FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Wallace, L
Lucieer, A
Malenovsky, Z
Turner, D
Vopenka, P
AF Wallace, Luke
Lucieer, Arko
Malenovsky, Zbynek
Turner, Darren
Vopenka, Petr
TI Assessment of Forest Structure Using Two UAV Techniques: A Comparison of
Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds
SO FORESTS
LA English
DT Article
DE digital terrain model; tree height; canopy cover; forest structure;
unmanned aerial vehicle (UAV); LIDAR airborne laser scanning; structure
from motion
ID UNMANNED AERIAL VEHICLE; TREE DETECTION; INVENTORY; IMAGERY; LIDAR;
CANOPY; SYSTEM; BIODIVERSITY; COMPLEXITY; METRICS
AB This study investigates the potential of unmanned aerial vehicles (UAVs) to measure and monitor structural properties of forests. Two remote sensing techniques, airborne laser scanning (ALS) and structure from motion (SfM) were tested to capture three-dimensional structural information from a small multi-rotor UAV platform. A case study is presented through the analysis of data collected from a 30 x 50 m plot in a dry sclerophyll eucalypt forest with a spatially varying canopy cover. The study provides an insight into the capabilities of both technologies for assessing absolute terrain height, the horizontal and vertical distribution of forest canopy elements, and information related to individual trees. Results indicate that both techniques are capable of providing information that can be used to describe the terrain surface and canopy properties in areas of relatively low canopy closure. However, the SfM photogrammetric technique underperformed ALS in capturing the terrain surface under increasingly denser canopy cover, resulting in point density of less than 1 ground point per m(2) and mean difference from ALS terrain surface of 0.12 m. This shortcoming caused errors that were propagated into the estimation of canopy properties, including the individual tree height (root mean square error of 0.92 m for ALS and 1.30 m for SfM). Differences were also seen in the estimates of canopy cover derived from the SfM (50%) and ALS (63%) pointclouds. Although ALS is capable of providing more accurate estimates of the vertical structure of forests across the larger range of canopy densities found in this study, SfM was still found to be an adequate low-cost alternative for surveying of forest stands.
C1 [Wallace, Luke; Lucieer, Arko; Malenovsky, Zbynek; Turner, Darren] Univ Tasmania, Sch Land & Food, Hobart, Tas 7001, Australia.
[Wallace, Luke] RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3000, Australia.
[Malenovsky, Zbynek] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Vopenka, Petr] Czech Univ Life Sci Prague, Fac Forestry & Wood Sci, Dept Forest Management, Prague 6, Czech Republic.
RP Wallace, L (reprint author), Univ Tasmania, Sch Land & Food, Hobart, Tas 7001, Australia.; Wallace, L (reprint author), RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3000, Australia.
EM Luke.Wallace2@rmit.edu.au; Arko.Lucieer@utas.edu.au;
zbynek.malenovsky@gmail.com; Darren.Turner@utas.edu.au;
vopenka@fld.czu.cz
RI Malenovsky, Zbynek/A-7819-2011;
OI Malenovsky, Zbynek/0000-0002-1271-8103; Turner,
Darren/0000-0002-3029-6717
FU ARC Discovery project "airLIFT" [DP140101488]; National Agency for
Agriculture Research project [QJ1520187]; Winifred Violet Scott Trust;
Australian Antarctic Science Grant scheme
FX The contribution of Z. Malenovsky was supported by the ARC Discovery
project "airLIFT" (DP140101488). The contribution of P. Vopenka was
supported by the National Agency for Agriculture Research project (No.
QJ1520187). The authors would like to acknowledge Ben Van der Jagt for
assistance in collecting field data. The Winifred Violet Scott Trust and
Australian Antarctic Science Grant scheme are acknowledged for providing
funding to purchase the infrastructure used in this project. We thank
Tony Veness, the UTAS Central Science Laboratory, the UTAS Engineering
workshop, and the Australian Antarctic Division workshop for their
assistance in the sensor integration.
NR 38
TC 10
Z9 11
U1 22
U2 51
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1999-4907
J9 FORESTS
JI Forests
PD MAR
PY 2016
VL 7
IS 3
DI 10.3390/f7030062
PG 16
WC Forestry
SC Forestry
GA DI7RX
UT WOS:000373700800018
ER
PT J
AU Thomas, BF
Behrangi, A
Famiglietti, JS
AF Thomas, Brian F.
Behrangi, Ali
Famiglietti, James S.
TI Precipitation Intensity Effects on Groundwater Recharge in the
Southwestern United States
SO WATER
LA English
DT Article
DE sustainable groundwater management; groundwater recharge; climate
change; precipitation intensity
ID CLIMATE-CHANGE IMPACTS; NORTH-AMERICAN MONSOON; MURRAY-DARLING BASIN;
SENSITIVITY-ANALYSIS; EPISODIC RECHARGE; ARID REGIONS; WATER; FLOW;
AUSTRALIA; AQUIFER
AB Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate.
C1 [Thomas, Brian F.; Behrangi, Ali; Famiglietti, James S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Famiglietti, James S.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA.
RP Thomas, BF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Brian.F.Thomas@jpl.nasa.gov; Ali.Behrangi@jpl.nasa.gov;
James.Famiglietti@jpl.nasa.gov
OI Thomas, Brian/0000-0003-0080-7958
FU National Aeronautics and Space Administration; GRACE Science Team; Jet
Propulsion Laboratory Research and Technology Development programs
FX The authors wish to thank state water resource agencies in the study
area for data access. The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. Support from the
GRACE Science Team and the Jet Propulsion Laboratory Research and
Technology Development programs is gratefully acknowledged.
NR 85
TC 3
Z9 3
U1 6
U2 10
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2073-4441
J9 WATER-SUI
JI Water
PD MAR
PY 2016
VL 8
IS 3
DI 10.3390/w8030090
PG 15
WC Water Resources
SC Water Resources
GA DI7OR
UT WOS:000373691200030
ER
PT J
AU Harrold, ZR
Skidmore, ML
Hamilton, TL
Desch, L
Amada, K
van Gelder, W
Glover, K
Roden, EE
Boyd, ES
AF Harrold, Zoe R.
Skidmore, Mark L.
Hamilton, Trinity L.
Desch, Libby
Amada, Kirina
van Gelder, Will
Glover, Kevin
Roden, Eric E.
Boyd, Eric S.
TI Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted,
Subglacial Chemoautotroph
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID HAUT-GLACIER-DAROLLA; ANTARCTIC ICE-SHEET; HIGH ARCTIC GLACIER; PYRITE
OXIDATION; MICROBIAL COMMUNITIES; OXIDIZING BACTERIA; SULFIDE OXIDATION;
SP-NOV; BENEATH; ENVIRONMENTS
AB Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32-), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32- that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42-) several orders of magnitude higher than those of S2O32-. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32-, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32- as the electron donor was lower at 5.1 degrees C than 14.4 degrees C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32--oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32- by RG5- like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment.
C1 [Harrold, Zoe R.; Skidmore, Mark L.; van Gelder, Will; Glover, Kevin] Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA.
[Hamilton, Trinity L.] Univ Cincinnati, Dept Biol Sci, Cincinnati, OH USA.
[Desch, Libby; Amada, Kirina; Boyd, Eric S.] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA.
[Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI USA.
[Roden, Eric E.; Boyd, Eric S.] NASA, Astrobiol Inst, Mountain View, CA USA.
RP Boyd, ES (reprint author), Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA.; Boyd, ES (reprint author), NASA, Astrobiol Inst, Mountain View, CA USA.
EM eboyd@montana.edu
FU National Aeronautics and Space Administration (NASA) [NNX10AT31G,
NNA15BB02A]
FX National Aeronautics and Space Administration (NASA) provided funding to
Mark L. Skidmore and Eric S. Boyd under grant number NNX10AT31G. NASA
provided funding to Eric S. Boyd under grant number NNA15BB02A.
NR 50
TC 3
Z9 3
U1 6
U2 21
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
EI 1098-5336
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD MAR
PY 2016
VL 82
IS 5
BP 1486
EP 1495
DI 10.1128/AEM.03398-15
PG 10
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA DI2PL
UT WOS:000373338800013
ER
PT J
AU Wang, YM
Zhou, ZJ
Zhang, J
Liu, K
Liu, R
Shen, CL
Chamberlin, PC
AF Wang, Yuming
Zhou, Zhenjun
Zhang, Jie
Liu, Kai
Liu, Rui
Shen, Chenglong
Chamberlin, Phillip C.
TI THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS:
TECHNIQUES AND FIRST RESULTS
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: UV
radiation
ID CORONAL MASS EJECTIONS; ULTRAVIOLET LATE-PHASE; ATOMIC DATABASE;
EMISSION-LINES; VARIABILITY; IRRADIANCE; ERUPTION; CHIANTI; PLASMA
AB The Solar Dynamics Observatory (SDO)/EUV. Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could. potentially be useful for. extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on. distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0. class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares. the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which. unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.
C1 [Wang, Yuming; Zhou, Zhenjun; Liu, Kai; Liu, Rui; Shen, Chenglong] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.
[Wang, Yuming; Shen, Chenglong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China.
[Zhang, Jie] George Mason Univ, Sch Phys Astron & Computat Sci, 4400 Univ Dr,MSN 6A2, Fairfax, VA 22030 USA.
[Liu, Rui] Collaborat Innovat Ctr Astronaut Sci & Technol, Hefei 230026, Peoples R China.
[Chamberlin, Phillip C.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Div, Greenbelt, MD 20771 USA.
RP Wang, YM (reprint author), Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.; Wang, YM (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China.
EM ymwang@ustc.edu.cn
RI Chamberlin, Phillip/C-9531-2012; Liu, Rui/B-4107-2012; Liu,
Kai/I-3999-2016; Wang, Yuming/A-8968-2012; Shen, Chenglong/P-8093-2015;
shen, Chenglong/C-7588-2013
OI Chamberlin, Phillip/0000-0003-4372-7405; Liu, Rui/0000-0003-4618-4979;
Wang, Yuming/0000-0002-8887-3919; shen, Chenglong/0000-0002-3577-5223
FU NSFC [41131065, 41574165, 41421063, 41274173, 41222031, 41404134,
41474151]; CAS (Key Research Program) [KZZD-EW-01]; CAS (100-Talent
Program); MOST 973 key project [2011CB811403]; fundamental research
funds for the central universities; NASA
FX We acknowledge use of data from the SDO, STEREO, SOHO, and GOES
spacecraft. SDO is a mission of NASA's Living With a Star Program,
STEREO is the third mission in NASA's Solar Terrestrial Probes program,
and SOHO is a mission of international cooperation between ESA and NASA.
The TDS charts for all the events involved in this study could be found
at http://space.ustc.edu.cn/dreams/shm/tds (the MEGS-A-only TDS) and
http://space.ustc.edu.cn/dreams/shm/tds-c09 (the extended TDS). This
work is supported by grants from the NSFC (41131065, 41574165, 41421063,
41274173, 41222031, 41404134, and 41474151), CAS (Key Research Program
KZZD-EW-01 and 100-Talent Program), MOST 973 key project (2011CB811403),
and the fundamental research funds for the central universities.
NR 34
TC 0
Z9 0
U1 13
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD MAR
PY 2016
VL 223
IS 1
AR 4
DI 10.3847/0067-0049/223/1/4
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DI0TB
UT WOS:000373208900004
ER
PT J
AU Snyder, J
Son, AR
Hamid, Q
Wu, HL
Sun, W
AF Snyder, Jessica
Son, Ae Rin
Hamid, Qudus
Wu, Honglu
Sun, Wei
TI Hetero-cellular prototyping by synchronized multi-material bioprinting
for rotary cell culture system
SO BIOFABRICATION
LA English
DT Article
DE bioprinting; heterogeneous co-culture; rotary cell culture system; in
vitro liver model; cell-laden droplet
ID IN-VITRO; SIMULATED MICROGRAVITY; FREEFORM FABRICATION;
ENDOTHELIAL-CELLS; COCULTURE SYSTEM; LIVER; SCAFFOLDS; HEPATOCYTES;
NANOPARTICLES; PROLIFERATION
AB Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 mu m, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.
C1 [Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Sun, Wei] Drexel Univ, Mech Engn & Mech, Philadelphia, PA 19104 USA.
[Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA.
[Sun, Wei] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China.
RP Sun, W (reprint author), Drexel Univ, Mech Engn & Mech, Philadelphia, PA 19104 USA.; Sun, W (reprint author), Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China.
EM sunwei@drexel.edu
RI Son, Aerin/D-4520-2017
FU National Space Biomedical Research Institute's Summer Intern Program
FX With sincere respect and gratitude, the authors acknowledge the National
Space Biomedical Research Institute's Summer Intern Program for support
of this collaboration.
NR 56
TC 1
Z9 1
U1 17
U2 37
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1758-5082
EI 1758-5090
J9 BIOFABRICATION
JI Biofabrication
PD MAR
PY 2016
VL 8
IS 1
AR 015002
DI 10.1088/1758-5090/8/1/015002
PG 15
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA DI1WZ
UT WOS:000373289000006
PM 26759993
ER
PT J
AU Harrivel, AR
Weissman, DH
Noll, DC
Huppert, T
Peltier, SJ
AF Harrivel, Angela R.
Weissman, Daniel H.
Noll, Douglas C.
Huppert, Theodore
Peltier, Scott J.
TI Dynamic filtering improves attentional state prediction with fNIRS
SO BIOMEDICAL OPTICS EXPRESS
LA English
DT Article
ID NEAR-INFRARED SPECTROSCOPY; MULTISOURCE INTERFERENCE TASK; FUNCTIONAL
CONNECTIVITY; BRAIN ACTIVATION; DEFAULT-MODE; SLEEP-DEPRIVATION;
CEREBRAL HEMODYNAMICS; OPTICAL TOMOGRAPHY; RESTING BRAIN; FOCAL CHANGES
AB Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%). (C)2016 Optical Society of America
C1 [Harrivel, Angela R.] NASA, Langley Res Ctr, Crew Syst & Aviat Operat Branch, Hampton, VA 23681 USA.
[Harrivel, Angela R.; Noll, Douglas C.; Peltier, Scott J.] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA.
[Harrivel, Angela R.; Noll, Douglas C.; Peltier, Scott J.] Univ Michigan, Funct MRI Lab, Ann Arbor, MI 48109 USA.
[Weissman, Daniel H.] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA.
[Huppert, Theodore] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA.
RP Harrivel, AR (reprint author), NASA, Langley Res Ctr, Crew Syst & Aviat Operat Branch, Hampton, VA 23681 USA.; Harrivel, AR (reprint author), Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA.; Harrivel, AR (reprint author), Univ Michigan, Funct MRI Lab, Ann Arbor, MI 48109 USA.
EM angela.r.harrivel@nasa.gov
FU University of Michigan fMRI Laboratory; Vehicle Systems Safety
Technologies Project
FX This work was supported by the University of Michigan fMRI Laboratory
and the Vehicle Systems Safety Technologies Project, led by the Langley
Research Center, in NASA's Aviation Safety Program. Colleagues at the
NASA Glenn and Langley Research Centers are appreciated, especially
Jeffrey Mackey, Daniel Gotti (who drew Fig. 3) and Padetha Tin for head
probe design and assembly.
NR 95
TC 0
Z9 0
U1 0
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 2156-7085
J9 BIOMED OPT EXPRESS
JI Biomed. Opt. Express
PD MAR 1
PY 2016
VL 7
IS 3
BP 979
EP 1002
DI 10.1364/BOE.7.000979
PG 24
WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine &
Medical Imaging
SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine &
Medical Imaging
GA DG4JR
UT WOS:000372039000020
PM 27231602
ER
PT J
AU McKenna-Lawlor, S
Ip, W
Jackson, B
Odstrcil, D
Nieminen, P
Evans, H
Burch, J
Mandt, K
Goldstein, R
Richter, I
Dryer, M
AF McKenna-Lawlor, S.
Ip, W.
Jackson, B.
Odstrcil, D.
Nieminen, P.
Evans, H.
Burch, J.
Mandt, K.
Goldstein, R.
Richter, I.
Dryer, M.
TI Space Weather at Comet 67P/Churyumov-Gerasimenko Before its Perihelion
SO EARTH MOON AND PLANETS
LA English
DT Article
DE Interplanetary scintillation technique; ENLIL modelling; Coronal mass
ejections; Comet Churyumov-Gerasimenko; Rosetta Mission
ID CORONAL MASS EJECTIONS; ROSETTA PLASMA CONSORTIUM; 3-DIMENSIONAL
PROPAGATION; SOLAR; MISSION; SODIUM; MOON; ACCELERATION; TOMOGRAPHY;
STREAMER
AB Interplanetary scintillation observations, as well as the ENLIL 3D-MHD model when employed either separately or in combination with the observations, enable the making of predictions of the solar wind density and speed at locations in the inner heliosphere. Both methods are utilized here to predict the arrival at the Rosetta spacecraft and its adjacent comet 67P/Churyumov-Gerasimenko of, flare related, interplanetary propagating shocks and coronal mass ejections in September 2014. The predictions of density and speed variations at the comet are successfully matched with signatures recorded by the magnetometer and the ion and electron sensor instruments in the Rosetta Plasma Package, thereby providing confidence that the signatures recorded aboard the spacecraft were solar related. The plasma perturbations which were detected some 9-10 days after significant flaring in September 2014 are interpreted to have been signatures of the arrivals of three coronal mass ejection related shocks at the comet. Also, a solar energetic particle event was recorded at 3.7 AU within similar to 30 min of the onset of a flare by the Standard Radiation Monitor aboard Rosetta.
C1 [McKenna-Lawlor, S.] NUI Maynooth, Space Technol Ireland Ltd, Maynooth, Kildare, Ireland.
[Ip, W.] Natl Cent Univ, 300 Chung Da Rd, Chungli 32054, Taiwan.
[Jackson, B.] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA.
[Odstrcil, D.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Nieminen, P.; Evans, H.] ESAs European Space Res & Technol Ctr, Noordwijk, Netherlands.
[Burch, J.; Mandt, K.; Goldstein, R.] SW Res Inst, 6220 Culebra Rd, San Antonio, TX USA.
[Richter, I.] Tech Univ Carolo Wilhelmina Braunschweig, Mendelssohnstr 3, D-38116 Braunschweig, Germany.
[Dryer, M.] NOAA, Space Weather Predict Ctr RET, Boulder, CO 80305 USA.
RP McKenna-Lawlor, S (reprint author), NUI Maynooth, Space Technol Ireland Ltd, Maynooth, Kildare, Ireland.
EM stil@nuim.ie
OI Mandt, Kathleen/0000-0001-8397-3315
NR 48
TC 2
Z9 2
U1 2
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0167-9295
EI 1573-0794
J9 EARTH MOON PLANETS
JI Earth Moon Planets
PD MAR
PY 2016
VL 117
IS 1
BP 1
EP 22
DI 10.1007/s11038-015-9479-5
PG 22
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Geology
GA DI0DY
UT WOS:000373166500001
ER
PT J
AU Morton, DC
Noojipady, P
Macedo, MM
Gibbs, H
Victoria, DC
Bolfe, EL
AF Morton, Douglas C.
Noojipady, Praveen
Macedo, Marcia M.
Gibbs, Holly
Victoria, Daniel C.
Bolfe, Edson L.
TI Reevaluating suitability estimates based on dynamics of cropland
expansion in the Brazilian Amazon
SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS
LA English
DT Article
DE Zoning; Utilization; Amazon; Soya; Potentially available cropland (PAC)
ID LAND-USE; SOY MORATORIUM; DEFORESTATION; INTENSIFICATION; GLOBALIZATION;
DETERMINANTS; AMERICA; POLICY; COVER; BASIN
AB Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing, global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001-2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0-2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture-soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC) without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for further legal expansion of crop production in Mato Grosso. Dynamics of cropland expansion from more than a decade of satellite observations indicated narrow ranges of suitability criteria, restricting PAC under current policy conditions, and emphasizing the advantages of field-scale information to assess suitability and utilization. Published by Elsevier Ltd.
C1 [Morton, Douglas C.; Noojipady, Praveen] NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA.
[Noojipady, Praveen] Univ Maryland, College Pk, MD 20742 USA.
[Noojipady, Praveen] Natl Wildlife Federat, Nat Advocacy Ctr, Washington, DC 20006 USA.
[Macedo, Marcia M.] Woods Hole Res Ctr, Falmouth, MA 02540 USA.
[Gibbs, Holly] Univ Wisconsin, Madison, WI 53706 USA.
[Victoria, Daniel C.] Brazilian Agr Res Corp Embrapa, Satellite Monitoring, BR-13070115 Campinas, SP, Brazil.
[Bolfe, Edson L.] Brazilian Agr Res Corp Embrapa, Secretariat Intelligence & Macrostrategy, BR-70770901 Brasilia, DF, Brazil.
RP Morton, DC (reprint author), NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA.
EM douglas.morton@nasa.gov
RI Morton, Douglas/D-5044-2012
FU NASA; Norwegian Agency for Development Cooperation (NORAD) [QZA-0465,
QZA-13/0075]; Science Without Borders Visiting Scientist Fellowship
FX Funding for this study was provided by NASA, the Norwegian Agency for
Development Cooperation (NORAD, Grants QZA-0465 and QZA-13/0075), and a
Science Without Borders Visiting Scientist Fellowship (D.C. Morton),
administered by the Brazilian National Counsel of Scientific and
Technological Development (CNPq) for the Brazilian Ministry of Science,
Technology, and Innovation (MCTI). We are grateful to Drs. Britaldo
Soares-Filho and Laura Hess for their willingness to share data on crop
suitability and land cover.
NR 46
TC 1
Z9 1
U1 6
U2 15
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0959-3780
EI 1872-9495
J9 GLOBAL ENVIRON CHANG
JI Glob. Environ. Change-Human Policy Dimens.
PD MAR
PY 2016
VL 37
BP 92
EP 101
DI 10.1016/j.gloenvcha.2016.02.001
PG 10
WC Environmental Sciences; Environmental Studies; Geography
SC Environmental Sciences & Ecology; Geography
GA DH4NL
UT WOS:000372762600008
ER
PT J
AU Benjamins, VR
Bobrow, D
Doyle, R
Hendler, J
Kambhampati, S
Raphael, B
Wang, FY
AF Benjamins, V. Richard
Bobrow, Dan
Doyle, Richard
Hendler, James
Kambhampati, Subbarao
Raphael, Bert
Wang, Fei-Yue
TI Marvin Minsky, 9 August 1927-24 January 2016 IN MEMORIAM
SO IEEE INTELLIGENT SYSTEMS
LA English
DT Biographical-Item
C1 [Benjamins, V. Richard] Univ Amsterdam, Standard Part Artificial Intelligence Cognit Sci, NL-1012 WX Amsterdam, Netherlands.
[Doyle, Richard] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Hendler, James] Rensselaer Polytech Inst, Troy, NY 12181 USA.
[Kambhampati, Subbarao] Arizona State Univ, Tempe, AZ 85287 USA.
RP Benjamins, VR (reprint author), Univ Amsterdam, Standard Part Artificial Intelligence Cognit Sci, NL-1012 WX Amsterdam, Netherlands.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1541-1672
EI 1941-1294
J9 IEEE INTELL SYST
JI IEEE Intell. Syst.
PD MAR-APR
PY 2016
VL 31
IS 2
BP 3
EP 5
PG 3
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
SC Computer Science; Engineering
GA DH8DI
UT WOS:000373023300001
ER
PT J
AU Krieger, G
Moreira, A
Zink, M
Shimada, M
Hensley, S
AF Krieger, Gerhard
Moreira, Alberto
Zink, Manfred
Shimada, Masanobu
Hensley, Scott
TI Foreword to the Special Issue on Synthetic Aperture Radar (SAR): New
Techniques, Missions and Applications
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Editorial Material
C1 [Krieger, Gerhard; Moreira, Alberto; Zink, Manfred] German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Wessling, Germany.
[Shimada, Masanobu] Tokyo Denki Univ, Sch Sci & Engn, Hiki, Saitama 3500394, Japan.
[Hensley, Scott] Jet Prop Lab, Pasadena, CA 91109 USA.
RP Krieger, G (reprint author), German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Wessling, Germany.
RI Moreira, Alberto/C-1147-2013
OI Moreira, Alberto/0000-0002-3436-9653
NR 28
TC 0
Z9 0
U1 4
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD MAR
PY 2016
VL 9
IS 3
SI SI
BP 967
EP 970
DI 10.1109/JSTARS.2016.2524918
PG 4
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA DH8ON
UT WOS:000373054100001
ER
PT J
AU Milillo, P
Riel, B
Minchew, B
Yun, SH
Simons, M
Lundgren, P
AF Milillo, Pietro
Riel, Bryan
Minchew, Brent
Yun, Sang-Ho
Simons, Mark
Lundgren, Paul
TI On the Synergistic Use of SAR Constellations' Data Exploitation for
Earth Science and Natural Hazard Response
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT 10th European Conference on Synthetic Aperture Radar (EUSAR)
CY JUN 02-06, 2014
CL Berlin, GERMANY
SP ITG, VDE, DLR, Airbus Def & Space, Fraunhofer, EUREL, URSI, DGON, IEEE GRSS, IEEE AESS
DE COSMO-SkyMed (CSK); Earth science; interferometric SAR (InSAR); natural
hazards
ID ANTARCTIC ICE-SHEET; CALDERA; INTERFEROMETRY; COLLAPSE; STRESS; AREAS;
SHELF; FLOW
AB Several current and expected future SAR satellites missions (e.g., TanDEM-X (TDX)/PAZ, COSMO-SkyMed (CSK), and Sentinel-1A/B) are designed as constellations of SAR sensors. Relative to single satellite systems, such constellations can provide greater spatial coverage and temporal sampling, thereby enabling better control on interferometric decorrelation and lower latency data access. These improvements lead to more effective near real-time disaster monitoring, assessment and response, and a greater ability to constrain dynamically changing physical processes. Using observations from the CSK system, we highlight examples of the potential for such imaging capabilities to enable advances in Earth science and natural hazards response.
C1 [Milillo, Pietro; Riel, Bryan; Minchew, Brent; Simons, Mark] CALTECH, Seismol Lab, Pasadena, CA 91125 USA.
[Milillo, Pietro] Univ Basilicata, Sch Engn, I-85100 Potenza, Italy.
[Yun, Sang-Ho; Lundgren, Paul] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Milillo, P (reprint author), CALTECH, Seismol Lab, Pasadena, CA 91125 USA.; Milillo, P (reprint author), Univ Basilicata, Sch Engn, I-85100 Potenza, Italy.
EM pietro.milillo@unibas.it
OI Milillo, Pietro/0000-0002-1171-3976; Simons, Mark/0000-0003-1412-6395
FU California Institute of Technology under National Aeronautics and Space
Administration
FX COSMO-SkyMed data products processed at JPL under license from ASI as
part of a collaborative project between CIDOT and JPL/Caltech. Original
COSMO-SkyMed product-ASI-Agenzia Spaziale Italiana-(2014-2015). Part of
this research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. The work of P. Milillo was done
while he was a Special Student at Caltech.
NR 39
TC 6
Z9 6
U1 1
U2 9
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD MAR
PY 2016
VL 9
IS 3
SI SI
BP 1095
EP 1100
DI 10.1109/JSTARS.2015.2465166
PG 6
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA DH8ON
UT WOS:000373054100013
ER
PT J
AU Boyce, BL
Kramer, SLB
Bosiljevac, TR
Corona, E
Moore, JA
Elkhodary, K
Simha, CHM
Williams, BW
Cerrone, AR
Nonn, A
Hochhalter, JD
Bomarito, GF
Warner, JE
Carter, BJ
Warner, DH
Ingraffea, AR
Zhang, T
Fang, X
Lua, J
Chiaruttini, V
Maziere, M
Feld-Payet, S
Yastrebov, VA
Besson, J
Chaboche, JL
Lian, J
Di, Y
Wu, B
Novokshanov, D
Vajragupta, N
Kucharczyk, P
Brinnel, V
Dobereiner, B
Munstermann, S
Neilsen, MK
Dion, K
Karlson, KN
Foulk, JW
Brown, AA
Veilleux, MG
Bignell, JL
Sanborn, SE
Jones, CA
Mattie, PD
Pack, K
Wierzbicki, T
Chi, SW
Lin, SP
Mahdavi, A
Predan, J
Zadravec, J
Gross, AJ
Ravi-Chandar, K
Xue, L
AF Boyce, B. L.
Kramer, S. L. B.
Bosiljevac, T. R.
Corona, E.
Moore, J. A.
Elkhodary, K.
Simha, C. H. M.
Williams, B. W.
Cerrone, A. R.
Nonn, A.
Hochhalter, J. D.
Bomarito, G. F.
Warner, J. E.
Carter, B. J.
Warner, D. H.
Ingraffea, A. R.
Zhang, T.
Fang, X.
Lua, J.
Chiaruttini, V.
Maziere, M.
Feld-Payet, S.
Yastrebov, V. A.
Besson, J.
Chaboche, J. -L.
Lian, J.
Di, Y.
Wu, B.
Novokshanov, D.
Vajragupta, N.
Kucharczyk, P.
Brinnel, V.
Doebereiner, B.
Muenstermann, S.
Neilsen, M. K.
Dion, K.
Karlson, K. N.
Foulk, J. W., III
Brown, A. A.
Veilleux, M. G.
Bignell, J. L.
Sanborn, S. E.
Jones, C. A.
Mattie, P. D.
Pack, K.
Wierzbicki, T.
Chi, S. -W.
Lin, S. -P.
Mahdavi, A.
Predan, J.
Zadravec, J.
Gross, A. J.
Ravi-Chandar, K.
Xue, L.
TI The second Sandia Fracture Challenge: predictions of ductile failure
under quasi-static and moderate-rate dynamic loading
SO INTERNATIONAL JOURNAL OF FRACTURE
LA English
DT Article
DE Fracture; Rupture; Tearing; Deformation; Plasticity; Metal; Alloy;
Simulation; rediction; Modeling
ID POLYCRYSTALLINE AL 6061-T6; KERNEL PARTICLE METHODS; STRENGTH STEEL
SHEETS; HIGH-STRAIN-RATE; CRACK-PROPAGATION; ROOM-TEMPERATURE; DAMAGE;
MODEL; BEHAVIOR; DEFORMATION
AB Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5-68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti-6Al-4V sheet under both quasi-static and modest-rate dynamic loading (failure in 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
C1 [Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.; Corona, E.; Neilsen, M. K.; Bignell, J. L.; Sanborn, S. E.; Jones, C. A.; Mattie, P. D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Moore, J. A.] Northwestern Univ, Evanston, IL USA.
[Elkhodary, K.] Amer Univ Cairo, New Cairo, Egypt.
[Simha, C. H. M.; Williams, B. W.] Nat Resources Canada, CanmetMAT, Hamilton, ON, Canada.
[Cerrone, A. R.] GE Global Res Ctr, Niskayuna, NY USA.
[Nonn, A.] Ostbayer Tech Hsch, Regensburg, Germany.
[Hochhalter, J. D.; Bomarito, G. F.; Warner, J. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Carter, B. J.; Warner, D. H.; Ingraffea, A. R.] Cornell Univ, Ithaca, NY USA.
[Zhang, T.; Fang, X.; Lua, J.] Global Engn & Mat Inc, Princeton, NJ USA.
[Chiaruttini, V.; Feld-Payet, S.; Chaboche, J. -L.] Univ Paris Saclay, Onera, Chatillon, France.
[Maziere, M.; Yastrebov, V. A.; Besson, J.] PSL Res Univ, MINES ParisTech, Ctr Mat, CNRS UMR 7633, Evry, France.
[Lian, J.; Di, Y.; Wu, B.; Novokshanov, D.; Vajragupta, N.; Kucharczyk, P.; Brinnel, V.; Doebereiner, B.; Muenstermann, S.] Rhein Westfal TH Aachen, Aachen, Germany.
[Dion, K.; Karlson, K. N.; Foulk, J. W., III; Brown, A. A.; Veilleux, M. G.] Sandia Natl Labs, Livermore, CA USA.
[Pack, K.; Wierzbicki, T.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Chi, S. -W.; Lin, S. -P.; Mahdavi, A.] Univ Illinois, Chicago, IL USA.
[Predan, J.; Zadravec, J.] Univ Maribor, SLO-2000 Maribor, Slovenia.
[Gross, A. J.; Ravi-Chandar, K.] Univ Texas Austin, Austin, TX 78712 USA.
[Xue, L.] Thinkviewer LLC, Sugar Land, TX USA.
RP Boyce, BL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM blboyce@sandia.gov; slkrame@sandia.gov; trbosil@sandia.gov;
ecorona@sandia.gov; johnallanmoore@gmail.com; khalile@aucegypt.edu;
Hari.Simha@NRCan-RNCan.gc.ca; Bruce.Williams@NRCan-RNCan.gc.ca;
albert.cerrone@ge.com; aida.nonn@oth-regensburg.de;
jacob.d.hochhalter@nasa.gov; geoffrey.f.bomarito@nasa.gov;
james.e.warner@nasa.gov; bjc21@cornell.edu; reddhw52@cornell.edu;
ari1@cornell.edu; tzhang@gem-innovation.com; xfang@gem-innovation.com;
jlua@gem-innovation.com; vincent.chiaruttini@onera.fr;
matthieu.maziere@mines-paristech.fr; sylvia.feld-payet@onera.fr;
vladislav.yastrebov@mines-paristech.fr;
jacques.besson@mines-paristech.fr; jean-louis.chaboche@onera.fr;
junhe.lian@iehk.rwth-aachen.de; yidu.di@iehk.rwth-aachen.de;
bo.wu@iehk.rwth-aachen.de; denis.novokshanov@iehk.rwth-aachen.de;
napat.vajragupta@iehk.rwth-aachen.de;
pawel.kucharczyk@iehk.rwth-aachen.de;
victoria.brinnel@iehk.rwth-aachen.de;
benedikt.doebereiner@iehk.rwth-aachen.de;
sebastian.muenstermann@iehk.rwth-aachen.de; mkneils@sandia.gov;
kdion@sandia.gov; knkarls@sandia.gov; jwfoulk@sandia.gov;
aabrown@sandia.gov; mgveill@sandia.gov; jbignel@sandia.gov;
sesanbo@sandia.gov; cajone@sandia.gov; pdmatti@sandia.gov;
kpack@mit.edu; wierz@mit.edu; swchi@uic.edu; slin46@ford.com;
amahda2@uic.edu; jozef.predan@um.si; zadravec.jozef@gmail.com;
andrew.gross@mail.utexas.edu; ravi@utexas.edu; xue@alum.mit.edu
RI Besson, Jacques/A-4144-2008; Munstermann, Sebastian/E-5480-2012; Xue,
Liang/A-1266-2007; Warner, Derek/A-2303-2012; Lian, Junhe/C-5492-2009
OI Besson, Jacques/0000-0003-1975-2408; Munstermann,
Sebastian/0000-0002-6251-2429; Xue, Liang/0000-0003-0468-0624; Lian,
Junhe/0000-0003-0323-3486
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]; Office of Naval Research: MURI
[N00014-06-1-0505-A00001]; Office of Naval Research: FNC Project
[N00014-08-1-0189]; Office of Naval Research [N00014-11-C-0487];
National Science Foundation [CMMI-1532528]
FX BLB and HEF would like to thank Dr. James Redmond for managing Sandia's
role in this work through the DOE Advanced Scientific Computing program.
SLBK and TRB would like to thank Dr. Dennis Croessmann and Dr. David Epp
for their management role supporting the experimental efforts at Sandia
for this work through the NNSA Weapon System Engineering and Assessment
Technology Engineering Campaign. JLB, SES, and CAJ would like to thank
DOE/NE and Ryan Bechtel for partially supporting their participation in
this challenge. The Sandia authors would like to thank the follow-ing
individuals for providing laboratory support of the experiments: Thomas
Crenshaw, John Laing, Jhana Gearhart, Mathew Ingraham, Artis Jackson,
Darren Pendley, Jack Heister, and Alice Kilgo. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. The work of
AJG and KRC at the University of Texas was performed during the course
of an investigation into ductile failure under two related research
programs funded by the Office of Naval Research: MURI Project
N00014-06-1-0505-A00001 and FNC Project: N00014-08-1-0189; this support
is gratefully acknowledged. The authors from GEM are grateful for the
support provided by the Office of Naval Research (N00014-11-C-0487) for
which Dr. Paul Hess and Dr. Ken Nahshon serve as the technical monitors.
KP and TW are grateful to Dr. Borja Erice at Ecole Polytechnique for the
development of the user material subroutine; thanks are also due to Dr.
Christian C. Roth at MIT for a valuable discussion. The authors
gratefully acknowledge financial support from the National Science
Foundation (Grant Number CMMI-1532528, "Summit on Predictive Modeling of
Ductile Failure") towards holding a Summit to discuss and distill the
results reported in this article.
NR 68
TC 8
Z9 8
U1 14
U2 29
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0376-9429
EI 1573-2673
J9 INT J FRACTURE
JI Int. J. Fract.
PD MAR
PY 2016
VL 198
IS 1-2
BP 5
EP 100
DI 10.1007/s10704-016-0089-7
PG 96
WC Materials Science, Multidisciplinary; Mechanics
SC Materials Science; Mechanics
GA DH4KV
UT WOS:000372755800002
ER
PT J
AU Cerrone, AR
Nonn, A
Hochhalter, JD
Bomarito, GF
Warner, JE
Carter, BJ
Warner, DH
Ingraffea, AR
AF Cerrone, A. R.
Nonn, A.
Hochhalter, J. D.
Bomarito, G. F.
Warner, J. E.
Carter, B. J.
Warner, D. H.
Ingraffea, A. R.
TI Predicting failure of the Second Sandia Fracture Challenge geometry with
a real-world, time constrained, over-the-counter methodology
SO INTERNATIONAL JOURNAL OF FRACTURE
LA English
DT Article
DE Ti-6Al-4V; Failure locus curve; Sandia Fracture Challenge; Anisotropic
yielding
ID DUCTILE FRACTURE; GROWTH
AB An over-the-counter methodology to predict fracture initiation and propagation in the challenge specimen of the Second Sandia Fracture Challenge is detailed herein. This pragmatic approach mimics that of an engineer subjected to real-world time constraints and unquantified uncertainty. First, during the blind prediction phase of the challenge, flow and failure locus curves were calibrated for Ti-6Al-4V with provided tensile and shear test data for slow (0.0254 mm/s) and fast (25.4 mm/s) loading rates. Thereafter, these models were applied to a 3D finite-element mesh of the non-standardized challenge geometry with nominal dimensions to predict, among other items, crack path and specimen response. After the blind predictions were submitted to Sandia National Labs, they were improved upon by addressing anisotropic yielding, damage initiation under shear dominance, and boundary condition selection.
C1 [Cerrone, A. R.] GE Global Res Ctr, Niskayuna, NY USA.
[Nonn, A.] Ostbayer Tech Hsch, Regensburg, Germany.
[Hochhalter, J. D.; Bomarito, G. F.; Warner, J. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Carter, B. J.; Warner, D. H.; Ingraffea, A. R.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA.
RP Cerrone, AR (reprint author), GE Global Res Ctr, Niskayuna, NY USA.
EM Albert.Cerrone@ge.com
RI Warner, Derek/A-2303-2012
NR 12
TC 1
Z9 1
U1 1
U2 1
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0376-9429
EI 1573-2673
J9 INT J FRACTURE
JI Int. J. Fract.
PD MAR
PY 2016
VL 198
IS 1-2
BP 117
EP 126
DI 10.1007/s10704-016-0086-x
PG 10
WC Materials Science, Multidisciplinary; Mechanics
SC Materials Science; Mechanics
GA DH4KV
UT WOS:000372755800004
ER
PT J
AU Kerr, JE
Arndt, GD
Byerly, DL
Rubinovitz, R
Theriot, CA
Stangel, I
AF Kerr, J. E.
Arndt, G. D.
Byerly, D. L.
Rubinovitz, R.
Theriot, C. A.
Stangel, I.
TI FT-Raman Spectroscopy Study of the Remineralization of Microwave-Exposed
Artificial Caries
SO JOURNAL OF DENTAL RESEARCH
LA English
DT Article
DE dental caries; tooth remineralization; in vitro techniques;
microbiology; Raman spectroscopy; x-ray computerized tomography
ID STREPTOCOCCUS-MUTANS; MILLIMETER WAVES; DENTAL DIAGNOSIS; ENAMEL;
ADULTS; LESIONS; MODEL
AB Dental caries is a microbially mediated disease that can result in significant tooth structure degradation. Although the preponderance of lesions is treated by surgical intervention, various strategies have been developed for its noninvasive management. Here, we use a novel approach for noninvasive treatment based on killing Streptococcus mutans with high-frequency microwave energy (ME). The rationale for this approach is based on modulating the pH of caries to a physiological state to enable spontaneous tooth remineralization from exogenous sources. In the present study, after demonstrating that ME kills > 99% of S. mutans in planktonic cultures, 8 enamel slabs were harvested from a single tooth. Baseline mineral concentration at each of 12 points per slab was obtained using Fourier transform (FT)-Raman spectroscopy. Surface demineralization was subsequently promoted by subjecting all samples to an S. mutans acidic biofilm for 6 d. Half of the samples were then exposed to high-frequency ME, and the other half were used as controls. All samples were next subjected to a remineralization protocol consisting of two 45-min exposures per 24-h period in tryptic soy broth followed by immersion in a remineralizing solution for the remaining period. After 10 d, samples were removed and cleaned. FT-Raman spectra were again obtained at the same 12 points per sample, and the mineral concentration was determined. The effect of the remineralization protocol on the demineralized slabs was expressed as a percentage of mineral loss or gain relative to baseline. The mineral concentration of the microwave-exposed group collectively approached 100% of baseline values, while that of the control group was in the order of 40%. Differences between groups were significant (P = 0.001, Mann-Whitney U test). We concluded that killing of S. mutans by ME promotes effective remineralization of S. mutans-demineralized enamel compared with controls.
C1 [Kerr, J. E.] Notre Dame Maryland Univ, Dept Biol, Baltimore, MD USA.
[Arndt, G. D.; Byerly, D. L.] NASA, Biomed Engn Explorat Space Technol Lab, Engn Lab, Lyndon B Johnson Space Ctr, Houston, TX USA.
[Rubinovitz, R.] Thermo Fisher Sci, Lanham, MD USA.
[Theriot, C. A.] Univ Texas Med Branch, Dept Prevent Med & Community Hlth, Galveston, TX 77555 USA.
[Stangel, I.] BioMat Sci, 5612 Glenwood Rd, Bethesda, MD 20817 USA.
RP Stangel, I (reprint author), BioMat Sci, 5612 Glenwood Rd, Bethesda, MD 20817 USA.
EM stangel@biomatsciences.com
FU National Science Foundation [1215100]; Notre Dame of Maryland University
Council for Faculty Research and Development [CFRD1001]
FX This research was funded by National Science Foundation grant #1215100
and Notre Dame of Maryland University Council for Faculty Research and
Development grant #CFRD1001 (J.E. Kerr). The authors further acknowledge
Micro Photonics (Allentown, PA, USA) for its work in generating the
micro-computed tomography image used in this publication. G.D. Arndt, D.
Byerly, and I. Stangel have a filed patent application based on the work
reported in this article. The authors declare no other potential
conflicts of interest with respect to the authorship and/or publication
of this article.
NR 36
TC 0
Z9 0
U1 2
U2 2
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0022-0345
EI 1544-0591
J9 J DENT RES
JI J. Dent. Res.
PD MAR
PY 2016
VL 95
IS 3
BP 342
EP 348
DI 10.1177/0022034515619370
PG 7
WC Dentistry, Oral Surgery & Medicine
SC Dentistry, Oral Surgery & Medicine
GA DH8YJ
UT WOS:000373082500013
PM 26647390
ER
PT J
AU Harris, HS
Benson, SR
James, MC
Martin, KJ
Stacy, BA
Daoust, PY
Rist, PM
Work, TM
Balazs, GH
Seminoff, JA
AF Harris, Heather S.
Benson, Scott R.
James, Michael C.
Martin, Kelly J.
Stacy, Brian A.
Daoust, Pierre-Yves
Rist, Paul M.
Work, Thierry M.
Balazs, George H.
Seminoff, Jeffrey A.
TI VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS
FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA)
SO JOURNAL OF ZOO AND WILDLIFE MEDICINE
LA English
DT Article
DE Body condition; Dermochelys coriacea; fat; health; leatherback sea
turtle; ultrasound
ID THICKNESS; LIPIDS
AB Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-908) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.
C1 [Harris, Heather S.; Benson, Scott R.; Seminoff, Jeffrey A.] Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA.
[James, Michael C.] Fisheries & Oceans Canada, Bedford Inst Oceanog, 1 Challenger Dr, Dartmouth, NS B2Y 4A2, Canada.
[Martin, Kelly J.] Loggerhead Marinelife Ctr, 14200 US Highway 1, Juno Beach, FL 33408 USA.
[Stacy, Brian A.] Natl Marine Fisheries Serv, Off Protected Resources, POB 110885, Gainesville, FL 32611 USA.
[Daoust, Pierre-Yves; Rist, Paul M.] Univ Prince Edward Isl, Atlantic Vet Coll, 550 Univ Ave, Charlottetown, PE C1A 4P3, Canada.
[Work, Thierry M.] US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, 300 Ala Moana Blvd,Room 5231, Honolulu, HI 96850 USA.
[Balazs, George H.] Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd, Honolulu, HI 96818 USA.
[Martin, Kelly J.] Project Leatherback Inc, 3330 Fairchild Gardens Ave 31061, Palm Beach Gardens, FL 33410 USA.
RP Harris, HS (reprint author), Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA.
EM heathersharris@gmail.com
FU California Department of Fish and Wildlife's Oil Spill Response Trust
Fund through the Oiled Wildlife Care Network at the Karen C. Drayer
Wildlife Health Center, School of Veterinary Medicine, University of
California, Davis
FX This project was supported in part by the California Department of Fish
and Wildlife's Oil Spill Response Trust Fund through the Oiled Wildlife
Care Network at the Karen C. Drayer Wildlife Health Center, School of
Veterinary Medicine, University of California, Davis. Field work was
conducted under permits from the National Oceanic and Atmospheric
Administration (NOAA) (1596-01, 1596-03, and 15634), the Florida Fish
and Wildlife Conservation Commission Marine Turtle Permit (157), and
Fisheries and Oceans Canada License 332697. All live animal procedures
were approved by Institutional Animal Care and Use Committee (IACUC)
through Moss Landing Marine Laboratories/San Jose State University
Research Foundation (974). The authors thank C. Harms, M. Boor, J.
Mellish, and C. Harvey-Clark for valuable scientific input; C. Fahy from
the NOAA West Coast Regional Office; J. Douglas from the Moss Landing
Marine Laboratories; the in-water capture and aerial teams from NOAA
Southwest Fisheries Science Center and Canadian Sea Turtle Network; the
necropsy teams from the California Department of Fish and Wildlife's
Marine Wildlife Veterinary Care and Research Center, Atlantic Veterinary
College, and NOAA Pacific Islands Fisheries Science Center, especially
T. Jones; C. Innis, J. Cavin, and the New England Aquarium Departments
of Animal Health and Rescue and Rehabilitation; C. Johnson and the
leatherback field research team from the Loggerhead Marinelife Center;
marine wildlife stranding networks in the United States and Canada; and
the NOAA Pacific Islands longline fisheries observer program.
NR 15
TC 0
Z9 0
U1 2
U2 3
PU AMER ASSOC ZOO VETERINARIANS
PI YULEE
PA 581705 WHITE OAK ROAD, YULEE, FL 32097 USA
SN 1042-7260
EI 1937-2825
J9 J ZOO WILDLIFE MED
JI J. Zoo Wildl. Med.
PD MAR
PY 2016
VL 47
IS 1
BP 275
EP 279
PG 5
WC Veterinary Sciences
SC Veterinary Sciences
GA DI0TU
UT WOS:000373211000031
PM 27010287
ER
PT J
AU Freissinet, C
Getty, SA
Trainer, MG
Glavin, DP
Mahaffy, PR
McLain, HL
Benna, M
AF Freissinet, C.
Getty, S. A.
Trainer, M. G.
Glavin, D. P.
Mahaffy, P. R.
McLain, H. L.
Benna, M.
TI Evaluation of the robustness of chromatographic columns in a simulated
highly radiative Jovian environment
SO PLANETARY AND SPACE SCIENCE
LA English
DT Article
DE Capillary columns stationary phases; Radiations; Electrons; Icy moons;
Gas chromatography mass spectrometry; Organics
ID IN-SITU ANALYSIS; GAS-CHROMATOGRAPHY; COMETARY NUCLEUS
AB Gas chromatography mass spectrometry (GCMS) is currently the most widely used analytical method for in situ investigation of organic molecules in space environments. Various types of GC column stationary phases have been, are currently, or will be used at the different solar system bodies including Mars, the Moon, Titan and comets. However, GCMS use in highly radiative environments such as Jupiter and its moons has never been explored and raises questions on the robustness of GC columns and stationary phases to extreme radiation. In this study, several types of GC columns were irradiated by high-energy electrons and protons in order to simulate the harsh conditions of a journey through Jupiter's radiation belts. Post-irradiation characterization shows that the three types of columns investigated, DB-5MS, CP-Chirasil-Dex CB and GS-GasPro, maintained their peak resolution and general separation performance after the radiation exposure. These results demonstrate that GCMS techniques can be applied to study the space environment of Jupiter's icy moons with no need for substantial radiation shielding of the columns. (c) 2016 Elsevier Ltd. All rights reserved.
C1 [Freissinet, C.; Getty, S. A.; Trainer, M. G.; Glavin, D. P.; Mahaffy, P. R.; McLain, H. L.; Benna, M.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA.
[Freissinet, C.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN 37830 USA.
[Benna, M.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
RP Freissinet, C (reprint author), NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA.
EM caroline.freissinet@nasa.gov
RI Benna, Mehdi/F-3489-2012; Glavin, Daniel/D-6194-2012
OI Glavin, Daniel/0000-0001-7779-7765
NR 14
TC 1
Z9 1
U1 2
U2 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0032-0633
J9 PLANET SPACE SCI
JI Planet Space Sci.
PD MAR
PY 2016
VL 122
BP 38
EP 45
DI 10.1016/j.pss.2016.01.004
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DH4RS
UT WOS:000372773700004
ER
PT J
AU Litvak, ML
Mitrofanov, IG
Sanin, AB
Bakhtin, BN
Bodnarik, JG
Boynton, WV
Chin, G
Evans, LG
Harshman, K
Livengood, TA
Malakhov, A
Mokrousov, MI
McClanahan, TP
Sagdeev, R
Starr, R
AF Litvak, M. L.
Mitrofanov, I. G.
Sanin, A. B.
Bakhtin, B. N.
Bodnarik, J. G.
Boynton, W. V.
Chin, G.
Evans, L. G.
Harshman, K.
Livengood, T. A.
Malakhov, A.
Mokrousov, M. I.
McClanahan, T. P.
Sagdeev, R.
Starr, R.
