DG7ZB UT WOS:000372301100010 ER PT J AU Hartwig, J Plachta, D AF Hartwig, Jason Plachta, David TI 2015 Space Cryogenics Workshop, June 24-26, 2015, Phoenix, AZ Hosted by NASA Glenn Research Center, Cleveland, OH, USA SO CRYOGENICS LA English DT Editorial Material C1 [Hartwig, Jason; Plachta, David] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Hartwig, J (reprint author), NASA, Glenn Res Ctr, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 2 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 1 EP 1 DI 10.1016/j.cryogenics.2015.12.007 PG 1 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400001 ER PT J AU Shirron, PJ Kimball, MO James, BL Muench, T DiPirro, MJ Letmate, RV Sampson, MA Bialas, TG Sneiderman, GA Porter, FS Kelley, RL AF Shirron, Peter J. Kimball, Mark O. James, Bryan L. Muench, Theodore DiPirro, Michael J. Letmate, Richard V. Sampson, Michael A. Bialas, Tom G. Sneiderman, Gary A. Porter, Frederick S. Kelley, Richard L. TI Operating modes and cooling capabilities of the 3-stage ADR developed for the Soft-X-ray Spectrometer instrument on Astro-H SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; Adiabatic demagnetization refrigerator; Magnetic refrigeration; Astronomy ID ADIABATIC DEMAGNETIZATION REFRIGERATORS; SINGLE-STAGE; DESIGN; OPTIMIZATION; MULTISTAGE AB A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 x 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes. Published by Elsevier Ltd. C1 [Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Letmate, Richard V.] Bast Technol, 7515 Mission Dr,Suite 300, Lanham, MD 20706 USA. [Sampson, Michael A.] SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 19 TC 3 Z9 3 U1 6 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 2 EP 9 DI 10.1016/j.cryogenics.2015.10.013 PG 8 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400002 PM 28111478 ER PT J AU Yoshida, S Miyaoka, M Kanao, K Tsunematsu, S Otsuka, K Hoshika, S Mitsuda, K Yamasaki, N Takei, Y Fujimoto, R Sato, Y DiPirro, M Shirron, P AF Yoshida, Seiji Miyaoka, Mikio Kanao, Ken'ichi Tsunematsu, Shoji Otsuka, Kiyomi Hoshika, Shunji Mitsuda, Kazuhisa Yamasaki, Noriko Takei, Yoh Fujimoto, Ryuichi Sato, Yoichi DiPirro, Mike Shirron, Peter TI Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; Cooling system; Joule-Thomson cooler; Stirling cooler AB ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium. In this paper, the thermal design and thermal test results are described. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji] Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan. [Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh] JAXA, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Fujimoto, Ryuichi] Kanazawa Univ, Fac Math & Phys, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan. [Sato, Yoichi] JAXA, Aerosp Res & Dev Directorate, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. [DiPirro, Mike; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Yoshida, S (reprint author), Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan. RI Yamasaki, Noriko/C-2252-2008 NR 7 TC 8 Z9 8 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 10 EP 16 DI 10.1016/j.cryogenics.2015.10.012 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400003 ER PT J AU Ezoe, Y Ishikawa, K Mitsuishi, I Ohashi, T Mitsuda, K Fujimoto, R Murakami, M Kanao, K Yoshida, S Tsunematsu, S DiPirro, M Shirron, P AF Ezoe, Yuichiro Ishikawa, Kumi Mitsuishi, Ikuyuki Ohashi, Takaya Mitsuda, Kazuhisa Fujimoto, Ryuichi Murakami, Masahide Kanao, Kenichi Yoshida, Seiji Tsunematsu, Shoji DiPirro, Michael Shirron, Peter CA SXS Team TI Flight model measurements of the porous plug and film flow suppression system for the ASTRO-H Soft X-ray Spectrometer dewar SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; X-ray microcalorimeter; Porous plug phase separator; Superfluid film flow AB Flight model measurements of a porous plug phase separator and a film flow suppression system for the ASTRO-H Soft X-ray Spectrometer dewar are described. ASTRO-H is the sixth Japanese astronomy satellite and will be launched in 2016. It carries the Soft X-ray Spectrometer consisting of an X-ray optic and an X-ray microcalorimeter system operated at 50 mK. Superfluid liquid He is employed as a part of the cooling system. A wide range of He flows from 28 mu g/s to 3.2 mg/s in various operation cases must be safely vented under zero gravity. At the same time, superfluid He film flow through the vent line must be suppressed to <2 mu g/s in a nominal case to avoid extra loss of the liquid He. For this purpose, a porous plug phase separator together with a film flow suppression system is installed. To verify its performance, the mass flow rates and the film flow rate of the flight model system were measured at component level. The mass flow rates at various He tank temperatures (1.15, 130, 1.50, and 2.00 K) were obtained and also the film flow rate was measured at 1.15 K. Then, the mass flow rates were measured after installing the whole system into a flight model dewar at the He tank temperature of 1.16, 1.30, 1.50, and 2.00 K. The dewar was tilted so that the porous plug located at the top of the dewar is immersed in the liquid He and the porous plug separates the liquid and vapor He by the thermomechanical effect as in orbit. The obtained mass flow rates and the film flow rate in these tests were confirmed to meet the requirements and to be consistent with each other. No abnormal event such as large mass flow rates was observed. All these experimental results strongly suggest that this flight model of the porous plug and the film flow suppression system will work properly in space. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ezoe, Yuichiro; Ohashi, Takaya] Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. [Ishikawa, Kumi] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Mitsuishi, Ikuyuki] Nagoya Univ, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. [Mitsuda, Kazuhisa] Japan Aerosp & eXpolorat Agcy JAXA, ISAS, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. [Fujimoto, Ryuichi] Kanazawa Univ, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan. [Murakami, Masahide] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan. [Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji] Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan. [DiPirro, Michael; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ezoe, Y (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. EM ezoe@tmu.ac.jp NR 12 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 17 EP 23 DI 10.1016/j.cryogenics.2015.12.004 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400004 ER PT J AU Shirron, PJ Kimball, MO James, BL Muench, T DiPirro, MJ Bialas, TG Sneiderman, GA Porter, FS Kelley, RL AF Shirron, Peter J. Kimball, Mark O. James, Bryan L. Muench, Theodore DiPirro, Michael J. Bialas, Thomas G. Sneiderman, Gary A. Porter, Frederick S. Kelley, Richard L. TI Thermodynamic performance of the 3-stage ADR for the Astro-H Soft-X-ray Spectrometer instrument SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; Astronomy; Adiabatic demagnetization refrigerator; Magnetic refrigeration; Low temperature detectors ID ADIABATIC DEMAGNETIZATION REFRIGERATORS; DESIGN AB The Soft X-ray Spectrometer (SXS) instrument (Mitsuda et al., 2010) [1] on Astro-H (Takahashi et al., 2010) [2] will use a 3-stage ADR (Shirron et al., 2012) to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at <= 1.20 K as the heat sink (Fujimoto et al., 2010). In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and single-shot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency. Published by Elsevier Ltd. C1 [Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 16 TC 3 Z9 3 U1 3 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 24 EP 30 DI 10.1016/j.cryogenics.2015.10.011 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400005 ER PT J AU Hartwig, JW Colozza, A Lorenz, RD Oleson, S Landis, G Schmitz, P Paul, M Walsh, J AF Hartwig, J. W. Colozza, A. Lorenz, R. D. Oleson, S. Landis, G. Schmitz, P. Paul, M. Walsh, J. TI Exploring the depths of Kraken Mare - Power, thermal analysis, and ballast control for the Saturn Titan submarine SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Saturn; Titan; Ligeia Mare; Kraken Mare; Cryogenic fluid management; Stirling radioisotope generator; Aerogel; Neon ID TEMPERATURE; SOLUBILITY; EQUILIBRIA; NITROGEN; OCEAN; LAKES AB To explore the depths of the hydrocarbon rich seas on the Saturn moon Titan, a conceptual design of an unmanned submarine concept was recently developed for a Phase I NASA Innovative Advanced Concept (NIAC) study. Data from Cassini Huygens indicates that the Titan polar environment sustains stable seas of variable concentrations of ethane, methane, and nitrogen, with a surface temperature around 93 K. To meet science exploration objectives, the submarine must operate autonomously, study atmosphere/sea exchange, interact with the seabed at pressures up to 10 atm, traverse large distances with limited energy, hover at the surface and at any depth within the sea, and be capable of tolerating multiple different concentration levels of hydrocarbons. Therefore Titan presents many cryogenic design challenges. This paper presents the trade studies with emphasis on the preliminary design of the power, thermal, and ballast control subsystems for the Saturn Titan submarine. Published by Elsevier Ltd. C1 [Hartwig, J. W.; Colozza, A.; Oleson, S.; Landis, G.; Schmitz, P.] NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Space Explorat Sector, Baltimore, MD 21218 USA. [Paul, M.; Walsh, J.] Penn State Appl Res Lab, State Coll, PA USA. RP Hartwig, JW (reprint author), NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA. EM Jason.W.Hartwig@nasa.gov OI Lorenz, Ralph/0000-0001-8528-4644 NR 32 TC 0 Z9 0 U1 2 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 31 EP 46 DI 10.1016/j.cryogenics.2015.09.009 PG 16 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400006 ER PT J AU Mustafi, S DeLee, C Francis, J Li, X McGuinness, D Nixon, CA Purves, L Willis, W Riall, S Devine, M Hedayat, A AF Mustafi, S. DeLee, C. Francis, J. Li, X. McGuinness, D. Nixon, C. A. Purves, L. Willis, W. Riall, S. Devine, M. Hedayat, A. TI Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Cryogenic; Propulsion; Planetary; Hydrogen; Oxygen AB Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (I-sp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years. Published by Elsevier Ltd. C1 [Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Devine, M.; Hedayat, A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Mustafi, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Nixon, Conor/A-8531-2009 OI Nixon, Conor/0000-0001-9540-9121 NR 15 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 81 EP 87 DI 10.1016/j.cryogenics.2015.11.009 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400012 ER PT J AU Plachta, DW Johnson, WL Feller, JR AF Plachta, D. W. Johnson, W. L. Feller, J. R. TI Zero boil-off system testing SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Reverse turbo-Brayton cycle cryocooler; Zero boil-off; Cryogenic propellant storage AB Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure. Published by Elsevier Ltd. C1 [Plachta, D. W.; Johnson, W. L.] NASA, Glenn Res Ctr, Washington, DC USA. [Feller, J. R.] NASA, Ames Res Ctr, Washington, DC USA. RP Plachta, DW (reprint author), NASA, Glenn Res Ctr, Washington, DC USA. NR 9 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 88 EP 94 DI 10.1016/j.cryogenics.2015.10.009 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400013 ER PT J AU Hartwig, JW AF Hartwig, J. W. TI Screen channel liquid acquisition device bubble point tests in liquid nitrogen SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Liquid acquisition devices; Liquid nitrogen; Cryogenic fluid management; Subcooled liquid; Fuel depot ID INTERFACIAL-TENSION; PRESSURE-DEPENDENCE; FLUID PHASES; HYDROGEN; MODEL AB The primary parameter for gauging performance of a liquid acquisition device (LAD) is the bubble point pressure, or differential pressure across a screen pore that overcomes the surface tension of the liquid at that pore. Recently, cryogenic bubble point tests were conducted in liquid nitrogen across a parametric trade space to examine the influential factors that govern LAD performance, and 1873 data points were collected. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested over a wide range of liquid temperatures (67-114 K) and pressures (0.032-1.83 MPa), using both autogenous (gaseous nitrogen) and non-condensable (gaseous helium) pressurization schemes. Experimental results in liquid nitrogen are compared to recently reported results in liquid hydrogen, oxygen, and methane. Results indicate a significant gain in performance is achievable over the baseline 325 x 2300 reference bubble point by using a finer mesh, operating at a colder liquid temperature, and pressurizing and sub cooling the liquid with the noncondensable pressurant. Results also show that the cryogenic bubble point is heavily affected by enhanced heating and cooling at the screen liquid/vapor interface by evaporation and condensation. Published by Elsevier Ltd. C1 [Hartwig, J. W.] NASA, Glenn Res Ctr, Cryogen & Fluid Syst Branch, Washington, DC USA. RP Hartwig, JW (reprint author), NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA. EM Jason.W.Hartwig@nasa.gov NR 44 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 95 EP 105 DI 10.1016/j.cryogenics.2015.09.008 PG 11 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400014 ER PT J AU Hedayat, A Cartagena, W Majumdar, AK LeClair, AC AF Hedayat, A. Cartagena, W. Majumdar, A. K. LeClair, A. C. TI Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Liquid hydrogen; Chilldown; Modeling; Heat transfer AB NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented. Published by Elsevier Ltd. C1 [Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.] Marshall Space Flight Ctr, Prop Syst Dept, Huntsville, AL 35812 USA. RP Hedayat, A (reprint author), Marshall Space Flight Ctr, Prop Syst Dept, Huntsville, AL 35812 USA. EM ali.hedayat-1@nasa.gov NR 4 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 106 EP 112 DI 10.1016/j.cryogenics.2015.11.003 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400015 ER PT J AU Majumdar, A Valenzuela, J LeClair, A Moder, J AF Majumdar, Alok Valenzuela, Juan LeClair, Andre Moder, Jeff TI Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Cryogenic fluid management; Numerical model AB This paper presents a numerical model of a system-level test bed the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J-T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions. Published by Elsevier Ltd. C1 [Majumdar, Alok; Valenzuela, Juan; LeClair, Andre] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Moder, Jeff] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. RP Majumdar, A (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM alok.k.majumdar@nasa.gov NR 6 TC 2 Z9 2 U1 3 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 113 EP 122 DI 10.1016/j.cryogenics.2015.12.001 PG 10 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400016 ER PT J AU Bellur, K Medici, EF Kulshreshtha, M Konduru, V Tyrewala, D Tamilarasan, A McQuillen, J Leao, JB Hussey, DS Jacobson, DL Scherschligt, J Hermanson, JC Choi, CK Allen, JS AF Bellur, K. Medici, E. F. Kulshreshtha, M. Konduru, V. Tyrewala, D. Tamilarasan, A. McQuillen, J. Leao, J. B. Hussey, D. S. Jacobson, D. L. Scherschligt, J. Hermanson, J. C. Choi, C. K. Allen, J. S. TI A new experiment for investigating evaporation and condensation of cryogenic propellants SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Evaporation; Condensation; Liquid hydrogen; Neutron imaging; Contact angle ID THIN-FILM; MASS-TRANSPORT; CAPILLARY-TUBE; HEAT-TRANSFER; MENISCUS; MODEL; PRESSURE; REGION; TANKS; FLOW AB Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bellur, K.; Medici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Choi, C. K.; Allen, J. S.] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. [Tamilarasan, A.; Hermanson, J. C.] Univ Washington, Seattle, WA 98195 USA. [McQuillen, J.] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH USA. [Leao, J. B.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.] NIST, Gaithersburg, MD 20899 USA. RP Allen, JS (reprint author), Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. EM jstallen@mtu.edu NR 41 TC 0 Z9 0 U1 3 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 131 EP 137 DI 10.1016/j.cryogenics.2015.10.016 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400018 PM 28154426 ER PT J AU Kassemi, M Kartuzova, O AF Kassemi, Mohammad Kartuzova, Olga TI Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE CFD; Tank pressurization; Cryogenic storage; Turbulence; Interfacial mass transfer; Accommodation coefficient ID EVAPORATION COEFFICIENT; SELF-PRESSURIZATION; MICROGRAVITY AB Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kassemi, Mohammad; Kartuzova, Olga] NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res NCSER, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA. RP Kassemi, M (reprint author), NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res NCSER, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA. EM Mohammad.Kassemi@nasa.gov NR 50 TC 0 Z9 0 U1 6 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 138 EP 153 DI 10.1016/j.cryogenics.2015.10.018 PG 16 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400019 ER PT J AU Fesmire, JE AF Fesmire, J. E. TI Layered composite thermal insulation system for nonvacuum cryogenic applications SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Thermal insulation; Weathering; Compression; Piping; Valves; Tanks; Space launch vehicles ID TANKS AB A problem common to both space launch applications and cryogenic propulsion test facilities is providing suitable thermal insulation for complex cryogenic piping, tanks, and components that cannot be vacuum jacketed or otherwise be broad-area-covered. To meet such requirements and provide a practical solution to the problem, a layered composite insulation system has been developed for nonvacuum applications and extreme environmental exposure conditions. Layered composite insulation system for extreme conditions (or LCX) is particularly suited for complex piping or tank systems that are difficult or practically impossible to insulate by conventional means. Consisting of several functional layers, the aerogel blanket-based system can be tailored to specific thermal and mechanical performance requirements.. The operational principle of the system is layer-pairs working in combination. Each layer pair is comprised of a primary insulation layer and a compressible radiant barrier layer. Vacuum jacketed piping systems, whether part of the ground equipment or the flight vehicle, typically include numerous terminations, disconnects, umbilical connections, or branches that must be insulated by nonvacuum means. Broad-area insulation systems, such as spray foam or rigid foam panels, are often the lightweight materials of choice for vehicle tanks, but the plumbing elements, feedthroughs, appurtenances, and structural supports all create "hot spot" areas that are not readily insulated by similar means. Finally, the design layouts of valve control skids used for launch pads and test stands can be nearly impossible to insulate because of their complexity and high density of components and instrumentation. Primary requirements for such nonvacuum thermal insulation systems include the combination of harsh conditions, including full weather exposure, vibration, and structural loads. Further requirements include reliability and the right level of system breathability for thermal cycling. The LCX system is suitable for temperatures from approximately 4 K to 400 K and can be designed to insulate liquid hydrogen, liquid nitrogen, liquid oxygen, or liquid methane equipment. Laboratory test data for thermal and mechanical performance are presented. Field demonstration cases and examples in operational cryogenic systems are also given. Published by Elsevier Ltd. C1 [Fesmire, J. E.] NASA, Kennedy Space Ctr, Cryogen Test Lab, UB R1, Kennedy Space Ctr, FL 32899 USA. RP Fesmire, JE (reprint author), NASA, Kennedy Space Ctr, Cryogen Test Lab, UB R1, Kennedy Space Ctr, FL 32899 USA. NR 16 TC 0 Z9 0 U1 10 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 154 EP 165 DI 10.1016/j.cryogenics.2015.10.008 PG 12 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400020 ER PT J AU Tuttle, J Jahromi, A Canavan, E DiPirro, M AF Tuttle, James Jahromi, Amir Canavan, Edgar DiPirro, Michael TI Cryogenic thermal absorptance measurements on small-diameter stainless steel tubing SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Absorptance; Cryocooler; Radiation AB The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results. Published by Elsevier Ltd. C1 [Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael] NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA. RP Tuttle, J (reprint author), NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA. EM james.g.tuttle@nasa.gov NR 7 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 166 EP 171 DI 10.1016/j.cryogenics.2015.09.003 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400021 ER PT J AU Farrahi, AH Verma, SA Kozon, TE AF Farrahi, Amir H. Verma, Savita A. Kozon, Thomas E. TI On the Problem of Pairing Aircraft for Closely Spaced Parallel Approaches SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Closely spaced parallel runways; parallel approaches; pairing aircraft; scheduling aircraft landing ID LANDINGS; ALGORITHMS AB The problem of scheduling pairs of aircraft for simultaneous landing onto very closely spaced parallel runways is studied. The pair scheduling problem and its generalization group scheduling problem for simultaneous landing onto parallel runways are formulated and shown to be NP-hard, in general. A genetic pairing scheduler algorithm is developed, capable of handling a wide range of constraints, and used in a real-time human-in-the-loop simulation that was carried out to study the operational concept. Experimental data from these simulations and an extensive set of stress tests are presented and analyzed. Results indicate that while the problem is NP-hard in general, practical instances of the algorithm are not necessarily very hard to solve. As such, the proposed algorithm succeeded in finding and suggesting aircraft pairs that met all the problem constraints and thus were accepted by the controllers in over 97% of the cases. High solution quality, scalable runtime, and flexibility of the proposed algorithm in handling different constraints suggest that it is a suitable candidate for use in a real-time application. C1 [Farrahi, Amir H.; Verma, Savita A.; Kozon, Thomas E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Farrahi, AH; Verma, SA; Kozon, TE (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM amir.h.farrahi@nasa.gov; savita.a.verma@nasa.gov; thomas.e.kozon@nasa.gov NR 28 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 EI 1558-0016 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD MAR PY 2016 VL 17 IS 3 BP 631 EP 643 DI 10.1109/TITS.2015.2479611 PG 13 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA DG3PR UT WOS:000371982600003 ER PT J AU Meixner, T Manning, AH Stonestrom, DA Allen, DM Ajami, H Blasch, KW Brookfield, AE Castro, CL Clark, JF Gochis, DJ Flints, AL Neff, KL Niraula, R Rodell, M Scanlon, BR Singha, K Walvoord, MA AF Meixner, Thomas Manning, Andrew H. Stonestrom, David A. Allen, Diana M. Ajami, Hoori Blasch, Kyle W. Brookfield, Andrea E. Castro, Christopher L. Clark, Jordan F. Gochis, David J. Flints, Alan L. Neff, Kirstin L. Niraula, Rewati Rodell, Matthew Scanlon, Bridget R. Singha, Kamini Walvoord, Michelle A. TI Implications of projected climate change for groundwater recharge in the western United States SO JOURNAL OF HYDROLOGY LA English DT Review DE Groundwater recharge; Recharge mechanisms; Climate change; Western United States ID HIGH-PLAINS AQUIFER; CHANGE IMPACTS; INTENSE PRECIPITATION; ATMOSPHERIC CO2; FUTURE CLIMATE; SOIL-MOISTURE; WATER; SYSTEM; HYDROLOGY; TRENDS AB Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100 longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snow pack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Meixner, Thomas; Castro, Christopher L.; Neff, Kirstin L.; Niraula, Rewati] Univ Arizona, Tucson, AZ 85721 USA. [Manning, Andrew H.; Walvoord, Michelle A.] US Geol Survey, Box 25046, Denver, CO 80225 USA. [Stonestrom, David A.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Allen, Diana M.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Ajami, Hoori] Univ New S Wales, WRC, Sydney, NSW 2052, Australia. [Blasch, Kyle W.] US Geol Survey, Boise, ID 83702 USA. [Brookfield, Andrea E.] Univ Kansas, Kansas Geol Survey, 1930 Constant Ave, Lawrence, KS 66047 USA. [Clark, Jordan F.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gochis, David J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Flints, Alan L.] US Geol Survey, Sacramento, CA 95819 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Scanlon, Bridget R.] Univ Texas Austin, Austin, TX 78713 USA. [Singha, Kamini] Colorado Sch Mines, Golden, CO 80401 USA. RP Meixner, T (reprint author), Univ Arizona, Tucson, AZ 85721 USA. EM tmeixner@email.arizona.edu RI Rodell, Matthew/E-4946-2012; Scanlon, Bridget/A-3105-2009; OI Rodell, Matthew/0000-0003-0106-7437; Scanlon, Bridget/0000-0002-1234-4199; Meixner, Thomas/0000-0002-8567-9635; Manning, Andrew/0000-0002-6404-1237 FU USGS; NSF [EAR-1328505]; USGS National Research Program; USGS Office of Groundwater FX The synthesis work reported in this paper is the result of a John Wesley Powell Center group "Potential Impacts of Prospective Climate Change on Groundwater Recharge in the Western United States". The work received support from the USGS and also from the NSF through a concurrent award (EAR-1328505). Additional support to several authors was provided by the USGS National Research Program and the USGS Office of Groundwater. We also wish to thank Jill Baron and the staff of the Powell Center for their assistance in meeting arrangements and their professional attitude and pleasant demeanor. NR 86 TC 11 Z9 12 U1 18 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD MAR PY 2016 VL 534 BP 124 EP 138 DI 10.1016/j.jhydrol.2015.12.027 PG 15 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DG3AC UT WOS:000371940900012 ER PT J AU Bergfors, C Brandner, W Bonnefoy, M Schlieder, J Janson, M Henning, T Chauvin, G AF Bergfors, C. Brandner, W. Bonnefoy, M. Schlieder, J. Janson, M. Henning, Th. Chauvin, G. TI Characterization of close visual binaries from the AstraLux Large M Dwarf Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: visual; stars: fundamental parameters; stars: low-mass; stars: pre-main-sequence ID VERY-LOW MASS; STELLAR KINEMATIC GROUPS; NEAR-INFRARED SPECTRA; PICTORIS MOVING GROUP; SOLAR NEIGHBORHOOD; STAR CANDIDATES; BETA-PICTORIS; BROWN DWARFS; SPECTROSCOPIC BINARIES; FUNDAMENTAL PARAMETERS AB We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) J, H + K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within +/- 1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with the Fiberfed Extended Range Optical Spectrograph (FEROS) at the European Southern Observatory (ESO)-Max-Planck-Gesellschaft (MPG) 2.2 m telescope. The equivalent width of the absorption suggests an age consistent with the beta Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dynamical masses and thus calibration of evolutionary models for low mass stars. C1 [Bergfors, C.] UCL, Dept Phys & Astron, 132 Hampstead Rd, London NW1 2PS, England. [Bergfors, C.; Brandner, W.; Henning, Th.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Bonnefoy, M.; Chauvin, G.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, M.; Chauvin, G.] IPAG, CNRS, F-38000 Grenoble, France. [Schlieder, J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. [Janson, M.] Stockholm Univ, Inst Astron, SE-10691 Stockholm, Sweden. RP Bergfors, C (reprint author), UCL, Dept Phys & Astron, 132 Hampstead Rd, London NW1 2PS, England.; Bergfors, C (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM c.bergfors@ucl.ac.uk NR 68 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 2576 EP 2585 DI 10.1093/mnras/stv2768 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200022 ER PT J AU Friedrich, O Seitz, S Eifler, TF Gruen, D AF Friedrich, O. Seitz, S. Eifler, T. F. Gruen, D. TI Performance of internal covariance estimators for cosmic shear correlation functions SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; cosmological parameters; large-scale structure of Universe ID ANGULAR-CORRELATION FUNCTION; LARGE-SCALE STRUCTURE; WEAK LENSING SURVEYS; 2-POINT STATISTICS; SURVEY GEOMETRY; POWER SPECTRUM; GALAXY SURVEYS; SIMULATIONS; MATRIX; MODEL AB Data re-sampling methods such as delete-one jackknife, bootstrap or the sub-sample covariance are common tools for estimating the covariance of large-scale structure probes. We investigate different implementations of these methods in the context of cosmic shear two-point statistics. Using lognormal simulations of the convergence field and the corresponding shear field we generate mock catalogues of a known and realistic covariance. For a survey of similar to 5000 deg(2) we find that jackknife, if implemented by deleting sub-volumes of galaxies, provides the most reliable covariance estimates. Bootstrap, in the common implementation of drawing sub-volumes of galaxies, strongly overestimates the statistical uncertainties. In a forecast for the complete 5-yr Dark Energy Survey, we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in the Omega(m)-sigma(8) plane as measured with internally estimated covariance matrices is on average greater than or similar to 85 per cent of the volume derived from the true covariance matrix. The uncertainty on the parameter combination Sigma(8) similar to sigma(8) Omega(0.5)(m) derived from internally estimated covariances is similar to 90 per cent of the true uncertainty. C1 [Friedrich, O.; Seitz, S.; Gruen, D.] Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany. [Friedrich, O.; Seitz, S.; Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Eifler, T. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Eifler, T. F.] CALTECH, Pasadena, CA 91125 USA. RP Friedrich, O (reprint author), Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany.; Friedrich, O (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. EM oliverf@usm.uni-muenchen.de FU Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33]; DFG Cluster of Excellence 'Origin and Structure of the Universe'; National Aeronautics and Space Administration; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union including ERC [240672, 291329, 306478] FX This work was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG). We also acknowledge the support by the DFG Cluster of Excellence 'Origin and Structure of the Universe'. The simulations have been carried out on the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.; Funding for the DES projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478. NR 40 TC 6 Z9 6 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 2662 EP 2680 DI 10.1093/mnras/stv2833 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200029 ER PT J AU Puebla, RE Hillier, DJ Zsargo, J Cohen, DH Leutenegger, MA AF Puebla, Raul E. Hillier, D. John Zsargo, Janos Cohen, David H. Leutenegger, Maurice A. TI X-ray, UV and optical analysis of supergiants: epsilon Ori SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: spectroscopic; stars: abundances; stars: individual: epsilon Ori; stars: massive; stars: mass-loss; supergiants ID HOT-STAR WINDS; MASS-LOSS RATES; O-TYPE STARS; EMISSION-LINE-PROFILES; DRIVEN STELLAR WINDS; B-TYPE SUPERGIANTS; LOW METALLICITY ENVIRONMENT; ATMOSPHERIC NLTE-MODELS; HELIUM-LIKE IONS; ZETA PUPPIS AB We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: epsilon Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is (M) over dot/root f(infinity) similar to 1.6 x 10(-6) M-circle dot yr(-1) where f(infinity) is the volume filling factor. However, the S IV lambda lambda 1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use f(infinity) < 0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies (M) over dot less than or similar to 1 x 10(-7) M-circle dot yr(-1). The discrepancy could be related to porosity-vorosity effects or a problem with the ionization of sulphur in the wind. To fit the UV profiles of NV and O VI it was necessary to include emission from an interclump medium with a density contrast (rho(cl)/rho(ICM)) of similar to 100. X-ray emission in H/He like and Fe L lines was modelled using four plasma components located within the wind. We derive plasma temperatures from 1 x 10(6) to 7 x 10(6) K, with lower temperatures starting in the outer regions (R-0 similar to 3-6 R-*), and a hot component starting closer to the star (R-0 less than or similar to 2.9 R-*). From X-ray line profiles we infer (M) over dot < 4.9 x 10(-7) M-circle dot yr(-1). The X-ray spectrum (>= 0.1 kev) yields an X-ray luminosity L-X similar to 2.0 x 10(-7) L-bol, consistent with the superion line profiles. X-ray abundances are in agreement with those derived from the UV and optical analysis: epsilon Ori is slightly enhanced in nitrogen and depleted in carbon and oxygen, evidence for CNO processed material. C1 [Puebla, Raul E.; Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. [Puebla, Raul E.; Hillier, D. John] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA. [Zsargo, Janos] Inst Politecn Nacl, Escuela Super Fis & Matemat, Av Inst Politecn Nacl,Edificio 9, Mexico City 07738, DF, Mexico. [Cohen, David H.] Swarthmore Coll, Dept Phys & Astron, 500 Coll Ave, Swarthmore, PA 19081 USA. [Leutenegger, Maurice A.] Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Leutenegger, Maurice A.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Puebla, RE (reprint author), Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA.; Puebla, RE (reprint author), Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA. EM rep54@pitt.edu FU National Aeronautics and Space Administration [ARO-11002A, NAS8-03060]; NASA Chandra grants [AR2-13001A, AR0-11002B]; STScI theory grant [HST-AR-12640.01]; Chandra [AR2-13001A, AR0-11002B, G02-13002A, AR2-130001B, TM3-14001B]; CONACyT [CB-2011-01, 168632] FX Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number ARO-11002A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics and Space Administration under contract NAS8-03060. This work was also supported by NASA Chandra grants: AR2-13001A and AR0-11002B. D. John Hillier also acknowledges partial support from STScI theory grant HST-AR-12640.01. MAL also acknowledges the support from Chandra, grants: G02-13002A and AR2-130001B. David Cohen also acknowledges the support from Chandra, grants: TM3-14001B, AR0-11002B and AR2-13001A. We also acknowledge Francisco Najarro for his highly valuable comments and suggestions on this manuscript. We are also grateful to Randall Smith for providing us the source code of APEC and to the Chandra X-ray Center for the use of ATOMDB. JZ acknowledges CONACyT grant CB-2011-01 No. 168632. We also thank the anonymous referee for the valuable comments that helped us to improve this manuscript. NR 123 TC 2 Z9 2 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 2907 EP 2936 DI 10.1093/mnras/stv2783 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200047 ER PT J AU Giannantonio, T Fosalba, P Cawthon, R Omori, Y Crocce, M Elsner, F Leistedt, B Dodelson, S Benoit-Levy, A Gaztanaga, E Holder, G Peiris, HV Percival, WJ Kirk, D Bauer, AH Benson, BA Bernstein, GM Carretero, J Crawford, TM Crittenden, R Huterer, D Jain, B Krause, E Reichardt, CL Ross, AJ Simard, G Soergel, B Stark, A Story, KT Vieira, JD Weller, J Abbott, T Abdalla, FB Allam, S Armstrong, R Banerji, M Bernstein, RA Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Carlstrom, JE Rosell, AC Kind, MC Castander, FJ Chang, CL Cunha, CE da Costa, LN D'Andrea, CB DePoy, DL Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Evrard, AE Neto, AF Fernandez, E Finley, DA Flaugher, B Frieman, J Gerdes, D Gruen, D Gruendl, RA Gutierrez, G Holzapfel, WL Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M March, M Marshall, JL Martini, P Melchior, P Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Rykoff, ES Sako, M Saliwanchik, BR Sanchez, E Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Vikram, V Walker, AR Wechsler, RH Zuntz, J AF Giannantonio, T. Fosalba, P. Cawthon, R. Omori, Y. Crocce, M. Elsner, F. Leistedt, B. Dodelson, S. Benoit-Levy, A. Gaztanaga, E. Holder, G. Peiris, H. V. Percival, W. J. Kirk, D. Bauer, A. H. Benson, B. A. Bernstein, G. M. Carretero, J. Crawford, T. M. Crittenden, R. Huterer, D. Jain, B. Krause, E. Reichardt, C. L. Ross, A. J. Simard, G. Soergel, B. Stark, A. Story, K. T. Vieira, J. D. Weller, J. Abbott, T. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Bernstein, R. A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carlstrom, J. E. Rosell, A. Carnero Kind, M. Carrasco Castander, F. J. Chang, C. L. Cunha, C. E. da Costa, L. N. D'Andrea, C. B. DePoy, D. L. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Fernandez, E. Finley, D. A. Flaugher, B. Frieman, J. Gerdes, D. Gruen, D. Gruendl, R. A. Gutierrez, G. Holzapfel, W. L. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. March, M. Marshall, J. L. Martini, P. Melchior, P. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Rykoff, E. S. Sako, M. Saliwanchik, B. R. Sanchez, E. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Vikram, V. Walker, A. R. Wechsler, R. H. Zuntz, J. TI CMB lensing tomography with the DES Science Verification galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmic background radiation; gravitational lensing: weak; large-scale structure of Universe ID DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND ANISOTROPIES; INTEGRATED SACHS-WOLFE; SOUTH-POLE TELESCOPE; CHALLENGE LIGHTCONE SIMULATION; ATACAMA COSMOLOGY TELESCOPE; PRIMORDIAL NON-GAUSSIANITY; ANGULAR POWER SPECTRUM; DARK ENERGY SURVEY AB We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 < z(phot) < 1.2, a cross-correlation signal is detected at 6 sigma and 4 sigma with SPT and Planck, respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant (>2 sigma) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 +/- 0.16 times as large as predicted in the Lambda cold dark matter Planck cosmology, a 1.7 sigma deviation. C1 [Giannantonio, T.; Soergel, B.; Banerji, M.] Univ Cambridge, Inst Astron, Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Giannantonio, T.; Weller, J.; Desai, S.; Dietrich, J. P.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Fosalba, P.; Crocce, M.; Gaztanaga, E.; Bauer, A. H.; Carretero, J.] Campus UAB, Fac Ciencies, IEEC CSIC, Inst Ciencies Espai, Torre C5 Par 2, E-08193 Barcelona, Spain. [Cawthon, R.; Dodelson, S.; Benson, B. A.; Crawford, T. M.; Carlstrom, J. E.; Chang, C. L.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Cawthon, R.; Dodelson, S.; Benson, B. A.; Story, K. T.; Carlstrom, J. E.; Chang, C. L.] Kavli Inst Cosmol Phys, 933 East 56th St, Chicago, IL 60637 USA. [Omori, Y.; Holder, G.; Simard, G.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Elsner, F.; Leistedt, B.; Benoit-Levy, A.; Peiris, H. V.; Kirk, D.; Lahav, O.] UCL, Dept Phys & Astron, Astrophys Grp, 132 Hampstead Rd, London NW1 2PS, England. [Dodelson, S.; Benson, B. A.; Buckley-Geer, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Percival, W. J.; Crittenden, R.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England. [Bernstein, G. M.; Jain, B.; Eifler, T. F.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Huterer, D.; Evrard, A. E.; Gerdes, D.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Krause, E.; Cunha, C. E.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Phys Astrophys Bldg,452 Lomita Mall, Stanford, CA 94305 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Ross, A. J.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA. [Stark, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 12, Cambridge, MA 02138 USA. [Story, K. T.; Carlstrom, J. E.] Univ Chicago, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Vieira, J. D.; Gruendl, R. A.] Univ Illinois, Dept Astron, MC 221,1002 West Green St, Urbana, IL 61801 USA. [Weller, J.; Desai, S.; Dietrich, J. P.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Munich, Germany. [Weller, J.; Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Chang, C. L.; Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Burke, D. L.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rosell, A. Carnero; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Ogando, R.] Lab Interinstituc E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, A. Carnero; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Holzapfel, W. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [James, D. J.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.; Suchyta, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Saliwanchik, B. R.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Phys Dept, Cleveland, OH 44106 USA. [Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. RP Giannantonio, T (reprint author), Univ Cambridge, Inst Astron, Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.; Giannantonio, T (reprint author), Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England.; Giannantonio, T (reprint author), Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.; Fosalba, P (reprint author), Campus UAB, Fac Ciencies, IEEC CSIC, Inst Ciencies Espai, Torre C5 Par 2, E-08193 Barcelona, Spain. EM t.giannantonio@ast.cam.ac.uk; fosalba@ice.cat RI Lima, Marcos/E-8378-2010; Fosalba Vela, Pablo/I-5515-2016; Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014; OI Stark, Antony/0000-0002-2718-9996; Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815; CRAWFORD, THOMAS/0000-0001-9000-5013; Dietrich, Jorg/0000-0002-8134-9591; Weller, Jochen/0000-0002-8282-2010; Carrasco Kind, Matias/0000-0002-4802-3194; Abdalla, Filipe/0000-0003-2063-4345 FU Kavli Foundation; STFC [ST/L000636/1]; Excellence Cluster 'Universe' of Garching, Germany; MareNostrum supercomputer [AECT-2008-1-0009, 2010-1-0007]; Port d'Informacio Cientifica; Cosmo-HUB portal; MINECO [ESP2013-48274-C3-1-P]; European Research Council under the European Union [306478-CosmicDawn, 240672, 291329, 306478]; University of Melbourne; Australian Research Council [DP150103208]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the DES; National Science Foundation [AST-1138766]; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; NSF Physics Frontier Center grant [PHY-0114422]; Gordon and Betty Moore Foundation through Grant GBMF [947] FX TG thanks Anthony Challinor and George Efstathiou for comments on a draft version of this paper, and James Fergusson, Martin Kilbinger and Ariel Sanchez for useful discussions. TG acknowledges support from the Kavli Foundation, STFC grant ST/L000636/1, and from the Excellence Cluster 'Universe' of Garching, Germany, as well as the Institut de Ciencies de l'Espai, IEEC-CSIC, Universitat Autonoma de Barcelona, for hospitality. PF acknowledges support from the MareNostrum supercomputer (BSC-CNS, http://www.bsc.es), grants AECT-2008-1-0009 to 2010-1-0007, Port d'Informacio Cientifica (http://www.pic.es), and the Cosmo-HUB portal (cosmohub.pic.es), where the MICE simulations were run, stored, and distributed, respectively. PF is funded by MINECO, project ESP2013-48274-C3-1-P. FE, BL and HVP were partially supported by the European Research Council under the European Union's Seventh Framework Programme (PP7/2007-2013) /ERC grant agreement no. 306478-CosmicDawn. CR acknowledges support from the University of Melbourne and from the Australian Research Council's Discovery Projects scheme (DP150103208).r Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; r The SPT programme is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to theKavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant GBMF#947 to the University of Chicago. NR 135 TC 18 Z9 18 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 3213 EP 3244 DI 10.1093/mnras/stv2678 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200072 ER PT J AU Hall, A McKay, C Cumbers, J AF Hall, Alexandra McKay, Chris Cumbers, John TI Toward a Low-Cost Lunar Settlement: Preface to the New Space Special Articles SO NEW SPACE LA English DT Editorial Material C1 [Hall, Alexandra; Cumbers, John] NASA Ames, Space Portal Wyle, Bldg 555, Moffett Field, CA 94035 USA. [McKay, Chris] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hall, A (reprint author), NASA Ames, Space Portal Wyle, Bldg 555, Moffett Field, CA 94035 USA. EM alexandra.hall@nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 2 EP 3 DI 10.1089/space.2015.0039 PG 2 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000002 ER PT J AU Hall, A Miller, C AF Hall, Alexandra Miller, Charles TI A Summary of the Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture That Leverages Commercial Space Capabilities and Public-Private Partnerships SO NEW SPACE LA English DT Editorial Material C1 [Hall, Alexandra] NASA Ames, Space Portal, Bldg 555, Moffett Field, CA 94035 USA. NexGen Space LLC, Arlington, VA USA. RP Hall, A (reprint author), NASA Ames, Space Portal, Bldg 555, Moffett Field, CA 94035 USA. EM alexandra.hall@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 4 EP 6 DI 10.1089/space.2015.0037 PG 3 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000003 ER PT J AU Pittman, RB Harper, LD Newfield, ME Rasky, DJ AF Pittman, Robert Bruce Harper, Lynn D. Newfield, Mark E. Rasky, Daniel J. TI Lunar Station: The Next Logical Step in Space Development SO NEW SPACE LA English DT Article C1 [Pittman, Robert Bruce] Space Portal, Moffett Field, CA USA. [Harper, Lynn D.; Newfield, Mark E.; Rasky, Daniel J.] NASA Ames, Space Portal, Moffett Field, CA USA. RP Pittman, RB (reprint author), NASA, Ames Res Ctr, Space Portal Off, MS 555-3, Moffett Field, CA 94035 USA. EM robert.b.pittman@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 7 EP 14 DI 10.1089/space.2015.0031 PG 8 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000004 ER PT J AU Wingo, D AF Wingo, Dennis TI Site Selection for Lunar Industrialization, Economic Development, and Settlement SO NEW SPACE LA English DT Article AB The subject of a lunar landing site/outpost/base implementation has been explored extensively over the past several decades. Due to the cost and complexity involved in the development of off-world facilities, serious efforts have been almost the exclusive domain of government. However, as technology continues to advance and a NewSpace industry has grown in recent years, discussions have turned to exploring something fundamentally differenta commercial lunar development. This article uses a set of input parameters put forth for a privately financed development by a group of thought leaders and venture capitalists that met in August 2014 at a major Silicon Valley venture capital firm. These inputs are used here as the driver for primary site selection criterion to identify a location so that further design and cost estimation efforts can proceed. Such a development would be privately financed in the $5-10 billion range and be operational by the early 2020s. It would be a permanently inhabited installation housing with at least 10 people on extended tours. This commercial lunar development's underlying unifying premise, requirements, and purpose is predicated upon economic development, industrialization, and settlement. Though there have been treatments in the past,none besides Ruzic realistically postulated a dedicated commercial development. A primary candidate site is identified and some further thoughts on its potential and the next steps for validation/verification are explored. It is stressed that this report only covers how factors associated with site selection lower the overall cost of a lunar development. A treatment of the full economic and systems engineering for site development would require a book-level exposition. The intent here is to provide the foundation for further treatment and to pick a single best site, based on our current knowledge, that covers the four most fundamental parameters for an off-world development. These are (1) power availability, (2) low-cost communications over wide areas, (3) availability of possible water (or hydrogen-based molecules) and other resources, and (4) surface mobility. NASA's Lunar Reconnaissance Orbiter has been transformational in this regard, building on earlier missions, and with its multispectral remote sensing instruments and the Lunar Orbiter Laser Altimeter, we have dramatically improved abilities to make detailed site selection analyses. Online resources such as the ACT-REACT map from Dr. Mark Robinson's team at Arizona State University and the Lunar Mapping and Modeling Portal at NASA Ames are tremendous resources aiding such investigations. C1 [Wingo, Dennis] SkyCorp Inc, POB 375,NASA Ames Res Pk, Moffett Field, CA 94035 USA. RP Wingo, D (reprint author), SkyCorp Inc, POB 375,NASA Ames Res Pk, Moffett Field, CA 94035 USA. EM wingod@skycorpinc.com NR 18 TC 0 Z9 0 U1 2 U2 2 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 19 EP 39 DI 10.1089/space.2015.0023 PG 21 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000006 ER PT J AU Harper, LD Neal, CR Poynter, J Schalkwyk, JD Wingo, DR AF Harper, Lynn D. Neal, Clive Ray Poynter, Jane Schalkwyk, James D. Wingo, Dennis Ray TI Life Support for a Low-Cost Lunar Settlement: No Showstoppers SO NEW SPACE LA English DT Article ID SPACE; WHEAT AB In 2014, space experts were challenged to develop strategies that would enable 10 people to live for 1 year on the Moon by 2022 for a total development cost of $5B. This was to be done in a manner that would minimize resupply of consumables from Earth and lead to a permanent lunar settlement of 100 people within 10 years. To sustain small groups on the Moon within this budget, recycling life-support consumables, rather than continuously supplying them from Earth, is required. The International Space Station (ISS) provides existence proof that these technologies are currently available. On the ISS, physicochemical regeneration of air and water reduces resupply of these consumables by more than 80%, increases the resilience of missions, and enhances productivity by enabling science, technology, and commercial payloads to replace life-support consumables. A permanent settlement must also employ bioregenerative strategies where, in addition to providing food, plants also remove carbon dioxide, produce oxygen, and generate potable water from gray water. Food production is only practical if abundant sunlight (or power) provides the light necessary for photosynthesis. Thus, quasicontinuous sunlight, obtainable only near the poles, is the most important resource for meeting time and budget constraints, although regolith constituents and lunar polar hydrogen (presumably ice) deposits are also valuable assets. Although improvements are always beneficial, the technologies needed for life support for the first phase of Lunar Settlement are available now. C1 [Harper, Lynn D.] NASA, Ames Res Ctr, Space Portal, MS 555-3, Moffett Field, CA 94035 USA. [Neal, Clive Ray] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Poynter, Jane] World View Enterprises, Tucson, AZ USA. [Schalkwyk, James D.] NASA, Ames Res Ctr, Deltha Crit, Moffett Field, CA 94035 USA. [Wingo, Dennis Ray] Skycorp Inc, NASA Ames Res Pk, Moffett Field, CA USA. RP Harper, LD (reprint author), NASA, Ames Res Ctr, Space Portal, MS 555-3, Moffett Field, CA 94035 USA. EM lynn.d.harper@nasa.gov NR 28 TC 0 Z9 0 U1 6 U2 7 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 40 EP 49 DI 10.1089/space.2015.0029 PG 10 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000007 ER PT J AU Solander, KC Reager, JT Thomas, BF David, CH Famiglietti, JS AF Solander, Kurt C. Reager, John T. Thomas, Brian F. David, Cedric H. Famiglietti, James S. TI Simulating Human Water Regulation: The Development of an Optimal Complexity, Climate-Adaptive Reservoir Management Model for an LSM SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Models and modeling; Feedback; Hydrology; Applications; Physical Meteorology and Climatology; Anthropogenic effects; Adaptive models; Optimization; Model evaluation/performance ID EARTH SYSTEM MODELS; RESOURCE MANAGEMENT; CHANGE SCENARIOS; SURFACE-WATER; PART 1; HYDROLOGY; IMPACTS; REPRESENTATION; WITHDRAWALS; VARIABILITY AB The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM. C1 [Solander, Kurt C.; Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA. [Reager, John T.; Thomas, Brian F.; David, Cedric H.; Famiglietti, James S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. RP Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA. EM jfamigli@uci.edu FU National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship (NESSF); Jenkins Fellowship; Jet Propulsion Laboratory, California Institute of Technology; NASA FX The authors are particularly grateful for the generous financial support received from the National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship (NESSF) and the Jenkins Fellowship for this research. We are also especially thankful for the technical expertise provided by Jacob Edman (Earth and Planetary Sciences, University of California, Berkeley) and Min-Hui Lo (Atmospheric Sciences, National Taiwan University) at the onset of this research. The authors John T. Reager, Brian F. Thomas, Cedric H. David, and James S. Famiglietti were partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 40 TC 0 Z9 0 U1 7 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAR PY 2016 VL 17 IS 3 BP 725 EP 744 DI 10.1175/JHM-D-15-0056.