TI The variations of neutron component of lunar radiation background from
LEND/LRO observations
SO PLANETARY AND SPACE SCIENCE
LA English
DT Article
DE Neutrons; Moon; LEND
ID DETECTOR EXPERIMENT LEND; MARS-ODYSSEY; RECONNAISSANCE ORBITER;
GAMMA-RAY; INSTRUMENT SUITE; SOLAR MODULATION; COSMIC-RAYS; WATER ICE;
HYDROGEN; MOON
AB Lunar neutron flux data measured by the Lunar Exploration Neutron Detector (LEND) onboard NASA's Lunar Reconnaissance Orbiter (LRO) were analyzed for the period 2009-2014. We have re-evaluated the instrument's collimation capability and re-estimated the neutron counting rate measured in the Field of View (FOV) of the LEND collimated detectors, and found it to be 1.0 +/- 0.1 counts per second. We derived the spectral density of the neutron flux for various lunar regions using our comprehensive numerical model of orbital measurements. This model takes into account the location of the LEND instrument onboard LRO to calculate the surface leakage neutron flux and its propagation to the instrument detectors. Based on this we have determined the lunar neutron flux at the surface to be similar to 2 neutrons/[cm(2) sec] in the epithermal energy range, 0.4 eV to 1 key. We have also found variations of the lunar neutron leakage flux with amplitude as large as a factor of two, by using multi-year observations to explore variations in the Galactic Cosmic Ray (GCR) flux during the 23rd-24th solar cycles. (c) 2016 Elsevier Ltd. All rights reserved.
C1 [Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Bakhtin, B. N.; Malakhov, A.; Mokrousov, M. I.] RAS, Space Res Inst, Profsouznaya St 84-32, Moscow 117997, Russia.
[Bodnarik, J. G.; Boynton, W. V.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Chin, G.; Evans, L. G.; Livengood, T. A.; McClanahan, T. P.; Starr, R.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Evans, L. G.] Comp Sci Corp, Lanham, MD 20706 USA.
[Livengood, T. A.; Sagdeev, R.] Univ Maryland, College Pk, MD 20742 USA.
[Starr, R.] Catholic Univ Amer, Washington, DC 20064 USA.
RP Litvak, ML (reprint author), RAS, Space Res Inst, Profsouznaya St 84-32, Moscow 117997, Russia.
EM mlitvak.iki@gmail.com
FU Russian Science Foundation [14-22-00249]
FX This work is supported by the Grant# 14-22-00249 from Russian Science
Foundation.
NR 40
TC 2
Z9 3
U1 2
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0032-0633
J9 PLANET SPACE SCI
JI Planet Space Sci.
PD MAR
PY 2016
VL 122
BP 53
EP 65
DI 10.1016/j.pss.2016.01.006
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DH4RS
UT WOS:000372773700006
ER
PT J
AU Ajello, M
Albert, A
Atwood, WB
Barbiellini, G
Bastieri, D
Bechtol, K
Bellazzini, R
Bissaldi, E
Blandford, RD
Bloom, ED
Bonino, R
Bottacini, E
Brandt, TJ
Bregeon, J
Bruel, P
Buehler, R
Buson, S
Caliandro, GA
Cameron, RA
Caputo, R
Caragiulo, M
Carave, PA
Cecchi, C
Chekhtman, A
Chiang, J
Chiaro, G
Ciprini, S
Cohen-Tanugi, J
Cominsky, LR
Conrad, J
Cutini, S
D'Ammando, F
de Angelis, A
de Palma, F
Desiante, R
Di Venere, L
Drell, PS
Favuzzi, C
Ferrara, EC
Fusco, P
Gargano, F
Gasparrini, D
Giglietto, N
Giommi, P
Giordano, F
Giroletti, M
Glanzman, T
Godfrey, G
Gomez-Vargas, GA
Grenier, IA
Guiriec, S
Gustafsson, M
Harding, AK
Hewitt, JW
Hill, AB
Horan, D
Jogler, T
Johannesson, G
Johnson, AS
Kamae, T
Karwin, C
Knodlseder, J
Kuss, M
Larsson, S
Latronico, L
Li, J
Li, L
Longo, F
Loparco, F
Lovellette, MN
Lubrano, P
Magill, J
Maldera, S
Malyshev, D
Manfreda, A
Mayer, M
Mazziotta, MN
Michelson, PF
Mitthumsiri, W
Mizuno, T
Moiseev, AA
Monzani, ME
Morselli, A
Moskalenko, IV
Murgia, S
Nuss, E
Ohno, M
Ohsugi, T
Omodei, N
Orlando, E
Ormes, JF
Paneque, D
Pesce-Rollins, M
Piron, F
Pivato, G
Porter, TA
Raino, S
Rando, R
Razzano, M
Reimer, A
Reimer, O
Ritz, S
Sanchez-Conde, M
Parkinson, PMS
Sgro, C
Siskind, EJ
Smith, DA
Spada, F
Spandre, G
Spinelli, P
Suson, DJ
Tajima, H
Takahashi, H
Thayer, JB
Torres, DF
Tosti, G
Troja, E
Uchiyama, Y
Vianello, G
Winer, BL
Wood, KS
Zaharijas, G
Zimmer, S
AF Ajello, M.
Albert, A.
Atwood, W. B.
Barbiellini, G.
Bastieri, D.
Bechtol, K.
Bellazzini, R.
Bissaldi, E.
Blandford, R. D.
Bloom, E. D.
Bonino, R.
Bottacini, E.
Brandt, T. J.
Bregeon, J.
Bruel, P.
Buehler, R.
Buson, S.
Caliandro, G. A.
Cameron, R. A.
Caputo, R.
Caragiulo, M.
Carave, P. A.
Cecchi, C.
Chekhtman, A.
Chiang, J.
Chiaro, G.
Ciprini, S.
Cohen-Tanugi, J.
Cominsky, L. R.
Conrad, J.
Cutini, S.
D'Ammando, F.
de Angelis, A.
de Palma, F.
Desiante, R.
Di Venere, L.
Drell, P. S.
Favuzzi, C.
Ferrara, E. C.
Fusco, P.
Gargano, F.
Gasparrini, D.
Giglietto, N.
Giommi, P.
Giordano, F.
Giroletti, M.
Glanzman, T.
Godfrey, G.
Gomez-Vargas, G. A.
Grenier, I. A.
Guiriec, S.
Gustafsson, M.
Harding, A. K.
Hewitt, J. W.
Hill, A. B.
Horan, D.
Jogler, T.
Johannesson, G.
Johnson, A. S.
Kamae, T.
Karwin, C.
Knoedlseder, J.
Kuss, M.
Larsson, S.
Latronico, L.
Li, J.
Li, L.
Longo, F.
Loparco, F.
Lovellette, M. N.
Lubrano, P.
Magill, J.
Maldera, S.
Malyshev, D.
Manfreda, A.
Mayer, M.
Mazziotta, M. N.
Michelson, P. F.
Mitthumsiri, W.
Mizuno, T.
Moiseev, A. A.
Monzani, M. E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Nuss, E.
Ohno, M.
Ohsugi, T.
Omodei, N.
Orlando, E.
Ormes, J. F.
Paneque, D.
Pesce-Rollins, M.
Piron, F.
Pivato, G.
Porter, T. A.
Raino, S.
Rando, R.
Razzano, M.
Reimer, A.
Reimer, O.
Ritz, S.
Sanchez-Conde, M.
Parkinson, P. M. Saz
Sgro, C.
Siskind, E. J.
Smith, D. A.
Spada, F.
Spandre, G.
Spinelli, P.
Suson, D. J.
Tajima, H.
Takahashi, H.
Thayer, J. B.
Torres, D. F.
Tosti, G.
Troja, E.
Uchiyama, Y.
Vianello, G.
Winer, B. L.
Wood, K. S.
Zaharijas, G.
Zimmer, S.
TI FERMI-LAT OBSERVATIONS OF HIGH-ENERGY gamma-RAY EMISSION TOWARD THE
GALACTIC CENTER
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic rays; Galaxy: center; gamma-rays: general; gamma-rays: ISM;
radiation mechanisms: non-thermal
ID LARGE-AREA TELESCOPE; RADIAL-DISTRIBUTION; DARK-MATTER; COSMIC-RAYS;
SOURCE CATALOG; SUPERNOVA-REMNANTS; EGRET OBSERVATIONS; OUTER GALAXY;
CONSTRAINTS; GRADIENT
AB The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a 15 degrees x 15 degrees region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the.-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner similar to 1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15 degrees x 15 degrees region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with gamma-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.
C1 [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA.
[Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Barbiellini, G.; Longo, F.; Zaharijas, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.; Zaharijas, G.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Bechtol, K.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.
[Bellazzini, R.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bonino, R.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy.
[Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France.
[Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Buehler, R.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
[Caliandro, G. A.] CIFS, I-10133 Turin, Italy.
[Carave, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA.
[Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy.
[Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy.
[Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA.
[Conrad, J.; Sanchez-Conde, M.; Zimmer, S.] Stockholm Univ, Dept Phys, Alballova, SE-10691 Stockholm, Sweden.
[Conrad, J.; Larsson, S.; Li, L.; Sanchez-Conde, M.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, Alballova, SE-10691 Stockholm, Sweden.
[Conrad, J.] Royal Swedish Acad Sci, Box 50005, SE-10405 Stockholm, Sweden.
[D'Ammando, F.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy.
[de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy.
[de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy.
[Desiante, R.] Univ Udine, I-33100 Udine, Italy.
[Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Dept Fis, Ave Vicuna Mackenna 4860, Santiago, Chile.
[Grenier, I. A.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France.
[Gustafsson, M.] Univ Gottingen, Inst Theoret Phys, Fac Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany.
[Hewitt, J. W.] Univ N Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA.
[Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland.
[Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan.
[Karwin, C.; Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA.
[Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France.
[Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Li, J.; Torres, D. F.] CSIC, Inst Space Sci IEEC, Campus UAB, E-08193 Barcelona, Spain.
[Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Mitthumsiri, W.] Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand.
[Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA.
[Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ohno, M.; Takahashi, H.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Ormes, J. F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Razzano, M.] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Parkinson, P. M. Saz] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France.
[Siskind, E. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Smith, D. A.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Suson, D. J.] ICREA, Barcelona, Spain.
[Tajima, H.] 3-34-1 Nishi Ikebukuro,Toshima Ku, Tokyo 1718501, Japan.
[Torres, D. F.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA.
[Uchiyama, Y.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Uchiyama, Y.] Univ Trieste, I-34127 Trieste, Italy.
[Winer, B. L.] Univ Nova Gorica, Lab Astroparticle Phys, Vipayska 13, SI-5000 Nova Gorica, Slovenia.
[Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
RP Murgia, S; Porter, TA (reprint author), Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA.; Porter, TA (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.; Porter, TA (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.; Murgia, S (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA.
EM smurgia@uci.edu; tporter@stanford.edu
RI Moskalenko, Igor/A-1301-2007; Bissaldi, Elisabetta/K-7911-2016; Reimer,
Olaf/A-3117-2013; Orlando, E/R-5594-2016; Bonino, Raffaella/S-2367-2016;
Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017;
OI Moskalenko, Igor/0000-0001-6141-458X; Bissaldi,
Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385;
Torres, Diego/0000-0002-1522-9065; Di Venere,
Leonardo/0000-0003-0703-824X; Sgro', Carmelo/0000-0001-5676-6214;
Zaharijas, Gabrijela/0000-0001-8484-7791; Hill,
Adam/0000-0003-3470-4834; Ajello, Marco/0000-0002-6584-1703
FU National Aeronautics and Space Administration; Department of Energy in
the United States; Commissariat a l'Energie Atomique; Centre National de
la Recherche Scientifique/Institut National de Physique Nucleaire et de
Physique des Particules in France; Agenzia Spaziale Italiana; Istituto
Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture,
Sports, Science and Technology (MEXT); High Energy Accelerator Research
Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan;
K. A. Wallenberg Foundation; Swedish Research Council; Swedish National
Space Board in Sweden; NASA [NNX 09AC15G, NNX 10AE78G, NNX 13AC47G]
FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a
number of agencies and institutes that have supported both the
development and the operation of the LAT as well as scientific data
analysis. These include the National Aeronautics and Space
Administration and the Department of Energy in the United States, the
Commissariat a l'Energie Atomique and the Centre National de la
Recherche Scientifique/Institut National de Physique Nucleaire et de
Physique des Particules in France, the Agenzia Spaziale Italiana and the
Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of
Education, Culture, Sports, Science and Technology (MEXT), High Energy
Accelerator Research Organization (KEK) and Japan Aerospace Exploration
Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish
Research Council and the Swedish National Space Board in Sweden.;
GALPROP development is partially funded via NASA grants NNX 09AC15G, NNX
10AE78G, and NNX 13AC47G.
NR 67
TC 50
Z9 50
U1 9
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 44
DI 10.3847/0004-637X/819/1/44
PG 30
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400044
ER
PT J
AU Arcavi, I
Wolf, WM
Howell, DA
Bildsten, L
Leloudas, G
Hardin, D
Prajs, S
Perley, DA
Svirski, G
Gal-Yam, A
Katz, B
McCully, C
Cenko, SB
Lidman, C
Sullivan, M
Valenti, S
Astier, P
Balland, C
Carlberg, RG
Conley, A
Fouchez, D
Guy, J
Pain, R
Palanque-Delabrouille, N
Perrett, K
Pritchet, CJ
Regnault, N
Rich, J
Ruhlmann-Kleider, V
AF Arcavi, Iair
Wolf, William M.
Howell, D. Andrew
Bildsten, Lars
Leloudas, Giorgos
Hardin, Delphine
Prajs, Szymon
Perley, Daniel A.
Svirski, Gilad
Gal-Yam, Avishay
Katz, Boaz
McCully, Curtis
Cenko, S. Bradley
Lidman, Chris
Sullivan, Mark
Valenti, Stefano
Astier, Pierre
Balland, Cristophe
Carlberg, Ray G.
Conley, Alex
Fouchez, Dominique
Guy, Julien
Pain, Reynald
Palanque-Delabrouille, Nathalie
Perrett, Kathy
Pritchet, Chris J.
Regnault, Nicolas
Rich, James
Ruhlmann-Kleider, Vanina
TI RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA-SUPERLUMINOUS SUPERNOVA GAP
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE supernovae: individual (PTF10iam, SNLS04D4ec, SNLS05D2bk, SNLS06D1hc,
Dougie)
ID WHITE-DWARF MODELS; CORE-COLLAPSE SUPERNOVAE; GAMMA-RAY BURSTS;
EXPANDING PHOTOSPHERE METHOD; STAR-FORMING GALAXIES; TIME LIGHT CURVES;
SHOCK-BREAKOUT; IA SUPERNOVAE; LEGACY SURVEY; CIRCUMSTELLAR INTERACTION
AB We present observations of four rapidly rising (t(rise) approximate to 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M-peak approximate to-20)-one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Ha emission, but an unusual absorption feature, which can be interpreted as either high velocity Ha (though deeper than in previously known cases) or Si II (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a "Type 1.5 SN" scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.
C1 [Arcavi, Iair; Howell, D. Andrew] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA.
[Arcavi, Iair; Bildsten, Lars; McCully, Curtis; Valenti, Stefano] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
[Wolf, William M.; Howell, D. Andrew; Bildsten, Lars; McCully, Curtis; Valenti, Stefano] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel.
[Leloudas, Giorgos; Perley, Daniel A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Manes Vej 30, DK-2100 Copenhagen, Denmark.
[Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] CNRS, IN2P3, LPNHE, F-75005 Paris, France.
[Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] Univ Paris 06, F-75005 Paris, France.
[Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] Univ Paris 07, F-75005 Paris, France.
[Prajs, Szymon; Sullivan, Mark] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Svirski, Gilad] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
[Cenko, S. Bradley] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA.
[Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Lidman, Chris] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia.
[Carlberg, Ray G.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H8, Canada.
[Conley, Alex] Univ Colorado, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA.
[Fouchez, Dominique] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France.
[Palanque-Delabrouille, Nathalie; Rich, James; Ruhlmann-Kleider, Vanina] CEA Saclay, DSM, IRFU, SPP, F-91191 Gif Sur Yvette, France.
[Perrett, Kathy] DRDC Ottawa, 3701 Carling Ave, Ottawa, ON K1A 0Z4, Canada.
[Pritchet, Chris J.] Univ Victoria, Dept Phys & Astron, POB 3055, Victoria, BC V8W 3P6, Canada.
RP Arcavi, I (reprint author), Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA.; Arcavi, I (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
EM iarcavi@lcogt.net
OI Wolf, William/0000-0002-6828-0630; Sullivan, Mark/0000-0001-9053-4820
FU ESO program [176. A-0589]; National Science Foundation [1313484, PHY
11-25915, AST 11-09174]; Israeli Science Foundation; EU/FP7/ERC grant;
BSF; GIF; Minerva; "Quantum universe" I-Core program of the planning and
budgeting committee; ISF; Kimmel Investigator award; Danish National
Research Foundation; W. M. Keck Foundation; Alfred P. Sloan Foundation;
National Science Foundation; U.S. Department of Energy Office of
Science; University of Arizona; Brazilian Participation Group;
Brookhaven National Laboratory; Carnegie Mellon University; University
of Florida; French Participation Group; German Participation Group;
Harvard University; Instituto de Astrofisica de Canarias; Michigan
State/Notre Dame/JINA Participation Group; Johns Hopkins University;
Lawrence Berkeley National Laboratory; Max Planck Institute for
Astrophysics; Max Planck Institute for Extraterrestrial Physics; New
Mexico State University; New York University; Ohio State University;
Pennsylvania State University; University of Portsmouth; Princeton
University; Spanish Participation Group; University of Tokyo; University
of Utah; Vanderbilt University; University of Virginia; University of
Washington; Yale University
FX We thank J. Silverman and J. Johansson for helpful discussions and S.
Sim and M. Kromer for sharing their white dwarf detonation models. This
paper is based on observations obtained at the Cerro Paranal Observatory
(ESO program 176. A-0589) and with the Samuel Oschin Telescope as part
of the Palomar Transient Factory project. We are grateful for the
assistance of the staffs at the various observatories where data were
obtained. This work made use of the astronomy & astrophysics package for
Matlab (Ofek 2014). Some of the work presented here is supported by the
National Science Foundation under Grant No. 1313484. I.A. and A.G.
acknowledge support by the Israeli Science Foundation and an EU/FP7/ERC
grant. A.G. further acknowledges grants from the BSF, GIF, and Minerva,
as well as the "Quantum universe" I-Core program of the planning and
budgeting committee and the ISF, and a Kimmel Investigator award. The
work of W.M.W. and L.B. was supported by the National Science Foundation
under grants PHY 11-25915 and AST 11-09174. The Dark Cosmology Centre is
funded by the Danish National Research Foundation. Some of the data
presented herein were obtained at the W. M. Keck Observatory, which is
operated as a scientific partnership among the California Institute of
Technology, the University of California, and the National Aeronautics
and Space Administration. The Observatory was made possible by the
generous financial support of the W. M. Keck Foundation. Some data are
based on observations obtained at the Gemini Observatory processed using
the Gemini IRAF package, which is operated by the Association of
Universities for Research in Astronomy, Inc., under a cooperative
agreement with the NSF on behalf of the Gemini partnership: the National
Science Foundation (United States), the National Research Council
(Canada), CONICYT (Chile), the Australian Research Council (Australia),
Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de
Ciencia, Tecnologa e Innovacin Productiva (Argentina). This work made
use of the NASA/IPAC Extragalactic Database (NED) which is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration. Funding
for SDSS-III has been provided by the Alfred P. Sloan Foundation, the
Participating Institutions, the National Science Foundation, and the
U.S. Department of Energy Office of Science. SDSS-III is managed by the
Astrophysical Research Consortium for the Participating Institutions of
the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory, Carnegie
Mellon University, University of Florida, the French Participation
Group, the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max Planck
Institute for Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State University,
University of Portsmouth, Princeton University, the Spanish
Participation Group, University of Tokyo, University of Utah, Vanderbilt
University, University of Virginia, University of Washington, and Yale
University.
NR 138
TC 9
Z9 9
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 35
DI 10.3847/0004-637X/819/1/35
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400035
ER
PT J
AU Civano, F
Marchesi, S
Comastri, A
Urry, MC
Elvis, M
Cappelluti, N
Puccetti, S
Brusa, M
Zamorani, G
Hasinger, G
Aldcroft, T
Alexander, DM
Allevato, V
Brunner, H
Capak, P
Finoguenov, A
Fiore, F
Fruscione, A
Gilli, R
Glotfelty, K
Griffiths, RE
Hao, H
Harrison, FA
Jahnke, K
Kartaltepe, J
Karim, A
LaMassa, SM
Lanzuisi, G
Miyaji, T
Ranalli, P
Salvato, M
Sargent, M
Scoville, NJ
Schawinski, K
Schinnerer, E
Silverman, J
Smolcic, V
Stern, D
Toft, S
Trakhenbrot, B
Treister, E
Vignali, C
AF Civano, F.
Marchesi, S.
Comastri, A.
Urry, M. C.
Elvis, M.
Cappelluti, N.
Puccetti, S.
Brusa, M.
Zamorani, G.
Hasinger, G.
Aldcroft, T.
Alexander, D. M.
Allevato, V.
Brunner, H.
Capak, P.
Finoguenov, A.
Fiore, F.
Fruscione, A.
Gilli, R.
Glotfelty, K.
Griffiths, R. E.
Hao, H.
Harrison, F. A.
Jahnke, K.
Kartaltepe, J.
Karim, A.
LaMassa, S. M.
Lanzuisi, G.
Miyaji, T.
Ranalli, P.
Salvato, M.
Sargent, M.
Scoville, N. J.
Schawinski, K.
Schinnerer, E.
Silverman, J.
Smolcic, V.
Stern, D.
Toft, S.
Trakhenbrot, B.
Treister, E.
Vignali, C.
TI THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE catalogs; cosmology: observations; galaxies: evolution; quasars:
general; surveys; X-rays: general
ID WIDE-FIELD SURVEY; ACTIVE GALACTIC NUCLEI; EVOLUTION SURVEY COSMOS; MS
SOURCE CATALOGS; X-RAY SURVEY; XMM-NEWTON; BLACK-HOLE; NUMBER COUNTS;
STRIPE 82; LOG S
AB The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg(2) of the COSMOS field with an effective exposure of similar or equal to 160 ks over the central 1.5 deg(2) and of similar or equal to 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 x 10(-5). We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 x 10(-16), 1.5 x 10(-15), and 8.9 x 10(-16) erg cm(-2) s(-1)in the 0.5-2, 2-10, and 0.5-10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >10(22) cm(-2) from the hardness ratio (HR) is similar to 50(-16)(+17)%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%-10%. For the first time we compute number counts for obscured (HR > -0.2) and unobscured (HR < -0.2) sources and find significant differences between the two populations in the soft band. Due to the unprecedent large exposure, COSMOS-Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.
C1 [Civano, F.; Marchesi, S.; Urry, M. C.; LaMassa, S. M.] Yale Univ, Ctr Astron & Astrophys, 260 Whitney Ave, New Haven, CT 06520 USA.
[Civano, F.; Marchesi, S.; Elvis, M.; Aldcroft, T.; Fruscione, A.; Glotfelty, K.; Hao, H.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Marchesi, S.; Brusa, M.; Lanzuisi, G.; Vignali, C.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Comastri, A.; Cappelluti, N.; Brusa, M.; Zamorani, G.; Gilli, R.; Lanzuisi, G.; Vignali, C.] INAF Osservatorio Astronom Bologna, Via Ranzani 1, I-40127 Bologna, Italy.
[Puccetti, S.] ASDC ASI, Via Politecn, I-00133 Rome, Italy.
[Hasinger, G.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA.
[Alexander, D. M.] Univ Durham, Dept Phys, Ctr Extragalact Astron, South Rd, Durham DH1 3LE, England.
[Allevato, V.; Finoguenov, A.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland.
[Brunner, H.; Salvato, M.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany.
[Capak, P.] IPAC, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
[Capak, P.; Scoville, N. J.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
[Fiore, F.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
[Griffiths, R. E.] Univ Hawaii, Div Nat Sci, Dept Phys & Astron, 200 W Kawili St, Hilo, HI 96720 USA.
[Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA.
[Jahnke, K.; Schinnerer, E.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
[Kartaltepe, J.] Natl Opt Astron Observ, 950N Cherry Ave, Tucson, AZ 85719 USA.
[Kartaltepe, J.] Rochester Inst Technol, Sch Phys & Astron, 84 Lomb Mem Dr, Rochester, NY 14623 USA.
[Karim, A.] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany.
[Miyaji, T.] Univ Nacl Autonoma Mexico, Inst Astron Sede Ensenada, Km 103,Carret Tijunana Ensenada, Ensenada, Baja California, Mexico.
[Miyaji, T.] Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA.
[Ranalli, P.] Natl Observ Athens, AASARS, Penteli 15236, Greece.
[Sargent, M.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Schawinski, K.; Trakhenbrot, B.] Swiss Fed Inst Technol, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
[Schinnerer, E.] Natl Radio Astron Observ, Pete V Domenici Sci Operat Ctr, 1003 Lopezville Rd, Socorro, NM 87801 USA.
[Silverman, J.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan.
[Smolcic, V.] Univ Zagreb, Dept Phys, Bijeniaa Cesta 32, HR-10000 Zagreb, Croatia.
[Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Toft, S.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Mariesvej 30, DK-2100 Copenhagen, Denmark.
[Treister, E.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile.
RP Civano, F (reprint author), Yale Univ, Ctr Astron & Astrophys, 260 Whitney Ave, New Haven, CT 06520 USA.
RI Ranalli, Piero/K-6363-2013;
OI Ranalli, Piero/0000-0003-3956-755X; Lanzuisi,
Giorgio/0000-0001-9094-0984; Cappelluti, Nico/0000-0002-1697-186X;
Zamorani, Giovanni/0000-0002-2318-301X; Urry, Meg/0000-0002-0745-9792;
Trakhtenbrot, Benny/0000-0002-3683-7297; Schinnerer,
Eva/0000-0002-3933-7677
FU NASA [G07-8136A, NAS8-03060, NNX15AE61G]; PRIN-INAF; FP7 Career
Integration Grant "eEASy" [CIG 321913]; UNAM-DGAPA [PAPIIT IN104113];
CONACyT [179662]; Collaborative Research Council [956]; Deutsche
Forschungsgemeinschaft; Greek General Secretariat of Research and
Technology; Science and Technology Facilities Council [ST/I001573/1];
Swiss National Science Foundation [PP00P2_138979/1]; Center of
Excellence in Astrophysics and Associated Technologies [PFB 06];
FONDECYT [1120061]; CONICYT [ACT1101]; European Union [337595, 333654];
Danish National Research Foundation
FX This work was supported in part by NASA Chandra grant number G07-8136A
(F.C., S.M., V.A., M.E., H.S.); PRIN-INAF 2014 "Windy Black Holes
combing galaxy evolution" (A.C., M.B., G.L. and C.V.); the FP7 Career
Integration Grant "eEASy": "Supermassive blackholes through cosmic time:
from current surveys to eROSITA-Euclid Synergies"(CIG 321913; M.B. and
G.L.); UNAM-DGAPA Grant PAPIIT IN104113 and CONACyT Grant Cientifica
Basica #179662 (T.M.); Collaborative Research Council 956, sub-project
A1, funded by the Deutsche Forschungsgemeinschaft (A.K.); NASA contract
NAS8-03060 (T.A., A.F., K.G.); the Greek General Secretariat of Research
and Technology in the framework of the Programme of Support of
Postdoctoral Researchers (P.R.); NASA award NNX15AE61G (R.G.); the
Science and Technology Facilities Council through grant code
ST/I001573/1 (D.M.A.); the Swiss National Science Foundation Grant
PP00P2_138979/1 (K.S.); the Center of Excellence in Astrophysics and
Associated Technologies (PFB 06), by the FONDECYT regular grant 1120061
and by the CONICYT Anillo project ACT1101 (E.T.); the European Union's
Seventh Framework Programme under grant agreements 337595 (ERC Starting
Grant, "CoSMass") and 333654 (CIG, AGN feedback; V.S.). S.T. is part of
The Dark Cosmology Centre, funded by the Danish National Research
Foundation. B.T. is a Zwicky Fellow.
NR 64
TC 18
Z9 18
U1 2
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 62
DI 10.3847/0004-637X/819/1/62
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400062
ER
PT J
AU Cromartie, HT
Camilo, F
Kerr, M
Deneva, JS
Ransom, SM
Ray, PS
Ferrara, EC
Michelson, PF
Wood, KS
AF Cromartie, H. T.
Camilo, F.
Kerr, M.
Deneva, J. S.
Ransom, S. M.
Ray, P. S.
Ferrara, E. C.
Michelson, P. F.
Wood, K. S.
TI SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY
SOURCES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE pulsars: individual (PSR J0251+26, PSR J1048+2339, PSR, J1805+06, PSR
J1824+10, PSR J1909+21, PSR J2052+1218)
ID LARGE-AREA TELESCOPE; SOURCE CATALOG; BINARY; DETECTABILITY
AB We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period <= 8.1 hr), while the sixth is a more typical neutron star-white dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.
C1 [Cromartie, H. T.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA.
[Camilo, F.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA.
[Kerr, M.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia.
[Deneva, J. S.; Ray, P. S.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Ransom, S. M.] NRAO, Charlottesville, VA 22903 USA.
[Ferrara, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Michelson, P. F.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Michelson, P. F.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
RP Cromartie, HT (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA.
EM thankful@virginia.edu
OI Ray, Paul/0000-0002-5297-5278
FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes
Spatiales in France; Fermi LAT Collaboration
FX The Fermi LAT Collaboration acknowledges generous ongoing support from a
number of agencies and institutes that have supported both the
development and the operation of the LAT as well as scientific data
analysis. These include the National Aeronautics and Space
Administration and the Department of Energy in the United States, the
Commissariat a l'Energie Atomique and the Centre National de la
Recherche Scientifique/Institut National de Physique Nucleaire et de
Physique des Particules in France, the Agenzia Spaziale Italiana and the
Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of
Education, Culture, Sports, Science and Technology (MEXT), High Energy
Accelerator Research Organization (KEK) and Japan Aerospace Exploration
Agency (JAXA) in Japan, and the KA Wallenberg Foundation, the Swedish
Research Council and the Swedish National Space Board in Sweden.
Additional support for science analysis during the operations phase is
gratefully acknowledged from the Istituto Nazionale di Astrofisica in
Italy and the Centre National d'Etudes Spatiales in France.
NR 30
TC 5
Z9 5
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 34
DI 10.3847/0004-637X/819/1/34
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400034
ER
PT J
AU Garcia, JA
Grinberg, V
Steiner, JF
McClintock, JE
Pottschmidt, K
Rothschild, RE
AF Garcia, Javier A.
Grinberg, Victoria
Steiner, James F.
McClintock, Jeffrey E.
Pottschmidt, Katja
Rothschild, Richard E.
TI AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE instrumentation: detectors; space vehicles: instruments; X-rays:
individual (Crab, XTE J1752-223, GX 339-4)
ID RAY-TIMING-EXPLORER; HARD X-RAY; CRAB-NEBULA
AB We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37. million counts in total for Cluster. A and 39. million counts for Cluster. B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster. A is free of instrumental artifacts while that of Cluster B contains significant features with amplitudes similar to 1%; the most prominent is in the energy range 30-50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster. B, via an iterative procedure we created the calibration tool HEXBCORR for correcting any Cluster. B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster. B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper.
C1 [Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Grinberg, Victoria; Steiner, James F.] MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA.
[Pottschmidt, Katja] UMBC, Dept Phys, Baltimore, MD 21250 USA.
[Pottschmidt, Katja] UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Pottschmidt, Katja] CRESST, Greenbelt, MD 20771 USA.
[Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Rothschild, Richard E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
RP Garcia, JA; Steiner, JF; McClintock, JE (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.; Grinberg, V; Steiner, JF (reprint author), MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA.; Pottschmidt, K (reprint author), UMBC, Dept Phys, Baltimore, MD 21250 USA.; Pottschmidt, K (reprint author), UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.; Pottschmidt, K (reprint author), CRESST, Greenbelt, MD 20771 USA.; Pottschmidt, K (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Rothschild, RE (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
EM javier@head.cfa.harvard.edu; grinberg@space.mit.edu; jsteiner@mit.edu;
jem@cfa.harvard.edu; katja@milkyway.gsfc.nasa.gov; rrothschild@ucsd.edu
FU CGPS grant from Smithsonian Institution; NASA Hubble Fellowship
[HST-HF-51315.01]; NASA Einstein Fellowship [PF5-160144]; NASA through
Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA
[NAS8-03060]
FX We thank an anonymous referee for several helpful comments. J.G. and
J.E.M. acknowledge the support of a CGPS grant from the Smithsonian
Institution. J.F.S. has been supported by NASA Hubble Fellowship grant
HST-HF-51315.01 and NASA Einstein Fellowship grant PF5-160144. V.G.
acknowledges support provided by NASA through the Smithsonian
Astrophysical Observatory (SAO) contract SV3-73016 to MIT for support of
the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated
by SAO for and on behalf of NASA under contract NAS8-03060.
NR 15
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 76
DI 10.3847/0004-637X/819/1/76
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400076
ER
PT J
AU Guiriec, S
Gonzalez, MM
Sacahui, JR
Kouveliotou, C
Gehrels, N
McEnery, J
AF Guiriec, S.
Gonzalez, M. M.
Sacahui, J. R.
Kouveliotou, C.
Gehrels, N.
McEnery, J.
TI CGRO/BATSE DATA SUPPORT THE NEW PARADIGM FOR GRB PROMPT EMISSION AND THE
NEW L-i(nTh)-E-peak,i(nTh,rest) RELATION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE acceleration of particles; black hole physics; distance scale; gamma-ray
burst: general; radiation mechanisms: non-thermal; radiation mechanisms:
thermal
ID GAMMA-RAY BURSTS; SYNCHROTRON SHOCK MODEL; SPECTRAL COMPONENT; FERMI
OBSERVATIONS; PEAK ENERGY; LUMINOSITY RELATION; COSMIC FIREBALLS;
THERMAL EMISSION; EVOLUTION; BATSE
AB The paradigm for gamma-ray burst (GRB) prompt emission is changing. Since early in the Compton Gamma Ray Observatory (CGRO) era, the empirical Band function has been considered a good description of the keV-MeV.-ray prompt emission spectra despite the fact that its shape was very often inconsistent with the theoretical predictions, especially those expected in pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission would be a combination of three main emission components: (i) a thermal-like component that we have interpreted so far as emission from the jet photosphere, (ii) a non-thermal component that we have interpreted so far as either synchrotron radiation from the propagating and accelerated charged particles within the jet or reprocessed jet photospheric emission, and (iii) an additional non-thermal (cutoff) power law (PL) extending from low to high energies in gamma-rays and most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs, namely GRBs 941017, 970111, and 990123, observed with the Burst And Transient Source Experiment (BATSE) on board CGRO with the new model. We conclude that BATSE data for these three GRBs are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate components during the prompt phase with similar spectral parameters as those reported from Fermi data. In addition, the analysis of the BATSE GRBs with the new prompt emission model results in a relation between the time-resolved energy flux of the non-thermal component, F-i(nTh), and its corresponding nu F-nu spectral peak energy, E-peak,i(nTh) (i.e., F-i(nTh)-E-peak,i(nTh)), which has a similar index-when fitted to a PL-as the one initially derived from Fermi data. For GRBs with known redshifts (z) this results in a possible universal relation between the luminosity of the non-thermal component, L-i(nTh), and its corresponding nu F nu spectral peak energy in the rest frame, E-peak,i(NT,rest) (i.e., L-i(nTh)-E-peak,i(NT,rest)). We estimated the redshifts of GRBs 941017 and 970111 using GRB 990123-with z = 1.61-as a reference. The estimated redshift for GRB 941017 is typical for long GRBs and the estimated redshift for GRB 970111 is right in the range of the expected values for this burst.
C1 [Guiriec, S.; Gehrels, N.; McEnery, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Guiriec, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Guiriec, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Guiriec, S.] CRESST, Los Angeles, CA USA.
[Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico.
[Sacahui, J. R.] INPE, Ave Astronautas 1758, BR-12227010 So Jos Dos Campos, SP, Brazil.
[Kouveliotou, C.] George Washington Univ, Dept Phys, Washington, DC 20052 USA.
[Sacahui, J. R.] Univ San Carlos, Escuela Ciencias Fis & Matemat, Ciudad Univ,Zona 12, Guatemala City, Guatemala.
[Guiriec, S.] NASA, Postdoctoral Program, Greenbelt, MD 20771 USA.
RP Guiriec, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Guiriec, S (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA.; Guiriec, S (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Guiriec, S (reprint author), CRESST, Los Angeles, CA USA.; Guiriec, S (reprint author), NASA, Postdoctoral Program, Greenbelt, MD 20771 USA.
EM sylvain.guiriec@nasa.gov
FU NASA Postdoctoral Program (NPP) at the NASA/Goddard Space Flight Center;
NASA [NNH11ZDA001N, NNH13ZDA001N]; DGAPA UNAM [IG100414-3]
FX S.G. was supported by the NASA Postdoctoral Program (NPP) at the
NASA/Goddard Space Flight Center, administered by Oak Ridge Associated
Universities through a contract with NASA, as well as by the NASA grants
NNH11ZDA001N and NNH13ZDA001N, awarded to S.G. during cycles 5 and 7 of
the NASA Fermi Guest Investigator Program. M.M.G. was supported by DGAPA
UNAM grant number IG100414-3.
NR 60
TC 2
Z9 2
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 79
DI 10.3847/0004-637X/819/1/79
PG 32
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400079
ER
PT J
AU He, CC
Keek, L
AF He, C. -C.
Keek, L.
TI ANISOTROPY OF X-RAY BURSTS FROM NEUTRON STARS WITH CONCAVE ACCRETION
DISKS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; stars: neutron; X-rays: binaries; X-rays:
bursts
ID THERMONUCLEAR BURSTS; ANGULAR-DISTRIBUTION; SPECTRAL EVOLUTION; LIGHT
CURVES; BLACK-HOLES; MASS; REFLECTION; BINARIES; SUPERBURST; DISCOVERY
AB Emission from neutron stars and accretion disks in low-mass X-ray binaries is anisotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk make the observed flux dependent on the inclination angle of the disk with respect to the line of sight. This is of importance for the interpretation of thermonuclear X-ray bursts from neutron stars. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star's equation of state. Previous predictions of the anisotropy factors assumed a geometrically flat disk. Detailed observations of two so-called superbursts allowed for the direct and the reflected burst fluxes to each be measured separately. The reflection fraction was much higher than what the anisotropies of a flat disk can account for. We create numerical models to calculate the anisotropy factors for different disk shapes, including concave disks. We present the anisotropy factors of the direct and reflected burst fluxes separately, as well as the anisotropy of the persistent flux. Reflection fractions substantially larger than unity are produced in the case where the inner accretion disk increases steeply in height, such that part of the star is blocked from view. Such a geometry could possibly be induced by the X-ray burst if X-ray heating causes the inner disk to puff up.
C1 [He, C. -C.] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China.
[Keek, L.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Keek, L.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.
[Keek, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
RP He, CC (reprint author), Jilin Univ, Coll Phys, Changchun 130012, Peoples R China.
EM jordanhe1994@gmail.com
OI He, Chong-Chong/0000-0002-2332-8178
FU Undergraduate Education Office of Jilin University in Changchun, China;
NASA [NNG06E090A]
FX The authors thank D. Ballantyne and T. Strohmayer for helpful
discussions, and acknowledge the Center for Relativistic Astrophysics at
Georgia Institute of Technology, where this study was initiated. C.C.H.
is supported by the Undergraduate Education Office of Jilin University
in Changchun, China, which also supports this publication. L.K. is
supported by NASA under award number NNG06E090A. L.K. thanks the
International Space Science Institute in Bern, Switzerland for hosting
an International Team on X-ray bursts.
NR 59
TC 3
Z9 3
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 47
DI 10.3847/0004-637X/819/1/47
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400047
ER
PT J
AU Kopparapu, RK
Wolf, ET
Haqq-Misra, J
Yang, J
Kasting, JF
Meadows, V
Terrien, R
Mahadevan, S
AF Kopparapu, Ravi Kumar
Wolf, Eric T.
Haqq-Misra, Jacob
Yang, Jun
Kasting, James F.
Meadows, Victoria
Terrien, Ryan
Mahadevan, Suvrath
TI THE INNER EDGE OF THE HABITABLE ZONE FOR SYNCHRONOUSLY ROTATING PLANETS
AROUND LOW-MASS STARS USING GENERAL CIRCULATION MODELS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE planets and satellites: atmospheres; planets and satellites: terrestrial
planets
ID MAIN-SEQUENCE STARS; SUPER-EARTHS; M DWARFS; ATMOSPHERIC CIRCULATION;
EVOLUTION; SIMULATIONS; PARAMETERS; DEPENDENCE; LIMIT; 667C
AB Terrestrial planets at the inner edge of the habitable zone (HZ) of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the HZ for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar cloud deck are sensitive to the precise rotation rate of the planet. Around mid-to-late M-dwarf stars with low metallicity, planetary rotation rates at the inner edge of the HZ become faster, and the inner edge of the HZ is farther away from the host stars than in previous GCM studies. For an Earth-sized planet, the dynamical regime of the substellar clouds begins to transition as the rotation rate approaches similar to 10 days. These faster rotation rates produce stronger zonal winds that encircle the planet and smear the substellar clouds around it, lowering the planetary albedo, and causing the onset of the water-vapor greenhouse climatic instability to occur at up to similar to 25% lower incident stellar fluxes than found in previous GCM studies. For mid-to-late M-dwarf stars with high metallicity and for mid-K to early-M stars, we agree with previous studies.
C1 [Kopparapu, Ravi Kumar; Kasting, James F.] Penn State Univ, Dept Geosci, 443 Deike Bldg, University Pk, PA 16802 USA.
[Kopparapu, Ravi Kumar] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA.
[Kopparapu, Ravi Kumar; Haqq-Misra, Jacob; Kasting, James F.; Meadows, Victoria] NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA.
[Kopparapu, Ravi Kumar; Kasting, James F.; Terrien, Ryan; Mahadevan, Suvrath] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.
[Kopparapu, Ravi Kumar; Haqq-Misra, Jacob] Blue Marble Space Inst Sci, 1001 4th Ave,Suite 3201, Seattle, WA 98154 USA.
[Wolf, Eric T.] Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, Campus Box 392, Boulder, CO 80309 USA.
[Yang, Jun] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Meadows, Victoria] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA.
[Terrien, Ryan; Mahadevan, Suvrath] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
RP Kopparapu, RK (reprint author), Penn State Univ, Dept Geosci, 443 Deike Bldg, University Pk, PA 16802 USA.; Kopparapu, RK (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA.; Kopparapu, RK (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA.; Kopparapu, RK (reprint author), Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.; Kopparapu, RK (reprint author), Blue Marble Space Inst Sci, 1001 4th Ave,Suite 3201, Seattle, WA 98154 USA.
FU NASA Astrobiology Institute's Virtual Planetary Laboratory; NASA
[NNH05ZDA001C]; Virtual Planetary Laboratory [NNX11AC95G,S03]; NASA
Planetary Atmospheres Program [NNH13ZDA001N-PATM]; NSF [AST 1006676, AST
1126413, AST 1310885]; Center for Exoplanets and Habitable Worlds;
Pennsylvania State University; Eberly College of Science; Pennsylvania
Space Grant Consortium; Penn State Astrobiology Research Center;
National Aeronautics and Space Administration (NASA) Astrobiology
Institute; National Science Foundation [CNS-0821794]; University of
Colorado at Boulder
FX The authors would like to thank Daniel Koll and Dorian Abbot for kindly
providing the aquaplanet patch for CESM, and responding to our
inquiries, that enabled us to accomplish this work. The authors
appreciate constructive comments and suggestions from an anonymous
reviewer that improved the manuscript. The authors also thank Michael
Way and Tony Del Ginio from NASA GISS for providing detailed comments on
an earlier version of the manuscript. RK, JFK and VM gratefully
acknowledge funding from NASA Astrobiology Institute's Virtual Planetary
Laboratory lead team, supported by NASA under cooperative agreement
NNH05ZDA001C. JH-M acknowledges support from the Virtual Planetary
Laboratory under award NNX11AC95G,S03. ETW thanks NASA Planetary
Atmospheres Program award NNH13ZDA001N-PATM. SM and RT acknowledge
support from NSF grants AST 1006676, AST 1126413, and AST 1310885. This
work was partially supported by funding from the Center for Exoplanets
and Habitable Worlds. The Center for Exoplanets and Habitable Worlds is
supported by the Pennsylvania State University, the Eberly College of
Science, and the Pennsylvania Space Grant Consortium. This work was also
partially supported by the Penn State Astrobiology Research Center and
the National Aeronautics and Space Administration (NASA) Astrobiology
Institute. The authors acknowledge the Research Computing and
Cyberinfrastructure unit of Information Technology Services at The
Pennsylvania State University for providing advanced computing resources
and services that have contributed to the research results reported in
this paper. http://rcc.its.psu.edu. This work was also facilitated
through the use of advanced computational, storage, and networking
infrastructure provided by the Hyak supercomputer system, supported in
part by the University of Washington eScience Institute. This work also
utilized the Janus supercomputer, which is supported by the National
Science Foundation (award number CNS-0821794) and the University of
Colorado at Boulder.
NR 40
TC 11
Z9 11
U1 4
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 84
DI 10.3847/0004-637X/819/1/84
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400084
ER
PT J
AU Levan, AJ
Tanvir, NR
Brown, GC
Metzger, BD
Page, KL
Cenko, SB
O'Brien, PT
Lyman, JD
Wiersema, K
Stanway, ER
Fruchter, AS
Perley, DA
Bloom, JS
AF Levan, A. J.
Tanvir, N. R.
Brown, G. C.
Metzger, B. D.
Page, K. L.
Cenko, S. B.
O'Brien, P. T.
Lyman, J. D.
Wiersema, K.
Stanway, E. R.
Fruchter, A. S.
Perley, D. A.
Bloom, J. S.
TI LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS
OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: jets; supernovae: general
ID TIDAL DISRUPTION EVENT; MASSIVE BLACK-HOLE; CORE-COLLAPSE SUPERNOVAE;
LIGHT CURVES; SUPERLUMINOUS-SUPERNOVA; RELATIVISTIC JET; GALACTIC
NUCLEI; DWARF GALAXY; HOST GALAXY; BURSTS
AB We present late time multi-wavelength observations of Swift J1644+ 57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to > 4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t(-70). Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L-X similar to 5 x 10(42) erg s(-1) and are marginally inconsistent with a continuing decay of t(-5/3), similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M-BH = 3 x 10(6) M-circle dot, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of M-R similar to -22 to -23. The luminosity of the bump is significantly higher than seen in other, nonrelativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.
C1 [Levan, A. J.; Brown, G. C.; Lyman, J. D.; Stanway, E. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Tanvir, N. R.; Page, K. L.; O'Brien, P. T.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Metzger, B. D.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA.
[Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA.
[Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Fruchter, A. S.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Perley, D. A.] CALTECH, Dept Astron, MC 249-17,1200 East Calif Blvd, Pasadena, CA 91125 USA.
[Perley, D. A.] Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark.
[Bloom, J. S.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
RP Levan, AJ (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
EM A.J.Levan@warwick.ac.uk
OI Stanway, Elizabeth/0000-0002-8770-809X
FU STFC; NASA [NAS 5-26555]; HST programs [GO 12447, 12378, 12764]; ESA
Member States; NASA; UK Space Agency; [12900486]; [13708437];
[15700509]
FX We thank the referee for constructive comments on the paper. A. J. L.,
N. R. T., K. W., and P. T. O. thank STFC for support. K. L. P. thanks
the UK Space Agency. We thank Matt Mountain, Harvey Tannenbaum, and
Norbert Schartel and the teams from STScI, CXC, and ESAC for the
approval and rapid scheduling of DDT observations with HST, Chandra and
XMM-Newton respectively.; Based on observations made with the NASA/ESA
Hubble Space Telescope, obtained [from the Data Archive] at the Space
Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract NAS
5-26555. These observations are associated with HST programs GO 12447,
12378 and 12764.; The scientific results reported in this article are
based to a significant degree on observations made by the Chandra X-ray
Observatory. The observations reported are from program numbers
12900486, 13708437, and 15700509.; Based on observations obtained with
XMM-Newton, an ESA science mission with instruments and contributions
directly funded by ESA Member States and NASA.; This work made use of
data supplied by the UK Swift Science Data Centre at the University of
Leicester, funded by the UK Space Agency.
NR 97
TC 4
Z9 4
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 51
DI 10.3847/0004-637X/819/1/51
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400051
ER
PT J
AU Olshevsky, V
Deca, J
Divin, A
Peng, IB
Markidis, S
Innocenti, ME
Cazzola, E
Lapenta, G
AF Olshevsky, Vyacheslav
Deca, Jan
Divin, Andrey
Peng, Ivy Bo
Markidis, Stefano
Innocenti, Maria Elena
Cazzola, Emanuele
Lapenta, Giovanni
TI MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE magnetic reconnection; planets and satellites: magnetic fields; plasmas
ID HYBRID DRIFT INSTABILITY; LUNAR-PROSPECTOR; KINEMATIC RECONNECTION;
FIELD TOPOLOGY; CURRENT SHEET; SOLAR-WIND; SURFACE; MOON; MAGNETOPAUSE;
MAGNETOSPHERE
AB We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind,. and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross. sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.
C1 [Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni] Katholieke Univ Leuven, Ctr Math Plasma Astrophys CmPA, Leuven, Belgium.
[Deca, Jan] Univ Colorado, LASP, Boulder, CO 80309 USA.
[Divin, Andrey] St Petersburg State Univ, St Petersburg 199034, Russia.
[Peng, Ivy Bo; Markidis, Stefano] KTH Royal Inst Technol, High Performance Comp & Visualizat HPCViz, Stockholm, Sweden.
[Olshevsky, Vyacheslav] NAS, Main Astron Observ, Kiev, Ukraine.
[Deca, Jan] NASA, Inst Modeling Plasma Atmospheres & Cosm Dust, SSERVI, Boulder, CO USA.
RP Olshevsky, V (reprint author), Katholieke Univ Leuven, Ctr Math Plasma Astrophys CmPA, Leuven, Belgium.; Olshevsky, V (reprint author), NAS, Main Astron Observ, Kiev, Ukraine.
EM sya@mao.kiev.ua
RI Divin, Andrey/E-4501-2015;
OI Divin, Andrey/0000-0002-5579-3066; Lapenta, Giovanni/0000-0002-3123-4024
FU Onderzoekfonds KU Leuven (Research Fund KU Leuven); Air Force Office of
Scientific Research; Air Force Materiel Command; USAF
[FA9550-14-1-0375]; NASA's Solar System Exploration Research Virtual
Institutess (SSERVI) Institute for Modeling Plasmas, Atmospheres, and
Cosmic Dust (IMPACT); FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen)
[12O5215N]; NASA MMS Grant [NNX08AO84G]; European Commission
[ICT-610476]; PRACE [2011050747, 2013091928]
FX The work is supported by the Onderzoekfonds KU Leuven (Research Fund KU
Leuven). V.O. is supported by the Air Force Office of Scientific
Research, Air Force Materiel Command, USAF under Award No.
FA9550-14-1-0375. J.D. is supported by NASA's Solar System Exploration
Research Virtual Institutess (SSERVI) Institute for Modeling Plasmas,
Atmospheres, and Cosmic Dust (IMPACT). M.E.I. is supported by the FWO
(Fonds Wetenschappelijk Onderzoek Vlaanderen) postdoctoral fellowship
(12O5215N). G.L. acknowledges support from the NASA MMS Grant No.
NNX08AO84G. This research has received funding from the European
Commission's FP7 Program with the grant agreement DEEP-ER (project
ICT-610476, http://www.deep-er.eu/) The simulations were conducted on
the computational resources provided by the PRACE Tier-0 projects
2011050747 (Curie) and 2013091928 (SuperMUC). A great part of this work
was done during the Nordita program on Magnetic Reconnection in Plasmas
2015. Authors are thankful to Mikhail Sitnov for useful discussions.
NR 83
TC 2
Z9 2
U1 2
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 52
DI 10.3847/0004-637X/819/1/52
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400052
ER
PT J
AU Opitz, D
Tinney, CG
Faherty, JK
Sweet, S
Gelino, CR
Kirkpatrick, JD
AF Opitz, Daniela
Tinney, C. G.
Faherty, Jacqueline K.
Sweet, Sarah
Gelino, Christopher R.
Kirkpatrick, J. Davy
TI SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE
OPTICS SYSTEM (GeMS)
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: general; brown dwarfs; methods: observational; stars:
low-mass; techniques: image processing
ID HUBBLE-SPACE-TELESCOPE; INFRARED-SURVEY-EXPLORER; LOW-MASS BINARY; BROWN
DWARF; L/T TRANSITION; T/Y TRANSITION; T-DWARFS; WIDE; DISCOVERY; WISE
AB The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L-and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L-and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than similar to 0.5-1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10(42) erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.
C1 [Opitz, Daniela; Tinney, C. G.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia.
[Opitz, Daniela; Tinney, C. G.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia.
[Faherty, Jacqueline K.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Faherty, Jacqueline K.] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10034 USA.
[Sweet, Sarah] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Gelino, Christopher R.; Kirkpatrick, J. Davy] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA.
[Gelino, Christopher R.] CALTECH, NASA, Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA.
RP Opitz, D (reprint author), Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia.; Opitz, D (reprint author), Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia.
EM daniela.opitz@student.unsw.edu.au
OI Opitz, Daniela/0000-0003-4960-1248; Tinney,
Christopher/0000-0002-7595-0970
FU ARC Australian Professorial Fellowship [DP0774000]; ARC [DP130102695];
CONICYT Becas Chile [72130434]; Guaranteed Time program [GS-2014B-C-1];
[GS-2014A-Q-4]; [GS-2013B-Q-26]
FX We gratefully acknowledge the support of ARC Australian Professorial
Fellowship grant DP0774000 and ARC Discovery Outstanding Researcher
Award DP130102695. D.O. is also supported by CONICYT Becas Chile
72130434. This paper is based on observations obtained at the Gemini
Observatory, which is operated by the Association of Universities for
Research in Astronomy, Inc., under a cooperative agreement with the NSF
on behalf of the Gemini partnership: the National Science Foundation
(United States), the National Research Council (Canada), CONICYT
(Chile), the Australian Research Council (Australia), Ministerio da
Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia,
Tecnologia e Innovacion Productiva (Argentina). Time has been awarded
through Australia and USA via programs GS-2014A-Q-4, GS-2013B-Q-26 and
also via Guaranteed Time program GS-2014B-C-1. We would like to
acknowledge the high standard of support offered by the Gemini queue
observing team who acquired most of the data used in this paper. The
authors would like to especially acknowledge the extraordinary quality
of the instrument delivered for use by our team (and others) by the
GSAOI Principal Investigator Professor Peter McGregor and his team at
the Australian National University. We thank Dr. R. Sharp for his
assistance in acquiring data for this program during GSAOI Guaranteed
Time. We also thank Dr. D. Wright for helpful comments and suggestions
on this manuscript.
NR 50
TC 2
Z9 2
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 17
DI 10.3847/0004-637X/819/1/17
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400017
ER
PT J
AU Ricci, C
Bauer, FE
Treister, E
Romero-Canizales, C
Arevalo, P
Iwasawa, K
Privon, GC
Sanders, DB
Schawinski, K
Stern, D
Imanishi, M
AF Ricci, C.
Bauer, F. E.
Treister, E.
Romero-Canizales, C.
Arevalo, P.
Iwasawa, K.
Privon, G. C.
Sanders, D. B.
Schawinski, K.
Stern, D.
Imanishi, M.
TI NuSTAR UNVEILS A HEAVILY OBSCURED LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS
IN THE LUMINOUS INFRARED GALAXY NGC 6286
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: interactions; infrared: galaxies; X-rays:
galaxies; X-rays: general
ID MU-M SPECTROSCOPY; EMISSION-LINE SPECTRA; SKY LIRG SURVEY; SIMILAR-TO 2;
HARD X-RAY; SPITZER-SPACE-TELESCOPE; PHOTON IMAGING CAMERA;
COMPTON-THICK AGN; DEEP-FIELD-SOUTH; XMM-NEWTON
AB We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (N-H similar or equal to(0.95-1.32) x 10(24) cm(-2)) with a column density consistent with being Compton-thick (CT, log (N-H/cm(-2)) >= 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV similar to 3 -20 x 10(41) erg s(-1)) and contributes less than or similar to 1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.
C1 [Ricci, C.; Bauer, F. E.; Romero-Canizales, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.
[Ricci, C.; Bauer, F. E.; Treister, E.] EMBIGGEN Anillo, Santiago, Chile.
[Bauer, F. E.; Romero-Canizales, C.] Millennium Inst Astrophys, Santiago, Chile.
[Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA.
[Treister, E.; Privon, G. C.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile.
[Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile.
[Iwasawa, K.] Univ Barcelona, IEEC UB, ICREA, Marti & Franques 1, E-08028 Barcelona, Spain.
[Iwasawa, K.] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, Marti & Franques 1, E-08028 Barcelona, Spain.
[Privon, G. C.; Sanders, D. B.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA.
[Schawinski, K.] Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
[Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Imanishi, M.] Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA.
[Imanishi, M.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Imanishi, M.] Grad Univ Adv Studies SOKENDAI, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan.
RP Ricci, C (reprint author), Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.; Ricci, C (reprint author), EMBIGGEN Anillo, Santiago, Chile.
EM cricci@astro.puc.cl
FU CONICYT-Chile ["EMBIGGEN" Anillo ACT1101]; FONDECYT [1141218, 315238,
3150361]; Basal-CATA [PFB-06/2007]; Ministry of Economy, Development,
and Tourism's Millennium Science Initiative [IC120009]; Swiss National
Science Foundation [PP00P2_138979/1]; JSPS KAKENHI [23540273, 15K05030]
FX We thank the anonymous referee for comments that helped us to improve
the quality of our manuscript, and the NuSTAR Cycle 1 TAC for the NuSTAR
data on which this paper is based. C. R. acknowledges C. S. Chang, H.
Inami, P. Gandhi and S. Satyapal for their useful discussions. We thank
Adam Block (Mount Lemmon SkyCenter/University of Arizona) for allowing
us to publish his optical image of NGC 6286/NGC 6285. This research has
made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly
developed by the ASI Science Data Center (ASDC, Italy) and the
California Institute of Technology (Caltech, USA), and of the NASA/IPAC
Infrared Science Archive and NASA/IPAC Extragalactic Database (NED),
which are operated by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics
and Space Administration. We acknowledge financial support from the
CONICYT-Chile grants "EMBIGGEN" Anillo ACT1101 (C. R., F. E. B., E. T.),
FONDECYT 1141218 (C. R., F. E. B.), FONDECYT 315238 (C. R. C.), FONDECYT
3150361 (G. P.), Basal-CATA PFB-06/2007 (C. R., F. E. B., E. T.), and
the Ministry of Economy, Development, and Tourism's Millennium Science
Initiative through grant IC120009, awarded to The Millennium Institute
of Astrophysics, MAS (F. E. B., C. R. C.). K. S. gratefully acknowledges
support from Swiss National Science Foundation Grant PP00P2_138979/1. M.
I. was supported by JSPS KAKENHI Grant Number 23540273 and 15K05030.
NR 145
TC 3
Z9 3
U1 2
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 4
DI 10.3847/0004-637X/819/1/4
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400004
ER
PT J
AU Rutkowski, MJ
Scarlata, C
Haardt, F
Siana, B
Henry, A
Rafelski, M
Hayes, M
Salvato, M
Pahl, AJ
Mehta, V
Beck, M
Malkan, M
Teplitz, HI
AF Rutkowski, Michael J.
Scarlata, Claudia
Haardt, Francesco
Siana, Brian
Henry, Alaina
Rafelski, Marc
Hayes, Matthew
Salvato, Mara
Pahl, Anthony J.
Mehta, Vihang
Beck, Melanie
Malkan, Matthew
Teplitz, Harry I.
TI LYMAN CONTINUUM ESCAPE FRACTION OF STAR-FORMING DWARF GALAXIES AT z
similar to 1
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: dwarf; galaxies: starburst; galaxies: star formation;
ultraviolet: galaxies
ID HUBBLE-SPACE-TELESCOPE; SPECTROSCOPIC PARALLEL SURVEY; DUST
INFRARED-EMISSION; HIGH-REDSHIFT; LY-ALPHA; LUMINOSITY FUNCTION;
STARBURST GALAXIES; INTERGALACTIC MEDIUM; COSMIC REIONIZATION;
RADIATIVE-TRANSFER
AB To date, no direct detection of Lyman continuum emission has been measured for intermediate-redshift (z similar to 1) star-forming galaxies. We combine Hubble Space Telescope grism spectroscopy with GALEX UV and ground-based optical imaging to extend the search for escaping Lyman continuum to a large (similar to 600) sample of z similar to 1 low-mass (log((M) over bar) similar or equal to 9.3M(circle dot)), moderately star-forming ((Psi) over bar less than or similar to 10M(circle dot) yr(-1)) galaxies selected initially on H alpha emission. The characteristic escape fraction of LyC from star-forming galaxies (SFGs) that populate this parameter space remains weakly constrained by previous surveys, but these faint (sub-L-star) SFGs are assumed to play a significant role in the reionization of neutral hydrogen in the intergalactic medium (IGM) at high redshift z > 6. We do not make an unambiguous detection of escaping LyC radiation from this z similar to 1 sample, individual non-detections to constrain the absolute Lyman continuum escape fraction, f(esc) < 2.1% (3 sigma). We measure an upper limit of f(esc) < 9.6% from a sample of SFGs selected on high H alpha equivalent width (EW > 200 angstrom), which are thought to be close analogs of high redshift sources of reionization. For reference, we also present an emissivity-weighted escape fraction that is useful for measuring the general contribution SFGs to the ionizing UV background. In the discussion, we consider the implications of these intermediate redshift constraints for the reionization of hydrogen in the IGM at high (z > 6) redshift. If we assume our z similar to 1 SFGs, for which we measure this emissivity-weighted f(esc), are analogs to the high redshift sources of reionization, we find it is difficult to reconcile reionization by faint (MUV less than or similar to -13) SFGs with a low escape fraction (f(esc) < 3%), with constraints from independent high redshift observations. If f(esc) evolves with redshift, reionization by SFGs may be consistent with observations from Planck.
C1 [Rutkowski, Michael J.; Scarlata, Claudia; Pahl, Anthony J.; Mehta, Vihang; Beck, Melanie] Univ Minnesota, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA.
[Haardt, Francesco] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy.
[Siana, Brian] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[Henry, Alaina; Rafelski, Marc] Goddard Space Flight Ctr, Astrophys Sci Div, Code 665, Greenbelt, MD 20771 USA.
[Hayes, Matthew] Stockholm Univ, Alballova Univ Ctr, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Salvato, Mara] Max Planck Inst Plasma Phys, D-85748 Garching, Germany.
[Salvato, Mara] Excellence Cluster, D-85748 Garching, Germany.
[Malkan, Matthew] Univ Calif Los Angeles, Astron Div, Los Angeles, CA 90095 USA.
[Teplitz, Harry I.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA.
[Henry, Alaina; Rafelski, Marc] NASA, Postdoctoral Program, Washington, DC USA.
RP Rutkowski, MJ (reprint author), Univ Minnesota, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA.
EM rutkowsk@astro.umn.edu
FU Swedish Research Council (Vetenskapsradet); Swedish National Space Board
(SNSB); Knut and Alice Wallenberg Foundation; NASA [NNX13AI55G,
NAS5-26555]; HST-AR Program [12821.01]; NASA/ESA HST [GO 12177, 12328];
NASA Office of Space Science [NNX13AC07G]
FX We thank the referee, B. Robertson, for helpful comments that improved
the discussion and conclusions presented in this work. We also thank S.
Finkelstein for helpful discussion. M.H. acknowledges the support of the
Swedish Research Council (Vetenskapsradet), the Swedish National Space
Board (SNSB), and the Knut and Alice Wallenberg Foundation. This
research was supported by NASA NNX13AI55G and HST-AR Program #12821.01,
using observations taken by the 3D-HST Treasury program (GO 12177 &
12328) with the NASA/ESA HST, which is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract
NAS5-26555. GALEX and HST data presented in this paper were obtained
from the Mikulski Archive for Space Telescopes (MAST) maintained by the
STScI. Support for MAST for non HST data is provided by the NASA Office
of Space Science via grant NNX13AC07G and by other grants and contracts.
This research has made use of NASA's Astrophysics Data System
Bibliographic Services.
NR 106
TC 8
Z9 8
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 81
DI 10.3847/0004-637X/819/1/81
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400081
ER
PT J
AU Schnittman, JD
Krolik, JH
Noble, SC
AF Schnittman, Jeremy D.
Krolik, Julian H.
Noble, Scott C.
TI DISK EMISSION FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF SPINNING BLACK
HOLES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; black hole physics; X-rays: binaries
ID CONTINUUM-FITTING METHOD; X-RAY-POLARIZATION; ACCRETION DISK; CYGNUS
X-1; RADIATION; BINARIES; EXTREME; SPECTRA; MODELS; FLOWS
AB We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R similar to 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.
C1 [Schnittman, Jeremy D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Krolik, Julian H.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Noble, Scott C.] Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA.
RP Schnittman, JD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Krolik, JH (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.; Noble, SC (reprint author), Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA.
EM jeremy.schnittman@nasa.gov; jhk@pha.jhu.edu; scott-noble@utulsa.edu
FU NASA [NNX14AB43G, ATP12-0139]; NSF [AST-0908336]
FX We would like to thank T. Kallman for helpful discussions. This work was
partially supported by NASA grants NNX14AB43G and ATP12-0139 and NSF
grant AST-0908336.
NR 42
TC 2
Z9 2
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 48
DI 10.3847/0004-637X/819/1/48
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400048
ER
PT J
AU Stock, DJ
Choi, WDY
Moya, LGV
Otaguro, JN
Sorkhou, S
Allamandola, LJ
Tielens, AGGM
Peeters, E
AF Stock, D. J.
Choi, W. D. -Y.
Moya, L. G. V.
Otaguro, J. N.
Sorkhou, S.
Allamandola, L. J.
Tielens, A. G. G. M.
Peeters, E.
TI POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG
AND SIMPLE DIAGNOSTICS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; H II regions; infrared: ISM; ISM: molecules;
photon-dominated region (PDR)
ID PHOTON-DOMINATED REGION; MU-M EMISSION; ULTRACOMPACT HII-REGIONS; BLIND
SIGNAL SEPARATION; H-II REGIONS; PHOTODISSOCIATION REGIONS;
SPECTROSCOPIC DATABASE; INTERSTELLAR-MEDIUM; RECOMBINATION LINE;
INFRARED OBSERVATIONS
AB We present a sample of resolved galactic H. II regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5-15 mu m. For each object we have spectral maps at a spatial resolution of similar to 4 '' in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 mu m, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 mu m. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H. II regions and the second the reflection nebulae (RNe). Three sources-the reflection nebula NGC. 7023, the Horsehead nebula PDR (an interface between the H. II region IC 434 and the Orion B molecular cloud), and M17-resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC. 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC. 7023 observations.
C1 [Stock, D. J.; Choi, W. D. -Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada.
[Allamandola, L. J.] NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA.
[Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands.
[Peeters, E.] SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA.
RP Stock, DJ (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada.
EM dstock4@uwo.ca
FU NSERC; ERC from European Research Council [246976]; Dutch Science
Agency, NWO as part of the Dutch Astrochemistry Network; Dutch Science
Agency, NWO; NASA
FX D.J.S. and E.P. acknowledge support from an NSERC Discovery Grant and an
NSERC Discovery Accelerator Grant. W.D.Y.C. and S.S. acknowledge support
from NSERC Undergraduate Student Research Awards.; L.J.A. is grateful
for an appointment at NASA Ames Research Center through the Bay Area
Environmental Research Institute (NNX14AG80A). Studies of interstellar
chemistry at Leiden Observatory are supported through advanced-ERC grant
246976 from the European Research Council, through a grant by the Dutch
Science Agency, NWO, as part of the Dutch Astrochemistry Network, and
through the Spinoza premie from the Dutch Science Agency, NWO.; This
work is based on observations made with the Spitzer Space Telescope,
which is operated by the Jet Propulsion Laboratory, California Institute
of Technology under a contract with NASA.
NR 73
TC 5
Z9 5
U1 3
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 65
DI 10.3847/0004-637X/819/1/65
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400065
ER
PT J
AU Wakeford, HR
Sing, DK
Evans, T
Deming, D
Mandell, A
AF Wakeford, H. R.
Sing, D. K.
Evans, T.
Deming, D.
Mandell, A.
TI MARGINALIZING INSTRUMENT SYSTEMATICS IN HST WFC3 TRANSIT LIGHT CURVES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE methods: data analysis; planets and satellites: atmospheres; techniques:
spectroscopic
ID HUBBLE-SPACE-TELESCOPE; TRANSMISSION SPECTRAL SURVEY; FIELD CAMERA 3;
SIZED EXOPLANET; WATER-VAPOR; ATMOSPHERE; SPECTROSCOPY; WASP-12B;
ABSORPTION; INFERENCE
AB Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 mu m probe primarily the H2O absorption band at 1.4 mu m, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as R-p/R-*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta(lambda)(lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.
C1 [Wakeford, H. R.; Mandell, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Wakeford, H. R.; Sing, D. K.; Evans, T.] Univ Exeter, Exeter EX4 4QL, Devon, England.
[Deming, D.] Univ Maryland, College Pk, MD 20742 USA.
RP Wakeford, HR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Wakeford, HR (reprint author), Univ Exeter, Exeter EX4 4QL, Devon, England.
EM hannah.wakeford@nasa.gov
OI Sing, David /0000-0001-6050-7645; Wakeford, Hannah/0000-0003-4328-3867
FU European Research Council under European Unions/ERC [336792]
FX The authors would like to thank N. Gibson for useful comments and
discussions on this paper and the analysis technique presented. H.R.
Wakeford acknowledges support by an appointment to the NASA Postdoctoral
Program at Goddard Space Flight Center, administered by Oak Ridge
Associated Universities through a contract with NASA. H.R. Wakeford, D.
K. Sing, and T. Evans acknowledge funding from the European Research
Council under the European Unions Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 336792. This work is based on
observations made with the NASA/ESA Hubble Space Telescope. This
research has made use of NASAs Astrophysics Data System and components
of the IDL astronomy library.
NR 34
TC 4
Z9 4
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 10
DI 10.3847/0004-637X/819/1/10
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400010
ER
PT J
AU Weiss, LM
Rogers, LA
Isaacson, HT
Agol, E
Marcy, GW
Rowe, JF
Kipping, D
Fulton, BJ
Lissauer, JJ
Howard, AW
Fabrycky, D
AF Weiss, Lauren M.
Rogers, Leslie A.
Isaacson, Howard T.
Agol, Eric
Marcy, Geoffrey W.
Rowe, Jason F.
Kipping, David
Fulton, Benjamin J.
Lissauer, Jack J.
Howard, Andrew W.
Fabrycky, Daniel
TI REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE planetary systems; planets and satellites: composition; planets and
satellites: detection; planets and satellites: fundamental parameters;
planets and satellites: terrestrial planets; techniques: radial
velocities
ID SUPER-EARTH; SIZED EXOPLANET; CANDIDATES; ROCKY; SYSTEM; III.;
FRAMEWORK; EXOMOONS; COROT-7; ORBITS
AB Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014 to 2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (R-p = 1.47 R-circle plus) has mass 3.72 +/- 0.42 M-circle plus and density 6.46 +/- 0.73 g cm(-3). Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17 +/- 0.11 of the planet mass. For Kepler-10c (R-p = 2.35 R-circle plus) we measure mass 13.98 +/- 1.79 M-circle plus and density 5.94 +/- 0.76 g cm(-3), significantly lower than the mass computed in Dumusque et al. (17.2 +/- 1.9 M-circle plus). Our mass measurement of Kepler-10c rules out a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium (0.2% of the mass, 16% of the radius) or super-ionic water (28% of the mass, 29% of the radius). However, we note that analysis of only HIRES data yields a higher mass for planet b and a lower mass for planet c than does analysis of the HARPS-N data alone, with the mass estimates for Kepler-10 c being formally inconsistent at the 3 sigma level. Moreover, dividing the data for each instrument into two parts also leads to somewhat inconsistent measurements for the mass of planet c derived from each observatory. Together, this suggests that time-correlated noise is present and that the uncertainties in the masses of the planets (especially planet c) likely exceed our formal estimates. Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72. X. The TTVs and RVs are consistent with KOI-72. X having an orbital period of 24, 71, or 101 days, and a mass from 1 to 7 M-circle plus.
C1 [Weiss, Lauren M.; Isaacson, Howard T.; Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
[Rogers, Leslie A.] CALTECH, Div Geol & Planetary Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
[Agol, Eric] NASA, Astrobiol Inst, Virtual Planetary Lab, Pasadena, CA 91125 USA.
[Agol, Eric] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA.
[Rowe, Jason F.; Lissauer, Jack J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Kipping, David] Harvard Univ, Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Fulton, Benjamin J.; Howard, Andrew W.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA.
[Fabrycky, Daniel] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA.
RP Weiss, LM (reprint author), Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
EM lweiss@berkeley.edu
OI Fabrycky, Daniel/0000-0003-3750-0183; /0000-0002-0802-9145
FU National Science Foundation via Dynamics of Exoplanets workshop at the
Kavli Institute for Theoretical Physics in Santa Barbara, CA [NSF
PHY11-25915]
FX LMW gratefully acknowledges support from Kenneth and Gloria Levy. This
research was supported in part by the National Science Foundation under
Grant No. NSF PHY11-25915 via the Dynamics of Exoplanets workshop at the
Kavli Institute for Theoretical Physics in Santa Barbara, CA. We thank
Tsevi Mazeh for informative discussions regarding time correlated noise.
The authors wish to extend special thanks to those of Hawaiian ancestry
on whose sacred mountain of Maunakea we are privileged to be guests.
Without their generous hospitality, the Keck observations presented
herein would not have been possible.
NR 51
TC 4
Z9 4
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 83
DI 10.3847/0004-637X/819/1/83
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400083
ER
PT J
AU Wicks, RT
Alexander, RL
Stevens, M
Wilson, LB
Moya, PS
Vinas, A
Jian, LK
Roberts, DA
O'Modhrain, S
Gilbert, JA
Zurbuchen, TH
AF Wicks, R. T.
Alexander, R. L.
Stevens, M.
Wilson, L. B., III
Moya, P. S.
Vinas, A.
Jian, L. K.
Roberts, D. A.
O'Modhrain, S.
Gilbert, J. A.
Zurbuchen, T. H.
TI A PROTON-CYCLOTRON WAVE STORM GENERATED BY UNSTABLE PROTON DISTRIBUTION
FUNCTIONS IN THE SOLAR WIND
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE instabilities; plasmas; solar wind; waves
ID MAGNETIC-FIELD; 1 AU; TEMPERATURE ANISOTROPY; SPECTRAL-ANALYSIS;
TURBULENCE; PLASMA; POWER; INSTABILITIES; STEREO; SUN
AB We use audification of 0.092 s cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes >0.1 nT near. the ion gyrofrequency (similar to 0.1 Hz) with duration longer than 1 hr during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.
C1 [Wicks, R. T.] UCL, Mullard Space Sci Lab, Gower St, London WC1E 6BT, England.
[Alexander, R. L.; O'Modhrain, S.; Gilbert, J. A.; Zurbuchen, T. H.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Stevens, M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Wilson, L. B., III; Jian, L. K.; Roberts, D. A.] NASA, Goddard Space Flight Ctr, Code 672, Greenbelt, MD 20771 USA.
[Moya, P. S.; Vinas, A.] NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA.
[Moya, P. S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[Jian, L. K.] Univ Maryland, Dept Astron, GPHI, College Pk, MD 20742 USA.
RP Wicks, RT (reprint author), UCL, Mullard Space Sci Lab, Gower St, London WC1E 6BT, England.
EM r.wicks@ucl.ac.uk
RI Wicks, Robert/A-1180-2009; Jian, Lan/B-4053-2010; Moya,
Pablo/C-3163-2011; Wilson III, Lynn/D-4425-2012; Gilbert,
Jason/I-9020-2012
OI Wicks, Robert/0000-0002-0622-5302; Jian, Lan/0000-0002-6849-5527; Moya,
Pablo/0000-0002-9161-0888; Wilson III, Lynn/0000-0002-4313-1970;
Gilbert, Jason/0000-0002-3182-7014
FU NASA Postdoctoral Program at the Goddard Space Flight Center;
Conicyt-Becas Chile Postdoctoral Fellowship; Heliophysics Guest
Investigator grant; NASA [NNX13AI65G]
FX R.T.W. was supported by the NASA Postdoctoral Program at the Goddard
Space Flight Center, administered by Oak Ridge Associated Universities.
R.T.W. and D.A.R. acknowledge a Heliophysics Guest Investigator grant to
NASA GSFC for support P.S.M. thanks the Conicyt-Becas Chile Postdoctoral
Fellowship for financial support. L.K.J. was supported by NASA grant
NNX13AI65G. Wind data were obtained from the SPDF Web site
http://spdf.gsfc.nasa.gov. The authors thank L. Matteini for useful
discussions.
NR 42
TC 2
Z9 2
U1 2
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 6
DI 10.3847/0004-637X/819/1/6
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400006
ER
PT J
AU Xu, D
Li, D
Yue, NN
Goldsmith, PF
AF Xu, Duo
Li, Di
Yue, Nannan
Goldsmith, Paul F.
TI EVOLUTION OF OH AND CO-DARK MOLECULAR GAS FRACTION ACROSS A MOLECULAR
CLOUD BOUNDARY IN TAURUS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE evolution; ISM: clouds; ISM: individual objects (Taurus); ISM: molecules
ID INTERSTELLAR DUST CLOUDS; DIFFUSE CLOUDS; MAGNETOHYDRODYNAMIC SHOCKS;
LINE EMISSION; EXCITATION; COLLISIONS; HYDROGEN; MASERS; RATIO; CH
AB We present observations of (CO)-C-12 J = 1-0, (CO)-C-13 J = 1-0, H I, and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. Based on a photodissociation region (PDR) model that reproduces CO and [C I] emission from the same region, we modeled the three OH transitions, 1612, 1665, and 1667 MHz successfully through escape probability non-local thermal equilibrium radiative transfer model calculations. We could not reproduce the 1720 MHz observations, due to unmodeled pumping mechanisms, of which the most likely candidate is a C-shock. The abundance of OH and CO-dark molecular gas is well-constrained. The OH abundance [OH]/[H-2] decreases from 8 x 10(-7) to 1 x 10(-7) as A, increases from 0.4 to 2.7 mag following an empirical law:
[OH]/[H-2] = 1.5 x 10(-7) + 9.0 x 10(-7) x exp(-A(v) /0.81),
which is higher than PDR model predictions for low-extinction regions by a factor of 80. The overabundance of OH at extinctions at or below 1 mag is likely the result of a C-shock. The dark gas fraction (DGF, defined as the fraction of molecular gas without detectable CO emission) decreases from 80% to 20% following a Gaussian profile:
DGF = 0.90 x exp (-(A(v) - 0.79/0.71)(2)).
This trend of the DGF is consistent with our understanding that the DGF drops at low visual extinction due to photodissociation of H-2 and drops at high visual extinction due to CO formation. The DGF peaks in the extinction range where H-2 has already formed and achieved self-shielding but (CO)-C-12 has not. Two narrow velocity components with a peak-to-peak spacing of similar to 1 km s(-1) were clearly identified. Their relative intensity and variation in space and frequency suggest colliding streams or gas flows at the boundary region.
C1 [Xu, Duo; Li, Di; Yue, Nannan] Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China.
[Xu, Duo; Yue, Nannan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China.
[Li, Di] Chinese Acad Sci, Key Lab Radio Astron, Beijing 100012, Peoples R China.
[Goldsmith, Paul F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Xu, D; Li, D (reprint author), Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China.; Xu, D (reprint author), Univ Chinese Acad Sci, Beijing 100049, Peoples R China.; Li, D (reprint author), Chinese Acad Sci, Key Lab Radio Astron, Beijing 100012, Peoples R China.
EM xuduo117@nao.cas.cn; dili@nao.cas.cn
RI Goldsmith, Paul/H-3159-2016;
OI Xu, Duo/0000-0001-6216-8931
FU China Ministry of Science and Technology under State Key Development
Program for Basic Research (973 program) [2012CB821802]; National
Natural Science Foundation of China [11373038, 11373045]; Chinese
Academy of Sciences [XDB09010302]; Guizhou Scientific Collaboration
Program [20130421]
FX This work is partly supported by the China Ministry of Science and
Technology under State Key Development Program for Basic Research (973
program) No. 2012CB821802, the National Natural Science Foundation of
China No. 11373038, No. 11373045, and the Strategic Priority Research
Program "The Emergence of Cosmological Structures" of the Chinese
Academy of Sciences, Grant No. XDB09010302. This work was carried out in
part at the Jet Propulsion Laboratory, which is operated for NASA by the
California Institute of Technology. Di Li acknowledges support from the
Guizhou Scientific Collaboration Program (#20130421). We are grateful to
Carl Heiles and Z.Y. Ren for their kind and valuable advice and support.
We would like to thank the anonymous referee for the careful inspection
of the manuscript and constructive comments particularly the important
suggestions to add the comparison with PDR model for similar
G0 and nH values to improve the quality of this
study.
NR 38
TC 0
Z9 0
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 22
DI 10.3847/0004-637X/819/1/22
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400022
ER
PT J
AU Yusef-Zadeh, F
Wardle, M
Schodel, R
Roberts, DA
Cotton, W
Bushouse, H
Arendt, R
Royster, M
AF Yusef-Zadeh, F.
Wardle, M.
Schoedel, R.
Roberts, D. A.
Cotton, W.
Bushouse, H.
Arendt, R.
Royster, M.
TI SGR A* AND ITS ENVIRONMENT: LOW-MASS STAR FORMATION, THE ORIGIN OF X-RAY
GAS AND COLLIMATED OUTFLOW
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; black hole physics; Galaxy: center
ID SUPERMASSIVE BLACK-HOLE; GALACTIC-CENTER REGION; SUPERNOVA-REMNANT
SAGITTARIUS; STELLAR WINDS; PROPER MOTIONS; FLARING ACTIVITY;
HIGH-RESOLUTION; CENTRAL PARSEC; IONIZED-GAS; YOUNG STARS
AB We present high-resolution multiwavelength radio continuum images of the region within 150 '' of Sgr. A*, revealing a number of new extended features and stellar sources in this region. First, we detect a continuous 2 '' east-west ridge of radio emission, linking Sgr. A* and a cluster of stars associated with IRS 13 N and IRS 13E. The ridge suggests that an outflow of east-west blob-like structures is emerging from Sgr. A*. In particular, we find arc-like radio structures within the ridge with morphologies suggestive of photoevaporative protoplanetary disks. We use infrared K-s and L' fluxes to show that the emission has similar characteristics to those of a protoplanetary disk irradiated by the intense radiation field at the Galactic center. This suggests that star formation has taken place within the S-cluster 2 ''. from Sgr. A*. We suggest that the diffuse X-ray emission associated with Sgr A* is due to an expanding hot wind produced by the mass loss from B-type main sequence stars, and/or the disks of photoevaporation of low mass young stellar objects (YSOs) at a rate of similar to 10(-6) M-circle dot yr(-1). The proposed model naturally reduces the inferred accretion rate and is an alternative to the inflow-outflow style models to explain the underluminous nature of Sgr A*. Second, on a scale of 5. from Sgr A*, we detect new cometary radio and infrared sources at a position angle PA similar to 50 degrees which is similar to that of two other cometary sources X3 and X7, all of which face Sgr A*. In addition, we detect a striking tower of radio emission at a PA similar to 50 degrees-60 degrees along the major axis of the Sgr A East supernova remnant shell on a scale of 150 '' from Sgr A*. We suggest that the cometary sources and the tower feature are tracing interaction sites of a mildly relativistic jet from Sgr A* with the atmosphere of stars and the nonthermal Sgr A East shell at a PA similar to 50 degrees-60 degrees with (M) over dot similar to 1 x 10(-7) M-circle dot yr(-1), and opening angle 10 degrees. Lastly, we suggest that the east-west ridge of radio emission traces an outflow that is potentially associated with past flaring activity from Sgr A*. The position angle of the outflow driven by flaring activity is close to -90 degrees.
C1 [Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.] Northwestern Univ, Dept Phys & Astron, CIERA, Evanston, IL 60208 USA.
[Wardle, M.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia.
[Schoedel, R.] CSIC, Inst Astrofis Andalucia, Glorieta Astron, E-18008 Granada, Spain.
[Cotton, W.] Natl Radio Astron Observ, Edgemont Rd, Charlottesville, VA 22903 USA.
[Bushouse, H.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Arendt, R.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.
RP Yusef-Zadeh, F (reprint author), Northwestern Univ, Dept Phys & Astron, CIERA, Evanston, IL 60208 USA.
FU NSF [AST-0807400, AST-1517246]; European Research Council under
Europeans Unions/ERC [614922]
FX This work is partially supported by grants AST-0807400 and AST-1517246
from the NSF. The research leading to these results has also received
funding from the European Research Council under the Europeans Unions
Seventh Framework Programme (FP/2007-2013)/ERC grant agreement No.
614922.
NR 84
TC 1
Z9 1
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 60
DI 10.3847/0004-637X/819/1/60
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400060
ER
PT J
AU ZuHone, JA
Markevitch, M
Zhuravleva, I
AF ZuHone, J. A.
Markevitch, M.
Zhuravleva, I.
TI MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H
(vol 817, 110, 2016)
SO ASTROPHYSICAL JOURNAL
LA English
DT Correction
C1 [ZuHone, J. A.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[ZuHone, J. A.; Markevitch, M.] NASA, Astrophys Sci Div, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.
[Zhuravleva, I.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA.
[Zhuravleva, I.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
RP ZuHone, JA (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; ZuHone, JA (reprint author), NASA, Astrophys Sci Div, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.
NR 1
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2016
VL 819
IS 1
AR 88
DI 10.3847/0004-637X/819/1/88
PG 1
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZY
UT WOS:000372303400088
ER
PT J
AU Witrisal, K
Meissner, P
Leitinger, E
Shen, Y
Gustafson, C
Tufvesson, F
Haneda, K
Dardari, D
Molisch, AF
Conti, A
Win, MZ
AF Witrisal, Klaus
Meissner, Paul
Leitinger, Erik
Shen, Yuan
Gustafson, Carl
Tufvesson, Fredrik
Haneda, Katsuyuki
Dardari, Davide
Molisch, Andreas F.
Conti, Andrea
Win, Moe Z.
TI High-Accuracy Localization for Assisted Living 5G systems will turn
multipath channels from foe to friend
SO IEEE SIGNAL PROCESSING MAGAZINE
LA English
DT Article
ID WIDE-BAND LOCALIZATION; COOPERATIVE LOCALIZATION; MULTIPATH
EXPLOITATION; FUNDAMENTAL LIMITS; PART I; PROPAGATION; ENVIRONMENTS;
NETWORKS; CHANNELS; SIGNALS
C1 [Witrisal, Klaus] Graz Univ Technol, A-8010 Graz, Austria.
[Meissner, Paul] Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria.
[Shen, Yuan] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China.
[Shen, Yuan] IEEE ComSoc Radio Commun Comm, Beijing, Peoples R China.
[Gustafson, Carl; Tufvesson, Fredrik] Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden.
[Tufvesson, Fredrik] Lund Univ, Dept Wireless Propagat Grp, S-22100 Lund, Sweden.
[Haneda, Katsuyuki] Aalto Univ, Sch Elect Engn, Espoo, Finland.
[Dardari, Davide] Univ Bologna, I-40126 Bologna, Italy.
[Dardari, Davide; Win, Moe Z.] MIT, Cambridge, MA 02139 USA.
[Molisch, Andreas F.] Univ So Calif, Elect Engn, Los Angeles, CA 90089 USA.
[Molisch, Andreas F.] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA.
[Molisch, Andreas F.; Win, Moe Z.] Amer Assoc Advancement Sci, Washington, DC USA.
[Molisch, Andreas F.; Win, Moe Z.] Inst Engn & Technol, Beijing, Peoples R China.
[Molisch, Andreas F.] Natl Acad Inventors, Cambridge, MA USA.
[Conti, Andrea] Univ Ferrara, I-44100 Ferrara, Italy.
[Win, Moe Z.] Wireless Commun & Network Sci Lab, Boston, MA USA.
[Win, Moe Z.] AT&T Res Labs, Middletown, NJ USA.
[Win, Moe Z.] Jet Prop Lab, Pasadena, CA USA.
[Win, Moe Z.] IEEE, Piscataway, NJ USA.
RP Witrisal, K (reprint author), Graz Univ Technol, A-8010 Graz, Austria.; Meissner, P (reprint author), Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria.; Shen, Y (reprint author), Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China.; Shen, Y (reprint author), IEEE ComSoc Radio Commun Comm, Beijing, Peoples R China.; Gustafson, C (reprint author), Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden.; Tufvesson, F (reprint author), Lund Univ, Radio Syst, S-22100 Lund, Sweden.; Tufvesson, F (reprint author), Lund Univ, Dept Wireless Propagat Grp, S-22100 Lund, Sweden.; Haneda, K (reprint author), Aalto Univ, Sch Elect Engn, Espoo, Finland.; Dardari, D (reprint author), Univ Bologna, I-40126 Bologna, Italy.; Dardari, D; Win, MZ (reprint author), MIT, Cambridge, MA 02139 USA.; Molisch, AF (reprint author), Univ So Calif, Elect Engn, Los Angeles, CA 90089 USA.; Molisch, AF (reprint author), Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA.; Molisch, AF; Win, MZ (reprint author), Amer Assoc Advancement Sci, Washington, DC USA.; Molisch, AF; Win, MZ (reprint author), Inst Engn & Technol, Beijing, Peoples R China.; Conti, A (reprint author), Univ Ferrara, I-44100 Ferrara, Italy.; Win, MZ (reprint author), Wireless Commun & Network Sci Lab, Boston, MA USA.; Win, MZ (reprint author), AT&T Res Labs, Middletown, NJ USA.; Win, MZ (reprint author), Jet Prop Lab, Pasadena, CA USA.; Win, MZ (reprint author), IEEE, Piscataway, NJ USA.
EM witrisal@tugraz.at; paul.meissner@ieee.org; erik.leitinger@tugraz.at;
shenyuan_ee@mail.tsinghua.edu.cn; carl.gustafson@eit.lth.se;
fredrik.tufvesson@eit.lth.se; katsuyuki.haneda@aalto.fi;
davide.dardari@unibo.it; andreas.molisch@ieee.org; a.conti@ieee.org;
moewin@mit.edu
RI Shen, Yuan/C-1823-2013
OI Shen, Yuan/0000-0001-8153-1193
FU Austrian Research Promotion Agency (FFG) within project REFlex [845630];
Austrian Research Promotion Agency (FFG) within Austrian COMET
Competence Center FTW; Italian MIUR project GRETA [2010WHY5PR]; Office
of Naval Research [N00014-11-1-0397]; NSF; KACST
FX The work of K. Witrisal, P. Meissner, and E. Leitinger was partly
supported by the Austrian Research Promotion Agency (FFG) within the
project REFlex (project number 845630) and within the Austrian COMET
Competence Center FTW. The work of D. Dardari and A. Conti was supported
in part by the Italian MIUR project GRETA under grant 2010WHY5PR. The
work of Y. Shen and M.Z. Win was supported in part by the Office of
Naval Research under grant N00014-11-1-0397. The work of A.F. Molisch
was supported by ONR, NSF, and KACST.
NR 47
TC 5
Z9 5
U1 3
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1053-5888
EI 1558-0792
J9 IEEE SIGNAL PROC MAG
JI IEEE Signal Process. Mag.
PD MAR
PY 2016
VL 33
IS 2
BP 59
EP 70
DI 10.1109/MSP.2015.2504328
PG 12
WC Engineering, Electrical & Electronic
SC Engineering
GA DG9JG
UT WOS:000372398000009
ER
PT J
AU Smith, GL
Daniels, J
Priestley, K
Thomas, S
Lee, RB
AF Smith, G. Louis
Daniels, Janet
Priestley, Kory
Thomas, Susan
Lee, Robert B., III
TI Measurement of the Point Response Functions of CERES Scanning
Radiometers
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Aqua; calibration; Clouds and the Earth's Radiation Energy System
(CERES); Earth radiation budget; National Polar-orbiting Partnersship
(NPP); point response function (PRF); point spread function; radiometry;
Terra
ID RADIANT ENERGY SYSTEM; RADIATION BUDGET; CLOUDS; VALIDATION;
PERFORMANCE; SPACECRAFT; SENSORS; TRMM
AB Some applications of data from the Clouds and the Earth's Radiant Energy System (CERES) scanning radiometer require the use of the point response function (PRF), which describes the influence of radiance from each point on the measurement. A radiance source for the measurement of the PRF of the CERES instruments was built and installed into the Radiometric Calibration Facility, in which the CERES instruments have been calibrated. The design and application of the PRF source and the computation of the PRF from these measurements are described. In order to compare the PRF based on measurements with the theoretical PRF, it is necessary to account for the finite size of the beam from the source. The use of the PRF source and the analysis of the data are demonstrated by application to the FM-5 instrument. The measured results compare well with theory for the CERES instruments and are presented for FM-5.
C1 [Smith, G. Louis; Daniels, Janet; Thomas, Susan] Sci Applicat Int Corp, Hampton, VA 23666 USA.
[Priestley, Kory] NASA, Langley Res Ctr, Hampton, VA USA.
[Lee, Robert B., III] Hampton Univ, Hampton, VA 23668 USA.
RP Smith, GL (reprint author), Sci Applicat Int Corp, Hampton, VA 23666 USA.
EM g.l.smith@larc.nasa.gov
FU Science Directorate of Langley Research Center; Science Mission
Directorate of the Earth Science Division of NASA
FX The authors would like to thank M. Frink and T. Evert of TRW Space
Technology Division, presently Northrop Grumman Space Division, for the
design of the point response function source; the Science Directorate of
Langley Research Center and the Science Mission Directorate of the Earth
Science Division of NASA, for the support of the CERES Project; and the
people of Northrop Grumman Space Technology, under the leadership of S.
Carman and T. Evert, for the excellent work performed to achieve the
performance that has been demonstrated by the CERES instruments.
NR 27
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
EI 1558-0644
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD MAR
PY 2016
VL 54
IS 3
BP 1260
EP 1266
DI 10.1109/TGRS.2015.2476759
PG 7
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA DG8YL
UT WOS:000372369400002
ER
PT J
AU Aksoy, M
Johnson, JT
Misra, S
Colliander, A
O'Dwyer, I
AF Aksoy, Mustafa
Johnson, Joel T.
Misra, Sidharth
Colliander, Andreas
O'Dwyer, Ian
TI L-Band Radio-Frequency Interference Observations During the SMAP
Validation Experiment 2012
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Microwave radiometry; radio-frequency interference (RFI)
ID RADIO-FREQUENCY INTERFERENCE; MICROWAVE RADIOMETRY; MITIGATION; RFI;
DETECTOR; KURTOSIS; TIME
AB Radio-frequency interference (RFI) observations for L-band microwave radiometry during the SMAP Validation Experiment 2012 (SMAPVEX12) airborne campaign are reported in this paper. The soil moisture measurement campaign was conducted in summer 2012 near Winnipeg, MB, Canada, with additional RFI flights over Denver, CO, USA. The Passive Active L-Band sensor (PALS) radiometer of the Jet Propulsion Laboratory was used with a full-bandwidth direct sampling digital backend to measure and store predetection data that is fully resolved in time and frequency. Overviews of SMAPVEX12 and the receiver and digital backend used to collect data are presented, along with the data processing techniques used for RFI detection. Properties of the observed RFI are examined and compared with the results of previous studies. Finally, implications of the results are explained considering current missions such as NASA's Soil Moisture Active Passive Mission.
C1 [Aksoy, Mustafa; Johnson, Joel T.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.
[Aksoy, Mustafa; Johnson, Joel T.] Ohio State Univ, Electrosci Lab, Columbus, OH 43210 USA.
[Misra, Sidharth; Colliander, Andreas; O'Dwyer, Ian] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Aksoy, M (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.; Aksoy, M (reprint author), Ohio State Univ, Electrosci Lab, Columbus, OH 43210 USA.
EM aksoy.2@osu.edu
NR 17
TC 0
Z9 0
U1 4
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
EI 1558-0644
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD MAR
PY 2016
VL 54
IS 3
BP 1323
EP 1335
DI 10.1109/TGRS.2015.2477686
PG 13
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA DG8YL
UT WOS:000372369400007
ER
PT J
AU Lei, N
Chen, XX
Xiong, XX
AF Lei, Ning
Chen, Xuexia
Xiong, Xiaoxiong
TI Determination of the SNPP VIIRS SDSM Screen Relative Transmittance From
Both Yaw Maneuver and Regular On-Orbit Data
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Bidirectional reflectance distribution function (BRDF) degradation;
radiometric calibration; reflective solar bands (RSBs); screen
transmittance; Suomi National Polar-Orbiting Partnership (SNPP) Visible
Infrared Imaging Radiometer Suite (VIIRS); solar diffuser (SD); yaw
maneuver
ID IMAGING RADIOMETER SUITE; REFLECTIVE SOLAR BANDS; CALIBRATION;
PERFORMANCE
AB The Visible Infrared Imaging Radiometer Suite aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function (BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor. The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance. To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDF degradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time.
C1 [Lei, Ning; Chen, Xuexia] Sigma Space Corp, Lanham, MD 20706 USA.
[Lei, Ning; Chen, Xuexia] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
[Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA.
RP Lei, N (reprint author), Sigma Space Corp, Lanham, MD 20706 USA.; Lei, N (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
EM ning.lei@ssaihq.com
NR 12
TC 5
Z9 5
U1 2
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
EI 1558-0644
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD MAR
PY 2016
VL 54
IS 3
BP 1390
EP 1398
DI 10.1109/TGRS.2015.2480039
PG 9
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA DG8YL
UT WOS:000372369400012
ER
PT J
AU Murphy, JM
Le Moigne, J
Harding, DJ
AF Murphy, James M.
Le Moigne, Jacqueline
Harding, David J.
TI Automatic Image Registration of Multimodal Remotely Sensed Data With
Global Shearlet Features
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Harmonic analysis; image registration; lidar; multimodal image analysis;
shearlets; wavelets
ID MUTUAL INFORMATION; WAVELET TRANSFORM; SENSING IMAGERY; ALGORITHM;
REPRESENTATIONS; OPTIMIZATION; COMPRESSION; EIGENMAPS; SIFT
AB Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard but are sometimes not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered and then performs least-squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, although approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared with wavelet features alone.
C1 [Murphy, James M.] Duke Univ, Dept Math & Informat Initiat Duke, Durham, NC 27708 USA.
[Le Moigne, Jacqueline; Harding, David J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Murphy, JM (reprint author), Duke Univ, Dept Math & Informat Initiat Duke, Durham, NC 27708 USA.
EM jmmurphy11@gmail.com
RI Harding, David/F-5913-2012
NR 48
TC 2
Z9 2
U1 6
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
EI 1558-0644
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD MAR
PY 2016
VL 54
IS 3
BP 1685
EP 1704
DI 10.1109/TGRS.2015.2487457
PG 20
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA DG8YL
UT WOS:000372369400035
ER
PT J
AU Varonen, M
Reeves, R
Kangaslahti, P
Samoska, L
Kooi, JW
Cleary, K
Gawande, RS
Akgiray, A
Fung, A
Gaier, T
Weinreb, S
Readhead, ACS
Lawrence, C
Sarkozy, S
Lai, R
AF Varonen, Mikko
Reeves, Rodrigo
Kangaslahti, Pekka
Samoska, Lorene
Kooi, Jacob W.
Cleary, Kieran
Gawande, Rohit S.
Akgiray, Ahmed
Fung, Andy
Gaier, Todd
Weinreb, Sander
Readhead, Anthony C. S.
Lawrence, Charles
Sarkozy, Stephen
Lai, Richard
TI An MMIC Low-Noise Amplifier Design Technique
SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
LA English
DT Article
DE Cryogenic; InP HEMT; low-noise amplifiers (LNAs); monolithic microwave
integrated circuit (MMIC)
ID BAND; TEMPERATURE; POWER; GHZ; THZ
AB In this paper we discuss the design of low-noise amplifiers (LNAs) for both cryogenic and room-temperature operation in general and take the stability and linearity of the amplifiers into special consideration. Oscillations that can occur within a multi-finger transistor are studied and verified with simulations and measurements. To overcome the stability problem related to the multi-finger transistor design approach a parallel two-finger unit transistor monolithic microwave integrated circuit LNA design technique, which enables the design of wideband and high-linearity LNAs with very stable, predictable, and repeatable operation, is proposed. The feasibility of the proposed design technique is proved by demonstrating a three-stage LNA packaged in a WR10 waveguide housing and fabricated using a 35-nm InP HEMT technology that achieves more than a 20-dB gain from 75 to 116 GHz and 26-33-K noise temperature from 85 to 116 GHz when cryogenically cooled to 27 K.
C1 [Varonen, Mikko; Kangaslahti, Pekka; Samoska, Lorene; Kooi, Jacob W.; Gawande, Rohit S.; Fung, Andy; Gaier, Todd; Lawrence, Charles] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Varonen, Mikko] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland.
[Varonen, Mikko] LNAFIN Inc, Helsinki 00550, Finland.
[Reeves, Rodrigo; Cleary, Kieran; Readhead, Anthony C. S.] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
[Reeves, Rodrigo] Univ Concepcion, CePIA, Dept Astron, 160-C, Casilla, Chile.
[Akgiray, Ahmed; Weinreb, Sander] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA.
[Akgiray, Ahmed] Ozyegin Univ, Dept Elect Engn, TR-34794 Istanbul, Turkey.
[Sarkozy, Stephen; Lai, Richard] Northrop Grumman Corp, Redondo Beach, CA 90278 USA.
RP Varonen, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Varonen, M (reprint author), Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland.; Varonen, M (reprint author), LNAFIN Inc, Helsinki 00550, Finland.
EM mikko.varonen@aalto.fi
FU Jet Propulsion Laboratory, California Institute of Technology; Oak Ridge
Associated Universities under NASA Postdoctoral Program (NPP); Academy
of Finland; Alfred Kordel Foundation; National Aeronautics and Space
Administration
FX This work was supported in part by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. The work of M. Varonen was
supported by Oak Ridge Associated Universities under the NASA
Postdoctoral Program (NPP), by the Academy of Finland, and by the Alfred
Kordel Foundation.
NR 30
TC 1
Z9 1
U1 5
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9480
EI 1557-9670
J9 IEEE T MICROW THEORY
JI IEEE Trans. Microw. Theory Tech.
PD MAR
PY 2016
VL 64
IS 3
BP 826
EP 835
DI 10.1109/TMTT.2016.2521650
PG 10
WC Engineering, Electrical & Electronic
SC Engineering
GA DH0QL
UT WOS:000372488600016
ER
PT J
AU Coltin, B
McMichael, S
Smith, T
Fong, T
AF Coltin, Brian
McMichael, Scott
Smith, Trey
Fong, Terrence
TI Automatic boosted flood mapping from satellite data
SO INTERNATIONAL JOURNAL OF REMOTE SENSING
LA English
DT Article
ID MODIS; RESOLUTION; DERIVATION; SURFACE; CLOUD; MASK
AB Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-theart algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.
C1 [Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence] NASA Ames, Intelligent Robot Grp, Moffett Field, CA USA.
RP Coltin, B (reprint author), NASA Ames, Intelligent Robot Grp, Moffett Field, CA USA.