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6NN UT WOS:000371472600001 ER PT J AU Nearing, GS Mocko, DM Peters-Lidard, CD Kumar, SV Xia, YL AF Nearing, Grey S. Mocko, David M. Peters-Lidard, Christa D. Kumar, Sujay V. Xia, Youlong TI Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Land surface model; Model evaluation/performance; Models and modeling ID LAND-SURFACE MODELS; INFORMATION; ASSIMILATION; PERFORMANCE; FRAMEWORK; FLUXNET; SYSTEMS; IMPACT; FUTURE; ENERGY AB Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a "large sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. C1 [Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, 8800 Greenbelt Rd,Code 617,Bldg 33,Rm G205, Greenbelt, MD 20771 USA. [Nearing, Grey S.; Mocko, David M.; Kumar, Sujay V.] Sci Applicat Int Corp, Mclean, VA 22102 USA. [Xia, Youlong] NOAA, NCEP, Environm Modeling Ctr, College Pk, MD USA. [Xia, Youlong] IM Syst Grp, Rockville, MD USA. RP Nearing, GS (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, 8800 Greenbelt Rd,Code 617,Bldg 33,Rm G205, Greenbelt, MD 20771 USA. EM grey.s.nearing@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Kumar, Sujay/B-8142-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU U.S. Department of Energy's Office of Science; NASA's Earth-Sun System Division FX Thank you to Martyn Clark (NCAR) for his help with organizing the presentation. The NLDAS-2 data used in this study were acquired as part of NASA's Earth-Sun System Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC). Funding for AmeriFlux data resources was provided by the U.S. Department of Energy's Office of Science. NR 49 TC 4 Z9 4 U1 5 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAR PY 2016 VL 17 IS 3 BP 745 EP 759 DI 10.1175/JHM-D-15-0063.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6NN UT WOS:000371472600002 ER PT J AU Winter, JM Beckage, B Bucini, G Horton, RM Clemins, PJ AF Winter, Jonathan M. Beckage, Brian Bucini, Gabriela Horton, Radley M. Clemins, Patrick J. TI Development and Evaluation of High-Resolution Climate Simulations over the Mountainous Northeastern United States SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Climate models; North America; Geographic location/entity; Observational techniques and algorithms; Regional effects; Topographic effects; Circulation/ Dynamics; Statistical techniques; Applications; Mathematical and statistical techniques; Surface observations; Models and modeling ID STATISTICAL DOWNSCALING METHODS; HYDROLOGICALLY BASED DATASET; TEMPERATURE LAPSE RATES; LAND-SURFACE FLUXES; MODEL OUTPUTS; PRECIPITATION; CALIFORNIA; IMPACTS; REGIONS; UTILITY AB The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly ~ 1/8 degrees) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30 ''), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled ( 1/8 degrees) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product. C1 [Winter, Jonathan M.] Dartmouth Coll, Dept Geog, Hanover, NH 03755 USA. [Winter, Jonathan M.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Beckage, Brian; Bucini, Gabriela] Univ Vermont, Dept Plant Biol, Burlington, VT USA. [Horton, Radley M.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. [Clemins, Patrick J.] Univ Vermont, Dept Comp Sci, Burlington, VT USA. RP Winter, JM (reprint author), Dartmouth Coll, Dept Earth Sci, Dept Geog, 6017 Fairchild Hall, Hanover, NH 03755 USA. EM jwinter@dartmouth.edu FU Vermont Experimental Program for Stimulating Competitive Research (NSF) [EPS-1101317]; National Science Foundation FX This work was supported by the Vermont Experimental Program for Stimulating Competitive Research (NSF Award EPS-1101317). Many thanks to Levi Brekke, Ed Maurer, and Tom Pruitt for their assistance with BCCA data, as well as Alan Betts for his valuable ideas and insights. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Further, we acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. NR 40 TC 1 Z9 1 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAR PY 2016 VL 17 IS 3 BP 881 EP 896 DI 10.1175/JHM-D-15-0052.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6NY UT WOS:000371473700001 ER PT J AU Lee, AG Tarver, WJ Mader, TH Gibson, CR Hart, SF Otto, CA AF Lee, Andrew G. Tarver, William J. Mader, Thomas H. Gibson, Charles Robert Hart, Stephen F. Otto, Christian A. TI Neuro-Ophthalmology of Space Flight SO JOURNAL OF NEURO-OPHTHALMOLOGY LA English DT Review ID HEAD-DOWN TILT; IDIOPATHIC INTRACRANIAL HYPERTENSION; CEREBROSPINAL-FLUID OUTFLOW; COTTON-WOOL SPOTS; OPTIC DISC EDEMA; CHOROIDAL FOLDS; ACQUIRED HYPEROPIA; INTRAOCULAR-PRESSURE; REFRACTIVE CHANGES; RADIAL KERATOTOMY AB Background:To describe the history, clinical findings, and possible pathogenic etiologies of the constellation of neuro-ophthalmic findings discovered in astronauts after long-duration space flight and to discuss the terrestrial implications of such findings.Evidence Acquisition:Retrospective review of published observational, longitudinal examination of neuro-ophthalmic findings in astronauts after long-duration space flight; analysis of postflight questionnaires regarding in-flight vision changes in approximately 300 additional astronauts; and hypothesis generating for developing possible future countermeasures and potential implications for neuro-ophthalmic disorders on Earth. Astronauts with neuro-ophthalmic findings, which were not present at the start of a space flight mission and only seen on return from long-duration space missions to the International Space Station, will be discussed.Results:After 6 months of space flight, 7 astronauts had ophthalmic findings consisting of optic disc edema in 5, globe flattening in 5, choroidal folds in 5, cotton-wool spots in 3, nerve fiber layer thickening detected by optical coherence tomography in 6, and decreased near vision in 6. Five of 7 astronauts with near vision complaints had a hyperopic shift +0.50 diopters (D) between pre-/post-mission spherical equivalent refraction in 1 or both eyes (range, +0.50 to +1.75 D). These 5 astronauts showed globe flattening on magnetic resonance imaging. A total of 6 lumbar punctures have been performed to date (4 in the originally described cohort) and documented opening pressures of 18, 22, 21, 21.5, 28, and 28.5 cm H2O. These were performed at 8, 66, 19, 7, 12, and 57 days after mission, respectively. The 300 postflight questionnaires documented that approximately 29% and 60% of astronauts on short-duration and long-duration missions, respectively, experienced a degradation in distant and near visual acuity. Some of these vision changes remain unresolved for years after flight. Several possible pathogenic mechanisms, as well as potential countermeasures and discussion of possible terrestrial implications, are described.Conclusions:We previously hypothesized that the optic nerve and ocular changes that we described in astronauts may be the result of orbital and cranial cephalad fluid shifts brought about by prolonged microgravity exposure. The findings we reported previously and continue to see in astronauts may represent parts of a spectrum of ocular and cerebral responses to extended microgravity exposure. Future investigations hopefully will lead to countermeasures that can be used to eliminate or lessen the magnitude of these potentially harmful findings before long-duration space flight including the possibility of a manned mission to Mars. C1 [Lee, Andrew G.; Gibson, Charles Robert] Houston Methodist Hosp, Dept Ophthalmol, Houston, TX 77030 USA. [Lee, Andrew G.] Baylor Coll Med, Dept Ophthalmol, Houston, TX 77030 USA. [Lee, Andrew G.] Weill Cornell Med Coll, Dept Ophthalmol, New York, NY USA. [Lee, Andrew G.] Weill Cornell Med Coll, Dept Neurol, New York, NY USA. [Lee, Andrew G.] Weill Cornell Med Coll, Dept Neurosurg, New York, NY USA. [Lee, Andrew G.] Univ Texas Med Branch, Dept Ophthalmol, Galveston, TX 77555 USA. [Lee, Andrew G.] Univ Iowa Hosp & Clin, Dept Ophthalmol, Iowa City, IA 52242 USA. [Lee, Andrew G.] Univ Texas MD Anderson Canc Ctr, Sect Ophthalmol, Houston, TX 77030 USA. [Tarver, William J.; Hart, Stephen F.] NASA, Space Med Div, Washington, DC 20546 USA. [Mader, Thomas H.] US Army, Cooper Landing, AK USA. [Gibson, Charles Robert] Coastal Eye Associates, Webster, TX USA. [Otto, Christian A.] Univ Space Res Assoc, NASA, Washington, DC USA. RP Lee, AG (reprint author), Houston Methodist Hosp, Blanton Eye Inst, Dept Ophthalmol, 6560 Fannin St,Scurlock 450, Houston, TX 77030 USA. EM aglee@houstonmethodist.org NR 60 TC 2 Z9 2 U1 2 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1070-8022 EI 1536-5166 J9 J NEURO-OPHTHALMOL JI J. Neuro-Ophthal. PD MAR PY 2016 VL 36 IS 1 BP 85 EP 91 DI 10.1097/WNO.0000000000000334 PG 7 WC Clinical Neurology; Ophthalmology SC Neurosciences & Neurology; Ophthalmology GA DF7JM UT WOS:000371534000020 PM 26828842 ER PT J AU Mader, TH Gibson, CR Hart, SF Lee, AG AF Mader, Thomas H. Gibson, C. Robert Hart, Stephen F. Lee, Andrew G. TI Asymmetric Papilledema in Idiopathic Intracranial Hypertension: Comment SO JOURNAL OF NEURO-OPHTHALMOLOGY LA English DT Letter ID DURATION SPACE-FLIGHT; OPTIC DISC EDEMA; ASTRONAUT C1 [Mader, Thomas H.] US Army, Moab, UT USA. [Gibson, C. Robert] Coastal Eye Associates, Webster, TX USA. [Hart, Stephen F.] NASA, Div Life Sci, Houston, TX USA. [Lee, Andrew G.] Methodist Hosp, Dept Ophthalmol, 6535 Fannin, Houston, TX 77030 USA. RP Mader, TH (reprint author), US Army, Moab, UT USA. NR 5 TC 0 Z9 0 U1 2 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1070-8022 EI 1536-5166 J9 J NEURO-OPHTHALMOL JI J. Neuro-Ophthal. PD MAR PY 2016 VL 36 IS 1 BP 111 EP 112 PG 2 WC Clinical Neurology; Ophthalmology SC Neurosciences & Neurology; Ophthalmology GA DF7JM UT WOS:000371534000024 PM 26885711 ER PT J AU Qiu, B Chen, SM Klein, P Ubelmann, C Fu, LL Sasaki, H AF Qiu, B. Chen, Shuiming Klein, Patrice Ubelmann, Clement Fu, Lee-Lueng Sasaki, Hideharu TI Reconstructability of Three-Dimensional Upper-Ocean Circulation from SWOT Sea Surface Height Measurements SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article DE Variability; Models and modeling; General circulation models; Vertical motion; Circulation/ Dynamics; Quasigeostrophic models; Mesoscale processes; Observational techniques and algorithms; Oceanic variability; Altimetry ID SATELLITE ALTIMETRY; MESOSCALE EDDIES; DYNAMICS; VARIABILITY; TURBULENCE; IMPACT; FLOW; TEMPERATURE; TRANSITION; SYSTEM AB Utilizing the framework of effective surface quasigeostrophic (eSQG) theory, this study explores the potential of reconstructing the 3D upper-ocean circulation structures, including the balanced vertical velocity w field, from high-resolution sea surface height (SSH) data of the planned Surface Water and Ocean Topography (SWOT) satellite mission. Specifically, the authors utilize the 1/30 degrees, submesoscale-resolving, OFES model output and subject it to the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, this study finds that the eSQG dynamics constitute an effective framework for reconstructing the 3D upper-ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity zeta and w fields are found to reach a correlation of 0.7-0.9 and 0.6-0.7, respectively, in the 1000-m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the zeta and w reconstructions is found to be moderate, 5%-25% for the 3D zeta field and 15%-35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases. C1 [Qiu, B.; Chen, Shuiming] Univ Hawaii Manoa, Dept Oceanog, 1000 Pope Rd, Honolulu, HI 96822 USA. [Klein, Patrice] Ifremer CNRS UBO IRD, Lab Phys Oceans, Plouzane, France. [Ubelmann, Clement; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Sasaki, Hideharu] JAMSTEC, Applicat Lab, Yokohama, Kanagawa, Japan. RP Qiu, B (reprint author), Univ Hawaii Manoa, Dept Oceanog, 1000 Pope Rd, Honolulu, HI 96822 USA. EM bo@soest.hawaii.edu RI 英治, 佐々木/G-2247-2016; Qiu, Bo/D-9569-2017; OI Sasaki, Hideharu/0000-0003-0657-7532 FU NASA SWOT mission; CNRS (France); Agence Nationale pour la Recherche [ANR-09-BLAN-0365-02, ANR-10-LABX-19-01]; SWOT projects; MEXT/JST KAKENHI [25400473]; NASA OSTST mission [NNX13AD91G, NNX13AE51E]; JAMSTEC; Canon Foundation FX We thank Rosemary Morrow and Dudley Chelton for fruitful discussions. Constructive comments made by two anonymous reviewers helped improve an early version of the manuscript. B. Q. and S. C. acknowledge support from NASA SWOT and OSTST missions (NNX13AD91G and NNX13AE51E). P. K. acknowledges the support of CNRS (France) and Agence Nationale pour la Recherche [ANR-09-BLAN-0365-02 (REDHOT) and ANR-10-LABX-19-01 (LabexMER)]. C. U. and L. F.'s research presented in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration. They acknowledge support from the SWOT projects. H. S. is supported by MEXT/JST KAKENHI 25400473. The OFES simulation was conducted by using the Earth Simulator under support of JAMSTEC and the Canon Foundation. NR 44 TC 1 Z9 1 U1 3 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD MAR PY 2016 VL 46 IS 3 BP 947 EP 963 DI 10.1175/JPO-D-15-0188.1 PG 17 WC Oceanography SC Oceanography GA DF6PF UT WOS:000371477000002 ER PT J AU Zheng, Y Alapaty, K Herwehe, JA Del Genio, AD Niyogi, D AF Zheng, Yue Alapaty, Kiran Herwehe, Jerold A. Del Genio, Anthony D. Niyogi, Dev TI Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain-Fritsch Scheme SO MONTHLY WEATHER REVIEW LA English DT Article DE Forecasting; Numerical weather prediction/forecasting; Hindcasts; Forecasting; Operational forecasting ID NONHYDROSTATIC ATMOSPHERIC MODEL; CONVECTIVE PARAMETERIZATION; PART I; CUMULUS PARAMETERIZATION; HORIZONTAL RESOLUTION; CLIMATE SIMULATIONS; MESOSCALE MODEL; TIME-SCALE; PRECIPITATION; SENSITIVITY AB Efforts to improve the prediction accuracy of high-resolution (1-10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at these spatial scales due to uncertainties in initial meteorological conditions and/or grid-scale cloud microphysics schemes. In particular, it is still unclear to what extent a subgrid-scale convection scheme could be modified to bring in scale awareness for improving high-resolution short-term precipitation forecasts in the WRF Model. To address these issues, the authors introduced scale-aware parameterized cloud dynamics for high-resolution forecasts by making several changes to the Kain-Fritsch (KF) convective parameterization scheme in the WRF Model. These changes include subgrid-scale cloud-radiation interactions, a dynamic adjustment time scale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting condensation level-based entrainment methodology that includes scale dependency. A series of 48-h retrospective forecasts using a combination of three treatments of convection (KF, updated KF, and the use of no cumulus parameterization), two cloud microphysics schemes, and two types of initial condition datasets were performed over the U.S. southern Great Plains on 9- and 3-km grid spacings during the summers of 2002 and 2010. Results indicate that 1) the source of initial conditions plays a key role in high-resolution precipitation forecasting, and 2) the authors' updated KF scheme greatly alleviates the excessive precipitation at 9-km grid spacing and improves results at 3-km grid spacing as well. Overall, the study found that the updated KF scheme incorporated into a high-resolution model does provide better forecasts for precipitation location and intensity. C1 [Zheng, Yue; Niyogi, Dev] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Alapaty, Kiran; Herwehe, Jerold A.] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Niyogi, Dev] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. RP Alapaty, K (reprint author), US EPA, Mail Code E243-01, Res Triangle Pk, NC 27711 USA. EM alapaty.kiran@epa.gov FU U.S. EPA's Air, Climate, and Energy (ACE) Program; USDA/NIFA Drought Triggers through Texas AM University [2011-67019-20042]; NSF [AGS-1522494, CDSE-1250232]; USDA NIFA Hatch Project at Purdue University [1007699]; U.S. Department of Energy Atmospheric System Research Program FX Parts of the research were funded by the U.S. EPA's Air, Climate, and Energy (ACE) Program, and USDA/NIFA Drought Triggers Grant 2011-67019-20042 through Texas A&M University, NSF Grants AGS-1522494 and CDS&E-1250232, and USDA NIFA Hatch Project 1007699 at Purdue University. Anthony Del Genio acknowledges support from the U.S. Department of Energy Atmospheric System Research Program. Our appreciation goes to Dr. John Kain of NOAA and Dr. Megan Mallard, Mr. Russell Bullock, Dr. Christopher Nolte, and Ms. Tanya Spero of the U.S. EPA for their help in many ways facilitating the research. This research has been subjected to the U.S. EPA's administrative review and approved for publication. The views expressed herein and the contents are solely the responsibility of the authors, and do not necessarily represent the official views of the U.S. EPA. NR 81 TC 8 Z9 8 U1 3 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD MAR PY 2016 VL 144 IS 3 BP 833 EP 860 DI 10.1175/MWR-D-15-0005.1 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6PL UT WOS:000371477600001 ER PT J AU Durack, PJ Lee, T Vinogradova, NT Stammer, D AF Durack, Paul J. Lee, Tong Vinogradova, Nadya T. Stammer, Detlef TI Keeping the lights on for global ocean salinity observation SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID SEA-SURFACE SALINITY; WATER CYCLE; SMOS SATELLITE; AMAZON PLUME C1 [Durack, Paul J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA. [Lee, Tong] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Vinogradova, Nadya T.] Atmospher & Environm Res, 131 Hartwell Ave, Lexington, MA 02421 USA. [Stammer, Detlef] Univ Hamburg, Mittelweg 177, D-20148 Hamburg, Germany. RP Durack, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA. EM me@pauldurack.com RI Durack, Paul/A-8758-2010 OI Durack, Paul/0000-0003-2835-1438 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA's Physical Oceanography Program FX The authors would like to thank Dean Roemmich, Susan E. Wijffels, Lynne D. Talley, Gregory C. Johnson and Bernadette M. Sloyan for providing information for the international Argo and GO-SHIP programs respectively. We also thank Mathieu Belbeoch, Argo Coordinator at JCOMMOPS, for providing Argo deployment and active float activity data. The work of P.J.D. from Lawrence Livermore National Laboratory, is a contribution to the US Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under contract DE-AC52-07NA27344. The work by T.L. was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautic and Space Administration (NASA). The work by N.T.V. was supported by NASA's Physical Oceanography Program. NR 35 TC 1 Z9 1 U1 5 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD MAR PY 2016 VL 6 IS 3 BP 228 EP 231 PG 5 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE9NG UT WOS:000370964000007 ER PT J AU Nayak, M Mauro, D Stupl, J Aziz, J Colaprete, A Dono-Perez, A Frost, C Jonsson, J McKay, C Sears, D Soulage, M Swenson, J Yang, FY AF Nayak, Michael Mauro, David Stupl, Jan Aziz, Jonathan Colaprete, Anthony Dono-Perez, Andres Frost, Chad Jonsson, Jonas McKay, Chris Sears, Derek Soulage, Michael Swenson, Jason Yang, Fan Yang TI The Plume Chaser mission: Two-spacecraft search for organics on the dwarf planet Ceres SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Satellite; Ceres; Plumes; NASA Ames; Solar propulsion; Organic compounds ID VESTA; EVOLUTION; DAWN AB We present a mission concept designed at NASA Ames Research Center for a two-probe mission to the dwarf planet Ceres, utilizing a set of small low-cost spacecraft. The primary spacecraft will carry both a mass and an infrared spectrometer to characterize water vapor detected to be emanating from Ceres. Shortly after its arrival a second identical spacecraft will impact Ceres to create an ejecta "plume" timed to enable a rendezvous and sampling by the primary spacecraft. This enables additional subsurface chemistry, volatile content and material characterization, and new science complementary to the Dawn spacecraft, the first to arrive at Ceres. Science requirements, candidate instruments, rendezvous trajectories, spacecraft design and comparison with Dawn science are detailed. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Nayak, Michael; Mauro, David; Stupl, Jan; Aziz, Jonathan; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Jonsson, Jonas; McKay, Chris; Sears, Derek; Soulage, Michael; Swenson, Jason; Yang, Fan Yang] NASA Ames Res Ctr, Mountain View, CA USA. [Sears, Derek] Bay Area Environm Res Inst, Petaluma, CA USA. [Nayak, Michael] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. [Mauro, David; Stupl, Jan; Jonsson, Jonas; Soulage, Michael] Stinger Ghaffarian Technol Inc, Greenbelt, MD USA. [Aziz, Jonathan] Univ Colorado, Boulder, CO 80309 USA. [Dono-Perez, Andres; Swenson, Jason] Univ Space Res Assoc, Houston, TX USA. [Nayak, Michael] Red Sky Res LLC, New York, NY USA. [Yang, Fan Yang] Sci & Technol Corp, New York, NY USA. RP Nayak, M (reprint author), Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. EM mnayak@ucsc.edu OI Frost, Chad/0000-0002-0219-5097; Mauro, David/0000-0002-6192-3592 FU NASA Ames Mission Design Center, Mountain View, California; National Defense Science and Engineering Graduate (NDSEG) Fellowship [32CFR 168a]; Red Sky Research, LLC FX This work was performed at the NASA Ames Mission Design Center, Mountain View, California. The authors acknowledge contributions by Tori Hoehler, Alfonso Davila, Eldar Noe, John Karcz, Andrew Gonzales, Sasha Weston, Benjamin Klamm, Eddie Uribe, Aaron Cohen, Larry Lemke, Hugo Sanchez, Anthony Genova, Brian Lewis and James Bell (Ames Research Center) and Benjamin Longmier and David Hash (University of Michigan). Financial support for Michael Nayak was provided by the National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32CFR 168a, and Red Sky Research, LLC. NR 65 TC 0 Z9 0 U1 4 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 1 PY 2016 VL 57 IS 5 BP 1133 EP 1146 DI 10.1016/j.asr.2015.12.028 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DF1LE UT WOS:000371100400001 ER PT J AU Schreiner, SS Dominguez, JA Sibille, L Hoffman, JA AF Schreiner, Samuel S. Dominguez, Jesus A. Sibille, Laurent Hoffman, Jeffrey A. TI Thermophysical property models for lunar regolith SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Lunar regolith; Material property models; Electrical conductivity; Specific heat; Thermal conductivity; In Situ Resource Utilization ID ELECTRICAL-CONDUCTIVITY; THERMAL-CONDUCTIVITY; TEMPERATURE-DEPENDENCE; HEAT; GLASSES; LIQUIDS; VISCOSITY; SYSTEM; MOON AB We present a set of thermophysical property models for lunar regolith. Data from over 25 sources in the literature are integrated and fit with regression models for the following properties: composition, density, specific heat, latent heat of melting/fusion, thermal conductivity, electrical conductivity, optical absorption length, Gibbs Free Energy and Enthalpy of Formation. The models are based on data from Apollo samples and high-temperature molten regolith simulants, extending significantly beyond existing models in the literature. Furthermore, separate regression models are presented for Mare and Highlands regolith to demonstrate the effect of composition and to allow the models to be tailored to a wide range of applications. These models can enable more consistent, informed analysis and design of lunar regolith processing hardware and can also support lunar geological simulations. In addition to regression models for each material property, the raw data are presented to allow for further interpretation and fitting as necessary. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Schreiner, Samuel S.] MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Hoffman, Jeffrey A.] MIT, Dept Aeronaut & Astronaut, Practice, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Dominguez, Jesus A.] NASA Kennedy Space Ctr, VENCORE ESC, Kennedy Space Ctr, FL 32899 USA. [Sibille, Laurent] NASA Kennedy Space Ctr, ESC 5, Surface Syst Grp, Kennedy Space Ctr, FL 32899 USA. RP Schreiner, SS (reprint author), MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM schr0910@umn.edu FU NASA Space Technology Research Fellowship [NNX13AL76H] FX This work was supported by a NASA Space Technology Research Fellowship (Grant #NNX13AL76H). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA. NR 49 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 1 PY 2016 VL 57 IS 5 BP 1209 EP 1222 DI 10.1016/j.asr.2015.12.035 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DF1LE UT WOS:000371100400007 ER PT J AU Kloos, JL Moores, JE Lemmon, M Kass, D Francis, R Juarez, MD Zorzano, MP Martin-Torres, FJ AF Kloos, Jacob L. Moores, John E. Lemmon, Mark Kass, David Francis, Raymond Juarez, Manuel de la Torre Zorzano, Maria-Paz Martin-Torres, F. Javier TI The first Martian year of cloud activity from Mars Science Laboratory (sol 0-800) SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Mars; Clouds; Aphelion cloud belt ID APHELION AB Using images from the Navigation Cameras onboard the Mars Science Laboratory rover Curiosity, atmospheric movies were created to monitor the cloud activity over Gale Crater. Over the course of the first 800 sols of the mission, 133 Zenith Movies and 152 Supra Horizon Movies were acquired which use a mean frame subtraction technique to observe tenuous cloud movement. Moores et al. (2015a) reported on the first 360 sols of observations, representing Ls=150 degrees-5 degrees, and found that movies up to Ls=184 degrees showed visible cloud features with good contrast while subsequent movies were relatively featureless. With the extension of the observations to a full Martian year, more pronounced seasonal changes were observed. Within the Zenith Movie data set, clouds are observed primarily during Ls=3 degrees-170 degrees, when the solar flux is diminished and the aphelion cloud belt is present at equatorial latitudes. Clouds observed in the Supra-Horizon Movie data set also exhibit seasonality, with clouds predominantly observed during Ls=72 degrees-108 degrees. The seasonal occurrence of clouds detected in the atmospheric movies is well correlated with orbital observations of water ice clouds at similar times from the MCS and MARCI instruments on the MRO spacecraft. The observed clouds are tenuous and on average only make up a few hundredths of an optical depth, although more opaque clouds are observed in some of the movies. Additionally, estimates of the phase function calculated using water ice opacity retrievals from MCS are provided to show how Martian clouds scatter sunlight, and thus provide insight into the types of ice crystals that comprise the clouds. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Kloos, Jacob L.] York Univ, Ctr Res Earth & Space Sci, 4700 Keele St, N York, ON M3J 1P3, Canada. [Moores, John E.] York Univ, N York, ON M3J 1P3, Canada. [Lemmon, Mark] Texas A&M, Houston, TX USA. [Kass, David] Jet Prop Lab, Pasadena, CA USA. [Francis, Raymond; Juarez, Manuel de la Torre] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Zorzano, Maria-Paz] Ctr Astrobiol, Madrid, Spain. [Martin-Torres, F. Javier] CSIC UGR, Inst Andaluz Ciencias Tierra, Madrid, Spain. [Zorzano, Maria-Paz; Martin-Torres, F. Javier] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, Kiruna, Sweden. RP Kloos, JL (reprint author), York Univ, Ctr Res Earth & Space Sci, 4700 Keele St, N York, ON M3J 1P3, Canada. EM jlkloos@yorku.ca; jmoores@yorku.ca; lemmon@tamu.edu; david.kass@jpl.nasa.gov; Raymond.Francis@jpl.nasa.gov; mtj@jpl.nasa.gov; zorzanomm@cab.inta-csic.es; javiermt@iactugr-csic.es RI Lemmon, Mark/E-9983-2010; Zorzano, Maria-Paz/F-2184-2015 OI Lemmon, Mark/0000-0002-4504-5136; Zorzano, Maria-Paz/0000-0002-4492-9650 FU MSL Participating Scientist Program - Canadian Space Agency (CSA) FX JLK acknowledges funding through the MSL Participating Scientist Program funded by the Canadian Space Agency (CSA) as well as contributions from the Natural Sciences and Engineering Research Council (NSERC) of Canada. This text was substantially improved by the anonymous reviewer. NR 23 TC 3 Z9 3 U1 3 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 1 PY 2016 VL 57 IS 5 BP 1223 EP 1240 DI 10.1016/j.asr.2015.12.040 PG 18 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DF1LE UT WOS:000371100400008 ER PT J AU Schubert, M Moore, AJ AF Schubert, Matthew Moore, Andrew J. TI Morphological processing of ultraviolet emissions of electrical corona discharge for analysis and diagnostic use SO APPLIED OPTICS LA English DT Article AB Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore have diagnostic utility. (C) 2016 Optical Society of America C1 [Schubert, Matthew] Analyt Mech Associates Inc, 21 Enterprise Pkwy Suite 300, Hampton, VA 23666 USA. [Moore, Andrew J.] NASA Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden St, Hampton, VA 23681 USA. RP Moore, AJ (reprint author), NASA Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden St, Hampton, VA 23681 USA. EM andrew.j.moore@nasa.gov FU NASA Safe Autonomous Systems Operations Program FX NASA Safe Autonomous Systems Operations Program. NR 6 TC 0 Z9 0 U1 4 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 1 PY 2016 VL 55 IS 7 BP 1571 EP 1572 DI 10.1364/AO.55.001571 PG 2 WC Optics SC Optics GA DF4DH UT WOS:000371297000011 PM 26974615 ER PT J AU Arendt, RG Dwek, E Bouchet, P Danziger, IJ Frank, KA Gehrz, RD Park, S Woodward, CE AF Arendt, Richard G. Dwek, Eli Bouchet, Patrice Danziger, I. John Frank, Kari A. Gehrz, Robert D. Park, Sangwook Woodward, Charles E. TI INFRARED CONTINUUM AND LINE EVOLUTION OF THE EQUATORIAL RING AROUND SN 1987A SO ASTRONOMICAL JOURNAL LA English DT Article DE dust, extinction; infrared: general; supernovae: individual (SN 1987A) ID SPITZER-SPACE-TELESCOPE; INNER CIRCUMSTELLAR RING; SUPERNOVA 1987A; ETA-CARINAE; OPTICAL-PROPERTIES; LIGHT-CURVE; BLAST WAVE; HOT-SPOTS; SHER 25; DUST AB Spitzer observations of SN 1987A have now spanned more than a decade. Since day similar to 4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6-24 mu m, and low and moderate resolution spectroscopy at 5-35 mu m. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 mu m. These data show that the 3.6 and 4.5 mu m brightness has clearly begun to fade after day similar to 8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe II] and [Si II] lines show different, peculiar velocity structures. C1 [Arendt, Richard G.] CRESST UMBC, Baltimore, MD 21250 USA. [Arendt, Richard G.; Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Bouchet, Patrice] Univ Paris Diderot, CNRS, CEA IRFU SAp, Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France. [Danziger, I. John] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-34143 Trieste, Italy. [Frank, Kari A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Gehrz, Robert D.; Woodward, Charles E.] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. [Park, Sangwook] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. RP Arendt, RG (reprint author), CRESST UMBC, Baltimore, MD 21250 USA.; Arendt, RG (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM richard.g.arendt@nasa.gov FU NASA [12-ADAP12-0145, 13-ADAP13-0094] FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA. This research has made use of NASA's Astrophysics Data System Bibliographic Services. ED was supported by NASA grants 12-ADAP12-0145 and 13-ADAP13-0094. We thank the referee, A. Jones, for useful comments which improved this manuscript. NR 71 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 62 DI 10.3847/0004-6256/151/3/62 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100014 ER PT J AU Kirk, B Conroy, K Prsa, A Abdul-Masih, M Kochoska, A Matijevic, G Hambleton, K Barclay, T Bloemen, S Boyajian, T Doyle, LR Fulton, BJ Hoekstra, AJ Jek, K Kane, SR Kostov, V Latham, D Mazeh, T Orosz, JA Pepper, J Quarles, B Ragozzine, D Shporer, A Southworth, J Stassun, K Thompson, SE Welsh, WF Agol, E Derekas, A Devor, J Fischer, D Green, G Gropp, J Jacobs, T Johnston, C LaCourse, DM Saetre, K Schwengeler, H Toczyski, J Werner, G Garrett, M Gore, J Martinez, AO Spitzer, I Stevick, J Thomadis, PC Vrijmoet, EH Yenawine, M Batalha, N Borucki, W AF Kirk, Brian Conroy, Kyle Prsa, Andrej Abdul-Masih, Michael Kochoska, Angela Matijevic, Gal Hambleton, Kelly Barclay, Thomas Bloemen, Steven Boyajian, Tabetha Doyle, Laurance R. Fulton, B. J. Hoekstra, Abe Johannes Jek, Kian Kane, Stephen R. Kostov, Veselin Latham, David Mazeh, Tsevi Orosz, Jerome A. Pepper, Joshua Quarles, Billy Ragozzine, Darin Shporer, Avi Southworth, John Stassun, Keivan Thompson, Susan E. Welsh, William F. Agol, Eric Derekas, Aliz Devor, Jonathan Fischer, Debra Green, Gregory Gropp, Jeff Jacobs, Tom Johnston, Cole LaCourse, Daryll Matthew Saetre, Kristian Schwengeler, Hans Toczyski, Jacek Werner, Griffin Garrett, Matthew Gore, Joanna Martinez, Arturo O. Spitzer, Isaac Stevick, Justin Thomadis, Pantelis C. Vrijmoet, Eliot Halley Yenawine, Mitchell Batalha, Natalie Borucki, William TI KEPLER ECLIPSING BINARY STARS. VII. THE CATALOG OF ECLIPSING BINARIES FOUND IN THE ENTIRE KEPLER DATA SET SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; catalogs; methods: data analysis; methods: numerical; stars: fundamental parameters; stars: statistics ID SMALL-MAGELLANIC-CLOUD; TRANSITING CIRCUMBINARY PLANET; APSIDAL-MOTION TEST; STELLAR EVOLUTION; CLOSE BINARIES; PHOTOMETRIC SOLUTIONS; DISTANCE INDICATORS; DATA RELEASE; CM DRACONIS; SPACED DATA AB The primary Kepler Mission provided nearly continuous monitoring of similar to 200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg(2) Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu. C1 [Kirk, Brian] North Amer ALMA Sci Ctr, Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Kirk, Brian; Conroy, Kyle; Gropp, Jeff; Johnston, Cole; Werner, Griffin] Villanova Univ, Dept Astrophys & Planetary Sci, 800 E Lancaster Ave, Villanova, PA 19085 USA. [Conroy, Kyle; Prsa, Andrej; Abdul-Masih, Michael; Matijevic, Gal] Vanderbilt Univ, Dept Phys & Astron, VU Stn B 1807, Nashville, TN 37235 USA. [Abdul-Masih, Michael] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. [Kochoska, Angela] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia. [Hambleton, Kelly] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Barclay, Thomas] NASA, Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA. [Bloemen, Steven] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Boyajian, Tabetha] Yale Univ, JW Gibbs Lab, 260 Whitney Ave, New Haven, CT 06511 USA. [Doyle, Laurance R.] Principia Coll, IMoP, Elsah, IL 62028 USA. [Doyle, Laurance R.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Fulton, B. J.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Kane, Stephen R.] San Francisco State Univ, 1600 Holloway Ave, San Francisco, CA 94132 USA. [Kostov, Veselin] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Latham, David] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Mazeh, Tsevi] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Orosz, Jerome A.; Welsh, William F.; Garrett, Matthew; Gore, Joanna; Martinez, Arturo O.; Spitzer, Isaac; Stevick, Justin; Thomadis, Pantelis C.; Vrijmoet, Eliot Halley; Yenawine, Mitchell] San Diego State Univ, 5500 Campanile Dr, San Diego, CA 92182 USA. [Pepper, Joshua] Lehigh Univ, Dept Phys, 16 Mem Dr East, Bethlehem, PA 18015 USA. [Quarles, Billy] NASA, Ames Res Ctr, Astrobiol & Space Sci Div MS 245 3, Moffett Field, CA 94035 USA. [Ragozzine, Darin] Florida Inst Technol, Phys & Space Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA. [Shporer, Avi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Southworth, John] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Stassun, Keivan] Vanderbilt Univ, Nashville, TN 37240 USA. [Thompson, Susan E.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Derekas, Aliz] ELTE Gothard Astrophys Observ, Szent Imre Herceg U 112, H-9704 Szombathely, Hungary. [Derekas, Aliz] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, H-1121 Debrecen, Hungary. [Devor, Jonathan] Tel Aviv Univ, Dept Astrophys, IL-69978 Tel Aviv, Israel. [Fischer, Debra] Yale Univ, New Haven, CT 06520 USA. [Green, Gregory] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 10, Cambridge, MA 02138 USA. [Schwengeler, Hans] Univ Basel, Astron Inst, Venusstr 7, CH-4102 Binningen, Switzerland. [Toczyski, Jacek] Univ Virginia, 4040 Lewis & Clark Dr, Charlottesville, VA 22911 USA. [Batalha, Natalie] San Jose State Univ, One Washington Sq, San Jose, CA 95192 USA. [Borucki, William] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kirk, B (reprint author), North Amer ALMA Sci Ctr, Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.; Kirk, B (reprint author), Villanova Univ, Dept Astrophys & Planetary Sci, 800 E Lancaster Ave, Villanova, PA 19085 USA. EM bkirk@nrao.edu; kyle.conroy@vanderbilt.edu; aprsa@villanova.edu RI Derekas, Aliz/G-2091-2016; OI Derekas, Aliz/0000-0002-6526-9444; /0000-0002-0802-9145; Pepper, Joshua/0000-0002-3827-8417 FU NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; NASAs Science Mission Directorate; NOAO survey program [11A-0022]; NASA/SETI [08-SC-1041]; NSF RUI [AST-05-07542]; Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; Lendulet Young Researchers Programme of the Hungarian Academy of Sciences; European Communitys Seventh Framework Programme (FP7) [269194 (IRSES/ASK), 312844]; Hungarian National Research, Development and Innovation Office-NKFIH [K-1157709]; [ADAP14-0245]; [ADAP12-0172] FX All of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-Hubble Space Telescope data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Funding for this Discovery Mission is provided by NASAs Science Mission Directorate. Spectroscopic follow-up data are made available through NOAO survey program 11A-0022. This work is funded in part by the NASA/SETI subcontract 08-SC-1041 and NSF RUI AST-05-07542. B.Q. was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. T.S.B. acknowledges support from ADAP14-0245 and ADAP12-0172. A.D. has been supported by the Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences, the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, Lendulet-2009 Young Researchers Programme of the Hungarian Academy of Sciences, the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 269194 (IRSES/ASK) and no. 312844 (SPACEINN). A. D. has also been supported by the Hungarian National Research, Development and Innovation Office-NKFIH K-1157709. NR 81 TC 17 Z9 17 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 68 DI 10.3847/0004-6256/151/3/68 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100020 ER PT J AU Shenoy, D Humphreys, RM Jones, TJ Marengo, M Gehrz, RD Helton, LA Hoffmann, WF Skemer, AJ Hinz, PM AF Shenoy, Dinesh Humphreys, Roberta M. Jones, Terry J. Marengo, Massimo Gehrz, Robert D. Helton, L. Andrew Hoffmann, William F. Skemer, Andrew J. Hinz, Philip M. TI SEARCHING FOR COOL DUST IN THE MID-TO-FAR INFRARED: THE MASS-LOSS HISTORIES OF THE HYPERGIANTS mu Cep, VY CMa, IRC+10420, AND rho Cas SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; instrumentation: adaptive optics; stars: individual (mu Cep, VY Canis Majoris, IRC+10420, rho Cas); stars: winds, outflows; supergiants ID SHORT-WAVELENGTH SPECTROMETER; RED SUPERGIANT STARS; CANIS-MAJORIS; ADAPTIVE OPTICS; HIGH-RESOLUTION; EVOLVED STARS; CIRCUMSTELLAR ENVIRONMENT; 3-DIMENSIONAL MORPHOLOGY; MIDINFRARED CAMERA; ARRAY CAMERA AB We present mid- and far-IR imaging of four famous hypergiant stars: the red supergiants mu Cep and VY CMa, and the warm hypergiants IRC + 10420 and rho Cas. Our 11-37 mu m SOFIA/FORCAST imaging probes cool dust not detected in visual and near-IR imaging studies. Adaptive optics 8-12 mu m imaging of mu Cep and IRC + 10420 with MMT/MIRAC reveals extended envelopes that are the likely sources of these stars' strong silicate emission features. We find mu Cep's mass-loss rate to have declined by about a factor of five over a 13,000 year history, ranging from 5 x 10(-6) down to similar to 1x 10(-6) M-circle dot yr(-1). The morphology of VY CMa indicates a cooler dust component coincident with the highly asymmetric reflection nebulae seen in the visual and near-IR. The lack of cold dust at greater distances around VY CMa indicates that its mass-loss history is limited to the last similar to 1200 years, with an average rate of 6 x 10(-4) M-circle dot yr(-1). We find two distinct periods in the mass-loss history of IRC + 10420 with a high rate of 2 x 10(-3) M-circle dot yr(-1) until approximately 2000 years ago, followed by an order of magnitude decrease in the recent past. We interpret this change as evidence of its evolution beyond the RSG stage. Our new infrared photometry of rho Cas is consistent with emission from the expanding dust shell ejected in its 1946 eruption, with no evidence of newer dust formation from its more recent events. C1 [Shenoy, Dinesh; Humphreys, Roberta M.; Jones, Terry J.; Gehrz, Robert D.] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. [Marengo, Massimo] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Helton, L. Andrew] NASA, Ames Res Ctr, USRA SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Hoffmann, William F.; Skemer, Andrew J.; Hinz, Philip M.] Univ Arizona, Steward Observ, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. RP Shenoy, D (reprint author), Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM shenoy@astro.umn.edu FU NASA [SOF-0091] FX We thank Dr. Willem-Jan de Wit, Dr. Takuya Fujiyoshi, and the Subaru/COMICS instrument team for consulting on the orientation of mu Cep's nebula as observed at 24.5 mu m. This work has used unpublished data from Michael Schuster's PhD thesis, which is available through the SAO/NASA Astrophysics Data System (ADS) at http://adsabs.harvard.edu/abs/2007PhDT........28S. Financial support for this work was provided by NASA through award # SOF-0091 to R. M. Humphreys issued by USRA. NR 74 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 51 DI 10.3847/0004-6256/151/3/51 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100003 ER PT J AU Stauffer, J Cody, AM Rebull, L Hillenbrand, LA Turner, NJ Carpenter, J Carey, S Terebey, S Morales-Calderon, M Alencar, SHP McGinnis, P Sousa, A Bouvier, J Venuti, L Hartmann, L Calvet, N Micela, G Flaccomio, E Song, I Gutermuth, R Barrado, D Vrba, FJ Covey, K Herbst, W Gillen, E Guimaraes, MM Bouy, H Favata, F AF Stauffer, John Cody, Ann Marie Rebull, Luisa Hillenbrand, Lynne A. Turner, Neal J. Carpenter, John Carey, Sean Terebey, Susan Morales-Calderon, Maria Alencar, Silvia H. P. McGinnis, Pauline Sousa, Alana Bouvier, Jerome Venuti, Laura Hartmann, Lee Calvet, Nuria Micela, Giusi Flaccomio, Ettore Song, Inseok Gutermuth, Rob Barrado, David Vrba, Frederick J. Covey, Kevin Herbst, William Gillen, Edward Guimaraes, Marcelo Medeiros Bouy, Herve Favata, Fabio TI CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; open clusters and associations: individual (NGC 2264); stars: pre-main sequence; stars: protostars; stars: variables: T Tauri, Herbig Ae/Be ID T-TAURI STARS; ORION NEBULA CLUSTER; MAIN-SEQUENCE STARS; LOW-MASS STARS; MAGNETOSPHERIC ACCRETION; STELLAR OBJECTS; POPULATION STARS; DISK ACCRETION; AA TAURI; VARIABILITY AB We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T. Tauri stars in NGC. 2264 whose CoRoT light curves exemplify the "stochastic" light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 angstrom emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Ha profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. C1 [Stauffer, John; Rebull, Luisa; Carey, Sean] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Cody, Ann Marie] NASA, Ames Res Ctr, Kepler Sci Off, Mountain View, CA 94035 USA. [Hillenbrand, Lynne A.; Carpenter, John] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Turner, Neal J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Terebey, Susan] Calif State Univ Los Angeles, Dept Phys & Astron, 5151 State Univ Dr, Los Angeles, CA 90032 USA. [Morales-Calderon, Maria; Barrado, David; Bouy, Herve] INTA CSIC, Dept Astrofis, Ctr Astrobiol, POB 78,ESAC Campus, E-28691 Madrid, Spain. [Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana] Univ Fed Minas Gerais, ICEx, Dept Fis, Ave Antonio Carlos 6627, BR-30270901 Belo Horizonte, MG, Brazil. [Bouvier, Jerome; Venuti, Laura] Univ Grenoble, IPAG, F-38000 Grenoble, France. [Bouvier, Jerome; Venuti, Laura] CNRS, IPAG, F-38000 Grenoble, France. [Hartmann, Lee; Calvet, Nuria] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48105 USA. [Micela, Giusi; Flaccomio, Ettore] Osserv Astron Palermo, INAF, Piazza Parlamento 1, I-90134 Palermo, Italy. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Gutermuth, Rob] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Vrba, Frederick J.] US Naval Observ, Flagstaff Stn, 10391 West Naval Observ Rd, Flagstaff, AZ 86001 USA. [Covey, Kevin] Western Washington Univ, Dept Phys & Astron, MS 9164,516 High St, Bellingham, WA 98225 USA. [Herbst, William] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Gillen, Edward] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. [Guimaraes, Marcelo Medeiros] Univ Fed Sergipe, Dept Fis, Rod Marechal Rondon, BR-49100000 Sao Cristovao, SE, Brazil. [Favata, Fabio] European Space Agcy, 8-10 Rue Mario Nikis, F-75738 Paris 15, France. RP Stauffer, J (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. EM stauffer@ipac.caltech.edu RI Bouy, Herve/H-2913-2012; Guimaraes, Marcelo/H-5897-2012; McGinnis, Pauline/F-6490-2015; Barrado Navascues, David/C-1439-2017; Morales-Calderon, Maria/C-8384-2017; OI Bouy, Herve/0000-0002-7084-487X; Guimaraes, Marcelo/0000-0002-0517-4507; McGinnis, Pauline/0000-0001-7476-7253; Barrado Navascues, David/0000-0002-5971-9242; Morales-Calderon, Maria/0000-0001-9526-9499; Rebull, Luisa/0000-0001-6381-515X; Covey, Kevin/0000-0001-6914-7797 FU NASA; National Aeronautics and Space Administration; NASA Origins of Solar Systems program [11-OSS11-0074]; NASA ADAP grants [NNX11AD14G, NNX13AF08G]; Caltech/JPL in support of Spitzer Space Telescope observing programs [1373081, 1424329, 1440160]; CNPq; CAPES; Fapemig FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and with the support of the NASA Origins of Solar Systems program via grant 11-OSS11-0074. RG gratefully acknowledges funding support from NASA ADAP grants NNX11AD14G and NNX13AF08G and Caltech/JPL awards 1373081, 1424329, and 1440160 in support of Spitzer Space Telescope observing programs. SHPA, AS and PTM acknowledge support from CNPq, CAPES and Fapemig. NR 65 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 60 DI 10.3847/0004-6256/151/3/60 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100012 ER PT J AU Troup, NW Nidever, DL De Lee, N Carlberg, J Majewski, SR Fernandez, M Covey, K Chojnowski, SD Pepper, J Nguyen, DT Stassun, K Nguyen, DC Wisniewski, JP Fleming, SW Bizyaev, D Frinchaboy, PM Garcia-Hernandez, DA Ge, J Hearty, F Meszaros, S Pan, K Prieto, CA Schneider, DP Shetrone, MD Skrutskie, MF Wilson, J Zamora, O AF Troup, Nicholas W. Nidever, David L. De Lee, Nathan Carlberg, Joleen Majewski, Steven R. Fernandez, Martin Covey, Kevin Chojnowski, S. Drew Pepper, Joshua Nguyen, Duy T. Stassun, Keivan Duy Cuong Nguyen Wisniewski, John P. Fleming, Scott W. Bizyaev, Dmitry Frinchaboy, Peter M. Garcia-Hernandez, D. A. Ge, Jian Hearty, Fred Meszaros, Szabolcs Pan, Kaike Prieto, Carlos Allende Schneider, Donald P. Shetrone, Matthew D. Skrutskie, Michael F. Wilson, John Zamora, Olga TI COMPANIONS TO APOGEE STARS. I. A MILKY WAY-SPANNING CATALOG OF STELLAR AND SUBSTELLAR COMPANION CANDIDATES AND THEIR DIVERSE HOSTS SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: close; binaries: spectroscopic; brown dwarfs; Galaxy: stellar content; planetary systems ID LOW-MASS STELLAR; SOLAR-LIKE STARS; PRECISE RADIAL-VELOCITIES; BROWN DWARF DESERT; GALACTIC EVOLUTION EXPERIMENT; SDSS-III/APOGEE SURVEY; DIGITAL SKY SURVEY; GIANT STARS; SHORT-PERIOD; PLANET SEARCH AB In its three years of operation, the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed >14,000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical radial velocity precision of similar to 100-200 m s(-1), APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions only for systems with a < 0.1-0.2 AU, with no indication of a desert at larger orbital separation. We propose a few potential explanations of this result, some which invoke this catalog's many small separation companion candidates found orbiting evolved stars. Furthermore, 16 BD and planet candidates have been identified around metal-poor ([Fe/H] < -0.5) stars in this catalog, which may challenge the core accretion model for companions >10M(Jup). Finally, we find all types of companions are ubiquitous throughout the Galactic disk with candidate planetary-mass and BD companions to distances of similar to 6 and similar to 16 kpc, respectively. C1 [Troup, Nicholas W.; Majewski, Steven R.; Nguyen, Duy T.; Skrutskie, Michael F.; Wilson, John] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Nidever, David L.] Univ Michigan, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. [Nidever, David L.] Large Synopt Survey Telescope, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Nidever, David L.] Steward Observ, 933 North Cherry Ave, Tucson, AZ 85719 USA. [De Lee, Nathan; Stassun, Keivan] No Kentucky Univ, Dept Phys Geol & Engn Tech, Highland Hts, KY 41099 USA. [De Lee, Nathan] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Carlberg, Joleen] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Fernandez, Martin; Covey, Kevin] Western Washington Univ, Bellingham, WA 98225 USA. [Chojnowski, S. Drew] New Mexico State Univ, Las Cruces, NM 88003 USA. [Pepper, Joshua] Lehigh Univ, Bethlehem, PA 18015 USA. [Duy Cuong Nguyen] Univ Toronto, Toronto, ON, Canada. [Wisniewski, John P.] Univ Oklahoma, Norman, OK 73019 USA. [Fleming, Scott W.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Fleming, Scott W.] Comp Sci Corp, Baltimore, MD USA. [Bizyaev, Dmitry; Pan, Kaike] Apache Point Observ, POB 59, Sunspot, NM 88349 USA. [Bizyaev, Dmitry; Pan, Kaike] New Mexico State Univ, POB 59, Sunspot, NM 88349 USA. [Bizyaev, Dmitry] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, TCU Box 298840, Ft Worth, TX 76129 USA. [Garcia-Hernandez, D. A.; Prieto, Carlos Allende; Zamora, Olga] Inst Astrofis Canarias, Via Lactea S-N, E-38205 Tenerife, Spain. [Garcia-Hernandez, D. A.; Prieto, Carlos Allende; Zamora, Olga] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Ge, Jian] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Hearty, Fred; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Hearty, Fred; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Meszaros, Szabolcs] ELTE Gothard Astrophys Observ, Szent Imre Herceg St 112, H-9704 Szombathely, Hungary. [Shetrone, Matthew D.] Univ Texas Austin, Austin, TX 78712 USA. RP Troup, NW (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. EM nwt2de@virginia.edu RI Meszaros, Szabolcs/N-2287-2014; OI Meszaros, Szabolcs/0000-0001-8237-5209; Fleming, Scott/0000-0003-0556-027X; Covey, Kevin/0000-0001-6914-7797; Pepper, Joshua/0000-0002-3827-8417 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; McLaughlin Fellowship at the University of Michigan; NASA Postdoctoral Program at the Goddard Space Flight Center; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2014-56359-P, RYC-201314182, AYA-2014-58082-P] FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; D. L. N. was supported by a McLaughlin Fellowship at the University of Michigan. J. K. C. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association through a contract with NASA. Szabolcs Meszaros has been supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. C. A. P., D. A. G. H., and O. Z. acknowledge support provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under grants AYA2014-56359-P, RYC-201314182, and AYA-2014-58082-P. NR 87 TC 4 Z9 4 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 85 DI 10.3847/0004-6256/151/3/85 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100037 ER PT J AU Rovai, AS Riul, P Twilley, RR Castaneda-Moya, E Rivera-Monroy, VH Williams, AA Simard, M Cifuentes-Jara, M Lewis, RR Crooks, S Horta, PA Schaeffer-Novelli, Y Cintron, G Pozo-Cajas, M Pagliosa, PR AF Rovai, A. S. Riul, P. Twilley, R. R. Castaneda-Moya, E. Rivera-Monroy, V. H. Williams, A. A. Simard, M. Cifuentes-Jara, M. Lewis, R. R. Crooks, S. Horta, P. A. Schaeffer-Novelli, Y. Cintron, G. Pozo-Cajas, M. Pagliosa, P. R. TI Scaling mangrove aboveground biomass from site-level to continental-scale SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Article DE Allometric models; carbon stock; climate change; coastal management policies; macroecology; mangrove forest structure; Neotropics ID NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; FOREST STRUCTURE; CARIBBEAN COAST; PACIFIC COAST; COSTA-RICA; GAZI BAY; ENVIRONMENTAL GRADIENTS; PELLICIERA-RHIZOPHORAE; SECONDARY SUCCESSION AB AimWe developed a set of statistical models to improve spatial estimates of mangrove aboveground biomass (AGB) based on the environmental signature hypothesis (ESH). We hypothesized that higher tidal amplitudes, river discharge, temperature, direct rainfall and decreased potential evapotranspiration explain observed high mangrove AGB. LocationNeotropics and a small portion of the Nearctic region. MethodsA universal forest model based on site-level forest structure statistics was validated to spatially interpolate estimates of mangrove biomass at different locations. Linear models were then used to predict mangrove AGB across the Neotropics. ResultsThe universal forest site-level model was effective in estimating mangrove AGB using pre-existing mangrove forest structure inventories to validate the model. We confirmed our hypothesis that at continental scales higher tidal amplitudes contributed to high forest biomass associated with high temperature and rainfall, and low potential evapotranspiration. Our model explained 20% of the spatial variability in mangrove AGB, with values ranging from 16.6 to 627.0t ha(-1) (mean, 88.7t ha(-1)). Our findings show that mangrove AGB has been overestimated by 25-50% in the Neotropics, underscoring a commensurate bias in current published global estimates using site-level information. Main conclusionsOur analysis show how the ESH significantly explains spatial variability in mangrove AGB at hemispheric scales. This finding is critical to improve and explain site-level estimates of mangrove AGB that are currently used to determine the relative contribution of mangrove wetlands to global carbon budgets. Due to the lack of a conceptual framework explicitly linking environmental drivers and mangrove AGB values during model validation, previous works have significantly overestimated mangrove AGB; our novel approach improved these assessments. In addition, our framework can potentially be applied to other forest-dominated ecosystems by allowing the retrieval of extensive databases at local levels to generate more robust statistical predictive models to estimate continental-scale biomass values. C1 [Rovai, A. S.; Horta, P. A.; Pagliosa, P. R.] Univ Fed Santa Catarina, Dept Ecol & Zool, BR-88040900 Florianopolis, SC, Brazil. [Riul, P.] Univ Fed Paraiba, Dept Engn & Meio Ambiente, BR-58297000 Rio Tinto, PB, Brazil. [Twilley, R. R.; Castaneda-Moya, E.; Rivera-Monroy, V. H.; Williams, A. A.] Louisiana State Univ, Sch Coast & Environm, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. [Simard, M.] Jet Prop Lab, MS 300-319D,4800 Oak Grove Dr, Pasadena, CA 90039 USA. [Cifuentes-Jara, M.] CATIE, Apdo 70, Turrialba 30501, Cartago, Costa Rica. [Lewis, R. R.] Lewis Environm Serv Inc, POB 5430, Salt Springs, FL 32134 USA. [Crooks, S.] Environm Sci Associates, 550 Kearny St Ste 800, San Francisco, CA 94108 USA. [Horta, P. A.] Univ Fed Santa Catarina, Dept Bot, BR-88010970 Florianopolis, SC, Brazil. [Schaeffer-Novelli, Y.] Univ Sao Paulo, Inst Oceanog, Praca Oceanog 191, BR-05058000 Sao Paulo, SP, Brazil. [Cintron, G.] US Fish & Wildlife Serv, 4401 N Fairfax Dr Rm 11Q, Arlington, VA 22203 USA. [Pozo-Cajas, M.] Escuela Super Politecn Litoral, Fac Ciencias Maritimas, Km 30-5 Via Perimetral, Guayaquil, Ecuador. [Pagliosa, P. R.] Univ Fed Santa Catarina, Dept Geociencias, BR-88040900 Florianopolis, SC, Brazil. RP Rovai, AS (reprint author), Univ Fed Santa Catarina, Dept Ecol & Zool, BR-88040900 Florianopolis, SC, Brazil. EM asrovai@gmail.com RI Simard, Marc/H-3516-2013; Pagliosa, Paulo/E-1948-2013; OI Simard, Marc/0000-0002-9442-4562; Pagliosa, Paulo/0000-0003-0834-2534; , Pablo/0000-0003-4035-1975 FU CAPES; CNPq; Louisiana Sea Grant College Program; School of the Coast and Environment (LSU); Florida Coastal Everglades Long-Term Ecological Research program [DBI-0620409, DEB-1237517]; NASA-JPL project 'Vulnerability Assessment of Mangrove Forest Regions of the Americas' (LSU) [1452878]; [BEX1930/13-3]; [BEX2516/14-04]; [18379/12-5] FX The Brazilian foundations CAPES and CNPq, the Louisiana Sea Grant College Program and the School of the Coast and Environment (LSU) supported this work. The CAPES Science without Borders (PDSE/CsF) and Post-doctoral Senior Programs provided international fellowships for A.S.R., P.R. (grant nos. BEX1930/13-3 and BEX2516/14-04) and P.R.P. (grant no. 18379/12-5). The Florida Coastal Everglades Long-Term Ecological Research program (grant nos. DBI-0620409 and DEB-1237517) and the NASA-JPL project 'Vulnerability Assessment of Mangrove Forest Regions of the Americas' (LSU Subcontract no. 1452878) provided partial funding for V.H.R.M., E.C.M. and A.A.W. We are also grateful to James Hutchison and an anonymous referee for providing insightful comments on an earlier version of this manuscript. NR 255 TC 4 Z9 4 U1 7 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1466-822X EI 1466-8238 J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD MAR PY 2016 VL 25 IS 3 BP 286 EP 298 DI 10.1111/geb.12409 PG 13 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA DF6AI UT WOS:000371436200004 ER PT J AU Xu, KM Wong, TM Dong, ST Chen, F Kato, S Taylor, PC AF Xu, Kuan-Man Wong, Takmeng Dong, Shengtao Chen, Feng Kato, Seiji Taylor, Patrick C. TI Cloud Object Analysis of CERES Aqua Observations of Tropical and Subtropical Cloud Regimes: Four-Year Climatology SO JOURNAL OF CLIMATE LA English DT Article DE Climatology; Atm/Ocean Structure/ Phenomena; Boundary layer; Cirrus clouds; Cumulus clouds; Physical Meteorology and Climatology; Radiative fluxes; Convective clouds ID 1998 EL-NINO; COMMUNITY ATMOSPHERE MODEL; ANGULAR-DISTRIBUTION MODELS; DEEP CONVECTIVE SYSTEMS; STATISTICAL-ANALYSES; PART I; INSTRUMENT SIMULATORS; PHYSICAL-PROPERTIES; RESOLVING MODEL; LA-NINA AB Four distinct types of cloud objects-tropical deep convection, boundary layer cumulus, stratocumulus, and overcast stratus-were previously identified from CERES Tropical Rainfall Measuring Mission (TRMM) data. Six additional types of cloud objects-cirrus, cirrocumulus, cirrostratus, altocumulus, transitional altocumulus, and solid altocumulus-are identified from CERES Aqua satellite data in this study. The selection criteria for the 10 cloud object types are based on CERES footprint cloud fraction and cloud-top pressure, as well as cloud optical depth for the high-cloud types. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The data are analyzed according to cloud object types, sizes, regions, and associated environmental conditions. The frequency of occurrence and probability density functions (PDFs) of selected physical properties are produced for the July 2006-June 2010 period. It is found that deep convective and boundary layer types dominate the total population while the six new types other than cirrostratus do not contribute much in the tropics and subtropics. There are pronounced differences in the size spectrum between the types, with the largest ones being of deep convective type and with stratocumulus and overcast types over the ocean basins off west coasts. The summary PDFs of radiative and cloud physical properties differ greatly among the size categories. For boundary layer cloud types, the differences come primarily from the locations of cloud objects: for example, coasts versus open oceans. They can be explained by considerable variations in large-scale environmental conditions with cloud object size, which will be further qualified in future studies. C1 [Xu, Kuan-Man; Wong, Takmeng; Kato, Seiji; Taylor, Patrick C.] NASA, Langley Res Ctr, Climate Sci Branch, Mail Stop 420, Hampton, VA 23681 USA. [Dong, Shengtao; Chen, Feng] Sci Syst & Applicat Inc, Hampton, VA USA. RP Xu, KM (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, Mail Stop 420, Hampton, VA 23681 USA. EM kuan-man.xu@nasa.gov RI Xu, Kuan-Man/B-7557-2013; Taylor, Patrick/D-8696-2015 OI Xu, Kuan-Man/0000-0001-7851-2629; Taylor, Patrick/0000-0002-8098-8447 FU NASA Energy and Water cycle Study (NEWS); Interdisciplinary Study (IDS) programs FX This work has been supported by NASA Energy and Water cycle Study (NEWS) and Interdisciplinary Study (IDS) programs. CERES data are available from NASA Langley Research Center's Atmospheric Science Data Center (http://asdc.larc.nasa.gov). NR 55 TC 2 Z9 2 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2016 VL 29 IS 5 BP 1617 EP 1638 DI 10.1175/JCLI-D-14-00836.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF4EQ UT WOS:000371301000001 ER PT J AU Kidwell, A Lee, T Jo, YH Yan, XH AF Kidwell, Autumn Lee, Tong Jo, Young-Heon Yan, Xiao-Hai TI Characterization of the Variability of the South Pacific Convergence Zone Using Satellite and Reanalysis Wind Products SO JOURNAL OF CLIMATE LA English DT Article DE Variability; Interannual variability; Satellite observations; Pacific decadal oscillation; Circulation/ Dynamics; Observational techniques and algorithms; Decadal variability; ENSO; Tropical variability ID SEA-SURFACE SALINITY; EL-NINO EVENTS; TROPICAL PACIFIC; EASTERN-PACIFIC; WARM POOL; OSCILLATION; ENSO; IMPACTS; MODEL; OCEAN AB The variability of the South Pacific convergence zone (SPCZ) is evaluated using ocean surface wind products derived from the atmospheric reanalysis ERA-Interim for the period of 1981-2014 and QuickSCAT for the period of 1999-2009. From these products, indices were developed to represent the SPCZ strength, area, and centroid location. Excellent agreement is found between the indices derived from the two wind products during the QuikSCAT period in terms of the spatiotemporal structures of the SPCZ. The longer ERA-Interim product is used to study the variations of SPCZ properties on intraseasonal, seasonal, interannual, and decadal time scales. The SPCZ strength, area, and centroid latitude have a dominant seasonal cycle. In contrast, the SPCZ centroid longitude is dominated by intraseasonal variability due to MJO influence. The SPCZ indices are all correlated with El Nino-Southern Oscillation indices. Interannual and intraseasonal variations of SPCZ strength during strong El Nino are approximately twice as large as the respective seasonal variations. SPCZ strength depends more on the intensity of El Nino rather than the central-Pacific versus eastern-Pacific type. The change from positive to negative Pacific decadal oscillation (PDO) around 1999 results in a westward shift of the SPCZ centroid longitude, a much smaller interannual swing in centroid latitude, and a decrease in SPCZ area. This study improves the understanding of the variations of the SPCZ on multiple time scales and reveals the variations of SPCZ strength not reported previously. The diagnostics analyses can be used to evaluate climate models to gauge their fidelity. C1 [Kidwell, Autumn; Yan, Xiao-Hai] Univ Delaware, Coll Earth Ocean & Environm, 215 Robinson Hall, Newark, DE 19716 USA. [Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Jo, Young-Heon] Pusan Natl Univ, Dept Oceanog, Busan, South Korea. [Yan, Xiao-Hai] Univ Delaware, Xiamen Univ, Joint Inst Coastal Res & Management, Newark, DE 19716 USA. RP Kidwell, A (reprint author), Univ Delaware, Coll Earth Ocean & Environm, 215 Robinson Hall, Newark, DE 19716 USA. EM akidwell@udel.edu FU Delaware Space Grant College and Fellowship Program (NASA) [NNX15AI19H]; "SaTellite remote sensing on west Antarctic ocean Research: STAR'' of the Korea Polar Research Institute, Republic of Korea [PE14040]; Natural Science Foundation of China [NSFC-41476007] FX We thank the Delaware Space Grant College and Fellowship Program (NASA Grant NNX15AI19H) for financial support. This research was, in part, carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This study was also carried out with the support of "SaTellite remote sensing on west Antarctic ocean Research: STAR'' (Project PE14040) of the Korea Polar Research Institute, Republic of Korea. This research was partially supported by the Natural Science Foundation of China (NSFC-41476007). We thank E. Liao, J. Marks, and M. Shatley for Technical Support and Trouble Shooting (TSTS). NR 47 TC 0 Z9 0 U1 4 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2016 VL 29 IS 5 BP 1717 EP 1732 DI 10.1175/JCLI-D-15-0536.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF4EW UT WOS:000371301600002 ER PT J AU Baker, NC Taylor, PC AF Baker, Noel C. Taylor, Patrick C. TI A Framework for Evaluating Climate Model Performance Metrics SO JOURNAL OF CLIMATE LA English DT Article DE Physical Meteorology and Climatology; Ranking methods; Mathematical and statistical techniques; Models and modeling; Variability; Radiative fluxes; Climate variability; Coupled models; Climate models; Statistical techniques ID CERES; FEEDBACKS AB Given the large amount of climate model output generated from the series of simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), a standard set of performance metrics would facilitate model intercomparison and tracking performance improvements. However, no framework exists for the evaluation of performance metrics. The proposed framework systematically integrates observations into metric assessment to quantitatively evaluate metrics. An optimal metric is defined in this framework as one that measures a behavior that is strongly linked to model quality in representing mean-state present-day climate. The goal of the framework is to objectively and quantitatively evaluate the ability of a performance metric to represent overall model quality. The framework is demonstrated, and the design principles are discussed using a novel set of performance metrics, which assess the simulation of top-of-atmosphere (TOA) and surface radiative flux variance and probability distributions within 34 CMIP5 models against Clouds and the Earth's Radiant Energy System (CERES) observations and GISS Surface Temperature Analysis (GISTEMP). Of the 44 tested metrics, the optimal metrics are found to be those that evaluate global-mean TOA radiation flux variance. C1 [Baker, Noel C.; Taylor, Patrick C.] NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA. RP Baker, NC (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA. EM noel.c.baker@nasa.gov RI Taylor, Patrick/D-8696-2015 OI Taylor, Patrick/0000-0002-8098-8447 FU NASA; Oak Ridge Associated Universities; NASA Langley Research Center FX This study was funded through the NASA Postdoctoral Program with the support of Oak Ridge Associated Universities and NASA Langley Research Center. Observational data products are publicly available online and were obtained from the following websites of the CERES products (http://ceres.larc.nasa.gov/) and GISTEMP temperature datasets (http://data.giss.nasa.gov/gistemp/). The authors appreciate the helpful comments received from Anthony Broccoli and an anonymous reviewer. NR 30 TC 0 Z9 0 U1 3 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2016 VL 29 IS 5 BP 1773 EP 1782 DI 10.1175/JCLI-D-15-0114.1 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF4EW UT WOS:000371301600005 ER PT J AU Woerner, D AF Woerner, David TI A Progress Report on the eMMRTG SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE eMMRTG; thermoelectric generator; radioisotope generator; radioisotope power system; enhanced MMRTG AB A multimission radioisotope thermoelectric generator (MMRTG), developed by the US Department of Energy for the National Aeronautics and Space Administration, powers the Mars Science Laboratory Curiosity rover on Mars. New thermoelectric couples (TECs) have been developed in recent years that offer significant improvements over the TECs used in the MMRTG. The maturity of the new TECs and the design flexibility of the MMRTG enable a low-risk system upgrade that is predicted to substantially enhance the MMRTG's performance. System design trades are looking at changing the TECs and increasing the hot-side temperature to find the best combination of performance and program cost in this enhanced MMRTG (eMMRTG). Initial studies indicated that a low-risk enhancement would be to use skutterudite (SKD) materials developed at JPL to form TECs for the eMMRTG. Simply replacing the PbTe/TAGS TECs with SKD TECs and making a few low-risk modifications to the MMRTG design could potentially provide a 25% increase in power output at beginning of life (BOL). More important than the BOL power output increase is the end of design life (EODL) power output increase. With the anticipated lower degradation rate of the SKD materials, it is anticipated that the EODL power output will be more than 50% higher than for the MMRTG (with EODL defined as 17 years from fueling). This paper presents an overview of the results of the initial trades leading to the pursuit of the eMMRTG and the progress made since those were concluded. C1 [Woerner, David] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 321-520, Pasadena, CA 91109 USA. RP Woerner, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 321-520, Pasadena, CA 91109 USA. EM david.f.woerner@jpl.nasa.gov NR 6 TC 3 Z9 3 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2016 VL 45 IS 3 BP 1278 EP 1283 DI 10.1007/s11664-015-3998-8 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DF2HO UT WOS:000371163400011 ER PT J AU Vasilevskiy, D Simard, JM Caillat, T Masut, RA Turenne, S AF Vasilevskiy, D. Simard, J. -M. Caillat, T. Masut, R. A. Turenne, S. TI Consistency of ZT-Scanner for Thermoelectric Measurements from 300 K to 700 K: A Comparative Analysis Using Si80Ge20 Polycrystalline Alloys SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Figure of merit; thermoelectric measurements; ZT-Scanner; Harman method ID INTERNATIONAL ROUND-ROBIN; BULK THERMOELECTRICS; TRANSPORT-PROPERTIES AB A Harman-based instrument for the characterization of thermoelectric (TE) materials in a wide temperature range (the ZT-Scanner) was introduced in an earlier publication, with a focus on a two-sample system calibration (2SSC) procedure used for the precise evaluation of thermal losses during the measurements. This technique offers an option to accurately measure the main TE parameters from 300 K to 700 K. We now report the results of ZT-Scanner measurements of p-type Si80Ge20 polycrystalline samples, including the TE figure of merit ZT, Seebeck coefficient, and thermal and electrical conductivities. These samples proved to be extremely stable up to the maximum temperature of measurement, and could eventually serve as a standard for thermoelectric characterization. The measurements were performed using both PbSn solder and conductive silver paste contacts. In all cases, Ni plating was used as a protective barrier between the TE alloys and the contact material. The experimental data has been compared to the typical data measured by the Jet Propulsion Laboratory on similar samples, providing a quantitative estimation of the accuracy of the measurement system, which has been found to be better than 0.015, or 5%, up to 700 K for ZT. The consistency of the TE measurements is evaluated by means of a statistical analysis of repetitive tests on the same and on different samples of identical nature. We also analyze the influence of thermal and electrical contact resistance on the measured properties. C1 [Vasilevskiy, D.; Masut, R. A.; Turenne, S.] Polytech Montreal, Montreal, PQ H3C 3A7, Canada. [Vasilevskiy, D.] TEMTE Inc, Montreal, PQ H4B 2A7, Canada. [Simard, J. -M.] EXAPROM Inc, Blainville, PQ J7B 1X1, Canada. [Caillat, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vasilevskiy, D (reprint author), Polytech Montreal, Montreal, PQ H3C 3A7, Canada.; Vasilevskiy, D (reprint author), TEMTE Inc, Montreal, PQ H4B 2A7, Canada. EM dvasilevskiy@polymtl.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); National Aeronautics and Space Administration FX We acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), the infrastructure support provided by the Regroupement Quebecois sur les Materiaux de Pointe, and of the Fonds de Recherche du Quebec Nature et Technologies (FRQNT), Projet de Recherche Orientee en Partenariat. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 16 TC 0 Z9 0 U1 3 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2016 VL 45 IS 3 BP 1540 EP 1547 DI 10.1007/s11664-015-4101-1 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DF2HO UT WOS:000371163400048 ER PT J AU Hendricks, TJ Yee, S Leblanc, S AF Hendricks, Terry J. Yee, Shannon Leblanc, Saniya TI Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Thermoelectric systems; cost analysis; cost scaling; energy recovery; waste heat recovery AB Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/Wit is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F-opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts. C1 [Hendricks, Terry J.] CALTECH, NASA Jet Prop Lab, Thermal Energy Convers Grp, Power & Sensors Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Yee, Shannon] Georgia Inst Technol, GWW Sch Mech Engn, Atlanta, GA 30332 USA. [Leblanc, Saniya] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA. RP Hendricks, TJ (reprint author), CALTECH, NASA Jet Prop Lab, Thermal Energy Convers Grp, Power & Sensors Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM terry.j.hendricks@jpl.nasa.gov FU NASA [43-17508]; General Motors [43-17508]; U.S. Department of Energy, at the Jet Propulsion Laboratory, California Institute of Technology FX This work was carried out under NASA Space Act Agreement No. 43-17508, a contract between NASA and General Motors with funding from the U.S. Department of Energy, at the Jet Propulsion Laboratory, California Institute of Technology, under a contract to the National Aeronautics and Space Administration. NR 11 TC 2 Z9 2 U1 7 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2016 VL 45 IS 3 BP 1751 EP 1761 DI 10.1007/s11664-015-4201-y PG 11 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DF2HO UT WOS:000371163400076 ER PT J AU Barnes, M Kalberg, K Pan, ML Leung, PS AF Barnes, Michele Kalberg, Kolter Pan, Minling Leung, PingSun TI When is brokerage negatively associated with economic benefits? Ethnic diversity, competition, and common-pool resources SO SOCIAL NETWORKS LA English DT Article DE Brokerage; Social capital; Economic benefits; Ethnic diversity; Natural resource management; Common-pool resources ID SOCIAL NETWORKS; INFORMATION EXCHANGE; TRADE-OFF; PERFORMANCE; KNOWLEDGE; MANAGEMENT; FISHERIES; EMBEDDEDNESS; DYNAMICS; STRENGTH AB There is a growing body of literature positively linking dimensions of social capital to economic benefits. Yet recent research also points to a potential "dark side" of social capital, where over-embeddedness in networks and the pressures associated with brokerage are hypothesized to constrain actors, having a negative effect on economic outcomes. This dichotomy suggests that context is important, yet the overwhelming majority of existing empirical evidence stems from socially homogenous populations in corporate and organizational settings, limiting a broader understanding of when and how context matters. We advance this discourse to a socially fragmented, ethnically diverse common-pool resource system where information is highly valuable and competition is fierce. Merging several unique datasets from Hawaii's pelagic tuna fishery, we find that network prominence, i.e., being well connected locally, has a significant, positive effect on economic productivity. In contrast, we find that brokerage, defined here as ties that bridge either structurally distinct or ethnically distinct groups, has a significant, negative effect. Taken together, our results provide empirical support to widespread claims of the value of information access in common-pool resource systems, yet suggest that in ethnically diverse, competitive environments, brokers may be penalized for sharing information across social divides. Our results thus contribute to an emerging theory on the fragile nature of brokerage that recognizes its potential perils and the importance of context. (C) 2015 Elsevier B.V. All rights reserved. C1 [Barnes, Michele; Leung, PingSun] Univ Hawaii Manoa, Dept Nat Resources & Environm Management, 1910 East West Rd,Sherman 101, Honolulu, HI 96822 USA. [Barnes, Michele; Kalberg, Kolter] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, 1000 Pope Rd,Marine Sci Bldg 312, Honolulu, HI 96822 USA. [Barnes, Michele] James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia. [Pan, Minling] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA. RP Barnes, M (reprint author), James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia. EM barnesm@hawaii.edu; kolter.kalberg@noaa.gov; minling.pan@noaa.gov; psleung@hawaii.edu FU Joint Institute for Marine and Atmospheric Research [NA11NMF4320128]; National Oceanic and Atmospheric Administration (NOAA); University of Hawaii Graduate Student Organization FX We thank our interpreters, all of the fishers who participated in this project, the National Marine Fisheries Service observer program and Hawaii Division of Aquatic Resources for providing data access, and two anonymous reviewers for their constructive comments. MB also thanks the SOCNET community for their response to her inquiry regarding the dark side of brokerage, and Joey Lecky for the development of Fig. 2. This project was funded by Cooperative Agreement NA11NMF4320128 between the Joint Institute for Marine and Atmospheric Research and the National Oceanic and Atmospheric Administration (NOAA). MB also received funding from the University of Hawaii Graduate Student Organization. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subdivisions. NR 89 TC 2 Z9 2 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-8733 EI 1879-2111 J9 SOC NETWORKS JI Soc. Networks PD MAR PY 2016 VL 45 BP 55 EP 65 DI 10.1016/j.socnet.2015.11.004 PG 11 WC Anthropology; Sociology SC Anthropology; Sociology GA DF4ZW UT WOS:000371362600005 ER PT J AU Martin, KM Landau, DF Longuski, JM AF Martin, Kaela M. Landau, Damon F. Longuski, James M. TI Method to maintain artificial gravity during transfer maneuvers for tethered spacecraft SO ACTA ASTRONAUTICA LA English DT Article DE Tethered spacecraft; Artificial gravity; Spinning spacecraft; Human Mars mission ID MOTION SICKNESS; HEAD MOVEMENTS; MICROGRAVITY; COUNTERMEASURE; ENVIRONMENTS; SYSTEM; LEVEL; MARS AB Artificial gravity has long been proposed to limit the harmful effects of the micro-gravity environment on human crews during mission to Mars. A tethered spacecraft spinning at 4 rpm (to avoid motion sickness) provides an attractive configuration. However, if the spacecraft is required to spin down for impulsive maneuvers and then spin up for interplanetary travel, the propellant cost may be unacceptably high. This paper proposes a maneuver that is performed while the spacecraft is spinning thus avoiding additional spin-down and spin-up maneuvers. A control law is provided to achieve the required AV while maintaining spin rate. A hypothetical human mission from Earth to Mars is analyzed using the new maneuver which, in this example, may save over 700 kg of propellant. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Martin, Kaela M.] Embry Riddle Aeronaut Univ, 3700 Willow Creek Rd, Prescott, AZ 86301 USA. [Landau, Damon F.] CALTECH, Jet Prop Lab, Mail Stop 301-121, Pasadena, CA 91109 USA. [Longuski, James M.] Purdue Univ, 701 West Stadium Ave, W Lafayette, IN 47907 USA. RP Martin, KM (reprint author), Embry Riddle Aeronaut Univ, 3700 Willow Creek Rd, Prescott, AZ 86301 USA. EM Kaela.Martin@erau.edu FU National Science Foundation Graduate Research Fellowship Program [DGE-1333468] FX The first author was supported by the National Science Foundation Graduate Research Fellowship Program under grant number DGE-1333468. NR 30 TC 0 Z9 0 U1 5 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAR-APR PY 2016 VL 120 BP 138 EP 153 DI 10.1016/j.actaastro.2015.11.030 PG 16 WC Engineering, Aerospace SC Engineering GA DE8JX UT WOS:000370883400011 ER PT J AU Archibald, RF Gotthelf, EV Ferdman, RD Kaspi, VM Guillot, S Harrison, FA Keane, EF Pivovaroff, MJ Stern, D Tendulkar, SP Tomsick, JA AF Archibald, R. F. Gotthelf, E. V. Ferdman, R. D. Kaspi, V. M. Guillot, S. Harrison, F. A. Keane, E. F. Pivovaroff, M. J. Stern, D. Tendulkar, S. P. Tomsick, J. A. TI A HIGH BRAKING INDEX FOR A PULSAR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: general; pulsars: individual (PSR J1640-4631); stars: neutron ID NEUTRON-STARS; RADIO PULSARS; SPIN-DOWN; MAGNETOSPHERE; RADIATION; EVOLUTION; SIGNALS; MODELS AB We present a phase-coherent timing solution for PSR. J1640-4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR. J1640-4631 to be n = 3.15 +/- 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3 sigma upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy. C1 [Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P.] McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA. [Guillot, S.] Pontificia Univ Catolica Chile, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile. [Harrison, F. A.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. [Keane, E. F.] SKA Org, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England. [Pivovaroff, M. J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. RP Archibald, RF (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.; Archibald, RF (reprint author), McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. FU National Aeronautics and Space Administration; Commonwealth of Australia for operation as a National Facility; NSERC Alexander Graham Bell Canada Graduate Scholarship; National Aeronautics and Space Administration through Chandra Award [GO5-16061X]; NSERC Discovery Grant and Accelerator Supplement; Centre de Recherche en Astrophysique du Quebec; R. Howard Webster Foundation Fellowship from the Canadian Institute; Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. Parkes radio telescope is part of the Australia Telescope National Facility, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. We also thank an anonymous referee for helpful comments that improved the manuscript. R.F.A. acknowledges support from an NSERC Alexander Graham Bell Canada Graduate Scholarship. E.V.G. received support from the National Aeronautics and Space Administration through Chandra Award Number GO5-16061X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. V.M.K. receives support from an NSERC Discovery Grant and Accelerator Supplement, Centre de Recherche en Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Study, the Canada Research Chairs Program, and the Lorne Trottier Chair in Astrophysics and Cosmology. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 24 TC 13 Z9 13 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L16 DI 10.3847/2041-8205/819/1/L16 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200016 ER PT J AU Kelly, PL Rodney, SA Treu, T Strolger, LG Foley, RJ Jha, SW Selsing, J Brammer, G Bradac, M Cenko, SB Graur, O Filippenko, AV Hjorth, J McCully, C Molino, A Nonino, M Riess, AG Schmidt, KB Tucker, B von der Linden, A Weiner, BJ Zitrin, A AF Kelly, P. L. Rodney, S. A. Treu, T. Strolger, L-G Foley, R. J. Jha, S. W. Selsing, J. Brammer, G. Bradac, M. Cenko, S. B. Graur, O. Filippenko, A. V. Hjorth, J. McCully, C. Molino, A. Nonino, M. Riess, A. G. Schmidt, K. B. Tucker, B. von der Linden, A. Weiner, B. J. Zitrin, A. TI DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: clusters: general; galaxies: individual (MACS J1149.5+2223); gravitational lensing: strong; supernovae: general; supernovae: individual (SN Refsdal) ID MASSIVE GALAXY CLUSTERS; HUBBLE-SPACE-TELESCOPE; WEAK-LENSING MASSES; GRAVITATIONAL LENS; TIME-DELAY; IA SUPERNOVAE; MULTIPLE IMAGES; CONSTANT; FIELDS; COSMOLOGY AB In Hubble Space Telescope (HST) imaging taken on 2014 November 10, four images of supernova (SN) "Refsdal" (redshift z = 1.49) appeared in an Einstein-cross-like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z = 0.54). Almost all lens models of the cluster have predicted that the SN should reappear within a year in a second host-galaxy image created by the cluster's potential. In HST observations taken on 2015 December 11, we find a new source at the predicted position of the new image of SN Refsdal approximately 8 ''. from the previous images S1-S4. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX) compared to images S1-S4. This enables us, for the first time, to test "blind" lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty. From planned HST photometry, we expect to reach a precision of 1%-2% on the time delay between S1-S4 and SX. C1 [Kelly, P. L.; Filippenko, A. V.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Rodney, S. A.] Univ S Carolina, Dept Phys & Astron, 712 Main St, Columbia, SC 29208 USA. [Treu, T.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Strolger, L-G; Brammer, G.; Riess, A. G.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Foley, R. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Foley, R. J.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Jha, S. W.] Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. [Selsing, J.; Hjorth, J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Bradac, M.] Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, MC 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Graur, O.] NYU, Ctr Cosmol & Particle Phys, 550 1St Ave, New York, NY 10003 USA. [Graur, O.] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. [McCully, C.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [McCully, C.; Schmidt, K. B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Molino, A.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ, BR-05508090 Sao Paulo, Brazil. [Molino, A.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Nonino, M.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40131 Trieste, Italy. [Riess, A. G.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Schmidt, K. B.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Tucker, B.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Via Cotter Rd, Weston, ACT 2611, Australia. [von der Linden, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Weiner, B. J.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Zitrin, A.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA. RP Kelly, PL (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM pkelly@astro.berkeley.edu OI Graur, Or/0000-0002-4391-6137 FU HST [GO-14041]; FrontierSN photometric follow-up program [GO-13386]; Hubble Fellowship - STScI [HF2-51334.001-A]; NASA by Association of Universities for Research in Astronomy, Inc. [NAS 5-26555]; NSF [AST-1518052, AST-1211916]; Christopher R. Redlich Fund; TABASGO Foundation; NSF CAREER award [AST-0847157]; NASA/Keck JPL RSA [1508337, 1520634]; Alfred P. Sloan Foundation; [GO-13459] FX We express our appreciation for the efforts of Program Coordinator Beth Periello and Contact Scientist Norbert Pirzkal of STScI. Support for the analysis in this paper is from HST grant GO-14041. The GLASS program is supported by GO-13459, and the FrontierSN photometric follow-up program has funding through GO-13386. A.Z. is supported by Hubble Fellowship (HF2-51334.001-A) awarded by STScI, which is operated for NASA by the Association of Universities for Research in Astronomy, Inc. under contract NAS 5-26555. R.J.F. gratefully acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan Foundation. A.V.F.'s group at UC Berkeley has received generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. M.N. acknowledges PRIN-INAF 2014 1.05.01.94.02. This supernova research at Rutgers University is supported by NSF CAREER award AST-0847157, as well as NASA/Keck JPL RSA 1508337 and 1520634, to S.W.J. NR 48 TC 6 Z9 6 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L8 DI 10.3847/2041-8205/819/1/L8 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200008 ER PT J AU Schwieterman, EW Meadows, VS Domagal-Goldman, SD Deming, D Arney, GN Luger, R Harman, CE Misra, A Barnes, R AF Schwieterman, Edward W. Meadows, Victoria S. Domagal-Goldman, Shawn D. Deming, Drake Arney, Giada N. Luger, Rodrigo Harman, Chester E. Misra, Amit Barnes, Rory TI IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O-4 RESULTING FROM ABIOTIC O-2/O-3 PRODUCTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrobiology; planets and satellites: atmospheres; planets and satellites: terrestrial planets; techniques: spectroscopic ID ABSORPTION CROSS-SECTIONS; LOW-MASS STAR; EARTH OBSERVATIONS; M DWARF; OXYGEN; ATMOSPHERES; EXOPLANETS; OZONE; LIFE; SPECTROSCOPY AB O-2 and O-3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O-2/O-3: CO and O-4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 mu m) in conjunction with CO2 (1.6, 2.0, 4.3 mu m) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O-2 or O-3 might not be biogenic. Strong O-4 bands seen in transmission at 1.06 and 1.27 mu m could be diagnostic of a post-runaway O-2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 mu m, CO2 at 2.0 and 4.3 mu m, and O4 at 1.27 mu m are all stronger features in transmission than O-2/O-3 and could be detected with S/Ns greater than or similar to 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O-4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 mu m) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced. C1 [Schwieterman, Edward W.; Meadows, Victoria S.; Arney, Giada N.; Luger, Rodrigo; Misra, Amit; Barnes, Rory] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Schwieterman, Edward W.; Meadows, Victoria S.; Domagal-Goldman, Shawn D.; Deming, Drake; Arney, Giada N.; Luger, Rodrigo; Harman, Chester E.; Misra, Amit; Barnes, Rory] NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA USA. [Schwieterman, Edward W.; Meadows, Victoria S.; Arney, Giada N.; Luger, Rodrigo; Misra, Amit; Barnes, Rory] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. [Domagal-Goldman, Shawn D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Deming, Drake] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Harman, Chester E.] Penn State Univ, Geosci Dept, University Pk, PA 16802 USA. [Harman, Chester E.] Penn State Univ, Penn State Astrobiol Res Ctr, 2217 Earth & Engn Sci Bldg, University Pk, PA 16802 USA. [Harman, Chester E.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. RP Schwieterman, EW (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA.; Schwieterman, EW (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA USA.; Schwieterman, EW (reprint author), Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. EM eschwiet@uw.edu OI Harman, Chester/0000-0003-2281-1990; Schwieterman, Edward/0000-0002-2949-2163 FU NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team; NASA Astrobiology Institute [NNH12ZDA002C, NNA13AA93A] FX This work was supported by the NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team, funded through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A. This research used the advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. This work made use of the NASA Astrophysics Data System. We would like to thank the anonymous reviewer for helpful comments, which improved the manuscript. NR 48 TC 12 Z9 12 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L13 DI 10.3847/2041-8205/819/1/L13 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200013 ER PT J AU Taylor, SR Vallisneri, M Ellis, JA Mingarelli, CMF Lazio, TJW van Haasteren, R AF Taylor, S. R. Vallisneri, M. Ellis, J. A. Mingarelli, C. M. F. Lazio, T. J. W. van Haasteren, R. TI ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational waves; methods: data analysis; pulsars: general ID BLACK-HOLE BINARIES; RADIATION; SIGNAL AB Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (similar to 10(-15) strain at f = 1 yr(-1)). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates, deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an similar to 80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years. C1 [Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; van Haasteren, R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; van Haasteren, R.] CALTECH, TAPIR Grp, MC 350-17, Pasadena, CA 91125 USA. [Mingarelli, C. M. F.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Taylor, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Taylor, SR (reprint author), CALTECH, TAPIR Grp, MC 350-17, Pasadena, CA 91125 USA. EM Stephen.R.Taylor@jpl.nasa.gov OI Taylor, Stephen/0000-0003-0264-1453 FU NASA; JPL RTD program; NASA through Einstein Fellowship [PF4-150120, PF3-140116]; Marie Curie International Outgoing Fellowship within the European Union Seventh Framework Programme; National Science Foundation Physics Frontier Center [1430284, PHYS-1066293]; National Aeronautics and Space Administration FX It is our pleasure to thank Pablo Rosado, Alberto Sesana, Jonathan Gair, Lindley Lentati, Sarah Burke-Spolaor, Xavier Siemens, Maura McLaughlin, Joseph Romano, and Michael Kramer for very useful suggestions. We also thank the full NANOGrav collaboration for their comments and remarks. S.R.T. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. M.V. acknowledges support from the JPL RTD program. J.A.E. and R.v.H. acknowledge support by NASA through Einstein Fellowship grants PF4-150120 and PF3-140116, respectively. C.M.F.M. was supported by a Marie Curie International Outgoing Fellowship within the European Union Seventh Framework Programme. This work was supported in part by National Science Foundation Physics Frontier Center award No. 1430284 and by grant PHYS-1066293 and the hospitality of the Aspen Center for Physics. This research was performed at the Jet Propulsion Laboratory, under contract with the National Aeronautics and Space Administration. NR 30 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L6 DI 10.3847/2041-8205/819/1/L6 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200006 ER PT J AU Schiffmacher, EN Becker, JG Lorah, MM Voytek, MA AF Schiffmacher, Emily N. Becker, Jennifer G. Lorah, Michelle M. Voytek, Mary A. TI The effects of co-contaminants and native wetland sediments on the activity and dominant transformation mechanisms of a 1,1,2,2-tetrachloroethane (TeCA)-degrading enrichment culture SO CHEMOSPHERE LA English DT Article DE 1,1,2,2-Tetrachloroethane; Carbon tetrachloride; Tetrachloroethene; Contaminated wetlands; Dehalococcoides; Dehalobacter ID REDUCTIVE DECHLORINATION; CARBON-TETRACHLORIDE; VINYL-CHLORIDE; DEHALOCOCCOIDES-ETHENOGENES; CHLORINATED SOLVENTS; CIS-DICHLOROETHENE; CHLOROFORM; KINETICS; BIOTRANSFORMATION; DICHLOROMETHANE AB Bioremediation strategies, including bioaugmentation with chlorinated ethene-degrading enrichment cultures, have been successfully applied in the cleanup of subsurface environments contaminated with tetrachloroethene (PCE) and/or trichloroethene (TCE). However, these compounds are frequently found in the environment as components of mixtures that may also contain chlorinated ethanes and methanes. Under these conditions, the implementation of bioremediation may be complicated by inhibition effects, particularly when multiple dehalorespirers are present. We investigated the ability of the 1,1,2,2-tetrachloroethane (TeCA)-dechlorinating culture WBC-2 to biotransform TeCA alone, or a mixture of TeCA plus PCE and carbon tetrachloride (CT), in microcosms. The microcosms contained electron donors provided to biostimulate the added culture and sediment collected from a wetland where numerous "hotspots" of contamination with chlorinated solvent mixtures exist. The dominant TeCA biodegradation mechanism mediated by the WBC-2 culture in the microcosms was different in the presence of these wetland sediments than in the sediment-free enrichment culture or in previous WBC-2 bioaugmented microcosms and column tests conducted with wetland sediment collected at nearby sites. The co-contaminants and their daughter products also inhibited TeCA biodegradation by WBC-2. These results highlight the need to conduct biodegradability assays at new sites, particularly when multiple contaminants and dehalorespiring populations are present. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Schiffmacher, Emily N.; Becker, Jennifer G.] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA. [Lorah, Michelle M.] US Geol Survey, MD DE DC Water Sci Ctr, 5522 Res Pk Dr, Catonsville, MD 21228 USA. [Voytek, Mary A.] US Geol Survey, Natl Ctr 430, Reston, VA 20192 USA. [Becker, Jennifer G.] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. [Schiffmacher, Emily N.] US Army Corps Engineers, Baltimore, MD USA. [Voytek, Mary A.] NASA, Sci Mission Directorate, Washington, DC 20546 USA. RP Becker, JG (reprint author), Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. EM emily.schiffmacher@gmail.com; jgbecker@mtu.edu; mmlorah@usgs.gov; mary.voytek-1@nasa.gov FU United States Geological Survey; U.S. Army Environmental Conservation and Restoration Division Aberdeen Proving Ground; Maryland Water Resources Research Center FX This work was supported, in part, through funding from the United States Geological Survey through a contract with the U.S. Army Environmental Conservation and Restoration Division Aberdeen Proving Ground, and the Maryland Water Resources Research Center, which is sponsored by the United States Geological Survey. Elizabeth J. P. Jones provided the WBC-2 culture and many helpful suggestions and insights throughout this study. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 34 TC 0 Z9 0 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2016 VL 147 BP 239 EP 247 DI 10.1016/j.chemosphere.2015.12.033 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA DE7SD UT WOS:000370836100031 PM 26766361 ER PT J AU Smerdon, JE Coats, S Ault, TR AF Smerdon, Jason E. Coats, Sloan Ault, Toby R. TI Model-dependent spatial skill in pseudoproxy experiments testing climate field reconstruction methods for the Common Era SO CLIMATE DYNAMICS LA English DT Article DE Climate field reconstruction; Pseudoproxy; Last millennium; Climate model; PMIP3; CMIP5 ID PROXY-BASED RECONSTRUCTIONS; PACIFIC SST VARIABILITY; NORTH-AMERICAN DROUGHT; LAST MILLENNIUM; METHODS STOCHASTICITY; EQUATORIAL PACIFIC; SURROGATE ENSEMBLE; PAST CLIMATE; TEMPERATURE VARIABILITY; STATISTICAL FRAMEWORK AB The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on five last millennium and historical simulations from the Coupled and Paleo Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3) data archives. These simulations are used for the first time in a PPE context, the frameworks of which are constructed to test a recently assembled multiproxy network and multiple CFR techniques. The experiments confirm earlier findings demonstrating consistent methodological performance across the employed methods and spatially dependent reconstruction errors in all of the derived CFRs. Spectral biases in the reconstructed fields demonstrate that CFR methods can alone alter the ratio of spectral power at all locations in the field, independent of whether there are any spectral biases inherent in the underlying pseudoproxy series. The patterns of spectral biases are model dependent and indicate the potential for regions in the derived CFRs to be biased by changes in either low or high-frequency spectral power. CFR methods are also shown to alter the pattern of mean differences in the tropical Pacific during the Medieval Climate Anomaly and the Little Ice Age, with some model experiments indicating that CFR methodologies enhance the statistical likelihood of achieving larger mean differences between independent 300-year periods in the region. All of the characteristics of CFR performance are model dependent, indicating that CFR methods must be evaluated across multiple models and that conclusions from PPEs should be carefully connected to the spatial statistics of real-world climatic fields. C1 [Smerdon, Jason E.; Coats, Sloan] Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9 W,POB 1000, Palisades, NY 10964 USA. [Coats, Sloan] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ault, Toby R.] Cornell Univ, Ithaca, NY USA. RP Smerdon, JE (reprint author), Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9 W,POB 1000, Palisades, NY 10964 USA. EM jsmerdon@ldeo.columbia.edu RI Smerdon, Jason/F-9952-2011 FU NOAA [NA10OAR4320137, NA11OAR4310166] FX We are grateful for the helpful comments from the reviewer of our manuscript. Supported in part by NOAA grants NA10OAR4320137 and NA11OAR4310166. Supplementary data can be accessed at http://www.ldeo.columbia.edu/similar to jsmerdon/2015_cli-dyn_smerdonetal_supplement.html. LDEO contribution #7903. NR 89 TC 5 Z9 5 U1 6 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAR PY 2016 VL 46 IS 5-6 BP 1921 EP 1942 DI 10.1007/s00382-015-2684-0 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF1AD UT WOS:000371069900032 ER PT J AU Kinkar, S Hennessy, M Ray, S AF Kinkar, Shishir Hennessy, Mark Ray, Steven TI An Ontology and Integration Framework for Smart Communities SO JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING LA English DT Article AB This paper describes our work concerning the definition of a neutral, abstract ontology, and framework that supports the vision and diverse contexts of a smart community. This framework is composed of a general, core ontology that supports what many are calling the Internet of Things (IoT), a scalable number of extension ontologies to describe various application perspectives, and a mapping methodology to relate external data and/or schemas to our ontology. Finally, we show why this ontology is scalable and generic enough to support a wide range of smart devices, systems, and people. C1 [Kinkar, Shishir] Carnegie Mellon Univ, Dept Elect & Comp Engn, NASA Ames Res Pk,Bldg 23 MS 23-11,POB 1, Moffett Field, CA 94035 USA. [Hennessy, Mark] Carnegie Mellon Univ, Dept Elect & Comp Engn, Freischuetzstr 106,2 OG, D-81927 Munich, Germany. [Ray, Steven] Carnegie Mellon Univ, Silicon Valley Campus,NASA Ames Res Pk,Bldg 23-11, Moffett Field, CA 94035 USA. RP Ray, S (reprint author), Carnegie Mellon Univ, Silicon Valley Campus,NASA Ames Res Pk,Bldg 23-11, Moffett Field, CA 94035 USA. EM shishir.kinkar@sv.cmu.edu; mhennessy116@gmail.com; steve.ray@sv.cmu.edu FU U.S. National Institute of Standards and Technology [60NANB11D144] FX The work reported on in this paper was generously supported by Grant No. 60NANB11D144 from the U.S. National Institute of Standards and Technology. NR 35 TC 0 Z9 0 U1 7 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1530-9827 EI 1944-7078 J9 J COMPUT INF SCI ENG JI J. Comput. Inf. Sci. Eng. PD MAR PY 2016 VL 16 IS 1 AR 011003 DI 10.1115/1.4032218 PG 7 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing SC Computer Science; Engineering GA DF2BM UT WOS:000371144300003 ER PT J AU Tompson, SR AF Tompson, Sara R. TI The Road Taken: The History and FutUre of America's Infrastructure. SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD MAR 1 PY 2016 VL 141 IS 4 BP 109 EP 110 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA DF1NB UT WOS:000371105400160 ER PT J AU Ramachandran, R Bugbee, K Tilmes, C Privette, AP AF Ramachandran, Rahul Bugbee, Kaylin Tilmes, Curt Privette, Ana Pinheiro TI Climate data initiative: A geocuration effort to support climate resilience SO COMPUTERS & GEOSCIENCES LA English DT Article DE Geocuration; Climate data initiative; Climate change; Geoinformatics; Metadata; Virtual collections AB Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful collection. We present the Climate Data Initiative (CDI) project as a prototypical example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in the CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future. Published by Elsevier Ltd. C1 [Ramachandran, Rahul] NASA, MSFC, Huntsville, AL 35808 USA. [Bugbee, Kaylin] Univ Alabama, Huntsville, AL USA. [Tilmes, Curt; Privette, Ana Pinheiro] NASA, GSFC, Huntsville, AL USA. RP Ramachandran, R (reprint author), NASA, MSFC, Huntsville, AL 35808 USA. EM rahul.ramachandran@nasa.gov RI kiaie, robabeh/I-2157-2016; kiaie, fatemeh/I-6083-2016 OI kiaie, robabeh/0000-0001-5251-3201; NR 17 TC 0 Z9 0 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD MAR PY 2016 VL 88 BP 22 EP 29 DI 10.1016/j.cageo.2015.12.002 PG 8 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA DE2KM UT WOS:000370456200003 ER PT J AU Williford, KH Ushikubo, T Lepot, K Kitajima, K Hallmann, C Spicuzza, MJ Kozdon, R Eigenbrode, JL Summons, RE Valley, JW AF Williford, K. H. Ushikubo, T. Lepot, K. Kitajima, K. Hallmann, C. Spicuzza, M. J. Kozdon, R. Eigenbrode, J. L. Summons, R. E. Valley, J. W. TI Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates SO GEOBIOLOGY LA English DT Article ID MASS-INDEPENDENT FRACTIONATION; ARCHEAN MOLECULAR FOSSILS; MOUNT BRUCE SUPERGROUP; WESTERN-AUSTRALIA; SULFATE REDUCTION; MULTIPLE-SULFUR; HAMERSLEY BASIN; ORGANIC-MATTER; ATMOSPHERIC OXYGEN; JEERINAH FORMATION AB An approach to coordinated, spatially resolved, insitu carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of C-13, S-34, S-33, and S-36 known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS C-13 measurement of organic matter is identified. Small (2-3m) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-m domains of kerogen in a single similar to 0.5cm(3) sample of the similar to 2.7Ga Tumbiana Formation have C-13=-52.3 +/- 0.1 parts per thousand and -34.4 +/- 0.1 parts per thousand, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the similar to 2.6Ga Jeerinah Formation and the similar to 2.5Ga Mount McRae Shale is systematically C-13-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher S-33 and more extreme spatial gradients in S-33 and S-36 than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of S-34, S-33, and S-36, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S-MIF during the first half of the planet's history. C1 [Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Spicuzza, M. J.; Kozdon, R.; Valley, J. W.] Univ Wisconsin, Dept Geosci, Madison, WI USA. [Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Spicuzza, M. J.; Kozdon, R.; Summons, R. E.; Valley, J. W.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA. [Williford, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hallmann, C.; Summons, R. E.] MIT, Earth Atmospher & Planetary Sci Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Eigenbrode, J. L.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD USA. [Ushikubo, T.] JAMSTEC, Kochi Inst Core Sample Res, Nankoku, Kochi, Japan. [Lepot, K.] Univ Lille, CNRS UMR8187, Lab Oceanol & Geosci, F-59655 Villeneuve Dascq, France. [Hallmann, C.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Kozdon, R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. RP Williford, KH (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI USA.; Williford, KH (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA.; Williford, KH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM kenneth.williford@jpl.nasa.gov RI Kozdon, Reinhard/J-9468-2014; Lepot, Kevin/C-7072-2014 OI Kozdon, Reinhard/0000-0001-6347-456X; Lepot, Kevin/0000-0003-0556-0405 FU National Aeronautics and Space Administration Astrobiology Institute (NAI); Agouron Institute; NASA Astrobiology Institute; Simons Foundation Origins of Life Collaboration; National Aeronautics and Space Administration; [NSF-EAR-1053466]; [NSF-EAR-1355590] FX We acknowledge Noriko Kita, Jim Kern, John Fournelle, Brian Hess, and H.B. Palomo for their essential contributions to this work. Helpful comments by the editors and three anonymous reviewers improved the quality of this manuscript. Major funding for this study came from the National Aeronautics and Space Administration Astrobiology Institute (NAI). WiscSIMS is partly supported by NSF-EAR-1053466, -1355590. Work at MIT was supported by the Agouron Institute, the NASA Astrobiology Institute and the Simons Foundation Origins of Life Collaboration. Part of this research was done at the Jet Propulsion Laboratory, California Institute of Technology, under a grant from the National Aeronautics and Space Administration. KHW and RES serve on the editorial board of Geobiology. NR 94 TC 3 Z9 3 U1 9 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD MAR PY 2016 VL 14 IS 2 BP 105 EP 128 DI 10.1111/gbi.12163 PG 24 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA DD8MU UT WOS:000370181800001 PM 26498593 ER PT J AU Shi, M Fisher, JB Brzostek, ER Phillips, RP AF Shi, Mingjie Fisher, Joshua B. Brzostek, Edward R. Phillips, Richard P. TI Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in theCommunity Land Model SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon cost; Community Land Model; Fixation and Uptake of Nitrogen; mycorrhizal fungi; nitrogen uptake; net primary production ID DYNAMIC VEGETATION MODEL; TERRESTRIAL BIOSPHERE; COMMUNITY LAND; SOIL CARBON; INTERCOMPARISON PROJECT; NUTRIENT AVAILABILITY; FOREST; CLIMATE; LIMITATION; FIXATION AB Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots,N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4Pg C yr(-1) to acquire 1.0 Pg Nyr(-1), and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for similar to 66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2, and warming temperatures) may impact the land C sink. C1 [Shi, Mingjie; Fisher, Joshua B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Shi, Mingjie; Fisher, Joshua B.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Brzostek, Edward R.] W Virginia Univ, Dept Biol, 53 Campus Dr, Morgantown, WV 26506 USA. [Phillips, Richard P.] Indiana Univ, Dept Biol, 702 N Walnut Grove Ave, Bloomington, IN 47405 USA. RP Fisher, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joshua.b.fisher@jpl.nasa.gov OI Fisher, Joshua/0000-0003-4734-9085 FU US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program; US National Science Foundation Ecosystem Science Program FX Funding was provided by the US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program; and the US National Science Foundation Ecosystem Science Program. The computations were performed at the Texas Advanced Computing Center and at NASA Ames Research Center; we acknowledge Dr. Zong-Liang Yang and Dr. Junjie Liu for providing the computational resources. The authors appreciate valuable suggestions from David Schimel, Rosie Fisher, William Wieder, Sam Levis, Jinyun Tang, and Qing Zhu. The authors also want to acknowledge the anonymous reviewers for providing the valuable comments. JBF and MS carried out the research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and at the Joint Institute for Regional Earth System Science and Engineering, University of California at Los Angeles. NR 76 TC 4 Z9 4 U1 14 U2 71 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD MAR PY 2016 VL 22 IS 3 BP 1299 EP 1314 DI 10.1111/gcb.13131 PG 16 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DE2XN UT WOS:000370491400028 PM 26473512 ER PT J AU Tweddle, BE Setterfield, TP Saenz-Otero, A Miller, DW AF Tweddle, Brent E. Setterfield, Timothy P. Saenz-Otero, Alvar Miller, David W. TI An Open Research Facility for Vision-Based Navigation Onboard the International Space Station SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID DOCKING AB This paper describes the VERTIGO Goggles, a hardware upgrade to the SPHERES satellites that enables vision-based navigation research in the 6 degree-of-freedom, microgravity environment of the International Space Station (ISS). The Goggles include stereo cameras, an embedded x86 computer, a high-speed wireless communications system, and the associated electromechanical and software systems. The Goggles were designed to be a modular, expandable, and upgradable open research test bed that have been used for a variety of other experiments by external researchers. In February 2013, the Goggles successfully completed a hardware checkout on the ISS and was used for initial vision-based navigation research. This checkout included a successful camera calibration by an astronaut onboard the ISS. This paper describes the requirements, design, and operation of this test bed as well as the experimental results of its first checkout operations. C1 [Tweddle, Brent E.; Setterfield, Timothy P.; Saenz-Otero, Alvar; Miller, David W.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. RP Tweddle, BE (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM tweddle@alum.mit.edu; tsetterf@mit.edu; alvarso@mit.edu; millerd@mit.edu FU DARPA; NASA; Air Force Space Test Program; NASA Ames; Defense Advanced Research Projects Agency's Integrated Research Experiments (InSPIRE) program [NNH11CC25C] FX The authors would also like to thank DARPA and NASA for their funding and support of this research, and the VERTIGO team at Aurora Flight Sciences for their work on the Goggles, including our support from the Air Force Space Test Program and NASA Ames. This research was funded by the Defense Advanced Research Projects Agency's Integrated Research Experiments (InSPIRE) program under contract NNH11CC25C. NR 39 TC 1 Z9 1 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAR PY 2016 VL 33 IS 2 SI SI BP 157 EP 186 DI 10.1002/rob.21622 PG 30 WC Robotics SC Robotics GA DE4ZV UT WOS:000370640500002 ER PT J AU Altinok, A Thompson, DR Bornstein, B Chien, SA Doubleday, J Bellardo, J AF Altinok, Alphan Thompson, David R. Bornstein, Benjamin Chien, Steve A. Doubleday, Joshua Bellardo, John TI Real-Time Orbital Image Analysis Using Decision Forests, with a Deployment Onboard the IPEX Spacecraft SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID AUTOMATIC CLOUD DETECTION; HYSPIRI MISSION; COVER; MODIS; SKY; ALGORITHM; REGIONS; OCEAN; EO-1 AB Automatic cloud recognition promises significant improvements in Earth science remote sensing. At any time, more than half of Earth's surface is covered by clouds, obscuring images and atmospheric measurements. This is particularly problematic for CubeSats, a new generation of small, low-orbiting spacecraft with very limited communications bandwidth. Such spacecraft can use image analysis to autonomously select clear scenes for prioritized downlink. More agile spacecraft can also benefit from cloud screening by retargeting observations to cloud-free areas. This could significantly improve the science yield of instruments such as the Orbiting Carbon Observatory 3 mission. However, most existing cloud detection algorithms are not suitable for these applications, because they require calibrated and georectified spectral data, which is not typically available onboard. Here, we describe a statistical machine-learning method for real-time autonomous scene interpretation using a visible camera with no radiometric calibration. A random forest classifies cloud and clear pixels based on local patterns of image texture. We report on experimental evaluation of images from the International Space Station (ISS) and present results from a deployment onboard the IPEX spacecraft. This demonstrates actual execution in flight and provides some preliminary lessons learned about operational use. It is a rare example of a machine-learning system deployed to an autonomous spacecraft. To our knowledge, it is also the first instance of significant artificial intelligence deployed on board a CubeSat and the first ever deployment of visible image-based cloud screening onboard any operational spacecraft. C1 [Altinok, Alphan; Thompson, David R.; Bornstein, Benjamin; Chien, Steve A.; Doubleday, Joshua] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Bellardo, John] Calif Polytech State Univ San Luis Obispo, Dept Comp Sci, San Luis Obispo, CA 93407 USA. RP Altinok, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. EM alphan.altinok@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); NASA's Earth Science Technology Office; NASA Astrobiology Science and Technology Instrument Development Program [NNH10ZDA001N-ASTID] FX Random forest code similar to the ground version of the classifier is now available online (Thompson et al., 2014b). Portions of this work were performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The IPEX project was funded by NASA's Earth Science Technology Office. The OCO-3 Project is part of the Earth System Science Pathfinder (ESSP) Program directed by the program director of the NASA Earth Science Division (ESD). Contributors to the TextureCam codebase include Dmitriy Bekker, Brina Bue, Daniel Howarth, Kevin Ortega, and Greydon Foil. The TextureCam project is supported by the NASA Astrobiology Science and Technology Instrument Development Program (NNH10ZDA001N-ASTID). We thank Susan Runco and the HDEV team for their help acquiring and using this imagery. NR 48 TC 0 Z9 0 U1 2 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAR PY 2016 VL 33 IS 2 SI SI BP 187 EP 204 DI 10.1002/rob.21627 PG 18 WC Robotics SC Robotics GA DE4ZV UT WOS:000370640500003 ER PT J AU Righter, K Danielson, LR Pando, KM Shofner, GA Sutton, SR Newville, M Lee, C AF Righter, K. Danielson, L. R. Pando, K. M. Shofner, G. A. Sutton, S. R. Newville, M. Lee, C. -T. TI Valence and metal/silicate partitioning of Mo: Implications for conditions of Earth accretion and core formation SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE siderophile; core formation; mantle; differentiation; accretion; partitioning ID SILICATE MELT COMPOSITION; TERRESTRIAL MAGMA OCEAN; SIDEROPHILE ELEMENTS; OXYGEN FUGACITY; HIGH-PRESSURE; OXIDATION-STATE; STRUCTURAL ENVIRONMENTS; REDOX SYSTEMATICS; METAL; TEMPERATURE AB To better understand and predict the partition coefficient of Mo at the conditions of the deep interior of Earth and other terrestrial planets or bodies, we have undertaken new measurements of the valence and partitioning of Mo. X-ray absorption near edge structure (XANES) K-edge spectra for Mo have been measured in a series of Fe-bearing glasses produced at 1 bar and higher PT conditions. High pressure experiments have been carried out up to 19 GPa in order to better understand the effect of pressure on Mo partitioning. And, finally, a series of experiments at very low fO(2) conditions and high Si content metallic liquids has been carried out to constrain the effect of Si on the partitioning of Mo between metallic liquids and silicate melt. The valence measurements demonstrate that Mo undergoes a transition from 4+ to 6+ near IW-1, in general agreement with previous 1 bar studies on FeO-free silicate melts. High pressure experiments demonstrate a modest pressure dependence of D(Mo) metal/silicate and, combined with previous results, show a significant decrease with pressure that must be quantified in any predictive expression. Finally, the effect of dissolved Si in Fe-rich metallic liquid is to decrease D(Mo) significantly, as suggested by previous work in metallurgical systems. The effect of pressure, temperature, oxygen fugacity, metallic liquid composition, and silicate melt composition can be quantified by using multiple linear regression of available experimental data for Mo. Our XANES results show that Mo will be 4+ at conditions of core formation, so only experiments carried out at fO(2) of IW-1 and lower were used in the regressions. Application of predictive expressions to Earth accretion shows that D(Mo) decreases to values consistent with an equilibrium scenario for early Earth core-mantle. The Mo content of the primitive upper mantle (PUM) can be attained by metal-silicate equilibrium involving S-, C-, and Si-bearing metallic liquid, and peridotite silicate melt along the peridotite liquidus near 45 GPa and 3600 degrees C, late in the accretion process. This conclusion is insensitive to late giant impacts unless the degree of equilibration is very low (<5%). Published by Elsevier B.V. C1 [Righter, K.] NASA, Lyndon B Johnson Space Ctr, Mailcode X12, Houston, TX 77058 USA. [Danielson, L. R.; Pando, K. M.] NASA, Lyndon B Johnson Space Ctr, JETS, Houston, TX 77058 USA. [Shofner, G. A.] Towson Univ, Dept Phys Astron & Geosci, Smith Hall, Towson, MD 21252 USA. [Sutton, S. R.; Newville, M.] Univ Chicago, Ctr Adv Radiat Sources, 5640 S Ellis, Chicago, IL 60637 USA. [Sutton, S. R.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis, Chicago, IL 60637 USA. [Lee, C. -T.] Rice Univ, Dept Earth Sci, MS-126, Houston, TX 77005 USA. RP Righter, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Mailcode X12, Houston, TX 77058 USA. EM kevin.righter-1@nasa.gov OI Righter, Kevin/0000-0002-6075-7908 FU National Science Foundation - Earth Sciences [EAR-1128799]; Department of Energy - GeoSciences [DE-FG02-94ER14466]; U.S. Department of Energy (DOE) Office of Science User Facility [DE-AC02-06CH11357]; NASA Cosmochemistry Program; NSF FX Roger Harrington provided beautiful thin sections of several experimental run products. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy - GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Research was also supported by an RTOP to KR from the NASA Cosmochemistry Program, and by an NSF grant to Andrew J. Campbell. We thank Nicolas Dauphas and 3 anonymous reviewers for comments that helped improve the manuscript. NR 76 TC 3 Z9 3 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAR 1 PY 2016 VL 437 BP 89 EP 100 DI 10.1016/j.epsl.2015.12.025 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DD7GG UT WOS:000370091100010 ER PT J AU Goertler, PAL Simenstad, CA Bottom, DL Hinton, S Stamatiou, L AF Goertler, Pascale A. L. Simenstad, Charles A. Bottom, Daniel L. Hinton, Susan Stamatiou, Lia TI Estuarine Habitat and Demographic Factors Affect Juvenile Chinook (Oncorhynchus tshawytscha) Growth Variability in a Large Freshwater Tidal Estuary SO ESTUARIES AND COASTS LA English DT Article DE Freshwater tidal estuary; Juvenile Chinook salmon; Growth; Diet; Genetic stock of origin ID COLUMBIA RIVER ESTUARY; BRITISH-COLUMBIA; FOOD WEBS; OTOLITH MICROSTRUCTURE; MARINE SURVIVAL; LIFE-HISTORY; PUGET-SOUND; SALMON; FISH; POPULATION AB Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along similar to 130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but similar to 4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries. C1 [Goertler, Pascale A. L.; Simenstad, Charles A.; Stamatiou, Lia] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Bottom, Daniel L.; Hinton, Susan] NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR USA. RP Goertler, PAL (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. EM pascale.goertler@gmail.com FU US Army Corps of Engineers [EST-P-10-1, W66QKZ20272260]; University of Washington School of Aquatic and Fishery and Sciences (SAFS); Anchor QEA; National Oceanic and Atmospheric Administration FX We would like to thank our funding sources, the US Army Corps of Engineers (Administrative Code EST-P-10-1, MIPR number W66QKZ20272260), University of Washington School of Aquatic and Fishery and Sciences (SAFS), Anchor QEA, and National Oceanic and Atmospheric Administration. We would also like to thank the members of the Columbia River estuary project: Antonio Baptista, Mojgan Rostaminia, Rich Zabel, Mark Scheuerell, Curtis Roegner, Paul Chittaro, Tom Cooney, Kurt Fresh, David Teel, Lance Campbell, George McCabe, Regan McNatt, and Mary Rameriez. We are also appreciative of the many volunteers who have participated in field sampling: Jessica Randall, Meegan Coran, Katria Van Raay, Sterling Hines-Elzinga, and Michael Beakes. We would also like to thank Daniel Schindler, Kerry Naish, and Tim Essington for their time and intellectual contributions, and Jeffery Cordell and Beth Armbrust for their assistance with Table 3. NR 98 TC 2 Z9 2 U1 9 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD MAR PY 2016 VL 39 IS 2 BP 542 EP 559 DI 10.1007/s12237-015-0002-z PG 18 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA DC9GA UT WOS:000369527900017 ER PT J AU Dillon, RL Tinsley, CH Madsen, PM Rogers, EW AF Dillon, Robin L. Tinsley, Catherine H. Madsen, Peter M. Rogers, Edward W. TI Organizational Correctives for Improving Recognition of Near-Miss Events SO JOURNAL OF MANAGEMENT LA English DT Article DE decisions under risk; uncertainty; individual decision making; decision making ID SAFETY CLIMATE; OUTCOME BIAS; JUDGMENT; DECISION; ERRORS; COMMUNICATION; INFORMATION; PERFORMANCE; TECHNOLOGY; ATTENTION AB Despite decades of research on organizational disasters, such events remain too common. Scholars across a wide range of disciplines agree that one of the most viable approaches to preventing such catastrophes is to observe near-misses and use them to identify and eliminate problems before they produce large failures. Unfortunately, these important warning signals are too often ignored because they are perceived as successes rather than near-misses (or near-failures). In this article, we explore the effect of a climate for safety on improving near-miss recognition by observers, hypothesizing that safety climate increases the level of attention that observers pay to the underlying processes that generate an apparently successful outcome. Using a database of anomaly reports for unmanned NASA missions, we show that organizational safety climate and project stakes increase reporting rates of near-misses, both independently and interactively. In follow-up laboratory experiments, we confirm the independence of these effects to improve the likelihood that people differentiate near-miss outcomes from successes. Results suggest organizations can increase the recognition of near-misses with organizational messages that emphasize a positive safety climate. C1 [Dillon, Robin L.; Tinsley, Catherine H.] Georgetown Univ, Washington, DC 20057 USA. [Madsen, Peter M.] Brigham Young Univ, Provo, UT 84602 USA. [Rogers, Edward W.] NASA, Goddard Space Flight Ctr, Washington, DC USA. RP Dillon, RL (reprint author), Georgetown Univ, McDonough Sch Business, Washington, DC 20057 USA. EM rld9@georgetown.edu FU NASA/USRA Center for Program/Project Management Research [05115-C1P1-01]; National Science Foundation [CMS-0555805]; University of Southern California's Center for Risk and Economic Analysis of Terrorism Events [122947] FX This article was accepted under the editorship of Deborah E. Rupp. This study has been funded in part by the NASA/USRA Center for Program/Project Management Research (Sub-agreement 05115-C1P1-01), the National Science Foundation (CMS-0555805), and the University of Southern California's Center for Risk and Economic Analysis of Terrorism Events (Sub-award 122947), whose support is gratefully acknowledged. We would also like to thank the anonymous reviewers and associate editor for providing deep and substantive comments that made this article much better. NR 58 TC 0 Z9 0 U1 10 U2 22 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0149-2063 EI 1557-1211 J9 J MANAGE JI J. Manag. PD MAR PY 2016 VL 42 IS 3 BP 671 EP 697 DI 10.1177/0149206313498905 PG 27 WC Business; Psychology, Applied; Management SC Business & Economics; Psychology GA DD6VL UT WOS:000370062500005 ER PT J AU Swanson, RC Langer, S AF Swanson, R. C. Langer, S. TI Steady-state laminar flow solutions for NACA 0012 airfoil SO COMPUTERS & FLUIDS LA English DT Article DE Navier-Stokes; Steady state; Laminar; Runge-Kutta; Preconditioner ID NAVIER-STOKES EQUATIONS; EULER EQUATIONS; CONVERGENCE ACCELERATION; DIFFERENCE; SCHEMES AB In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 x 10(6) grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Swanson, R. C.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. [Langer, S.] Deutsch Zentrum Luft & Raumfahrt, DLR, Lilienthalpl 7, D-38108 Braunschweig, Germany. RP Swanson, RC (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. EM r.c.swanson10@gmail.com; Stefan.langer@dir.de NR 43 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD MAR 1 PY 2016 VL 126 BP 102 EP 128 DI 10.1016/j.compfluid.2015.11.009 PG 27 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA DC8JM UT WOS:000369465700008 ER PT J AU Manne, J Webster, CR AF Manne, Jagadeeshwari Webster, Christopher R. TI Determination of spectral parameters for lines targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity rover SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Tunable diode laser spectroscopy; Self-broadening; Helium broadening; N-2 broadening ID BROADENING COEFFICIENTS; SPECTROSCOPIC DATABASE; MARTIAN ATMOSPHERE; RATIO MEASUREMENTS; ISOTOPE RATIOS; MU-M; CM(-1); POSITIONS; WATER; H2O AB Molecular line parameters of line strengths, self- and foreign-broadening by nitrogen, carbon dioxide and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of water and carbon dioxide at 2.78 mu m targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. Good agreement is found by comparison with the line parameters reported in the HITRAN-2012 database. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Manne, Jagadeeshwari; Webster, Christopher R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Manne, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM esha.manne@jpl.nasa.gov FU NASA FX The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA J. Manne also acknowledges support from NASA in the form of a postdoctoral fellowship. (C)2015 California Institute of Technology. Government sponsorship acknowledged. NR 42 TC 0 Z9 0 U1 6 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2016 VL 171 BP 28 EP 38 DI 10.1016/j.jqsrt.2015.11.019 PG 11 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DC8KB UT WOS:000369467200004 ER PT J AU Ham, SH Kato, S Rase, FG AF Ham, Seung-Hee Kato, Seiji Rase, Fred G. TI Correction of ocean hemispherical spectral reflectivity for longwave irradiance computations SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Longwave; Irradiance; Directional reflectivity; Hemispherical reflectivity; Reflectivity correction factor ID MODEL SEA-SURFACE; MULTIPLE-SCATTERING; RADIATIVE-TRANSFER; OPTICAL-CONSTANTS; EMISSIVITY; WATER; APPROXIMATION; REFLECTANCE; RECIPROCITY; MEDIA AB This study demonstrates that upward infrared irradiances have negative modeling biases when the ocean hemispherical spectral reflectivity is used. The biases increase with increasing air temperature and with decreasing water vapor amount. Spectral biases in the surface upward longwave irradiance from 4 mu m to 80 mu m are between -0.4 and 0 W m(-2) mu m(-1), while longwave broadband biases are between -2 and -1 W m(-2). The negative biases stem from surface-reflected component because an irradiance radiative transfer model ignores the correlation between the downward radiance and directional reflectivity. Therefore, a positive correction factor to the hemispherical spectral reflectivity for the irradiance radiative transfer model is needed. A simple parameterization using an anisotropic factor for downward radiances is developed to correct reflectivity for various atmospheric conditions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ham, Seung-Hee; Rase, Fred G.] Sci Syst & Applicat Inc SSAI, Hampton, VA USA. [Ham, Seung-Hee; Kato, Seiji] NASA, Langley Res Ctr, 100 NASA Rd,Mailstop 420, Hampton, VA 23665 USA. RP Ham, SH (reprint author), NASA, Langley Res Ctr, 100 NASA Rd,Mailstop 420, Hampton, VA 23665 USA. EM seung-hee.ham@nasa.gov FU Clouds and the Earth's Radiant Energy System (CERES); NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) project FX This work is supported by the Clouds and the Earth's Radiant Energy System (CERES), and NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) project. NR 25 TC 1 Z9 1 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2016 VL 171 BP 57 EP 65 DI 10.1016/j.jqsrt.2015.12.003 PG 9 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DC8KB UT WOS:000369467200007 ER PT J AU Tavana, M Liu, WR Elmore, P Petry, FE Bourgeois, BS AF Tavana, Madjid Liu, Weiru Elmore, Paul Petry, Frederick E. Bourgeois, Brian S. TI A practical taxonomy of methods and literature for managing uncertain spatial data in geographic information systems SO MEASUREMENT LA English DT Article DE Uncertainty; Spatial data; Geographic information systems; Taxonomy; Literature review ID BELIEF FUNCTIONS; FUZZY-SETS; COMBINATION; FRAMEWORK AB Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Tavana, Madjid] La Salle Univ, Distinguished Chair Business Analyt, Business Syst & Analyt Dept, Philadelphia, PA 19141 USA. [Tavana, Madjid] Univ Paderborn, Fac Business Adm & Econ, Business Informat Syst Dept, D-33098 Paderborn, Germany. [Liu, Weiru] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast, Antrim, North Ireland. [Elmore, Paul; Petry, Frederick E.; Bourgeois, Brian S.] Stennis Space Ctr, Naval Res Lab, Geospatial Sci & Technol Branch, Stennis Space Ctr, MS USA. RP Tavana, M (reprint author), La Salle Univ, Distinguished Chair Business Analyt, Business Syst & Analyt Dept, Philadelphia, PA 19141 USA. EM tavana@lasalle.edu; w.liu@qub.ac.uk; paul.elmore@nrlssc.navy.mil; fred.petry@nrlssc.navy.mil; bsb2@nrlssc.navy.mil FU U.S. Naval Research Laboratory [N000141310505] FX This research is supported in part by the U.S. Naval Research Laboratory grant number N000141310505. The authors would like to thank the anonymous reviewers and the editor for their insightful comments and suggestions. NR 51 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-2241 EI 1873-412X J9 MEASUREMENT JI Measurement PD MAR PY 2016 VL 81 BP 123 EP 162 DI 10.1016/j.measurement.2015.12.007 PG 40 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DB1IP UT WOS:000368262100013 ER PT J AU Rubincam, DP AF Rubincam, David Parry TI Tidal friction in the Earth-Moon system and Laplace planes: Darwin redux SO ICARUS LA English DT Article DE Tides; solid body Moon Earth Satellites; dynamics Rotational dynamics ID LUNAR ORBIT; CLIMATE FRICTION; EVOLUTION; DISSIPATION; OBLIQUITY; SATELLITE; ORIGIN; MANTLE; OCEAN; CORE AB The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than similar to 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2 degrees. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages. C1 [Rubincam, David Parry] NASA, Planetary Geodynam Lab, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rubincam, DP (reprint author), NASA, Planetary Geodynam Lab, Solar Syst Explorat Div, Goddard Space Flight Ctr, Code 698,Bldg 34,Room S280, Greenbelt, MD 20771 USA. EM David.P.Rubincam@nasa.gov NR 49 TC 2 Z9 2 U1 2 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 24 EP 43 DI 10.1016/j.icarus.2015.10.024 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300003 ER PT J AU Clancy, RT Wolff, MJ Lefevre, F Cantor, BA Malin, MC Smith, MD AF Clancy, R. Todd Wolff, Michael J. Lefevre, Franck Cantor, Bruce A. Malin, Michael C. Smith, Michael D. TI Daily global mapping of Mars ozone column abundances with MARCI UV band imaging SO ICARUS LA English DT Article DE Mars; atmosphere Photochemistry Ultraviolet observations Atmospheres; chemistry Mars ID ULTRAVIOLET SPECTROMETER EXPERIMENT; GENERAL-CIRCULATION MODEL; TES NADIR DATA; MARTIAN ATMOSPHERE; WATER-VAPOR; MGS TES; NORTHERN-HEMISPHERE; INTERANNUAL VARIABILITY; SEASONAL-VARIATIONS; HYDROGEN-PEROXIDE AB Since November of 2006, The Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) has obtained multiple-filter daily global images of Mars centered upon a local time (LT) of 3 pm. Ultraviolet imaging bands placed within (260 nm) and longward (320 nm) of Hartley band (240-300 nm) ozone (O-3) absorption support retrievals of atmospheric ozone columns, with detection limits (similar to 1 mu m-atm) appropriate to mapping elevated O-3 abundances at low latitudes around Mars aphelion, and over mid-to-high latitudes during fall/winter/spring seasons. MARCI O-3 maps for these regions reveal the detailed spatial (similar to 1 degrees lat/long, for 8 x 8 pixel binned resolution) and temporal (daily, with substantial LT coverage at pole) behaviors of water vapor saturation conditions that force large variations in water vapor photolysis products (HOx-OH, HO2, and H) responsible for the catalytic destruction of O-3 in the Mars atmosphere. A detailed description of the MARCI O-3 data set, including measurement and retrieval characteristics, is provided in conjunction with comparisons to Mars Express SPICAM ozone measurements (Perrier, S. et al. [2006].J. Geophys. Res. (Planets) 111) and LMD GCM simulated O-3 abundances (Lefevre, F. 12004].J. Geophys. Res. (Planets) 109). Presented aspects of the MARCI ozone mapping data set include aphelion increases in low latitude O-3, dynamically evolving high latitude O-3 maxima associated with planetary waves and weather fronts during northern early spring, and distinctive winter/spring O-3 and CO increases within the Hellas Basin associated with transport of condensationenhanced south polar air mass. Comparisons of coincident MARC! measurements and LMD simulations for ice cloud and O-3 columns are considered in the context of potential heterogeneous photochemical processes (Lefevre, F. [2008]. Nature 454,971-975), which are not strongly evidenced in the MARCI observations. Modest interannual variations are exhibited, most notably a 20% reduction in aphelion low latitude O-3 columns following the 2007 perihelic global dust storm. (c) 2015 Elsevier Inc. All rights reserved. C1 [Clancy, R. Todd; Wolff, Michael J.] Space Sci Inst, Boulder, CO 80301 USA. [Lefevre, Franck] Lab Atmospheres Milieux Observat Spatiales, Paris, France. [Cantor, Bruce A.; Malin, Michael C.] Malin Space Sci Syst, San Diego, CA 92191 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Clancy, RT (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205,UCB 564, Boulder, CO 80301 USA. EM clancy@spacescience.org FU NASA MRO mission [06-0152] FX We are indebted to the excellent MRO and MARCI operations staff for the collection and processing of UV imaging observations presented here. Contract support for this work was provided by the NASA MRO mission (under MSSS sub-contract 06-0152). NR 74 TC 1 Z9 1 U1 4 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 112 EP 133 DI 10.1016/j.icarus.2015.11.016 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300009 ER PT J AU Dello Russo, N Vervack, RJ Kawakita, H Cochran, A McKay, AJ Harris, WM Weaver, HA Lisse, CM DiSanti, MA Kobayashi, H Biver, N Bockeleee-Morvan, D Crovisier, J Opitom, C Jehin, E AF Dello Russo, N. Vervack, R. J., Jr. Kawakita, H. Cochran, A. McKay, A. J. Harris, W. M. Weaver, H. A. Lisse, C. M. DiSanti, M. A. Kobayashi, H. Biver, N. Bockelee-Morvan, D. Crovisier, J. Opitom, C. Jehin, E. TI The compositional evolution of C/2012 S1 (ISON) from ground-based high-resolution infrared spectroscopy as part of a worldwide observing campaign SO ICARUS LA English DT Article DE Comets; Infrared observations; Spectroscopy ID O1 HALE-BOPP; COMET 103P/HARTLEY 2; HYAKUTAKE C/1996 B2; OORT CLOUD COMETS; ORTHO-PARA RATIO; VOLATILE COMPOSITION; ROTATIONAL TEMPERATURES; CHEMICAL-COMPOSITION; ORGANIC COMPOSITION; WATER PRODUCTION AB Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/triangle lambda similar to 2.5 x 10(4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on UT 2013 October 26 and 28 with NIRSPEC at the W.M. Keck Observatory, and UT 2013 November 19 and 20 with CSHELL at the NASA IRTF. H2O was detected on all dates, with production rates increasing markedly from (8.7 +/- 1.5) x 10(27) molecules s(-1) on October 26 (R-h = 1.12 AU) to (3.7 +/- 0.4) x 10(29) molecules s(-1) on November 20 (R-h = 0.43 AU). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 h. C2H6, CH3OH and CH4 abundances in ISON are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Rh = 1.07 AU) and November 19 (R-h = 0.46 AU). The high mixing ratios of H2CO/CH3OH and C2H2/C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically new comet to sampling more pristine natal material as the outer processed layer was increasingly eroded and the thermal wave propagated into the nucleus as the comet approached perihelion for the first time. On November 19 and 20, the spatial distribution for dust appears asymmetric and enhanced in the antisolar direction, whereas spatial distributions for volatiles (excepting CN) appear symmetric with their peaks slightly offset in the sunward direction compared to the dust. Spatial distributions for H2O, HCN, C2H6, C2H2, and H2CO on November 19 show no definitive evidence for significant contributions from extended sources; however, broader spatial distributions for NH3 and OCS may be consistent with extended sources for these species. Abundances of HCN and C2H2 on November 19 and 20 are insufficient to account for reported abundances of CN and C-2 in ISON near this time. Differences in HCN and CN spatial distributions are also consistent with HCN as only a minor source of CN in [SON on November 19 as the spatial distribution of CN in the coma suggests a dominant distributed source that is correlated with dust and not volatile release. The spatial distributions for NH3 and NH2 are similar, suggesting that NH3 is the primary source of NH2 with no evidence of a significant dust source of NH2; however, the higher production rates derived for NH3 compared to NH2 on November 19 and 20 remain unexplained. This suggests a more complete analysis that treats NH2 as a distributed source and accounts for its emission mechanism is needed for future work. (c) 2015 Elsevier Inc. All rights reserved. C1 [Dello Russo, N.; Vervack, R. J., Jr.; Weaver, H. A.; Lisse, C. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Kawakita, H.; Kobayashi, H.] Kyoto Sangyo Univ Motoyama, Koyama Astron Observ, Kita Ku, Kyoto 6038555, Japan. [Cochran, A.; McKay, A. J.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Harris, W. M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [DiSanti, M. A.] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Biver, N.; Bockelee-Morvan, D.; Crovisier, J.] Observ Paris, LESIA, F-92195 Meudon, France. [Opitom, C.; Jehin, E.] Univ Liege, FRS FNRS, Inst Astrophys & Geophys, B-4000 Liege, Belgium. RP Dello Russo, N (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Dello Russo, Neil/G-2727-2015; Lisse, Carey/B-7772-2016; Vervack, Ronald/C-2702-2016; Weaver, Harold/D-9188-2016 OI Dello Russo, Neil/0000-0002-8379-7304; Lisse, Carey/0000-0002-9548-1526; Vervack, Ronald/0000-0002-8227-9564; FU NASA Science Mission Directorate, Planetary Astronomy Program [NNX-08AE38A]; W.M. Keck Foundation; NASA PAST Program; NASA PATM Program; NASA SSW Program [NNX15AH29G] FX Data were obtained at the NASA Infrared Telescope Facility operated by the University of Hawaii under cooperative agreement number NNX-08AE38A with the NASA Science Mission Directorate, Planetary Astronomy Program. Data presented herein were also obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. We thank NASA, the Comet ISON Observing Campaign (CIOC), and the IRTF and Keck Observatories for setting aside campaign time for these observations, and the former NASA PAST and PATM Programs for their financial support of this work. MAD thanks the NASA SSW Program, grant NNX15AH29G for support. We note that all raw data from observations presented here are publicly available through IRTF and Keck archives. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 96 TC 3 Z9 3 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 152 EP 172 DI 10.1016/j.icarus.2015.11.030 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300012 ER PT J AU Yin, A Zuza, AV Pappalardo, RT AF Yin, An Zuza, Andrew V. Pappalardo, Robert T. TI Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn's moon Enceladus SO ICARUS LA English DT Article DE Enceladus; Ices; Mechanical properties; Tectonics ID HIMALAYAN-TIBETAN OROGEN; SOUTH POLAR TERRAIN; TECTONIC EVOLUTION; CRUSTAL RHEOLOGY; SEA-ICE; CASSINI; MODEL; FAILURE; ORIGIN AB We present the first mechanical analysis based on realistic rheology and boundary conditions on the formation of evenly spaced strike-slip faults. Two quantitative models employing the stress-shadow concept, widely used for explaining extensional-joint spacing, are proposed in this study: (1) an empirically based stress-rise-function model that simulates the brittle-deformation process during the formation of evenly spaced parallel strike-slip faults, and (2) an elastic plate model that relates fault spacing to the thickness of the fault-hosting elastic medium. When applying the models for the initiation and development of the tiger-stripe fractures (TSF) in the South Polar Terrain (SPT) of Enceladus, the mutually consistent solutions of the two models, as constrained by the mean spacing of the TSF at similar to 35 km, requires that the brittle ice-shell thickness be similar to 30 km, the elastic thickness be similar to 0.7 km, and the cohesive strength of the SPT ice shell be similar to 30 kPa. However, if the brittle and elastic models are decoupled and if the ice-shell cohesive strength is on the order of similar to 1 MPa, the brittle ice shell would be on the order of similar to 10 km. (c) 2015 Elsevier Inc. All rights reserved. C1 [Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Inst Planets & Exoplanets, Los Angeles, CA 90095 USA. [Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yin, A (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. EM yin@ess.ucla.edu; Robert.Pappalardo@jpl.nasa.gov OI Zuza, Andrew/0000-0001-6130-5121 FU Tectonics Program, US National Science Foundation; National Aeronautics and Space Administration FX An extremely thorough review and very constructive comments by Stephanie Johnston have greatly improved the scientific content and clarity of the original manuscript. This work also benefits greatly from several stimulating discussions and more importantly encouragement from Dr. Carolyn Porco throughout the project. She careful reading and comments led to further clarification of the concepts and interpretations presented in this study. AY's work on the mechanics of strike-slip fault is supported by a grant from the Tectonics Program, US National Science Foundation. Work by RTP was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 51 TC 2 Z9 2 U1 2 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 204 EP 216 DI 10.1016/j.icarus.2015.10.027 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300015 ER PT J AU McKay, AJ Kelley, MSP Cochran, AL Bodewits, D DiSanti, MA Dello Russo, N Lissee, CM AF McKay, Adam J. Kelley, Michael S. P. Cochran, Anita L. Bodewits, Dennis DiSanti, Michael A. Dello Russo, Neil Lissee, Carey M. TI The CO2 abundance in Comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jager as measured with Spitzer SO ICARUS LA English DT Article DE Comets Comets; coma Comets; composition ID FORBIDDEN OXYGEN LINES; CAMERON-BAND EMISSION; MU-M SPECTRUM; SPACE-TELESCOPE; P1 GARRADD; HALE-BOPP; 2011-2012 APPARITION; H2O; 103P/HARTLEY; MOLECULES AB Carbon dioxide is one of the most abundant ices present in comets and is therefore important for understanding cometaiy composition and activity. We present analysis of observations of CO2 and [O I] emission in three comets to measure the CO2 abundance and evaluate the possibility of employing observations of [O I] emission in comets as a proxy for CO2. We obtained NIR imaging sensitive to CO2 of comets C/2012 1(1 (PanSTARRS), C/2012 1(5 (LINEAR), and 290P/Jager with the IRAC instrument on Spitzer. We acquired observations of [O I] emission in these comets with the ARCES echelle spectrometer mounted on the 3.5-m telescope at Apache Point Observatory and observations of OH with the Swift observatory (PanSTARRS) and with Keck HIRES (Jager). The CO2/H2O ratios derived from the Spitzer images are 12.6 +/- 1.3% (PanSTARRS), 28.9 +/- 3.6% (LINEAR), and 31.3 +/- 4.2% (Jager). These abundances are derived under the assumption that contamination from CO emission is negligible. The CO2 abundance for PanSTARRS is close to the average abundance measured in comets at similar heliocentric distance to date, while the abundances measured for LINEAR and Jager are significantly larger than the average abundance. From the coma morphology observed in PanSTARRS and the assumed gas expansion velocity, we derive a rotation period for the nucleus of about 9.2 h. Comparison of H2O production rates derived from ARCES and Swift data, as well as other observations, suggest the possibility of sublimation from icy grains in the inner coma. We evaluate the possibility that the [O I] emission can be employed as a proxy for CO2 by comparing CO2/H2O ratios inferred from the [O I] lines to those measured directly by Spitzer. We find that for PanSTARRS we can reproduce the observed CO2 abundance to an accuracy of similar to 20%. For LINEAR and Jager, we were only able to obtain upper limits on the CO2 abundance inferred from the [O I] lines. These upper limits are consistent with the CO2 abundances measured by Spitzer. (c) 2015 Elsevier Inc. All rights reserved. C1 [McKay, Adam J.; Cochran, Anita L.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Kelley, Michael S. P.; Bodewits, Dennis] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [DiSanti, Michael A.] NASA, Goddard Ctr Astrobiol, GSFC, Greenbelt, MD 20771 USA. [DiSanti, Michael A.] Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Dello Russo, Neil; Lissee, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP McKay, AJ (reprint author), Univ Texas Austin, McDonald Observ, 1 Univ Stn, Austin, TX 78712 USA. EM amckay@astro.as.utexas.edu; msk@astro.umd.edu; anita@astro.as.utexas.edu; dennis@astro.umd.edu; Michael.A.Disanti@nasa.gov; neil.dello.russo@jhuapl.edu; carey.lisse@jhuapl.edu RI Dello Russo, Neil/G-2727-2015; OI Dello Russo, Neil/0000-0002-8379-7304; Lisse, Carey/0000-0002-9548-1526 FU NASA Planetary Atmospheres Program [NNX08A052G]; NASA FX We thank two anonymous reviewers whose comments improved the quality of this manuscript. This work was supported by the NASA Planetary Atmospheres Program through Grant No. NNX08A052G. This work is partially based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We thank the APO and Keck observing staff for their invaluable help in conducting the observations. We are thankful to Matthew Knight for productive discussions concerning the coma morphology seen at optical wavelengths for C/2012 K1 (PanSTARRS), as well as David Schleicher, Michael Combi, and Erika Gibb for sharing their unpublished production rates. We thank John Barentine, Jurek Krzesinski, Chris Churchill, Pey Lian Lim, Paul Strycker, and Doug Hoffman for developing and optimizing the ARCES IRAF reduction script used to reduce the ARCES data. We would also like to acknowledge the JPL Horizons System, which was used to generate ephemerides for nonsidereal tracking of the comets during the ARCES observations, and the SIMBAD database, which was used for selection of reference stars. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 58 TC 1 Z9 1 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 249 EP 260 DI 10.1016/j.icarus.2015.11.004 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300018 ER PT J AU Poppe, AR Fatemi, S Garrick-Bethell, I Hemingway, D Holmstrom, M AF Poppe, Andrew R. Fatemi, Shahab Garrick-Bethell, Ian Hemingway, Doug Holmstrom, Mats TI Solar wind interaction with the Reiner Gamma crustal magnetic anomaly: Connecting source magnetization to surface weathering SO ICARUS LA English DT Article DE Moon; surface Magnetic fields Solar wind ID LUNAR-PROSPECTOR; MOON; FIELDS; INSTRUMENT; MERCURY; ORIGIN; SWIRLS AB Remanent magnetization has long been known to exist in the lunar crust, yet both the detailed topology and ultimate origin(s) of these fields remains uncertain. Some crustal magnetic fields coincide with surface albedo anomalies, known as lunar swirls, which are thought to be formed by differential surface weathering of the regolith underlying crustal fields due to deflection of incident solar wind protons. Here, we present results from a three-dimensional, self-consistent, plasma hybrid model of the solar wind interaction with two different possible source magnetizations for the Reiner Gamma anomaly. We characterize the plasma interaction with these fields and the resulting spatial distribution of charged-particle weathering of the surface and compare these results to optical albedo measurements of Reiner Gamma. The model results constrain the proposed source magnetizations for Reiner Gamma and suggest that vertical crustal magnetic fields are required to produce the observed "dark lanes." (c) 2015 Elsevier Inc. All rights reserved. C1 [Poppe, Andrew R.; Fatemi, Shahab] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Poppe, Andrew R.; Fatemi, Shahab] NASA, Solar Syst Explorat Res Virtual Inst, Ames Res Ctr, Mountain View, CA 94035 USA. [Garrick-Bethell, Ian; Hemingway, Doug] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Garrick-Bethell, Ian] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi Do, South Korea. [Hemingway, Doug] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Holmstrom, Mats] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. RP Poppe, AR (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM poppe@ssl.berkeley.edu RI Hemingway, Douglas/F-6332-2014 OI Hemingway, Douglas/0000-0001-5617-207X FU NASA's Solar System Exploration Research Virtual Institute [NNX14AG16A]; National Research Foundation (NRF) - Ministry of Education of Korea FX A.R.P. and S.F. gratefully acknowledge support from NASA's Solar System Exploration Research Virtual Institute, grant #NNX14AG16A. This publication is SSERVI contribution #SSERVI-2015-160. The authors acknowledge the International Space Science Institute (ISSI) for hosting a workshop series that in part inspired this work as well as two reviewers for constructive and helpful comments. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This research was conducted using resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N), Umea University, Sweden. The LROC data are publicly available from the NASA PDS Imaging Node (http://pds-imaging.jpl.nasa.gov/). I.G.-B. was partially supported by the BK21 PLUS program through the National Research Foundation (NRF), funded by the Ministry of Education of Korea. NR 47 TC 4 Z9 4 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 261 EP 266 DI 10.1016/j.icarus.2015.11.005 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300019 ER PT J AU Carli, C Roush, TL Pedrazzi, G Capaccioni, F AF Carli, C. Roush, T. L. Pedrazzi, G. Capaccioni, F. TI Visible and Near-Infrared (VNIR) reflectance spectroscopy of glassy igneous material: Spectral variation, retrieving optical constants and particle sizes by Hapke model SO ICARUS LA English DT Article DE Mineralogy; Regoliths; Spectroscopy ID INTERSTELLAR SILICATE MINERALOGY; PLANETARY REGOLITH ANALOGS; BIDIRECTIONAL REFLECTANCE; LABORATORY PHOTOMETRY; VARIABILITY; MIXTURES; DENSITY; MERCURY; STEPS; ICE AB Silicate glasses with igneous compositions can be an important constituent of planetary surface material via effusive volcanism or impact cratering processes. Different planetary surfaces are mapped with hyper-spectrometers in the VNIR, and in this spectral range crystal field absorptions are useful in discriminating iron bearing silicate components. For these reasons studying glassy materials, and their optical constants, is an important effort to better document and understand spectral features of Solar System silicate crusts where glasses are present, but may be difficult to map. In our work we present a set of four different synthetic glasses, produced under terrestrial conditions, with variable composition and in particular an increasing amount of iron. The VNIR spectra show, for all the compositions, two absorptions are present near 1.1 and 1.9 mu m but reflectance, slope and absorption shape varies with composition. We measured the reflectance of different particle sizes of the samples and used radiative transfer models to estimate the optical constants as a function of wavelength. We used the retrieved optical constants to estimate the particle size from the measured reflectances and the results fall within the known sieve range. We qualitatively discuss the effect of the shape and distribution of particles on the application of the model. (c) 2015 Elsevier Inc. All rights reserved. C1 [Carli, C.; Capaccioni, F.] IAPS INAF, Rome, Italy. [Roush, T. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pedrazzi, G.] Univ Parma, Biophys & Med Phys Unit, Dept Neurosci, I-43100 Parma, Italy. RP Carli, C (reprint author), IAPS INAF, Rome, Italy. EM cristian.carli@iaps.inaf.it OI carli, cristian/0000-0002-4674-1029 FU Agenzia Spaziale Italiana, SIMBIO-SYS project FX This work was financially supported by Agenzia Spaziale Italiana, SIMBIO-SYS project. NR 42 TC 1 Z9 1 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 267 EP 278 DI 10.1016/j.icarus.2015.10.032 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300020 ER PT J AU Farnocchia, D Chesley, SR Micheli, M Delamere, WA Heyd, RS Tholen, DJ Giorgini, JD Owen, WM Tamppari, LK AF Farnocchia, D. Chesley, S. R. Micheli, M. Delamere, W. A. Heyd, R. S. Tholen, D. J. Giorgini, J. D. Owen, W. M. Tamppari, L. K. TI High precision comet trajectory estimates: The Mars flyby of C/2013 A1 (Siding Spring) SO ICARUS LA English DT Article DE Comets Comets; dynamics Data reduction techniques Orbit determination ID NONGRAVITATIONAL ACCELERATIONS; DISTANCES; CATALOG; FORCES; DUST AB The Mars flyby of C/2013 A1 (Siding Spring) represented a unique opportunity for imaging a long-period comet and resolving its nucleus and rotation state. Because of the small encounter distance and the high relative velocity, the goal of successfully observing C/2013 A1 from the Mars orbiting spacecraft posed strict accuracy requirements on the comet's ephemeris. These requirements were hard to meet, as comets are known for being highly unpredictable: astrometric observations can be significantly biased and nongravitational perturbations affect comet trajectories. Therefore, even prior to the encounter, we remeasured a couple of hundred astrometric images obtained with ground-based and Earth-orbiting telescopes. We also observed the comet with the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera on 2014 October 7. In particular, these HiRISE observations were decisive in securing the trajectory and revealed that out-of-plane nongravitational perturbations were larger than previously assumed. Though the resulting ephemeris predictions for the Mars encounter allowed observations of the comet from the Mars orbiting spacecraft, post-encounter observations show a discrepancy with the pre-encounter trajectory. We reconcile this discrepancy by employing the Rotating Jet Model, which is a higher fidelity model for cometary nongravitational perturbations and provides an estimate of C/2013 A1's spin pole (RA, DEC) = (63 degrees, 14 degrees). (c) 2015 Elsevier Inc. All rights reserved. C1 [Farnocchia, D.; Chesley, S. R.; Giorgini, J. D.; Owen, W. M.; Tamppari, L. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Micheli, M.] ESA NEO Coordinat Ctr, I-00044 Frascati, RM, Italy. [Micheli, M.] SpaceDyS Srl, I-56023 Cascina, PI, Italy. [Micheli, M.] INAF IAPS, I-00133 Rome, RM, Italy. [Delamere, W. A.] Delamere Support Serv, Boulder, CO 80304 USA. [Heyd, R. S.] Univ Arizona, Planetary Image Res Lab, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Tholen, D. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Farnocchia, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Davide.Farnocchia@jpl.nasa.gov OI Micheli, Marco/0000-0001-7895-8209 FU NASA FX Part of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 29 TC 1 Z9 1 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 279 EP 287 DI 10.1016/j.icarus.2015.10.035 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300021 ER PT J AU Jenniskens, P Nenon, Q Albers, J Gural, PS Haberman, B Holman, D Morales, R Grigsby, BJ Samuels, D Johannink, C AF Jenniskens, P. Nenon, Q. Albers, J. Gural, P. S. Haberman, B. Holman, D. Morales, R. Grigsby, B. J. Samuels, D. Johannink, C. TI The established meteor showers as observed by CAMS SO ICARUS LA English DT Article DE Meteors Comets; dust Interplanetary dust Near-Earth Objects Asteroids ID LONG-PERIOD COMET; TAURID COMPLEX; RADAR OBSERVATIONS; FAINT METEORS; 3200 PHAETHON; ORBIT-RADAR; 2005 UD; STREAM; ORIGIN; ANDROMEDIDS AB Orbital elements are presented for 70 of the 95 meteor showers considered "established" by the International Astronomical Union. From 2010 October 21 until 2013 March 31, the low-light-video based Cameras for Allsky Meteor Surveillance project (CAMS) measured a total of 110,367 meteoroid trajectories and pre-atmospheric orbits from mostly -2 to +4 magnitude meteors with a precision of <2 degrees (median 0.4 degrees) in apparent radiant direction and <10% (median 0.9%) in speed. This paper discusses how the already established showers manifest in this data. Newly resolved components in the radiant distribution shed light on the dynamics and physical lifetime of parent bodies and their meteoroids. Many multicomponent showers have associated parent bodies with nodal lines not much rotated from that of their meteoroids (Encke Complex, Machholz Complex, Phaethon Complex, and now also the 169P/NEAT Complex). These may result from a parent body disruption cascade, with the disruption-generated meteoroids fading on the short timescale of a few hundred to a few thousand years. In particular, the Northern and Southern Taurids of the Encke Complex are decomposed here into 19 individual streams. Seven of these streams can be paired with mostly sub-km sized potential parent body asteroids that move in 2P/Encke-like orbits that span the narrow semi-major axis range of 2.20-2.35 AU. The meteoroids in these Taurid streams do not survive long enough for the nodal line to fully rotate relative to that of their parent body. (c) 2015 Elsevier Inc. All rights reserved. C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Holman, D.; Grigsby, B. J.] SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gural, P. S.] Leidos, Chantilly, VA 20151 USA. [Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA. [Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA. [Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany. RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS, supported CAMS operations over the years and assisted in the ongoing data reduction effort. In particular, we thank Beth Johnson, Kathryn Steakley, and Meridel Phillips of the SETI REU program, who supported the data reduction effort. Michael Borden and Kevin Newman of the NASA Ames Exploration Academy helped develop the CAMS hardware. Fremont Peak State Park and Lick Observatory generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 95 TC 7 Z9 7 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 331 EP 354 DI 10.1016/j.icarus.2015.09.013 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300025 ER PT J AU Jenniskens, P Nenon, Q Gural, PS Albers, J Haberman, B Johnson, B Holman, D Morales, R Grigsby, BJ Samuels, D Johannink, C AF Jenniskens, P. Nenon, Q. Gural, P. S. Albers, J. Haberman, B. Johnson, B. Holman, D. Morales, R. Grigsby, B. J. Samuels, D. Johannink, C. TI CAMS confirmation of previously reported meteor showers SO ICARUS LA English DT Article DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects; Asteroids ID STATISTICAL-MODEL; ORBIT-RADAR; STREAM; CAMERAS; CATALOG; SEARCH AB Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.(c) 2015 Elsevier Inc. All rights reserved. C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Grigsby, B. J.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gural, P. S.] Leidos, Chantily, VA 20151 USA. [Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA. [Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA. [Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany. RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS hardware, supported CAMS operations over the years, and assisted in the ongoing data reduction effort. Fremont Peak State Park and Lick Observatory generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 59 TC 4 Z9 4 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 355 EP 370 DI 10.1016/j.icarus.2015.08.014 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300026 ER PT J AU Jenniskens, P Nenon, Q AF Jenniskens, Peter Nenon, Quentin TI CAMS verification of single-linked high-threshold D-criterion detected meteor showers SO ICARUS LA English DT Article DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects; Asteroids ID STREAM; CAMERAS; RADIANT AB From preliminary 2010-2011 results of the Cameras for Allsky Meteor Surveillance (CAMS) meteoroid orbit survey, which were combined with published 2007-2009 SonotaCo video meteor network data, 55 new meteor showers (##448-502) were identified and added to the IAU Working List on Meteor Showers in 2012. These showers were identified based on an automated single-linked D-SH-criterion analysis of a combined 105,000 orbits with high-threshold (a low D-SH < 0.05), but low acceptable sample size (>= 6 members). Three more years of CAMS and four more years of SonotaCo observations have now increased the meteoroid orbit database four fold. The earlier detections are verified by searching for number density enhancements in drift-corrected radiant and orbital element maps. Twenty showers are detected in both surveys and are now certain to exist. Median orbital elements are presented. Not detected in this manner were 19% of the fast V-g > 40 km/s showers, 54% of the V-g = 18-40 km/s showers, and 90% of the slow V-g < 18 km/s showers.(c) 2015 Elsevier Inc. All rights reserved. C1 [Jenniskens, Peter; Nenon, Quentin] SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, Peter] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS, supported CAMS operations over the years and assisted in the ongoing data reduction effort. Fremont Peak State Park and Lick Observatory (University of California Santa Cruz) generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 28 TC 1 Z9 1 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 371 EP 383 DI 10.1016/j.icarus.2015.10.004 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300027 ER PT J AU Jenniskens, P Nenon, Q Gural, PS Albers, J Haberman, B Johnson, B Morales, R Grigsby, BJ Samuels, D Johannink, C AF Jenniskens, P. Nenon, Q. Gural, P. S. Albers, J. Haberman, B. Johnson, B. Morales, R. Grigsby, B. J. Samuels, D. Johannink, C. TI CAMS newly detected meteor showers and the sporadic background SO ICARUS LA English DT Article DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects; Asteroids ID RADIANT DISTRIBUTION; ORBITAL DISTRIBUTION; DORMANT COMETS; STREAMS; CAMERAS; CLOUD AB The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from similar to 700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large similar to 7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grun et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 10(4)-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve. The meteors assigned to the various showers are identified in the CAMS Meteoroid Orbit Database 2.0 submitted to the IAU Meteor Data Center, and can be accessed also at http://cams.seti.org.(c) 2015 Published by Elsevier Inc. C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Johnson, B.; Grigsby, B. J.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 95035 USA. [Gural, P. S.] Leidos, Chantilly, VA 20151 USA. [Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA. [Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA. [Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany. RP Jenniskens, P (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS, supported CAMS operations over the years, and assisted in the ongoing data reduction effort. We also thank David Nesvorny for helpful discussions during the preparation of this manuscript. Fremont Peak State Park and Lick Observatory generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 48 TC 2 Z9 2 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 384 EP 409 DI 10.1016/j.icarus.2015.11.009 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300028 ER PT J AU Zhang, X West, RA Banfield, D Yung, YL AF Zhang, X. West, R. A. Banfield, D. Yung, Y. L. TI Stratospheric aerosols on Jupiter from Cassini observations (vol 226, pg 159, 2013) SO ICARUS LA English DT Correction C1 [Zhang, X.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [West, R. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Banfield, D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Yung, Y. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Zhang, X (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM xiz@ucsc.edu NR 1 TC 0 Z9 0 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 433 EP 434 DI 10.1016/j.icarus.2015.12.002 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300031 ER PT J AU Sainio, S Jiang, H Caro, MA Koehne, J Lopez-Acevedo, O Koskinen, J Meyyappan, M Laurila, T AF Sainio, S. Jiang, H. Caro, M. A. Koehne, J. Lopez-Acevedo, O. Koskinen, J. Meyyappan, M. Laurila, T. TI Structural morphology of carbon nanofibers grown on different substrates SO CARBON LA English DT Article ID AUGMENTED-WAVE METHOD; THIN-FILMS; NANOTUBES; SYSTEM; NANOSTRUCTURES; REASSESSMENT; ELECTRODES; SENSORS; LAYER; NI AB We present a detailed microstructural study comparing conventional carbon nanofibers (CNFs) and novel carbon hybrid CNF materials. The hybrid consists of CNFs grown on top of tetrahedral amorphous carbon (ta-C) thin films on silicon with nickel catalyst and Ti adhesion layers. The conventional CNFs were grown on silicon with nickel catalyst and Cr layers. Even though CNFs can be grown in both systems by tip growth, the micro-and nanoscale features are very different in the two systems. The crystalline structure of the CNF in the hybrid case changes from horizontal alignment to near-vertical alignment from the root to the tip and no bamboo structure is observed. The results show that micro-and nanoscale properties of CNFs grown under the same process conditions can be readily altered by using a sacrificial ta-C layer below the metallic layer to prevent the alloying of Ni with carbide-forming metals used as adhesion promoters and to act as an additional carbon source during the pre-annealing stage. The experimental results are further rationalized with the aid of assessed thermodynamic data and simulations based on density functional theory (DFT) with van der Waals (vdW) corrections. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sainio, S.; Caro, M. A.; Laurila, T.] Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo, Finland. [Jiang, H.] Aalto Univ, Sch Sci, Dept Appl Phys, Espoo, Finland. [Caro, M. A.; Lopez-Acevedo, O.] Aalto Univ, Sch Sci, Dept Appl Phys, COMP Ctr Excellence Computat Nanosci, Espoo, Finland. [Koskinen, J.] Aalto Univ, Sch Chem Technol, Dept Mat Sci, Espoo, Finland. [Koehne, J.; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Laurila, T (reprint author), Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo, Finland. EM tomi.laurila@aalto.fi RI Koskinen, Jari/J-3886-2014; Lopez-Acevedo, Olga/B-9349-2009; Laurila, Tomi/B-2076-2013; OI Lopez-Acevedo, Olga/0000-0003-4489-6841; Caro, Miguel A./0000-0001-9304-4261 FU Academy of Finland [285015, 285526]; Finnish Funding Agency for Innovation [211488] FX The authors acknowledge funding from the Academy of Finland (grant numbers 285015 and 285526) and the Finnish Funding Agency for Innovation (grant number 211488). Michael E. Salmon at Evans Analytical is acknowledged for the FIB sample preparation. Dr. V. Protopopova is acknowledged for fabrication of the Ti + ta-C + Ni substrates for the CNF experiments. This work made use of the Aalto University Nanomicroscopy Center facilities. The computational resources for this project were provided by the Finnish Center for Scientific Computing (CSC) through the Sisu supercomputer. M.A.C. would like to thank Torbjorn Bjorkman for discussions regarding the use of van der Waals DFT functionals. NR 45 TC 6 Z9 6 U1 7 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD MAR PY 2016 VL 98 BP 343 EP 351 DI 10.1016/j.carbon.2015.11.021 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CZ6TD UT WOS:000367233000042 ER PT J AU Adirosi, E Baldini, L Roberto, N Gatlin, P Tokay, A AF Adirosi, E. Baldini, L. Roberto, N. Gatlin, P. Tokay, A. TI Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements SO ATMOSPHERIC RESEARCH LA English DT Article DE Precipitation; Drop size distribution; Vertical profile of reflectivity ID DOPPLER RADAR; VELOCITY; PRECIPITATION; AUSTRALIA; DARWIN; REFLECTIVITY; DROPS; CLOUD AB A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions. (C) 2015 Elsevier B.V. All rights reserved. C1 [Adirosi, E.; Baldini, L.; Roberto, N.] Ist Sci Atmosfera & Clima, CNR, I-00133 Rome, Italy. [Adirosi, E.] Univ Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00185 Rome, Italy. [Gatlin, P.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Tokay, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tokay, A.] Univ Maryland, Baltimore, MD 21201 USA. RP Adirosi, E (reprint author), Ist Sci Atmosfera & Clima, Consiglio Nazl Ric, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM elisa.adirosi@artov.isac.cnr.it RI Measurement, Global/C-4698-2015; OI Baldini, Luca/0000-0001-5217-1205; Gatlin, Patrick/0000-0001-9345-1457 NR 35 TC 2 Z9 2 U1 5 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD MAR 1 PY 2016 VL 169 SI SI BP 404 EP 415 DI 10.1016/j.atmosres.2015.07.002 PN B PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CZ1QA UT WOS:000366879200003 ER PT J AU Thurai, M Gatlin, PN Bringi, VN AF Thurai, M. Gatlin, P. N. Bringi, V. N. TI Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data SO ATMOSPHERIC RESEARCH LA English DT Article DE Stratiform and convective rain; 2D video disdrometer data; Vertically pointing Doppler radar; UHF profiler; GPM ground validation campaign ID DUAL-POLARIZED RADAR; SPECTRA; PROFILER; CLOUDS; PRECIPITATION; PARAMETERS; DSD AB A technique for separating stratiform and convective rain types using the characteristics of two of the main drop size distribution (DSD) parameters is presented. The method was originally developed based on observations from dual-frequency profiler and dual-polarization radar observations in Darwin, Australia. In this paper, we will present the testing of the method using data from 2D video disdrometers (2DVD) from two very different locations, namely, Ontario, Canada, and Huntsville, Alabama, USA One-minute DSDs from 2DVD are used as input to a gamma-fitting procedure and our separation technique uses the fitted values of log(10)(N-W) and D-0 (where N-W is the scaling parameter and Do is the median volume diameter) and an "index" to quantify where the points lie in the log(10)(N-W) versus D-0 domain. For the Ontario location, the output of the classification is compared with simultaneous observations from a collocated, vertically pointing, X-band Doppler radar. A "bright-band" detection algorithm is used to classify each height profile as either stratiform or convective, depending on whether or not a clearly defined melting layer is present at an expected height. If present, the maximum reflectivity within the melting layer and the corresponding height are determined. Similar testing is carried out for two events in Huntsville and compared with observations from a collocated UHF profiler (with Doppler capability). Additional case studies are required, but these results indicate our separation technique seems to be applicable to many different locations and climatologies based on previously published data. (C) 2015 Elsevier B.V. All rights reserved. C1 [Thurai, M.; Bringi, V. N.] Colorado State Univ, Ft Collins, CO 80523 USA. [Gatlin, P. N.] NASA, MSFC, Huntsville, AL USA. RP Thurai, M (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM merhala@engr.colostate.edu RI Measurement, Global/C-4698-2015; OI Gatlin, Patrick/0000-0001-9345-1457 FU NASA Precipitation Measurement Mission (PMM), NASA [NNX10AJ11G] FX We wish to thank Dr. David Hudak and Peter Rodriguez of Environment Canada for supplying the VertiX data from Ontario and to Dr. Kevin Knupp for the UHF profiler data at the University of Alabama in Huntsville. The bright-band detection software for the VertiX data was written by Dr. C. Williams. Support for this work was provided by the NASA Precipitation Measurement Mission (PMM), NASA Grant Award, NNX10AJ11G. NR 32 TC 4 Z9 4 U1 1 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD MAR 1 PY 2016 VL 169 SI SI BP 416 EP 423 DI 10.1016/j.atmosres.2015.04.011 PN B PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CZ1QA UT WOS:000366879200004 ER PT J AU Li, X Tang, W Reynolds, AP Tayon, WA Brice, CA AF Li, X. Tang, W. Reynolds, A. P. Tayon, W. A. Brice, C. A. TI Strain and texture in friction extrusion of aluminum wire SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE Friction extrusion; Marker insert technique; Aluminum; Crystallographic texture ID MATERIAL FLOW; METAL FLOW; CHIPS; STRENGTH AB Friction extrusion is a solid-state process that can produce high quality, fully consolidated wire or rod directly from metal chips, powder or billet. However, little is understood regarding the variation in material flow or extrusion strain with changes in processing parameters. Extrusion strain level may be of great import in determining whether or not the charge is fully consolidated. In order to explore the material deformation behavior during this process, flow visualization experiments were conducted using AA6061 billets with AA2195 as a marker insert. Variations in material flow during a single extrusion were documented and correlated with changes in grain size, which has previously been correlated with extrusion temperature. Marker shape was used to make an approximation of imposed strain during the extrusion as a function of relative extrusion temperature. Also, tests using various extrusion forces and die rotation speeds were conducted. The influence of extrusion parameters on deformation evolution was elucidated and discussed. Grain orientation analysis conducted using electron backscatter diffraction showed a fully recrystallized microstructure with weak texture indicating that recrystallization was likely a static process occurring after passage of the wire through the die. Key findings include: (1) longitudinal strain is solely a function of overall reduction (2) in plane shear strain decreases with increasing extrusion temperature, and (3) with increasing extrusion temperature, friction extrusion becomes similar to normal extrusion. (C) 2015 Elsevier B.V. All rights reserved. C1 [Li, X.; Tang, W.; Reynolds, A. P.] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Tayon, W. A.; Brice, C. A.] NASA Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. RP Li, X (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM li292@email.sc.edu; tangw@ornl.gov; craig.a.brice@lmco.com RI Tang, Wei/E-3613-2017; OI Tang, Wei/0000-0002-9274-9574; Li, Xiao/0000-0003-2096-298X FU NASA-EPSCoR grant [520879-USC]; NSF [CMMI-1266043] FX This work was supported by NASA-EPSCoR grant #520879-USC and NSF Grant CMMI-1266043. NR 24 TC 0 Z9 0 U1 2 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD MAR PY 2016 VL 229 BP 191 EP 198 DI 10.1016/j.jmatprotec.2015.09.012 PG 8 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA CZ4XJ UT WOS:000367106000019 ER PT J AU Halekas, JS Brain, DA Ruhunusiri, S McFadden, JP Mitchell, DL Mazelle, C Connerney, JEP Harada, Y Hara, T Espley, JR DiBraccio, GA Jakosky, BM AF Halekas, J. S. Brain, D. A. Ruhunusiri, S. McFadden, J. P. Mitchell, D. L. Mazelle, C. Connerney, J. E. P. Harada, Y. Hara, T. Espley, J. R. DiBraccio, G. A. Jakosky, B. M. TI Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID WIND MAGNETOSHEATH RELEASES; AMPTE ARTIFICIAL COMET; MARTIAN MAGNETOSPHERE; MAGNETIC-FIELD; VENUS; OSCILLATIONS; SIMULATIONS; DYNAMICS; FLUXES; IONS AB We present initial Mars Atmosphere and Volatile EvolutioN (MAVEN) observations and preliminary interpretation of bulk plasma loss from Mars. MAVEN particle and field measurements show that planetary heavy ions derived from the Martian atmosphere can escape in the form of discrete coherent structures or "clouds." The ions in these clouds are unmagnetized or weakly magnetized, have velocities well above the escape speed, and lie directly downstream from magnetic field amplifications, suggesting a "snowplow" effect. This postulated escape process, similar to that successfully used to explain the dynamics of active gas releases in the solar wind and terrestrial magnetosheath, relies on momentum transfer from the shocked solar wind protons to the planetary heavy ions, with the electrons and magnetic field acting as intermediaries. Fluxes of planetary ions on the order of 10(7) cm(-2) s(-1) can escape by this process, and if it operates regularly, it could contribute 10-20% of the current ion escape from Mars. C1 [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. [Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [McFadden, J. P.; Mitchell, D. L.; Harada, Y.; Hara, T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mazelle, C.] Inst Rech Astrophys & Planetol, Toulouse, France. [Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Halekas, JS (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. EM jasper-halekas@uiowa.edu OI Halekas, Jasper/0000-0001-5258-6128 FU NASA; Mars Exploration Program; CNES FX We thank NASA and the Mars Exploration Program for supporting the MAVEN mission and this research. Analysis of SWEA data was partially supported by CNES. A portion of the research at NASA GSFC was supported by the NASA postdoctoral program. The MAVEN data used in this study are all archived in the Planetary Data System. NR 34 TC 2 Z9 2 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2016 VL 43 IS 4 BP 1426 EP 1434 DI 10.1002/2016GL067752 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DH9IF UT WOS:000373109000003 ER PT J AU Oberlander-Hayn, S Gerber, EP Abalichin, J Akiyoshi, H Kerschbaumer, A Kubin, A Kunze, M Langematz, U Meul, S Michou, M Morgenstern, O Oman, LD AF Oberlaender-Hayn, Sophie Gerber, Edwin P. Abalichin, Janna Akiyoshi, Hideharu Kerschbaumer, Andreas Kubin, Anne Kunze, Markus Langematz, Ulrike Meul, Stefanie Michou, Martine Morgenstern, Olaf Oman, Luke D. TI Is the Brewer-Dobson circulation increasing or moving upward? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID STRATOSPHERIC WATER-VAPOR; CHEMISTRY-CLIMATE MODEL; CHANGING CLIMATE; GENERAL-CIRCULATION; TROPOPAUSE HEIGHT; SIMULATIONS; OZONE; TROPOSPHERE; AIR; AGE AB The meridional circulation of the stratosphere, or Brewer-Dobson circulation (BDC), is projected to accelerate with increasing greenhouse gas (GHG) concentrations. The acceleration is typically quantified by changes in the tropical upward mass flux (F-trop) across a given pressure surface. Simultaneously, models project a lifting of the entire atmospheric circulation in response to GHGs; notably, the tropopause rises about a kilometer over this century. In this study, it is shown that most of the BDC trend is associated with the rise in the circulation. Using a chemistry-climate model (CCM), F-trop trends across 100 hPa are contrasted with those across the tropopause: while F-trop at 100 hPa increases 1-2 %/decade, the mass flux entering the atmosphere above the tropopause actually decreases. Similar results are found for other CCMs, suggesting that changes in the BDC may better be described as an upward shift of the circulation, as opposed to an increase, with implications for the mechanism and stratosphere-troposphere exchange. C1 [Oberlaender-Hayn, Sophie; Abalichin, Janna; Kerschbaumer, Andreas; Kubin, Anne; Kunze, Markus; Langematz, Ulrike; Meul, Stefanie] Free Univ Berlin, Inst Meteorol, Berlin, Germany. [Gerber, Edwin P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USA. [Akiyoshi, Hideharu] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan. [Kerschbaumer, Andreas] Senatsverwaltung Stadtentwicklung & Umwelt, Berlin, Germany. [Kubin, Anne] Leibniz Inst Tropospharenforsch TROPOS, Leipzig, Germany. [Michou, Martine] Ctr Natl Rech Meteorol, Meteofrance, GAME CNRM, Toulouse, France. [Morgenstern, Olaf] Natl Inst Water & Atmospher Res, Wellington, New Zealand. [Oman, Luke D.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. RP Oberlander-Hayn, S (reprint author), Free Univ Berlin, Inst Meteorol, Berlin, Germany. EM sophie.oberlaender@met.fu-berlin.de RI Oman, Luke/C-2778-2009; OI Oman, Luke/0000-0002-5487-2598; Kunze, Markus/0000-0002-9608-1823; Morgenstern, Olaf/0000-0002-9967-9740 FU DFG Research Unit [FOR 1095, LA1025/13-2, LA1025/14-2, LA1025/15-2]; DFG [LA 1025/19-1]; BMBF MiKlip project [01LP1168A]; project StratoClim [603557]; U.S. NSF [AGS-1264195]; Royal Society Marsden Fund; NIWA; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [2-1303] FX This work was supported by the DFG Research Unit FOR 1095 (SHARP) grants LA1025/13-2, LA1025/14-2, and LA1025/15-2, the DFG project ISOLAA (LA 1025/19-1), the BMBF MiKlip project (01LP1168A), the project StratoClim (603557), and the U.S. NSF (AGS-1264195). We thank the North-German Supercomputing Alliance (HLRN) and ECMWF computing center, the modeling groups, and the WCRP SPARC/IGAC CCMI for organizing and coordinating the model activity. O.M. acknowledges funding by the Royal Society Marsden Fund and by NIWA under its Government-funded, core research. NIES' research was supported by the Environment Research and Technology Development Fund (2-1303) of the Ministry of the Environment, Japan. Data for this paper are available at the Freie Universitat Berlin SHARP data archive under GRL_BDC_increase_or_shift_Oberlaender-Hayn_2015.tar. NR 38 TC 3 Z9 3 U1 3 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2016 VL 43 IS 4 BP 1772 EP 1779 DI 10.1002/2015GL067545 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DH9IF UT WOS:000373109000047 ER PT J AU Li, JLF Lee, WL Waliser, D Wang, YH Yu, JY Jiang, XN L'Ecuyer, T Chen, YC Kubar, T Fetzer, E Mahakur, M AF Li, J. -L. F. Lee, Wei-Liang Waliser, Duane Wang, Yi-Hui Yu, Jia-Yuh Jiang, Xianan L'Ecuyer, Tristan Chen, Yi-Chun Kubar, Terry Fetzer, Eric Mahakur, M. TI Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using A-Train observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cloud radiation; GCM; heating rate; dynamics ID COMMUNITY ATMOSPHERE MODEL; MADDEN-JULIAN OSCILLATION; FORECAST SYSTEM; PART I; PARAMETERIZATION; SENSITIVITY; FORMULATION; SIMULATION; DESIGN; CLOUDS AB This study characterizes biases in water vapor, dynamics, shortwave (SW) and longwave (LW) radiative properties in contemporary global climate models (GCMs) against observations over tropical Pacific Ocean. The observations are based on Atmospheric Infrared Sounder for water vapor, CloudSat 2B-FLXHR-LIDAR for LW and SW radiative heating profiles, and radiative flux from Clouds and the Earth's Radiant Energy System products. The model radiative heating profiles are adopted from the coupled and uncoupled National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) and joint Year of Tropical Convection (YOTC)/Madden Julian Oscillation (MJO) Task Force-Global Energy and Water Cycle Experiment Atmospheric System Studies (GASS) Multi-Model Physical Processes Experiment (YOTC-GASS). The results from the model evaluation for YOTC-GASS and NCAR CESM1 demonstrate a number of systematic radiative biases. These biases include excessive outgoing LW radiation and excessive SW surface radiative fluxes, in conjunction with a radiatively unstable atmosphere with excessive LW cooling in the upper troposphere over convectively active areas, such as the Intertropical Convergence Zone/South Pacific Convergence Zone (ITCZ/SPCZ) and warm pool. Using sensitivity experiments with the NCAR-uncoupled/NCAR-coupled CESM1, we infer that these biases partly result from the interactions between falling snow and radiation that are missing in most contemporary GCMs (e.g., YOTC-GASS, Coupled Model Intercomparison Project 3 (CMIP)3, and Atmospheric Model Intercomparison Project 5 (AMIP5)/CMIP5). A number of biases in the YOTC-GASS model simulations are consistent with model biases in CMIP3, AMIP5/CMIP5, and NCAR-uncoupled/NCAR-coupled model simulation without snow-radiation interactions. These include excessive upper level convection and low level downward motion with outflow from ITCZ/SPCZ. This generates weaker low-level trade winds and excessive precipitation in the Central Pacific Trade wind regions. The excessive LW radiative cooling in NCAR-coupled/NCAR-uncoupled GCM simulations is reduced by 10-20% with snow-radiative effects considered. C1 [Li, J. -L. F.; Waliser, Duane; Wang, Yi-Hui; Chen, Yi-Chun; Fetzer, Eric] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lee, Wei-Liang] Acad Sinica, RCEC, Taipei 115, Taiwan. [Yu, Jia-Yuh] Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan. [Jiang, Xianan; Kubar, Terry] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [L'Ecuyer, Tristan] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA. [Mahakur, M.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. RP Li, JLF (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM Juilin.F.Li@jpl.nasa.gov RI L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU National Aeronautics and Space Administration (NASA) [NNH12ZDA001N ROSES, NNH12ZDA001NCCST]; NASA; National Science Council [NSC100-2119-M-001-029-MY5, NSC102-2111-M-001-009]; NASA [NAS5-99327]; NASA Jet Propulsion Laboratory [1439268] FX We thank Jiundar Chern (GSFC/NASA), Graeme Stephens, and Qing Yue at Jet Propulsion Laboratory for the useful comments and discussions. The contribution by J.L.L. and D.E.W. to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under contracts of NNH12ZDA001N ROSES 2012, Earth Science Program, the Modeling, Analysis, and Prediction (MAP), and ATMOS COMP 2013 (NNH12ZDA001NCCST) with the National Aeronautics and Space Administration (NASA). This work has been supported in part by the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) programs. The second author (W.L.L.) was supported by National Science Council under contracts NSC100-2119-M-001-029-MY5 and NSC102-2111-M-001-009. The development of the 2B-FLXHR-LIDAR algorithm (TSL) was supported through NASA research grant NAS5-99327 and by CloudSat subaward 1439268 from the NASA Jet Propulsion Laboratory. The 2B-FLXHR-LIDAR flux and heating rate algorithm [L'Ecuyer et al., 2011; Henderson et al., 1997] makes use of liquid and ice water content estimates from the CloudSat cloud profiling radar (CPR) [http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr- lidar]. The most up-to-date Radiative Longwave Upward at TOA (RLUT) and Radiative Shortwave Upward at TOA (RSUT) fluxes are available from the CERES Energy Balanced and Filled (EBAF) product (CERES_EBAF-TOA_Ed2.6r) [Loeb et al., 2012, 2008]. The CERES EBAF product includes the latest instrument calibration improvements, algorithm enhancements, and other updates. CERES TOA SW and LW fluxes in the EBAF product are used for the average global TOA fluxes in this study. The data can be found at http://ceres.larc.nasa.gov/order_data.php. Specific Humidity Profile: The AIRS L3 products used here are monthly averaged, gridded Level 2 (L2) retrievals [Olsen et al., 2012] of specific humidity profiles with 1 degrees x 1 degrees horizontal resolution. The AIRS is available at http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings. The long-term mean precipitation is obtained from the Global Precipitation Climatology Project (GPCP) [Huffman et al., 2002]. As it is a merging of several satellite observations (e.g., infrared and microwave) and in situ measurements, it is representative of the late twentieth century. The GPCP data are available at http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. The dynamical fields are from the European Centre for Medium-Range Forecasts (ECMWF) Interim reanalysis [Dee and Uppala, 2008] and can be downloaded at http://www.ecmwf.int/products/data/archive/descriptions/ei/. All the data are also available at obs4MIPs at https://www.earthsystemcog.org/projects/obs4mips/satellite_products. NR 55 TC 0 Z9 0 U1 4 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1621 EP 1636 DI 10.1002/2015JD023587 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900016 ER PT J AU Khatri, P Takamura, T Nakajima, T Estelles, V Irie, H Kuze, H Campanelli, M Sinyuk, A Lee, SM Sohn, BJ Pandithurai, G Kim, SW Yoon, SC Martinez-Lozano, JA Hashimoto, M Devara, PCS Manago, N AF Khatri, P. Takamura, T. Nakajima, T. Estelles, V. Irie, H. Kuze, H. Campanelli, M. Sinyuk, A. Lee, S. -M. Sohn, B. J. Pandithurai, G. Kim, S. -W. Yoon, S. C. Martinez-Lozano, J. A. Hashimoto, M. Devara, P. C. S. Manago, N. TI Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE single scattering albedo ID OPTICAL-PROPERTIES; RADIANCE MEASUREMENTS; MICROPHYSICAL PROPERTIES; INVERSION ALGORITHM; RETRIEVAL; RADIOMETER; SUN; CALIBRATION; IRRADIANCE; IMPACTS AB SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (). The disk scan method (scan area: 1 degrees x1 degrees area of solar disk) of SKYNET is noted to produce stable wavelength-dependent values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks. C1 [Khatri, P.; Takamura, T.; Irie, H.; Kuze, H.; Manago, N.] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan. [Nakajima, T.; Hashimoto, M.] JAXA, Earth Observat Res Ctr, Tsukuba, Ibaraki, Japan. [Estelles, V.; Martinez-Lozano, J. A.] Univ Valencia, Dept Earth Phys & Thermodynam, E-46100 Burjassot, Spain. [Campanelli, M.] CNR, Inst Atmospher Sci & Climate, Rome, Italy. [Sinyuk, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lee, S. -M.; Sohn, B. J.; Kim, S. -W.; Yoon, S. C.] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea. [Pandithurai, G.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. [Devara, P. C. S.] Univ Haryana, Amity Ctr Ocean Atmospher Sci & Technol, Gurgaon, India. RP Khatri, P (reprint author), Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan. EM pradeep@restaff.chiba-u.jp RI MARTINEZ-LOZANO, JOSE ANTONIO/B-6986-2015; Nakajima, Teruyuki/H-2370-2013 OI MARTINEZ-LOZANO, JOSE ANTONIO/0000-0002-5158-5112; Nakajima, Teruyuki/0000-0002-9042-504X FU JST/CREST/EMS, Japan; MEXT, Japan; Japan Society for the promotion of science (JSPS) [24510007]; European Regional Development Fund [GV/2014/046, CGL2011-24290, CGL2010-18782, CGL2012-33294, PROMETEUII/2014/058] FX This research was supported by "Improvement of Terrestrial Science Data Availability and Development of the Energy Demand Models for a Cooperative Distributed Energy Management System" project of JST/CREST/EMS, Japan, "Virtual Laboratory for Diagnosing the Earth's Climate System" program of MEXT, Japan, and the Japan Society for the promotion of science (JSPS) research grant (grant 24510007). The participation of the University of Valencia was possible thanks to projects from the Valencia Autonomous Government, the Spanish Ministry of Economy and Competitiveness, and the European Regional Development Fund (GV/2014/046, CGL2011-24290, CGL2010-18782, CGL2012-33294, and PROMETEUII/2014/058). All AERONET data used in this study are available at http://aeronet.gsfc.nasa.gov/. SKYNET data of Chiba (Japan), Pune (India), and Seoul (Korea) corresponding to Skyrad. pack (version 4.2) are available at http://atmos2.cr.chiba-u.jp/skynet, and those for Valencia (Spain) at http://www.euroskyrad.net/index.html. SKYNET data corresponding to other versions of Skyrad. pack can be available from the first author upon request (pradeep@restaff.chiba-u.jp). Thanks to the three reviewers for their constructive comments and suggestions on an earlier version of the manuscript. NR 37 TC 1 Z9 1 U1 4 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1859 EP 1877 DI 10.1002/2015JD023976 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900030 ER PT J AU Zhang, YZ Wang, YH Chen, G Smeltzer, C Crawford, J Olson, J Szykman, J Weinheimer, AJ Knapp, DJ Montzka, DD Wisthaler, A Mikoviny, T Fried, A Diskin, G AF Zhang, Yuzhong Wang, Yuhang Chen, Gao Smeltzer, Charles Crawford, James Olson, Jennifer Szykman, James Weinheimer, Andrew J. Knapp, David J. Montzka, Denise D. Wisthaler, Armin Mikoviny, Tomas Fried, Alan Diskin, Glenn TI Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE NOx; 1-D model; boundary layer; vertical distribution; ozone production rate; satellite retrieval ID OZONE MONITORING INSTRUMENT; TROPOSPHERIC NO2; ATMOSPHERIC OXIDATION; CONVECTIVE-TRANSPORT; SATELLITE RETRIEVALS; COLUMN RETRIEVAL; LIGHTNING NOX; NORTH-AMERICA; CLOSURE-MODEL; MEXICO-CITY AB An often used assumption in air pollution studies is a well-mixed boundary layer (BL), where pollutants are evenly distributed. Because of the difficulty in obtaining vertically resolved measurements, the validity of the assumption has not been thoroughly evaluated. In this study, we use more than 200 vertical profiles observed in the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) aircraft campaign in July 2011 to examine the vertical distributions of pollutants over the Washington-Baltimore area. While many long-lived species are well mixed in daytime, the observed average vertical profile of NOx shows a large negative gradient with increasing altitude in the BL. Our analysis suggests that the magnitude of the NOx gradient is highly sensitive to atmospheric stability. We investigate how parameterizations of the BL and land-surface processes impact vertical profiles in a 1-D chemical transport model, using three BL schemes (Asymmetric Convective Model version 2 (ACM2), Yonsei University (YSU), and Mellor-Yamada-Janjic (MYJ)) and two land-surface schemes (Noah and Rapid Update Cycle (RUC)). The model reasonably reproduces the median vertical profiles of NOx under different BL stability conditions within 30% of observations, classified based on potential temperature gradient and BL height. Comparisons with NOx observations for individual vertical profiles reveal that while YSU performs better in the turbulent and deep BL case, in general, ACM2 (RMSE=2.0ppbv) outperforms YSU (RMSE=2.5ppbv) and MYJ (RMSE=2.2ppbv). Results also indicate that the land-surface schemes in the Weather Research and Forecasting (WRF) model have a small impact on the NOx gradient. Using model simulations, we analyze the impact of BL NOx gradient on the calculation of the ozone production rate and satellite NO2 retrieval. We show that using surface measurements and the well-mixed BL assumption causes a similar to 45% high bias in the estimated BL ozone production rate and that the variability of NO2 vertical profiles is responsible for 5-10% variability in the retrieved NO2 tropospheric vertical columns. C1 [Zhang, Yuzhong; Wang, Yuhang; Smeltzer, Charles] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Chen, Gao; Crawford, James; Olson, Jennifer; Szykman, James; Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Szykman, James] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Weinheimer, Andrew J.; Knapp, David J.; Montzka, Denise D.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Wisthaler, Armin] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria. [Wisthaler, Armin; Mikoviny, Tomas] Univ Oslo, Dept Chem, Oslo, Norway. [Mikoviny, Tomas] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Fried, Alan] Univ Colorado, Boulder, CO 80309 USA. RP Zhang, YZ (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM yzhang425@gatech.edu FU NASA ACMAP program; NASA DISCOVER-AQ program; NASA Postdoctoral Program at the Langley Research Center; NASA FX The data for this paper are available at the DISCOVER-AQ data archive (http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html). The research was supported by the NASA ACMAP and DISCOVER-AQ programs. We thank David Parrish for his discussion with Y.W. that led to the analyses reported here. PTR-MS measurements of VOCs were supported by the Austrian Federal Ministry for Transport, Innovation, and Technology (BMVIT) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). The work of T.M. was supported by an appointment to the NASA Postdoctoral Program at the Langley Research Center administered by Oak Ridge Associated Universities through a contract with NASA. NR 66 TC 4 Z9 4 U1 8 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1922 EP 1934 DI 10.1002/2015JD024203 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900034 ER PT J AU Aydin, M Campbell, JE Fudge, TJ Cuffey, KM Nicewonger, MR Verhulst, KR Saltzman, ES AF Aydin, M. Campbell, J. E. Fudge, T. J. Cuffey, K. M. Nicewonger, M. R. Verhulst, K. R. Saltzman, E. S. TI Changes in atmospheric carbonyl sulfide over the last 54,000years inferred from measurements in Antarctic ice cores SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE carbonyl sulfide; COS; ice cores; ice core gas records; gross primary productivity ID CYCLE CHANGES; GAS-EXCHANGE; CO2; HOLOCENE; RECORD; SYNCHRONIZATION; CONSTRAINTS; CIRCULATION; METHANE; MODEL AB We measured carbonyl sulfide (COS) in air extracted from ice core samples from the West Antarctic Ice Sheet (WAIS) Divide, Antarctica, with the deepest sample dated to 54,300years before present. These are the first ice core COS measurements spanning the Last Glacial Maximum (LGM), the last glacial/interglacial transition, and the early Holocene. The WAIS Divide measurements from the LGM and the last transition are the first COS measurements in air extracted from full clathrate (bubble-free) ice. This study also includes new COS measurements from Taylor Dome, Antarctica, including some in bubbly glacial ice that are concurrent with the WAIS Divide data from clathrate glacial ice. COS hydrolyzes in ice core air bubbles, and the recovery of an atmospheric record requires correcting for this loss. The data presented here suggest that the in situ hydrolysis of COS is significantly slower in clathrate ice than in bubbly ice. The clathrate ice measurements are corrected for the hydrolysis loss during the time spent as bubbly ice only. The corrected WAIS Divide record indicates that atmospheric COS was 250-300parts per trillion (ppt) during the LGM and declined by 80-100ppt during the last glacial/interglacial transition to a minimum of 160-210ppt at the beginning of the Holocene. This decline was likely caused by an increase in the gross primary productivity of terrestrial plants, with a possible contribution from a reduction in ocean sources. COS levels were above 300ppt in the late Holocene, indicating that large changes in the COS biogeochemical cycle occurred during the Holocene. C1 [Aydin, M.; Nicewonger, M. R.; Verhulst, K. R.; Saltzman, E. S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Campbell, J. E.] Univ Calif, Environm Engn, Merced, CA USA. [Fudge, T. J.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Cuffey, K. M.] Univ Calif Berkeley, Dept Geol, Berkeley, CA 94720 USA. [Verhulst, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Aydin, M (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. EM maydin@uci.edu FU NSF Division of Polar Programs [PLR-1043780, PLR-0944197]; NASA FX We thank Gary Clow for borehole temperature measurements at Taylor Dome and WAIS Divide. We thank the scientists, the drillers, and the support personnel that contributed to the realization of the drilling projects at Taylor Dome and WAIS Divide. We thank UCI undergraduates Spencer Hernandez, Tina Ho, Vincent Hong, Mihai Leonte, Nancy Phu, and Michael Mori for their help with ice core gas extraction and analysis. We thank the three anonymous reviewers for their valuable comments. This work was supported by the NSF Division of Polar Programs grant PLR-1043780 for M.A., M.R.N., K.R.V., and E.S.S., and PLR-0944197 for T.J.F. T.J.F. also received support form the NASA Earth and Space Science Fellowship. Data presented in this paper can be accessed via the Antarctic Glaciological Data Center (https://nsidc.org/agdc). NR 38 TC 4 Z9 4 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1943 EP 1954 DI 10.1002/2015JD024235 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900036 ER PT J AU Pollack, IB Homeyer, CR Ryerson, TB Aikin, KC Peischl, J Apel, EC Campos, T Flocke, F Hornbrook, RS Knapp, DJ Montzka, DD Weinheimer, AJ Riemer, D Diskin, G Sachse, G Mikoviny, T Wisthaler, A Bruning, E MacGorman, D Cummings, KA Pickering, KE Huntrieser, H Lichtenstern, M Schlager, H Barth, MC AF Pollack, I. B. Homeyer, C. R. Ryerson, T. B. Aikin, K. C. Peischl, J. Apel, E. C. Campos, T. Flocke, F. Hornbrook, R. S. Knapp, D. J. Montzka, D. D. Weinheimer, A. J. Riemer, D. Diskin, G. Sachse, G. Mikoviny, T. Wisthaler, A. Bruning, E. MacGorman, D. Cummings, K. A. Pickering, K. E. Huntrieser, H. Lichtenstern, M. Schlager, H. Barth, M. C. TI Airborne quantification of upper tropospheric NOx production from lightning in deep convective storms over the United States Great Plains SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Lightning; nitrogen oxides; NOx production per flash; Deep Convective Clouds and Chemistry Experiment; upper tropospheric chemistry ID NITROGEN-FIXATION; RADAR OBSERVATIONS; TRANSPORT MODELS; HIGH-SENSITIVITY; BOUNDARY-LAYER; NEW-MEXICO; JULY 10; THUNDERSTORMS; SYSTEM; OZONE AB The reported range for global production of nitrogen oxides (NOx=NO+NO2) by lightning remains large (e.g., 32 to 664mol NOx flash(-1)), despite incorporating results from over 30 individual laboratory, theoretical, and field studies since the 1970s. Airborne and ground-based observations from the Deep Convective Clouds and Chemistry experiment in May and June 2012 provide a new data set for calculating moles of NOx produced per lightning flash, P(NOx), in thunderstorms over the United States Great Plains. This analysis utilizes a combination of in situ observations of storm inflow and outflow from three instrumented aircraft, three-dimensional spatial information from ground-based radars and satellite observations, and spatial and temporal information for intracloud and cloud-to-ground lightning flashes from ground-based lightning mapping arrays. Evaluation of two analysis methods (e.g., a volume-based approach and a flux-based approach) for converting enhancements in lightning-produced NOx from volume-based mixing ratios to moles NOx flash(-1) suggests that both methods equally approximate P(NOx) for storms with elongated anvils, while the volume-based approach better approximates P(NOx) for storms with circular-shaped anvils. Results from the more robust volume-based approach for three storms sampled over Oklahoma and Colorado during DC3 suggest a range of 142 to 291 (average of 194) moles NOx flash(-1) (or 117-332mol NOx flash(-1) including uncertainties). Although not vastly different from the previously reported range for storms occurring in the Great Plains (e.g., 21-465mol NOx flash(-1)), results from this analysis of DC3 storms offer more constrained upper and lower limits for P(NOx) in this geographical region. C1 [Pollack, I. B.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Homeyer, C. R.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Ryerson, T. B.; Aikin, K. C.; Peischl, J.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Aikin, K. C.; Peischl, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Apel, E. C.; Campos, T.; Flocke, F.; Hornbrook, R. S.; Knapp, D. J.; Montzka, D. D.; Weinheimer, A. J.; Barth, M. C.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Riemer, D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Diskin, G.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Mikoviny, T.] Univ Oslo, Dept Chem, Oslo, Norway. [Wisthaler, A.] Inst Ionenphys & Angew Phys, Innsbruck, Austria. [Bruning, E.] Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 USA. [MacGorman, D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Cummings, K. A.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Pickering, K. E.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Huntrieser, H.; Lichtenstern, M.; Schlager, H.