EM brian.j.coltin@nasa.gov
NR 34
TC 1
Z9 1
U1 2
U2 13
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0143-1161
EI 1366-5901
J9 INT J REMOTE SENS
JI Int. J. Remote Sens.
PD MAR
PY 2016
VL 37
IS 5
BP 993
EP 1015
DI 10.1080/01431161.2016.1145366
PG 23
WC Remote Sensing; Imaging Science & Photographic Technology
SC Remote Sensing; Imaging Science & Photographic Technology
GA DH4ZY
UT WOS:000372795700001
ER
PT J
AU Goldin, D
Lukashin, C
AF Goldin, D.
Lukashin, C.
TI Empirical Polarization Distribution Models for CLARREO-Imager
Intercalibration
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
DE Spectral analysis/models/distribution; Physical Meteorology and
Climatology; Error analysis; Mathematical and statistical techniques;
Observational techniques and algorithms; Instrumentation/sensors;
Radiances; Satellite observations; Remote sensing
ID INTER-CALIBRATION; INSTRUMENT; SCATTERING; OCEAN; LIGHT
AB Polarization effects bias the performance of various existing passive spaceborne instruments, such as MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS), as well as geostationary imagers. It is essential to evaluate and correct for these effects in order to achieve the required accuracy of the total reflectance at the top of the atmosphere.
In addition to performing highly accurate decadal climate change observations, one of the objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission recommended by the National Research Council for launch by NASA is to provide the on-orbit intercalibration with the imagers over a range of parameters, including polarization. Whenever the on-orbit coincident measurements are not possible, CLARREO will provide the polarization distributions constructed using the adding-doubling radiative transfer model (ADRTM), which will cover the entire reflected solar spectrum. These ADRTM results need to be validated using real data. To this end the empirical polarization distribution models (PDMs) based on the measurements taken by the Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) mission were developed. Examples of such PDMs for the degree of polarization and the angle of linear polarization for the cloudless ocean scenes are shown here. These PDMs are compared across the three available PARASOL polarization bands, and the effect of aerosols on them is examined. The PDM-derived dependence of the reflectance uncertainty on the degree of polarization for imagers, such as MODIS or VIIRS, after their intercalibration with the CLARREO instrument is evaluated. The influence of the aerosols on the reflectance uncertainty is examined. Finally, the PDMs for the angle of linear polarization is cross-checked against the single-scattering approximation.
C1 [Goldin, D.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Goldin, D.; Lukashin, C.] NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA.
RP Goldin, D (reprint author), NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA.
EM daniel.goldin@nasa.gov
RI Richards, Amber/K-8203-2015
FU NASA CLARREO project
FX We gratefully acknowledge Francois-Marie Breon for the helpful comments
on the PARASOL data and Wenying Su for the discussion of the
aerosol-related measurements. We would also like to thank the PARASOL
data distribution centers at CNES and ICARE, France, for providing the
data and guidance on its use. This study was funded by the NASA CLARREO
project.
NR 18
TC 0
Z9 0
U1 5
U2 8
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD MAR
PY 2016
VL 33
IS 3
BP 439
EP 451
DI 10.1175/JTECH-D-15-0165.1
PG 13
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA DH4VZ
UT WOS:000372785000003
ER
PT J
AU Doelling, DR
Sun, M
Nguyen, LT
Nordeen, ML
Haney, CO
Keyes, DF
Mlynczak, PE
AF Doelling, David R.
Sun, Moguo
Le Trang Nguyen
Nordeen, Michele L.
Haney, Conor O.
Keyes, Dennis F.
Mlynczak, Pamela E.
TI Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic
(SYN1deg) Product
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
DE Climate records; Remote sensing; Satellite observations; Observational
techniques and algorithms; Instrumentation/sensors; Sampling
ID ANGULAR-DISTRIBUTION MODELS; ENERGY SYSTEM INSTRUMENT; TEMPORAL
INTERPOLATION; INFRARED CHANNELS; INTER-CALIBRATION; DIURNAL-VARIATION;
METEOSAT DATA; PART I; RADIATION; SATELLITE
AB The Clouds and the Earth's Radiant Energy System (CERES) project has provided the climate community 15 years of globally observed top-of-the-atmosphere fluxes critical for climate and cloud feedback studies. To accurately monitor the earth's radiation budget, the CERES instrument footprint fluxes must be spatially and temporally averaged properly. The CERES synoptic 1 degrees (SYN1deg) product incorporates derived fluxes from the geostationary satellites (GEOs) to account for the regional diurnal flux variations in between Terra and Aqua CERES measurements. The Edition 4 CERES reprocessing effort has provided the opportunity to reevaluate the derivation of longwave (LW) fluxes from GEO narrowband radiances by examining the improvements from incorporating 1-hourly versus 3-hourly GEO data, additional GEO infrared (IR) channels, and multichannel GEO cloud properties. The resultant GEO LW fluxes need to be consistent across the 16-satellite climate data record. To that end, the addition of the water vapor channel, available on all GEOs, was more effective than using a reanalysis dataset's column-weighted relative humidity combined with the window channel radiance. The benefit of the CERES LW angular directional model to derive fluxes was limited by the inconsistency of the GEO cloud retrievals. Greater success was found in the direct conversion of window and water vapor channel radiances into fluxes. Incorporating 1-hourly GEO fluxes had the greatest impact on improving the accuracy of high-temporal-resolution fluxes, and normalizing the GEO LW fluxes with CERES greatly reduced the monthly regional LW flux bias.
C1 [Doelling, David R.] NASA, Langley Res Ctr, 21 Langley Blvd,MS 420, Hampton, VA 23681 USA.
[Sun, Moguo; Le Trang Nguyen; Nordeen, Michele L.; Haney, Conor O.; Keyes, Dennis F.; Mlynczak, Pamela E.] Sci Syst & Applicat Inc, Hampton, VA USA.
RP Doelling, DR (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,MS 420, Hampton, VA 23681 USA.
EM david.r.doelling@nasa.gov
FU NASA CERES project
FX This work was funded by the NASA CERES project. The validation effort
could not have been accomplished without the help of the CERES TISA
team. CERES SYN1deg Edition 3 data were obtained from the NASA Langley
Research Center EOSDIS Distributed Active Archive Center. GERB Edition 1
Level 2 ARG data were obtained from the GERB Ground Segment Processing
System at Rutherford Appleton Laboratory. The GEOS-5 data used in this
study/project were provided by the Global Modeling and Assimilation
Office (GMAO) at NASA Goddard Space Flight Center.
NR 35
TC 1
Z9 1
U1 0
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD MAR
PY 2016
VL 33
IS 3
BP 503
EP 521
DI 10.1175/JTECH-D-15-0147.1
PG 19
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA DH4XS
UT WOS:000372789500001
ER
PT J
AU Suhir, E
Ghaffarian, R
Nicolics, J
AF Suhir, E.
Ghaffarian, R.
Nicolics, J.
TI Predicted stresses in ball-grid-array (BGA) and column-grid-array (CGA)
interconnections in a mirror-like package design
SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
LA English
DT Article
AB There is an obvious incentive for using bow-free (temperature change insensitive) assemblies in various areas of engineering, including electron device and electronic packaging fields. The induced stresses in a bow-free assembly could be, however, rather high, considerably higher than in an assembly, whose bow is not restricted. The simplest and trivial case of a bow-free assembly is a tri-component body, in which the inner component is sandwiched between two identical outer components ("mirror" structure), is addressed in our analysis, and a simple and physically meaningful analytical stress model is suggested. It is concluded that if acceptable stresses (below yield stress of the solder material) are achievable, a mirror (bow-free, temperature-change-insensitive) design should be preferred, because it results in an operationally stable performance of the system.
C1 [Suhir, E.] Portland State Univ, Portland, OR 97207 USA.
[Suhir, E.] Vienna Univ Technol, A-1060 Vienna, Austria.
[Suhir, E.] Ariel Univ, Ariel, Israel.
[Suhir, E.] ERS Co LLC, 727 Alvina Ct, Los Altos, CA 94024 USA.
[Ghaffarian, R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Nicolics, J.] Vienna Univ Technol, Inst Sensor & Actuator Syst, Dept Appl Elect Mat, Gusshausstr 27-29, A-1040 Vienna, Austria.
RP Suhir, E (reprint author), Portland State Univ, Portland, OR 97207 USA.; Suhir, E (reprint author), Vienna Univ Technol, A-1060 Vienna, Austria.; Suhir, E (reprint author), Ariel Univ, Ariel, Israel.; Suhir, E (reprint author), ERS Co LLC, 727 Alvina Ct, Los Altos, CA 94024 USA.
EM suhire@aol.com; reza.ghaffarian@jpl.nasa.gov;
johann.nicolics@tuwien.ac.at
NR 23
TC 1
Z9 1
U1 3
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0957-4522
EI 1573-482X
J9 J MATER SCI-MATER EL
JI J. Mater. Sci.-Mater. Electron.
PD MAR
PY 2016
VL 27
IS 3
BP 2430
EP 2441
DI 10.1007/s10854-015-4042-8
PG 12
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Engineering; Materials Science; Physics
GA DG6CW
UT WOS:000372170800036
ER
PT J
AU Kisiel, Z
Pszczolkowski, L
Bialkowska-Jaworska, E
Charnley, SB
AF Kisiel, Zbigniew
Pszczolkowski, Lech
Bialkowska-Jaworska, Ewa
Charnley, Steven B.
TI Millimetre wave rotational spectrum of glycolic acid
SO JOURNAL OF MOLECULAR SPECTROSCOPY
LA English
DT Article
DE Rotational spectrum; Millimetre wave spectrum; Excited vibrational
states; Interstate perturbations; Coriolis and Fermi resonances
ID HOT MOLECULAR CORES; VALENCE FORCE-FIELD; MICROWAVE-SPECTRUM;
PYRUVIC-ACID; CARBONACEOUS METEORITES; DIETHYL-ETHER; FORMIC-ACID;
LACTIC-ACID; INTERSTELLAR; SPECTROSCOPY
AB The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(-1) have been measured and their analysis is reported. The data sets for the ground state, v(21) = I, and v(21) = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v(21) mode is close to 100 cm(-1). The existence of the less stable AAT conformer in the near 50 degrees C sample used in our experiment was also confirmed and additional transitions have been measured. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland.
[Charnley, Steven B.] NASA, Goddard Space Flight Ctr, Astrochem Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
RP Kisiel, Z (reprint author), Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland.
EM kisiel@ifpan.edu.pl
RI Kisiel, Zbigniew/K-8798-2016; Bialkowska-Jaworska, Ewa/R-9282-2016;
Pszczolkowski, Lech/S-3018-2016
OI Kisiel, Zbigniew/0000-0002-2570-3154;
FU Polish National Science Centre [DEC/2011/02/A/ST2/00298]; NASA Goddard
Center for Astrobiology
FX The Warsaw authors acknowledge financial support from a grant from the
Polish National Science Centre, decision number DEC/2011/02/A/ST2/00298.
This work was partially supported by the NASA Goddard Center for
Astrobiology.
NR 51
TC 0
Z9 0
U1 2
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2852
EI 1096-083X
J9 J MOL SPECTROSC
JI J. Mol. Spectrosc.
PD MAR
PY 2016
VL 321
BP 13
EP 22
DI 10.1016/j.jms.2016.01.014
PG 10
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA DG9DW
UT WOS:000372384000003
ER
PT J
AU Nyquist, LE
Shih, CY
McCubbin, FM
Santos, AR
Shearer, CK
Peng, ZX
Burger, PV
Agee, CB
AF Nyquist, Laurence E.
Shih, Chi-Yu
McCubbin, Francis M.
Santos, Alison R.
Shearer, Charles K.
Peng, Zhan X.
Burger, Paul V.
Agee, Carl B.
TI Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the
bulk matrix domain of Martian breccia Northwest Africa 7034
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID TRACE-ELEMENTS; METEORITE; PETROGENESIS; EVOLUTION; REGOLITH; MAGMAS;
CRUST; GEOCHEMISTRY; MICROPROBE; ABUNDANCES
AB The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both Sm-147-Nd-143 and Sm-146-Nd-142 age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously similar to 4.44Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35-4.45Ga) for U-Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous-textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb-Sr system was detected, and no age significance could be gleaned from our Rb-Sr data. The disturbance to the Rb-Sr system may be due to a thermal event recorded by bulk-rock K-Ar ages of 1.56Ga and U-Pb ages of phosphates at about 1.35-1.5Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP-rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.
C1 [Nyquist, Laurence E.; McCubbin, Francis M.] NASA, Johnson Space Ctr, Mailcode 11,2101 NASA Pkwy, Houston, TX 77058 USA.
[Shih, Chi-Yu; Peng, Zhan X.] NASA, Jacobs, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA.
[McCubbin, Francis M.; Santos, Alison R.; Shearer, Charles K.; Burger, Paul V.; Agee, Carl B.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA.
[Santos, Alison R.; Shearer, Charles K.; Burger, Paul V.; Agee, Carl B.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA.
RP McCubbin, FM (reprint author), NASA, Johnson Space Ctr, Mailcode 11,2101 NASA Pkwy, Houston, TX 77058 USA.; McCubbin, FM (reprint author), Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA.
EM francis.m.mccubbin@nasa.gov
FU NASA LASER Program through RTOP [10-LASER10-0054]; Mars Fundamental
Research Program [NNX13AG44G]; NASA Cosmochemistry Program [NNX13AH85G,
NNX14AI23G]
FX This article was improved by reviews from Lars Borg and an anonymous
reviewer. We also thank Ian Franchi and Timothy Jull for the editorial
handling of the article. LEN and C-YS acknowledge support from the NASA
LASER Program during this study through RTOP 10-LASER10-0054 to LEN. FMM
acknowledges support from the Mars Fundamental Research Program during
this study through grant NNX13AG44G. CKS and PVB acknowledge support
from the NASA Cosmochemistry Program during this study through grant
NNX13AH85G to CKS. CBA and ARS acknowledge support from the NASA
Cosmochemistry Program during this study through grant NNX14AI23G to
CBA.
NR 46
TC 10
Z9 10
U1 7
U2 21
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD MAR
PY 2016
VL 51
IS 3
BP 483
EP 498
DI 10.1111/maps.12606
PG 16
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DH1PJ
UT WOS:000372556800003
ER
PT J
AU Searby, N
Ross, K
AF Searby, Nancy
Ross, Kenton
TI Increasing the Impacts of Capacity Building for Remote Sensing
Applications
SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING
LA English
DT Editorial Material
C1 [Searby, Nancy] NASA Headquarters, NASA Appl Sci Program, Capac Bldg Program, Washington, DC USA.
[Ross, Kenton] NASA, Langley Res Ctr, NASA DEVELOP Program, Hampton, VA 23665 USA.
RP Searby, N (reprint author), NASA Headquarters, NASA Appl Sci Program, Capac Bldg Program, Washington, DC USA.; Ross, K (reprint author), NASA, Langley Res Ctr, NASA DEVELOP Program, Hampton, VA 23665 USA.
EM nancy.d.searby@nasa.gov; kenton.w.ross@nasa.gov
NR 0
TC 1
Z9 1
U1 0
U2 3
PU AMER SOC PHOTOGRAMMETRY
PI BETHESDA
PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA
SN 0099-1112
J9 PHOTOGRAMM ENG REM S
JI Photogramm. Eng. Remote Sens.
PD MAR
PY 2016
VL 82
IS 3
BP 179
EP 180
PG 2
WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing;
Imaging Science & Photographic Technology
SC Physical Geography; Geology; Remote Sensing; Imaging Science &
Photographic Technology
GA DH1QH
UT WOS:000372559500002
ER
PT J
AU Schultz, KW
Sachs, MK
Heien, EM
Rundle, JB
Turcotte, DL
Donnellan, A
AF Schultz, Kasey W.
Sachs, Michael K.
Heien, Eric M.
Rundle, John B.
Turcotte, Don L.
Donnellan, Andrea
TI Simulating Gravity Changes in Topologically Realistic Driven Earthquake
Fault Systems: First Results
SO PURE AND APPLIED GEOPHYSICS
LA English
DT Article
DE Numerical simulation; co-seismic gravity changes; virtual California;
earthquakes; statistics
ID PHYSICAL MODEL; TENSILE FAULTS; HALF-SPACE; DEFORMATION; CALIFORNIA;
SHEAR
AB Currently, GPS and InSAR measurements are used to monitor deformation produced by slip on earthquake faults. It has been suggested that another method to accomplish many of the same objectives would be through satellite-based gravity measurements. The Gravity Recovery and Climate Experiment (GRACE) mission has shown that it is possible to make detailed gravity measurements from space for climate dynamics and other purposes. To build the groundwork for a more advanced satellite-based gravity survey, we must estimate the level of accuracy needed for precise estimation of fault slip in earthquakes. We turn to numerical simulations of earthquake fault systems and use these to estimate gravity changes. The current generation of Virtual California (VC) simulates faults of any orientation, dip, and rake. In this work, we discuss these computations and the implications they have for accuracies needed for a dedicated gravity monitoring mission. Preliminary results are in agreement with previous results calculated from an older and simpler version of VC. Computed gravity changes are in the range of tens of mu Gal over distances up to a few hundred kilometers, near the detection threshold for GRACE.
C1 [Schultz, Kasey W.; Sachs, Michael K.; Rundle, John B.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA.
[Heien, Eric M.; Rundle, John B.; Turcotte, Don L.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA.
[Heien, Eric M.] Univ Calif Davis, Computat Infrastruct Geodynam, Davis, CA 95616 USA.
[Donnellan, Andrea] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Schultz, KW (reprint author), Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA.
EM kwschultz@ucdavis.edu
FU National Aeronautics and Space Administration (NASA) Earth and Space
Science [NNX11AL92H]
FX This research was supported by National Aeronautics and Space
Administration (NASA) Earth and Space Science fellowship Number
NNX11AL92H.
NR 19
TC 3
Z9 3
U1 0
U2 2
PU SPRINGER BASEL AG
PI BASEL
PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND
SN 0033-4553
EI 1420-9136
J9 PURE APPL GEOPHYS
JI Pure Appl. Geophys.
PD MAR
PY 2016
VL 173
IS 3
SI SI
BP 827
EP 838
DI 10.1007/s00024-014-0926-4
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DG8AP
UT WOS:000372305100007
ER
PT J
AU Borucki, WJ
AF Borucki, William J.
TI KEPLER Mission: development and overview
SO REPORTS ON PROGRESS IN PHYSICS
LA English
DT Review
DE Kepler Mission; extrasolar planets; spacecraft instrumentation
ID TRANSIT TIMING VARIATIONS; SUN-LIKE STAR; MAIN-SEQUENCE STARS;
EXTRA-SOLAR PLANETS; LOW-DENSITY PLANETS; EARTH-SIZE PLANETS;
R-CIRCLE-PLUS; 1ST 16 MONTHS; HABITABLE-ZONE; TERRESTRIAL PLANETS
AB The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit.
Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV.
Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.
C1 [Borucki, William J.] NASA, Ames Res Ctr, Sci Directorate, Moffett Field, CA 94035 USA.
RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Sci Directorate, Moffett Field, CA 94035 USA.
EM William.J.Borucki@nasa.gov
FU NASA's Science Mission Directorate
FX Kepler was competitively selected PI-led as the tenth Discovery mission
with funding provided by NASA's Science Mission Directorate. Many
organizations contributed to the success of the Kepler Mission. They
include Ames Research Center, Ball Aerospace and Technologies
Corporation, California Institute of Technology, Carnegie Institute of
Washington, Harvard-Smithsonian Center for Astrophysics, Jet Propulsion
Laboratory, W M Keck Observatory, Laboratory for Atmospheric and Space
Physics, Lawrence Hall of Science, Lowell Observatory, NASA Goddard
Space Flight Center, NASA Headquarters, NASA Kennedy Spaceflight Center,
and NASA Marshall Space Flight Center, SETI Institute, Space Telescope
Science Institute, University of California Berkeley, University of
Texas Austin, and University of Washington Seattle. At Ames, the
dedicated people in Mission Operations, Science Office, and Science
Operation Center provided the calibrated data that allowed the worldwide
science community to make discoveries that enlightened our view of
exoplanets and exoplanet systems. The author wishes to acknowledge the
many contributions to this paper from team members; especially to Doug
Caldwell, William Chaplin, Edna DeVore, Alan Gould, Jon Jenkins, Sean
Seeder, Charlie Sobeck, and Joe Twicken. The comments on the manuscript
by Edna DeVore, Jack Lissauer, Mark Marley, Jason Rowe, and two
anonymous referees are greatly appreciated.
NR 193
TC 4
Z9 4
U1 10
U2 15
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0034-4885
EI 1361-6633
J9 REP PROG PHYS
JI Rep. Prog. Phys.
PD MAR
PY 2016
VL 79
IS 3
AR 036901
DI 10.1088/0034-4885/79/3/036901
PG 49
WC Physics, Multidisciplinary
SC Physics
GA DH2BF
UT WOS:000372588400003
PM 26863223
ER
PT J
AU Acar, E
Tobe, H
Karaca, HE
Noebe, RD
Chumlyakov, YI
AF Acar, E.
Tobe, H.
Karaca, H. E.
Noebe, R. D.
Chumlyakov, Y. I.
TI Microstructure and shape memory behavior of [111]-oriented NiTiHfPd
alloys
SO SMART MATERIALS AND STRUCTURES
LA English
DT Article
DE shape memory alloys; microstructure; elastic energy storage; NiTiHfPd;
superelasticity
ID MARTENSITIC-TRANSFORMATION; SINGLE-CRYSTALS; NI; PSEUDOELASTICITY;
PRECIPITATION; DEPENDENCE; STRENGTH; AL
AB The relationship between the microstructure and shape memory properties of [111]-oriented Ni45.3Ti29.7Hf20Pd5 (at%) single crystals was explored. In this precipitation-strengthened alloy, the size and volume fraction of precipitates and interparticle distances govern the martensite morphology and the ensuing shape memory responses. Aging of the solution-treated material, leading to a microstructure of fine, closely spaced precipitates, resulted in a material capable of a shape memory strain of 2.15% at 1000 MPa in compression. Larger precipitates formed after aging the as-grown single crystals (without a prior solution treatment) resulting in a shape memory strain of 2.5% at this same stress level in constant-stress thermal cycling experiments. Superelastic strains of 4% in compression without any residual strain were possible under various microstructural conditions and the stress hysteresis could be varied between nearly 500 and 1000 MPa depending on the microstructure.
C1 [Acar, E.] Erciyes Univ, Dept Aircraft Engn, TR-38039 Kayseri, Turkey.
[Tobe, H.; Karaca, H. E.] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA.
[Noebe, R. D.] NASA Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA.
[Chumlyakov, Y. I.] Tomsk State Univ, Siberian Phys Tech Inst, Tomsk 634050, Russia.
RP Karaca, HE (reprint author), Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA.
EM karacahaluk@uky.edu
RI Chumlyakov, Yuriy/R-6496-2016
FU NASA Transformative Aeronautics Concepts Program (TACP) under the
Transformational Tools & Technologies Project; NASA EPSCOR program
[NNX11AQ31A, KSEF-148-502-15-355, NSF CMMI-1538665]; RSF program
[14-29-00012]; Erciyes University
FX This work was supported in part by the NASA Transformative Aeronautics
Concepts Program (TACP) under the Transformational Tools & Technologies
Project, the NASA EPSCOR program under Grant NNX11AQ31A,
KSEF-148-502-15-355, NSF CMMI-1538665, RSF program under grant no.
14-29-00012 and Erciyes University.
NR 45
TC 0
Z9 0
U1 3
U2 15
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0964-1726
EI 1361-665X
J9 SMART MATER STRUCT
JI Smart Mater. Struct.
PD MAR
PY 2016
VL 25
IS 3
AR 035011
DI 10.1088/0964-1726/25/3/035011
PG 9
WC Instruments & Instrumentation; Materials Science, Multidisciplinary
SC Instruments & Instrumentation; Materials Science
GA DG8MP
UT WOS:000372338600012
ER
PT J
AU Scheidler, JJ
Asnani, VM
Dapino, MJ
AF Scheidler, Justin J.
Asnani, Vivake M.
Dapino, Marcelo J.
TI Dynamically tuned magnetostrictive spring with electrically controlled
stiffness
SO SMART MATERIALS AND STRUCTURES
LA English
DT Article
DE dynamic stiffness tuning; dynamic delta-E effect; Galfenol; Terfenol-D;
vibration control
ID VIBRATION CONTROL; TERFENOL-D; ABSORBER
AB This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod's diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring's stiffness is investigated by measuring the Terfenol-D rod's strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring's rise time is <1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic DE effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input.
C1 [Scheidler, Justin J.; Dapino, Marcelo J.] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA.
[Asnani, Vivake M.] NASA Glenn Res Ctr, Rotating & Dr Syst Branch, Mat & Struct Div, Cleveland, OH 44135 USA.
RP Scheidler, JJ; Dapino, MJ (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA.
EM scheidler.8@osu.edu; dapino.1@osu.edu
FU NASA Aeronautics Scholarship Program [NNX14AE24H]; NASA's Revolutionary
Vertical Lift Technology (RVLT) Project; member organizations of the
Smart Vehicle Concepts Center (www.SmartVehicleCenter.org) a National
Science Foundation Industry/University Cooperative Research Center
FX This work was supported by the NASA Aeronautics Scholarship Program
(grant # NNX14AE24H). Additional support was provided by NASA's
Revolutionary Vertical Lift Technology (RVLT) Project and the member
organizations of the Smart Vehicle Concepts Center
(www.SmartVehicleCenter.org) a National Science Foundation
Industry/University Cooperative Research Center.
NR 37
TC 3
Z9 3
U1 5
U2 10
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0964-1726
EI 1361-665X
J9 SMART MATER STRUCT
JI Smart Mater. Struct.
PD MAR
PY 2016
VL 25
IS 3
AR 035007
DI 10.1088/0964-1726/25/3/035007
PG 10
WC Instruments & Instrumentation; Materials Science, Multidisciplinary
SC Instruments & Instrumentation; Materials Science
GA DG8MP
UT WOS:000372338600008
ER
PT J
AU Doll, P
Douville, H
Guntner, A
Muller Schmied, H
Wada, Y
AF Doell, Petra
Douville, Herve
Guentner, Andreas
Mueller Schmied, Hannes
Wada, Yoshihide
TI Modelling Freshwater Resources at the Global Scale: Challenges and
Prospects
SO SURVEYS IN GEOPHYSICS
LA English
DT Review
DE Global hydrological model; Climate data; Water abstraction; Model
uncertainty; Calibration; Remote sensing data
ID CLIMATE-CHANGE IMPACT; HYDROLOGICAL MODEL; LAND-SURFACE; SOIL-MOISTURE;
PARAMETER-ESTIMATION; DATA ASSIMILATION; RIVER RUNOFF; GRACE DATA;
GROUNDWATER; CYCLE
AB Quantification of spatially and temporally resolved water flows and water storage variations for all land areas of the globe is required to assess water resources, water scarcity and flood hazards, and to understand the Earth system. This quantification is done with the help of global hydrological models (GHMs). What are the challenges and prospects in the development and application of GHMs? Seven important challenges are presented. (1) Data scarcity makes quantification of human water use difficult even though significant progress has been achieved in the last decade. (2) Uncertainty of meteorological input data strongly affects model outputs. (3) The reaction of vegetation to changing climate and CO2 concentrations is uncertain and not taken into account in most GHMs that serve to estimate climate change impacts. (4) Reasons for discrepant responses of GHMs to changing climate have yet to be identified. (5) More accurate estimates of monthly time series of water availability and use are needed to provide good indicators of water scarcity. (6) Integration of gradient-based groundwater modelling into GHMs is necessary for a better simulation of groundwater-surface water interactions and capillary rise. (7) Detection and attribution of human interference with freshwater systems by using GHMs are constrained by data of insufficient quality but also GHM uncertainty itself. Regarding prospects for progress, we propose to decrease the uncertainty of GHM output by making better use of in situ and remotely sensed observations of output variables such as river discharge or total water storage variations by multi-criteria validation, calibration or data assimilation. Finally, we present an initiative that works towards the vision of hyperresolution global hydrological modelling where GHM outputs would be provided at a 1-km resolution with reasonable accuracy.
C1 [Doell, Petra; Mueller Schmied, Hannes] Goethe Univ Frankfurt, Inst Phys Geog, D-60629 Frankfurt, Germany.
[Douville, Herve] Meteo France, Ctr Natl Rech Meteorol, 42 Av Coriolis, F-31057 Toulouse, France.
[Guentner, Andreas] German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany.
[Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA.
[Wada, Yoshihide] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
[Wada, Yoshihide] Univ Utrecht, Fac Geosci, Dept Phys Geog, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands.
RP Doll, P (reprint author), Goethe Univ Frankfurt, Inst Phys Geog, D-60629 Frankfurt, Germany.
EM p.doell@em.uni-frankfurt.de; herve.douville@meteo.fr;
guentner@gfz-potsdam.de; y.wada@uu.nl
RI Guntner, Andreas/C-9892-2011; Doll, Petra/A-3784-2009; Muller Schmied,
Hannes/K-6231-2013
OI Guntner, Andreas/0000-0001-6233-8478; Doll, Petra/0000-0003-2238-4546;
Muller Schmied, Hannes/0000-0001-5330-9923
NR 115
TC 9
Z9 10
U1 15
U2 39
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0169-3298
EI 1573-0956
J9 SURV GEOPHYS
JI Surv. Geophys.
PD MAR
PY 2016
VL 37
IS 2
SI SI
BP 195
EP 221
DI 10.1007/s10712-015-9343-1
PG 27
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DG7OK
UT WOS:000372273400002
ER
PT J
AU Chen, JL
Famiglietti, JS
Scanlon, BR
Rodell, M
AF Chen, Jianli
Famiglietti, James S.
Scanlon, Bridget R.
Rodell, Matthew
TI Groundwater Storage Changes: Present Status from GRACE Observations
SO SURVEYS IN GEOPHYSICS
LA English
DT Review
DE Groundwater; GRACE; Satellite gravity; Groundwater depletion; Land
surface model; Well data
ID CLIMATE EXPERIMENT GRACE; SATELLITE GRAVITY MEASUREMENTS; HIGH-PLAINS
AQUIFER; SEA-LEVEL RISE; LAND SUBSIDENCE; MIDDLE-EAST; ICE-SHEET;
DEPLETION; WATER; RECOVERY
AB Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray-Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.
C1 [Chen, Jianli] Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA.
[Famiglietti, James S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Scanlon, Bridget R.] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78759 USA.
[Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA.
RP Chen, JL (reprint author), Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA.
EM chen@csr.utexas.edu
RI Rodell, Matthew/E-4946-2012; Scanlon, Bridget/A-3105-2009
OI Rodell, Matthew/0000-0003-0106-7437; Scanlon,
Bridget/0000-0002-1234-4199
FU NASA GRACE Science Program [NNX12AJ97G]; NASA ESI Program [NNX12AM86G];
NSF OPP Program [ANT-1043750]
FX This study was supported by the NASA GRACE Science Program (NNX12AJ97G),
NASA ESI Program (NNX12AM86G), and NSF OPP Program (under Grants
ANT-1043750).
NR 70
TC 11
Z9 11
U1 12
U2 39
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0169-3298
EI 1573-0956
J9 SURV GEOPHYS
JI Surv. Geophys.
PD MAR
PY 2016
VL 37
IS 2
SI SI
BP 397
EP 417
DI 10.1007/s10712-015-9332-4
PG 21
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DG7OK
UT WOS:000372273400009
ER
PT J
AU Wada, Y
AF Wada, Yoshihide
TI Modeling Groundwater Depletion at Regional and Global Scales: Present
State and Future Prospects
SO SURVEYS IN GEOPHYSICS
LA English
DT Review
DE Groundwater depletion (GWD); Climate variability; Socioeconomic
development; Water scarcity; Sustainability; Projections
ID IRRIGATION WATER REQUIREMENTS; LAND-SURFACE MODEL; SEA-LEVEL RISE;
SHARED SOCIOECONOMIC PATHWAYS; NORTH-AMERICAN DROUGHT; US HIGH-PLAINS;
CLIMATE-CHANGE; FRESH-WATER; ANTHROPOGENIC IMPACTS; MULTIMODEL ENSEMBLE
AB Except for frozen water in ice and glaciers, groundwater is the world's largest distributed store of freshwater and has strategic importance to global food and water security. In this paper, the most recent advances quantifying groundwater depletion (GWD) are comprehensively reviewed. This paper critically evaluates the recently advanced modeling approaches estimating GWD at regional and global scales, and the evidence of feedbacks to the Earth system including sea-level rise associated with GWD. Finally, critical challenges and opportunities in the use of groundwater are identified for the adaption to growing food demand and uncertain climate.
C1 [Wada, Yoshihide] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
[Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA.
[Wada, Yoshihide] Univ Utrecht, Dept Phys Geog, Fac Geosci, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands.
RP Wada, Y (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.; Wada, Y (reprint author), Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA.; Wada, Y (reprint author), Univ Utrecht, Dept Phys Geog, Fac Geosci, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands.
EM y.wada@uu.nl
FU Japan Society for the Promotion of Science (JSPS) Overseas Research
Fellowship [JSPS-2014-878]
FX The International Space Science Institute (ISSI) in Bern, Switzerland,
and specifically Anny Cazenave and Nicolas Champollion, and acknowledged
for hosting the ISSI Workshop on Remote Sensing and Water Resources. I
wish to thank two anonymous reviewers for their constructive and
thoughtful suggestions, which substantially helped to improve the
quality of the manuscript. Y. Wada is supported by Japan Society for the
Promotion of Science (JSPS) Overseas Research Fellowship (Grant No.
JSPS-2014-878).
NR 191
TC 4
Z9 4
U1 11
U2 29
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0169-3298
EI 1573-0956
J9 SURV GEOPHYS
JI Surv. Geophys.
PD MAR
PY 2016
VL 37
IS 2
SI SI
BP 419
EP 451
DI 10.1007/s10712-015-9347-x
PG 33
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DG7OK
UT WOS:000372273400010
ER
PT J
AU Frank, EA
Maier, WD
Mojzsis, SJ
AF Frank, Elizabeth A.
Maier, Wolfgang D.
Mojzsis, Stephen J.
TI Highly siderophile element abundances in Eoarchean komatiite and basalt
protoliths
SO CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
LA English
DT Article
DE Late Veneer; Komatiites; Highly siderophile elements; Platinum group
elements; Mantle evolution; Eoarchean
ID NUVVUAGITTUQ SUPRACRUSTAL BELT; PLATINUM-GROUP ELEMENTS; EARLY EARTH
DIFFERENTIATION; TUNGSTEN ISOTOPIC EVIDENCE; SOUTHERN WEST GREENLAND;
LATE HEAVY BOMBARDMENT; ACASTA GNEISS COMPLEX; GREENSTONE-BELT; GIANT
IMPACT; CORE FORMATION
AB Plume-derived, Mg-rich, volcanic rocks (komatiites, high-Mg basalts, and their metamorphic equivalents) can record secular changes in the highly siderophile element (HSE) abundances of mantle sources. An apparent secular time-dependent enrichment trend in HSE abundances from Paleoarchean to Paleoproterozoic mantle-derived rocks could represent the protracted homogenization of a Late Veneer chondritic contaminant into the pre-Late Veneer komatiite source. To search for a possible time dependence of a late accretion signature in the Eoarchean mantle, we report new data from rare >3700 Myr-old mafic and ultramafic schists locked in supracrustal belts from the Inukjuak domain (Quebec, Canada) and the Akilia association (West Greenland). Our analysis shows that some of these experienced HSE mobility and/or include a cumulate component (Touboul et al. in Chem Geol 383: 63-75, 2014), whereas several of the oldest samples show some of the most depleted HSE abundances measured for rocks of this composition. We consider these new data for the oldest documented rocks of komatiite protolith in light of the Late Veneer hypothesis.
C1 [Frank, Elizabeth A.; Mojzsis, Stephen J.] Univ Colorado, Ctr Lunar Origin & Evolut, Dept Geol Sci, NASA,Lunar Sci Inst, 2200 Colorado Ave,UCB 399, Boulder, CO 80309 USA.
[Maier, Wolfgang D.] Cardiff Univ, Sch Earth & Ocean Sci, Main Bldg,Pk Pl, Cardiff CF10 3AR, S Glam, Wales.
[Mojzsis, Stephen J.] Hungarian Acad Sci, Inst Geol & Geochem Res, Budaorsi Ut 45, H-1112 Budapest, Hungary.
[Frank, Elizabeth A.] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA.
RP Frank, EA; Mojzsis, SJ (reprint author), Univ Colorado, Ctr Lunar Origin & Evolut, Dept Geol Sci, NASA,Lunar Sci Inst, 2200 Colorado Ave,UCB 399, Boulder, CO 80309 USA.; Mojzsis, SJ (reprint author), Hungarian Acad Sci, Inst Geol & Geochem Res, Budaorsi Ut 45, H-1112 Budapest, Hungary.; Frank, EA (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA.
EM efrank@carnegiescience.edu; mojzsis@colorado.edu
FU NASA Earth and Space Science Fellowship (NESSF), "Exploring the Darkest
of the Dark Ages"; Zonta International Amelia Earhart Fellowship; NASA
Lunar Science Institute through Center for Lunar Origin and Evolution
(CLOE); NASA Exobiology Program; John Templeton Foundation
FX We have benefitted from discussions and debates on the topics presented
herein with (in alphabetical order): N. Arndt, W. Bottke, R. Brasser, S.
Marchi, A. Morbidelli, R. Walker, S. Werner, and M. Willbold. We further
thank N. Arndt for his constructive comments on an earlier version of
this manuscript. We also thank S.-J. Barnes and D. Savard at the
Universite du Quebec a Chicoutimi for performing the HSE analyses.
E.A.F. was supported by a NASA Earth and Space Science Fellowship
(NESSF), "Exploring the Darkest of the Dark Ages," and the Zonta
International Amelia Earhart Fellowship. S.J.M. acknowledges support
from the NASA Lunar Science Institute through the Center for Lunar
Origin and Evolution (CLOE) and the NASA Exobiology Program. A
substantial portion of this manuscript was completed while S.J.M. held a
Distinguished Research Professorship in Budapest at the Research Center
for Astronomy and Earth Sciences of the Hungarian Academy of Sciences.
This is a contribution of the Collaborative for Research in Origins
(CRiO), which is funded by the John Templeton Foundation.
NR 95
TC 1
Z9 1
U1 7
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0010-7999
EI 1432-0967
J9 CONTRIB MINERAL PETR
JI Contrib. Mineral. Petrol.
PD MAR
PY 2016
VL 171
IS 3
AR 29
DI 10.1007/s00410-016-1243-y
PG 16
WC Geochemistry & Geophysics; Mineralogy
SC Geochemistry & Geophysics; Mineralogy
GA DG7ZB
UT WOS:000372301100010
ER
PT J
AU Hartwig, J
Plachta, D
AF Hartwig, Jason
Plachta, David
TI 2015 Space Cryogenics Workshop, June 24-26, 2015, Phoenix, AZ Hosted by
NASA Glenn Research Center, Cleveland, OH, USA
SO CRYOGENICS
LA English
DT Editorial Material
C1 [Hartwig, Jason; Plachta, David] NASA, Glenn Res Ctr, Cleveland, OH USA.
RP Hartwig, J (reprint author), NASA, Glenn Res Ctr, Cleveland, OH USA.
NR 0
TC 0
Z9 0
U1 2
U2 4
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 1
EP 1
DI 10.1016/j.cryogenics.2015.12.007
PG 1
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400001
ER
PT J
AU Shirron, PJ
Kimball, MO
James, BL
Muench, T
DiPirro, MJ
Letmate, RV
Sampson, MA
Bialas, TG
Sneiderman, GA
Porter, FS
Kelley, RL
AF Shirron, Peter J.
Kimball, Mark O.
James, Bryan L.
Muench, Theodore
DiPirro, Michael J.
Letmate, Richard V.
Sampson, Michael A.
Bialas, Tom G.
Sneiderman, Gary A.
Porter, Frederick S.
Kelley, Richard L.
TI Operating modes and cooling capabilities of the 3-stage ADR developed
for the Soft-X-ray Spectrometer instrument on Astro-H
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Space cryogenics; Adiabatic demagnetization refrigerator; Magnetic
refrigeration; Astronomy
ID ADIABATIC DEMAGNETIZATION REFRIGERATORS; SINGLE-STAGE; DESIGN;
OPTIMIZATION; MULTISTAGE
AB A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 x 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes. Published by Elsevier Ltd.
C1 [Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Letmate, Richard V.] Bast Technol, 7515 Mission Dr,Suite 300, Lanham, MD 20706 USA.
[Sampson, Michael A.] SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA.
RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RI Porter, Frederick/D-3501-2012
OI Porter, Frederick/0000-0002-6374-1119
NR 19
TC 3
Z9 3
U1 6
U2 13
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 2
EP 9
DI 10.1016/j.cryogenics.2015.10.013
PG 8
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400002
PM 28111478
ER
PT J
AU Yoshida, S
Miyaoka, M
Kanao, K
Tsunematsu, S
Otsuka, K
Hoshika, S
Mitsuda, K
Yamasaki, N
Takei, Y
Fujimoto, R
Sato, Y
DiPirro, M
Shirron, P
AF Yoshida, Seiji
Miyaoka, Mikio
Kanao, Ken'ichi
Tsunematsu, Shoji
Otsuka, Kiyomi
Hoshika, Shunji
Mitsuda, Kazuhisa
Yamasaki, Noriko
Takei, Yoh
Fujimoto, Ryuichi
Sato, Yoichi
DiPirro, Mike
Shirron, Peter
TI Flight model performance test results of a helium dewar for the soft
X-ray spectrometer onboard ASTRO-H
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Space cryogenics; Cooling system; Joule-Thomson cooler; Stirling cooler
AB ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium.
In this paper, the thermal design and thermal test results are described. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji] Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan.
[Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh] JAXA, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan.
[Fujimoto, Ryuichi] Kanazawa Univ, Fac Math & Phys, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan.
[Sato, Yoichi] JAXA, Aerosp Res & Dev Directorate, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan.
[DiPirro, Mike; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Yoshida, S (reprint author), Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan.
RI Yamasaki, Noriko/C-2252-2008
NR 7
TC 8
Z9 8
U1 1
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 10
EP 16
DI 10.1016/j.cryogenics.2015.10.012
PG 7
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400003
ER
PT J
AU Ezoe, Y
Ishikawa, K
Mitsuishi, I
Ohashi, T
Mitsuda, K
Fujimoto, R
Murakami, M
Kanao, K
Yoshida, S
Tsunematsu, S
DiPirro, M
Shirron, P
AF Ezoe, Yuichiro
Ishikawa, Kumi
Mitsuishi, Ikuyuki
Ohashi, Takaya
Mitsuda, Kazuhisa
Fujimoto, Ryuichi
Murakami, Masahide
Kanao, Kenichi
Yoshida, Seiji
Tsunematsu, Shoji
DiPirro, Michael
Shirron, Peter
CA SXS Team
TI Flight model measurements of the porous plug and film flow suppression
system for the ASTRO-H Soft X-ray Spectrometer dewar
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Space cryogenics; X-ray microcalorimeter; Porous plug phase separator;
Superfluid film flow
AB Flight model measurements of a porous plug phase separator and a film flow suppression system for the ASTRO-H Soft X-ray Spectrometer dewar are described. ASTRO-H is the sixth Japanese astronomy satellite and will be launched in 2016. It carries the Soft X-ray Spectrometer consisting of an X-ray optic and an X-ray microcalorimeter system operated at 50 mK. Superfluid liquid He is employed as a part of the cooling system. A wide range of He flows from 28 mu g/s to 3.2 mg/s in various operation cases must be safely vented under zero gravity. At the same time, superfluid He film flow through the vent line must be suppressed to <2 mu g/s in a nominal case to avoid extra loss of the liquid He. For this purpose, a porous plug phase separator together with a film flow suppression system is installed. To verify its performance, the mass flow rates and the film flow rate of the flight model system were measured at component level. The mass flow rates at various He tank temperatures (1.15, 130, 1.50, and 2.00 K) were obtained and also the film flow rate was measured at 1.15 K. Then, the mass flow rates were measured after installing the whole system into a flight model dewar at the He tank temperature of 1.16, 1.30, 1.50, and 2.00 K. The dewar was tilted so that the porous plug located at the top of the dewar is immersed in the liquid He and the porous plug separates the liquid and vapor He by the thermomechanical effect as in orbit. The obtained mass flow rates and the film flow rate in these tests were confirmed to meet the requirements and to be consistent with each other. No abnormal event such as large mass flow rates was observed. All these experimental results strongly suggest that this flight model of the porous plug and the film flow suppression system will work properly in space. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Ezoe, Yuichiro; Ohashi, Takaya] Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan.
[Ishikawa, Kumi] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
[Mitsuishi, Ikuyuki] Nagoya Univ, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan.
[Mitsuda, Kazuhisa] Japan Aerosp & eXpolorat Agcy JAXA, ISAS, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan.
[Fujimoto, Ryuichi] Kanazawa Univ, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan.
[Murakami, Masahide] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan.
[Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji] Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan.
[DiPirro, Michael; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Ezoe, Y (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan.
EM ezoe@tmu.ac.jp
NR 12
TC 2
Z9 2
U1 0
U2 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 17
EP 23
DI 10.1016/j.cryogenics.2015.12.004
PG 7
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400004
ER
PT J
AU Shirron, PJ
Kimball, MO
James, BL
Muench, T
DiPirro, MJ
Bialas, TG
Sneiderman, GA
Porter, FS
Kelley, RL
AF Shirron, Peter J.
Kimball, Mark O.
James, Bryan L.
Muench, Theodore
DiPirro, Michael J.
Bialas, Thomas G.
Sneiderman, Gary A.
Porter, Frederick S.
Kelley, Richard L.
TI Thermodynamic performance of the 3-stage ADR for the Astro-H Soft-X-ray
Spectrometer instrument
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Space cryogenics; Astronomy; Adiabatic demagnetization refrigerator;
Magnetic refrigeration; Low temperature detectors
ID ADIABATIC DEMAGNETIZATION REFRIGERATORS; DESIGN
AB The Soft X-ray Spectrometer (SXS) instrument (Mitsuda et al., 2010) [1] on Astro-H (Takahashi et al., 2010) [2] will use a 3-stage ADR (Shirron et al., 2012) to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at <= 1.20 K as the heat sink (Fujimoto et al., 2010). In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and single-shot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency. Published by Elsevier Ltd.
C1 [Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RI Porter, Frederick/D-3501-2012
OI Porter, Frederick/0000-0002-6374-1119
NR 16
TC 3
Z9 3
U1 3
U2 8
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 24
EP 30
DI 10.1016/j.cryogenics.2015.10.011
PG 7
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400005
ER
PT J
AU Hartwig, JW
Colozza, A
Lorenz, RD
Oleson, S
Landis, G
Schmitz, P
Paul, M
Walsh, J
AF Hartwig, J. W.
Colozza, A.
Lorenz, R. D.
Oleson, S.
Landis, G.
Schmitz, P.
Paul, M.
Walsh, J.
TI Exploring the depths of Kraken Mare - Power, thermal analysis, and
ballast control for the Saturn Titan submarine
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Saturn; Titan; Ligeia Mare; Kraken Mare; Cryogenic fluid management;
Stirling radioisotope generator; Aerogel; Neon
ID TEMPERATURE; SOLUBILITY; EQUILIBRIA; NITROGEN; OCEAN; LAKES
AB To explore the depths of the hydrocarbon rich seas on the Saturn moon Titan, a conceptual design of an unmanned submarine concept was recently developed for a Phase I NASA Innovative Advanced Concept (NIAC) study. Data from Cassini Huygens indicates that the Titan polar environment sustains stable seas of variable concentrations of ethane, methane, and nitrogen, with a surface temperature around 93 K. To meet science exploration objectives, the submarine must operate autonomously, study atmosphere/sea exchange, interact with the seabed at pressures up to 10 atm, traverse large distances with limited energy, hover at the surface and at any depth within the sea, and be capable of tolerating multiple different concentration levels of hydrocarbons. Therefore Titan presents many cryogenic design challenges. This paper presents the trade studies with emphasis on the preliminary design of the power, thermal, and ballast control subsystems for the Saturn Titan submarine. Published by Elsevier Ltd.
C1 [Hartwig, J. W.; Colozza, A.; Oleson, S.; Landis, G.; Schmitz, P.] NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA.
[Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Space Explorat Sector, Baltimore, MD 21218 USA.
[Paul, M.; Walsh, J.] Penn State Appl Res Lab, State Coll, PA USA.
RP Hartwig, JW (reprint author), NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA.
EM Jason.W.Hartwig@nasa.gov
OI Lorenz, Ralph/0000-0001-8528-4644
NR 32
TC 0
Z9 0
U1 2
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 31
EP 46
DI 10.1016/j.cryogenics.2015.09.009
PG 16
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400006
ER
PT J
AU Mustafi, S
DeLee, C
Francis, J
Li, X
McGuinness, D
Nixon, CA
Purves, L
Willis, W
Riall, S
Devine, M
Hedayat, A
AF Mustafi, S.
DeLee, C.
Francis, J.
Li, X.
McGuinness, D.
Nixon, C. A.
Purves, L.
Willis, W.
Riall, S.
Devine, M.
Hedayat, A.
TI Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Cryogenic; Propulsion; Planetary; Hydrogen; Oxygen
AB Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (I-sp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years. Published by Elsevier Ltd.
C1 [Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Devine, M.; Hedayat, A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Mustafi, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RI Nixon, Conor/A-8531-2009
OI Nixon, Conor/0000-0001-9540-9121
NR 15
TC 0
Z9 0
U1 0
U2 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 81
EP 87
DI 10.1016/j.cryogenics.2015.11.009
PG 7
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400012
ER
PT J
AU Plachta, DW
Johnson, WL
Feller, JR
AF Plachta, D. W.
Johnson, W. L.
Feller, J. R.
TI Zero boil-off system testing
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Reverse turbo-Brayton cycle cryocooler; Zero boil-off; Cryogenic
propellant storage
AB Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure. Published by Elsevier Ltd.
C1 [Plachta, D. W.; Johnson, W. L.] NASA, Glenn Res Ctr, Washington, DC USA.
[Feller, J. R.] NASA, Ames Res Ctr, Washington, DC USA.
RP Plachta, DW (reprint author), NASA, Glenn Res Ctr, Washington, DC USA.
NR 9
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 88
EP 94
DI 10.1016/j.cryogenics.2015.10.009
PG 7
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400013
ER
PT J
AU Hartwig, JW
AF Hartwig, J. W.
TI Screen channel liquid acquisition device bubble point tests in liquid
nitrogen
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Liquid acquisition devices; Liquid nitrogen; Cryogenic fluid management;
Subcooled liquid; Fuel depot
ID INTERFACIAL-TENSION; PRESSURE-DEPENDENCE; FLUID PHASES; HYDROGEN; MODEL
AB The primary parameter for gauging performance of a liquid acquisition device (LAD) is the bubble point pressure, or differential pressure across a screen pore that overcomes the surface tension of the liquid at that pore. Recently, cryogenic bubble point tests were conducted in liquid nitrogen across a parametric trade space to examine the influential factors that govern LAD performance, and 1873 data points were collected. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested over a wide range of liquid temperatures (67-114 K) and pressures (0.032-1.83 MPa), using both autogenous (gaseous nitrogen) and non-condensable (gaseous helium) pressurization schemes. Experimental results in liquid nitrogen are compared to recently reported results in liquid hydrogen, oxygen, and methane. Results indicate a significant gain in performance is achievable over the baseline 325 x 2300 reference bubble point by using a finer mesh, operating at a colder liquid temperature, and pressurizing and sub cooling the liquid with the noncondensable pressurant. Results also show that the cryogenic bubble point is heavily affected by enhanced heating and cooling at the screen liquid/vapor interface by evaporation and condensation. Published by Elsevier Ltd.
C1 [Hartwig, J. W.] NASA, Glenn Res Ctr, Cryogen & Fluid Syst Branch, Washington, DC USA.
RP Hartwig, JW (reprint author), NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA.
EM Jason.W.Hartwig@nasa.gov
NR 44
TC 5
Z9 5
U1 0
U2 0
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 95
EP 105
DI 10.1016/j.cryogenics.2015.09.008
PG 11
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400014
ER
PT J
AU Hedayat, A
Cartagena, W
Majumdar, AK
LeClair, AC
AF Hedayat, A.
Cartagena, W.
Majumdar, A. K.
LeClair, A. C.
TI Modeling and analysis of chill and fill processes for the cryogenic
storage and transfer engineering development unit tank
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Liquid hydrogen; Chilldown; Modeling; Heat transfer
AB NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented. Published by Elsevier Ltd.
C1 [Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.] Marshall Space Flight Ctr, Prop Syst Dept, Huntsville, AL 35812 USA.
RP Hedayat, A (reprint author), Marshall Space Flight Ctr, Prop Syst Dept, Huntsville, AL 35812 USA.
EM ali.hedayat-1@nasa.gov
NR 4
TC 0
Z9 0
U1 1
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 106
EP 112
DI 10.1016/j.cryogenics.2015.11.003
PG 7
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400015
ER
PT J
AU Majumdar, A
Valenzuela, J
LeClair, A
Moder, J
AF Majumdar, Alok
Valenzuela, Juan
LeClair, Andre
Moder, Jeff
TI Numerical modeling of self-pressurization and pressure control by a
thermodynamic vent system in a cryogenic tank
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Cryogenic fluid management; Numerical model
AB This paper presents a numerical model of a system-level test bed the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J-T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions. Published by Elsevier Ltd.
C1 [Majumdar, Alok; Valenzuela, Juan; LeClair, Andre] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Moder, Jeff] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA.
RP Majumdar, A (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
EM alok.k.majumdar@nasa.gov
NR 6
TC 2
Z9 2
U1 3
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 113
EP 122
DI 10.1016/j.cryogenics.2015.12.001
PG 10
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400016
ER
PT J
AU Bellur, K
Medici, EF
Kulshreshtha, M
Konduru, V
Tyrewala, D
Tamilarasan, A
McQuillen, J
Leao, JB
Hussey, DS
Jacobson, DL
Scherschligt, J
Hermanson, JC
Choi, CK
Allen, JS
AF Bellur, K.
Medici, E. F.
Kulshreshtha, M.
Konduru, V.
Tyrewala, D.
Tamilarasan, A.
McQuillen, J.
Leao, J. B.
Hussey, D. S.
Jacobson, D. L.
Scherschligt, J.
Hermanson, J. C.
Choi, C. K.
Allen, J. S.
TI A new experiment for investigating evaporation and condensation of
cryogenic propellants
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Evaporation; Condensation; Liquid hydrogen; Neutron imaging; Contact
angle
ID THIN-FILM; MASS-TRANSPORT; CAPILLARY-TUBE; HEAT-TRANSFER; MENISCUS;
MODEL; PRESSURE; REGION; TANKS; FLOW
AB Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change.
A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Bellur, K.; Medici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Choi, C. K.; Allen, J. S.] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA.
[Tamilarasan, A.; Hermanson, J. C.] Univ Washington, Seattle, WA 98195 USA.
[McQuillen, J.] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH USA.
[Leao, J. B.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.] NIST, Gaithersburg, MD 20899 USA.
RP Allen, JS (reprint author), Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA.
EM jstallen@mtu.edu
NR 41
TC 0
Z9 0
U1 3
U2 8
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 131
EP 137
DI 10.1016/j.cryogenics.2015.10.016
PG 7
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400018
PM 28154426
ER
PT J
AU Kassemi, M
Kartuzova, O
AF Kassemi, Mohammad
Kartuzova, Olga
TI Effect of interfacial turbulence and accommodation coefficient on CFD
predictions of pressurization and pressure control in cryogenic storage
tank
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE CFD; Tank pressurization; Cryogenic storage; Turbulence; Interfacial
mass transfer; Accommodation coefficient
ID EVAPORATION COEFFICIENT; SELF-PRESSURIZATION; MICROGRAVITY
AB Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Kassemi, Mohammad; Kartuzova, Olga] NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res NCSER, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA.
RP Kassemi, M (reprint author), NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res NCSER, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA.
EM Mohammad.Kassemi@nasa.gov
NR 50
TC 0
Z9 0
U1 6
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 138
EP 153
DI 10.1016/j.cryogenics.2015.10.018
PG 16
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400019
ER
PT J
AU Fesmire, JE
AF Fesmire, J. E.
TI Layered composite thermal insulation system for nonvacuum cryogenic
applications
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Thermal insulation; Weathering; Compression; Piping; Valves; Tanks;
Space launch vehicles
ID TANKS
AB A problem common to both space launch applications and cryogenic propulsion test facilities is providing suitable thermal insulation for complex cryogenic piping, tanks, and components that cannot be vacuum jacketed or otherwise be broad-area-covered. To meet such requirements and provide a practical solution to the problem, a layered composite insulation system has been developed for nonvacuum applications and extreme environmental exposure conditions. Layered composite insulation system for extreme conditions (or LCX) is particularly suited for complex piping or tank systems that are difficult or practically impossible to insulate by conventional means. Consisting of several functional layers, the aerogel blanket-based system can be tailored to specific thermal and mechanical performance requirements.. The operational principle of the system is layer-pairs working in combination. Each layer pair is comprised of a primary insulation layer and a compressible radiant barrier layer. Vacuum jacketed piping systems, whether part of the ground equipment or the flight vehicle, typically include numerous terminations, disconnects, umbilical connections, or branches that must be insulated by nonvacuum means. Broad-area insulation systems, such as spray foam or rigid foam panels, are often the lightweight materials of choice for vehicle tanks, but the plumbing elements, feedthroughs, appurtenances, and structural supports all create "hot spot" areas that are not readily insulated by similar means. Finally, the design layouts of valve control skids used for launch pads and test stands can be nearly impossible to insulate because of their complexity and high density of components and instrumentation. Primary requirements for such nonvacuum thermal insulation systems include the combination of harsh conditions, including full weather exposure, vibration, and structural loads. Further requirements include reliability and the right level of system breathability for thermal cycling. The LCX system is suitable for temperatures from approximately 4 K to 400 K and can be designed to insulate liquid hydrogen, liquid nitrogen, liquid oxygen, or liquid methane equipment. Laboratory test data for thermal and mechanical performance are presented. Field demonstration cases and examples in operational cryogenic systems are also given. Published by Elsevier Ltd.
C1 [Fesmire, J. E.] NASA, Kennedy Space Ctr, Cryogen Test Lab, UB R1, Kennedy Space Ctr, FL 32899 USA.
RP Fesmire, JE (reprint author), NASA, Kennedy Space Ctr, Cryogen Test Lab, UB R1, Kennedy Space Ctr, FL 32899 USA.
NR 16
TC 0
Z9 0
U1 10
U2 21
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 154
EP 165
DI 10.1016/j.cryogenics.2015.10.008
PG 12
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400020
ER
PT J
AU Tuttle, J
Jahromi, A
Canavan, E
DiPirro, M
AF Tuttle, James
Jahromi, Amir
Canavan, Edgar
DiPirro, Michael
TI Cryogenic thermal absorptance measurements on small-diameter stainless
steel tubing
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT 26th Space Cryogenics Workshop
CY JUN 24-26, 2015
CL NASA Glenn Res Ctr, Phoenix, AZ
SP Cryogen Soc Amer
HO NASA Glenn Res Ctr
DE Absorptance; Cryocooler; Radiation
AB The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results. Published by Elsevier Ltd.
C1 [Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael] NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA.
RP Tuttle, J (reprint author), NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA.
EM james.g.tuttle@nasa.gov
NR 7
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD MAR
PY 2016
VL 74
BP 166
EP 171
DI 10.1016/j.cryogenics.2015.09.003
PG 6
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA DG3BB
UT WOS:000371943400021
ER
PT J
AU Farrahi, AH
Verma, SA
Kozon, TE
AF Farrahi, Amir H.
Verma, Savita A.
Kozon, Thomas E.
TI On the Problem of Pairing Aircraft for Closely Spaced Parallel
Approaches
SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
LA English
DT Article
DE Closely spaced parallel runways; parallel approaches; pairing aircraft;
scheduling aircraft landing
ID LANDINGS; ALGORITHMS
AB The problem of scheduling pairs of aircraft for simultaneous landing onto very closely spaced parallel runways is studied. The pair scheduling problem and its generalization group scheduling problem for simultaneous landing onto parallel runways are formulated and shown to be NP-hard, in general. A genetic pairing scheduler algorithm is developed, capable of handling a wide range of constraints, and used in a real-time human-in-the-loop simulation that was carried out to study the operational concept. Experimental data from these simulations and an extensive set of stress tests are presented and analyzed. Results indicate that while the problem is NP-hard in general, practical instances of the algorithm are not necessarily very hard to solve. As such, the proposed algorithm succeeded in finding and suggesting aircraft pairs that met all the problem constraints and thus were accepted by the controllers in over 97% of the cases. High solution quality, scalable runtime, and flexibility of the proposed algorithm in handling different constraints suggest that it is a suitable candidate for use in a real-time application.
C1 [Farrahi, Amir H.; Verma, Savita A.; Kozon, Thomas E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Farrahi, AH; Verma, SA; Kozon, TE (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM amir.h.farrahi@nasa.gov; savita.a.verma@nasa.gov;
thomas.e.kozon@nasa.gov
NR 28
TC 0
Z9 0
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1524-9050
EI 1558-0016
J9 IEEE T INTELL TRANSP
JI IEEE Trans. Intell. Transp. Syst.
PD MAR
PY 2016
VL 17
IS 3
BP 631
EP 643
DI 10.1109/TITS.2015.2479611
PG 13
WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation
Science & Technology
SC Engineering; Transportation
GA DG3PR
UT WOS:000371982600003
ER
PT J
AU Meixner, T
Manning, AH
Stonestrom, DA
Allen, DM
Ajami, H
Blasch, KW
Brookfield, AE
Castro, CL
Clark, JF
Gochis, DJ
Flints, AL
Neff, KL
Niraula, R
Rodell, M
Scanlon, BR
Singha, K
Walvoord, MA
AF Meixner, Thomas
Manning, Andrew H.
Stonestrom, David A.
Allen, Diana M.
Ajami, Hoori
Blasch, Kyle W.
Brookfield, Andrea E.
Castro, Christopher L.
Clark, Jordan F.
Gochis, David J.
Flints, Alan L.
Neff, Kirstin L.
Niraula, Rewati
Rodell, Matthew
Scanlon, Bridget R.
Singha, Kamini
Walvoord, Michelle A.
TI Implications of projected climate change for groundwater recharge in the
western United States
SO JOURNAL OF HYDROLOGY
LA English
DT Review
DE Groundwater recharge; Recharge mechanisms; Climate change; Western
United States
ID HIGH-PLAINS AQUIFER; CHANGE IMPACTS; INTENSE PRECIPITATION; ATMOSPHERIC
CO2; FUTURE CLIMATE; SOIL-MOISTURE; WATER; SYSTEM; HYDROLOGY; TRENDS
AB Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100 longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snow pack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems. (C) 2016 The Authors. Published by Elsevier B.V.
C1 [Meixner, Thomas; Castro, Christopher L.; Neff, Kirstin L.; Niraula, Rewati] Univ Arizona, Tucson, AZ 85721 USA.
[Manning, Andrew H.; Walvoord, Michelle A.] US Geol Survey, Box 25046, Denver, CO 80225 USA.
[Stonestrom, David A.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA.
[Allen, Diana M.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Ajami, Hoori] Univ New S Wales, WRC, Sydney, NSW 2052, Australia.
[Blasch, Kyle W.] US Geol Survey, Boise, ID 83702 USA.
[Brookfield, Andrea E.] Univ Kansas, Kansas Geol Survey, 1930 Constant Ave, Lawrence, KS 66047 USA.
[Clark, Jordan F.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Gochis, David J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
[Flints, Alan L.] US Geol Survey, Sacramento, CA 95819 USA.
[Rodell, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Scanlon, Bridget R.] Univ Texas Austin, Austin, TX 78713 USA.
[Singha, Kamini] Colorado Sch Mines, Golden, CO 80401 USA.
RP Meixner, T (reprint author), Univ Arizona, Tucson, AZ 85721 USA.
EM tmeixner@email.arizona.edu
RI Rodell, Matthew/E-4946-2012; Scanlon, Bridget/A-3105-2009;
OI Rodell, Matthew/0000-0003-0106-7437; Scanlon,
Bridget/0000-0002-1234-4199; Meixner, Thomas/0000-0002-8567-9635;
Manning, Andrew/0000-0002-6404-1237
FU USGS; NSF [EAR-1328505]; USGS National Research Program; USGS Office of
Groundwater
FX The synthesis work reported in this paper is the result of a John Wesley
Powell Center group "Potential Impacts of Prospective Climate Change on
Groundwater Recharge in the Western United States". The work received
support from the USGS and also from the NSF through a concurrent award
(EAR-1328505). Additional support to several authors was provided by the
USGS National Research Program and the USGS Office of Groundwater. We
also wish to thank Jill Baron and the staff of the Powell Center for
their assistance in meeting arrangements and their professional attitude
and pleasant demeanor.
NR 86
TC 11
Z9 12
U1 18
U2 43
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD MAR
PY 2016
VL 534
BP 124
EP 138
DI 10.1016/j.jhydrol.2015.12.027
PG 15
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA DG3AC
UT WOS:000371940900012
ER
PT J
AU Bergfors, C
Brandner, W
Bonnefoy, M
Schlieder, J
Janson, M
Henning, T
Chauvin, G
AF Bergfors, C.
Brandner, W.
Bonnefoy, M.
Schlieder, J.
Janson, M.
Henning, Th.
Chauvin, G.
TI Characterization of close visual binaries from the AstraLux Large M
Dwarf Survey
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE binaries: visual; stars: fundamental parameters; stars: low-mass; stars:
pre-main-sequence
ID VERY-LOW MASS; STELLAR KINEMATIC GROUPS; NEAR-INFRARED SPECTRA; PICTORIS
MOVING GROUP; SOLAR NEIGHBORHOOD; STAR CANDIDATES; BETA-PICTORIS; BROWN
DWARFS; SPECTROSCOPIC BINARIES; FUNDAMENTAL PARAMETERS
AB We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) J, H + K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within +/- 1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with the Fiberfed Extended Range Optical Spectrograph (FEROS) at the European Southern Observatory (ESO)-Max-Planck-Gesellschaft (MPG) 2.2 m telescope. The equivalent width of the absorption suggests an age consistent with the beta Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dynamical masses and thus calibration of evolutionary models for low mass stars.
C1 [Bergfors, C.] UCL, Dept Phys & Astron, 132 Hampstead Rd, London NW1 2PS, England.
[Bergfors, C.; Brandner, W.; Henning, Th.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
[Bonnefoy, M.; Chauvin, G.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.
[Bonnefoy, M.; Chauvin, G.] IPAG, CNRS, F-38000 Grenoble, France.
[Schlieder, J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA.
[Janson, M.] Stockholm Univ, Inst Astron, SE-10691 Stockholm, Sweden.
RP Bergfors, C (reprint author), UCL, Dept Phys & Astron, 132 Hampstead Rd, London NW1 2PS, England.; Bergfors, C (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
EM c.bergfors@ucl.ac.uk
NR 68
TC 1
Z9 1
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD MAR 1
PY 2016
VL 456
IS 3
BP 2576
EP 2585
DI 10.1093/mnras/stv2768
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7LG
UT WOS:000372265200022
ER
PT J
AU Friedrich, O
Seitz, S
Eifler, TF
Gruen, D
AF Friedrich, O.
Seitz, S.
Eifler, T. F.
Gruen, D.
TI Performance of internal covariance estimators for cosmic shear
correlation functions
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: data analysis; methods: statistical; cosmological parameters;
large-scale structure of Universe
ID ANGULAR-CORRELATION FUNCTION; LARGE-SCALE STRUCTURE; WEAK LENSING
SURVEYS; 2-POINT STATISTICS; SURVEY GEOMETRY; POWER SPECTRUM; GALAXY
SURVEYS; SIMULATIONS; MATRIX; MODEL
AB Data re-sampling methods such as delete-one jackknife, bootstrap or the sub-sample covariance are common tools for estimating the covariance of large-scale structure probes. We investigate different implementations of these methods in the context of cosmic shear two-point statistics. Using lognormal simulations of the convergence field and the corresponding shear field we generate mock catalogues of a known and realistic covariance. For a survey of similar to 5000 deg(2) we find that jackknife, if implemented by deleting sub-volumes of galaxies, provides the most reliable covariance estimates. Bootstrap, in the common implementation of drawing sub-volumes of galaxies, strongly overestimates the statistical uncertainties. In a forecast for the complete 5-yr Dark Energy Survey, we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in the Omega(m)-sigma(8) plane as measured with internally estimated covariance matrices is on average greater than or similar to 85 per cent of the volume derived from the true covariance matrix. The uncertainty on the parameter combination Sigma(8) similar to sigma(8) Omega(0.5)(m) derived from internally estimated covariances is similar to 90 per cent of the true uncertainty.
C1 [Friedrich, O.; Seitz, S.; Gruen, D.] Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany.
[Friedrich, O.; Seitz, S.; Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Eifler, T. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Eifler, T. F.] CALTECH, Pasadena, CA 91125 USA.
RP Friedrich, O (reprint author), Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany.; Friedrich, O (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
EM oliverf@usm.uni-muenchen.de
FU Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33]; DFG Cluster
of Excellence 'Origin and Structure of the Universe'; National
Aeronautics and Space Administration; US Department of Energy; US
National Science Foundation; Ministry of Science and Education of Spain;
Science and Technology Facilities Council of the United Kingdom; Higher
Education Funding Council for England; National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign; Kavli Institute of Cosmological Physics at the
University of Chicago; Center for Cosmology and Astro-Particle Physics
at the Ohio State University; Mitchell Institute for Fundamental Physics
and Astronomy at Texas AM University; Financiadora de Estudos e
Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do
Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche
Forschungsgemeinschaft; National Science Foundation [AST-1138766];
Argonne National Laboratory; University of California at Santa Cruz;
University of Cambridge; Centro de Investigaciones Energeticas,
Medioambientales y Tecnologicas-Madrid; University of Chicago;
University College London; DES-Brazil Consortium; University of
Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi
National Accelerator Laboratory; University of Illinois at
Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut
de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory;
Ludwig-Maximilians Universitat Munchen and the associated Excellence
Cluster Universe; University of Michigan; National Optical Astronomy
Observatory; University of Nottingham; Ohio State University; University
of Pennsylvania; University of Portsmouth; SLAC National Accelerator
Laboratory; Stanford University; University of Sussex; Texas AM
University; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro
de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council
under the European Union including ERC [240672, 291329, 306478]
FX This work was supported by SFB-Transregio 33 'The Dark Universe' by the
Deutsche Forschungsgemeinschaft (DFG). We also acknowledge the support
by the DFG Cluster of Excellence 'Origin and Structure of the Universe'.
The simulations have been carried out on the computing facilities of the
Computational Center for Particle and Astrophysics (C2PAP). Part of the
research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration.; Funding for the DES projects has been
provided by the US Department of Energy, the US National Science
Foundation, the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the Higher
Education Funding Council for England, the National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign, the Kavli Institute of Cosmological Physics at the
University of Chicago, the Center for Cosmology and Astro-Particle
Physics at the Ohio State University, the Mitchell Institute for
Fundamental Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa
do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e
Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating
Institutions in the DES. The DES data management system is supported by
the National Science Foundation under Grant Number AST-1138766.; The
Collaborating Institutions are Argonne National Laboratory, the
University of California at Santa Cruz, the University of Cambridge,
Centro de Investigaciones Energeticas, Medioambientales y
Tecnologicas-Madrid, the University of Chicago, University College
London, the DES-Brazil Consortium, the University of Edinburgh, the
Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National
Accelerator Laboratory, the University of Illinois at Urbana-Champaign,
the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica
d'Altes Energies, Lawrence Berkeley National Laboratory, the
Ludwig-Maximilians Universitat Munchen and the associated Excellence
Cluster Universe, the University of Michigan, the National Optical
Astronomy Observatory, the University of Nottingham, The Ohio State
University, the University of Pennsylvania, the University of
Portsmouth, SLAC National Accelerator Laboratory, Stanford University,
the University of Sussex, and Texas A&M University.; The DES
participants from Spanish institutions are partially supported by MINECO
under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de
Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results
has received funding from the European Research Council under the
European Union's Seventh Framework Programme (FP7/2007-2013) including
ERC grant agreements 240672, 291329 and 306478.
NR 40
TC 6
Z9 6
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD MAR 1
PY 2016
VL 456
IS 3
BP 2662
EP 2680
DI 10.1093/mnras/stv2833
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7LG
UT WOS:000372265200029
ER
PT J
AU Puebla, RE
Hillier, DJ
Zsargo, J
Cohen, DH
Leutenegger, MA
AF Puebla, Raul E.
Hillier, D. John
Zsargo, Janos
Cohen, David H.
Leutenegger, Maurice A.
TI X-ray, UV and optical analysis of supergiants: epsilon Ori
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: spectroscopic; stars: abundances; stars: individual: epsilon
Ori; stars: massive; stars: mass-loss; supergiants
ID HOT-STAR WINDS; MASS-LOSS RATES; O-TYPE STARS; EMISSION-LINE-PROFILES;
DRIVEN STELLAR WINDS; B-TYPE SUPERGIANTS; LOW METALLICITY ENVIRONMENT;
ATMOSPHERIC NLTE-MODELS; HELIUM-LIKE IONS; ZETA PUPPIS
AB We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: epsilon Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is (M) over dot/root f(infinity) similar to 1.6 x 10(-6) M-circle dot yr(-1) where f(infinity) is the volume filling factor. However, the S IV lambda lambda 1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use f(infinity) < 0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies (M) over dot less than or similar to 1 x 10(-7) M-circle dot yr(-1). The discrepancy could be related to porosity-vorosity effects or a problem with the ionization of sulphur in the wind. To fit the UV profiles of NV and O VI it was necessary to include emission from an interclump medium with a density contrast (rho(cl)/rho(ICM)) of similar to 100. X-ray emission in H/He like and Fe L lines was modelled using four plasma components located within the wind. We derive plasma temperatures from 1 x 10(6) to 7 x 10(6) K, with lower temperatures starting in the outer regions (R-0 similar to 3-6 R-*), and a hot component starting closer to the star (R-0 less than or similar to 2.9 R-*). From X-ray line profiles we infer (M) over dot < 4.9 x 10(-7) M-circle dot yr(-1). The X-ray spectrum (>= 0.1 kev) yields an X-ray luminosity L-X similar to 2.0 x 10(-7) L-bol, consistent with the superion line profiles. X-ray abundances are in agreement with those derived from the UV and optical analysis: epsilon Ori is slightly enhanced in nitrogen and depleted in carbon and oxygen, evidence for CNO processed material.
C1 [Puebla, Raul E.; Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA.
[Puebla, Raul E.; Hillier, D. John] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA.
[Zsargo, Janos] Inst Politecn Nacl, Escuela Super Fis & Matemat, Av Inst Politecn Nacl,Edificio 9, Mexico City 07738, DF, Mexico.
[Cohen, David H.] Swarthmore Coll, Dept Phys & Astron, 500 Coll Ave, Swarthmore, PA 19081 USA.
[Leutenegger, Maurice A.] Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA.
[Leutenegger, Maurice A.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
RP Puebla, RE (reprint author), Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA.; Puebla, RE (reprint author), Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA.
EM rep54@pitt.edu
FU National Aeronautics and Space Administration [ARO-11002A, NAS8-03060];
NASA Chandra grants [AR2-13001A, AR0-11002B]; STScI theory grant
[HST-AR-12640.01]; Chandra [AR2-13001A, AR0-11002B, G02-13002A,
AR2-130001B, TM3-14001B]; CONACyT [CB-2011-01, 168632]
FX Support for this work was provided by the National Aeronautics and Space
Administration through Chandra Award Number ARO-11002A issued by the
Chandra X-ray Observatory Center, which is operated by the Smithsonian
Astrophysical Observatory for and on behalf of the National Aeronautics
and Space Administration under contract NAS8-03060. This work was also
supported by NASA Chandra grants: AR2-13001A and AR0-11002B. D. John
Hillier also acknowledges partial support from STScI theory grant
HST-AR-12640.01. MAL also acknowledges the support from Chandra, grants:
G02-13002A and AR2-130001B. David Cohen also acknowledges the support
from Chandra, grants: TM3-14001B, AR0-11002B and AR2-13001A. We also
acknowledge Francisco Najarro for his highly valuable comments and
suggestions on this manuscript. We are also grateful to Randall Smith
for providing us the source code of APEC and to the Chandra X-ray Center
for the use of ATOMDB. JZ acknowledges CONACyT grant CB-2011-01 No.
168632. We also thank the anonymous referee for the valuable comments
that helped us to improve this manuscript.
NR 123
TC 2
Z9 2
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD MAR 1
PY 2016
VL 456
IS 3
BP 2907
EP 2936
DI 10.1093/mnras/stv2783
PG 30
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7LG
UT WOS:000372265200047
ER
PT J
AU Giannantonio, T
Fosalba, P
Cawthon, R
Omori, Y
Crocce, M
Elsner, F
Leistedt, B
Dodelson, S
Benoit-Levy, A
Gaztanaga, E
Holder, G
Peiris, HV
Percival, WJ
Kirk, D
Bauer, AH
Benson, BA
Bernstein, GM
Carretero, J
Crawford, TM
Crittenden, R
Huterer, D
Jain, B
Krause, E
Reichardt, CL
Ross, AJ
Simard, G
Soergel, B
Stark, A
Story, KT
Vieira, JD
Weller, J
Abbott, T
Abdalla, FB
Allam, S
Armstrong, R
Banerji, M
Bernstein, RA
Bertin, E
Brooks, D
Buckley-Geer, E
Burke, DL
Capozzi, D
Carlstrom, JE
Rosell, AC
Kind, MC
Castander, FJ
Chang, CL
Cunha, CE
da Costa, LN
D'Andrea, CB
DePoy, DL
Desai, S
Diehl, HT
Dietrich, JP
Doel, P
Eifler, TF
Evrard, AE
Neto, AF
Fernandez, E
Finley, DA
Flaugher, B
Frieman, J
Gerdes, D
Gruen, D
Gruendl, RA
Gutierrez, G
Holzapfel, WL
Honscheid, K
James, DJ
Kuehn, K
Kuropatkin, N
Lahav, O
Li, TS
Lima, M
March, M
Marshall, JL
Martini, P
Melchior, P
Miquel, R
Mohr, JJ
Nichol, RC
Nord, B
Ogando, R
Plazas, AA
Romer, AK
Roodman, A
Rykoff, ES
Sako, M
Saliwanchik, BR
Sanchez, E
Schubnell, M
Sevilla-Noarbe, I
Smith, RC
Soares-Santos, M
Sobreira, F
Suchyta, E
Swanson, MEC
Tarle, G
Thaler, J
Thomas, D
Vikram, V
Walker, AR
Wechsler, RH
Zuntz, J
AF Giannantonio, T.
Fosalba, P.
Cawthon, R.
Omori, Y.
Crocce, M.
Elsner, F.
Leistedt, B.
Dodelson, S.
Benoit-Levy, A.
Gaztanaga, E.
Holder, G.
Peiris, H. V.
Percival, W. J.
Kirk, D.
Bauer, A. H.
Benson, B. A.
Bernstein, G. M.
Carretero, J.
Crawford, T. M.
Crittenden, R.
Huterer, D.
Jain, B.
Krause, E.
Reichardt, C. L.
Ross, A. J.
Simard, G.
Soergel, B.
Stark, A.
Story, K. T.
Vieira, J. D.
Weller, J.
Abbott, T.
Abdalla, F. B.
Allam, S.
Armstrong, R.
Banerji, M.
Bernstein, R. A.
Bertin, E.
Brooks, D.
Buckley-Geer, E.
Burke, D. L.
Capozzi, D.
Carlstrom, J. E.
Rosell, A. Carnero
Kind, M. Carrasco
Castander, F. J.
Chang, C. L.
Cunha, C. E.
da Costa, L. N.
D'Andrea, C. B.
DePoy, D. L.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Doel, P.
Eifler, T. F.
Evrard, A. E.
Fausti Neto, A.
Fernandez, E.
Finley, D. A.
Flaugher, B.
Frieman, J.
Gerdes, D.
Gruen, D.
Gruendl, R. A.
Gutierrez, G.
Holzapfel, W. L.
Honscheid, K.
James, D. J.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Li, T. S.
Lima, M.
March, M.
Marshall, J. L.
Martini, P.
Melchior, P.
Miquel, R.
Mohr, J. J.
Nichol, R. C.
Nord, B.
Ogando, R.
Plazas, A. A.
Romer, A. K.
Roodman, A.
Rykoff, E. S.
Sako, M.
Saliwanchik, B. R.
Sanchez, E.
Schubnell, M.
Sevilla-Noarbe, I.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Suchyta, E.
Swanson, M. E. C.
Tarle, G.
Thaler, J.
Thomas, D.
Vikram, V.
Walker, A. R.
Wechsler, R. H.
Zuntz, J.
TI CMB lensing tomography with the DES Science Verification galaxies
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE cosmic background radiation; gravitational lensing: weak; large-scale
structure of Universe
ID DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND
ANISOTROPIES; INTEGRATED SACHS-WOLFE; SOUTH-POLE TELESCOPE; CHALLENGE
LIGHTCONE SIMULATION; ATACAMA COSMOLOGY TELESCOPE; PRIMORDIAL
NON-GAUSSIANITY; ANGULAR POWER SPECTRUM; DARK ENERGY SURVEY
AB We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 < z(phot) < 1.2, a cross-correlation signal is detected at 6 sigma and 4 sigma with SPT and Planck, respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant (>2 sigma) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 +/- 0.16 times as large as predicted in the Lambda cold dark matter Planck cosmology, a 1.7 sigma deviation.
C1 [Giannantonio, T.; Soergel, B.; Banerji, M.] Univ Cambridge, Inst Astron, Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England.
[Giannantonio, T.; Weller, J.; Desai, S.; Dietrich, J. P.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.
[Fosalba, P.; Crocce, M.; Gaztanaga, E.; Bauer, A. H.; Carretero, J.] Campus UAB, Fac Ciencies, IEEC CSIC, Inst Ciencies Espai, Torre C5 Par 2, E-08193 Barcelona, Spain.
[Cawthon, R.; Dodelson, S.; Benson, B. A.; Crawford, T. M.; Carlstrom, J. E.; Chang, C. L.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Cawthon, R.; Dodelson, S.; Benson, B. A.; Story, K. T.; Carlstrom, J. E.; Chang, C. L.] Kavli Inst Cosmol Phys, 933 East 56th St, Chicago, IL 60637 USA.
[Omori, Y.; Holder, G.; Simard, G.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada.
[Elsner, F.; Leistedt, B.; Benoit-Levy, A.; Peiris, H. V.; Kirk, D.; Lahav, O.] UCL, Dept Phys & Astron, Astrophys Grp, 132 Hampstead Rd, London NW1 2PS, England.
[Dodelson, S.; Benson, B. A.; Buckley-Geer, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Percival, W. J.; Crittenden, R.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England.
[Bernstein, G. M.; Jain, B.; Eifler, T. F.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA.
[Huterer, D.; Evrard, A. E.; Gerdes, D.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Krause, E.; Cunha, C. E.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Phys Astrophys Bldg,452 Lomita Mall, Stanford, CA 94305 USA.
[Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia.
[Ross, A. J.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA.
[Stark, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 12, Cambridge, MA 02138 USA.
[Story, K. T.; Carlstrom, J. E.] Univ Chicago, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Vieira, J. D.; Gruendl, R. A.] Univ Illinois, Dept Astron, MC 221,1002 West Green St, Urbana, IL 61801 USA.
[Weller, J.; Desai, S.; Dietrich, J. P.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Munich, Germany.
[Weller, J.; Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Chang, C. L.; Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA.
[Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Burke, D. L.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Rosell, A. Carnero; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Ogando, R.] Lab Interinstituc E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Rosell, A. Carnero; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Holzapfel, W. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[James, D. J.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil.
[Martini, P.; Suchyta, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Saliwanchik, B. R.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Phys Dept, Cleveland, OH 44106 USA.
[Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain.
[Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
RP Giannantonio, T (reprint author), Univ Cambridge, Inst Astron, Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.; Giannantonio, T (reprint author), Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England.; Giannantonio, T (reprint author), Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.; Fosalba, P (reprint author), Campus UAB, Fac Ciencies, IEEC CSIC, Inst Ciencies Espai, Torre C5 Par 2, E-08193 Barcelona, Spain.
EM t.giannantonio@ast.cam.ac.uk; fosalba@ice.cat
RI Lima, Marcos/E-8378-2010; Fosalba Vela, Pablo/I-5515-2016; Ogando,
Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Gaztanaga,
Enrique/L-4894-2014;
OI Stark, Antony/0000-0002-2718-9996; Ogando, Ricardo/0000-0003-2120-1154;
Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga,
Enrique/0000-0001-9632-0815; CRAWFORD, THOMAS/0000-0001-9000-5013;
Dietrich, Jorg/0000-0002-8134-9591; Weller, Jochen/0000-0002-8282-2010;
Carrasco Kind, Matias/0000-0002-4802-3194; Abdalla,
Filipe/0000-0003-2063-4345
FU Kavli Foundation; STFC [ST/L000636/1]; Excellence Cluster 'Universe' of
Garching, Germany; MareNostrum supercomputer [AECT-2008-1-0009,
2010-1-0007]; Port d'Informacio Cientifica; Cosmo-HUB portal; MINECO
[ESP2013-48274-C3-1-P]; European Research Council under the European
Union [306478-CosmicDawn, 240672, 291329, 306478]; University of
Melbourne; Australian Research Council [DP150103208]; US Department of
Energy; US National Science Foundation; Ministry of Science and
Education of Spain; Science and Technology Facilities Council of the
United Kingdom; Higher Education Funding Council for England; National
Center for Supercomputing Applications at the University of Illinois at
Urbana-Champaign; Kavli Institute of Cosmological Physics at the
University of Chicago; Center for Cosmology and Astro-Particle Physics
at the Ohio State University; Mitchell Institute for Fundamental Physics
and Astronomy at Texas AM University; Financiadora de Estudos e
Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do
Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche
Forschungsgemeinschaft; Collaborating Institutions in the DES; National
Science Foundation [AST-1138766]; Argonne National Laboratory;
University of California at Santa Cruz; University of Cambridge; Centro
de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid;
University of Chicago; University College London; DES-Brazil Consortium;
University of Edinburgh; Eidgenossische Technische Hochschule (ETH)
Zurich; Fermi National Accelerator Laboratory; University of Illinois at
Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut
de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory;
Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster
Universe; University of Michigan; National Optical Astronomy
Observatory; University of Nottingham; Ohio State University; University
of Pennsylvania; University of Portsmouth; SLAC National Accelerator
Laboratory; Stanford University; University of Sussex; Texas AM
University; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; NSF
Physics Frontier Center grant [PHY-0114422]; Gordon and Betty Moore
Foundation through Grant GBMF [947]
FX TG thanks Anthony Challinor and George Efstathiou for comments on a
draft version of this paper, and James Fergusson, Martin Kilbinger and
Ariel Sanchez for useful discussions. TG acknowledges support from the
Kavli Foundation, STFC grant ST/L000636/1, and from the Excellence
Cluster 'Universe' of Garching, Germany, as well as the Institut de
Ciencies de l'Espai, IEEC-CSIC, Universitat Autonoma de Barcelona, for
hospitality. PF acknowledges support from the MareNostrum supercomputer
(BSC-CNS, http://www.bsc.es), grants AECT-2008-1-0009 to 2010-1-0007,
Port d'Informacio Cientifica (http://www.pic.es), and the Cosmo-HUB
portal (cosmohub.pic.es), where the MICE simulations were run, stored,
and distributed, respectively. PF is funded by MINECO, project
ESP2013-48274-C3-1-P. FE, BL and HVP were partially supported by the
European Research Council under the European Union's Seventh Framework
Programme (PP7/2007-2013) /ERC grant agreement no. 306478-CosmicDawn. CR
acknowledges support from the University of Melbourne and from the
Australian Research Council's Discovery Projects scheme (DP150103208).r
Funding for the DES Projects has been provided by the US Department of
Energy, the US National Science Foundation, the Ministry of Science and
Education of Spain, the Science and Technology Facilities Council of the
United Kingdom, the Higher Education Funding Council for England, the
National Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmological
Physics at the University of Chicago, the Center for Cosmology and
Astro-Particle Physics at the Ohio State University, the Mitchell
Institute for Fundamental Physics and Astronomy at Texas A&M University,
Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de
Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia,
Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the
Collaborating Institutions in the DES. The DES data management system is
supported by the National Science Foundation under Grant Number
AST-1138766.r The Collaborating Institutions are Argonne National
Laboratory, the University of California at Santa Cruz, the University
of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y
Tecnologicas-Madrid, the University of Chicago, University College
London, the DES-Brazil Consortium, the University of Edinburgh, the
Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National
Accelerator Laboratory, the University of Illinois at Urbana-Champaign,
the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica
d'Altes Energies, Lawrence Berkeley National Laboratory, the
Ludwig-Maximilians Universitat Munchen and the associated Excellence
Cluster Universe, the University of Michigan, the National Optical
Astronomy Observatory, the University of Nottingham, The Ohio State
University, the University of Pennsylvania, the University of
Portsmouth, SLAC National Accelerator Laboratory, Stanford University,
the University of Sussex, and Texas A&M University.r The DES
participants from Spanish institutions are partially supported by MINECO
under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de
Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results
has received funding from the European Research Council under the
European Union's Seventh Framework Programme (FP7/2007-2013) including
ERC grant agreements 240672, 291329, and 306478.; r The SPT programme is
supported by the National Science Foundation through grant PLR-1248097.
Partial support is also provided by the NSF Physics Frontier Center
grant PHY-0114422 to theKavli Institute of Cosmological Physics at the
University of Chicago, the Kavli Foundation, and the Gordon and Betty
Moore Foundation through Grant GBMF#947 to the University of Chicago.
NR 135
TC 18
Z9 18
U1 1
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD MAR 1
PY 2016
VL 456
IS 3
BP 3213
EP 3244
DI 10.1093/mnras/stv2678
PG 32
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7LG
UT WOS:000372265200072
ER
PT J
AU Hall, A
McKay, C
Cumbers, J
AF Hall, Alexandra
McKay, Chris
Cumbers, John
TI Toward a Low-Cost Lunar Settlement: Preface to the New Space Special
Articles
SO NEW SPACE
LA English
DT Editorial Material
C1 [Hall, Alexandra; Cumbers, John] NASA Ames, Space Portal Wyle, Bldg 555, Moffett Field, CA 94035 USA.
[McKay, Chris] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Hall, A (reprint author), NASA Ames, Space Portal Wyle, Bldg 555, Moffett Field, CA 94035 USA.
EM alexandra.hall@nasa.gov
NR 0
TC 0
Z9 0
U1 1
U2 1
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 2168-0256
EI 2168-0264
J9 NEW SPACE
JI New Space
PD MAR 1
PY 2016
VL 4
IS 1
BP 2
EP 3
DI 10.1089/space.2015.0039
PG 2
WC Engineering, Aerospace
SC Engineering
GA DG2JA
UT WOS:000371892000002
ER
PT J
AU Hall, A
Miller, C
AF Hall, Alexandra
Miller, Charles
TI A Summary of the Economic Assessment and Systems Analysis of an
Evolvable Lunar Architecture That Leverages Commercial Space
Capabilities and Public-Private Partnerships
SO NEW SPACE
LA English
DT Editorial Material
C1 [Hall, Alexandra] NASA Ames, Space Portal, Bldg 555, Moffett Field, CA 94035 USA.
NexGen Space LLC, Arlington, VA USA.
RP Hall, A (reprint author), NASA Ames, Space Portal, Bldg 555, Moffett Field, CA 94035 USA.
EM alexandra.hall@nasa.gov
NR 0
TC 0
Z9 0
U1 0
U2 1
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 2168-0256
EI 2168-0264
J9 NEW SPACE
JI New Space
PD MAR 1
PY 2016
VL 4
IS 1
BP 4
EP 6
DI 10.1089/space.2015.0037
PG 3
WC Engineering, Aerospace
SC Engineering
GA DG2JA
UT WOS:000371892000003
ER
PT J
AU Pittman, RB
Harper, LD
Newfield, ME
Rasky, DJ
AF Pittman, Robert Bruce
Harper, Lynn D.
Newfield, Mark E.
Rasky, Daniel J.
TI Lunar Station: The Next Logical Step in Space Development
SO NEW SPACE
LA English
DT Article
C1 [Pittman, Robert Bruce] Space Portal, Moffett Field, CA USA.
[Harper, Lynn D.; Newfield, Mark E.; Rasky, Daniel J.] NASA Ames, Space Portal, Moffett Field, CA USA.
RP Pittman, RB (reprint author), NASA, Ames Res Ctr, Space Portal Off, MS 555-3, Moffett Field, CA 94035 USA.
EM robert.b.pittman@nasa.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 2168-0256
EI 2168-0264
J9 NEW SPACE
JI New Space
PD MAR 1
PY 2016
VL 4
IS 1
BP 7
EP 14
DI 10.1089/space.2015.0031
PG 8
WC Engineering, Aerospace
SC Engineering
GA DG2JA
UT WOS:000371892000004
ER
PT J
AU Wingo, D
AF Wingo, Dennis
TI Site Selection for Lunar Industrialization, Economic Development, and
Settlement
SO NEW SPACE
LA English
DT Article
AB The subject of a lunar landing site/outpost/base implementation has been explored extensively over the past several decades. Due to the cost and complexity involved in the development of off-world facilities, serious efforts have been almost the exclusive domain of government. However, as technology continues to advance and a NewSpace industry has grown in recent years, discussions have turned to exploring something fundamentally differenta commercial lunar development. This article uses a set of input parameters put forth for a privately financed development by a group of thought leaders and venture capitalists that met in August 2014 at a major Silicon Valley venture capital firm. These inputs are used here as the driver for primary site selection criterion to identify a location so that further design and cost estimation efforts can proceed. Such a development would be privately financed in the $5-10 billion range and be operational by the early 2020s. It would be a permanently inhabited installation housing with at least 10 people on extended tours. This commercial lunar development's underlying unifying premise, requirements, and purpose is predicated upon economic development, industrialization, and settlement. Though there have been treatments in the past,none besides Ruzic realistically postulated a dedicated commercial development. A primary candidate site is identified and some further thoughts on its potential and the next steps for validation/verification are explored. It is stressed that this report only covers how factors associated with site selection lower the overall cost of a lunar development. A treatment of the full economic and systems engineering for site development would require a book-level exposition. The intent here is to provide the foundation for further treatment and to pick a single best site, based on our current knowledge, that covers the four most fundamental parameters for an off-world development. These are (1) power availability, (2) low-cost communications over wide areas, (3) availability of possible water (or hydrogen-based molecules) and other resources, and (4) surface mobility. NASA's Lunar Reconnaissance Orbiter has been transformational in this regard, building on earlier missions, and with its multispectral remote sensing instruments and the Lunar Orbiter Laser Altimeter, we have dramatically improved abilities to make detailed site selection analyses. Online resources such as the ACT-REACT map from Dr. Mark Robinson's team at Arizona State University and the Lunar Mapping and Modeling Portal at NASA Ames are tremendous resources aiding such investigations.
C1 [Wingo, Dennis] SkyCorp Inc, POB 375,NASA Ames Res Pk, Moffett Field, CA 94035 USA.
RP Wingo, D (reprint author), SkyCorp Inc, POB 375,NASA Ames Res Pk, Moffett Field, CA 94035 USA.
EM wingod@skycorpinc.com
NR 18
TC 0
Z9 0
U1 2
U2 2
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 2168-0256
EI 2168-0264
J9 NEW SPACE
JI New Space
PD MAR 1
PY 2016
VL 4
IS 1
BP 19
EP 39
DI 10.1089/space.2015.0023
PG 21
WC Engineering, Aerospace
SC Engineering
GA DG2JA
UT WOS:000371892000006
ER
PT J
AU Harper, LD
Neal, CR
Poynter, J
Schalkwyk, JD
Wingo, DR
AF Harper, Lynn D.
Neal, Clive Ray
Poynter, Jane
Schalkwyk, James D.
Wingo, Dennis Ray
TI Life Support for a Low-Cost Lunar Settlement: No Showstoppers
SO NEW SPACE
LA English
DT Article
ID SPACE; WHEAT
AB In 2014, space experts were challenged to develop strategies that would enable 10 people to live for 1 year on the Moon by 2022 for a total development cost of $5B. This was to be done in a manner that would minimize resupply of consumables from Earth and lead to a permanent lunar settlement of 100 people within 10 years. To sustain small groups on the Moon within this budget, recycling life-support consumables, rather than continuously supplying them from Earth, is required. The International Space Station (ISS) provides existence proof that these technologies are currently available. On the ISS, physicochemical regeneration of air and water reduces resupply of these consumables by more than 80%, increases the resilience of missions, and enhances productivity by enabling science, technology, and commercial payloads to replace life-support consumables. A permanent settlement must also employ bioregenerative strategies where, in addition to providing food, plants also remove carbon dioxide, produce oxygen, and generate potable water from gray water. Food production is only practical if abundant sunlight (or power) provides the light necessary for photosynthesis. Thus, quasicontinuous sunlight, obtainable only near the poles, is the most important resource for meeting time and budget constraints, although regolith constituents and lunar polar hydrogen (presumably ice) deposits are also valuable assets. Although improvements are always beneficial, the technologies needed for life support for the first phase of Lunar Settlement are available now.
C1 [Harper, Lynn D.] NASA, Ames Res Ctr, Space Portal, MS 555-3, Moffett Field, CA 94035 USA.
[Neal, Clive Ray] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA.
[Poynter, Jane] World View Enterprises, Tucson, AZ USA.
[Schalkwyk, James D.] NASA, Ames Res Ctr, Deltha Crit, Moffett Field, CA 94035 USA.
[Wingo, Dennis Ray] Skycorp Inc, NASA Ames Res Pk, Moffett Field, CA USA.
RP Harper, LD (reprint author), NASA, Ames Res Ctr, Space Portal, MS 555-3, Moffett Field, CA 94035 USA.
EM lynn.d.harper@nasa.gov
NR 28
TC 0
Z9 0
U1 6
U2 7
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 2168-0256
EI 2168-0264
J9 NEW SPACE
JI New Space
PD MAR 1
PY 2016
VL 4
IS 1
BP 40
EP 49
DI 10.1089/space.2015.0029
PG 10
WC Engineering, Aerospace
SC Engineering
GA DG2JA
UT WOS:000371892000007
ER
PT J
AU Solander, KC
Reager, JT
Thomas, BF
David, CH
Famiglietti, JS
AF Solander, Kurt C.
Reager, John T.
Thomas, Brian F.
David, Cedric H.
Famiglietti, James S.
TI Simulating Human Water Regulation: The Development of an Optimal
Complexity, Climate-Adaptive Reservoir Management Model for an LSM
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
DE Models and modeling; Feedback; Hydrology; Applications; Physical
Meteorology and Climatology; Anthropogenic effects; Adaptive models;
Optimization; Model evaluation/performance
ID EARTH SYSTEM MODELS; RESOURCE MANAGEMENT; CHANGE SCENARIOS;
SURFACE-WATER; PART 1; HYDROLOGY; IMPACTS; REPRESENTATION; WITHDRAWALS;
VARIABILITY
AB The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM.
C1 [Solander, Kurt C.; Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA.
[Reager, John T.; Thomas, Brian F.; David, Cedric H.; Famiglietti, James S.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Famiglietti, James S.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA.
RP Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA.
EM jfamigli@uci.edu
FU National Aeronautics and Space Administration (NASA) Earth and Space
Science Fellowship (NESSF); Jenkins Fellowship; Jet Propulsion
Laboratory, California Institute of Technology; NASA
FX The authors are particularly grateful for the generous financial support
received from the National Aeronautics and Space Administration (NASA)
Earth and Space Science Fellowship (NESSF) and the Jenkins Fellowship
for this research. We are also especially thankful for the technical
expertise provided by Jacob Edman (Earth and Planetary Sciences,
University of California, Berkeley) and Min-Hui Lo (Atmospheric
Sciences, National Taiwan University) at the onset of this research. The
authors John T. Reager, Brian F. Thomas, Cedric H. David, and James S.
Famiglietti were partially supported by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA.
NR 40
TC 0
Z9 0
U1 7
U2 12
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD MAR
PY 2016
VL 17
IS 3
BP 725
EP 744
DI 10.1175/JHM-D-15-0056.1
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF6NN
UT WOS:000371472600001
ER
PT J
AU Nearing, GS
Mocko, DM
Peters-Lidard, CD
Kumar, SV
Xia, YL
AF Nearing, Grey S.
Mocko, David M.
Peters-Lidard, Christa D.
Kumar, Sujay V.
Xia, Youlong
TI Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate
Uncertainty Contributions
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
DE Land surface model; Model evaluation/performance; Models and modeling
ID LAND-SURFACE MODELS; INFORMATION; ASSIMILATION; PERFORMANCE; FRAMEWORK;
FLUXNET; SYSTEMS; IMPACT; FUTURE; ENERGY
AB Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a "large sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
C1 [Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, 8800 Greenbelt Rd,Code 617,Bldg 33,Rm G205, Greenbelt, MD 20771 USA.
[Nearing, Grey S.; Mocko, David M.; Kumar, Sujay V.] Sci Applicat Int Corp, Mclean, VA 22102 USA.
[Xia, Youlong] NOAA, NCEP, Environm Modeling Ctr, College Pk, MD USA.
[Xia, Youlong] IM Syst Grp, Rockville, MD USA.
RP Nearing, GS (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, 8800 Greenbelt Rd,Code 617,Bldg 33,Rm G205, Greenbelt, MD 20771 USA.
EM grey.s.nearing@nasa.gov
RI Peters-Lidard, Christa/E-1429-2012; Kumar, Sujay/B-8142-2015
OI Peters-Lidard, Christa/0000-0003-1255-2876;
FU U.S. Department of Energy's Office of Science; NASA's Earth-Sun System
Division
FX Thank you to Martyn Clark (NCAR) for his help with organizing the
presentation. The NLDAS-2 data used in this study were acquired as part
of NASA's Earth-Sun System Division and archived and distributed by the
Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
Distributed Active Archive Center (DAAC). Funding for AmeriFlux data
resources was provided by the U.S. Department of Energy's Office of
Science.
NR 49
TC 4
Z9 4
U1 5
U2 14
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD MAR
PY 2016
VL 17
IS 3
BP 745
EP 759
DI 10.1175/JHM-D-15-0063.1
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF6NN
UT WOS:000371472600002
ER
PT J
AU Winter, JM
Beckage, B
Bucini, G
Horton, RM
Clemins, PJ
AF Winter, Jonathan M.
Beckage, Brian
Bucini, Gabriela
Horton, Radley M.
Clemins, Patrick J.