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany. RP Pollack, IB (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM ipollack@rams.colostate.edu RI Peischl, Jeff/E-7454-2010; Pollack, Ilana/F-9875-2012; Homeyer, Cameron/D-5034-2013; Pickering, Kenneth/E-6274-2012; Aikin, Kenneth/I-1973-2013; Manager, CSD Publications/B-2789-2015 OI MacGorman, Donald/0000-0002-2395-8196; Peischl, Jeff/0000-0002-9320-7101; Homeyer, Cameron/0000-0002-4883-6670; FU U.S. National Science Foundation (NSF); National Aeronautics and Space Administration (NASA); National Oceanic and Atmospheric Administration (NOAA); Deutsches Zentrum fuer Luft- und Raumfahrt (DLR); NASA [NNH12AT30I] FX The Deep Convective Clouds and Chemistry (DC3) experiment is sponsored by the U.S. National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR). Archived field data can be accessed from http://data.eol.ucar.edu/ or http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs. NLDN data are collected by Vaisala, Inc. and archived at NASA Marshall Space Flight Center for NASA-related Earth Science research. Data provided by NCAR/EOL are supported by the National Science Foundation. Support for NOAA chemiluminescence-based measurements of O3, NO, NO2, and NOy aboard the NASA DC-8 during DC3 comes from NASA grant NNH12AT30I. Acetone/propanal measurements aboard the DC-8 during DC3 were supported by the Austrian Federal Ministry for Transport, Innovation, and Technology (BMVIT) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). The authors acknowledge R.C. Cohen and B. Nault (University of California, Berkeley) for TD-LIF NO2 measurements aboard the DC-8 aircraft, O. Cooper (NOAA) for digested images from the GOES satellite, SPEC Inc. for cloud probe measurements aboard the DC-8, K. Froyd (NOAA) and M. Markovic (Environment Canada) for providing a visual-based cloud indicator for DC-8 flights, A. Minikin and D. Fuetterer (DLR) for providing cloud probe data from the Falcon aircraft, and J. Jensen and J. Stith (NCAR/EOL) for cloud data products from the G-V. The authors appreciate discussions with S.A. Rutledge, B. Fuchs, and B. Basarab (Colorado State University) and helpful comments on the manuscript from B.A. Ridley (NCAR-emeritus) and M. Trainer (NOAA). NR 73 TC 3 Z9 3 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 2002 EP 2028 DI 10.1002/2015JD023941 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900039 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Allen, B Allocca, A Amariutei, DV Andersen, M Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Ashton, G Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Bartlett, J Barton, MA Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Behnke, B Bejger, M Belczynski, C Bell, AS Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, D Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bojtos, P Bond, C Bondu, F Bonnand, R Bork, R Born, M Boschi, V Bose, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Branco, V Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, D Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Bustillo, JC Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Celerier, C Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chassande-Mottin, E Chen, X Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Colombini, M Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Damjanic, MD Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Dia, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, JM Eikenberry, SS Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fairhurst, S Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fournier, JD Franco, S Frasca, S Frasconi, F Frede, M Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A Gergely, LA Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gleason, JR Goetz, E Goetz, R Gondan, L Gonzalez, G Gonzalez, J Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Groot, P Grote, H Grover, K Grunewald, S Guidi, GM Guido, CJ Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammer, D Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hoelscher-Obermaier, J Hofman, D Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, JC Isogai, T Iyer, BR Izumi, K Jacobson, MB Jang, H Jaranowski, P Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Karlen, JL Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kerrigan, J Key, JS Khalili, FY Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, JT Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, J Lee, JP Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Lewis, JB Li, TGF Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Lodhia, D Logue, J Lombardi, AL Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lubinski, MJ Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y Macarthur, J Macdonald, EP MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Madden-Fong, DX Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mangini, NM Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Ma, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McWilliams, ST Meacher, D Meadors, GD Mehmet, M Meidam, J Meinders, M Melatos, A Mendell, G Mercer, RA Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, A Mukherjee, S Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nagy, MF Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Newton, G Nguyen, TT Nielsen, AB Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Okounkova, M Oppermann, P Oram, R O'Reilly, B Ortega, WE O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, CT Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Papa, MA Paris, HR Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Pickenpack, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poeld, JH Poggiani, R Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rodger, AS Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosins, D Rowan, S Rud, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sanchez, E Sandberg, V Sanders, JR Santiago-Prieto, I Sassolas, B Sathyaprakash, BS Saulson, PR Savage, R Sawadsky, A Schale, P Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Sevigny, A Shaddock, DA Shaffery, P Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, SP Stone, R Strain, KA Straniero, N Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tap, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Travasso, F Traylor, G Trifiro, D Tringali, MC Tse, M Turconi, M Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M Van Bakel, N Van Beuzekom, M Van den Brand, JFJ Van den Broeck, C Van der Schaaf, L Van der Sluys, MV Eijningen, JV Eggel, AAV Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, M Wade, LE Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Williams, KJ Williams, L Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Allen, B. Allocca, A. Amariutei, D. V. Andersen, M. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Ashton, G. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, Sukanta Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Branco, V. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Bustillo, J. Calderon Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Celerier, C. Cella, G. Cepeda, C. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, X. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Colombini, M. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Damjanic, M. D. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Dia, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Edwards, M. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. M. Eikenberry, S. S. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fairhurst, S. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fisher, R. P. Flaminio, R. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frede, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. Gergely, L. A. Germain, V. Ghosh, A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gleason, J. R. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez, J. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Groot, P. Grote, H. Grover, K. Grunewald, S. Guidi, G. M. Guido, C. J. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammer, D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hoelscher-Obermaier, J. Hofman, D. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, J. C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. B. Jang, H. Jaranowski, P. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Karlen, J. L. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kerrigan, J. Key, J. S. Khalili, F. Y. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. T. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, J. Lee, J. P. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Lewis, J. B. Li, T. G. F. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Lodhia, D. Logue, J. Lombardi, A. L. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lubinski, M. J. Luck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. Macarthur, J. Macdonald, E. P. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Madden-Fong, D. X. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mangini, N. M. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Ma, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McWilliams, S. T. Meacher, D. Meadors, G. D. Mehmet, M. Meidam, J. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, A. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nagy, M. F. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Newton, G. Nguyen, T. T. Nielsen, A. B. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Okounkova, M. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. E. O'Shaughnessy, R. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. T. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Papa, M. A. Paris, H. R. Pasqualetti, A. Passaquieti, R. Passuello, D. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Pickenpack, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poeld, J. H. Poggiani, R. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Purrer, M. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rodger, A. S. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosins, D. Rowan, S. Rud, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sanchez, E. Sandberg, V. Sanders, J. R. Santiago-Prieto, I. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Savage, R. Sawadsky, A. Schale, P. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schonbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shaffery, P. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tap, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Tse, M. Turconi, M. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. Van Bakel, N. Van Beuzekom, M. Van den Brand, J. F. J. Van den Broeck, C. Van der Schaaf, L. Van der Sluys, M. V. Eijningen, J. V. Eggel, A. A. V. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinet, J-Y Vitale, S. Vo, T. Vocca, H. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, M. Wade, L. E. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Williams, K. J. Williams, L. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo TI First low frequency all-sky search for continuous gravitational wave signals SO PHYSICAL REVIEW D LA English DT Article ID PERIODIC SOURCES; HIERARCHICAL SEARCH; NEUTRON-STARS; EMISSION AB In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 x 10(-10) and +1.5 x 10(-11) Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the Frequency Hough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the Frequency Hough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10(-24) and 2 x 10(-23) at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of similar to 2 with respect to the results of previous all-sky searches at frequencies below 80 Hz. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Dooley, K. L.; Drever, R. W. P.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M. B.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Amariutei, D. V.; Brown, D.; Ciani, G.; Eichholz, J. M.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J. R.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; Doravari, S.; Evans, T. M.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ Livingston, Livingston, LA 70754 USA. [Adams, T.; Coughlin, S. B.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Macdonald, E. P.; Ohme, F.; Pannarale, F.; Predoi, V.; Purrer, M.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.] INFN, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bock, O.; Born, M.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Damjanic, M. D.; Danzmann, K.; Denker, T.; Dent, T.; Eggenstein, H. -B.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Goetz, E.; Gossler, S.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Koehlenbeck, S. M.; Korobko, M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mehmet, M.; Meinders, M.; Mossavi, K.; Nielsen, A. B.; Oppermann, P.; Pal-Singh, A.; Pickenpack, M.; Poeld, J. H.; Post, A.; Prix, R.; Puncken, O.; Rud, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schonbeck, A.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Vahlbruch, H.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Shah, S.; Van Bakel, N.; Van Beuzekom, M.; Van den Brand, J. F. J.; Van den Broeck, C.; Van der Schaaf, L.; Van der Sluys, M. V.; Eijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Lee, J. P.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Zhang, Fan; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Hammer, D.; Huynh, M.; Kline, J. T.; Manske, M.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, M.; Wade, L. E.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Danzmann, K.; Hoelscher-Obermaier, J.; Kaufer, S.; Krueger, C.; Luck, H.; Sawadsky, A.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.] Univ Siena, I-53100 Siena, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez, J.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Andersen, M.; Bassiri, R.; Byer, R. L.; Celerier, C.; Debra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Madden-Fong, D. X.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Lockett, V.; Padilla, C. T.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, IN2P3, CNRS, LAL, F-91898 Orsay, France. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Majorana, E.; Mangano, V.; Mastrogiovanni, S.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Lackey, B. D.; Lough, J. D.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rodger, A. S.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Eggel, A. A. V.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Clara, F.; Cook, D.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barone, F.; Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CEA Irfu, Observ Paris,APC,CNRS,IN2P3, F-75205 Paris 13, France. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Ma, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez, J.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Bejger, M.; Rosins, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Grover, K.; Haster, C. -J.; Lodhia, D.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Sidery, T. L.; Stevenson, S. P.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D.; Chen, X.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; Van der Sluys, M. V.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L. -W.] Univ Nice Sophia Antipolis, CNRS, ARTEMIS, F-06304 Nice, France. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L. -W.] Observ Cote Azur, F-06304 Nice, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, Sukanta; Hall, B. R.; Magee, R. M.; Mazumder, N.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Branco, V.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chen, X.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, F-75005 Paris, France. [Bulten, H. J.; Van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Lyon, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears, IEEC, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Gossan, S. E.; Okounkova, M.; Ott, C. D.; Thorne, K. S.; Vallisneri, M.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Coccia, E.; Fafone, V.; Lorenzini, M.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Mangano, V.; Mastrogiovanni, S.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Lasky, P. D.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Dia, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Ortega, W. E.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Farr, B.] Univ Chicago, Chicago, IL 60637 USA. [Gair, J. R.; Principe, M.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tap, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Gupta, M. K.; Khan, Z.; Kumar, A.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Karlen, J. L.; Kerrigan, J.; Lombardi, A. L.; Mangini, N. M.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kalogera, V.; Littenberg, T. B.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, K.; Lee, H. K.; Lee, J.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.; Shaffery, P.] Seoul Natl Univ, Seoul 151742, South Korea. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.; Williams, K. J.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Williams, K. J.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 280 Boyer Ave, Walla Walla, WA 9936 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosins, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012; Iyer, Bala R./E-2894-2012; Strain, Kenneth/D-5236-2011; prodi, giovanni/B-4398-2010; Gorodetsky, Michael/C-5938-2008; Gemme, Gianluca/C-7233-2008; Strigin, Sergey/I-8337-2012; Rocchi, Alessio/O-9499-2015; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Bell, Angus/E-7312-2011; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Zhu, Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Groot, Paul/K-4391-2016; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; OI Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Berry, Christopher/0000-0003-3870-7215; Kanner, Jonah/0000-0001-8115-0577; Tokmakov, Kirill/0000-0002-2808-6593; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Zhang, Liang/0000-0002-6317-0395; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315; Mastrogiovanni, Simone/0000-0003-1606-4183; Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Puppo, Paola/0000-0003-4677-5015; Iyer, Bala R./0000-0002-4141-5179; Strain, Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Gemme, Gianluca/0000-0002-1127-7406; Rocchi, Alessio/0000-0002-1382-9016; Heidmann, Antoine/0000-0002-0784-5175; Bell, Angus/0000-0003-1523-0821; Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Zhu, Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Groot, Paul/0000-0002-4488-726X; Lazzaro, Claudia/0000-0001-5993-3372; De Laurentis, Martina/0000-0002-3815-4078; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Swinkels, Bas/0000-0002-3066-3601; O'Shaughnessy, Richard/0000-0001-5832-8517; Dolique, Vincent/0000-0001-5644-9905; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431 FU Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science and Engineering Research Board, India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat; Cultura i Universitats of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research; National Science Centre of Poland; European Union; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Hungarian Scientific Research Fund; Lyon Institute of Origins; National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Brazilian Ministry of Science, Technology, and Innovation; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; Conselleria d'Educacio FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max Planck Society (MPS), and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the French Centre National de la Recherche Scientifique (CNRS) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Australian Research Council; the International Science Linkages program of the Commonwealth of Australia; the Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science and Engineering Research Board, India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research; the National Science Centre of Poland; the European Union; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the National Aeronautics and Space Administration; the Hungarian Scientific Research Fund; the Lyon Institute of Origins; the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the National Science and Engineering Research Council Canada; the Brazilian Ministry of Science, Technology, and Innovation; the Carnegie Trust; the Leverhulme Trust; the David and Lucile Packard Foundation; the Research Corporation; and the Alfred P. Sloan Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/ Germany for the provision of computational resources. The authors are also grateful to the anonymous referees for their comments, which helped to improve the clarity of the paper. NR 29 TC 5 Z9 5 U1 9 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 25 PY 2016 VL 93 IS 4 AR 042007 DI 10.1103/PhysRevD.93.042007 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DE7HT UT WOS:000370807300001 ER PT J AU Barkett, K Scheel, MA Haas, R Ott, CD Bernuzzi, S Brown, DA Szilagyi, B Kaplan, JD Lippuner, J Muhlberger, CD Foucart, F Duez, MD AF Barkett, Kevin Scheel, Mark A. Haas, Roland Ott, Christian D. Bernuzzi, Sebastiano Brown, Duncan A. Szilagyi, Bela Kaplan, Jeffrey D. Lippuner, Jonas Muhlberger, Curran D. Foucart, Francois Duez, Matthew D. TI Gravitational waveforms for neutron star binaries from binary black hole simulations SO PHYSICAL REVIEW D LA English DT Article AB Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of <1 radian over similar to 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter lambda. C1 [Barkett, Kevin; Scheel, Mark A.; Haas, Roland; Ott, Christian D.; Bernuzzi, Sebastiano; Kaplan, Jeffrey D.; Lippuner, Jonas] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Pasadena, CA 91125 USA. [Haas, Roland] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany. [Bernuzzi, Sebastiano] Univ Parma, DiFeST, I-43124 Parma, Italy. [Bernuzzi, Sebastiano] INFN Parma, I-43124 Parma, Italy. [Brown, Duncan A.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Szilagyi, Bela] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Muhlberger, Curran D.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Foucart, Francois] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Foucart, Francois] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. [Duez, Matthew D.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. RP Barkett, K (reprint author), CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Pasadena, CA 91125 USA. EM kbarkett@caltech.edu RI Ott, Christian/G-2651-2011; OI Ott, Christian/0000-0003-4993-2055; Lippuner, Jonas/0000-0002-5936-3485 FU Sherman Fairchild Foundation; NASA through Einstein Postdoctoral Fellowship [PF4-150122]; NASA [NAS8-03060]; NSF [PHY-0960291, PHY-1404569, AST-1333520, AST-1333142, PHY-1306125, AST-1333129]; NSF XSEDE network [TG-PHY990007N]; NSF PRAC Grant [ACI-1440083]; Canada Foundation for Innovation (CFI) under the Compute Canada; Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; University of Toronto FX We thank Harald Pfeiffer and Sanjay Reddy for helpful discussions. This work was supported in part by the Sherman Fairchild Foundation and NSF Grants No. PHY-1404569 and No. AST-1333520 at Caltech, NSF Grant No. AST-1333142 at Syracuse University, the Sherman Fairchild Foundation and NSF Grants No. PHY-1306125 and No. AST-1333129 at Cornell University and by NASA through Einstein Postdoctoral Fellowship Grant No. PF4-150122 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS8-03060. Computations were performed on the Zwicky cluster at Caltech, which is supported by the Sherman Fairchild Foundation and by NSF Grant No. PHY-0960291; on the NSF XSEDE network under Grant No. TG-PHY990007N; on the NSF/NCSA Blue Waters at the University of Illinois with allocation jr6 under NSF PRAC Grant No. ACI-1440083; and on the GPC supercomputer at the SciNet HPC Consortium [60]; SciNet is funded by the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; and the University of Toronto. NR 58 TC 3 Z9 3 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 24 PY 2016 VL 93 IS 4 AR 044064 DI 10.1103/PhysRevD.93.044064 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DE7HP UT WOS:000370806900005 ER PT J AU Turyshev, SG Yu, N Toth, VT AF Turyshev, Slava G. Yu, Nan Toth, Viktor T. TI General relativistic observables for the ACES experiment SO PHYSICAL REVIEW D LA English DT Article ID TIME TRANSFER; LASER LINK AB We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light-time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient J(2) and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required by the experiment. We construct a Doppler-canceled science observable representing the gravitational redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to < 1 ps and similar to 4 x 10(-17) for time and frequency transfers, correspondingly. These limits are determined by the higher-order harmonics in Earth's gravitational potential. C1 [Turyshev, Slava G.; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Toth, Viktor/D-3502-2009 OI Toth, Viktor/0000-0003-3651-9843 NR 48 TC 1 Z9 1 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 23 PY 2016 VL 93 IS 4 AR 045027 DI 10.1103/PhysRevD.93.045027 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DE7HJ UT WOS:000370806200010 ER PT J AU Flanigan, D McCarrick, H Jones, G Johnson, BR Abitbol, MH Ade, P Araujo, D Bradford, K Cantor, R Che, G Day, P Doyle, S Kjellstrand, CB Leduc, H Limon, M Luu, V Mauskopf, P Miller, A Mroczkowski, T Tucker, C Zmuidzinas, J AF Flanigan, D. McCarrick, H. Jones, G. Johnson, B. R. Abitbol, M. H. Ade, P. Araujo, D. Bradford, K. Cantor, R. Che, G. Day, P. Doyle, S. Kjellstrand, C. B. Leduc, H. Limon, M. Luu, V. Mauskopf, P. Miller, A. Mroczkowski, T. Tucker, C. Zmuidzinas, J. TI Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID FLUCTUATIONS AB We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP approximate to 2 x 10(-17) WH z(-1/2), referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP proportional to P for broadband (chaotic) illumination and NEP proportional to P-1/2 for continuous-wave (coherent) illumination. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Araujo, D.; Kjellstrand, C. B.; Limon, M.; Luu, V.; Miller, A.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Ade, P.; Doyle, S.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bradford, K.; Mauskopf, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Cantor, R.] STAR Cryoelect, Santa Fe, NM 87508 USA. [Che, G.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Day, P.; Leduc, H.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mroczkowski, T.] US Navy, Res Lab, Washington, DC 20375 USA. [Zmuidzinas, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RP Flanigan, D (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM daniel.flanigan@columbia.edu OI Limon, Michele/0000-0002-5900-2698; Mroczkowski, Tony/0000-0003-3816-5372 FU NASA; National Research Council Fellowship; Research Initiatives for Science and Engineering program at Columbia University; internal Columbia University FX R.C. is both an author and the owner of STAR Cryoelectronics. H.M. is supported by a NASA Earth and Space Sciences Fellowship. T.M. is supported by a National Research Council Fellowship. This research is supported, in part, by a grant from the Research Initiatives for Science and Engineering program at Columbia University to B.R.J. and by internal Columbia University funding to A.M. We thank the Xilinx University Program for their donation of FPGA hardware and software tools used in the readout system. We thank the anonymous reviewers for thoughtful and helpful comments. NR 18 TC 2 Z9 2 U1 6 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 22 PY 2016 VL 108 IS 8 AR 083504 DI 10.1063/1.4942804 PG 5 WC Physics, Applied SC Physics GA DH8PO UT WOS:000373057000055 ER PT J AU Galametz, M Hony, S Albrecht, M Galliano, F Cormier, D Lebouteiller, V Lee, MY Madden, SC Bolatto, A Bot, C Hughes, A Israel, F Meixner, M Oliviera, JM Paradis, D Pellegrini, E Roman-Duval, J Rubio, M Sewilo, M Fukui, Y Kawamura, A Onishi, T AF Galametz, M. Hony, S. Albrecht, M. Galliano, F. Cormier, D. Lebouteiller, V. Lee, M. Y. Madden, S. C. Bolatto, A. Bot, C. Hughes, A. Israel, F. Meixner, M. Oliviera, J. M. Paradis, D. Pellegrini, E. Roman-Duval, J. Rubio, M. Sewilo, M. Fukui, Y. Kawamura, A. Onishi, T. TI The dust properties and physical conditions of the interstellar medium in the LMC massive star-forming complex N11 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE ISM: general; galaxies: dwarf; galaxies: ISM; Magellanic Clouds; infrared: ISM; submillimetre: ISM ID LARGE-MAGELLANIC-CLOUD; SPECTRAL ENERGY-DISTRIBUTION; SPITZER-SPACE-TELESCOPE; GIANT MOLECULAR CLOUDS; H-II REGIONS; MULTIBAND IMAGING PHOTOMETER; CO-TO-H-2 CONVERSION FACTOR; GALAXY EVOLUTION SAGE; INFRARED ARRAY CAMERA; ABSOLUTE CALIBRATION AB We combine Spitzer and Herschel data of the star-forming region N11 in the Large Magellanic Cloud (LMC) to produce detailed maps of the dust properties in the complex and study their variations with the interstellar-medium conditions. We also compare Atacama Pathfinder EXperiment/Large APEX Bolometer Camera (APEX/LABOCA) 870 mu m observations with our model predictions in order to decompose the 870 mu m emission into dust and non-dust [free-free emission and CO(3-2) line] contributions. We find that in N11, the 870 mu m can be fully accounted for by these three components. The dust surface density map of N11 is combined with H I and CO observations to study local variations in the gas-to-dust mass ratios. Our analysis leads to values lower than those expected from the LMC low-metallicity as well as to a decrease of the gas-to-dustmass ratio with the dust surface density. We explore potential hypotheses that could explain the low 'observed' gas-to-dust mass ratios (variations in the XCO factor, presence of CO-dark gas or of optically thick H I or variations in the dust abundance in the dense regions). We finally decompose the local spectral energy distributions (SEDs) using a principal component analysis (i.e. with no a priori assumption on the dust composition in the complex). Our results lead to a promising decomposition of the local SEDs in various dust components (hot, warm, cold) coherent with that expected for the region. Further analysis on a larger sample of galaxies will follow in order to understand how unique this decomposition is or how it evolves from one environment to another. C1 [Galametz, M.] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Hony, S.; Cormier, D.; Pellegrini, E.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. [Albrecht, M.] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Galliano, F.; Lebouteiller, V.; Lee, M. Y.; Madden, S. C.] Univ Paris Diderot, IRFU Serv Astrophys, Lab AIM, CEA, Bat 709, F-91191 Gif Sur Yvette, France. [Bolatto, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bolatto, A.] Univ Maryland, Lab Millimeter Wave Astron, College Pk, MD 20742 USA. [Bot, C.] Univ Strasbourg, Observ Astron Strasbourg, UMR 7550, 11 Rue Univ, F-67000 Strasbourg, France. [Hughes, A.; Paradis, D.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Israel, F.] Leiden Univ, Sterrewacht Leiden, POB 9513, NL-2300 RA Leiden, Netherlands. [Meixner, M.; Roman-Duval, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Meixner, M.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 366, 3400 N Charles St, Baltimore, MD 21218 USA. [Oliviera, J. M.] Keele Univ, Lennard Jones Labs, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Paradis, D.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Pellegrini, E.] Univ Toledo, Dept Phys Astron, Mail Drop 111,2801 West Bancroft St, Toledo, OH 43606 USA. [Rubio, M.] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. [Sewilo, M.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Sewilo, M.] ORAU, Oak Ridge, TN 37831 USA. [Fukui, Y.; Kawamura, A.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya 4648602, Japan. [Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Gakuen 1-1, Sakai, Osaka 5998531, Japan. RP Galametz, M (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM maud.galametz@eso.org OI Bot, Caroline/0000-0001-6118-2985; Lebouteiller, Vianney/0000-0002-7716-6223 FU NASA Herschel Science Center, JPL [1381522, 1381650, 1350371]; NASA [NNX14AN06G]; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA) FX We would like to first thank the referee for his/her careful reading of this paper and useful suggestions. We would also like to thank Karl Gordon for providing us with the reprocessed Herschel maps and the MegaSAGE consortium for our motivating collaboration and meetings. We acknowledge financial support from the NASA Herschel Science Center, JPL contracts no. 1381522, no. 1381650 and no. 1350371. Meixner acknowledges support from NASA grant, NNX14AN06G, for this work. This publication is based on data acquired with the Herschel Space Observatory. The Herschel/PACS instrument has been developed by MPE (Germany); UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). The Herschel/SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including the following: University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); and Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). This publication is also based on data acquired with the APEX. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory and the Onsala Space Observatory. NR 107 TC 3 Z9 3 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 21 PY 2016 VL 456 IS 2 BP 1767 EP 1790 DI 10.1093/mnras/stv2773 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7KW UT WOS:000372264200046 ER PT J AU Marchetti, L Vaccari, M Franceschini, A Arumugam, V Aussel, H Bethermin, M Bock, J Boselli, A Buat, V Burgarella, D Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Farrah, D Feltre, A Glenn, J Griffin, M Hatziminaoglou, E Heinis, S Ibar, E Ivison, RJ Nguyen, HT O'Halloran, B Oliver, SJ Page, MJ Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Roseboom, IG Rowan-Robinson, M Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Symeonidis, M Valtchanov, I Viero, M Wang, L Wardlow, J Xu, CK Zemcov, M AF Marchetti, L. Vaccari, M. Franceschini, A. Arumugam, V. Aussel, H. Bethermin, M. Bock, J. Boselli, A. Buat, V. Burgarella, D. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Farrah, D. Feltre, A. Glenn, J. Griffin, M. Hatziminaoglou, E. Heinis, S. Ibar, E. Ivison, R. J. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Page, M. J. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Roseboom, I. G. Rowan-Robinson, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Symeonidis, M. Valtchanov, I. Viero, M. Wang, L. Wardlow, J. Xu, C. K. Zemcov, M. TI The HerMES submillimetre local and low-redshift luminosity functions SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: luminosity function, mass function; galaxies: statistics; submillimetre: galaxies ID STAR-FORMATION RATE; ACTIVE GALACTIC NUCLEI; EXTRAGALACTIC LEGACY SURVEY; STELLAR MASS FUNCTION; PHOTOMETRIC REDSHIFTS; FORMATION HISTORY; SOURCE EXTRACTION; FORMING GALAXIES; DEEP-FIELD; SPECTROSCOPIC SURVEY AB We used wide-area surveys over 39 deg(2) by the HerMES (Herschel Multi-tiered Extragalactic Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength camera, to estimate the low-redshift, 0.02 < z < 0.5, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500 mu m. Within this redshift interval, we detected 7087 sources in five independent sky areas, similar to 40 per cent of which have spectroscopic redshifts, while for the remaining objects photometric redshifts were used. The SPIRE LFs in different fields did not show any field-to-field variations beyond the small differences to be expected from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry and multiwavelength archival data to perform a complete spectral energy distribution fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (IR; 8-1000 mu m) LFs and their low-z evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The LFs show significant and rapid luminosity evolution already at low redshifts, 0.02 < z < 0.2, with L-IR* proportional to (1 + z)(6.0 +/- 0.4) and Phi(IR)* proportional to (1 + z)(-2.1 +/- 0.4), L-250* (1 + z)(5.3 +/- 0.2) and Phi(250)* proportional to (1 + z)(-0.6 +/- 0.4) estimated using the IR bolometric and the 250 mu m LFs, respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter initial mass function and including the unobscured contribution based on the UV dust-uncorrected emission from local galaxies, we estimate an SFRD scaling of SFRD0 + 0.08z, where SFRD0 similar or equal to (1.9 +/- 0.03) x 10(-2) [M-circle dot Mpc(-3)] is our total SFRD estimate at z similar to 0.02. C1 [Marchetti, L.; Pearson, C. P.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Marchetti, L.; Vaccari, M.; Franceschini, A.] Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Vaccari, M.] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Cape Town, South Africa. [Vaccari, M.] INAF Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy. [Arumugam, V.; Ivison, R. J.; Roseboom, I. G.] Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Bethermin, M.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA,DSM,Irfu, Pt Courrier 131, F-91191 Gif Sur Yvette, France. [Bethermin, M.] Univ Paris 11, IAS, Batiment 121, F-91405 Orsay, France. [Bethermin, M.] CNRS, UMR 8617, Batiment 121, F-91405 Orsay, France. [Bethermin, M.; Hatziminaoglou, E.] ESO, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Bock, J.; Cooray, A.; Dowell, C. D.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Viero, M.; Xu, C. K.; Zemcov, M.] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.; Heinis, S.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Clements, D. L.; O'Halloran, B.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Conley, A.; Glenn, J.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, E-28691 Madrid, Spain. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Feltre, A.] Univ Paris 04, UPMC CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA UCB 389, Boulder, CO 80309 USA. [Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Queens Buildings, Cardiff CF24 3AA, S Glam, Wales. [Ibar, E.] Univ Valparaiso, Inst Fis & Astron, Avda Gran Bretana 1111, Valparaiso, Chile. [Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Oliver, S. J.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Perez-Fournon, I.] IAC, E-38200 Tenerife, Spain. [Perez-Fournon, I.] ULL, Dept Astrofis, E-38205 Tenerife, Spain. [Rigopoulou, D.] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. [Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Jet Prop Lab, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Seymour, N.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6102, Australia. [Wang, L.] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. [Wang, L.] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands. [Wardlow, J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. RP Marchetti, L (reprint author), Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.; Marchetti, L (reprint author), Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. EM marchetti.lu@gmail.com RI Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Wardlow, Julie/C-9903-2015; OI Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Wardlow, Julie/0000-0003-2376-8971; Scott, Douglas/0000-0002-6878-9840; Seymour, Nicholas/0000-0003-3506-5536 FU Science and Technology Facilities Council (STFC) [ST/J001597/1]; ASI [I/005/07/1, I/005/11/0]; Danish National Research Foundation; Square Kilometre Array South Africa project; South African National Research Foundation; Department of Science and Technology [DST/CON 0134/2014]; European Commission Research Executive Agency [FP7-SPACE-2013-1 GA 607254]; Italian Ministry for Foreign Affairs and International Cooperation [PGR GA ZA14GR02]; ARC; ERC [321323-NEOGAL]; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX Lucia Marchetti (LM) acknowledges support from the Science and Technology Facilities Council (STFC) under grant ST/J001597/1. Lucia Marchetti, Mattia Vaccari and Alberto Franceschini acknowledge support from ASI 'Herschel Science' Contracts I/005/07/1 and I/005/11/0. Mattia Negrello produced additional predictions based on his models. Julie Wardlow acknowledges the Dark Cosmology Centre funded by the Danish National Research Foundation. Mattia Vaccari acknowledges support from the Square Kilometre Array South Africa project, the South African National Research Foundation and Department of Science and Technology (DST/CON 0134/2014), the European Commission Research Executive Agency (FP7-SPACE-2013-1 GA 607254) and the Italian Ministry for Foreign Affairs and International Cooperation (PGR GA ZA14GR02). Nicholas Seymour is the recipient of an ARC Future Fellowship. Anna Feltre acknowledges support from the ERC via an Advanced Grant under grant agreement no. 321323-NEOGAL. This work makes use of STILTS http://www.starlink.ac.uk/stilts/and TOPCAT (Taylor 2005). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). The authors would like to thank the anonymous referee for helpful comments. NR 98 TC 4 Z9 4 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 21 PY 2016 VL 456 IS 2 BP 1999 EP 2023 DI 10.1093/mnras/stv2717 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7KW UT WOS:000372264200063 ER PT J AU Agol, E Deck, K AF Agol, Eric Deck, Katherine TI TRANSIT TIMING TO FIRST ORDER IN ECCENTRICITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: detection; planets and satellites: dynamical evolution and stability; planets and satellites: fundamental parameters ID MULTIPLE-PLANET SYSTEMS; LOW-DENSITY PLANETS; KEPLER PLANETS; TERRESTRIAL PLANETS; EXTRASOLAR PLANETS; LOW-MASS; CONFIRMATION; VALIDATION; EXOPLANETS; MODELS AB Characterization of transiting planets with transit timing variations (TTVs) requires understanding how to translate the observed TTVs into masses and orbital elements of the planets. This can be challenging in multi-planet transiting systems, but fortunately these systems tend to be nearly plane-parallel and low eccentricity. Here we present a novel derivation of analytic formulae for TTVs that are accurate to first order in the planet-star mass ratios and in the orbital eccentricities. These formulae are accurate in proximity to first-order resonances, as well as away from resonance, and compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems. We make code available for implementing these formulae. C1 [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Agol, Eric] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Agol, Eric] NASA, Astrobiol Inst Virtual Planetary Lab, Seattle, WA 98195 USA. [Deck, Katherine] CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. RP Agol, E (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA.; Agol, E (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.; Agol, E (reprint author), NASA, Astrobiol Inst Virtual Planetary Lab, Seattle, WA 98195 USA. EM agol@uw.edu OI /0000-0002-0802-9145 FU NASA [NNX13AF20G, NNX13AF62G, NNH05ZDA001C]; NASA Astrobiology Institutes Virtual Planetary Laboratory; National Science Foundation [NSF PHY11-25915]; Joint Center for Planetary Astronomy fellowship FX E.A. acknowledges support from NASA grants NNX13AF20G, NNX13AF62G, and NASA Astrobiology Institutes Virtual Planetary Laboratory, supported by NASA under cooperative agreement NNH05ZDA001C. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. E.A. thanks the Kavli Institute for Theoretical Physics and the organizers of the "Dynamics and Evolution of Earth-like Planets" workshop, where a portion of this work was completed; this manuscript is preprint number NSF-KITP-15-132. K.D. acknowledges support from the Joint Center for Planetary Astronomy fellowship. We thank Jack Wisdom for sharing laplace.c, which computes Laplace coefficients and their derivatives with series summation; we thank Eric Ford for advice on implementation of the formula in Julia; and we thank Brett Morris and Ethan Kruse for advice on implementation of the formula in Python (requested by the referee). NR 53 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 177 DI 10.3847/0004-637X/818/2/177 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800076 ER PT J AU Basu-Zych, AR Lehmer, B Fragos, T Hornschemeier, A Yukita, M Zezas, A Ptak, A AF Basu-Zych, Antara R. Lehmer, Bret Fragos, Tassos Hornschemeier, Ann Yukita, Mihoko Zezas, Andreas Ptak, Andy TI EXPLORING THE OVERABUNDANCE OF ULXs IN METAL- AND DUST-POOR LOCAL LYMAN BREAK ANALOGS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: individual (Haro 11, VV 114); galaxies: starburst; X-rays: binaries; X-rays: galaxies ID X-RAY SOURCES; STAR-FORMATION RATE; MASS-METALLICITY RELATION; CHANDRA MONITORING OBSERVATIONS; ULTRAVIOLET-LUMINOUS GALAXIES; NEARBY STARBURST GALAXIES; COMPACT OBJECT FORMATION; UV-SELECTED GALAXIES; BLACK-HOLE BINARIES; MERGER VV 114 AB We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z > 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (<87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV. luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e.,. neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV. emission with Chandra. to present the bright end of the X-ray luminosity distribution of HMXBs (L-X greater than or similar to 10(39) erg s(-1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximate to 4 times more L-X > 10(40) erg s(-1). sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(2) = 1.90) than the standard XLF (gamma(2) = 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and eliminate these sources from consideration, the luminosity distribution becomes poorly constrained but does appear to be consistent with a standard XLF. C1 [Basu-Zych, Antara R.; Lehmer, Bret; Hornschemeier, Ann; Yukita, Mihoko; Ptak, Andy] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Basu-Zych, Antara R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Lehmer, Bret] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. [Lehmer, Bret] Univ Arkansas, Dept Phys, 825 West Dickson St, Fayetteville, AR 72701 USA. [Fragos, Tassos] Univ Geneva, Observ Geneva, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland. [Yukita, Mihoko] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. [Zezas, Andreas] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Zezas, Andreas] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. [Zezas, Andreas] Univ Crete, Inst Theoret & Computat Phys, Iraklion 71003, Crete, Greece. [Zezas, Andreas] Fdn Res & Technol Hellas, Iraklion 71110, Crete, Greece. RP Basu-Zych, AR (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.; Basu-Zych, AR (reprint author), Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RI Yukita, Mihoko/E-4135-2017; Zezas, Andreas/C-7543-2011; Fragos, Tassos/A-3581-2016 OI Zezas, Andreas/0000-0001-8952-676X; Fragos, Tassos/0000-0003-1474-1523 FU NASA Astrophysics Data Analysis Program (ADAP) [09-ADP09-0071]; Swiss National Science Foundation [PZ00P2_148123]; European Research Council under the European Union/ERC [617001]; NASA/ADAP [NNX12AN05G] FX We thank the referee for helpful suggestions that improved the manuscript. A.R.B. and A.H. gratefully acknowledge the NASA Astrophysics Data Analysis Program (ADAP grant 09-ADP09-0071, PI: A. Hornschemeier) for providing financial support. T.F. acknowledges support from the Ambizione Fellowship of the Swiss National Science Foundation (grant PZ00P2_148123). A.Z. acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 617001 and financial support from NASA/ADAP grant NNX12AN05G. NR 97 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 140 DI 10.3847/0004-637X/818/2/140 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800039 ER PT J AU Burlaga, LF Ness, NF Richardson, JD Decker, RB Krimigis, SM AF Burlaga, L. F. Ness, N. F. Richardson, J. D. Decker, R. B. Krimigis, S. M. TI HELIOSHEATH MAGNETIC FIELD AND PLASMA OBSERVED BY VOYAGER 2 DURING 2012 IN THE RISING PHASE OF SOLAR CYCLE 24 SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; plasmas; Sun: heliosphere ID WIND TERMINATION SHOCK; 3-DIMENSIONAL FEATURES; INTERACTION REGIONS; OUTER HELIOSPHERE; CURRENT SHEETS; 1 AU; HELIOPAUSE; FLOWS; TRANSITION; BOUNDARY AB We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2012, when V2 was observing the effects of increasing solar activity following the solar minimum in 2009. The average magnetic field strength B was 0.14 nT and B reached 0.29 nT on day 249. V2 was in a unipolar region in which the magnetic polarity was directed away from the Sun along the Parker spiral 88% of the time, indicating that V2 was poleward of the heliospheric current sheet throughout most of 2012. The magnetic flux at V2 during 2012 was constant. A merged interaction region (MIR) was observed, and the flow speed increased as the MIR moved past V2. The MIR caused a decrease in the > 70 MeV nuc(-1) cosmic-ray intensity. The increments of B can be described by a q-Gaussian distribution with q = 1.2 +/- 0.1 for daily averages and q = 1.82 +/- 0.03 for hour averages. Eight isolated current sheets ("PBLs") and four closely spaced pairs of current sheets were observed. The average change of B across the current sheets was a factor of approximate to 2, and B increased or decreased with equal probability. Magnetic holes and magnetic humps were also observed. The characteristic size of the PBLs was approximate to 6 R-L, where R-L is the Larmor radius of protons, and the characteristic sizes of the magnetic holes and humps were approximate to 38 R-L and approximate to 11 R-L, respectively. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Richardson, J. D.] MIT, Kavli Ctr Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Decker, R. B.; Krimigis, S. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. FU NASA [NNX12A63G, NNG14PN24P]; NASA from JPL [959203]; Voyager Interstellar Mission under NASA [NNX07AB02G] FX This work was partially supported by NASA grant NNX12A63G to N.F. Ness at Catholic University of America. L.F.B. was supported by NASA grant NNG14PN24P. J.D.R. was supported under NASA contract 959203 from JPL to MIT. R.B.D. and S.M.K. were supported by the Voyager Interstellar Mission under NASA Contract NNX07AB02G McClanahan and S. Kramer carried out the processing of the data. The calibration tables were computed by D. Berdichevsky using data from the magrols and the magcals. We thank Edward Stone and his co-investigators on the CRS experiment on V2 for making their data available for distribution on COHOweb. NR 69 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 147 DI 10.3847/0004-637X/818/2/147 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800046 ER PT J AU Burns, E Connaughton, V Zhang, BB Lien, A Briggs, MS Goldstein, A Pelassa, V Troja, E AF Burns, Eric Connaughton, Valerie Zhang, Bin-Bin Lien, Amy Briggs, Michael S. Goldstein, Adam Pelassa, Veronique Troja, Eleonora TI DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID MERGING NEUTRON-STARS; LONG; MERGERS; GRB; CLASSIFICATION; ERA AB Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors. C1 [Burns, Eric; Briggs, Michael S.] Univ Alabama, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Connaughton, Valerie] Univ Space Res Assoc, Inst Sci & Technol, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Zhang, Bin-Bin] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Lien, Amy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Goldstein, Adam] NASA, Postdoctoral Program, Space Sci Off, Marshall Space Flight Ctr, VP62, Huntsville, AL 35812 USA. [Pelassa, Veronique] Smithsonian Astrophys Observ, POB 97, Amado, AZ 85645 USA. [Troja, Eleonora] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Burns, E (reprint author), Univ Alabama, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM eb0016@uah.edu FU GBM [NNM11AA01A/MSFC]; NASA Swift GI grant [NNX15AC05G] FX We would like to acknowledge the contributions of two people. David Palmer who generated BAT lightcurves, allowing us to further investigate GBM SGRBs as viewed by the BAT, and Hans Krimm who compiled continuous attitude files for Swift, saving us a great deal of time. We additionally recognize the efforts of the HEASARC in providing the searchable databases that were the source of our data. The GBM members acknowledge support from GBM through NNM11AA01A/MSFC. Eric Burns acknowledges support through NASA Swift GI grant NNX15AC05G. NR 34 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 110 DI 10.3847/0004-637X/818/2/110 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800009 ER PT J AU Chenevez, J Galloway, DK in 't Zand, JJM Tomsick, JA Barret, D Chakrabarty, D Fuerst, F Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Romano, P Stern, D Zhang, WW AF Chenevez, J. Galloway, D. K. in 't Zand, J. J. M. Tomsick, J. A. Barret, D. Chakrabarty, D. Fuerst, F. Boggs, S. E. Christensen, F. E. Craig, W. W. Hailey, C. J. Harrison, F. A. Romano, P. Stern, D. Zhang, W. W. TI A SOFT X-RAY SPECTRAL EPISODE FOR THE CLOCKED BURSTER, GS 1826-24 AS MEASURED BY SWIFT AND NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: close; stars: neutron; X-rays: bursts; X-rays: individual (GS 1826-24) ID ACCRETING NEUTRON-STARS; TIMING-EXPLORER; AQUILA X-1; MISSION; MASS; BINARIES; TELESCOPE; GS-1826-238; EVOLUTION; GEOMETRY AB We report on NuSTAR and Swift observations of a soft state of the neutron star low-mass X-ray binary GS 1826-24, commonly known as the "clocked" burster. The transition to the soft state was recorded in 2014 June through an increase of the 2-20 keV source intensity measured by MAXI, simultaneous with a decrease of the 15-50 keV intensity measured by Swift/BAT. The episode lasted approximately two months, after which the source returned to its usual hard state. We analyze the broadband spectrum measured by Swift/XRT and NuSTAR. and estimate the accretion rate during the soft episode to be approximate to 13% (m) over dot(Edd), within the range of previous observations. However, the best-fit spectral model, adopting the double Comptonization used previously, exhibits significantly softer components. We detect seven type-I X-ray bursts, all significantly weaker (and with shorter rise and decay times) than observed previously. The burst profiles and recurrence times vary significantly, ruling out the regular bursts that are typical for this source. One burst exhibited photospheric radius expansion. and we estimate the source distance as (5.7 +/- 0.2) xi(-1/2)(b) kpc, where xi(b) parameterizes the possible anisotropy of the burst emission. The observed soft state may most likely be interpreted as a change in accretion geometry at about similar bolometric luminosity as in the hard state. The different burst behavior can therefore be attributed to this change in accretion flow geometry, but the fundamental cause and process for this effect remain unclear. C1 [Chenevez, J.; Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327-328, DK-2800 Lyngby, Denmark. [Galloway, D. K.] Monash Univ, Sch Phys Astron, Clayton, Vic 3800, Australia. [Galloway, D. K.] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [in 't Zand, J. J. M.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [in 't Zand, J. J. M.] Univ Utrecht, Astron Inst, POB 80000, NL-3508 TA Utrecht, Netherlands. [Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Barret, D.] Inst Rech Astrophys & Planetol, 9 Ave Colonel Roche, F-31028 Toulouse, France. [Chakrabarty, D.] MIT, Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA. [Fuerst, F.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chenevez, J (reprint author), Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327-328, DK-2800 Lyngby, Denmark. EM jerome@space.dtu.dk RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Galloway, Duncan/0000-0002-6558-5121 FU ESA/PRODEX [90057]; National Aeronautics and Space Administration; Australian Academy of Science; Australian Research Council; [ASI-INAF I/004/11/0]; [ASI-INAF I/037/12/0] FX J.C. would like to thank Niels Jorgen Westergaard for useful discussions. J.C. acknowledges financial support from ESA/PRODEX Nr. 90057. P.R. acknowledges financial contribution from contract ASI-INAF I/004/11/0 and ASI-INAF I/037/12/0. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR and Swift Operations teams for executing the ToO observations. and the Software and Calibration teams for analysis support. This research has used the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). The MAXI data are provided by RIKEN, JAXA, and the MAXI team. Swift/BAT transient monitor results are provided by the Swift/BAT team. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. This paper utilizes preliminary analysis results from the Multi-INstrument Burst ARchive (MINBAR), which is supported under the Australian Academy of Science's Scientific Visits to Europe program, and the Australian Research Council's Discovery Projects and Future Fellowship funding schemes. NR 59 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 135 DI 10.3847/0004-637X/818/2/135 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800034 ER PT J AU Estrada, PR Cuzzi, JN Morgan, DA AF Estrada, Paul R. Cuzzi, Jeffrey N. Morgan, Demitri A. TI GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; planets and satellites: formation; protoplanetary disks ID SPECTRAL ENERGY-DISTRIBUTIONS; INDUCED RELATIVE VELOCITY; PROTOPLANETARY DISKS IMPLICATIONS; VERTICAL SHEAR INSTABILITY; PRIMORDIAL SOLAR NEBULA; T-TAURI STARS; PLANETESIMAL FORMATION; DUST GROWTH; SOLID PARTICLES; ACCRETION DISKS AB We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at "evaporation fronts" (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 x 10(5) years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) "lucky" large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter. SEDs and the. inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the. enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter's core. C1 [Estrada, Paul R.] SETI Inst, Carl Sagan Ctr, 189 N Bernardo Ave 100, Mountain View, CA 94043 USA. [Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA. [Morgan, Demitri A.] NASA, Ames Res Ctr, USRA, Mail Stop 245-3, Moffett Field, CA 94035 USA. RP Estrada, PR (reprint author), SETI Inst, Carl Sagan Ctr, 189 N Bernardo Ave 100, Mountain View, CA 94043 USA. EM Paul.R.Estrada@nasa.gov FU NASA's Origins of Solar Systems program FX We thank Fred Ciesla, Sandy Davis, Steve Desch, Pascale Garaud, Uma Gorti, Phil Marcus, and Orkan Umurhan for helpful conversations. We especially thank Chris Ormel for bringing our attention to a flaw in our diffusion model. in an initial version of the paper. We also. thank an anonymous reviewer for pointing out several aspects that will lead to the improvement of our models. We thank Cameron Wehrfritz for his help in the preparation of this manuscript. This work was supported by a grant from NASA's Origins of Solar Systems program and a large amount of cpu time awarded through NASA's HEC program, whose consultants also helped with parallelizing the code. NR 182 TC 2 Z9 2 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 200 DI 10.3847/0004-637X/818/2/200 PG 41 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800099 ER PT J AU Katagiri, H Yoshida, K Ballet, J Grondin, MH Hanabata, Y Hewitt, JW Kubo, H Lemoine-Goumard, M AF Katagiri, H. Yoshida, K. Ballet, J. Grondin, M. -H. Hanabata, Y. Hewitt, J. W. Kubo, H. Lemoine-Goumard, M. TI FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; gamma rays: ISM; ISM: individual objects ( HB 3, W3); ISM: supernova remnants ID LARGE-AREA TELESCOPE; GALACTIC PLANE SURVEY; COSMIC-RAY; SYNCHROTRON-RADIATION; SPACE-TELESCOPE; MILKY-WAY; CATALOG; GAS; ACCELERATION; ORIGIN AB We report the discovery of extended gamma-ray emission measured by the Large Area Telescope. (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant. (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright (CO)-C-12 (J = 1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3. C1 [Katagiri, H.; Yoshida, K.] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. [Ballet, J.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Grondin, M. -H.; Lemoine-Goumard, M.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, CNRS, BP120, F-33175 Gradignan, France. [Hanabata, Y.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Hewitt, J. W.] CRESST, Greenbelt, MD 20771 USA. [Hewitt, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kubo, H.] Kyoto Univ, Dept Phys, Grad Sch Sci, Kyoto 606, Japan. RP Katagiri, H; Yoshida, K (reprint author), Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. EM hideaki.katagiri.sci@vc.ibaraki.ac.jp; 13nm169s@gmail.com NR 34 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 114 DI 10.3847/0004-637X/818/2/114 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800013 ER PT J AU Lau, RM Hankins, MJ Herter, TL Morris, MR Mills, EAC Ressler, ME AF Lau, R. M. Hankins, M. J. Herter, T. L. Morris, M. R. Mills, E. A. C. Ressler, M. E. TI AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; dust, extinction; ISM: jets and outflows; stars: massive; stars: mass-loss ID HIGH ROTATIONAL VELOCITY; LUMINOUS BLUE VARIABLES; SPITZER-SPACE-TELESCOPE; PASCHEN-ALPHA SURVEY; GAMMA-RAY BURSTS; GALACTIC-CENTER; AG CARINAE; STELLAR PARAMETERS; DATA REDUCTION; ARRAY CAMERA AB Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid-to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical "helix" of warm dust (similar to 180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, tau(p) similar to 1.4 x 10(4) yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P less than or similar to 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems. C1 [Lau, R. M.; Hankins, M. J.; Herter, T. L.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Lau, R. M.; Ressler, M. E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, 430 Portola Plaza, Los Angeles, CA 90095 USA. [Mills, E. A. C.] Natl Radio Astron Observ, POB O 1009,Lopezville Dr, Socorro, NM 87801 USA. RP Lau, RM (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.; Lau, RM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Science Foundation [DGE-1144153]; NASA; National Aeronautics and Space Administration; NASA [NAS2-97001]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; NASA - USRA [8500-98-014] FX We would like to thank the rest of the FORCAST team, Joe Adams, George Gull, Justin Schoenwald, and Chuck Henderson, the USRA Science and Mission Ops teams, and the entire SOFIA staff. R.L. would like to thank Dong Lai, Selma de Mink, Nathan Smith, and the anonymous referee for the valuable feedback and discussion on binaries and massive stars. R.L. would also like to thank Martin Steinke and Lida Oskinova for the insightful exchanges on WR102c. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) and on work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144153. This work is also based in part on observations obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/JPL, Oxford University, Yale University, and the National Astronomical Observatories of China, as well as work in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided by NASA through award 8500-98-014 issued by USRA. NR 77 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 117 DI 10.3847/0004-637X/818/2/117 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800016 ER PT J AU Levin, L McLaughlin, MA Jones, G Cordes, JM Stinebring, DR Chatterjee, S Dolch, T Lam, MT Lazio, TJW Palliyaguru, N Arzoumanian, Z Crowter, K Demorest, PB Ellis, JA Ferdman, RD Fonseca, E Gonzalez, ME Jones, ML Nice, DJ Pennucci, TT Ransom, SM Stairs, IH Stovall, K Swiggum, JK Zhu, WW AF Levin, Lina McLaughlin, Maura A. Jones, Glenn Cordes, James M. Stinebring, Daniel R. Chatterjee, Shami Dolch, Timothy Lam, Michael T. Lazio, T. Joseph W. Palliyaguru, Nipuni Arzoumanian, Zaven Crowter, Kathryn Demorest, Paul B. Ellis, Justin A. Ferdman, Robert D. Fonseca, Emmanuel Gonzalez, Marjorie E. Jones, Megan L. Nice, David J. Pennucci, Timothy T. Ransom, Scott M. Stairs, Ingrid H. Stovall, Kevin Swiggum, Joseph K. Zhu, Weiwei TI THE NANOGRAV NINE-YEAR DATA SET: MONITORING INTERSTELLAR SCATTERING DELAYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; ISM: general; methods: data analysis; pulsars: general ID MILLISECOND PULSAR; RADIO PULSARS; SPACE VELOCITIES; SCINTILLATION; PRECISION; PLASMA; PROPAGATION; SPECTRUM; EVENTS; WAVES AB We report on an effort to extract and monitor interstellar scintillation parameters in regular timing observations collected for the North American Nanohertz Observatory for Gravitational Waves pulsar timing array. Scattering delays are measured by creating dynamic spectra for each pulsar and observing epoch of wide-band observations centered near 1500 MHz and carried out at the Green Bank Telescope and the Arecibo Observatory. The similar to 800 MHz wide frequency bands imply dramatic changes in scintillation bandwidth across the bandpass, and a stretching routine has been included to account for this scaling. For most of the 10 pulsars for which the scaling has been measured, the bandwidths scale with frequency less steeply than expected for a Kolmogorov medium. We find estimated scattering delay values that vary with time by up to an order of magnitude. The mean measured scattering delays are similar to previously published values and are slightly higher than predicted by interstellar medium models. We investigate the possibility of increasing the timing precision by mitigating timing errors introduced by the scattering delays. For most of the pulsars, the uncertainty in the time of arrival of a single timing point is much larger than the maximum variation of the scattering delay, suggesting that diffractive scintillation remains as only a negligible part of their noise budget. C1 [Levin, Lina; McLaughlin, Maura A.; Palliyaguru, Nipuni; Jones, Megan L.; Swiggum, Joseph K.] W Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26505 USA. [Levin, Lina] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Jones, Glenn] Columbia Univ, Dept Phys, 550 W 120th St, New York, NY 10027 USA. [Cordes, James M.; Chatterjee, Shami; Dolch, Timothy; Lam, Michael T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Stinebring, Daniel R.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA. [Dolch, Timothy] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA. [Lazio, T. Joseph W.; Ellis, Justin A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91106 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, XRay Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E.; Stairs, Ingrid H.; Zhu, Weiwei] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Demorest, Paul B.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Ferdman, Robert D.; Stairs, Ingrid H.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Gonzalez, Marjorie E.] Vancouver Coastal Hlth Author, Dept Nucl Med, Vancouver, BC V5Z 1M9, Canada. [Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Pennucci, Timothy T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Ransom, Scott M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Stovall, Kevin] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Zhu, Weiwei] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Levin, L (reprint author), W Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26505 USA. OI Fonseca, Emmanuel/0000-0001-8384-5049 FU National Science Foundation (NSF) PIRE program award [0968296]; NSERC; Canadian Institute for Advanced Research FX The NANOGrav project receives support from the National Science Foundation (NSF) PIRE program award number 0968296. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. NANOGrav research at UBC is funded by an NSERC Discovery Grant and Discovery Accelerator Supplement and by the Canadian Institute for Advanced Research. NR 40 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 166 DI 10.3847/0004-637X/818/2/166 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800065 ER PT J AU Lionello, R Alexander, CE Winebarger, AR Linker, JA Mikic, Z AF Lionello, Roberto Alexander, Caroline E. Winebarger, Amy R. Linker, Jon A. Mikic, Zoran TI CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING? SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: UV radiation ID ACTIVE-REGION LOOPS; EXTREME-ULTRAVIOLET OBSERVATIONS; EUV IMAGING SPECTROMETER; ATOMIC DATABASE; EMISSION-LINES; SOLAR CORONA; TEMPERATURE; DIAGNOSTICS; CHIANTI; DENSITY AB The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%-26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored. C1 [Lionello, Roberto; Linker, Jon A.; Mikic, Zoran] Predict Sci Inc, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA. [Alexander, Caroline E.; Winebarger, Amy R.] NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35805 USA. RP Lionello, R; Linker, JA; Mikic, Z (reprint author), Predict Sci Inc, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA.; Alexander, CE; Winebarger, AR (reprint author), NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35805 USA. EM lionel@predsci.com; caroline.alexander@nasa.gov; amy.r.winebarger@nasa.gov; linkerj@predsci.com; mikicz@predsci.com FU NASA; NASA SRT program FX The authors are grateful to the referee for many helpful comments. The authors thank Drs. Ron Moore and Alphonse Sterling for providing many comments and discussions on the early text. R.L. thanks Dr. Ronald Caplan for helpful elucidations. C.E.A. is supported by appointments to the NASA Postdoctoral Program at the NASA/MSFC, administered by ORAU through a contract with NASA. A.R.W. is supported by a grant from NASA SR&T program. This work was supported by the NASA Heliophysics Theory and Living With a Star programs. NR 56 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 129 DI 10.3847/0004-637X/818/2/129 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800028 ER PT J AU Liu, XM Shemansky, DE Yoshii, J Johnson, PV Malone, CP Ajello, JM AF Liu, Xianming Shemansky, Donald E. Yoshii, Jean Johnson, Paul V. Malone, Charles P. Ajello, Joseph M. TI SPECTRA, EMISSION YIELDS, CROSS SECTIONS, AND KINETIC ENERGY DISTRIBUTIONS OF HYDROGEN ATOMS FROM H-2 X (1)Sigma(+)(g)- d (3)Pi(u) EXCITATION BY ELECTRON IMPACT SO ASTROPHYSICAL JOURNAL LA English DT Article DE molecular data; molecular processes ID QUANTUM-DEFECT THEORY; INFRARED-LASER SPECTROSCOPY; ANGULAR-MOMENTUM STATES; TRIPLET GERADE COMPLEX; AB-INITIO CALCULATION; MOLECULAR-HYDROGEN; HIGH-RESOLUTION; FINE-STRUCTURE; TRANSITION MOMENTS; DISSOCIATIVE DECAY AB Electron-impact excitation of H2 triplet states plays an important role in the heating of outer planet upper thermospheres. The d (3)Pi(u) state is the third ungerade triplet state, and the d (3)Pi(u)-a (3)Sigma(+)(g) emission is the largest cascade channel for the a (3)Sigma(+)(g) state. Accurate energies of the d (3)Pi(-)(u)(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the d (3)Pi(u)(v, J) levels are obtained by an accurate evaluation of the d (3)Pi(u)-a (3)Sigma(+)(g) transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic d (3)Pi(u)-a (3)Sigma(+)(g) spectra at 20 eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the X (1)Sigma(+)(g)-d (3)Pi(u) excitation, and significant cascade excitation occurs at the d (3)Pi(u)(v = 0,1) levels. Kinetic energy (E-k) distributions of H atoms produced via predissociation of the d (3)Pi(u) state and the d (3)Pi(u)-a (3)Sigma(+)(g)-b (3)Sigma u(+) cascade dissociative emission are obtained. Predissociation of the d (3)Pi(u) state produces H atoms with an average E-k of 2.3 +/- 0.4 eV/atom, while the E-k distribution of the d (3)Pi(u)-a (3)Sigma(+)(g)-b (3)Sigma(+)(u) channel is similar to that of the X (1)Sigma(+)(g)-a (3)Sigma(+)(g)-b (3)Sigma(+)(u) channel and produces H(1s) atoms with an average E-k of 1.15 +/- 0.05 eV/atom. On average, each H-2 excited to the d (3)Pi(u) state in an H-2-dominated atmosphere deposits 3.3 +/- 0.4 eV into the atmosphere, while each H-2 directly excited to the a (3)Sigma(+)(g) state gives 2.2-2.3 eV to the atmosphere. The spectral distribution of the calculated a (3)Sigma(+)(g)-b (3)Sigma(+)(u) continuum emission due to the X (1)Sigma(+)(g)-d (3)Pi(u) excitation is significantly different from that of direct a (3)Sigma(+)(g) excitation. C1 [Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean] Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. [Johnson, Paul V.; Malone, Charles P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Ajello, Joseph M.] Univ Colorado, Lab Atmosphere & Space Phys, Boulder, CO 80303 USA. RP Liu, XM (reprint author), Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. EM xliu@spacewx.com RI Johnson, Paul/D-4001-2009 OI Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration (NASA); NASA; National Science Foundation [1518304]; Cassini UVIS contract; University of Colorado FX The analysis described in this paper was carried out at Space Environment Technologies. A portion of the work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). We gratefully acknowledge financial support through NASA's Planetary Atmospheres (PATM) and Astrophysics Research and Analysis (APRA) programs, through the National Science Foundation's AST program (#1518304), and through a Cassini UVIS contract with the University of Colorado. NR 127 TC 1 Z9 1 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 120 DI 10.3847/0004-637X/818/2/120 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800019 ER PT J AU Meyer, ET Sparks, WB Georganopoulos, M Anderson, J van der Marel, R Biretta, J Sohn, ST Chiaberge, M Perlman, E Norman, C AF Meyer, Eileen T. Sparks, William B. Georganopoulos, Markos Anderson, Jay van der Marel, Roeland Biretta, John Sohn, Sangmo Tony Chiaberge, Marco Perlman, Eric Norman, Colin TI AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; proper motions; quasars: individual (3C 273); radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; HUBBLE-SPACE-TELESCOPE; X-RAY-EMISSION; CHARGE-TRANSFER EFFICIENCY; HIGH-ENERGY EMISSION; BASE-LINE ARRAY; SUPERLUMINAL MOTION; M87 JET; 3C 273; BLACK-HOLE AB The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of -0.2 +/- 0.5c over the whole jet. Assuming the knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Gamma < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer & Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits. C1 [Meyer, Eileen T.; Sparks, William B.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Meyer, Eileen T.; Georganopoulos, Markos] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Anderson, Jay; van der Marel, Roeland; Biretta, John; Chiaberge, Marco; Norman, Colin] Space Telescope Sci Inst, Baltimore, MD 21210 USA. [Sohn, Sangmo Tony; Norman, Colin] Johns Hopkins Univ, Baltimore, MD 21210 USA. [Perlman, Eric] Florida Inst Technol, Melbourne, FL 32901 USA. [Georganopoulos, Markos] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Meyer, ET (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM meyer@stsci.edu FU HST Grant [GO-13327]; NASA [14-ADAP14-0122] FX E.T.M. acknowledges HST Grant GO-13327. E.T.M. and M.G. also acknolwedge NASA grant 14-ADAP14-0122. NR 60 TC 0 Z9 0 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 195 DI 10.3847/0004-637X/818/2/195 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800094 ER PT J AU Miller, NJ Chuss, DT Marriage, TA Wollack, EJ Appel, JW Bennett, CL Eimer, J Essinger-Hileman, T Fixsen, DJ Harrington, K Moseley, SH Rostem, K Switzer, ER Watts, DJ AF Miller, N. J. Chuss, D. T. Marriage, T. A. Wollack, E. J. Appel, J. W. Bennett, C. L. Eimer, J. Essinger-Hileman, T. Fixsen, D. J. Harrington, K. Moseley, S. H. Rostem, K. Switzer, E. R. Watts, D. J. TI RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; methods: data analysis ID MICROWAVE BACKGROUND POLARIZATION; B-MODE POLARIZATION; MAPS; TEMPERATURE; EMISSION; RADIOMETERS; RADIATION; QUAD AB Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls. C1 [Miller, N. J.; Marriage, T. A.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Harrington, K.; Rostem, K.; Watts, D. J.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Miller, N. J.; Wollack, E. J.; Fixsen, D. J.; Moseley, S. H.; Rostem, K.; Switzer, E. R.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Chuss, D. T.] Villanova Univ, Dept Phys, 800 E Lancaster, Villanova, PA 19085 USA. RP Miller, NJ (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.; Miller, NJ (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM Nathan.J.Miller@nasa.gov RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Watts, Duncan/0000-0002-5437-6121 FU NASA; NASA Space Technology Research Fellowship [NNX14AM49H]; National Science Foundation [0959349, 1429236] FX NJM's research was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. K. Harrington was supported by a NASA Space Technology Research Fellowship (NNX14AM49H). Support for CLASS has been provided by the National Science Foundation under grant numbers 0959349 and 1429236. NR 61 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 151 DI 10.3847/0004-637X/818/2/151 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800050 ER PT J AU Mooley, KP Hallinan, G Bourke, S Horesh, A Myers, ST Frail, DA Kulkarni, SR Levitan, DB Kasliwal, MM Cenko, SB Cao, Y Bellm, E Laher, RR AF Mooley, K. P. Hallinan, G. Bourke, S. Horesh, A. Myers, S. T. Frail, D. A. Kulkarni, S. R. Levitan, D. B. Kasliwal, M. M. Cenko, S. B. Cao, Y. Bellm, E. Laher, R. R. TI THE CALTECH-NRAO STRIPE 82 SURVEY (CNSS) PAPER. I. THE PILOT RADIO TRANSIENT SURVEY IN 50 DEG(2) SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: active; radio continuum: galaxies; stars: activity; supernovae: general; surveys ID ACTIVE GALACTIC NUCLEI; GAMMA-RAY BURST; DIGITAL SKY SURVEY; DEEP FIELD-SOUTH; ACCRETION-INDUCED COLLAPSE; NICKEL-RICH OUTFLOWS; FALSE-DISCOVERY RATE; X-RAY; 1.4 GHZ; LARGE ARRAY AB We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire similar to 270 deg(2) of Stripe 82, an eventual deep combined map with an rms noise of similar to 40 mu Jy and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 ''. This first paper presents the results from an initial pilot survey of a 50 deg2 region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 mu Jy. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg2 survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(-0.9)(+0.5)% of the few thousand detected point sources were found to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely associated with renewed AGN activity. The rates of such AGNs possibly imply episodes of enhanced accretion and jet activity occurring once every similar to 40,000 yr in these galaxies. We compile the revised radio transient rates and make recommendations for future transient surveys and joint radio-optical experiments. C1 [Mooley, K. P.; Hallinan, G.; Bourke, S.; Kulkarni, S. R.; Cao, Y.; Bellm, E.] CALTECH, Cahill Ctr Astron, MC 249-17, Pasadena, CA 91125 USA. [Mooley, K. P.; Myers, S. T.; Frail, D. A.] Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. [Horesh, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, Fac Phys, IL-76100 Rehovot, Israel. [Levitan, D. B.] Microsoft, Bellevue, WA USA. [Kasliwal, M. M.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Cenko, S. B.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Laher, R. R.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA. [Mooley, K. P.] Oxford Ctr Astrophys Surveys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. RP Mooley, KP (reprint author), CALTECH, Cahill Ctr Astron, MC 249-17, Pasadena, CA 91125 USA.; Mooley, KP (reprint author), Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA.; Mooley, KP (reprint author), Oxford Ctr Astrophys Surveys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. EM kunal@astro.caltech.edu RI Horesh, Assaf/O-9873-2016 OI Horesh, Assaf/0000-0002-5936-1156 FU NRAO; NASA; NSF; W. M. Keck Foundation FX The authors extend sincere thanks to Joan Wrobel and other scheduling staff at the NRAO in Socorro for extensive help with the scheduling of the VLA observations, and to James Robnett and other computing staff for their untiring assistance with the data storage and allocation of computing resources. The authors also wish to thank Luis Ho, Branimir Sesar, Eran Ofek, Sanjay Bhatnagar, Urvashi Rau, Kumar Golap, Vivek Dhawan, Craig Walker, Talvikki Hovatta, Tim Pearson, Anthony Readhead, Chuck Steidel, and Allison Strom for insightful discussions. The contribution of PTF collaboration members to optical data processing and optical follow-up observations relevant for this project is acknowledged. K.P.M. is grateful to NRAO for the Grote Reber Fellowship, and to Yamini Jangir for going over this manuscript and providing useful suggestions. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. S.R.K.'s research in part is supported by NASA and NSF. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California, Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This research has made extensive use of ADS, CDS (Vizier and SIMBAD), NED, SDSS, and IRSA. We thank the anonymous referee for comments that helped in improving certain parts of the manuscript. NR 142 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 105 DI 10.3847/0004-637X/818/2/105 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800004 ER PT J AU Neeleman, M Prochaska, JX Ribaudo, J Lehner, N Howk, JC Rafelski, M Kanekar, N AF Neeleman, Marcel Prochaska, J. Xavier Ribaudo, Joseph Lehner, Nicolas Howk, J. Christopher Rafelski, Marc Kanekar, Nissim TI THE H I CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR SO ASTROPHYSICAL JOURNAL LA English DT Article DE evolution; galaxies: evolution; galaxies: ISM; intergalactic medium; quasars: absorption lines ID LY-ALPHA SYSTEMS; DAMPED LYMAN-ALPHA; HUBBLE-SPACE-TELESCOPE; DIGITAL SKY SURVEY; COSMOLOGICAL MASS DENSITY; STAR-FORMING GALAXIES; SIMILAR-TO 5; Z LESS-THAN; ABSORPTION SYSTEMS; INTERMEDIATE REDSHIFT AB We use the Hubble Space Telescope (HST) archive of ultraviolet (UV) quasar spectroscopy to conduct the first blind survey for damped Ly alpha absorbers (DLAs) at low redshift (z < 1.6). Our statistical sample includes 463 quasars with spectral coverage spanning a total redshift path Delta z = 123.3 or an absorption path Delta X = 229.7. Within this survey path, we identify 4 DLAs defined as absorbers with H I column density N-H I >= 10(20.3) cm(-2), which implies an incidence per absorption length l(DLA) (X) = 0.017(-0.008)(+0.014) at a median survey path redshift of z = 0.623. While our estimate of l(DLA) (X) is lower than earlier estimates at z approximate to 0 from H I 21 cm emission studies, the results are consistent within the measurement uncertainties. Our data set is too small to properly sample the N-H I frequency distribution function f (N-H I, X), but the observed distribution agrees with previous estimates at z > 2. Adopting the z > 2 shape of f (N-H I, X), we infer an H I mass density at z similar to 0.6 of rho(DLA)(H I) = 0.25(-0.12)(+0.20) x 10(8)M(circle dot) Mpc(-3). This is significantly lower than previous estimates from targeted DLA surveys with the HST, but consistent with results from low-z H I. 21 cm observations, and suggests that the neutral gas density of the universe has been decreasing over the past 10 Gyr. C1 [Neeleman, Marcel] UCSD, Dept Phys, La Jolla, CA 92093 USA. [Neeleman, Marcel] UCSD, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Neeleman, Marcel; Prochaska, J. Xavier] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. [Ribaudo, Joseph] Utica Coll, Dept Phys, 1600 Burrstone Rd, Utica, NY 13502 USA. [Lehner, Nicolas; Howk, J. Christopher] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Rafelski, Marc] NASA, Postdoctoral Program Fellow, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Kanekar, Nissim] Pune Univ, Natl Ctr Radio Astrophys, Tata Inst Fundamental Res, Pune 411007, Maharashtra, India. RP Neeleman, M (reprint author), UCSD, Dept Phys, La Jolla, CA 92093 USA.; Neeleman, M (reprint author), UCSD, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.; Neeleman, M (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. EM marcel@ucsc.edu FU NASA from the STScI [HST-AR-12854, HST-AR-12645]; NASA [HST-AR-12854, NAS 5-26555]; NSF [AST-1109452, AST-1212012]; Department of Science and Technology [DST/SJF/PSA-01/2012-13] FX This research would not have been possible without the guidance and insights of the late A.M. Wolfe during the initial phases of the project. He will be sorely missed. We thank R. Sanchez-Ramirez for providing their results before publication, and the referee for helpful comments that improved the manuscript. This work was based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). The COS G130M/G160M data presented in this work were obtained from the COS-CGM Legacy database, which is funded by NASA through grant HST-AR-12854 from the STScI. Finally, support for this work was provided by NASA through grant HST-AR-12645 from the STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. M.N. and J.X.P. further acknowledge support from NSF award AST-1109452. N.L. acknowledges support provided by NASA through grant HST-AR-12854. J.C.H. and N.L. acknowledge support from NSF award AST-1212012. M.R. acknowledges support from an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center. N.K. acknowledges support from the Department of Science and Technology via a Swarnajayanti Fellowship (DST/SJF/PSA-01/2012-13). NR 63 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 113 DI 10.3847/0004-637X/818/2/113 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800012 ER PT J AU Smith, RK Valencic, LA Corrales, L AF Smith, Randall K. Valencic, Lynne A. Corrales, Lia TI THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; methods: data analysis; X-rays: ISM ID INTERSTELLAR DUST GRAINS; XMM-NEWTON; BINARY EXO-0748-676; NEUTRON-STAR; EXO 0748-676; SCATTERING; HALOS; ASTROPHYSICS; ABSORPTION AB Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model as a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction. C1 [Smith, Randall K.] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. [Valencic, Lynne A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Valencic, Lynne A.] Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA. [Corrales, Lia] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave,37-241, Cambridge, MA 02139 USA. RP Valencic, LA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Valencic, LA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA. EM lynne.a.valencic@nasa.gov FU Chandra grant [TM4-15002X] FX The authors thank the anonymous referee for prompt and helpful comments that significantly improved the work. We also thank Sebastian Heinz for reviewing the xscat code and helping to debug it. Randall Smith gratefully acknowledges helpful discussions and overall inspiration to work on X-ray scattering from Eli Dwek. Financial support for this work was made possible by Chandra grant TM4-15002X. NR 37 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 143 DI 10.3847/0004-637X/818/2/143 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800042 ER PT J AU Wang, YM Warren, HP Muglach, K AF Wang, Y. -M. Warren, H. P. Muglach, K. TI CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: magnetic fields; Sun: UV radiation ID POLAR PLUMES; SOLAR-WIND; NETWORK ACTIVITY; SUNSPOTS AB Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimes barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the similar to 1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows. C1 [Wang, Y. -M.; Warren, H. P.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Muglach, K.] NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. [Muglach, K.] Catholic Univ Amer, Washington, DC 20064 USA. RP Wang, YM; Warren, HP (reprint author), Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.; Muglach, K (reprint author), NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. EM yi.wang@nrl.navy.mil; harry.warren@nrl.navy.mil; karin.muglach@nasa.gov NR 22 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 203 DI 10.3847/0004-637X/818/2/203 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800102 ER PT J AU Zhou, YF Apai, D Schneider, GH Marley, MS Showman, AP AF Zhou, Yifan Apai, Daniel Schneider, Glenn H. Marley, Mark S. Showman, Adam P. TI DISCOVERY OF ROTATIONAL MODULATIONS IN THE PLANETARY-MASS COMPANION 2M1207b: INTERMEDIATE ROTATION PERIOD AND HETEROGENEOUS CLOUDS IN A LOW GRAVITY ATMOSPHERE SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; planets and satellites: atmospheres; planets and satellites: individual (2M1207b); techniques: photometric ID HUBBLE-SPACE-TELESCOPE; YOUNG BROWN DWARF; ORBITING HR 8799; EDGE-ON DISK; MODEL ATMOSPHERES; EXTRASOLAR PLANET; GIANT PLANETS; LIGHT CURVES; T DWARFS; MU-M AB Rotational modulations of brown dwarfs have recently provided powerful constraints on the properties of ultra-cool atmospheres, including longitudinal and vertical cloud structures and cloud evolution. Furthermore, periodic light curves directly probe the rotational periods of ultra-cool objects. We present here, for the first time, time-resolved high-precision photometric measurements of a planetary-mass companion, 2M1207b. We observed the binary system with Hubble Space Telescope/Wide Field Camera 3 in two bands and with two spacecraft roll angles. Using point-spread function-based photometry, we reach a nearly photon-noise limited accuracy for both the primary and the secondary. While the primary is consistent with a flat light curve, the secondary shows modulations that are clearly detected in the combined light curve as well as in different subsets of the data. The amplitudes are 1.36% in the F125W and 0.78% in the F160W filters, respectively. By fitting sine waves to the light curves, we find a consistent period of 10.7(0.6)(+1.2) hr and similar phases in both bands. The J- and H-band amplitude ratio of 2M1207b is very similar to a field brown dwarf that has identical spectral type but different J-H color. Importantly, our study also measures, for the first time, the rotation period for a directly imaged extra-solar planetary-mass companion. C1 [Zhou, Yifan; Apai, Daniel; Schneider, Glenn H.] Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Apai, Daniel; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, 1640 E Univ Blvd, Tucson, AZ 85718 USA. [Apai, Daniel] NASA, Nexus Exoplanet Syst Sci, Earths Other Solar Syst Team, Washington, DC 20546 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Naval Air Stn, Moffett Field, CA 94035 USA. RP Zhou, YF (reprint author), Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM yifzhou@email.arizona.edu OI Marley, Mark/0000-0002-5251-2943; Zhou, Yifan/0000-0003-2969-6040 FU NASA through Space Telescope Science Institute [13418]; NASA [NAS5-26555]; NASA's Science Mission Directorate; NASA Astrophysics Theory Program; NSF [AST1313444] FX We thank the anonymous referee for valuable comments that helped improve the manuscript. Support for program number 13418 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The results reported herein benefited from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate. M.S.M. acknowledges support from the NASA Astrophysics Theory Program. A.P.S. acknowledges support from NSF grant AST1313444. NR 52 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 176 DI 10.3847/0004-637X/818/2/176 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800075 ER PT J AU Lin, ZY Li, W Gatebe, C Poudyal, R Stamnes, K AF Lin, Zhenyi Li, Wei Gatebe, Charles Poudyal, Rajesh Stamnes, Knut TI Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness SO APPLIED OPTICS LA English DT Article ID WATER-LEAVING RADIANCES; SUN-GLINT; ATMOSPHERIC CORRECTION; LAYERED MEDIA; SYSTEM; RETRIEVAL; AEROSOL; ALGORITHM; SEAWIFS; MODELS AB An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications. (C) 2016 Optical Society of America C1 [Lin, Zhenyi; Li, Wei; Stamnes, Knut] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA. [Gatebe, Charles] Univ Space Res Assoc, Columbia, MD 20146 USA. [Poudyal, Rajesh] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Gatebe, Charles; Poudyal, Rajesh] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lin, ZY (reprint author), Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA. EM lzhenyi@stevens.edu RI Gatebe, Charles/G-7094-2011 OI Gatebe, Charles/0000-0001-9261-2239 FU National Aeronautics and Space Administration (NASA) as part of the GEO-CAPE Oceans studies [613] FX National Aeronautics and Space Administration (NASA) as part of the GEO-CAPE Oceans studies managed by Paula Bontempi and Jassim Al-Saadi (NASA: Cloud Absorption Radiometer (CAR)-Code 613). NR 45 TC 1 Z9 1 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 20 PY 2016 VL 55 IS 6 BP 1206 EP 1215 DI 10.1364/AO.55.001206 PG 10 WC Optics SC Optics GA DE2GP UT WOS:000370445400003 PM 26906570 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Belczynski, C Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Gonzalez Castro, JM Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lueck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magna-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, J McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Puerrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH RosiNska, D Rowan, S Ruediger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, S Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schoenbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, SP Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifir, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Van Bakel, N Van Beuzekom, M Van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC Van der Schaaf, L Van Heijningen, JV Van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P-F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J-P Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H-B Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez Castro, J. M. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J-M Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y-M King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magna-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. RosiNska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifir, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Van Bakel, N. Van Beuzekom, M. Van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. Van der Schaaf, L. Van Heijningen, J. V. Van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J-Y Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L-W Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J-P Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA Ligo Sci Collaboration Virgo Collaboration TI ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational waves; stars: black holes; stars: massive ID GRAVITATIONAL-WAVE DETECTION; COMPACT-OBJECT BINARIES; YOUNG STAR-CLUSTERS; X-RAY BINARIES; GLOBULAR-CLUSTERS; MASSIVE STARS; NEUTRON-STAR; LOCAL UNIVERSE; MAXIMUM MASS; CYGNUS X-1 AB The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" BHs (greater than or similar to 25M(circle dot)) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (greater than or similar to 1 Gpc(-3) yr(-1)) from both types of formation models. The low measured redshift (z similar or equal to 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; DeRosa, R. T.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.] Univ Savoie Mt Blanc, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H-B; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez Castro, J. M.; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez Castro, J. M.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifir, D.] Univ Mississippi, Oxford, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, LAL,IN2P3, Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Chennai, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Singh, A.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, APC,AstroParticule & Cosmol,IN2P3,CEA,Irfu, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magna-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.] RMKI, Wigner RCP, Konkoly Thege Mikos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; RosiNska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S. P.; Thomas, E. G.; Toyra, D.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, MP, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.] Univ Cote Azur, Artemis, CNRS, Observ Cote Azur, F-34229 Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P-F.; Deleglise, S.; Heidmann, A.; Isac, J-M; Jacqmin, T.] UPMC, Sorbonne Univ, Lab Kastler Brossel, CNRS,ENS,PSL Res Uni,Coll France, F-75005 Paris, France. [Bulten, H. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC, IAC3, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De Laurentis, M.; DeRosa, R. T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; McIver, J.; Nedkova, K.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y-M; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] ESPCI, CNRS, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [RosiNska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. Univ Washington, Seattle, WA 98195 USA. Kenyon Coll, Gambier, OH 43022 USA. [Sammut, L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Costa, Cesar/G-7588-2012; Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; Gammaitoni, Luca/B-5375-2009; Bell, Angus/E-7312-2011; Hild, Stefan/A-3864-2010; Rocchi, Alessio/O-9499-2015; Zhu, Xingjiang/E-1501-2016; Strain, Kenneth/D-5236-2011; prodi, giovanni/B-4398-2010; Gemme, Gianluca/C-7233-2008; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Harms, Jan/J-4359-2012; Howell, Eric/H-5072-2014; OI Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Gendre, Bruce/0000-0002-9077-2025; Allen, Bruce/0000-0003-4285-6256; Granata, Massimo/0000-0003-3275-1186; Berry, Christopher/0000-0003-3870-7215; Leavey, Sean/0000-0001-8253-0272; Mitra, Sanjit/0000-0002-0800-4626; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; De Laurentis, Martina/0000-0002-3815-4078; Conti, Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; Gammaitoni, Luca/0000-0002-4972-7062; Bell, Angus/0000-0003-1523-0821; Rocchi, Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; Strain, Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X; Gemme, Gianluca/0000-0002-1127-7406; Gorodetsky, Michael/0000-0002-5159-2742; Heidmann, Antoine/0000-0002-0784-5175; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315; Naticchioni, Luca/0000-0003-2918-0730; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; MaxPlanck- Society (MPS); State of Niedersachsen/Germany [GEO600]; Australian Research Council; Netherlands Organisation for Scientific Research; EGO consortium; Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science AMP; Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Union; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Lyon Institute of Origins (LIO); National Research Foundation of Korea, Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Brazilian Ministry of Science, Technology, and Innovation; Leverhulme Trust; Research Corporation, Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS; State of Niedersachsen/Germany FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the MaxPlanck- Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Union, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. NR 142 TC 104 Z9 104 U1 30 U2 90 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L22 DI 10.3847/2041-8205/818/2/L22 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800001 ER PT J AU Abeysekara, AU Archambault, S Archer, A Benbow, W Bird, R Buchovecky, M Buckley, JH Byrum, K Cardenzana, JV Cerruti, M Chen, X Christiansen, JL Ciupik, L Cui, W Dickinson, HJ Eisch, JD Errando, M Falcone, A Fegan, DJ Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Hutten, M Hakansson, N Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Kertzman, M Kieda, D Krause, M Krennrich, F Kumar, S Lang, MJ Lin, TTY Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nieto, D O'Brien, S de Bhroithe, AO Ong, RA Otte, AN Park, N Perkins, JS Petrashyk, A Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Ratliff, G Reynolds, PT Richards, GT Roache, E Santander, M Sembroski, GH Shahinyan, K Staszak, D Telezhinsky, I Tucci, JV Tyler, J Vincent, S Wakely, SP Weiner, OM Weinstein, A Williams, DA Zitzer, B AF Abeysekara, A. U. Archambault, S. Archer, A. Benbow, W. Bird, R. Buchovecky, M. Buckley, J. H. Byrum, K. Cardenzana, J. V. Cerruti, M. Chen, X. Christiansen, J. L. Ciupik, L. Cui, W. Dickinson, H. J. Eisch, J. D. Errando, M. Falcone, A. Fegan, D. J. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Kertzman, M. Kieda, D. Krause, M. Krennrich, F. Kumar, S. Lang, M. J. Lin, T. T. Y. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nieto, D. O'Brien, S. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Perkins, J. S. Petrashyk, A. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Ratliff, G. Reynolds, P. T. Richards, G. T. Roache, E. Santander, M. Sembroski, G. H. Shahinyan, K. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Williams, D. A. Zitzer, B. TI A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrobiology; extraterrestrial intelligence; methods: observational; stars: individual ( KIC 8462852); techniques: photometric ID EXTRATERRESTRIAL INTELLIGENCE; TELESCOPES; SPECTRA; STARS; VERITAS; BURSTS; SYSTEM; OSETI AB The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general. C1 [Abeysekara, A. U.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Archambault, S.; Griffin, S.; Hanna, D.; Lin, T. T. Y.; McCann, A.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Buckley, J. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Fegan, D. J.; O'Brien, S.; Pueschel, E.; Quinn, J.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Buchovecky, M.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chen, X.; Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Christiansen, J. L.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Errando, M.; Mukherjee, R.; Santander, M.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA. [Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Holder, J.] Florida Inst Technol, Dept Phys & Space Sci, W Melbourne, FL 32901 USA. [Humensky, T. B.; Nieto, D.; Petrashyk, A.; Weiner, O. M.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork, Ireland. RP Dickinson, HJ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.; Holder, J (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.; Holder, J (reprint author), Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.; Holder, J (reprint author), Florida Inst Technol, Dept Phys & Space Sci, W Melbourne, FL 32901 USA. EM hughd@iastate.edu; jholder@physics.udel.edu RI Nieto, Daniel/J-7250-2015; OI Nieto, Daniel/0000-0003-3343-0755; Pueschel, Elisa/0000-0002-0529-1973; Krause, Maria/0000-0001-7595-0914; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, and the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics. and for his interest in the wider applications of IACTs, which made this study possible. NR 40 TC 3 Z9 3 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L33 DI 10.3847/2041-8205/818/2/L33 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800012 ER PT J AU Cenko, SB Cucchiara, A Roth, N Veilleux, S Prochaska, JX Yan, L Guillochon, J Maksym, WP Arcavi, I Butler, NR Filippenko, AV Fruchter, AS Gezari, S Kasen, D Levan, AJ Miller, JM Pasham, DR Ramirez-Ruiz, E Strubbe, LE Tanvir, NR Tombesi, F AF Cenko, S. Bradley Cucchiara, Antonino Roth, Nathaniel Veilleux, Sylvain Prochaska, J. Xavier Yan, Lin Guillochon, James Maksym, W. Peter Arcavi, Iair Butler, Nathaniel R. Filippenko, Alexei V. Fruchter, Andrew S. Gezari, Suvi Kasen, Daniel Levan, Andrew J. Miller, Jon M. Pasham, Dheeraj R. Ramirez-Ruiz, Enrico Strubbe, Linda E. Tanvir, Nial R. Tombesi, Francesco TI AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; stars: flare; ultraviolet: general ID DIGITAL SKY SURVEY; NITROGEN-ENRICHED QUASARS; SUPERMASSIVE BLACK-HOLE; MAIN-SEQUENCE STAR; DATA RELEASE; LY-ALPHA; GALAXIES; PS1-10JH; EVENTS; ABSORPTION AB We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T-UV 3.5 x 10(4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (similar to 2000-8000 km s(-1)) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta nu = -(250-400) km s(-1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], NIV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and "N-rich" quasars. C1 [Cenko, S. Bradley; Cucchiara, Antonino; Pasham, Dheeraj R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. Bradley; Veilleux, Sylvain; Pasham, Dheeraj R.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Cucchiara, Antonino; Fruchter, Andrew S.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Roth, Nathaniel; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Veilleux, Sylvain; Gezari, Suvi; Tombesi, Francesco] Univ Maryland, Dept Astron, Stadium Dr, College Pk, MD 20742 USA. [Prochaska, J. Xavier; Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Yan, Lin] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Guillochon, James] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA. [Maksym, W. Peter] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Maksym, W. Peter] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Arcavi, Iair] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA. [Arcavi, Iair] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Butler, Nathaniel R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Filippenko, Alexei V.; Kasen, Daniel] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Levan, Andrew J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Miller, Jon M.] Univ Michigan, Dept Astron, 1085 South Univ Ave, Ann Arbor, MI 48103 USA. [Strubbe, Linda E.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Strubbe, Linda E.] Univ British Columbia, Carl Wieman Sci Educ Initiat, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Tanvir, Nial R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Tombesi, Francesco] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Cenko, SB (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. EM brad.cenko@nasa.gov OI Roth, Nathaniel/0000-0002-6485-2259; Maksym, Walter/0000-0002-2203-7889; Guillochon, James/0000-0002-9809-8215 FU Aspen Center for Physics; NSF [1066293, AST-1211916]; TABASGO Foundation; Christopher R. Redlich Fund; Association of Universities for Research in Astronomy, Inc., under NASA [NAS 5-26555] FX We thank R. Chornock, M. Eracleous, P. Hall, and C. Kochanek for valuable discussions, and the HST staff for the prompt scheduling of these ToO observations. S.B.C. acknowledges the Aspen Center for Physics and NSF Grant #1066293 for hospitality. AVF's research was funded by NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund.; Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 50 TC 5 Z9 5 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L32 DI 10.3847/2041-8205/818/2/L32 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800011 ER PT J AU Konishi, M Grady, CA Schneider, G Shibai, H McElwain, MW Nesvold, ER Kuchner, MJ Carson, J Debes, JH Gaspar, A Henning, TK Hines, DC Hinz, PM Jang-Condell, H Moro-Martin, A Perrin, M Rodigas, TJ Serabyn, E Silverstone, MD Stark, CC Tamura, M Weinberger, AJ Wisniewski, JP AF Konishi, Mihoko Grady, Carol A. Schneider, Glenn Shibai, Hiroshi McElwain, Michael W. Nesvold, Erika R. Kuchner, Marc J. Carson, Joseph Debes, John. H. Gaspar, Andras Henning, Thomas K. Hines, Dean C. Hinz, Philip M. Jang-Condell, Hannah Moro-Martin, Amaya Perrin, Marshall Rodigas, Timothy J. Serabyn, Eugene Silverstone, Murray D. Stark, Christopher C. Tamura, Motohide Weinberger, Alycia J. Wisniewski, John. P. TI DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; stars: imaging; stars: individual (HD 141569 A) ID CIRCUMSTELLAR DISK; DEBRIS DISK; MOLECULAR GAS; HD-141569; ASYMMETRIES; STARS; EXOPLANETS; REDUCTION; EMISSION; IMAGES AB We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25, and can be traced from 0 ''.4 (similar to 46 AU) to 1 ''.0 (similar to 116 AU) after deprojection using i = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of similar to 6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 ''(similar to 232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 +/- 3 M-J is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M-J, which is broadly consistent with previous estimates. C1 [Konishi, Mihoko; Shibai, Hiroshi] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka, Japan. [Grady, Carol A.; Silverstone, Murray D.] Eureka Sci, Oakland, CA USA. [Grady, Carol A.; McElwain, Michael W.; Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Schneider, Glenn; Gaspar, Andras; Hinz, Philip M.] Univ Arizona, Tucson, AZ USA. [Nesvold, Erika R.; Rodigas, Timothy J.] Carnegie Inst Sci, Washington, DC 20005 USA. [Carson, Joseph] Coll Charleston, Charleston, SC 29401 USA. [Debes, John. H.; Hines, Dean C.; Moro-Martin, Amaya; Perrin, Marshall; Stark, Christopher C.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Henning, Thomas K.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Jang-Condell, Hannah] Univ Wyoming, Laramie, WY 82071 USA. [Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tamura, Motohide] Univ Tokyo, Tokyo, Japan. [Wisniewski, John. P.] Univ Oklahoma, Norman, OK 73019 USA. RP Konishi, M (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka, Japan. EM konishi@iral.ess.sci.osaka-u.ac.jp OI Perrin, Marshall/0000-0002-3191-8151 FU NASA through a grant from STScI [13786]; NASA exchange program; Osaka University Scholarship; South Carolina Space Grant Consortium REAP Program FX This study is based on observations made with the NASA/ESA HST, obtained at STScI, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 13786. Support for program No. 13786 was provided by NASA through a grant from STScI. We thank the anonymous referee for helpful suggestions. M.K. acknowledges the support of the NASA exchange program operated by Universities Space Research Association and of the Osaka University Scholarship for Overseas Research Activities 2015. J.C. acknowledges support from the South Carolina Space Grant Consortium REAP Program. NR 39 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L23 DI 10.3847/2041-8205/818/2/L23 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800002 ER PT J AU Mo, WL Gonzalez, A Jee, MJ Massey, R Rhodes, J Brodwin, M Eisenhardt, P Marrone, DP Stanford, SA Zeimann, GR AF Mo, Wenli Gonzalez, Anthony Jee, M. James Massey, Richard Rhodes, Jason Brodwin, Mark Eisenhardt, Peter Marrone, Daniel P. Stanford, S. A. Zeimann, Gregory R. TI IDCS J1426.5+3508: WEAK LENSING ANALYSIS OF A MASSIVE GALAXY CLUSTER AT z=1.75 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; dark matter; galaxies: clusters: individual (IDCS J1426.5+3508); gravitational lensing: weak ID HUBBLE-SPACE-TELESCOPE; CHARGE-TRANSFER INEFFICIENCY; POINT-SPREAD FUNCTION; GREATER-THAN 1.5; STAR-FORMATION; ADVANCED CAMERA; SCALING RELATIONS; COSMOLOGY; RESOLUTION; UNIVERSE AB We present a weak lensing study of the galaxy cluster IDCS. J1426.5+3508 at z = 1.75, which is the highest-redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect tangential shear at 2 sigma significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass M-200,M-crit 2.3(-1.4)(+2.1)x10(14) M circle dot. This mass is consistent with previous mass estimates from the Sunyaev-Zel'dovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation. C1 [Mo, Wenli; Gonzalez, Anthony] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Jee, M. James] Yonsei Univ, Dept Astron, 50 Yonsei Ro, Seoul 03722, South Korea. [Jee, M. James] Yonsei Univ, Ctr Galaxy Evolut Res, 50 Yonsei Ro, Seoul 03722, South Korea. [Massey, Richard] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. [Rhodes, Jason; Eisenhardt, Peter] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA. [Marrone, Daniel P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Zeimann, Gregory R.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Zeimann, Gregory R.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Zeimann, Gregory R.] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. RP Mo, WL (reprint author), Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. FU NASA through a grant from the Space Telescope Science Institute [11663, 12203, 12994]; National Science Foundation Graduate Research Fellowship [DGE-1315138]; NRF of Korea; Royal Society University Research Fellowship; JPL; Caltech under a contract for NASA FX The authors thank the anonymous referee and Daniel Stern for their insightful suggestions and Audrey Galametz for her help with the CANDELS-UDS data. Support for HST GO-program 11663, 12203, and 12994 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. We also acknowledge funding received from the National Science Foundation Graduate Research Fellowship under grant No. DGE-1315138 (W.M.), NRF of Korea to CGER (M.J.J.), and Royal Society University Research Fellowship (R.M.). J.R. is supported by JPL, which is run by Caltech under a contract for NASA. NR 47 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L25 DI 10.3847/2041-8205/818/2/L25 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800004 ER PT J AU Yamamoto, M Shiokawa, K Nakamura, T Gopalswamy, N AF Yamamoto, Mamoru Shiokawa, Kazuo Nakamura, Takuji Gopalswamy, Nat TI Special issue "International CAWSES-II Symposium" SO EARTH PLANETS AND SPACE LA English DT Editorial Material DE Sun-Earth system; Solar-terrestrial physics; International program; CAWSES-II; SCOSTEP ID SOLAR-CYCLE 24; UPPER-ATMOSPHERE; IONOSPHERE; THERMOSPHERE; TIDES; IRREGULARITIES; PERSPECTIVES; VARIABILITY; PARAMETERS; PROGRESS AB This special issue gathered papers from the International CAWSES-II Symposium (November 18-22, 2013 at Nagoya University, Japan). Climate and Weather of the Sun-Earth System II (CAWSES-II) is an international scientific program sponsored by Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) that continued from 2009 to 2013. The program was established with the aim of significantly enhancing our understanding of the space environment and its impacts on life and society. The International CAWSES-II Symposium was successful with 388 presentations; and from that, 38 papers were published in this special issue. In this preface, we briefly discuss the contents of the special issue as well as the CAWSES-II review papers published in Progress in Earth and Planetary Science (PEPS) in 2014-2015. C1 [Yamamoto, Mamoru] Kyoto Univ, RISH, Uji, Kyoto 6110011, Japan. [Shiokawa, Kazuo] Nagoya Univ, Inst Space Earth Environm Res ISEE, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. [Nakamura, Takuji] Nat Inst Polar Res, 10 3 Midori Cho, Tachikawa, Tokyo 1908518, Japan. [Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Heliophys Div, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. RP Yamamoto, M (reprint author), Kyoto Univ, RISH, Uji, Kyoto 6110011, Japan. EM yamamoto@rish.kyoto-u.ac.jp NR 44 TC 0 Z9 0 U1 1 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1880-5981 J9 EARTH PLANETS SPACE JI Earth Planets Space PD FEB 19 PY 2016 VL 68 AR 26 DI 10.1186/s40623-016-0392-6 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DE2QH UT WOS:000370471300001 ER PT J AU Kumarasinghe, CS Premaratne, M Gunapala, SD Agrawal, GP AF Kumarasinghe, Chathurangi S. Premaratne, Malin Gunapala, Sarath D. Agrawal, Govind P. TI Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry SO SCIENTIFIC REPORTS LA English DT Article ID METAL NANOPARTICLES; SEMICONDUCTOR ELECTRODE; PHOTOCURRENT DIRECTION; SURFACE-PLASMONS; TIO2 FILMS; SPECTROSCOPY; QUANTUM; TRANSPORT; DYNAMICS; CARRIERS AB We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. C1 [Kumarasinghe, Chathurangi S.; Premaratne, Malin] Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia. [Gunapala, Sarath D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Agrawal, Govind P.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. RP Kumarasinghe, CS (reprint author), Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia. EM chathurangi.kumarasinghe@monash.edu RI Agrawal, Govind/D-5380-2013; OI Agrawal, Govind/0000-0003-4486-8533; Premaratne, Malin/0000-0002-2419-4431 FU Monash University Institute of Graduate Research; Australian Research Council [DP140100883] FX The work of C.S.K. is supported by the Monash University Institute of Graduate Research. The work of M.P., S.D.G. and G.P.A. are supported by the Australian Research Council, through its Discovery Grant DP140100883. NR 70 TC 3 Z9 3 U1 8 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 18 PY 2016 VL 6 AR 21470 DI 10.1038/srep21470 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DE0XD UT WOS:000370348000001 PM 26887286 ER PT J AU Williams, J Chiow, SW Yu, N Muller, H AF Williams, Jason Chiow, Sheng-wey Yu, Nan Mueller, Holger TI Quantum test of the equivalence principle and space-time aboard the International Space Station SO NEW JOURNAL OF PHYSICS LA English DT Article DE equivalence principle; atom interferometry; microgravity ID ATOM-INTERFEROMETRY; PRECISION-MEASUREMENT; GENERAL-RELATIVITY; COOLING ATOMS; MATTER WAVES; DARK-MATTER; BALANCE; ENERGY; GRAVITATION; PARTICLES AB We describe the Quantum Test of the Equivalence principle and Space Time (QTEST), a concept for an atom interferometry mission on the International Space Station (ISS). The primary science objective of the mission is a test of Einstein's equivalence principle with two rubidium isotope gases at a precision of better than 10(-15), a 100-fold improvement over the current limit on equivalence principle violations, and over 1,000,000 fold improvement over similar quantum experiments demonstrated in laboratories. Distinct from the classical tests is the use of quantum wave packets and their expected large spatial separation in the QTEST experiment. This dual species atom interferometer experiment will also be sensitive to time-dependent equivalence principle violations that would be signatures for ultralight dark-matter particles. In addition, QTEST will be able to perform photon recoil measurements to better than 10(-11) precision. This improves upon terrestrial experiments by a factor of 100, enabling an accurate test of the standard model of particle physics and contributing to mass measurement, in the proposed new international system of units (SI), with significantly improved precision. The predicted high measurement precision of QTEST comes from the microgravity environment on ISS, offering extended free fall times in a well-controlled environment. QTEST plans to use high-flux, dual-species atom sources, and advanced cooling schemes, for N > 10(6) non-condensed atoms of each species at temperatures below 1 nK. Suppression of systematic errors by use of symmetric interferometer configurations and rejection of common-mode errors drives the QTEST design. It uses Bragg interferometry with a single laser beam at the 'magic' wavelength, where the two isotopes have the same polarizability, for mitigating sensitivities to vibrations and laser noise, imaging detection for correcting cloud initial conditions and maintaining contrast, modulation of the atomic hyperfine states for reduced sensitivity to magnetic field gradients, two source-regions for simultaneous time reversal measurements and redundancy, and modulation of the gravity vector using a rotating platform to reduce otherwise difficult systematics to below 10(-16). C1 [Williams, Jason; Chiow, Sheng-wey; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Yu, N (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM Nan.Yu@jpl.nasa.gov; hm@berkeley.edu FU National Aeronautics and Space Administration (NASA); NASA FX The authors wish to acknowledge useful discussions with Rob Thompson, Ernst Rasel, Markus Krutzik, Justin Khoury, Jay Tasson, and Eric Copenhaver. We are especially appreciative of assistance from Surjeet Rajendran for contributing the ultralight dark matter study. We also want to thank Jason Hogan and David Johnson for use of their software package, which was originally developed and validated by the Kasevich team at Stanford University, and was modified for QTEST. Government sponsorship is acknowledged. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). HM acknowledges support from NASA. Copyright 2015. All rights reserved. NR 129 TC 7 Z9 7 U1 15 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 17 PY 2016 VL 18 AR 025018 DI 10.1088/1367-2630/18/2/025018 PG 25 WC Physics, Multidisciplinary SC Physics GA DH0JQ UT WOS:000372470900002 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Allen, B Allocca, A Amariutei, DV Andersen, M Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Ashton, G Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Bartlett, J Barton, MA Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Behnke, B Bejger, M Belczynski, C Bell, AS Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, D Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bojtos, P Bond, C Bondu, F Bonnand, R Bork, R Born, M Boschi, V Bose, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Branco, V Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, D Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Bustillo, JC Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Celerier, C Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chassande-Mottin, E Chen, X Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Colombini, M Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, T Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Damjanic, MD Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, JM Eikenberry, SS Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fairhurst, S Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fournier, JD Franco, S Frasca, S Frasconi, F Frede, M Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A Gergely, LA Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gleason, JR Goetz, E Goetz, R Gondan, L Gonzalez, G Gonzalez, J Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Groot, P Grote, H Grover, K Grunewald, S Guidi, GM Guido, CJ Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammer, D Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hoelscher-Obermaier, J Hofman, D Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, JC Isogai, T Iyer, BR Izumi, K Jacobson, MB Jang, H Jaranowski, P Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Karlen, JL Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelecsenyi, N Kelley, DB Kells, W Kerrigan, J Key, JS Khalili, FY Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, JT Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, J Lee, JP Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Lewis, JB Li, TGF Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Lodhia, D Logue, J Lombardi, AL Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lubinski, MJ Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y Macarthur, J Macdonald, EP MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Madden-Fong, DX Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mangini, NM Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McWilliams, ST Meacher, D Meadors, GD Mehmet, M Meidam, J Meinders, M Melatos, A Mendell, G Mercer, RA Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, A Mukherjee, S Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nagy, MF Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Newton, G Nguyen, TT Nielsen, AB Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Okounkova, M Oppermann, P Oram, R O'Reilly, B Ortega, WE O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, CT Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Papa, MA Paris, HR Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Pickenpack, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poeld, JH Poggiani, R Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rodger, AS Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sanchez, E Sandberg, V Sanders, JR Santiago-Prieto, I Sassolas, B Saulson, PR Savage, R Sawadsky, A Schale, P Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Sevigny, A Shaddock, DA Shaffery, P Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Souradeep, T Srivastava, AK Staley, A Stebbins, J Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, SP Stone, R Strain, KA Straniero, N Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Travasso, F Traylor, G Trifiro, D Tringali, MC Tse, M Turconi, M Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ van den Broeck, C van der Schaaf, L van der Sluys, MV van Heijningen, J van Veggel, AA Vansuch, G Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, M Wade, LE Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, KJ Williams, L Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Allen, B. Allocca, A. Amariutei, D. V. Andersen, M. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Ashton, G. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, Sukanta Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Branco, V. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calderon Bustillo, J. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Celerier, C. Cella, G. Cepeda, C. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, X. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Colombini, M. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Damjanic, M. D. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Edwards, M. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. M. Eikenberry, S. S. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fairhurst, S. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fisher, R. P. Flaminio, R. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frede, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. Gergely, L. A. Germain, V. Ghosh, A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gleason, J. R. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez, J. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Groot, P. Grote, H. Grover, K. Grunewald, S. Guidi, G. M. Guido, C. J. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammer, D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hoelscher-Obermaier, J. Hofman, D. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, J. C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. B. Jang, H. Jaranowski, P. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Karlen, J. L. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelecsenyi, N. Kelley, D. B. Kells, W. Kerrigan, J. Key, J. S. Khalili, F. Y. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. T. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, J. Lee, J. P. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Lewis, J. B. Li, T. G. F. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Lodhia, D. Logue, J. Lombardi, A. L. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lubinski, M. J. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. Macarthur, J. Macdonald, E. P. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Madden-Fong, D. X. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mangini, N. M. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McWilliams, S. T. Meacher, D. Meadors, G. D. Mehmet, M. Meidam, J. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, A. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nagy, M. F. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Newton, G. Nguyen, T. T. Nielsen, A. B. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Okounkova, M. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. E. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. T. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Papa, M. A. Paris, H. R. Pasqualetti, A. Passaquieti, R. Passuello, D. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Pickenpack, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poeld, J. H. Poggiani, R. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rodger, A. S. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sanchez, E. Sandberg, V. Sanders, J. R. Santiago-Prieto, I. Sassolas, B. Saulson, P. R. Savage, R. Sawadsky, A. Schale, P. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shaffery, P. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Souradeep, T. Srivastava, A. K. Staley, A. Stebbins, J. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Tse, M. Turconi, M. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. van den Broeck, C. van der Schaaf, L. van der Sluys, M. V. van Heijningen, J. van Veggel, A. A. Vansuch, G. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, M. Wade, L. E. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, K. J. Williams, L. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. TI Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers SO PHYSICAL REVIEW D LA English DT Article ID PULSAR AB We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87 degrees in diameter and centered on 20(h)10(m)54.71(s) + 33 degrees 33'25.29 '', and the other (B) is 7.45 degrees in diameter and centered on 8(h)35(m)20.61(s) - 46 degrees 49'25.151 ''. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5 x 10(-9) Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h(0) of 6.3 x 10(-25), while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 x 10(-24) for all polarizations and sky locations. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Dooley, K. L.; Drever, R. W. P.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M. B.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Sez Napoli, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Ackley, K.; Amariutei, D. V.; Brown, D.; Ciani, G.; Eichholz, J. M.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J. R.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; Doravari, S.; Evans, T. M.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Colla, A.; Coughlin, S. B.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Macdonald, E. P.; Ohme, F.; Pannarale, F.; Predoi, V.; Puerrer, M.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bock, O.; Born, M.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Damjanic, M. D.; Danzmann, K.; Denker, T.; Dent, T.; Eggenstein, H. -B.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Goetz, E.; Gossler, S.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Koehlenbeck, S. M.; Korobko, M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mehmet, M.; Meinders, M.; Mossavi, K.; Nielsen, A. B.; Oppermann, P.; Pal-Singh, A.; Pickenpack, M.; Poeld, J. H.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Vahlbruch, H.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.] NIKHEF H, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Lee, J. P.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Yam, W.; Zhang, Fan; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.; Weiss, R.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Ain, A.; Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Hammer, D.; Huynh, M.; Kline, J. T.; Manske, M.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, M.; Wade, L. E.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Danzmann, K.; Hoelscher-Obermaier, J.; Kaufer, S.; Krueger, C.; Lueck, H.; Sawadsky, A.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez, J.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Andersen, M.; Bassiri, R.; Byer, R. L.; Celerier, C.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Madden-Fong, D. X.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.; Stebbins, J.] Stanford Univ, Stanford, CA 94305 USA. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Lockett, V.; Padilla, C. T.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Majorana, E.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Basti, A.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Lackey, B. D.; Lough, J. D.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rodger, A. S.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Clara, F.; Cook, D.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez, J.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Grover, K.; Haster, C. -J.; Lodhia, D.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Sidery, T. L.; Stevenson, S. P.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D.; Chen, X.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; van der Sluys, M. V.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Nice Sophia Antipolis, ARTEMIS, CNRS, F-06304 Nice, France. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Observ Cote Azur, F-06304 Nice, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Kelecsenyi, N.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bose, Sukanta; Hall, B. R.; Magee, R. M.; Mazumder, N.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Branco, V.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chen, X.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] ENS PSL Res Univ, CNRS, Coll France, Lab Kastler Brossel,UPMC Sorbonne Univ, F-75005 Paris, France. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, LMA, CNRS, IN2P3, F-69622 Lyon, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears IEEC, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Gossan, S. E.; Okounkova, M.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Coccia, E.; Fafone, V.; Lorenzini, M.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Lasky, P. D.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Creighton, T.; Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Ortega, W. E.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trent, Dipartimento Fis, I-38123 Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy. [Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Farr, B.] Univ Chicago, Chicago, IL 60637 USA. [Gair, J. R.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tapai, M.] Univ Szeged, Dom ter 9, H-6720 Szeged, Hungary. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Gupta, M. K.; Khan, Z.; Kumar, A.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Karlen, J. L.; Kerrigan, J.; Lombardi, A. L.; Mangini, N. M.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum Kerala 695016, India. [Kalogera, V.; Littenberg, T. B.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, K.; Lee, H. K.; Lee, J.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.; Shaffery, P.] Seoul Natl Univ, Seoul 151742, South Korea. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.; Williams, K. J.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Williams, K. J.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 280 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Nat Inst Math Sci, Daejeon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Astron Inst, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Vansuch, G.] Emory Univ, Atlanta, GA 30322 USA. RP Aasi, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Lazzaro, Claudia/L-2986-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Howell, Eric/H-5072-2014; Gemme, Gianluca/C-7233-2008; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Hild, Stefan/A-3864-2010; Rocchi, Alessio/O-9499-2015; Zhu, Xingjiang/E-1501-2016; prodi, giovanni/B-4398-2010; Bell, Angus/E-7312-2011; Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012; Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Kumar, Prem/B-6691-2009 OI Kanner, Jonah/0000-0001-8115-0577; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315; Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Swinkels, Bas/0000-0002-3066-3601; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Lazzaro, Claudia/0000-0001-5993-3372; De Laurentis, Martina/0000-0002-3815-4078; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Ferrante, Isidoro/0000-0002-0083-7228; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156; Howell, Eric/0000-0001-7891-2817; Gemme, Gianluca/0000-0002-1127-7406; Gorodetsky, Michael/0000-0002-5159-2742; Heidmann, Antoine/0000-0002-0784-5175; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Rocchi, Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; prodi, giovanni/0000-0001-5256-915X; Bell, Angus/0000-0003-1523-0821; Puppo, Paola/0000-0003-4677-5015; Iyer, Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; FU Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS Programme of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P1500034-v23. NR 30 TC 2 Z9 2 U1 6 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 17 PY 2016 VL 93 IS 4 AR 042006 DI 10.1103/PhysRevD.93.042006 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DD9LT UT WOS:000370247800001 ER PT J AU Griko, YV Yan, XL AF Griko, Yuri V. Yan, Xiaoli TI Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 60th Annual Meeting of the Biophysical-Society CY FEB 27-MAR 02, 2016 CL Los Angeles, CA SP Biophys Soc C1 [Griko, Yuri V.] NASA, Life Sci, Ames Res Ctr, Mountain View, CA USA. [Yan, Xiaoli] Clearant Inc, Gaithersburg, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD FEB 16 PY 2016 VL 110 IS 3 SU 1 MA 1055-Pos BP 212A EP 212A PG 1 WC Biophysics SC Biophysics GA DK7XZ UT WOS:000375141600033 ER PT J AU Kandel, S Larsen, AB Jain, A Vaidehi, N AF Kandel, Saugat Larsen, Adrien B. Jain, Abhinandan Vaidehi, Nagarajan TI Gneimosim: Multiscale Internal Coordinates Molecular Dynamics for Proteins SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 60th Annual Meeting of the Biophysical-Society CY FEB 27-MAR 02, 2016 CL Los Angeles, CA SP Biophys Soc C1 [Kandel, Saugat; Larsen, Adrien B.; Vaidehi, Nagarajan] City Hope, Duarte, CA USA. [Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA USA. NR 0 TC 0 Z9 0 U1 3 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD FEB 16 PY 2016 VL 110 IS 3 SU 1 MA 3161-Pos BP 641A EP 641A PG 1 WC Biophysics SC Biophysics GA DK7YN UT WOS:000375143200223 ER PT J AU Harada, Y Mitchell, DL Halekas, JS McFadden, JP Mazelle, C Connerney, JEP Espley, J Brain, DA Larson, DE Lillis, RJ Hara, T Livi, R DiBraccio, GA Ruhunusiri, S Jakosky, BM AF Harada, Y. Mitchell, D. L. Halekas, J. S. McFadden, J. P. Mazelle, C. Connerney, J. E. P. Espley, J. Brain, D. A. Larson, D. E. Lillis, R. J. Hara, T. Livi, R. DiBraccio, G. A. Ruhunusiri, S. Jakosky, B. M. TI MAVEN observations of energy-time dispersed electron signatures in Martian crustal magnetic fields SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE energy-time dispersion; electrons; Mars; MAVEN; crustal magnetic fields ID PLASMA ENVIRONMENT; MARS; MAGNETOSPHERE; ION; RECONNECTION; PROTON AB Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields. C1 [Harada, Y.; Mitchell, D. L.; McFadden, J. P.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France. [Connerney, J. E. P.; Espley, J.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. RP Harada, Y (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM haraday@ssl.berkeley.edu RI Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Halekas, Jasper/0000-0001-5258-6128 FU NASA MAVEN Project FX The authors wish to acknowledge great support from the team members of the MAVEN mission. The research presented in this paper was funded by the NASA MAVEN Project, and the French space agency CNES MAVEN data are publicly available through the Planetary Data System. NR 31 TC 5 Z9 5 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 939 EP 944 DI 10.1002/2015GL067040 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600001 ER PT J AU Melgar, D Fan, WY Riquelme, S Geng, JH Liang, CR Fuentes, M Vargas, G Allen, RM Shearer, PM Fielding, EJ AF Melgar, Diego Fan, Wenyuan Riquelme, Sebastian Geng, Jianghui Liang, Cunren Fuentes, Mauricio Vargas, Gabriel Allen, Richard M. Shearer, Peter M. Fielding, Eric J. TI Slip segmentation and slow rupture to the trench during the 2015, M(w)8.3 Illapel, Chile earthquake SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE earthquake seismology; tsunami; subfuction zone ID MEGATHRUST EARTHQUAKE; SUBDUCTION ZONE; GPS AB The 2015 M(w)8.3 Illapel, Chile earthquake is the latest megathrust event on the central segment of that subduction zone. It generated strong ground motions and a large (up to 11m runup) tsunami which prompted the evacuation of more than 1 million people in the first hours following the event. Observations during recent earthquakes suggest that these phenomena can be associated with rupture on different parts of the megathrust. The deep portion generates strong shaking while slow, large slip on the shallow fault is responsible for the tsunami. It is unclear whether all megathrusts can have shallow slip during coseismic rupture and what physical properties regulate this. Here we show that the Illapel event ruptured both deep and shallow segments with substantial slip. We resolve a kinematic slip model using regional geophysical observations and analyze it jointly with teleseismic backprojection. We find that the shallow and deep portions of the megathrust are segmented and have fundamentally different behavior. We forward calculate local tsunami propagation from the resolved slip and find good agreement with field measurements, independently validating the slip model. These results show that the central portion of the Chilean subduction zone has accumulated a significant shallow slip deficit and indicates that, given enough time, shallow slip might be possible everywhere along the subduction zone. C1 [Melgar, Diego; Allen, Richard M.] Univ Calif Berkeley, Seismol Lab, Berkeley, CA 94720 USA. [Fan, Wenyuan; Shearer, Peter M.] Univ Calif San Diego, Scripps Inst Oceanog, Cecil H & Ida M Green Inst Geophys & Planetary Ph, San Diego, CA 92103 USA. [Riquelme, Sebastian] Univ Chile, Ctr Sismol Nacl, Santiago, Chile. [Geng, Jianghui] Wuhan Univ, GNSS Ctr, Wuhan 430072, Peoples R China. [Liang, Cunren; Fielding, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Fuentes, Mauricio] Univ Chile, Dept Geofis, Santiago, Chile. [Vargas, Gabriel] Univ Chile, Dept Geog, Santiago, Chile. RP Melgar, D (reprint author), Univ Calif Berkeley, Seismol Lab, Berkeley, CA 94720 USA. EM dmelgar@berkeley.edu RI fan, wenyuan/I-2220-2016; Vargas, Victor Gabriel/I-6826-2016; Fan, Wenyuan/M-2748-2016; Shearer, Peter/K-5247-2012; Fielding, Eric/A-1288-2007; GEOFON, GlobalSeismicNetwork/E-4273-2012 OI fan, wenyuan/0000-0002-2983-8240; Vargas, Victor Gabriel/0000-0002-7521-7891; Fan, Wenyuan/0000-0002-2983-8240; Shearer, Peter/0000-0002-2992-7630; Fielding, Eric/0000-0002-6648-8067; FU Gordon and Betty Moore Foundation [GBMF3024]; National Science Foundation [EAR-1111111]; NASA Earth Surface and Interior program FX The teleseismic seismic data were provided by the Data Management Center (DMC) of the Incorporated Research Institutions for Seismology (IRIS). Local seismic and geodetic data are provided by the Centro Sismologico Nacional (CSN) and are available upon request. Tide gauges are operated by the Servicio Hidrografico Oceanografico de la Armada de Chile (SHOA) and data is available at http://www.ioc-sealevel-monitoring.org/. Sentinel-1 interferograms are derived works of Copernicus data. Original Sentinel-1 data is available from ESA and processed interferograms are available from the UNAVCO InSAR archive (https://winsar.unavco.org/portal/insar/). We extend our thanks to Roland Burgmann and Marcelo Lagos for helpful discussions and Piyush Agram for use of the prototype Sentinel-1 TOPS processing programs. We are indebted to J. Gonzalez and A. Villalobos for field support. We thank two anonymous reviewers for constructive critiques which improved the content and presentation of this manuscript. This research was funded by the Gordon and Betty Moore Foundation through grant GBMF3024 to UC Berkeley. Funding at the Scripps Institution of Oceanography is through National Science Foundation grant EAR-1111111. Part of this research was supported by the NASA Earth Surface and Interior program and performed at the Jet Propulsion Laboratory with support for an appointment to the NASA Postdoctoral Program, California Institute of Technology. NR 26 TC 22 Z9 22 U1 9 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 961 EP 966 DI 10.1002/2015GL067369 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600004 ER PT J AU Alves, LR Da Silva, LA Souza, VM Sibeck, DG Jauer, PR Vieira, LEA Walsh, BM Silveira, MVD Marchezi, JP Rockenbach, M Dal Lago, A Mendes, O Tsurutani, BT Koga, D Kanekal, SG Baker, DN Wygant, JR Kletzing, CA AF Alves, L. R. Da Silva, L. A. Souza, V. M. Sibeck, D. G. Jauer, P. R. Vieira, L. E. A. Walsh, B. M. Silveira, M. V. D. Marchezi, J. P. Rockenbach, M. Dal Lago, A. Mendes, O. Tsurutani, B. T. Koga, D. Kanekal, S. G. Baker, D. N. Wygant, J. R. Kletzing, C. A. TI Outer radiation belt dropout dynamics following the arrival of two interplanetary coronal mass ejections SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE relativistic electron loss; magnetopause shadowing; nonadiabatic radial transport; adiabatic radial transport; outer radiation belt dynamics ID WAVE-PARTICLE INTERACTIONS; WHISTLER-MODE CHORUS; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORMS; SOLAR-WIND; LOCAL ACCELERATION; LOSS MECHANISMS; RING CURRENT; 30 SEPTEMBER; PRECIPITATION AB Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, using satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks/sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (MC) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 daylong quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown approximate to 2 to 5MeV energy, equatorially mirroring electrons with initial values of L5.5 can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shown to be viable mechanisms. C1 [Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Jauer, P. R.; Vieira, L. E. A.; Marchezi, J. P.; Rockenbach, M.; Dal Lago, A.; Mendes, O.; Koga, D.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil. [Sibeck, D. G.; Silveira, M. V. D.; Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Walsh, B. M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Alves, LR (reprint author), Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil. EM livia.alves@inpe.br RI Vieira, Luis Eduardo/A-5548-2008; OI Vieira, Luis Eduardo/0000-0002-9376-475X; Kletzing, Craig/0000-0002-4136-3348; Alves, Livia/0000-0002-5680-7271 NR 61 TC 3 Z9 3 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 978 EP 987 DI 10.1002/2015GL067066 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600006 ER PT J AU Yuan, TL Oreopoulos, L Zelinka, M Yu, HB Norris, JR Chin, M Platnick, S Meyer, K AF Yuan, Tianle Oreopoulos, Lazaros Zelinka, Mark Yu, Hongbin Norris, Joel R. Chin, Mian Platnick, Steven Meyer, Kerry TI Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE AMO; cloud feedback; dust feedback; climate model; coupled dynamics ID MERIDIONAL OVERTURNING CIRCULATION; AFRICAN DUST; ATMOSPHERIC RESPONSE; SAHEL RAINFALL; CLIMATE-CHANGE; OCEAN; MODEL; SST; VARIABILITY; PARAMETERIZATION AB The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO. C1 [Yuan, Tianle] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD USA. [Yuan, Tianle; Oreopoulos, Lazaros; Yu, Hongbin; Chin, Mian; Platnick, Steven; Meyer, Kerry] NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD USA. [Zelinka, Mark] Lawrence Livermore Natl Lab, Program Climate Modeling Diag & Intercomparison, Livermore, CA USA. [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Norris, Joel R.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Meyer, Kerry] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. RP Yuan, TL (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD USA.; Yuan, TL (reprint author), NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD USA. EM tianle.yuan@nasa.gov RI Oreopoulos, Lazaros/E-5868-2012; Platnick, Steven/J-9982-2014; Yu, Hongbin/C-6485-2008; Zelinka, Mark/C-4627-2011; Meyer, Kerry/E-8095-2016; Chin, Mian/J-8354-2012 OI Oreopoulos, Lazaros/0000-0001-6061-6905; Platnick, Steven/0000-0003-3964-3567; Yu, Hongbin/0000-0003-4706-1575; Zelinka, Mark/0000-0002-6570-5445; Meyer, Kerry/0000-0001-5361-9200; FU NASA's MAP program FX We acknowledge the funding support from NASA's MAP program. All the data used in this study are based on publically available data sets. NR 49 TC 9 Z9 9 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 1349 EP 1356 DI 10.1002/2016GL067679 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600050 ER PT J AU Choi, Y Ghim, YS Holben, BN AF Choi, Yongjoo Ghim, Young Sung Holben, B. N. TI Identification of columnar aerosol types under high aerosol optical depth conditions for a single AERONET site in Korea SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE dominant aerosol types; cluster analysis; mean properties; occurrence rate; anmyon site; well-characterized global sites ID BLACK CARBON; LIGHT-ABSORPTION; ORGANIC-CARBON; ASIAN DUST; WAVELENGTH DEPENDENCE; BROWN CARBON; ATMOSPHERIC AEROSOLS; PHYSICAL-PROPERTIES; PARTICULATE MATTER; SCATTERING ALBEDO AB Dominant aerosol types were classified using level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET) site in Korea for the period 1999-2007. The aerosol types were mineral dust (MD), MD mixed with carbon, and black carbon mixed coarse particles (BCCP) for coarse mode aerosols, black carbon (BC), organic carbon (OC), and secondary inorganic ions (SII) for fine mode aerosols, and mixed particles between. The classification was carried out using a clustering method based on parameters, including single scattering albedo (SSA), absorption Angstrom exponent (AAE), and fine mode volume fraction (FMVF). Among the seven aerosol types, MD was distinct, with the highest AAE and a very low FMVF and SII with the highest SSA and FMVF. BCCP was introduced to designate coarse particles mixed with BC, of which the AAE was lower than 1, despite a low FMVF. In addition to a large difference in AAE between BC and OC, the SSA of OC was larger than that of BC, indicating the effects of the white smoke produced from the smoldering phase of biomass burning. Monthly variations of the aerosol types were well interpreted by meteorology and emissions and coincided with those in the previous studies. Applying our results to well-characterized global AERONET sites, we confirmed that the aerosol types at Anmyon were valid at other sites. However, the results also showed that the mean properties for aerosol types were influenced by the specific aerosols prevalent at the study sites. C1 [Choi, Yongjoo; Ghim, Young Sung] Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin, South Korea. [Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Ghim, YS (reprint author), Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin, South Korea. EM ysghim@hufs.ac.kr FU Korea Meteorological Administration Research and Development Program [KMIPA 2015-6010] FX This work was funded by the Korea Meteorological Administration Research and Development Program under the grant KMIPA 2015-6010. We are grateful to the following principal investigators for establishing and maintaining AERONET sites: H.-B. Chen and P. Goloub of Beijing, D. Tanre of Cape Verde, and A. L. Contreras of Mexico City. The data used in this study are available at http://aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_inv. NR 79 TC 1 Z9 1 U1 6 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2016 VL 121 IS 3 BP 1264 EP 1277 DI 10.1002/2015JD024115 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6QW UT WOS:000371481700015 ER PT J AU Tao, WK Wu, D Lang, S Chern, JD Peters-Lidard, C Fridlind, A Matsui, T AF Tao, Wei-Kuo Wu, Di Lang, Stephen Chern, Jiun-Dar Peters-Lidard, Christa Fridlind, Ann Matsui, Toshihisa TI High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE ice microphysics; heavy rainfall; WRF ID MIDLATITUDE SQUALL LINE; CLOUD-RESOLVING MODEL; SECONDARY ICE PARTICLES; PART I; NUMERICAL-SIMULATION; STRATIFORM PRECIPITATION; BULK PARAMETERIZATION; OROGRAPHIC SNOWFALL; AEROSOL IMPACTS; SATELLITE-OBSERVATIONS AB The Goddard microphysics was recently improved by adding a fourth ice class (frozen drops/hail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of ice/snow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries. C1 [Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Matsui, Toshihisa] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA. [Wu, Di; Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Chern, Jiun-Dar] Morgan State Univ, Goddard Earth Sci Technol & Res Program, Baltimore, MD 21239 USA. [Peters-Lidard, Christa] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA. [Fridlind, Ann] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Matsui, Toshihisa] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Tao, WK (reprint author), NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA. EM Wei-Kuo.Tao-1@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU NASA Precipitation Measurement Missions (PMM); NASA Modeling, Analysis, and Prediction (MAP) Program; Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) [DE-AI02-04ER63755] FX This research was supported by the NASA Precipitation Measurement Missions (PMM), the NASA Modeling, Analysis, and Prediction (MAP) Program, and the Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement (DE-AI02-04ER63755). NMQ radar and precipitation products were provided by Xiquan Dong (dong@aero.und.edu) at the University of North Dakota and Carrie Langston (carrie.langston@noaa.gov) at the National Severe Storms Laboratory, while Yudong Tian (University of Maryland, yudong.tian-1@nasa.gov) at NASA GSFC provided the bias-corrected Q2 data. For model related data sets, the GFS data can be downloaded from: http://rda.ucar.edu/datasets/ds083.2. NU-WRF software and microphysics codes can be requested from: http://nuwrf.gsfc.nasa.gov/software. For accessing NU-WRF simulation output, please contact Di Wu (di.wu@nasa.gov). The authors are grateful to Ramesh Kakar and David B. Considine at NASA headquarters for their support of this research. Acknowledgment is also made to the NASA Goddard Space Flight Center and NASA Ames Research Center computing facilities and to Tsengdar Lee at NASA HQ for the computational resources used in this research. NR 155 TC 5 Z9 5 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2016 VL 121 IS 3 BP 1278 EP 1305 DI 10.1002/2015JD023986 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6QW UT WOS:000371481700016 ER PT J AU Corr, CA Ziemba, LD Scheuer, E Anderson, BE Beyersdorf, AJ Chen, G Crosbie, E Moore, RH Shook, M Thornhill, KL Winstead, E Lawson, RP Barth, MC Schroeder, JR Blake, DR Dibb, JE AF Corr, C. A. Ziemba, L. D. Scheuer, E. Anderson, B. E. Beyersdorf, A. J. Chen, G. Crosbie, E. Moore, R. H. Shook, M. Thornhill, K. L. Winstead, E. Lawson, R. P. Barth, M. C. Schroeder, J. R. Blake, D. R. Dibb, J. E. TI Observational evidence for the convective transport of dust over the Central United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE mineral dust; convection; vertical transport; ice nuclei ID ATMOSPHERIC ICE NUCLEI; SAHARAN DUST; AEROSOL COMPOSITION; OPTICAL-PROPERTIES; EASTERN ATLANTIC; MINERAL DUST; CIRRUS; AIRBORNE; PARTICLES; AIRCRAFT AB Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (<5km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude>9km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 mu m50 mu m) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 mu m0.5 kJ/kg hydrothermal fluid) than those in the modern serpentinization-associated seafloor hydrothermal systems (e.g., Kairei field). Furthermore, the recently proposed methanotrophic acetogenesis pathway was also thermodynamically investigated. It is known that methanotrophic acetogenesis would require additional exergonic reactions to compensate its most endergonic methane-to-methanol conversion reaction at the oxidative entry to the metabolic pathway. Our calculations support the view that this thermodynamic barrier could be overcome by the reduction of nitrate in seawater at low temperature, as previously suggested. However, the thermodynamic calculations also revealed that the reduction of ferric iron-bearing minerals would occur at the outer margin and within the hydrothermal chimney wall. The maximum available energy of iron-reducing methanotrophic acetogenesis was calculated to be 0.25-0.35 kJ/kg hydrothermal fluid. Although this value is lower than theoretically available through nitrate reduction, which approaches similar to 0.45-1.25 kJ/kg hydrothermal fluid on the outer cool margins of a putative Hadean alkaline chimney, it is higher than that of sulfate-reducing anaerobic oxidation of methane in the Lost City field. These results suggest that iron reduction had the potential to drive methanotrophy and that the Hadean hydrothermal mixing zone was energetically more favorable to methanotrophy than previously thought. We conclude that iron oxidation and reduction in oxyhydroxides probably played important roles in the early evolution of energy metabolisms in the Hadean alkaline hydrothermal system. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Lab Ocean Earth Life Evolut Res OELE, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. [Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res & Dev Ctr Submarine Resources, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. [Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Project Team Dev New Generat Res Protocol Submari, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. [Shibuya, Takazo; Russell, Michael J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91108 USA. [Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Dept Subsurface Geobiol Anal & Res SUGAR, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. RP Shibuya, T (reprint author), Japan Agcy Marine Earth Sci & Technol JAMSTEC, Lab Ocean Earth Life Evolut Res OELE, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. EM takazos@jamstec.go.jp FU Japan Society for Promotion of Science (JSPS) [22740333, 25707038]; NASA's Astrobiology Institute (Icy Worlds); US Government FX We thank M. Nishizawa, S. Kato, S. E. McGlynn and E. Branscomb for discussions. We are grateful to four anonymous reviewers for their valuable comments, and W. Bach for editorial handling and suggestions. This work was partially supported by the Grants-in-Aid for Scientific Research from Japan Society for Promotion of Science (JSPS) (No. 22740333 and 25707038). MJR's research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration: Exobiology and Evolutionary Biology and supported by NASA's Astrobiology Institute (Icy Worlds). US Government sponsorship acknowledged. NR 132 TC 3 Z9 3 U1 20 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2016 VL 175 BP 1 EP 19 DI 10.1016/j.gca.2015.11.021 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DC2TR UT WOS:000369070000001 ER PT J AU Kotov, DV Yee, HC Wray, AA Sjogreen, B Kritsuk, AG AF Kotov, D. V. Yee, H. C. Wray, A. A. Sjoegreen, B. Kritsuk, A. G. TI Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE DNS; LES; High order shock-capturing methods; Flow sensors; Numerical dissipation control; Low speed turbulence; Shock free turbulence ID LARGE-EDDY SIMULATION; TAYLOR-GREEN VORTEX; COMPRESSIBLE TURBULENCE; ISOTROPIC TURBULENCE AB The Yee & Sjogreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov etal. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjogreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the versatility of the Yee & Sjogreen scheme for DNS and LES of traditional low speed flows without forcing. Special attention is focused on the accuracy performance of this scheme using the Smagorinsky and the Germano-Lilly SGS models. Published by Elsevier Inc. C1 [Kotov, D. V.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. [Yee, H. C.; Wray, A. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sjoegreen, B.] Lawrence Livermore Natl Lab, Box 808,L-422, Livermore, CA 94551 USA. [Kritsuk, A. G.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Yee, HC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM dmitry.v.kotov@nasa.gov; helen.m.yee@nasa.gov; Alan.A.Wray@nasa.gov; sjogreen2@llnl.gov; akritsuk@ucsd.edu FU DOE/SciDAC SAP [DE-AI02-06ER25796]; NASA Aerosciences Project - RCA; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [AST-1412271]; UC Santa Cruz sub award [A16-0243-S001] FX The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is acknowledged. Financial support from the NASA Aerosciences Project - RCA for the second author is gratefully acknowledged. Work by the fourth author was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work by the fifth author was support in part by the National Science Foundation grant AST-1412271 and UC Santa Cruz sub award A16-0243-S001. NR 45 TC 0 Z9 0 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 15 PY 2016 VL 307 BP 189 EP 202 DI 10.1016/j.jcp.2015.11.029 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DC2YR UT WOS:000369085500011 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Allen, B Allocca, A Amariutei, DV Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Belczynski, C Bell, AS Bell, J Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, D Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Bork, R Boschi, V Bose, S Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, D Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, R De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, JM Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, B Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunwald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, E Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, J Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, I Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, N Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, E Lee, CH Lee, HK Lee, HM Lee, K Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Pereira, R Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, M Pitkin, M Poggiani, R Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Saulson, PR Sauter, O Savage, R Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Sintes, M Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ van den Broeck, C van der Schaaf, L van der Sluys, MV van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, J Venkates