TI Development and Evaluation of High-Resolution Climate Simulations over
the Mountainous Northeastern United States
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
DE Climate models; North America; Geographic location/entity; Observational
techniques and algorithms; Regional effects; Topographic effects;
Circulation/ Dynamics; Statistical techniques; Applications;
Mathematical and statistical techniques; Surface observations; Models
and modeling
ID STATISTICAL DOWNSCALING METHODS; HYDROLOGICALLY BASED DATASET;
TEMPERATURE LAPSE RATES; LAND-SURFACE FLUXES; MODEL OUTPUTS;
PRECIPITATION; CALIFORNIA; IMPACTS; REGIONS; UTILITY
AB The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly ~ 1/8 degrees) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30 ''), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled ( 1/8 degrees) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.
C1 [Winter, Jonathan M.] Dartmouth Coll, Dept Geog, Hanover, NH 03755 USA.
[Winter, Jonathan M.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA.
[Beckage, Brian; Bucini, Gabriela] Univ Vermont, Dept Plant Biol, Burlington, VT USA.
[Horton, Radley M.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA.
[Clemins, Patrick J.] Univ Vermont, Dept Comp Sci, Burlington, VT USA.
RP Winter, JM (reprint author), Dartmouth Coll, Dept Earth Sci, Dept Geog, 6017 Fairchild Hall, Hanover, NH 03755 USA.
EM jwinter@dartmouth.edu
FU Vermont Experimental Program for Stimulating Competitive Research (NSF)
[EPS-1101317]; National Science Foundation
FX This work was supported by the Vermont Experimental Program for
Stimulating Competitive Research (NSF Award EPS-1101317). Many thanks to
Levi Brekke, Ed Maurer, and Tom Pruitt for their assistance with BCCA
data, as well as Alan Betts for his valuable ideas and insights. We
acknowledge the World Climate Research Programme's Working Group on
Coupled Modelling, which is responsible for CMIP, and we thank the
climate modeling groups for producing and making available their model
output. For CMIP the U.S. Department of Energy's Program for Climate
Model Diagnosis and Intercomparison provides coordinating support and
led development of software infrastructure in partnership with the
Global Organization for Earth System Science Portals. Further, we
acknowledge high-performance computing support from Yellowstone
(ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information
Systems Laboratory, sponsored by the National Science Foundation.
NR 40
TC 1
Z9 1
U1 0
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD MAR
PY 2016
VL 17
IS 3
BP 881
EP 896
DI 10.1175/JHM-D-15-0052.1
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF6NY
UT WOS:000371473700001
ER
PT J
AU Lee, AG
Tarver, WJ
Mader, TH
Gibson, CR
Hart, SF
Otto, CA
AF Lee, Andrew G.
Tarver, William J.
Mader, Thomas H.
Gibson, Charles Robert
Hart, Stephen F.
Otto, Christian A.
TI Neuro-Ophthalmology of Space Flight
SO JOURNAL OF NEURO-OPHTHALMOLOGY
LA English
DT Review
ID HEAD-DOWN TILT; IDIOPATHIC INTRACRANIAL HYPERTENSION;
CEREBROSPINAL-FLUID OUTFLOW; COTTON-WOOL SPOTS; OPTIC DISC EDEMA;
CHOROIDAL FOLDS; ACQUIRED HYPEROPIA; INTRAOCULAR-PRESSURE; REFRACTIVE
CHANGES; RADIAL KERATOTOMY
AB Background:To describe the history, clinical findings, and possible pathogenic etiologies of the constellation of neuro-ophthalmic findings discovered in astronauts after long-duration space flight and to discuss the terrestrial implications of such findings.Evidence Acquisition:Retrospective review of published observational, longitudinal examination of neuro-ophthalmic findings in astronauts after long-duration space flight; analysis of postflight questionnaires regarding in-flight vision changes in approximately 300 additional astronauts; and hypothesis generating for developing possible future countermeasures and potential implications for neuro-ophthalmic disorders on Earth. Astronauts with neuro-ophthalmic findings, which were not present at the start of a space flight mission and only seen on return from long-duration space missions to the International Space Station, will be discussed.Results:After 6 months of space flight, 7 astronauts had ophthalmic findings consisting of optic disc edema in 5, globe flattening in 5, choroidal folds in 5, cotton-wool spots in 3, nerve fiber layer thickening detected by optical coherence tomography in 6, and decreased near vision in 6. Five of 7 astronauts with near vision complaints had a hyperopic shift +0.50 diopters (D) between pre-/post-mission spherical equivalent refraction in 1 or both eyes (range, +0.50 to +1.75 D). These 5 astronauts showed globe flattening on magnetic resonance imaging. A total of 6 lumbar punctures have been performed to date (4 in the originally described cohort) and documented opening pressures of 18, 22, 21, 21.5, 28, and 28.5 cm H2O. These were performed at 8, 66, 19, 7, 12, and 57 days after mission, respectively. The 300 postflight questionnaires documented that approximately 29% and 60% of astronauts on short-duration and long-duration missions, respectively, experienced a degradation in distant and near visual acuity. Some of these vision changes remain unresolved for years after flight. Several possible pathogenic mechanisms, as well as potential countermeasures and discussion of possible terrestrial implications, are described.Conclusions:We previously hypothesized that the optic nerve and ocular changes that we described in astronauts may be the result of orbital and cranial cephalad fluid shifts brought about by prolonged microgravity exposure. The findings we reported previously and continue to see in astronauts may represent parts of a spectrum of ocular and cerebral responses to extended microgravity exposure. Future investigations hopefully will lead to countermeasures that can be used to eliminate or lessen the magnitude of these potentially harmful findings before long-duration space flight including the possibility of a manned mission to Mars.
C1 [Lee, Andrew G.; Gibson, Charles Robert] Houston Methodist Hosp, Dept Ophthalmol, Houston, TX 77030 USA.
[Lee, Andrew G.] Baylor Coll Med, Dept Ophthalmol, Houston, TX 77030 USA.
[Lee, Andrew G.] Weill Cornell Med Coll, Dept Ophthalmol, New York, NY USA.
[Lee, Andrew G.] Weill Cornell Med Coll, Dept Neurol, New York, NY USA.
[Lee, Andrew G.] Weill Cornell Med Coll, Dept Neurosurg, New York, NY USA.
[Lee, Andrew G.] Univ Texas Med Branch, Dept Ophthalmol, Galveston, TX 77555 USA.
[Lee, Andrew G.] Univ Iowa Hosp & Clin, Dept Ophthalmol, Iowa City, IA 52242 USA.
[Lee, Andrew G.] Univ Texas MD Anderson Canc Ctr, Sect Ophthalmol, Houston, TX 77030 USA.
[Tarver, William J.; Hart, Stephen F.] NASA, Space Med Div, Washington, DC 20546 USA.
[Mader, Thomas H.] US Army, Cooper Landing, AK USA.
[Gibson, Charles Robert] Coastal Eye Associates, Webster, TX USA.
[Otto, Christian A.] Univ Space Res Assoc, NASA, Washington, DC USA.
RP Lee, AG (reprint author), Houston Methodist Hosp, Blanton Eye Inst, Dept Ophthalmol, 6560 Fannin St,Scurlock 450, Houston, TX 77030 USA.
EM aglee@houstonmethodist.org
NR 60
TC 2
Z9 2
U1 2
U2 6
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 1070-8022
EI 1536-5166
J9 J NEURO-OPHTHALMOL
JI J. Neuro-Ophthal.
PD MAR
PY 2016
VL 36
IS 1
BP 85
EP 91
DI 10.1097/WNO.0000000000000334
PG 7
WC Clinical Neurology; Ophthalmology
SC Neurosciences & Neurology; Ophthalmology
GA DF7JM
UT WOS:000371534000020
PM 26828842
ER
PT J
AU Mader, TH
Gibson, CR
Hart, SF
Lee, AG
AF Mader, Thomas H.
Gibson, C. Robert
Hart, Stephen F.
Lee, Andrew G.
TI Asymmetric Papilledema in Idiopathic Intracranial Hypertension: Comment
SO JOURNAL OF NEURO-OPHTHALMOLOGY
LA English
DT Letter
ID DURATION SPACE-FLIGHT; OPTIC DISC EDEMA; ASTRONAUT
C1 [Mader, Thomas H.] US Army, Moab, UT USA.
[Gibson, C. Robert] Coastal Eye Associates, Webster, TX USA.
[Hart, Stephen F.] NASA, Div Life Sci, Houston, TX USA.
[Lee, Andrew G.] Methodist Hosp, Dept Ophthalmol, 6535 Fannin, Houston, TX 77030 USA.
RP Mader, TH (reprint author), US Army, Moab, UT USA.
NR 5
TC 0
Z9 0
U1 2
U2 2
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 1070-8022
EI 1536-5166
J9 J NEURO-OPHTHALMOL
JI J. Neuro-Ophthal.
PD MAR
PY 2016
VL 36
IS 1
BP 111
EP 112
PG 2
WC Clinical Neurology; Ophthalmology
SC Neurosciences & Neurology; Ophthalmology
GA DF7JM
UT WOS:000371534000024
PM 26885711
ER
PT J
AU Qiu, B
Chen, SM
Klein, P
Ubelmann, C
Fu, LL
Sasaki, H
AF Qiu, B.
Chen, Shuiming
Klein, Patrice
Ubelmann, Clement
Fu, Lee-Lueng
Sasaki, Hideharu
TI Reconstructability of Three-Dimensional Upper-Ocean Circulation from
SWOT Sea Surface Height Measurements
SO JOURNAL OF PHYSICAL OCEANOGRAPHY
LA English
DT Article
DE Variability; Models and modeling; General circulation models; Vertical
motion; Circulation/ Dynamics; Quasigeostrophic models; Mesoscale
processes; Observational techniques and algorithms; Oceanic variability;
Altimetry
ID SATELLITE ALTIMETRY; MESOSCALE EDDIES; DYNAMICS; VARIABILITY;
TURBULENCE; IMPACT; FLOW; TEMPERATURE; TRANSITION; SYSTEM
AB Utilizing the framework of effective surface quasigeostrophic (eSQG) theory, this study explores the potential of reconstructing the 3D upper-ocean circulation structures, including the balanced vertical velocity w field, from high-resolution sea surface height (SSH) data of the planned Surface Water and Ocean Topography (SWOT) satellite mission. Specifically, the authors utilize the 1/30 degrees, submesoscale-resolving, OFES model output and subject it to the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, this study finds that the eSQG dynamics constitute an effective framework for reconstructing the 3D upper-ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity zeta and w fields are found to reach a correlation of 0.7-0.9 and 0.6-0.7, respectively, in the 1000-m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the zeta and w reconstructions is found to be moderate, 5%-25% for the 3D zeta field and 15%-35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases.
C1 [Qiu, B.; Chen, Shuiming] Univ Hawaii Manoa, Dept Oceanog, 1000 Pope Rd, Honolulu, HI 96822 USA.
[Klein, Patrice] Ifremer CNRS UBO IRD, Lab Phys Oceans, Plouzane, France.
[Ubelmann, Clement; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Sasaki, Hideharu] JAMSTEC, Applicat Lab, Yokohama, Kanagawa, Japan.
RP Qiu, B (reprint author), Univ Hawaii Manoa, Dept Oceanog, 1000 Pope Rd, Honolulu, HI 96822 USA.
EM bo@soest.hawaii.edu
RI 英治, 佐々木/G-2247-2016; Qiu, Bo/D-9569-2017;
OI Sasaki, Hideharu/0000-0003-0657-7532
FU NASA SWOT mission; CNRS (France); Agence Nationale pour la Recherche
[ANR-09-BLAN-0365-02, ANR-10-LABX-19-01]; SWOT projects; MEXT/JST
KAKENHI [25400473]; NASA OSTST mission [NNX13AD91G, NNX13AE51E];
JAMSTEC; Canon Foundation
FX We thank Rosemary Morrow and Dudley Chelton for fruitful discussions.
Constructive comments made by two anonymous reviewers helped improve an
early version of the manuscript. B. Q. and S. C. acknowledge support
from NASA SWOT and OSTST missions (NNX13AD91G and NNX13AE51E). P. K.
acknowledges the support of CNRS (France) and Agence Nationale pour la
Recherche [ANR-09-BLAN-0365-02 (REDHOT) and ANR-10-LABX-19-01
(LabexMER)]. C. U. and L. F.'s research presented in this paper was
carried out in part at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautic and
Space Administration. They acknowledge support from the SWOT projects.
H. S. is supported by MEXT/JST KAKENHI 25400473. The OFES simulation was
conducted by using the Earth Simulator under support of JAMSTEC and the
Canon Foundation.
NR 44
TC 1
Z9 1
U1 3
U2 10
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-3670
EI 1520-0485
J9 J PHYS OCEANOGR
JI J. Phys. Oceanogr.
PD MAR
PY 2016
VL 46
IS 3
BP 947
EP 963
DI 10.1175/JPO-D-15-0188.1
PG 17
WC Oceanography
SC Oceanography
GA DF6PF
UT WOS:000371477000002
ER
PT J
AU Zheng, Y
Alapaty, K
Herwehe, JA
Del Genio, AD
Niyogi, D
AF Zheng, Yue
Alapaty, Kiran
Herwehe, Jerold A.
Del Genio, Anthony D.
Niyogi, Dev
TI Improving High-Resolution Weather Forecasts Using the Weather Research
and Forecasting (WRF) Model with an Updated Kain-Fritsch Scheme
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Forecasting; Numerical weather prediction/forecasting; Hindcasts;
Forecasting; Operational forecasting
ID NONHYDROSTATIC ATMOSPHERIC MODEL; CONVECTIVE PARAMETERIZATION; PART I;
CUMULUS PARAMETERIZATION; HORIZONTAL RESOLUTION; CLIMATE SIMULATIONS;
MESOSCALE MODEL; TIME-SCALE; PRECIPITATION; SENSITIVITY
AB Efforts to improve the prediction accuracy of high-resolution (1-10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at these spatial scales due to uncertainties in initial meteorological conditions and/or grid-scale cloud microphysics schemes. In particular, it is still unclear to what extent a subgrid-scale convection scheme could be modified to bring in scale awareness for improving high-resolution short-term precipitation forecasts in the WRF Model. To address these issues, the authors introduced scale-aware parameterized cloud dynamics for high-resolution forecasts by making several changes to the Kain-Fritsch (KF) convective parameterization scheme in the WRF Model. These changes include subgrid-scale cloud-radiation interactions, a dynamic adjustment time scale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting condensation level-based entrainment methodology that includes scale dependency.
A series of 48-h retrospective forecasts using a combination of three treatments of convection (KF, updated KF, and the use of no cumulus parameterization), two cloud microphysics schemes, and two types of initial condition datasets were performed over the U.S. southern Great Plains on 9- and 3-km grid spacings during the summers of 2002 and 2010. Results indicate that 1) the source of initial conditions plays a key role in high-resolution precipitation forecasting, and 2) the authors' updated KF scheme greatly alleviates the excessive precipitation at 9-km grid spacing and improves results at 3-km grid spacing as well. Overall, the study found that the updated KF scheme incorporated into a high-resolution model does provide better forecasts for precipitation location and intensity.
C1 [Zheng, Yue; Niyogi, Dev] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA.
[Alapaty, Kiran; Herwehe, Jerold A.] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA.
[Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Niyogi, Dev] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA.
RP Alapaty, K (reprint author), US EPA, Mail Code E243-01, Res Triangle Pk, NC 27711 USA.
EM alapaty.kiran@epa.gov
FU U.S. EPA's Air, Climate, and Energy (ACE) Program; USDA/NIFA Drought
Triggers through Texas AM University [2011-67019-20042]; NSF
[AGS-1522494, CDSE-1250232]; USDA NIFA Hatch Project at Purdue
University [1007699]; U.S. Department of Energy Atmospheric System
Research Program
FX Parts of the research were funded by the U.S. EPA's Air, Climate, and
Energy (ACE) Program, and USDA/NIFA Drought Triggers Grant
2011-67019-20042 through Texas A&M University, NSF Grants AGS-1522494
and CDS&E-1250232, and USDA NIFA Hatch Project 1007699 at Purdue
University. Anthony Del Genio acknowledges support from the U.S.
Department of Energy Atmospheric System Research Program. Our
appreciation goes to Dr. John Kain of NOAA and Dr. Megan Mallard, Mr.
Russell Bullock, Dr. Christopher Nolte, and Ms. Tanya Spero of the U.S.
EPA for their help in many ways facilitating the research. This research
has been subjected to the U.S. EPA's administrative review and approved
for publication. The views expressed herein and the contents are solely
the responsibility of the authors, and do not necessarily represent the
official views of the U.S. EPA.
NR 81
TC 8
Z9 8
U1 3
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2016
VL 144
IS 3
BP 833
EP 860
DI 10.1175/MWR-D-15-0005.1
PG 28
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF6PL
UT WOS:000371477600001
ER
PT J
AU Durack, PJ
Lee, T
Vinogradova, NT
Stammer, D
AF Durack, Paul J.
Lee, Tong
Vinogradova, Nadya T.
Stammer, Detlef
TI Keeping the lights on for global ocean salinity observation
SO NATURE CLIMATE CHANGE
LA English
DT Editorial Material
ID SEA-SURFACE SALINITY; WATER CYCLE; SMOS SATELLITE; AMAZON PLUME
C1 [Durack, Paul J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA.
[Lee, Tong] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Vinogradova, Nadya T.] Atmospher & Environm Res, 131 Hartwell Ave, Lexington, MA 02421 USA.
[Stammer, Detlef] Univ Hamburg, Mittelweg 177, D-20148 Hamburg, Germany.
RP Durack, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA.
EM me@pauldurack.com
RI Durack, Paul/A-8758-2010
OI Durack, Paul/0000-0003-2835-1438
FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA's
Physical Oceanography Program
FX The authors would like to thank Dean Roemmich, Susan E. Wijffels, Lynne
D. Talley, Gregory C. Johnson and Bernadette M. Sloyan for providing
information for the international Argo and GO-SHIP programs
respectively. We also thank Mathieu Belbeoch, Argo Coordinator at
JCOMMOPS, for providing Argo deployment and active float activity data.
The work of P.J.D. from Lawrence Livermore National Laboratory, is a
contribution to the US Department of Energy, Office of Science, Climate
and Environmental Sciences Division, Regional and Global Climate
Modeling Program under contract DE-AC52-07NA27344. The work by T.L. was
carried out at the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautic and Space
Administration (NASA). The work by N.T.V. was supported by NASA's
Physical Oceanography Program.
NR 35
TC 1
Z9 1
U1 5
U2 14
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
EI 1758-6798
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD MAR
PY 2016
VL 6
IS 3
BP 228
EP 231
PG 5
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DE9NG
UT WOS:000370964000007
ER
PT J
AU Nayak, M
Mauro, D
Stupl, J
Aziz, J
Colaprete, A
Dono-Perez, A
Frost, C
Jonsson, J
McKay, C
Sears, D
Soulage, M
Swenson, J
Yang, FY
AF Nayak, Michael
Mauro, David
Stupl, Jan
Aziz, Jonathan
Colaprete, Anthony
Dono-Perez, Andres
Frost, Chad
Jonsson, Jonas
McKay, Chris
Sears, Derek
Soulage, Michael
Swenson, Jason
Yang, Fan Yang
TI The Plume Chaser mission: Two-spacecraft search for organics on the
dwarf planet Ceres
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Satellite; Ceres; Plumes; NASA Ames; Solar propulsion; Organic compounds
ID VESTA; EVOLUTION; DAWN
AB We present a mission concept designed at NASA Ames Research Center for a two-probe mission to the dwarf planet Ceres, utilizing a set of small low-cost spacecraft. The primary spacecraft will carry both a mass and an infrared spectrometer to characterize water vapor detected to be emanating from Ceres. Shortly after its arrival a second identical spacecraft will impact Ceres to create an ejecta "plume" timed to enable a rendezvous and sampling by the primary spacecraft. This enables additional subsurface chemistry, volatile content and material characterization, and new science complementary to the Dawn spacecraft, the first to arrive at Ceres. Science requirements, candidate instruments, rendezvous trajectories, spacecraft design and comparison with Dawn science are detailed. Published by Elsevier Ltd. on behalf of COSPAR.
C1 [Nayak, Michael; Mauro, David; Stupl, Jan; Aziz, Jonathan; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Jonsson, Jonas; McKay, Chris; Sears, Derek; Soulage, Michael; Swenson, Jason; Yang, Fan Yang] NASA Ames Res Ctr, Mountain View, CA USA.
[Sears, Derek] Bay Area Environm Res Inst, Petaluma, CA USA.
[Nayak, Michael] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA.
[Mauro, David; Stupl, Jan; Jonsson, Jonas; Soulage, Michael] Stinger Ghaffarian Technol Inc, Greenbelt, MD USA.
[Aziz, Jonathan] Univ Colorado, Boulder, CO 80309 USA.
[Dono-Perez, Andres; Swenson, Jason] Univ Space Res Assoc, Houston, TX USA.
[Nayak, Michael] Red Sky Res LLC, New York, NY USA.
[Yang, Fan Yang] Sci & Technol Corp, New York, NY USA.
RP Nayak, M (reprint author), Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA.
EM mnayak@ucsc.edu
OI Frost, Chad/0000-0002-0219-5097; Mauro, David/0000-0002-6192-3592
FU NASA Ames Mission Design Center, Mountain View, California; National
Defense Science and Engineering Graduate (NDSEG) Fellowship [32CFR
168a]; Red Sky Research, LLC
FX This work was performed at the NASA Ames Mission Design Center, Mountain
View, California. The authors acknowledge contributions by Tori Hoehler,
Alfonso Davila, Eldar Noe, John Karcz, Andrew Gonzales, Sasha Weston,
Benjamin Klamm, Eddie Uribe, Aaron Cohen, Larry Lemke, Hugo Sanchez,
Anthony Genova, Brian Lewis and James Bell (Ames Research Center) and
Benjamin Longmier and David Hash (University of Michigan). Financial
support for Michael Nayak was provided by the National Defense Science
and Engineering Graduate (NDSEG) Fellowship, 32CFR 168a, and Red Sky
Research, LLC.
NR 65
TC 0
Z9 0
U1 4
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD MAR 1
PY 2016
VL 57
IS 5
BP 1133
EP 1146
DI 10.1016/j.asr.2015.12.028
PG 14
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA DF1LE
UT WOS:000371100400001
ER
PT J
AU Schreiner, SS
Dominguez, JA
Sibille, L
Hoffman, JA
AF Schreiner, Samuel S.
Dominguez, Jesus A.
Sibille, Laurent
Hoffman, Jeffrey A.
TI Thermophysical property models for lunar regolith
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Lunar regolith; Material property models; Electrical conductivity;
Specific heat; Thermal conductivity; In Situ Resource Utilization
ID ELECTRICAL-CONDUCTIVITY; THERMAL-CONDUCTIVITY; TEMPERATURE-DEPENDENCE;
HEAT; GLASSES; LIQUIDS; VISCOSITY; SYSTEM; MOON
AB We present a set of thermophysical property models for lunar regolith. Data from over 25 sources in the literature are integrated and fit with regression models for the following properties: composition, density, specific heat, latent heat of melting/fusion, thermal conductivity, electrical conductivity, optical absorption length, Gibbs Free Energy and Enthalpy of Formation. The models are based on data from Apollo samples and high-temperature molten regolith simulants, extending significantly beyond existing models in the literature. Furthermore, separate regression models are presented for Mare and Highlands regolith to demonstrate the effect of composition and to allow the models to be tailored to a wide range of applications. These models can enable more consistent, informed analysis and design of lunar regolith processing hardware and can also support lunar geological simulations. In addition to regression models for each material property, the raw data are presented to allow for further interpretation and fitting as necessary. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Schreiner, Samuel S.] MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Hoffman, Jeffrey A.] MIT, Dept Aeronaut & Astronaut, Practice, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Dominguez, Jesus A.] NASA Kennedy Space Ctr, VENCORE ESC, Kennedy Space Ctr, FL 32899 USA.
[Sibille, Laurent] NASA Kennedy Space Ctr, ESC 5, Surface Syst Grp, Kennedy Space Ctr, FL 32899 USA.
RP Schreiner, SS (reprint author), MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM schr0910@umn.edu
FU NASA Space Technology Research Fellowship [NNX13AL76H]
FX This work was supported by a NASA Space Technology Research Fellowship
(Grant #NNX13AL76H). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and
do not necessarily reflect the views of NASA.
NR 49
TC 1
Z9 1
U1 2
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD MAR 1
PY 2016
VL 57
IS 5
BP 1209
EP 1222
DI 10.1016/j.asr.2015.12.035
PG 14
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA DF1LE
UT WOS:000371100400007
ER
PT J
AU Kloos, JL
Moores, JE
Lemmon, M
Kass, D
Francis, R
Juarez, MD
Zorzano, MP
Martin-Torres, FJ
AF Kloos, Jacob L.
Moores, John E.
Lemmon, Mark
Kass, David
Francis, Raymond
Juarez, Manuel de la Torre
Zorzano, Maria-Paz
Martin-Torres, F. Javier
TI The first Martian year of cloud activity from Mars Science Laboratory
(sol 0-800)
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Mars; Clouds; Aphelion cloud belt
ID APHELION
AB Using images from the Navigation Cameras onboard the Mars Science Laboratory rover Curiosity, atmospheric movies were created to monitor the cloud activity over Gale Crater. Over the course of the first 800 sols of the mission, 133 Zenith Movies and 152 Supra Horizon Movies were acquired which use a mean frame subtraction technique to observe tenuous cloud movement. Moores et al. (2015a) reported on the first 360 sols of observations, representing Ls=150 degrees-5 degrees, and found that movies up to Ls=184 degrees showed visible cloud features with good contrast while subsequent movies were relatively featureless. With the extension of the observations to a full Martian year, more pronounced seasonal changes were observed. Within the Zenith Movie data set, clouds are observed primarily during Ls=3 degrees-170 degrees, when the solar flux is diminished and the aphelion cloud belt is present at equatorial latitudes. Clouds observed in the Supra-Horizon Movie data set also exhibit seasonality, with clouds predominantly observed during Ls=72 degrees-108 degrees. The seasonal occurrence of clouds detected in the atmospheric movies is well correlated with orbital observations of water ice clouds at similar times from the MCS and MARCI instruments on the MRO spacecraft. The observed clouds are tenuous and on average only make up a few hundredths of an optical depth, although more opaque clouds are observed in some of the movies. Additionally, estimates of the phase function calculated using water ice opacity retrievals from MCS are provided to show how Martian clouds scatter sunlight, and thus provide insight into the types of ice crystals that comprise the clouds. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Kloos, Jacob L.] York Univ, Ctr Res Earth & Space Sci, 4700 Keele St, N York, ON M3J 1P3, Canada.
[Moores, John E.] York Univ, N York, ON M3J 1P3, Canada.
[Lemmon, Mark] Texas A&M, Houston, TX USA.
[Kass, David] Jet Prop Lab, Pasadena, CA USA.
[Francis, Raymond; Juarez, Manuel de la Torre] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Zorzano, Maria-Paz] Ctr Astrobiol, Madrid, Spain.
[Martin-Torres, F. Javier] CSIC UGR, Inst Andaluz Ciencias Tierra, Madrid, Spain.
[Zorzano, Maria-Paz; Martin-Torres, F. Javier] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, Kiruna, Sweden.
RP Kloos, JL (reprint author), York Univ, Ctr Res Earth & Space Sci, 4700 Keele St, N York, ON M3J 1P3, Canada.
EM jlkloos@yorku.ca; jmoores@yorku.ca; lemmon@tamu.edu;
david.kass@jpl.nasa.gov; Raymond.Francis@jpl.nasa.gov; mtj@jpl.nasa.gov;
zorzanomm@cab.inta-csic.es; javiermt@iactugr-csic.es
RI Lemmon, Mark/E-9983-2010; Zorzano, Maria-Paz/F-2184-2015
OI Lemmon, Mark/0000-0002-4504-5136; Zorzano, Maria-Paz/0000-0002-4492-9650
FU MSL Participating Scientist Program - Canadian Space Agency (CSA)
FX JLK acknowledges funding through the MSL Participating Scientist Program
funded by the Canadian Space Agency (CSA) as well as contributions from
the Natural Sciences and Engineering Research Council (NSERC) of Canada.
This text was substantially improved by the anonymous reviewer.
NR 23
TC 3
Z9 3
U1 3
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD MAR 1
PY 2016
VL 57
IS 5
BP 1223
EP 1240
DI 10.1016/j.asr.2015.12.040
PG 18
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA DF1LE
UT WOS:000371100400008
ER
PT J
AU Schubert, M
Moore, AJ
AF Schubert, Matthew
Moore, Andrew J.
TI Morphological processing of ultraviolet emissions of electrical corona
discharge for analysis and diagnostic use
SO APPLIED OPTICS
LA English
DT Article
AB Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore have diagnostic utility. (C) 2016 Optical Society of America
C1 [Schubert, Matthew] Analyt Mech Associates Inc, 21 Enterprise Pkwy Suite 300, Hampton, VA 23666 USA.
[Moore, Andrew J.] NASA Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden St, Hampton, VA 23681 USA.
RP Moore, AJ (reprint author), NASA Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden St, Hampton, VA 23681 USA.
EM andrew.j.moore@nasa.gov
FU NASA Safe Autonomous Systems Operations Program
FX NASA Safe Autonomous Systems Operations Program.
NR 6
TC 0
Z9 0
U1 4
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD MAR 1
PY 2016
VL 55
IS 7
BP 1571
EP 1572
DI 10.1364/AO.55.001571
PG 2
WC Optics
SC Optics
GA DF4DH
UT WOS:000371297000011
PM 26974615
ER
PT J
AU Arendt, RG
Dwek, E
Bouchet, P
Danziger, IJ
Frank, KA
Gehrz, RD
Park, S
Woodward, CE
AF Arendt, Richard G.
Dwek, Eli
Bouchet, Patrice
Danziger, I. John
Frank, Kari A.
Gehrz, Robert D.
Park, Sangwook
Woodward, Charles E.
TI INFRARED CONTINUUM AND LINE EVOLUTION OF THE EQUATORIAL RING AROUND SN
1987A
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE dust, extinction; infrared: general; supernovae: individual (SN 1987A)
ID SPITZER-SPACE-TELESCOPE; INNER CIRCUMSTELLAR RING; SUPERNOVA 1987A;
ETA-CARINAE; OPTICAL-PROPERTIES; LIGHT-CURVE; BLAST WAVE; HOT-SPOTS;
SHER 25; DUST
AB Spitzer observations of SN 1987A have now spanned more than a decade. Since day similar to 4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6-24 mu m, and low and moderate resolution spectroscopy at 5-35 mu m. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 mu m. These data show that the 3.6 and 4.5 mu m brightness has clearly begun to fade after day similar to 8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe II] and [Si II] lines show different, peculiar velocity structures.
C1 [Arendt, Richard G.] CRESST UMBC, Baltimore, MD 21250 USA.
[Arendt, Richard G.; Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.
[Bouchet, Patrice] Univ Paris Diderot, CNRS, CEA IRFU SAp, Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France.
[Danziger, I. John] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-34143 Trieste, Italy.
[Frank, Kari A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
[Gehrz, Robert D.; Woodward, Charles E.] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA.
[Park, Sangwook] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA.
RP Arendt, RG (reprint author), CRESST UMBC, Baltimore, MD 21250 USA.; Arendt, RG (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.
EM richard.g.arendt@nasa.gov
FU NASA [12-ADAP12-0145, 13-ADAP13-0094]
FX This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. Support
for this work was provided by NASA. This research has made use of NASA's
Astrophysics Data System Bibliographic Services. ED was supported by
NASA grants 12-ADAP12-0145 and 13-ADAP13-0094. We thank the referee, A.
Jones, for useful comments which improved this manuscript.
NR 71
TC 2
Z9 2
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD MAR
PY 2016
VL 151
IS 3
AR 62
DI 10.3847/0004-6256/151/3/62
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF3MT
UT WOS:000371249100014
ER
PT J
AU Kirk, B
Conroy, K
Prsa, A
Abdul-Masih, M
Kochoska, A
Matijevic, G
Hambleton, K
Barclay, T
Bloemen, S
Boyajian, T
Doyle, LR
Fulton, BJ
Hoekstra, AJ
Jek, K
Kane, SR
Kostov, V
Latham, D
Mazeh, T
Orosz, JA
Pepper, J
Quarles, B
Ragozzine, D
Shporer, A
Southworth, J
Stassun, K
Thompson, SE
Welsh, WF
Agol, E
Derekas, A
Devor, J
Fischer, D
Green, G
Gropp, J
Jacobs, T
Johnston, C
LaCourse, DM
Saetre, K
Schwengeler, H
Toczyski, J
Werner, G
Garrett, M
Gore, J
Martinez, AO
Spitzer, I
Stevick, J
Thomadis, PC
Vrijmoet, EH
Yenawine, M
Batalha, N
Borucki, W
AF Kirk, Brian
Conroy, Kyle
Prsa, Andrej
Abdul-Masih, Michael
Kochoska, Angela
Matijevic, Gal
Hambleton, Kelly
Barclay, Thomas
Bloemen, Steven
Boyajian, Tabetha
Doyle, Laurance R.
Fulton, B. J.
Hoekstra, Abe Johannes
Jek, Kian
Kane, Stephen R.
Kostov, Veselin
Latham, David
Mazeh, Tsevi
Orosz, Jerome A.
Pepper, Joshua
Quarles, Billy
Ragozzine, Darin
Shporer, Avi
Southworth, John
Stassun, Keivan
Thompson, Susan E.
Welsh, William F.
Agol, Eric
Derekas, Aliz
Devor, Jonathan
Fischer, Debra
Green, Gregory
Gropp, Jeff
Jacobs, Tom
Johnston, Cole
LaCourse, Daryll Matthew
Saetre, Kristian
Schwengeler, Hans
Toczyski, Jacek
Werner, Griffin
Garrett, Matthew
Gore, Joanna
Martinez, Arturo O.
Spitzer, Isaac
Stevick, Justin
Thomadis, Pantelis C.
Vrijmoet, Eliot Halley
Yenawine, Mitchell
Batalha, Natalie
Borucki, William
TI KEPLER ECLIPSING BINARY STARS. VII. THE CATALOG OF ECLIPSING BINARIES
FOUND IN THE ENTIRE KEPLER DATA SET
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE binaries: eclipsing; catalogs; methods: data analysis; methods:
numerical; stars: fundamental parameters; stars: statistics
ID SMALL-MAGELLANIC-CLOUD; TRANSITING CIRCUMBINARY PLANET; APSIDAL-MOTION
TEST; STELLAR EVOLUTION; CLOSE BINARIES; PHOTOMETRIC SOLUTIONS; DISTANCE
INDICATORS; DATA RELEASE; CM DRACONIS; SPACED DATA
AB The primary Kepler Mission provided nearly continuous monitoring of similar to 200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg(2) Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.
C1 [Kirk, Brian] North Amer ALMA Sci Ctr, Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.
[Kirk, Brian; Conroy, Kyle; Gropp, Jeff; Johnston, Cole; Werner, Griffin] Villanova Univ, Dept Astrophys & Planetary Sci, 800 E Lancaster Ave, Villanova, PA 19085 USA.
[Conroy, Kyle; Prsa, Andrej; Abdul-Masih, Michael; Matijevic, Gal] Vanderbilt Univ, Dept Phys & Astron, VU Stn B 1807, Nashville, TN 37235 USA.
[Abdul-Masih, Michael] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA.
[Kochoska, Angela] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia.
[Hambleton, Kelly] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England.
[Barclay, Thomas] NASA, Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA.
[Bloemen, Steven] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Boyajian, Tabetha] Yale Univ, JW Gibbs Lab, 260 Whitney Ave, New Haven, CT 06511 USA.
[Doyle, Laurance R.] Principia Coll, IMoP, Elsah, IL 62028 USA.
[Doyle, Laurance R.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
[Fulton, B. J.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA.
[Kane, Stephen R.] San Francisco State Univ, 1600 Holloway Ave, San Francisco, CA 94132 USA.
[Kostov, Veselin] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Latham, David] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Mazeh, Tsevi] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel.
[Orosz, Jerome A.; Welsh, William F.; Garrett, Matthew; Gore, Joanna; Martinez, Arturo O.; Spitzer, Isaac; Stevick, Justin; Thomadis, Pantelis C.; Vrijmoet, Eliot Halley; Yenawine, Mitchell] San Diego State Univ, 5500 Campanile Dr, San Diego, CA 92182 USA.
[Pepper, Joshua] Lehigh Univ, Dept Phys, 16 Mem Dr East, Bethlehem, PA 18015 USA.
[Quarles, Billy] NASA, Ames Res Ctr, Astrobiol & Space Sci Div MS 245 3, Moffett Field, CA 94035 USA.
[Ragozzine, Darin] Florida Inst Technol, Phys & Space Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA.
[Shporer, Avi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Southworth, John] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England.
[Stassun, Keivan] Vanderbilt Univ, Nashville, TN 37240 USA.
[Thompson, Susan E.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA.
[Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Derekas, Aliz] ELTE Gothard Astrophys Observ, Szent Imre Herceg U 112, H-9704 Szombathely, Hungary.
[Derekas, Aliz] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, H-1121 Debrecen, Hungary.
[Devor, Jonathan] Tel Aviv Univ, Dept Astrophys, IL-69978 Tel Aviv, Israel.
[Fischer, Debra] Yale Univ, New Haven, CT 06520 USA.
[Green, Gregory] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 10, Cambridge, MA 02138 USA.
[Schwengeler, Hans] Univ Basel, Astron Inst, Venusstr 7, CH-4102 Binningen, Switzerland.
[Toczyski, Jacek] Univ Virginia, 4040 Lewis & Clark Dr, Charlottesville, VA 22911 USA.
[Batalha, Natalie] San Jose State Univ, One Washington Sq, San Jose, CA 95192 USA.
[Borucki, William] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Kirk, B (reprint author), North Amer ALMA Sci Ctr, Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.; Kirk, B (reprint author), Villanova Univ, Dept Astrophys & Planetary Sci, 800 E Lancaster Ave, Villanova, PA 19085 USA.
EM bkirk@nrao.edu; kyle.conroy@vanderbilt.edu; aprsa@villanova.edu
RI Derekas, Aliz/G-2091-2016;
OI Derekas, Aliz/0000-0002-6526-9444; /0000-0002-0802-9145; Pepper,
Joshua/0000-0002-3827-8417
FU NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; NASAs
Science Mission Directorate; NOAO survey program [11A-0022]; NASA/SETI
[08-SC-1041]; NSF RUI [AST-05-07542]; Postdoctoral Fellowship Programme
of the Hungarian Academy of Sciences; Janos Bolyai Research Scholarship
of the Hungarian Academy of Sciences; Lendulet Young Researchers
Programme of the Hungarian Academy of Sciences; European Communitys
Seventh Framework Programme (FP7) [269194 (IRSES/ASK), 312844];
Hungarian National Research, Development and Innovation Office-NKFIH
[K-1157709]; [ADAP14-0245]; [ADAP12-0172]
FX All of the data presented in this paper were obtained from the
Multimission Archive at the Space Telescope Science Institute (MAST).
STScI is operated by the Association of Universities for Research in
Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for
non-Hubble Space Telescope data is provided by the NASA Office of Space
Science via grant NNX09AF08G and by other grants and contracts. Funding
for this Discovery Mission is provided by NASAs Science Mission
Directorate. Spectroscopic follow-up data are made available through
NOAO survey program 11A-0022. This work is funded in part by the
NASA/SETI subcontract 08-SC-1041 and NSF RUI AST-05-07542. B.Q. was
supported by an appointment to the NASA Postdoctoral Program at the Ames
Research Center, administered by Oak Ridge Associated Universities
through a contract with NASA. T.S.B. acknowledges support from
ADAP14-0245 and ADAP12-0172. A.D. has been supported by the Postdoctoral
Fellowship Programme of the Hungarian Academy of Sciences, the Janos
Bolyai Research Scholarship of the Hungarian Academy of Sciences,
Lendulet-2009 Young Researchers Programme of the Hungarian Academy of
Sciences, the European Communitys Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 269194 (IRSES/ASK) and no.
312844 (SPACEINN). A. D. has also been supported by the Hungarian
National Research, Development and Innovation Office-NKFIH K-1157709.
NR 81
TC 17
Z9 17
U1 2
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD MAR
PY 2016
VL 151
IS 3
AR 68
DI 10.3847/0004-6256/151/3/68
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF3MT
UT WOS:000371249100020
ER
PT J
AU Shenoy, D
Humphreys, RM
Jones, TJ
Marengo, M
Gehrz, RD
Helton, LA
Hoffmann, WF
Skemer, AJ
Hinz, PM
AF Shenoy, Dinesh
Humphreys, Roberta M.
Jones, Terry J.
Marengo, Massimo
Gehrz, Robert D.
Helton, L. Andrew
Hoffmann, William F.
Skemer, Andrew J.
Hinz, Philip M.
TI SEARCHING FOR COOL DUST IN THE MID-TO-FAR INFRARED: THE MASS-LOSS
HISTORIES OF THE HYPERGIANTS mu Cep, VY CMa, IRC+10420, AND rho Cas
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE circumstellar matter; infrared: stars; instrumentation: adaptive optics;
stars: individual (mu Cep, VY Canis Majoris, IRC+10420, rho Cas); stars:
winds, outflows; supergiants
ID SHORT-WAVELENGTH SPECTROMETER; RED SUPERGIANT STARS; CANIS-MAJORIS;
ADAPTIVE OPTICS; HIGH-RESOLUTION; EVOLVED STARS; CIRCUMSTELLAR
ENVIRONMENT; 3-DIMENSIONAL MORPHOLOGY; MIDINFRARED CAMERA; ARRAY CAMERA
AB We present mid- and far-IR imaging of four famous hypergiant stars: the red supergiants mu Cep and VY CMa, and the warm hypergiants IRC + 10420 and rho Cas. Our 11-37 mu m SOFIA/FORCAST imaging probes cool dust not detected in visual and near-IR imaging studies. Adaptive optics 8-12 mu m imaging of mu Cep and IRC + 10420 with MMT/MIRAC reveals extended envelopes that are the likely sources of these stars' strong silicate emission features. We find mu Cep's mass-loss rate to have declined by about a factor of five over a 13,000 year history, ranging from 5 x 10(-6) down to similar to 1x 10(-6) M-circle dot yr(-1). The morphology of VY CMa indicates a cooler dust component coincident with the highly asymmetric reflection nebulae seen in the visual and near-IR. The lack of cold dust at greater distances around VY CMa indicates that its mass-loss history is limited to the last similar to 1200 years, with an average rate of 6 x 10(-4) M-circle dot yr(-1). We find two distinct periods in the mass-loss history of IRC + 10420 with a high rate of 2 x 10(-3) M-circle dot yr(-1) until approximately 2000 years ago, followed by an order of magnitude decrease in the recent past. We interpret this change as evidence of its evolution beyond the RSG stage. Our new infrared photometry of rho Cas is consistent with emission from the expanding dust shell ejected in its 1946 eruption, with no evidence of newer dust formation from its more recent events.
C1 [Shenoy, Dinesh; Humphreys, Roberta M.; Jones, Terry J.; Gehrz, Robert D.] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA.
[Marengo, Massimo] Iowa State Univ, Dept Phys, Ames, IA 50011 USA.
[Helton, L. Andrew] NASA, Ames Res Ctr, USRA SOFIA Sci Ctr, Moffett Field, CA 94035 USA.
[Hoffmann, William F.; Skemer, Andrew J.; Hinz, Philip M.] Univ Arizona, Steward Observ, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA.
RP Shenoy, D (reprint author), Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA.
EM shenoy@astro.umn.edu
FU NASA [SOF-0091]
FX We thank Dr. Willem-Jan de Wit, Dr. Takuya Fujiyoshi, and the
Subaru/COMICS instrument team for consulting on the orientation of mu
Cep's nebula as observed at 24.5 mu m. This work has used unpublished
data from Michael Schuster's PhD thesis, which is available through the
SAO/NASA Astrophysics Data System (ADS) at
http://adsabs.harvard.edu/abs/2007PhDT........28S. Financial support for
this work was provided by NASA through award # SOF-0091 to R. M.
Humphreys issued by USRA.
NR 74
TC 4
Z9 4
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD MAR
PY 2016
VL 151
IS 3
AR 51
DI 10.3847/0004-6256/151/3/51
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF3MT
UT WOS:000371249100003
ER
PT J
AU Stauffer, J
Cody, AM
Rebull, L
Hillenbrand, LA
Turner, NJ
Carpenter, J
Carey, S
Terebey, S
Morales-Calderon, M
Alencar, SHP
McGinnis, P
Sousa, A
Bouvier, J
Venuti, L
Hartmann, L
Calvet, N
Micela, G
Flaccomio, E
Song, I
Gutermuth, R
Barrado, D
Vrba, FJ
Covey, K
Herbst, W
Gillen, E
Guimaraes, MM
Bouy, H
Favata, F
AF Stauffer, John
Cody, Ann Marie
Rebull, Luisa
Hillenbrand, Lynne A.
Turner, Neal J.
Carpenter, John
Carey, Sean
Terebey, Susan
Morales-Calderon, Maria
Alencar, Silvia H. P.
McGinnis, Pauline
Sousa, Alana
Bouvier, Jerome
Venuti, Laura
Hartmann, Lee
Calvet, Nuria
Micela, Giusi
Flaccomio, Ettore
Song, Inseok
Gutermuth, Rob
Barrado, David
Vrba, Frederick J.
Covey, Kevin
Herbst, William
Gillen, Edward
Guimaraes, Marcelo Medeiros
Bouy, Herve
Favata, Fabio
TI CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY
VARYING LIGHT CURVES
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE circumstellar matter; open clusters and associations: individual (NGC
2264); stars: pre-main sequence; stars: protostars; stars: variables: T
Tauri, Herbig Ae/Be
ID T-TAURI STARS; ORION NEBULA CLUSTER; MAIN-SEQUENCE STARS; LOW-MASS
STARS; MAGNETOSPHERIC ACCRETION; STELLAR OBJECTS; POPULATION STARS; DISK
ACCRETION; AA TAURI; VARIABILITY
AB We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T. Tauri stars in NGC. 2264 whose CoRoT light curves exemplify the "stochastic" light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 angstrom emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Ha profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.
C1 [Stauffer, John; Rebull, Luisa; Carey, Sean] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA.
[Cody, Ann Marie] NASA, Ames Res Ctr, Kepler Sci Off, Mountain View, CA 94035 USA.
[Hillenbrand, Lynne A.; Carpenter, John] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
[Turner, Neal J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Terebey, Susan] Calif State Univ Los Angeles, Dept Phys & Astron, 5151 State Univ Dr, Los Angeles, CA 90032 USA.
[Morales-Calderon, Maria; Barrado, David; Bouy, Herve] INTA CSIC, Dept Astrofis, Ctr Astrobiol, POB 78,ESAC Campus, E-28691 Madrid, Spain.
[Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana] Univ Fed Minas Gerais, ICEx, Dept Fis, Ave Antonio Carlos 6627, BR-30270901 Belo Horizonte, MG, Brazil.
[Bouvier, Jerome; Venuti, Laura] Univ Grenoble, IPAG, F-38000 Grenoble, France.
[Bouvier, Jerome; Venuti, Laura] CNRS, IPAG, F-38000 Grenoble, France.
[Hartmann, Lee; Calvet, Nuria] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48105 USA.
[Micela, Giusi; Flaccomio, Ettore] Osserv Astron Palermo, INAF, Piazza Parlamento 1, I-90134 Palermo, Italy.
[Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA.
[Gutermuth, Rob] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA.
[Vrba, Frederick J.] US Naval Observ, Flagstaff Stn, 10391 West Naval Observ Rd, Flagstaff, AZ 86001 USA.
[Covey, Kevin] Western Washington Univ, Dept Phys & Astron, MS 9164,516 High St, Bellingham, WA 98225 USA.
[Herbst, William] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA.
[Gillen, Edward] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England.
[Guimaraes, Marcelo Medeiros] Univ Fed Sergipe, Dept Fis, Rod Marechal Rondon, BR-49100000 Sao Cristovao, SE, Brazil.
[Favata, Fabio] European Space Agcy, 8-10 Rue Mario Nikis, F-75738 Paris 15, France.
RP Stauffer, J (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA.
EM stauffer@ipac.caltech.edu
RI Bouy, Herve/H-2913-2012; Guimaraes, Marcelo/H-5897-2012; McGinnis,
Pauline/F-6490-2015; Barrado Navascues, David/C-1439-2017;
Morales-Calderon, Maria/C-8384-2017;
OI Bouy, Herve/0000-0002-7084-487X; Guimaraes, Marcelo/0000-0002-0517-4507;
McGinnis, Pauline/0000-0001-7476-7253; Barrado Navascues,
David/0000-0002-5971-9242; Morales-Calderon, Maria/0000-0001-9526-9499;
Rebull, Luisa/0000-0001-6381-515X; Covey, Kevin/0000-0001-6914-7797
FU NASA; National Aeronautics and Space Administration; NASA Origins of
Solar Systems program [11-OSS11-0074]; NASA ADAP grants [NNX11AD14G,
NNX13AF08G]; Caltech/JPL in support of Spitzer Space Telescope observing
programs [1373081, 1424329, 1440160]; CNPq; CAPES; Fapemig
FX This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. Support
for this work was provided by NASA through an award issued by
JPL/Caltech. This research was carried out in part at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration and with the support
of the NASA Origins of Solar Systems program via grant 11-OSS11-0074. RG
gratefully acknowledges funding support from NASA ADAP grants NNX11AD14G
and NNX13AF08G and Caltech/JPL awards 1373081, 1424329, and 1440160 in
support of Spitzer Space Telescope observing programs. SHPA, AS and PTM
acknowledge support from CNPq, CAPES and Fapemig.
NR 65
TC 6
Z9 6
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD MAR
PY 2016
VL 151
IS 3
AR 60
DI 10.3847/0004-6256/151/3/60
PG 30
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF3MT
UT WOS:000371249100012
ER
PT J
AU Troup, NW
Nidever, DL
De Lee, N
Carlberg, J
Majewski, SR
Fernandez, M
Covey, K
Chojnowski, SD
Pepper, J
Nguyen, DT
Stassun, K
Nguyen, DC
Wisniewski, JP
Fleming, SW
Bizyaev, D
Frinchaboy, PM
Garcia-Hernandez, DA
Ge, J
Hearty, F
Meszaros, S
Pan, K
Prieto, CA
Schneider, DP
Shetrone, MD
Skrutskie, MF
Wilson, J
Zamora, O
AF Troup, Nicholas W.
Nidever, David L.
De Lee, Nathan
Carlberg, Joleen
Majewski, Steven R.
Fernandez, Martin
Covey, Kevin
Chojnowski, S. Drew
Pepper, Joshua
Nguyen, Duy T.
Stassun, Keivan
Duy Cuong Nguyen
Wisniewski, John P.
Fleming, Scott W.
Bizyaev, Dmitry
Frinchaboy, Peter M.
Garcia-Hernandez, D. A.
Ge, Jian
Hearty, Fred
Meszaros, Szabolcs
Pan, Kaike
Prieto, Carlos Allende
Schneider, Donald P.
Shetrone, Matthew D.
Skrutskie, Michael F.
Wilson, John
Zamora, Olga
TI COMPANIONS TO APOGEE STARS. I. A MILKY WAY-SPANNING CATALOG OF STELLAR
AND SUBSTELLAR COMPANION CANDIDATES AND THEIR DIVERSE HOSTS
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE binaries: close; binaries: spectroscopic; brown dwarfs; Galaxy: stellar
content; planetary systems
ID LOW-MASS STELLAR; SOLAR-LIKE STARS; PRECISE RADIAL-VELOCITIES; BROWN
DWARF DESERT; GALACTIC EVOLUTION EXPERIMENT; SDSS-III/APOGEE SURVEY;
DIGITAL SKY SURVEY; GIANT STARS; SHORT-PERIOD; PLANET SEARCH
AB In its three years of operation, the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed >14,000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical radial velocity precision of similar to 100-200 m s(-1), APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions only for systems with a < 0.1-0.2 AU, with no indication of a desert at larger orbital separation. We propose a few potential explanations of this result, some which invoke this catalog's many small separation companion candidates found orbiting evolved stars. Furthermore, 16 BD and planet candidates have been identified around metal-poor ([Fe/H] < -0.5) stars in this catalog, which may challenge the core accretion model for companions >10M(Jup). Finally, we find all types of companions are ubiquitous throughout the Galactic disk with candidate planetary-mass and BD companions to distances of similar to 6 and similar to 16 kpc, respectively.
C1 [Troup, Nicholas W.; Majewski, Steven R.; Nguyen, Duy T.; Skrutskie, Michael F.; Wilson, John] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Nidever, David L.] Univ Michigan, 1085 S Univ Ave, Ann Arbor, MI 48109 USA.
[Nidever, David L.] Large Synopt Survey Telescope, 950 North Cherry Ave, Tucson, AZ 85719 USA.
[Nidever, David L.] Steward Observ, 933 North Cherry Ave, Tucson, AZ 85719 USA.
[De Lee, Nathan; Stassun, Keivan] No Kentucky Univ, Dept Phys Geol & Engn Tech, Highland Hts, KY 41099 USA.
[De Lee, Nathan] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Carlberg, Joleen] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Fernandez, Martin; Covey, Kevin] Western Washington Univ, Bellingham, WA 98225 USA.
[Chojnowski, S. Drew] New Mexico State Univ, Las Cruces, NM 88003 USA.
[Pepper, Joshua] Lehigh Univ, Bethlehem, PA 18015 USA.
[Duy Cuong Nguyen] Univ Toronto, Toronto, ON, Canada.
[Wisniewski, John P.] Univ Oklahoma, Norman, OK 73019 USA.
[Fleming, Scott W.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Fleming, Scott W.] Comp Sci Corp, Baltimore, MD USA.
[Bizyaev, Dmitry; Pan, Kaike] Apache Point Observ, POB 59, Sunspot, NM 88349 USA.
[Bizyaev, Dmitry; Pan, Kaike] New Mexico State Univ, POB 59, Sunspot, NM 88349 USA.
[Bizyaev, Dmitry] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia.
[Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, TCU Box 298840, Ft Worth, TX 76129 USA.
[Garcia-Hernandez, D. A.; Prieto, Carlos Allende; Zamora, Olga] Inst Astrofis Canarias, Via Lactea S-N, E-38205 Tenerife, Spain.
[Garcia-Hernandez, D. A.; Prieto, Carlos Allende; Zamora, Olga] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain.
[Ge, Jian] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Hearty, Fred; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Hearty, Fred; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.
[Meszaros, Szabolcs] ELTE Gothard Astrophys Observ, Szent Imre Herceg St 112, H-9704 Szombathely, Hungary.
[Shetrone, Matthew D.] Univ Texas Austin, Austin, TX 78712 USA.
RP Troup, NW (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
EM nwt2de@virginia.edu
RI Meszaros, Szabolcs/N-2287-2014;
OI Meszaros, Szabolcs/0000-0001-8237-5209; Fleming,
Scott/0000-0003-0556-027X; Covey, Kevin/0000-0001-6914-7797; Pepper,
Joshua/0000-0002-3827-8417
FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department
of Energy Office of Science; McLaughlin Fellowship at the University of
Michigan; NASA Postdoctoral Program at the Goddard Space Flight Center;
Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences;
Spanish Ministry of Economy and Competitiveness (MINECO)
[AYA2014-56359-P, RYC-201314182, AYA-2014-58082-P]
FX Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of Science. The
SDSS-III web site is http://www.sdss3.org/.; D. L. N. was supported by a
McLaughlin Fellowship at the University of Michigan. J. K. C. was
supported by an appointment to the NASA Postdoctoral Program at the
Goddard Space Flight Center, administered by Universities Space Research
Association through a contract with NASA. Szabolcs Meszaros has been
supported by the Janos Bolyai Research Scholarship of the Hungarian
Academy of Sciences. C. A. P., D. A. G. H., and O. Z. acknowledge
support provided by the Spanish Ministry of Economy and Competitiveness
(MINECO) under grants AYA2014-56359-P, RYC-201314182, and
AYA-2014-58082-P.
NR 87
TC 4
Z9 4
U1 2
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD MAR
PY 2016
VL 151
IS 3
AR 85
DI 10.3847/0004-6256/151/3/85
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF3MT
UT WOS:000371249100037
ER
PT J
AU Rovai, AS
Riul, P
Twilley, RR
Castaneda-Moya, E
Rivera-Monroy, VH
Williams, AA
Simard, M
Cifuentes-Jara, M
Lewis, RR
Crooks, S
Horta, PA
Schaeffer-Novelli, Y
Cintron, G
Pozo-Cajas, M
Pagliosa, PR
AF Rovai, A. S.
Riul, P.
Twilley, R. R.
Castaneda-Moya, E.
Rivera-Monroy, V. H.
Williams, A. A.
Simard, M.
Cifuentes-Jara, M.
Lewis, R. R.
Crooks, S.
Horta, P. A.
Schaeffer-Novelli, Y.
Cintron, G.
Pozo-Cajas, M.
Pagliosa, P. R.
TI Scaling mangrove aboveground biomass from site-level to
continental-scale
SO GLOBAL ECOLOGY AND BIOGEOGRAPHY
LA English
DT Article
DE Allometric models; carbon stock; climate change; coastal management
policies; macroecology; mangrove forest structure; Neotropics
ID NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; FOREST STRUCTURE; CARIBBEAN
COAST; PACIFIC COAST; COSTA-RICA; GAZI BAY; ENVIRONMENTAL GRADIENTS;
PELLICIERA-RHIZOPHORAE; SECONDARY SUCCESSION
AB AimWe developed a set of statistical models to improve spatial estimates of mangrove aboveground biomass (AGB) based on the environmental signature hypothesis (ESH). We hypothesized that higher tidal amplitudes, river discharge, temperature, direct rainfall and decreased potential evapotranspiration explain observed high mangrove AGB.
LocationNeotropics and a small portion of the Nearctic region.
MethodsA universal forest model based on site-level forest structure statistics was validated to spatially interpolate estimates of mangrove biomass at different locations. Linear models were then used to predict mangrove AGB across the Neotropics.
ResultsThe universal forest site-level model was effective in estimating mangrove AGB using pre-existing mangrove forest structure inventories to validate the model. We confirmed our hypothesis that at continental scales higher tidal amplitudes contributed to high forest biomass associated with high temperature and rainfall, and low potential evapotranspiration. Our model explained 20% of the spatial variability in mangrove AGB, with values ranging from 16.6 to 627.0t ha(-1) (mean, 88.7t ha(-1)). Our findings show that mangrove AGB has been overestimated by 25-50% in the Neotropics, underscoring a commensurate bias in current published global estimates using site-level information.
Main conclusionsOur analysis show how the ESH significantly explains spatial variability in mangrove AGB at hemispheric scales. This finding is critical to improve and explain site-level estimates of mangrove AGB that are currently used to determine the relative contribution of mangrove wetlands to global carbon budgets. Due to the lack of a conceptual framework explicitly linking environmental drivers and mangrove AGB values during model validation, previous works have significantly overestimated mangrove AGB; our novel approach improved these assessments. In addition, our framework can potentially be applied to other forest-dominated ecosystems by allowing the retrieval of extensive databases at local levels to generate more robust statistical predictive models to estimate continental-scale biomass values.
C1 [Rovai, A. S.; Horta, P. A.; Pagliosa, P. R.] Univ Fed Santa Catarina, Dept Ecol & Zool, BR-88040900 Florianopolis, SC, Brazil.
[Riul, P.] Univ Fed Paraiba, Dept Engn & Meio Ambiente, BR-58297000 Rio Tinto, PB, Brazil.
[Twilley, R. R.; Castaneda-Moya, E.; Rivera-Monroy, V. H.; Williams, A. A.] Louisiana State Univ, Sch Coast & Environm, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA.
[Simard, M.] Jet Prop Lab, MS 300-319D,4800 Oak Grove Dr, Pasadena, CA 90039 USA.
[Cifuentes-Jara, M.] CATIE, Apdo 70, Turrialba 30501, Cartago, Costa Rica.
[Lewis, R. R.] Lewis Environm Serv Inc, POB 5430, Salt Springs, FL 32134 USA.
[Crooks, S.] Environm Sci Associates, 550 Kearny St Ste 800, San Francisco, CA 94108 USA.
[Horta, P. A.] Univ Fed Santa Catarina, Dept Bot, BR-88010970 Florianopolis, SC, Brazil.
[Schaeffer-Novelli, Y.] Univ Sao Paulo, Inst Oceanog, Praca Oceanog 191, BR-05058000 Sao Paulo, SP, Brazil.
[Cintron, G.] US Fish & Wildlife Serv, 4401 N Fairfax Dr Rm 11Q, Arlington, VA 22203 USA.
[Pozo-Cajas, M.] Escuela Super Politecn Litoral, Fac Ciencias Maritimas, Km 30-5 Via Perimetral, Guayaquil, Ecuador.
[Pagliosa, P. R.] Univ Fed Santa Catarina, Dept Geociencias, BR-88040900 Florianopolis, SC, Brazil.
RP Rovai, AS (reprint author), Univ Fed Santa Catarina, Dept Ecol & Zool, BR-88040900 Florianopolis, SC, Brazil.
EM asrovai@gmail.com
RI Simard, Marc/H-3516-2013; Pagliosa, Paulo/E-1948-2013;
OI Simard, Marc/0000-0002-9442-4562; Pagliosa, Paulo/0000-0003-0834-2534; ,
Pablo/0000-0003-4035-1975
FU CAPES; CNPq; Louisiana Sea Grant College Program; School of the Coast
and Environment (LSU); Florida Coastal Everglades Long-Term Ecological
Research program [DBI-0620409, DEB-1237517]; NASA-JPL project
'Vulnerability Assessment of Mangrove Forest Regions of the Americas'
(LSU) [1452878]; [BEX1930/13-3]; [BEX2516/14-04]; [18379/12-5]
FX The Brazilian foundations CAPES and CNPq, the Louisiana Sea Grant
College Program and the School of the Coast and Environment (LSU)
supported this work. The CAPES Science without Borders (PDSE/CsF) and
Post-doctoral Senior Programs provided international fellowships for
A.S.R., P.R. (grant nos. BEX1930/13-3 and BEX2516/14-04) and P.R.P.
(grant no. 18379/12-5). The Florida Coastal Everglades Long-Term
Ecological Research program (grant nos. DBI-0620409 and DEB-1237517) and
the NASA-JPL project 'Vulnerability Assessment of Mangrove Forest
Regions of the Americas' (LSU Subcontract no. 1452878) provided partial
funding for V.H.R.M., E.C.M. and A.A.W. We are also grateful to James
Hutchison and an anonymous referee for providing insightful comments on
an earlier version of this manuscript.
NR 255
TC 4
Z9 4
U1 7
U2 30
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1466-822X
EI 1466-8238
J9 GLOBAL ECOL BIOGEOGR
JI Glob. Ecol. Biogeogr.
PD MAR
PY 2016
VL 25
IS 3
BP 286
EP 298
DI 10.1111/geb.12409
PG 13
WC Ecology; Geography, Physical
SC Environmental Sciences & Ecology; Physical Geography
GA DF6AI
UT WOS:000371436200004
ER
PT J
AU Xu, KM
Wong, TM
Dong, ST
Chen, F
Kato, S
Taylor, PC
AF Xu, Kuan-Man
Wong, Takmeng
Dong, Shengtao
Chen, Feng
Kato, Seiji
Taylor, Patrick C.
TI Cloud Object Analysis of CERES Aqua Observations of Tropical and
Subtropical Cloud Regimes: Four-Year Climatology
SO JOURNAL OF CLIMATE
LA English
DT Article
DE Climatology; Atm/Ocean Structure/ Phenomena; Boundary layer; Cirrus
clouds; Cumulus clouds; Physical Meteorology and Climatology; Radiative
fluxes; Convective clouds
ID 1998 EL-NINO; COMMUNITY ATMOSPHERE MODEL; ANGULAR-DISTRIBUTION MODELS;
DEEP CONVECTIVE SYSTEMS; STATISTICAL-ANALYSES; PART I; INSTRUMENT
SIMULATORS; PHYSICAL-PROPERTIES; RESOLVING MODEL; LA-NINA
AB Four distinct types of cloud objects-tropical deep convection, boundary layer cumulus, stratocumulus, and overcast stratus-were previously identified from CERES Tropical Rainfall Measuring Mission (TRMM) data. Six additional types of cloud objects-cirrus, cirrocumulus, cirrostratus, altocumulus, transitional altocumulus, and solid altocumulus-are identified from CERES Aqua satellite data in this study. The selection criteria for the 10 cloud object types are based on CERES footprint cloud fraction and cloud-top pressure, as well as cloud optical depth for the high-cloud types. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The data are analyzed according to cloud object types, sizes, regions, and associated environmental conditions. The frequency of occurrence and probability density functions (PDFs) of selected physical properties are produced for the July 2006-June 2010 period. It is found that deep convective and boundary layer types dominate the total population while the six new types other than cirrostratus do not contribute much in the tropics and subtropics. There are pronounced differences in the size spectrum between the types, with the largest ones being of deep convective type and with stratocumulus and overcast types over the ocean basins off west coasts. The summary PDFs of radiative and cloud physical properties differ greatly among the size categories. For boundary layer cloud types, the differences come primarily from the locations of cloud objects: for example, coasts versus open oceans. They can be explained by considerable variations in large-scale environmental conditions with cloud object size, which will be further qualified in future studies.
C1 [Xu, Kuan-Man; Wong, Takmeng; Kato, Seiji; Taylor, Patrick C.] NASA, Langley Res Ctr, Climate Sci Branch, Mail Stop 420, Hampton, VA 23681 USA.
[Dong, Shengtao; Chen, Feng] Sci Syst & Applicat Inc, Hampton, VA USA.
RP Xu, KM (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, Mail Stop 420, Hampton, VA 23681 USA.
EM kuan-man.xu@nasa.gov
RI Xu, Kuan-Man/B-7557-2013; Taylor, Patrick/D-8696-2015
OI Xu, Kuan-Man/0000-0001-7851-2629; Taylor, Patrick/0000-0002-8098-8447
FU NASA Energy and Water cycle Study (NEWS); Interdisciplinary Study (IDS)
programs
FX This work has been supported by NASA Energy and Water cycle Study (NEWS)
and Interdisciplinary Study (IDS) programs. CERES data are available
from NASA Langley Research Center's Atmospheric Science Data Center
(http://asdc.larc.nasa.gov).
NR 55
TC 2
Z9 2
U1 1
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD MAR
PY 2016
VL 29
IS 5
BP 1617
EP 1638
DI 10.1175/JCLI-D-14-00836.1
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF4EQ
UT WOS:000371301000001
ER
PT J
AU Kidwell, A
Lee, T
Jo, YH
Yan, XH
AF Kidwell, Autumn
Lee, Tong
Jo, Young-Heon
Yan, Xiao-Hai
TI Characterization of the Variability of the South Pacific Convergence
Zone Using Satellite and Reanalysis Wind Products
SO JOURNAL OF CLIMATE
LA English
DT Article
DE Variability; Interannual variability; Satellite observations; Pacific
decadal oscillation; Circulation/ Dynamics; Observational techniques and
algorithms; Decadal variability; ENSO; Tropical variability
ID SEA-SURFACE SALINITY; EL-NINO EVENTS; TROPICAL PACIFIC; EASTERN-PACIFIC;
WARM POOL; OSCILLATION; ENSO; IMPACTS; MODEL; OCEAN
AB The variability of the South Pacific convergence zone (SPCZ) is evaluated using ocean surface wind products derived from the atmospheric reanalysis ERA-Interim for the period of 1981-2014 and QuickSCAT for the period of 1999-2009. From these products, indices were developed to represent the SPCZ strength, area, and centroid location. Excellent agreement is found between the indices derived from the two wind products during the QuikSCAT period in terms of the spatiotemporal structures of the SPCZ. The longer ERA-Interim product is used to study the variations of SPCZ properties on intraseasonal, seasonal, interannual, and decadal time scales. The SPCZ strength, area, and centroid latitude have a dominant seasonal cycle. In contrast, the SPCZ centroid longitude is dominated by intraseasonal variability due to MJO influence. The SPCZ indices are all correlated with El Nino-Southern Oscillation indices. Interannual and intraseasonal variations of SPCZ strength during strong El Nino are approximately twice as large as the respective seasonal variations. SPCZ strength depends more on the intensity of El Nino rather than the central-Pacific versus eastern-Pacific type. The change from positive to negative Pacific decadal oscillation (PDO) around 1999 results in a westward shift of the SPCZ centroid longitude, a much smaller interannual swing in centroid latitude, and a decrease in SPCZ area. This study improves the understanding of the variations of the SPCZ on multiple time scales and reveals the variations of SPCZ strength not reported previously. The diagnostics analyses can be used to evaluate climate models to gauge their fidelity.
C1 [Kidwell, Autumn; Yan, Xiao-Hai] Univ Delaware, Coll Earth Ocean & Environm, 215 Robinson Hall, Newark, DE 19716 USA.
[Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Jo, Young-Heon] Pusan Natl Univ, Dept Oceanog, Busan, South Korea.
[Yan, Xiao-Hai] Univ Delaware, Xiamen Univ, Joint Inst Coastal Res & Management, Newark, DE 19716 USA.
RP Kidwell, A (reprint author), Univ Delaware, Coll Earth Ocean & Environm, 215 Robinson Hall, Newark, DE 19716 USA.
EM akidwell@udel.edu
FU Delaware Space Grant College and Fellowship Program (NASA) [NNX15AI19H];
"SaTellite remote sensing on west Antarctic ocean Research: STAR'' of
the Korea Polar Research Institute, Republic of Korea [PE14040]; Natural
Science Foundation of China [NSFC-41476007]
FX We thank the Delaware Space Grant College and Fellowship Program (NASA
Grant NNX15AI19H) for financial support. This research was, in part,
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration. This study was also carried out with the support of
"SaTellite remote sensing on west Antarctic ocean Research: STAR''
(Project PE14040) of the Korea Polar Research Institute, Republic of
Korea. This research was partially supported by the Natural Science
Foundation of China (NSFC-41476007). We thank E. Liao, J. Marks, and M.
Shatley for Technical Support and Trouble Shooting (TSTS).
NR 47
TC 0
Z9 0
U1 4
U2 13
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD MAR
PY 2016
VL 29
IS 5
BP 1717
EP 1732
DI 10.1175/JCLI-D-15-0536.1
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF4EW
UT WOS:000371301600002
ER
PT J
AU Baker, NC
Taylor, PC
AF Baker, Noel C.
Taylor, Patrick C.
TI A Framework for Evaluating Climate Model Performance Metrics
SO JOURNAL OF CLIMATE
LA English
DT Article
DE Physical Meteorology and Climatology; Ranking methods; Mathematical and
statistical techniques; Models and modeling; Variability; Radiative
fluxes; Climate variability; Coupled models; Climate models; Statistical
techniques
ID CERES; FEEDBACKS
AB Given the large amount of climate model output generated from the series of simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), a standard set of performance metrics would facilitate model intercomparison and tracking performance improvements. However, no framework exists for the evaluation of performance metrics. The proposed framework systematically integrates observations into metric assessment to quantitatively evaluate metrics. An optimal metric is defined in this framework as one that measures a behavior that is strongly linked to model quality in representing mean-state present-day climate. The goal of the framework is to objectively and quantitatively evaluate the ability of a performance metric to represent overall model quality. The framework is demonstrated, and the design principles are discussed using a novel set of performance metrics, which assess the simulation of top-of-atmosphere (TOA) and surface radiative flux variance and probability distributions within 34 CMIP5 models against Clouds and the Earth's Radiant Energy System (CERES) observations and GISS Surface Temperature Analysis (GISTEMP). Of the 44 tested metrics, the optimal metrics are found to be those that evaluate global-mean TOA radiation flux variance.
C1 [Baker, Noel C.; Taylor, Patrick C.] NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA.
RP Baker, NC (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA.
EM noel.c.baker@nasa.gov
RI Taylor, Patrick/D-8696-2015
OI Taylor, Patrick/0000-0002-8098-8447
FU NASA; Oak Ridge Associated Universities; NASA Langley Research Center
FX This study was funded through the NASA Postdoctoral Program with the
support of Oak Ridge Associated Universities and NASA Langley Research
Center. Observational data products are publicly available online and
were obtained from the following websites of the CERES products
(http://ceres.larc.nasa.gov/) and GISTEMP temperature datasets
(http://data.giss.nasa.gov/gistemp/). The authors appreciate the helpful
comments received from Anthony Broccoli and an anonymous reviewer.
NR 30
TC 0
Z9 0
U1 3
U2 14
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD MAR
PY 2016
VL 29
IS 5
BP 1773
EP 1782
DI 10.1175/JCLI-D-15-0114.1
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF4EW
UT WOS:000371301600005
ER
PT J
AU Woerner, D
AF Woerner, David
TI A Progress Report on the eMMRTG
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE eMMRTG; thermoelectric generator; radioisotope generator; radioisotope
power system; enhanced MMRTG
AB A multimission radioisotope thermoelectric generator (MMRTG), developed by the US Department of Energy for the National Aeronautics and Space Administration, powers the Mars Science Laboratory Curiosity rover on Mars. New thermoelectric couples (TECs) have been developed in recent years that offer significant improvements over the TECs used in the MMRTG. The maturity of the new TECs and the design flexibility of the MMRTG enable a low-risk system upgrade that is predicted to substantially enhance the MMRTG's performance. System design trades are looking at changing the TECs and increasing the hot-side temperature to find the best combination of performance and program cost in this enhanced MMRTG (eMMRTG). Initial studies indicated that a low-risk enhancement would be to use skutterudite (SKD) materials developed at JPL to form TECs for the eMMRTG. Simply replacing the PbTe/TAGS TECs with SKD TECs and making a few low-risk modifications to the MMRTG design could potentially provide a 25% increase in power output at beginning of life (BOL). More important than the BOL power output increase is the end of design life (EODL) power output increase. With the anticipated lower degradation rate of the SKD materials, it is anticipated that the EODL power output will be more than 50% higher than for the MMRTG (with EODL defined as 17 years from fueling). This paper presents an overview of the results of the initial trades leading to the pursuit of the eMMRTG and the progress made since those were concluded.
C1 [Woerner, David] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 321-520, Pasadena, CA 91109 USA.
RP Woerner, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 321-520, Pasadena, CA 91109 USA.
EM david.f.woerner@jpl.nasa.gov
NR 6
TC 3
Z9 3
U1 2
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
EI 1543-186X
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD MAR
PY 2016
VL 45
IS 3
BP 1278
EP 1283
DI 10.1007/s11664-015-3998-8
PG 6
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA DF2HO
UT WOS:000371163400011
ER
PT J
AU Vasilevskiy, D
Simard, JM
Caillat, T
Masut, RA
Turenne, S
AF Vasilevskiy, D.
Simard, J. -M.
Caillat, T.
Masut, R. A.
Turenne, S.
TI Consistency of ZT-Scanner for Thermoelectric Measurements from 300 K to
700 K: A Comparative Analysis Using Si80Ge20 Polycrystalline Alloys
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Figure of merit; thermoelectric measurements; ZT-Scanner; Harman method
ID INTERNATIONAL ROUND-ROBIN; BULK THERMOELECTRICS; TRANSPORT-PROPERTIES
AB A Harman-based instrument for the characterization of thermoelectric (TE) materials in a wide temperature range (the ZT-Scanner) was introduced in an earlier publication, with a focus on a two-sample system calibration (2SSC) procedure used for the precise evaluation of thermal losses during the measurements. This technique offers an option to accurately measure the main TE parameters from 300 K to 700 K. We now report the results of ZT-Scanner measurements of p-type Si80Ge20 polycrystalline samples, including the TE figure of merit ZT, Seebeck coefficient, and thermal and electrical conductivities. These samples proved to be extremely stable up to the maximum temperature of measurement, and could eventually serve as a standard for thermoelectric characterization. The measurements were performed using both PbSn solder and conductive silver paste contacts. In all cases, Ni plating was used as a protective barrier between the TE alloys and the contact material. The experimental data has been compared to the typical data measured by the Jet Propulsion Laboratory on similar samples, providing a quantitative estimation of the accuracy of the measurement system, which has been found to be better than 0.015, or 5%, up to 700 K for ZT. The consistency of the TE measurements is evaluated by means of a statistical analysis of repetitive tests on the same and on different samples of identical nature. We also analyze the influence of thermal and electrical contact resistance on the measured properties.
C1 [Vasilevskiy, D.; Masut, R. A.; Turenne, S.] Polytech Montreal, Montreal, PQ H3C 3A7, Canada.
[Vasilevskiy, D.] TEMTE Inc, Montreal, PQ H4B 2A7, Canada.
[Simard, J. -M.] EXAPROM Inc, Blainville, PQ J7B 1X1, Canada.
[Caillat, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Vasilevskiy, D (reprint author), Polytech Montreal, Montreal, PQ H3C 3A7, Canada.; Vasilevskiy, D (reprint author), TEMTE Inc, Montreal, PQ H4B 2A7, Canada.
EM dvasilevskiy@polymtl.ca
FU Natural Sciences and Engineering Research Council of Canada (NSERC);
National Aeronautics and Space Administration
FX We acknowledge the financial support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), the infrastructure
support provided by the Regroupement Quebecois sur les Materiaux de
Pointe, and of the Fonds de Recherche du Quebec Nature et Technologies
(FRQNT), Projet de Recherche Orientee en Partenariat. Part of this work
was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space
Administration.
NR 16
TC 0
Z9 0
U1 3
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
EI 1543-186X
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD MAR
PY 2016
VL 45
IS 3
BP 1540
EP 1547
DI 10.1007/s11664-015-4101-1
PG 8
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA DF2HO
UT WOS:000371163400048
ER
PT J
AU Hendricks, TJ
Yee, S
Leblanc, S
AF Hendricks, Terry J.
Yee, Shannon
Leblanc, Saniya
TI Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric
Generator: A Deeper Dive
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Thermoelectric systems; cost analysis; cost scaling; energy recovery;
waste heat recovery
AB Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/Wit is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F-opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.
C1 [Hendricks, Terry J.] CALTECH, NASA Jet Prop Lab, Thermal Energy Convers Grp, Power & Sensors Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Yee, Shannon] Georgia Inst Technol, GWW Sch Mech Engn, Atlanta, GA 30332 USA.
[Leblanc, Saniya] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA.
RP Hendricks, TJ (reprint author), CALTECH, NASA Jet Prop Lab, Thermal Energy Convers Grp, Power & Sensors Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM terry.j.hendricks@jpl.nasa.gov
FU NASA [43-17508]; General Motors [43-17508]; U.S. Department of Energy,
at the Jet Propulsion Laboratory, California Institute of Technology
FX This work was carried out under NASA Space Act Agreement No. 43-17508, a
contract between NASA and General Motors with funding from the U.S.
Department of Energy, at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract to the National Aeronautics
and Space Administration.
NR 11
TC 2
Z9 2
U1 7
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
EI 1543-186X
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD MAR
PY 2016
VL 45
IS 3
BP 1751
EP 1761
DI 10.1007/s11664-015-4201-y
PG 11
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA DF2HO
UT WOS:000371163400076
ER
PT J
AU Barnes, M
Kalberg, K
Pan, ML
Leung, PS
AF Barnes, Michele
Kalberg, Kolter
Pan, Minling
Leung, PingSun
TI When is brokerage negatively associated with economic benefits? Ethnic
diversity, competition, and common-pool resources
SO SOCIAL NETWORKS
LA English
DT Article
DE Brokerage; Social capital; Economic benefits; Ethnic diversity; Natural
resource management; Common-pool resources
ID SOCIAL NETWORKS; INFORMATION EXCHANGE; TRADE-OFF; PERFORMANCE;
KNOWLEDGE; MANAGEMENT; FISHERIES; EMBEDDEDNESS; DYNAMICS; STRENGTH
AB There is a growing body of literature positively linking dimensions of social capital to economic benefits. Yet recent research also points to a potential "dark side" of social capital, where over-embeddedness in networks and the pressures associated with brokerage are hypothesized to constrain actors, having a negative effect on economic outcomes. This dichotomy suggests that context is important, yet the overwhelming majority of existing empirical evidence stems from socially homogenous populations in corporate and organizational settings, limiting a broader understanding of when and how context matters. We advance this discourse to a socially fragmented, ethnically diverse common-pool resource system where information is highly valuable and competition is fierce. Merging several unique datasets from Hawaii's pelagic tuna fishery, we find that network prominence, i.e., being well connected locally, has a significant, positive effect on economic productivity. In contrast, we find that brokerage, defined here as ties that bridge either structurally distinct or ethnically distinct groups, has a significant, negative effect. Taken together, our results provide empirical support to widespread claims of the value of information access in common-pool resource systems, yet suggest that in ethnically diverse, competitive environments, brokers may be penalized for sharing information across social divides. Our results thus contribute to an emerging theory on the fragile nature of brokerage that recognizes its potential perils and the importance of context. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Barnes, Michele; Leung, PingSun] Univ Hawaii Manoa, Dept Nat Resources & Environm Management, 1910 East West Rd,Sherman 101, Honolulu, HI 96822 USA.
[Barnes, Michele; Kalberg, Kolter] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, 1000 Pope Rd,Marine Sci Bldg 312, Honolulu, HI 96822 USA.
[Barnes, Michele] James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia.
[Pan, Minling] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA.
RP Barnes, M (reprint author), James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia.
EM barnesm@hawaii.edu; kolter.kalberg@noaa.gov; minling.pan@noaa.gov;
psleung@hawaii.edu
FU Joint Institute for Marine and Atmospheric Research [NA11NMF4320128];
National Oceanic and Atmospheric Administration (NOAA); University of
Hawaii Graduate Student Organization
FX We thank our interpreters, all of the fishers who participated in this
project, the National Marine Fisheries Service observer program and
Hawaii Division of Aquatic Resources for providing data access, and two
anonymous reviewers for their constructive comments. MB also thanks the
SOCNET community for their response to her inquiry regarding the dark
side of brokerage, and Joey Lecky for the development of Fig. 2. This
project was funded by Cooperative Agreement NA11NMF4320128 between the
Joint Institute for Marine and Atmospheric Research and the National
Oceanic and Atmospheric Administration (NOAA). MB also received funding
from the University of Hawaii Graduate Student Organization. The views
expressed herein are those of the authors and do not necessarily reflect
the views of NOAA or any of its subdivisions.
NR 89
TC 2
Z9 2
U1 5
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-8733
EI 1879-2111
J9 SOC NETWORKS
JI Soc. Networks
PD MAR
PY 2016
VL 45
BP 55
EP 65
DI 10.1016/j.socnet.2015.11.004
PG 11
WC Anthropology; Sociology
SC Anthropology; Sociology
GA DF4ZW
UT WOS:000371362600005
ER
PT J
AU Martin, KM
Landau, DF
Longuski, JM
AF Martin, Kaela M.
Landau, Damon F.
Longuski, James M.
TI Method to maintain artificial gravity during transfer maneuvers for
tethered spacecraft
SO ACTA ASTRONAUTICA
LA English
DT Article
DE Tethered spacecraft; Artificial gravity; Spinning spacecraft; Human Mars
mission
ID MOTION SICKNESS; HEAD MOVEMENTS; MICROGRAVITY; COUNTERMEASURE;
ENVIRONMENTS; SYSTEM; LEVEL; MARS
AB Artificial gravity has long been proposed to limit the harmful effects of the micro-gravity environment on human crews during mission to Mars. A tethered spacecraft spinning at 4 rpm (to avoid motion sickness) provides an attractive configuration. However, if the spacecraft is required to spin down for impulsive maneuvers and then spin up for interplanetary travel, the propellant cost may be unacceptably high. This paper proposes a maneuver that is performed while the spacecraft is spinning thus avoiding additional spin-down and spin-up maneuvers. A control law is provided to achieve the required AV while maintaining spin rate. A hypothetical human mission from Earth to Mars is analyzed using the new maneuver which, in this example, may save over 700 kg of propellant. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved.
C1 [Martin, Kaela M.] Embry Riddle Aeronaut Univ, 3700 Willow Creek Rd, Prescott, AZ 86301 USA.
[Landau, Damon F.] CALTECH, Jet Prop Lab, Mail Stop 301-121, Pasadena, CA 91109 USA.
[Longuski, James M.] Purdue Univ, 701 West Stadium Ave, W Lafayette, IN 47907 USA.
RP Martin, KM (reprint author), Embry Riddle Aeronaut Univ, 3700 Willow Creek Rd, Prescott, AZ 86301 USA.
EM Kaela.Martin@erau.edu
FU National Science Foundation Graduate Research Fellowship Program
[DGE-1333468]
FX The first author was supported by the National Science Foundation
Graduate Research Fellowship Program under grant number DGE-1333468.
NR 30
TC 0
Z9 0
U1 5
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0094-5765
EI 1879-2030
J9 ACTA ASTRONAUT
JI Acta Astronaut.
PD MAR-APR
PY 2016
VL 120
BP 138
EP 153
DI 10.1016/j.actaastro.2015.11.030
PG 16
WC Engineering, Aerospace
SC Engineering
GA DE8JX
UT WOS:000370883400011
ER
PT J
AU Archibald, RF
Gotthelf, EV
Ferdman, RD
Kaspi, VM
Guillot, S
Harrison, FA
Keane, EF
Pivovaroff, MJ
Stern, D
Tendulkar, SP
Tomsick, JA
AF Archibald, R. F.
Gotthelf, E. V.
Ferdman, R. D.
Kaspi, V. M.
Guillot, S.
Harrison, F. A.
Keane, E. F.
Pivovaroff, M. J.
Stern, D.
Tendulkar, S. P.
Tomsick, J. A.
TI A HIGH BRAKING INDEX FOR A PULSAR
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE pulsars: general; pulsars: individual (PSR J1640-4631); stars: neutron
ID NEUTRON-STARS; RADIO PULSARS; SPIN-DOWN; MAGNETOSPHERE; RADIATION;
EVOLUTION; SIGNALS; MODELS
AB We present a phase-coherent timing solution for PSR. J1640-4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR. J1640-4631 to be n = 3.15 +/- 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3 sigma upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy.
C1 [Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
[Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P.] McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
[Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA.
[Guillot, S.] Pontificia Univ Catolica Chile, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile.
[Harrison, F. A.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA.
[Keane, E. F.] SKA Org, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England.
[Pivovaroff, M. J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
RP Archibald, RF (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.; Archibald, RF (reprint author), McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
FU National Aeronautics and Space Administration; Commonwealth of Australia
for operation as a National Facility; NSERC Alexander Graham Bell Canada
Graduate Scholarship; National Aeronautics and Space Administration
through Chandra Award [GO5-16061X]; NSERC Discovery Grant and
Accelerator Supplement; Centre de Recherche en Astrophysique du Quebec;
R. Howard Webster Foundation Fellowship from the Canadian Institute;
Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and
Cosmology; U.S. Department of Energy by Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]
FX This work made use of data from the NuSTAR mission, a project led by the
California Institute of Technology, managed by the Jet Propulsion
Laboratory, and funded by the National Aeronautics and Space
Administration. Parkes radio telescope is part of the Australia
Telescope National Facility, which is funded by the Commonwealth of
Australia for operation as a National Facility managed by CSIRO. We also
thank an anonymous referee for helpful comments that improved the
manuscript. R.F.A. acknowledges support from an NSERC Alexander Graham
Bell Canada Graduate Scholarship. E.V.G. received support from the
National Aeronautics and Space Administration through Chandra Award
Number GO5-16061X issued by the Chandra X-ray Observatory Center, which
is operated by the Smithsonian Astrophysical Observatory for and on
behalf of the National Aeronautics Space Administration under contract
NAS8-03060. V.M.K. receives support from an NSERC Discovery Grant and
Accelerator Supplement, Centre de Recherche en Astrophysique du Quebec,
an R. Howard Webster Foundation Fellowship from the Canadian Institute
for Advanced Study, the Canada Research Chairs Program, and the Lorne
Trottier Chair in Astrophysics and Cosmology. Part of this work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 24
TC 13
Z9 13
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD MAR 1
PY 2016
VL 819
IS 1
AR L16
DI 10.3847/2041-8205/819/1/L16
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF0QO
UT WOS:000371044200016
ER
PT J
AU Kelly, PL
Rodney, SA
Treu, T
Strolger, LG
Foley, RJ
Jha, SW
Selsing, J
Brammer, G
Bradac, M
Cenko, SB
Graur, O
Filippenko, AV
Hjorth, J
McCully, C
Molino, A
Nonino, M
Riess, AG
Schmidt, KB
Tucker, B
von der Linden, A
Weiner, BJ
Zitrin, A
AF Kelly, P. L.
Rodney, S. A.
Treu, T.
Strolger, L-G
Foley, R. J.
Jha, S. W.
Selsing, J.
Brammer, G.
Bradac, M.
Cenko, S. B.
Graur, O.
Filippenko, A. V.
Hjorth, J.
McCully, C.
Molino, A.
Nonino, M.
Riess, A. G.
Schmidt, K. B.
Tucker, B.
von der Linden, A.
Weiner, B. J.
Zitrin, A.
TI DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE galaxies: clusters: general; galaxies: individual (MACS J1149.5+2223);
gravitational lensing: strong; supernovae: general; supernovae:
individual (SN Refsdal)
ID MASSIVE GALAXY CLUSTERS; HUBBLE-SPACE-TELESCOPE; WEAK-LENSING MASSES;
GRAVITATIONAL LENS; TIME-DELAY; IA SUPERNOVAE; MULTIPLE IMAGES;
CONSTANT; FIELDS; COSMOLOGY
AB In Hubble Space Telescope (HST) imaging taken on 2014 November 10, four images of supernova (SN) "Refsdal" (redshift z = 1.49) appeared in an Einstein-cross-like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z = 0.54). Almost all lens models of the cluster have predicted that the SN should reappear within a year in a second host-galaxy image created by the cluster's potential. In HST observations taken on 2015 December 11, we find a new source at the predicted position of the new image of SN Refsdal approximately 8 ''. from the previous images S1-S4. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX) compared to images S1-S4. This enables us, for the first time, to test "blind" lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty. From planned HST photometry, we expect to reach a precision of 1%-2% on the time delay between S1-S4 and SX.
C1 [Kelly, P. L.; Filippenko, A. V.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
[Rodney, S. A.] Univ S Carolina, Dept Phys & Astron, 712 Main St, Columbia, SC 29208 USA.
[Treu, T.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Strolger, L-G; Brammer, G.; Riess, A. G.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Foley, R. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Foley, R. J.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Jha, S. W.] Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA.
[Selsing, J.; Hjorth, J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark.
[Bradac, M.] Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA.
[Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, MC 661, Greenbelt, MD 20771 USA.
[Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Graur, O.] NYU, Ctr Cosmol & Particle Phys, 550 1St Ave, New York, NY 10003 USA.
[Graur, O.] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA.
[McCully, C.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA.
[McCully, C.; Schmidt, K. B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Molino, A.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ, BR-05508090 Sao Paulo, Brazil.
[Molino, A.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain.
[Nonino, M.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40131 Trieste, Italy.
[Riess, A. G.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.
[Schmidt, K. B.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany.
[Tucker, B.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Via Cotter Rd, Weston, ACT 2611, Australia.
[von der Linden, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Weiner, B. J.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA.
[Zitrin, A.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
RP Kelly, PL (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
EM pkelly@astro.berkeley.edu
OI Graur, Or/0000-0002-4391-6137
FU HST [GO-14041]; FrontierSN photometric follow-up program [GO-13386];
Hubble Fellowship - STScI [HF2-51334.001-A]; NASA by Association of
Universities for Research in Astronomy, Inc. [NAS 5-26555]; NSF
[AST-1518052, AST-1211916]; Christopher R. Redlich Fund; TABASGO
Foundation; NSF CAREER award [AST-0847157]; NASA/Keck JPL RSA [1508337,
1520634]; Alfred P. Sloan Foundation; [GO-13459]
FX We express our appreciation for the efforts of Program Coordinator Beth
Periello and Contact Scientist Norbert Pirzkal of STScI. Support for the
analysis in this paper is from HST grant GO-14041. The GLASS program is
supported by GO-13459, and the FrontierSN photometric follow-up program
has funding through GO-13386. A.Z. is supported by Hubble Fellowship
(HF2-51334.001-A) awarded by STScI, which is operated for NASA by the
Association of Universities for Research in Astronomy, Inc. under
contract NAS 5-26555. R.J.F. gratefully acknowledges support from NSF
grant AST-1518052 and the Alfred P. Sloan Foundation. A.V.F.'s group at
UC Berkeley has received generous financial assistance from the
Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant
AST-1211916. M.N. acknowledges PRIN-INAF 2014 1.05.01.94.02. This
supernova research at Rutgers University is supported by NSF CAREER
award AST-0847157, as well as NASA/Keck JPL RSA 1508337 and 1520634, to
S.W.J.
NR 48
TC 6
Z9 6
U1 2
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD MAR 1
PY 2016
VL 819
IS 1
AR L8
DI 10.3847/2041-8205/819/1/L8
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF0QO
UT WOS:000371044200008
ER
PT J
AU Schwieterman, EW
Meadows, VS
Domagal-Goldman, SD
Deming, D
Arney, GN
Luger, R
Harman, CE
Misra, A
Barnes, R
AF Schwieterman, Edward W.
Meadows, Victoria S.
Domagal-Goldman, Shawn D.
Deming, Drake
Arney, Giada N.
Luger, Rodrigo
Harman, Chester E.
Misra, Amit
Barnes, Rory
TI IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO
AND O-4 RESULTING FROM ABIOTIC O-2/O-3 PRODUCTION
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE astrobiology; planets and satellites: atmospheres; planets and
satellites: terrestrial planets; techniques: spectroscopic
ID ABSORPTION CROSS-SECTIONS; LOW-MASS STAR; EARTH OBSERVATIONS; M DWARF;
OXYGEN; ATMOSPHERES; EXOPLANETS; OZONE; LIFE; SPECTROSCOPY
AB O-2 and O-3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O-2/O-3: CO and O-4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 mu m) in conjunction with CO2 (1.6, 2.0, 4.3 mu m) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O-2 or O-3 might not be biogenic. Strong O-4 bands seen in transmission at 1.06 and 1.27 mu m could be diagnostic of a post-runaway O-2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 mu m, CO2 at 2.0 and 4.3 mu m, and O4 at 1.27 mu m are all stronger features in transmission than O-2/O-3 and could be detected with S/Ns greater than or similar to 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O-4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 mu m) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.
C1 [Schwieterman, Edward W.; Meadows, Victoria S.; Arney, Giada N.; Luger, Rodrigo; Misra, Amit; Barnes, Rory] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA.
[Schwieterman, Edward W.; Meadows, Victoria S.; Domagal-Goldman, Shawn D.; Deming, Drake; Arney, Giada N.; Luger, Rodrigo; Harman, Chester E.; Misra, Amit; Barnes, Rory] NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA USA.
[Schwieterman, Edward W.; Meadows, Victoria S.; Arney, Giada N.; Luger, Rodrigo; Misra, Amit; Barnes, Rory] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA.
[Domagal-Goldman, Shawn D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Deming, Drake] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Harman, Chester E.] Penn State Univ, Geosci Dept, University Pk, PA 16802 USA.
[Harman, Chester E.] Penn State Univ, Penn State Astrobiol Res Ctr, 2217 Earth & Engn Sci Bldg, University Pk, PA 16802 USA.
[Harman, Chester E.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.
RP Schwieterman, EW (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA.; Schwieterman, EW (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA USA.; Schwieterman, EW (reprint author), Univ Washington, Astrobiol Program, Seattle, WA 98195 USA.
EM eschwiet@uw.edu
OI Harman, Chester/0000-0003-2281-1990; Schwieterman,
Edward/0000-0002-2949-2163
FU NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team;
NASA Astrobiology Institute [NNH12ZDA002C, NNA13AA93A]
FX This work was supported by the NASA Astrobiology Institute's Virtual
Planetary Laboratory Lead Team, funded through the NASA Astrobiology
Institute under solicitation NNH12ZDA002C and Cooperative Agreement
Number NNA13AA93A. This research used the advanced computational,
storage, and networking infrastructure provided by the Hyak
supercomputer system at the University of Washington. This work made use
of the NASA Astrophysics Data System. We would like to thank the
anonymous reviewer for helpful comments, which improved the manuscript.
NR 48
TC 12
Z9 12
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD MAR 1
PY 2016
VL 819
IS 1
AR L13
DI 10.3847/2041-8205/819/1/L13
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF0QO
UT WOS:000371044200013
ER
PT J
AU Taylor, SR
Vallisneri, M
Ellis, JA
Mingarelli, CMF
Lazio, TJW
van Haasteren, R
AF Taylor, S. R.
Vallisneri, M.
Ellis, J. A.
Mingarelli, C. M. F.
Lazio, T. J. W.
van Haasteren, R.
TI ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES
BASED ON PULSAR-TIMING ARRAY LIMITS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE gravitational waves; methods: data analysis; pulsars: general
ID BLACK-HOLE BINARIES; RADIATION; SIGNAL
AB Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (similar to 10(-15) strain at f = 1 yr(-1)). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates, deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an similar to 80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.
C1 [Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; van Haasteren, R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; van Haasteren, R.] CALTECH, TAPIR Grp, MC 350-17, Pasadena, CA 91125 USA.
[Mingarelli, C. M. F.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
RP Taylor, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Taylor, SR (reprint author), CALTECH, TAPIR Grp, MC 350-17, Pasadena, CA 91125 USA.
EM Stephen.R.Taylor@jpl.nasa.gov
OI Taylor, Stephen/0000-0003-0264-1453
FU NASA; JPL RTD program; NASA through Einstein Fellowship [PF4-150120,
PF3-140116]; Marie Curie International Outgoing Fellowship within the
European Union Seventh Framework Programme; National Science Foundation
Physics Frontier Center [1430284, PHYS-1066293]; National Aeronautics
and Space Administration
FX It is our pleasure to thank Pablo Rosado, Alberto Sesana, Jonathan Gair,
Lindley Lentati, Sarah Burke-Spolaor, Xavier Siemens, Maura McLaughlin,
Joseph Romano, and Michael Kramer for very useful suggestions. We also
thank the full NANOGrav collaboration for their comments and remarks.
S.R.T. was supported by an appointment to the NASA Postdoctoral Program
at the Jet Propulsion Laboratory, administered by Oak Ridge Associated
Universities through a contract with NASA. M.V. acknowledges support
from the JPL RTD program. J.A.E. and R.v.H. acknowledge support by NASA
through Einstein Fellowship grants PF4-150120 and PF3-140116,
respectively. C.M.F.M. was supported by a Marie Curie International
Outgoing Fellowship within the European Union Seventh Framework
Programme. This work was supported in part by National Science
Foundation Physics Frontier Center award No. 1430284 and by grant
PHYS-1066293 and the hospitality of the Aspen Center for Physics. This
research was performed at the Jet Propulsion Laboratory, under contract
with the National Aeronautics and Space Administration.
NR 30
TC 9
Z9 9
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD MAR 1
PY 2016
VL 819
IS 1
AR L6
DI 10.3847/2041-8205/819/1/L6
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DF0QO
UT WOS:000371044200006
ER
PT J
AU Schiffmacher, EN
Becker, JG
Lorah, MM
Voytek, MA
AF Schiffmacher, Emily N.
Becker, Jennifer G.
Lorah, Michelle M.
Voytek, Mary A.
TI The effects of co-contaminants and native wetland sediments on the
activity and dominant transformation mechanisms of a
1,1,2,2-tetrachloroethane (TeCA)-degrading enrichment culture
SO CHEMOSPHERE
LA English
DT Article
DE 1,1,2,2-Tetrachloroethane; Carbon tetrachloride; Tetrachloroethene;
Contaminated wetlands; Dehalococcoides; Dehalobacter
ID REDUCTIVE DECHLORINATION; CARBON-TETRACHLORIDE; VINYL-CHLORIDE;
DEHALOCOCCOIDES-ETHENOGENES; CHLORINATED SOLVENTS; CIS-DICHLOROETHENE;
CHLOROFORM; KINETICS; BIOTRANSFORMATION; DICHLOROMETHANE
AB Bioremediation strategies, including bioaugmentation with chlorinated ethene-degrading enrichment cultures, have been successfully applied in the cleanup of subsurface environments contaminated with tetrachloroethene (PCE) and/or trichloroethene (TCE). However, these compounds are frequently found in the environment as components of mixtures that may also contain chlorinated ethanes and methanes. Under these conditions, the implementation of bioremediation may be complicated by inhibition effects, particularly when multiple dehalorespirers are present. We investigated the ability of the 1,1,2,2-tetrachloroethane (TeCA)-dechlorinating culture WBC-2 to biotransform TeCA alone, or a mixture of TeCA plus PCE and carbon tetrachloride (CT), in microcosms. The microcosms contained electron donors provided to biostimulate the added culture and sediment collected from a wetland where numerous "hotspots" of contamination with chlorinated solvent mixtures exist. The dominant TeCA biodegradation mechanism mediated by the WBC-2 culture in the microcosms was different in the presence of these wetland sediments than in the sediment-free enrichment culture or in previous WBC-2 bioaugmented microcosms and column tests conducted with wetland sediment collected at nearby sites. The co-contaminants and their daughter products also inhibited TeCA biodegradation by WBC-2. These results highlight the need to conduct biodegradability assays at new sites, particularly when multiple contaminants and dehalorespiring populations are present. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Schiffmacher, Emily N.; Becker, Jennifer G.] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA.
[Lorah, Michelle M.] US Geol Survey, MD DE DC Water Sci Ctr, 5522 Res Pk Dr, Catonsville, MD 21228 USA.
[Voytek, Mary A.] US Geol Survey, Natl Ctr 430, Reston, VA 20192 USA.
[Becker, Jennifer G.] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA.
[Schiffmacher, Emily N.] US Army Corps Engineers, Baltimore, MD USA.
[Voytek, Mary A.] NASA, Sci Mission Directorate, Washington, DC 20546 USA.
RP Becker, JG (reprint author), Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA.
EM emily.schiffmacher@gmail.com; jgbecker@mtu.edu; mmlorah@usgs.gov;
mary.voytek-1@nasa.gov
FU United States Geological Survey; U.S. Army Environmental Conservation
and Restoration Division Aberdeen Proving Ground; Maryland Water
Resources Research Center
FX This work was supported, in part, through funding from the United States
Geological Survey through a contract with the U.S. Army Environmental
Conservation and Restoration Division Aberdeen Proving Ground, and the
Maryland Water Resources Research Center, which is sponsored by the
United States Geological Survey. Elizabeth J. P. Jones provided the
WBC-2 culture and many helpful suggestions and insights throughout this
study. Any use of trade, firm, or product names is for descriptive
purposes only and does not imply endorsement by the U.S. Government.
NR 34
TC 0
Z9 0
U1 3
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-6535
EI 1879-1298
J9 CHEMOSPHERE
JI Chemosphere
PD MAR
PY 2016
VL 147
BP 239
EP 247
DI 10.1016/j.chemosphere.2015.12.033
PG 9
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DE7SD
UT WOS:000370836100031
PM 26766361
ER
PT J
AU Smerdon, JE
Coats, S
Ault, TR
AF Smerdon, Jason E.
Coats, Sloan
Ault, Toby R.
TI Model-dependent spatial skill in pseudoproxy experiments testing climate
field reconstruction methods for the Common Era
SO CLIMATE DYNAMICS
LA English
DT Article
DE Climate field reconstruction; Pseudoproxy; Last millennium; Climate
model; PMIP3; CMIP5
ID PROXY-BASED RECONSTRUCTIONS; PACIFIC SST VARIABILITY; NORTH-AMERICAN
DROUGHT; LAST MILLENNIUM; METHODS STOCHASTICITY; EQUATORIAL PACIFIC;
SURROGATE ENSEMBLE; PAST CLIMATE; TEMPERATURE VARIABILITY; STATISTICAL
FRAMEWORK
AB The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on five last millennium and historical simulations from the Coupled and Paleo Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3) data archives. These simulations are used for the first time in a PPE context, the frameworks of which are constructed to test a recently assembled multiproxy network and multiple CFR techniques. The experiments confirm earlier findings demonstrating consistent methodological performance across the employed methods and spatially dependent reconstruction errors in all of the derived CFRs. Spectral biases in the reconstructed fields demonstrate that CFR methods can alone alter the ratio of spectral power at all locations in the field, independent of whether there are any spectral biases inherent in the underlying pseudoproxy series. The patterns of spectral biases are model dependent and indicate the potential for regions in the derived CFRs to be biased by changes in either low or high-frequency spectral power. CFR methods are also shown to alter the pattern of mean differences in the tropical Pacific during the Medieval Climate Anomaly and the Little Ice Age, with some model experiments indicating that CFR methodologies enhance the statistical likelihood of achieving larger mean differences between independent 300-year periods in the region. All of the characteristics of CFR performance are model dependent, indicating that CFR methods must be evaluated across multiple models and that conclusions from PPEs should be carefully connected to the spatial statistics of real-world climatic fields.
C1 [Smerdon, Jason E.; Coats, Sloan] Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9 W,POB 1000, Palisades, NY 10964 USA.
[Coats, Sloan] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Ault, Toby R.] Cornell Univ, Ithaca, NY USA.
RP Smerdon, JE (reprint author), Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9 W,POB 1000, Palisades, NY 10964 USA.
EM jsmerdon@ldeo.columbia.edu
RI Smerdon, Jason/F-9952-2011
FU NOAA [NA10OAR4320137, NA11OAR4310166]
FX We are grateful for the helpful comments from the reviewer of our
manuscript. Supported in part by NOAA grants NA10OAR4320137 and
NA11OAR4310166. Supplementary data can be accessed at
http://www.ldeo.columbia.edu/similar to
jsmerdon/2015_cli-dyn_smerdonetal_supplement.html. LDEO contribution
#7903.
NR 89
TC 5
Z9 5
U1 6
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD MAR
PY 2016
VL 46
IS 5-6
BP 1921
EP 1942
DI 10.1007/s00382-015-2684-0
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF1AD
UT WOS:000371069900032
ER
PT J
AU Kinkar, S
Hennessy, M
Ray, S
AF Kinkar, Shishir
Hennessy, Mark
Ray, Steven
TI An Ontology and Integration Framework for Smart Communities
SO JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING
LA English
DT Article
AB This paper describes our work concerning the definition of a neutral, abstract ontology, and framework that supports the vision and diverse contexts of a smart community. This framework is composed of a general, core ontology that supports what many are calling the Internet of Things (IoT), a scalable number of extension ontologies to describe various application perspectives, and a mapping methodology to relate external data and/or schemas to our ontology. Finally, we show why this ontology is scalable and generic enough to support a wide range of smart devices, systems, and people.
C1 [Kinkar, Shishir] Carnegie Mellon Univ, Dept Elect & Comp Engn, NASA Ames Res Pk,Bldg 23 MS 23-11,POB 1, Moffett Field, CA 94035 USA.
[Hennessy, Mark] Carnegie Mellon Univ, Dept Elect & Comp Engn, Freischuetzstr 106,2 OG, D-81927 Munich, Germany.
[Ray, Steven] Carnegie Mellon Univ, Silicon Valley Campus,NASA Ames Res Pk,Bldg 23-11, Moffett Field, CA 94035 USA.
RP Ray, S (reprint author), Carnegie Mellon Univ, Silicon Valley Campus,NASA Ames Res Pk,Bldg 23-11, Moffett Field, CA 94035 USA.
EM shishir.kinkar@sv.cmu.edu; mhennessy116@gmail.com; steve.ray@sv.cmu.edu
FU U.S. National Institute of Standards and Technology [60NANB11D144]
FX The work reported on in this paper was generously supported by Grant No.
60NANB11D144 from the U.S. National Institute of Standards and
Technology.
NR 35
TC 0
Z9 0
U1 7
U2 14
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 1530-9827
EI 1944-7078
J9 J COMPUT INF SCI ENG
JI J. Comput. Inf. Sci. Eng.
PD MAR
PY 2016
VL 16
IS 1
AR 011003
DI 10.1115/1.4032218
PG 7
WC Computer Science, Interdisciplinary Applications; Engineering,
Manufacturing
SC Computer Science; Engineering
GA DF2BM
UT WOS:000371144300003
ER
PT J
AU Tompson, SR
AF Tompson, Sara R.
TI The Road Taken: The History and FutUre of America's Infrastructure.
SO LIBRARY JOURNAL
LA English
DT Book Review
C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA.
RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU REED BUSINESS INFORMATION
PI NEW YORK
PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA
SN 0363-0277
J9 LIBR J
JI Libr. J.
PD MAR 1
PY 2016
VL 141
IS 4
BP 109
EP 110
PG 2
WC Information Science & Library Science
SC Information Science & Library Science
GA DF1NB
UT WOS:000371105400160
ER
PT J
AU Ramachandran, R
Bugbee, K
Tilmes, C
Privette, AP
AF Ramachandran, Rahul
Bugbee, Kaylin
Tilmes, Curt
Privette, Ana Pinheiro
TI Climate data initiative: A geocuration effort to support climate
resilience
SO COMPUTERS & GEOSCIENCES
LA English
DT Article
DE Geocuration; Climate data initiative; Climate change; Geoinformatics;
Metadata; Virtual collections
AB Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful collection. We present the Climate Data Initiative (CDI) project as a prototypical example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in the CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future. Published by Elsevier Ltd.
C1 [Ramachandran, Rahul] NASA, MSFC, Huntsville, AL 35808 USA.
[Bugbee, Kaylin] Univ Alabama, Huntsville, AL USA.
[Tilmes, Curt; Privette, Ana Pinheiro] NASA, GSFC, Huntsville, AL USA.
RP Ramachandran, R (reprint author), NASA, MSFC, Huntsville, AL 35808 USA.
EM rahul.ramachandran@nasa.gov
RI kiaie, robabeh/I-2157-2016; kiaie, fatemeh/I-6083-2016
OI kiaie, robabeh/0000-0001-5251-3201;
NR 17
TC 0
Z9 0
U1 1
U2 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0098-3004
EI 1873-7803
J9 COMPUT GEOSCI-UK
JI Comput. Geosci.
PD MAR
PY 2016
VL 88
BP 22
EP 29
DI 10.1016/j.cageo.2015.12.002
PG 8
WC Computer Science, Interdisciplinary Applications; Geosciences,
Multidisciplinary
SC Computer Science; Geology
GA DE2KM
UT WOS:000370456200003
ER
PT J
AU Williford, KH
Ushikubo, T
Lepot, K
Kitajima, K
Hallmann, C
Spicuzza, MJ
Kozdon, R
Eigenbrode, JL
Summons, RE
Valley, JW
AF Williford, K. H.
Ushikubo, T.
Lepot, K.
Kitajima, K.
Hallmann, C.
Spicuzza, M. J.
Kozdon, R.
Eigenbrode, J. L.
Summons, R. E.
Valley, J. W.
TI Carbon and sulfur isotopic signatures of ancient life and environment at
the microbial scale: Neoarchean shales and carbonates
SO GEOBIOLOGY
LA English
DT Article
ID MASS-INDEPENDENT FRACTIONATION; ARCHEAN MOLECULAR FOSSILS; MOUNT BRUCE
SUPERGROUP; WESTERN-AUSTRALIA; SULFATE REDUCTION; MULTIPLE-SULFUR;
HAMERSLEY BASIN; ORGANIC-MATTER; ATMOSPHERIC OXYGEN; JEERINAH FORMATION
AB An approach to coordinated, spatially resolved, insitu carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of C-13, S-34, S-33, and S-36 known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS C-13 measurement of organic matter is identified. Small (2-3m) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-m domains of kerogen in a single similar to 0.5cm(3) sample of the similar to 2.7Ga Tumbiana Formation have C-13=-52.3 +/- 0.1 parts per thousand and -34.4 +/- 0.1 parts per thousand, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the similar to 2.6Ga Jeerinah Formation and the similar to 2.5Ga Mount McRae Shale is systematically C-13-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher S-33 and more extreme spatial gradients in S-33 and S-36 than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of S-34, S-33, and S-36, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S-MIF during the first half of the planet's history.
C1 [Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Spicuzza, M. J.; Kozdon, R.; Valley, J. W.] Univ Wisconsin, Dept Geosci, Madison, WI USA.
[Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Spicuzza, M. J.; Kozdon, R.; Summons, R. E.; Valley, J. W.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA.
[Williford, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Hallmann, C.; Summons, R. E.] MIT, Earth Atmospher & Planetary Sci Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Eigenbrode, J. L.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD USA.
[Ushikubo, T.] JAMSTEC, Kochi Inst Core Sample Res, Nankoku, Kochi, Japan.
[Lepot, K.] Univ Lille, CNRS UMR8187, Lab Oceanol & Geosci, F-59655 Villeneuve Dascq, France.
[Hallmann, C.] Max Planck Inst Biogeochem, D-07745 Jena, Germany.
[Kozdon, R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
RP Williford, KH (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI USA.; Williford, KH (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA.; Williford, KH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA.
EM kenneth.williford@jpl.nasa.gov
RI Kozdon, Reinhard/J-9468-2014; Lepot, Kevin/C-7072-2014
OI Kozdon, Reinhard/0000-0001-6347-456X; Lepot, Kevin/0000-0003-0556-0405
FU National Aeronautics and Space Administration Astrobiology Institute
(NAI); Agouron Institute; NASA Astrobiology Institute; Simons Foundation
Origins of Life Collaboration; National Aeronautics and Space
Administration; [NSF-EAR-1053466]; [NSF-EAR-1355590]
FX We acknowledge Noriko Kita, Jim Kern, John Fournelle, Brian Hess, and
H.B. Palomo for their essential contributions to this work. Helpful
comments by the editors and three anonymous reviewers improved the
quality of this manuscript. Major funding for this study came from the
National Aeronautics and Space Administration Astrobiology Institute
(NAI). WiscSIMS is partly supported by NSF-EAR-1053466, -1355590. Work
at MIT was supported by the Agouron Institute, the NASA Astrobiology
Institute and the Simons Foundation Origins of Life Collaboration. Part
of this research was done at the Jet Propulsion Laboratory, California
Institute of Technology, under a grant from the National Aeronautics and
Space Administration. KHW and RES serve on the editorial board of
Geobiology.
NR 94
TC 3
Z9 3
U1 9
U2 26
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1472-4677
EI 1472-4669
J9 GEOBIOLOGY
JI Geobiology
PD MAR
PY 2016
VL 14
IS 2
BP 105
EP 128
DI 10.1111/gbi.12163
PG 24
WC Biology; Environmental Sciences; Geosciences, Multidisciplinary
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Geology
GA DD8MU
UT WOS:000370181800001
PM 26498593
ER
PT J
AU Shi, M
Fisher, JB
Brzostek, ER
Phillips, RP
AF Shi, Mingjie
Fisher, Joshua B.
Brzostek, Edward R.
Phillips, Richard P.
TI Carbon cost of plant nitrogen acquisition: global carbon cycle impact
from an improved plant nitrogen cycle in theCommunity Land Model
SO GLOBAL CHANGE BIOLOGY
LA English
DT Article
DE carbon cost; Community Land Model; Fixation and Uptake of Nitrogen;
mycorrhizal fungi; nitrogen uptake; net primary production
ID DYNAMIC VEGETATION MODEL; TERRESTRIAL BIOSPHERE; COMMUNITY LAND; SOIL
CARBON; INTERCOMPARISON PROJECT; NUTRIENT AVAILABILITY; FOREST; CLIMATE;
LIMITATION; FIXATION
AB Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots,N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4Pg C yr(-1) to acquire 1.0 Pg Nyr(-1), and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for similar to 66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2, and warming temperatures) may impact the land C sink.
C1 [Shi, Mingjie; Fisher, Joshua B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Shi, Mingjie; Fisher, Joshua B.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.
[Brzostek, Edward R.] W Virginia Univ, Dept Biol, 53 Campus Dr, Morgantown, WV 26506 USA.
[Phillips, Richard P.] Indiana Univ, Dept Biol, 702 N Walnut Grove Ave, Bloomington, IN 47405 USA.
RP Fisher, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM joshua.b.fisher@jpl.nasa.gov
OI Fisher, Joshua/0000-0003-4734-9085
FU US Department of Energy Office of Biological and Environmental Research
Terrestrial Ecosystem Science Program; US National Science Foundation
Ecosystem Science Program
FX Funding was provided by the US Department of Energy Office of Biological
and Environmental Research Terrestrial Ecosystem Science Program; and
the US National Science Foundation Ecosystem Science Program. The
computations were performed at the Texas Advanced Computing Center and
at NASA Ames Research Center; we acknowledge Dr. Zong-Liang Yang and Dr.
Junjie Liu for providing the computational resources. The authors
appreciate valuable suggestions from David Schimel, Rosie Fisher,
William Wieder, Sam Levis, Jinyun Tang, and Qing Zhu. The authors also
want to acknowledge the anonymous reviewers for providing the valuable
comments. JBF and MS carried out the research at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration, and at the Joint
Institute for Regional Earth System Science and Engineering, University
of California at Los Angeles.
NR 76
TC 4
Z9 4
U1 14
U2 71
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1354-1013
EI 1365-2486
J9 GLOBAL CHANGE BIOL
JI Glob. Change Biol.
PD MAR
PY 2016
VL 22
IS 3
BP 1299
EP 1314
DI 10.1111/gcb.13131
PG 16
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA DE2XN
UT WOS:000370491400028
PM 26473512
ER
PT J
AU Tweddle, BE
Setterfield, TP
Saenz-Otero, A
Miller, DW
AF Tweddle, Brent E.
Setterfield, Timothy P.
Saenz-Otero, Alvar
Miller, David W.
TI An Open Research Facility for Vision-Based Navigation Onboard the
International Space Station
SO JOURNAL OF FIELD ROBOTICS
LA English
DT Article
ID DOCKING
AB This paper describes the VERTIGO Goggles, a hardware upgrade to the SPHERES satellites that enables vision-based navigation research in the 6 degree-of-freedom, microgravity environment of the International Space Station (ISS). The Goggles include stereo cameras, an embedded x86 computer, a high-speed wireless communications system, and the associated electromechanical and software systems. The Goggles were designed to be a modular, expandable, and upgradable open research test bed that have been used for a variety of other experiments by external researchers. In February 2013, the Goggles successfully completed a hardware checkout on the ISS and was used for initial vision-based navigation research. This checkout included a successful camera calibration by an astronaut onboard the ISS. This paper describes the requirements, design, and operation of this test bed as well as the experimental results of its first checkout operations.
C1 [Tweddle, Brent E.; Setterfield, Timothy P.; Saenz-Otero, Alvar; Miller, David W.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA.
RP Tweddle, BE (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM tweddle@alum.mit.edu; tsetterf@mit.edu; alvarso@mit.edu; millerd@mit.edu
FU DARPA; NASA; Air Force Space Test Program; NASA Ames; Defense Advanced
Research Projects Agency's Integrated Research Experiments (InSPIRE)
program [NNH11CC25C]
FX The authors would also like to thank DARPA and NASA for their funding
and support of this research, and the VERTIGO team at Aurora Flight
Sciences for their work on the Goggles, including our support from the
Air Force Space Test Program and NASA Ames. This research was funded by
the Defense Advanced Research Projects Agency's Integrated Research
Experiments (InSPIRE) program under contract NNH11CC25C.
NR 39
TC 1
Z9 1
U1 2
U2 6
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1556-4959
EI 1556-4967
J9 J FIELD ROBOT
JI J. Field Robot.
PD MAR
PY 2016
VL 33
IS 2
SI SI
BP 157
EP 186
DI 10.1002/rob.21622
PG 30
WC Robotics
SC Robotics
GA DE4ZV
UT WOS:000370640500002
ER
PT J
AU Altinok, A
Thompson, DR
Bornstein, B
Chien, SA
Doubleday, J
Bellardo, J
AF Altinok, Alphan
Thompson, David R.
Bornstein, Benjamin
Chien, Steve A.
Doubleday, Joshua
Bellardo, John
TI Real-Time Orbital Image Analysis Using Decision Forests, with a
Deployment Onboard the IPEX Spacecraft
SO JOURNAL OF FIELD ROBOTICS
LA English
DT Article
ID AUTOMATIC CLOUD DETECTION; HYSPIRI MISSION; COVER; MODIS; SKY;
ALGORITHM; REGIONS; OCEAN; EO-1
AB Automatic cloud recognition promises significant improvements in Earth science remote sensing. At any time, more than half of Earth's surface is covered by clouds, obscuring images and atmospheric measurements. This is particularly problematic for CubeSats, a new generation of small, low-orbiting spacecraft with very limited communications bandwidth. Such spacecraft can use image analysis to autonomously select clear scenes for prioritized downlink. More agile spacecraft can also benefit from cloud screening by retargeting observations to cloud-free areas. This could significantly improve the science yield of instruments such as the Orbiting Carbon Observatory 3 mission. However, most existing cloud detection algorithms are not suitable for these applications, because they require calibrated and georectified spectral data, which is not typically available onboard. Here, we describe a statistical machine-learning method for real-time autonomous scene interpretation using a visible camera with no radiometric calibration. A random forest classifies cloud and clear pixels based on local patterns of image texture. We report on experimental evaluation of images from the International Space Station (ISS) and present results from a deployment onboard the IPEX spacecraft. This demonstrates actual execution in flight and provides some preliminary lessons learned about operational use. It is a rare example of a machine-learning system deployed to an autonomous spacecraft. To our knowledge, it is also the first instance of significant artificial intelligence deployed on board a CubeSat and the first ever deployment of visible image-based cloud screening onboard any operational spacecraft.
C1 [Altinok, Alphan; Thompson, David R.; Bornstein, Benjamin; Chien, Steve A.; Doubleday, Joshua] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA.
[Bellardo, John] Calif Polytech State Univ San Luis Obispo, Dept Comp Sci, San Luis Obispo, CA 93407 USA.
RP Altinok, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA.
EM alphan.altinok@jpl.nasa.gov
FU National Aeronautics and Space Administration (NASA); NASA's Earth
Science Technology Office; NASA Astrobiology Science and Technology
Instrument Development Program [NNH10ZDA001N-ASTID]
FX Random forest code similar to the ground version of the classifier is
now available online (Thompson et al., 2014b). Portions of this work
were performed by the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics and Space
Administration (NASA). The IPEX project was funded by NASA's Earth
Science Technology Office. The OCO-3 Project is part of the Earth System
Science Pathfinder (ESSP) Program directed by the program director of
the NASA Earth Science Division (ESD). Contributors to the TextureCam
codebase include Dmitriy Bekker, Brina Bue, Daniel Howarth, Kevin
Ortega, and Greydon Foil. The TextureCam project is supported by the
NASA Astrobiology Science and Technology Instrument Development Program
(NNH10ZDA001N-ASTID). We thank Susan Runco and the HDEV team for their
help acquiring and using this imagery.
NR 48
TC 0
Z9 0
U1 2
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1556-4959
EI 1556-4967
J9 J FIELD ROBOT
JI J. Field Robot.
PD MAR
PY 2016
VL 33
IS 2
SI SI
BP 187
EP 204
DI 10.1002/rob.21627
PG 18
WC Robotics
SC Robotics
GA DE4ZV
UT WOS:000370640500003
ER
PT J
AU Righter, K
Danielson, LR
Pando, KM
Shofner, GA
Sutton, SR
Newville, M
Lee, C
AF Righter, K.
Danielson, L. R.
Pando, K. M.
Shofner, G. A.
Sutton, S. R.
Newville, M.
Lee, C. -T.
TI Valence and metal/silicate partitioning of Mo: Implications for
conditions of Earth accretion and core formation
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE siderophile; core formation; mantle; differentiation; accretion;
partitioning
ID SILICATE MELT COMPOSITION; TERRESTRIAL MAGMA OCEAN; SIDEROPHILE
ELEMENTS; OXYGEN FUGACITY; HIGH-PRESSURE; OXIDATION-STATE; STRUCTURAL
ENVIRONMENTS; REDOX SYSTEMATICS; METAL; TEMPERATURE
AB To better understand and predict the partition coefficient of Mo at the conditions of the deep interior of Earth and other terrestrial planets or bodies, we have undertaken new measurements of the valence and partitioning of Mo. X-ray absorption near edge structure (XANES) K-edge spectra for Mo have been measured in a series of Fe-bearing glasses produced at 1 bar and higher PT conditions. High pressure experiments have been carried out up to 19 GPa in order to better understand the effect of pressure on Mo partitioning. And, finally, a series of experiments at very low fO(2) conditions and high Si content metallic liquids has been carried out to constrain the effect of Si on the partitioning of Mo between metallic liquids and silicate melt. The valence measurements demonstrate that Mo undergoes a transition from 4+ to 6+ near IW-1, in general agreement with previous 1 bar studies on FeO-free silicate melts. High pressure experiments demonstrate a modest pressure dependence of D(Mo) metal/silicate and, combined with previous results, show a significant decrease with pressure that must be quantified in any predictive expression. Finally, the effect of dissolved Si in Fe-rich metallic liquid is to decrease D(Mo) significantly, as suggested by previous work in metallurgical systems. The effect of pressure, temperature, oxygen fugacity, metallic liquid composition, and silicate melt composition can be quantified by using multiple linear regression of available experimental data for Mo. Our XANES results show that Mo will be 4+ at conditions of core formation, so only experiments carried out at fO(2) of IW-1 and lower were used in the regressions. Application of predictive expressions to Earth accretion shows that D(Mo) decreases to values consistent with an equilibrium scenario for early Earth core-mantle. The Mo content of the primitive upper mantle (PUM) can be attained by metal-silicate equilibrium involving S-, C-, and Si-bearing metallic liquid, and peridotite silicate melt along the peridotite liquidus near 45 GPa and 3600 degrees C, late in the accretion process. This conclusion is insensitive to late giant impacts unless the degree of equilibration is very low (<5%). Published by Elsevier B.V.
C1 [Righter, K.] NASA, Lyndon B Johnson Space Ctr, Mailcode X12, Houston, TX 77058 USA.
[Danielson, L. R.; Pando, K. M.] NASA, Lyndon B Johnson Space Ctr, JETS, Houston, TX 77058 USA.
[Shofner, G. A.] Towson Univ, Dept Phys Astron & Geosci, Smith Hall, Towson, MD 21252 USA.
[Sutton, S. R.; Newville, M.] Univ Chicago, Ctr Adv Radiat Sources, 5640 S Ellis, Chicago, IL 60637 USA.
[Sutton, S. R.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis, Chicago, IL 60637 USA.
[Lee, C. -T.] Rice Univ, Dept Earth Sci, MS-126, Houston, TX 77005 USA.
RP Righter, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Mailcode X12, Houston, TX 77058 USA.
EM kevin.righter-1@nasa.gov
OI Righter, Kevin/0000-0002-6075-7908
FU National Science Foundation - Earth Sciences [EAR-1128799]; Department
of Energy - GeoSciences [DE-FG02-94ER14466]; U.S. Department of Energy
(DOE) Office of Science User Facility [DE-AC02-06CH11357]; NASA
Cosmochemistry Program; NSF
FX Roger Harrington provided beautiful thin sections of several
experimental run products. Portions of this work were performed at
GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne
National Laboratory. GeoSoilEnviroCARS is supported by the National
Science Foundation - Earth Sciences (EAR-1128799) and Department of
Energy - GeoSciences (DE-FG02-94ER14466). This research used resources
of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office
of Science User Facility operated for the DOE Office of Science by
Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Research was also supported by an RTOP to KR from the NASA
Cosmochemistry Program, and by an NSF grant to Andrew J. Campbell. We
thank Nicolas Dauphas and 3 anonymous reviewers for comments that helped
improve the manuscript.
NR 76
TC 3
Z9 3
U1 3
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
EI 1385-013X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD MAR 1
PY 2016
VL 437
BP 89
EP 100
DI 10.1016/j.epsl.2015.12.025
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DD7GG
UT WOS:000370091100010
ER
PT J
AU Goertler, PAL
Simenstad, CA
Bottom, DL
Hinton, S
Stamatiou, L
AF Goertler, Pascale A. L.
Simenstad, Charles A.
Bottom, Daniel L.
Hinton, Susan
Stamatiou, Lia
TI Estuarine Habitat and Demographic Factors Affect Juvenile Chinook
(Oncorhynchus tshawytscha) Growth Variability in a Large Freshwater
Tidal Estuary
SO ESTUARIES AND COASTS
LA English
DT Article
DE Freshwater tidal estuary; Juvenile Chinook salmon; Growth; Diet; Genetic
stock of origin
ID COLUMBIA RIVER ESTUARY; BRITISH-COLUMBIA; FOOD WEBS; OTOLITH
MICROSTRUCTURE; MARINE SURVIVAL; LIFE-HISTORY; PUGET-SOUND; SALMON;
FISH; POPULATION
AB Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along similar to 130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but similar to 4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.
C1 [Goertler, Pascale A. L.; Simenstad, Charles A.; Stamatiou, Lia] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA.
[Bottom, Daniel L.; Hinton, Susan] NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR USA.
RP Goertler, PAL (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA.
EM pascale.goertler@gmail.com
FU US Army Corps of Engineers [EST-P-10-1, W66QKZ20272260]; University of
Washington School of Aquatic and Fishery and Sciences (SAFS); Anchor
QEA; National Oceanic and Atmospheric Administration
FX We would like to thank our funding sources, the US Army Corps of
Engineers (Administrative Code EST-P-10-1, MIPR number W66QKZ20272260),
University of Washington School of Aquatic and Fishery and Sciences
(SAFS), Anchor QEA, and National Oceanic and Atmospheric Administration.
We would also like to thank the members of the Columbia River estuary
project: Antonio Baptista, Mojgan Rostaminia, Rich Zabel, Mark
Scheuerell, Curtis Roegner, Paul Chittaro, Tom Cooney, Kurt Fresh, David
Teel, Lance Campbell, George McCabe, Regan McNatt, and Mary Rameriez. We
are also appreciative of the many volunteers who have participated in
field sampling: Jessica Randall, Meegan Coran, Katria Van Raay, Sterling
Hines-Elzinga, and Michael Beakes. We would also like to thank Daniel
Schindler, Kerry Naish, and Tim Essington for their time and
intellectual contributions, and Jeffery Cordell and Beth Armbrust for
their assistance with Table 3.
NR 98
TC 2
Z9 2
U1 9
U2 44
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1559-2723
EI 1559-2731
J9 ESTUAR COAST
JI Estuaries Coasts
PD MAR
PY 2016
VL 39
IS 2
BP 542
EP 559
DI 10.1007/s12237-015-0002-z
PG 18
WC Environmental Sciences; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA DC9GA
UT WOS:000369527900017
ER
PT J
AU Dillon, RL
Tinsley, CH
Madsen, PM
Rogers, EW
AF Dillon, Robin L.
Tinsley, Catherine H.
Madsen, Peter M.
Rogers, Edward W.
TI Organizational Correctives for Improving Recognition of Near-Miss Events
SO JOURNAL OF MANAGEMENT
LA English
DT Article
DE decisions under risk; uncertainty; individual decision making; decision
making
ID SAFETY CLIMATE; OUTCOME BIAS; JUDGMENT; DECISION; ERRORS; COMMUNICATION;
INFORMATION; PERFORMANCE; TECHNOLOGY; ATTENTION
AB Despite decades of research on organizational disasters, such events remain too common. Scholars across a wide range of disciplines agree that one of the most viable approaches to preventing such catastrophes is to observe near-misses and use them to identify and eliminate problems before they produce large failures. Unfortunately, these important warning signals are too often ignored because they are perceived as successes rather than near-misses (or near-failures). In this article, we explore the effect of a climate for safety on improving near-miss recognition by observers, hypothesizing that safety climate increases the level of attention that observers pay to the underlying processes that generate an apparently successful outcome. Using a database of anomaly reports for unmanned NASA missions, we show that organizational safety climate and project stakes increase reporting rates of near-misses, both independently and interactively. In follow-up laboratory experiments, we confirm the independence of these effects to improve the likelihood that people differentiate near-miss outcomes from successes. Results suggest organizations can increase the recognition of near-misses with organizational messages that emphasize a positive safety climate.
C1 [Dillon, Robin L.; Tinsley, Catherine H.] Georgetown Univ, Washington, DC 20057 USA.
[Madsen, Peter M.] Brigham Young Univ, Provo, UT 84602 USA.
[Rogers, Edward W.] NASA, Goddard Space Flight Ctr, Washington, DC USA.
RP Dillon, RL (reprint author), Georgetown Univ, McDonough Sch Business, Washington, DC 20057 USA.
EM rld9@georgetown.edu
FU NASA/USRA Center for Program/Project Management Research
[05115-C1P1-01]; National Science Foundation [CMS-0555805]; University
of Southern California's Center for Risk and Economic Analysis of
Terrorism Events [122947]
FX This article was accepted under the editorship of Deborah E. Rupp. This
study has been funded in part by the NASA/USRA Center for
Program/Project Management Research (Sub-agreement 05115-C1P1-01), the
National Science Foundation (CMS-0555805), and the University of
Southern California's Center for Risk and Economic Analysis of Terrorism
Events (Sub-award 122947), whose support is gratefully acknowledged. We
would also like to thank the anonymous reviewers and associate editor
for providing deep and substantive comments that made this article much
better.
NR 58
TC 0
Z9 0
U1 10
U2 22
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0149-2063
EI 1557-1211
J9 J MANAGE
JI J. Manag.
PD MAR
PY 2016
VL 42
IS 3
BP 671
EP 697
DI 10.1177/0149206313498905
PG 27
WC Business; Psychology, Applied; Management
SC Business & Economics; Psychology
GA DD6VL
UT WOS:000370062500005
ER
PT J
AU Swanson, RC
Langer, S
AF Swanson, R. C.
Langer, S.
TI Steady-state laminar flow solutions for NACA 0012 airfoil
SO COMPUTERS & FLUIDS
LA English
DT Article
DE Navier-Stokes; Steady state; Laminar; Runge-Kutta; Preconditioner
ID NAVIER-STOKES EQUATIONS; EULER EQUATIONS; CONVERGENCE ACCELERATION;
DIFFERENCE; SCHEMES
AB In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 x 10(6) grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Swanson, R. C.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA.
[Langer, S.] Deutsch Zentrum Luft & Raumfahrt, DLR, Lilienthalpl 7, D-38108 Braunschweig, Germany.
RP Swanson, RC (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA.
EM r.c.swanson10@gmail.com; Stefan.langer@dir.de
NR 43
TC 2
Z9 2
U1 0
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-7930
EI 1879-0747
J9 COMPUT FLUIDS
JI Comput. Fluids
PD MAR 1
PY 2016
VL 126
BP 102
EP 128
DI 10.1016/j.compfluid.2015.11.009
PG 27
WC Computer Science, Interdisciplinary Applications; Mechanics
SC Computer Science; Mechanics
GA DC8JM
UT WOS:000369465700008
ER
PT J
AU Manne, J
Webster, CR
AF Manne, Jagadeeshwari
Webster, Christopher R.
TI Determination of spectral parameters for lines targeted by the Tunable
Laser Spectrometer (TLS) on the Mars Curiosity rover
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Tunable diode laser spectroscopy; Self-broadening; Helium broadening;
N-2 broadening
ID BROADENING COEFFICIENTS; SPECTROSCOPIC DATABASE; MARTIAN ATMOSPHERE;
RATIO MEASUREMENTS; ISOTOPE RATIOS; MU-M; CM(-1); POSITIONS; WATER; H2O
AB Molecular line parameters of line strengths, self- and foreign-broadening by nitrogen, carbon dioxide and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of water and carbon dioxide at 2.78 mu m targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. Good agreement is found by comparison with the line parameters reported in the HITRAN-2012 database. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Manne, Jagadeeshwari; Webster, Christopher R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Manne, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
EM esha.manne@jpl.nasa.gov
FU NASA
FX The research described here was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
NASA J. Manne also acknowledges support from NASA in the form of a
postdoctoral fellowship. (C)2015 California Institute of Technology.
Government sponsorship acknowledged.
NR 42
TC 0
Z9 0
U1 6
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
EI 1879-1352
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD MAR
PY 2016
VL 171
BP 28
EP 38
DI 10.1016/j.jqsrt.2015.11.019
PG 11
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA DC8KB
UT WOS:000369467200004
ER
PT J
AU Ham, SH
Kato, S
Rase, FG
AF Ham, Seung-Hee
Kato, Seiji
Rase, Fred G.
TI Correction of ocean hemispherical spectral reflectivity for longwave
irradiance computations
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Longwave; Irradiance; Directional reflectivity; Hemispherical
reflectivity; Reflectivity correction factor
ID MODEL SEA-SURFACE; MULTIPLE-SCATTERING; RADIATIVE-TRANSFER;
OPTICAL-CONSTANTS; EMISSIVITY; WATER; APPROXIMATION; REFLECTANCE;
RECIPROCITY; MEDIA
AB This study demonstrates that upward infrared irradiances have negative modeling biases when the ocean hemispherical spectral reflectivity is used. The biases increase with increasing air temperature and with decreasing water vapor amount. Spectral biases in the surface upward longwave irradiance from 4 mu m to 80 mu m are between -0.4 and 0 W m(-2) mu m(-1), while longwave broadband biases are between -2 and -1 W m(-2). The negative biases stem from surface-reflected component because an irradiance radiative transfer model ignores the correlation between the downward radiance and directional reflectivity. Therefore, a positive correction factor to the hemispherical spectral reflectivity for the irradiance radiative transfer model is needed. A simple parameterization using an anisotropic factor for downward radiances is developed to correct reflectivity for various atmospheric conditions. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Ham, Seung-Hee; Rase, Fred G.] Sci Syst & Applicat Inc SSAI, Hampton, VA USA.
[Ham, Seung-Hee; Kato, Seiji] NASA, Langley Res Ctr, 100 NASA Rd,Mailstop 420, Hampton, VA 23665 USA.
RP Ham, SH (reprint author), NASA, Langley Res Ctr, 100 NASA Rd,Mailstop 420, Hampton, VA 23665 USA.
EM seung-hee.ham@nasa.gov
FU Clouds and the Earth's Radiant Energy System (CERES); NASA Making Earth
System Data Records for Use in Research Environments (MEaSUREs) project
FX This work is supported by the Clouds and the Earth's Radiant Energy
System (CERES), and NASA Making Earth System Data Records for Use in
Research Environments (MEaSUREs) project.
NR 25
TC 1
Z9 1
U1 1
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
EI 1879-1352
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD MAR
PY 2016
VL 171
BP 57
EP 65
DI 10.1016/j.jqsrt.2015.12.003
PG 9
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA DC8KB
UT WOS:000369467200007
ER
PT J
AU Tavana, M
Liu, WR
Elmore, P
Petry, FE
Bourgeois, BS
AF Tavana, Madjid
Liu, Weiru
Elmore, Paul
Petry, Frederick E.
Bourgeois, Brian S.
TI A practical taxonomy of methods and literature for managing uncertain
spatial data in geographic information systems
SO MEASUREMENT
LA English
DT Article
DE Uncertainty; Spatial data; Geographic information systems; Taxonomy;
Literature review
ID BELIEF FUNCTIONS; FUZZY-SETS; COMBINATION; FRAMEWORK
AB Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Tavana, Madjid] La Salle Univ, Distinguished Chair Business Analyt, Business Syst & Analyt Dept, Philadelphia, PA 19141 USA.
[Tavana, Madjid] Univ Paderborn, Fac Business Adm & Econ, Business Informat Syst Dept, D-33098 Paderborn, Germany.
[Liu, Weiru] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast, Antrim, North Ireland.
[Elmore, Paul; Petry, Frederick E.; Bourgeois, Brian S.] Stennis Space Ctr, Naval Res Lab, Geospatial Sci & Technol Branch, Stennis Space Ctr, MS USA.
RP Tavana, M (reprint author), La Salle Univ, Distinguished Chair Business Analyt, Business Syst & Analyt Dept, Philadelphia, PA 19141 USA.
EM tavana@lasalle.edu; w.liu@qub.ac.uk; paul.elmore@nrlssc.navy.mil;
fred.petry@nrlssc.navy.mil; bsb2@nrlssc.navy.mil
FU U.S. Naval Research Laboratory [N000141310505]
FX This research is supported in part by the U.S. Naval Research Laboratory
grant number N000141310505. The authors would like to thank the
anonymous reviewers and the editor for their insightful comments and
suggestions.
NR 51
TC 3
Z9 3
U1 1
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0263-2241
EI 1873-412X
J9 MEASUREMENT
JI Measurement
PD MAR
PY 2016
VL 81
BP 123
EP 162
DI 10.1016/j.measurement.2015.12.007
PG 40
WC Engineering, Multidisciplinary; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA DB1IP
UT WOS:000368262100013
ER
PT J
AU Rubincam, DP
AF Rubincam, David Parry
TI Tidal friction in the Earth-Moon system and Laplace planes: Darwin redux
SO ICARUS
LA English
DT Article
DE Tides; solid body Moon Earth Satellites; dynamics Rotational dynamics
ID LUNAR ORBIT; CLIMATE FRICTION; EVOLUTION; DISSIPATION; OBLIQUITY;
SATELLITE; ORIGIN; MANTLE; OCEAN; CORE
AB The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than similar to 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2 degrees. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.
C1 [Rubincam, David Parry] NASA, Planetary Geodynam Lab, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Rubincam, DP (reprint author), NASA, Planetary Geodynam Lab, Solar Syst Explorat Div, Goddard Space Flight Ctr, Code 698,Bldg 34,Room S280, Greenbelt, MD 20771 USA.
EM David.P.Rubincam@nasa.gov
NR 49
TC 2
Z9 2
U1 2
U2 13
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 24
EP 43
DI 10.1016/j.icarus.2015.10.024
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300003
ER
PT J
AU Clancy, RT
Wolff, MJ
Lefevre, F
Cantor, BA
Malin, MC
Smith, MD
AF Clancy, R. Todd
Wolff, Michael J.
Lefevre, Franck
Cantor, Bruce A.
Malin, Michael C.
Smith, Michael D.
TI Daily global mapping of Mars ozone column abundances with MARCI UV band
imaging
SO ICARUS
LA English
DT Article
DE Mars; atmosphere Photochemistry Ultraviolet observations Atmospheres;
chemistry Mars
ID ULTRAVIOLET SPECTROMETER EXPERIMENT; GENERAL-CIRCULATION MODEL; TES
NADIR DATA; MARTIAN ATMOSPHERE; WATER-VAPOR; MGS TES;
NORTHERN-HEMISPHERE; INTERANNUAL VARIABILITY; SEASONAL-VARIATIONS;
HYDROGEN-PEROXIDE
AB Since November of 2006, The Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) has obtained multiple-filter daily global images of Mars centered upon a local time (LT) of 3 pm. Ultraviolet imaging bands placed within (260 nm) and longward (320 nm) of Hartley band (240-300 nm) ozone (O-3) absorption support retrievals of atmospheric ozone columns, with detection limits (similar to 1 mu m-atm) appropriate to mapping elevated O-3 abundances at low latitudes around Mars aphelion, and over mid-to-high latitudes during fall/winter/spring seasons. MARCI O-3 maps for these regions reveal the detailed spatial (similar to 1 degrees lat/long, for 8 x 8 pixel binned resolution) and temporal (daily, with substantial LT coverage at pole) behaviors of water vapor saturation conditions that force large variations in water vapor photolysis products (HOx-OH, HO2, and H) responsible for the catalytic destruction of O-3 in the Mars atmosphere. A detailed description of the MARCI O-3 data set, including measurement and retrieval characteristics, is provided in conjunction with comparisons to Mars Express SPICAM ozone measurements (Perrier, S. et al. [2006].J. Geophys. Res. (Planets) 111) and LMD GCM simulated O-3 abundances (Lefevre, F. 12004].J. Geophys. Res. (Planets) 109). Presented aspects of the MARCI ozone mapping data set include aphelion increases in low latitude O-3, dynamically evolving high latitude O-3 maxima associated with planetary waves and weather fronts during northern early spring, and distinctive winter/spring O-3 and CO increases within the Hellas Basin associated with transport of condensationenhanced south polar air mass. Comparisons of coincident MARC! measurements and LMD simulations for ice cloud and O-3 columns are considered in the context of potential heterogeneous photochemical processes (Lefevre, F. [2008]. Nature 454,971-975), which are not strongly evidenced in the MARCI observations. Modest interannual variations are exhibited, most notably a 20% reduction in aphelion low latitude O-3 columns following the 2007 perihelic global dust storm. (c) 2015 Elsevier Inc. All rights reserved.
C1 [Clancy, R. Todd; Wolff, Michael J.] Space Sci Inst, Boulder, CO 80301 USA.
[Lefevre, Franck] Lab Atmospheres Milieux Observat Spatiales, Paris, France.
[Cantor, Bruce A.; Malin, Michael C.] Malin Space Sci Syst, San Diego, CA 92191 USA.
[Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Clancy, RT (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205,UCB 564, Boulder, CO 80301 USA.
EM clancy@spacescience.org
FU NASA MRO mission [06-0152]
FX We are indebted to the excellent MRO and MARCI operations staff for the
collection and processing of UV imaging observations presented here.
Contract support for this work was provided by the NASA MRO mission
(under MSSS sub-contract 06-0152).
NR 74
TC 1
Z9 1
U1 4
U2 19
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 112
EP 133
DI 10.1016/j.icarus.2015.11.016
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300009
ER
PT J
AU Dello Russo, N
Vervack, RJ
Kawakita, H
Cochran, A
McKay, AJ
Harris, WM
Weaver, HA
Lisse, CM
DiSanti, MA
Kobayashi, H
Biver, N
Bockeleee-Morvan, D
Crovisier, J
Opitom, C
Jehin, E
AF Dello Russo, N.
Vervack, R. J., Jr.
Kawakita, H.
Cochran, A.
McKay, A. J.
Harris, W. M.
Weaver, H. A.
Lisse, C. M.
DiSanti, M. A.
Kobayashi, H.
Biver, N.
Bockelee-Morvan, D.
Crovisier, J.
Opitom, C.
Jehin, E.
TI The compositional evolution of C/2012 S1 (ISON) from ground-based
high-resolution infrared spectroscopy as part of a worldwide observing
campaign
SO ICARUS
LA English
DT Article
DE Comets; Infrared observations; Spectroscopy
ID O1 HALE-BOPP; COMET 103P/HARTLEY 2; HYAKUTAKE C/1996 B2; OORT CLOUD
COMETS; ORTHO-PARA RATIO; VOLATILE COMPOSITION; ROTATIONAL TEMPERATURES;
CHEMICAL-COMPOSITION; ORGANIC COMPOSITION; WATER PRODUCTION
AB Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/triangle lambda similar to 2.5 x 10(4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on UT 2013 October 26 and 28 with NIRSPEC at the W.M. Keck Observatory, and UT 2013 November 19 and 20 with CSHELL at the NASA IRTF. H2O was detected on all dates, with production rates increasing markedly from (8.7 +/- 1.5) x 10(27) molecules s(-1) on October 26 (R-h = 1.12 AU) to (3.7 +/- 0.4) x 10(29) molecules s(-1) on November 20 (R-h = 0.43 AU). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 h. C2H6, CH3OH and CH4 abundances in ISON are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Rh = 1.07 AU) and November 19 (R-h = 0.46 AU). The high mixing ratios of H2CO/CH3OH and C2H2/C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically new comet to sampling more pristine natal material as the outer processed layer was increasingly eroded and the thermal wave propagated into the nucleus as the comet approached perihelion for the first time. On November 19 and 20, the spatial distribution for dust appears asymmetric and enhanced in the antisolar direction, whereas spatial distributions for volatiles (excepting CN) appear symmetric with their peaks slightly offset in the sunward direction compared to the dust. Spatial distributions for H2O, HCN, C2H6, C2H2, and H2CO on November 19 show no definitive evidence for significant contributions from extended sources; however, broader spatial distributions for NH3 and OCS may be consistent with extended sources for these species. Abundances of HCN and C2H2 on November 19 and 20 are insufficient to account for reported abundances of CN and C-2 in ISON near this time. Differences in HCN and CN spatial distributions are also consistent with HCN as only a minor source of CN in [SON on November 19 as the spatial distribution of CN in the coma suggests a dominant distributed source that is correlated with dust and not volatile release. The spatial distributions for NH3 and NH2 are similar, suggesting that NH3 is the primary source of NH2 with no evidence of a significant dust source of NH2; however, the higher production rates derived for NH3 compared to NH2 on November 19 and 20 remain unexplained.
This suggests a more complete analysis that treats NH2 as a distributed source and accounts for its emission mechanism is needed for future work. (c) 2015 Elsevier Inc. All rights reserved.
C1 [Dello Russo, N.; Vervack, R. J., Jr.; Weaver, H. A.; Lisse, C. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Kawakita, H.; Kobayashi, H.] Kyoto Sangyo Univ Motoyama, Koyama Astron Observ, Kita Ku, Kyoto 6038555, Japan.
[Cochran, A.; McKay, A. J.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA.
[Harris, W. M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[DiSanti, M. A.] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Biver, N.; Bockelee-Morvan, D.; Crovisier, J.] Observ Paris, LESIA, F-92195 Meudon, France.
[Opitom, C.; Jehin, E.] Univ Liege, FRS FNRS, Inst Astrophys & Geophys, B-4000 Liege, Belgium.
RP Dello Russo, N (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
RI Dello Russo, Neil/G-2727-2015; Lisse, Carey/B-7772-2016; Vervack,
Ronald/C-2702-2016; Weaver, Harold/D-9188-2016
OI Dello Russo, Neil/0000-0002-8379-7304; Lisse, Carey/0000-0002-9548-1526;
Vervack, Ronald/0000-0002-8227-9564;
FU NASA Science Mission Directorate, Planetary Astronomy Program
[NNX-08AE38A]; W.M. Keck Foundation; NASA PAST Program; NASA PATM
Program; NASA SSW Program [NNX15AH29G]
FX Data were obtained at the NASA Infrared Telescope Facility operated by
the University of Hawaii under cooperative agreement number NNX-08AE38A
with the NASA Science Mission Directorate, Planetary Astronomy Program.
Data presented herein were also obtained at the W.M. Keck Observatory,
which is operated as a scientific partnership among the California
Institute of Technology, the University of California and the National
Aeronautics and Space Administration. The Observatory was made possible
by the generous financial support of the W.M. Keck Foundation. We thank
NASA, the Comet ISON Observing Campaign (CIOC), and the IRTF and Keck
Observatories for setting aside campaign time for these observations,
and the former NASA PAST and PATM Programs for their financial support
of this work. MAD thanks the NASA SSW Program, grant NNX15AH29G for
support. We note that all raw data from observations presented here are
publicly available through IRTF and Keck archives. The authors wish to
recognize and acknowledge the very significant cultural role and
reverence that the summit of Mauna Kea has always had within the
indigenous Hawaiian community. We are most fortunate to have the
opportunity to conduct observations from this mountain.
NR 96
TC 3
Z9 3
U1 1
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 152
EP 172
DI 10.1016/j.icarus.2015.11.030
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300012
ER
PT J
AU Yin, A
Zuza, AV
Pappalardo, RT
AF Yin, An
Zuza, Andrew V.
Pappalardo, Robert T.
TI Mechanics of evenly spaced strike-slip faults and its implications for
the formation of tiger-stripe fractures on Saturn's moon Enceladus
SO ICARUS
LA English
DT Article
DE Enceladus; Ices; Mechanical properties; Tectonics
ID HIMALAYAN-TIBETAN OROGEN; SOUTH POLAR TERRAIN; TECTONIC EVOLUTION;
CRUSTAL RHEOLOGY; SEA-ICE; CASSINI; MODEL; FAILURE; ORIGIN
AB We present the first mechanical analysis based on realistic rheology and boundary conditions on the formation of evenly spaced strike-slip faults. Two quantitative models employing the stress-shadow concept, widely used for explaining extensional-joint spacing, are proposed in this study: (1) an empirically based stress-rise-function model that simulates the brittle-deformation process during the formation of evenly spaced parallel strike-slip faults, and (2) an elastic plate model that relates fault spacing to the thickness of the fault-hosting elastic medium. When applying the models for the initiation and development of the tiger-stripe fractures (TSF) in the South Polar Terrain (SPT) of Enceladus, the mutually consistent solutions of the two models, as constrained by the mean spacing of the TSF at similar to 35 km, requires that the brittle ice-shell thickness be similar to 30 km, the elastic thickness be similar to 0.7 km, and the cohesive strength of the SPT ice shell be similar to 30 kPa. However, if the brittle and elastic models are decoupled and if the ice-shell cohesive strength is on the order of similar to 1 MPa, the brittle ice shell would be on the order of similar to 10 km. (c) 2015 Elsevier Inc. All rights reserved.
C1 [Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.
[Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Inst Planets & Exoplanets, Los Angeles, CA 90095 USA.
[Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Yin, A (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.
EM yin@ess.ucla.edu; Robert.Pappalardo@jpl.nasa.gov
OI Zuza, Andrew/0000-0001-6130-5121
FU Tectonics Program, US National Science Foundation; National Aeronautics
and Space Administration
FX An extremely thorough review and very constructive comments by Stephanie
Johnston have greatly improved the scientific content and clarity of the
original manuscript. This work also benefits greatly from several
stimulating discussions and more importantly encouragement from Dr.
Carolyn Porco throughout the project. She careful reading and comments
led to further clarification of the concepts and interpretations
presented in this study. AY's work on the mechanics of strike-slip fault
is supported by a grant from the Tectonics Program, US National Science
Foundation. Work by RTP was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.
NR 51
TC 2
Z9 2
U1 2
U2 18
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 204
EP 216
DI 10.1016/j.icarus.2015.10.027
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300015
ER
PT J
AU McKay, AJ
Kelley, MSP
Cochran, AL
Bodewits, D
DiSanti, MA
Dello Russo, N
Lissee, CM
AF McKay, Adam J.
Kelley, Michael S. P.
Cochran, Anita L.
Bodewits, Dennis
DiSanti, Michael A.
Dello Russo, Neil
Lissee, Carey M.
TI The CO2 abundance in Comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR),
and 290P/Jager as measured with Spitzer
SO ICARUS
LA English
DT Article
DE Comets Comets; coma Comets; composition
ID FORBIDDEN OXYGEN LINES; CAMERON-BAND EMISSION; MU-M SPECTRUM;
SPACE-TELESCOPE; P1 GARRADD; HALE-BOPP; 2011-2012 APPARITION; H2O;
103P/HARTLEY; MOLECULES
AB Carbon dioxide is one of the most abundant ices present in comets and is therefore important for understanding cometaiy composition and activity. We present analysis of observations of CO2 and [O I] emission in three comets to measure the CO2 abundance and evaluate the possibility of employing observations of [O I] emission in comets as a proxy for CO2. We obtained NIR imaging sensitive to CO2 of comets C/2012 1(1 (PanSTARRS), C/2012 1(5 (LINEAR), and 290P/Jager with the IRAC instrument on Spitzer. We acquired observations of [O I] emission in these comets with the ARCES echelle spectrometer mounted on the 3.5-m telescope at Apache Point Observatory and observations of OH with the Swift observatory (PanSTARRS) and with Keck HIRES (Jager). The CO2/H2O ratios derived from the Spitzer images are 12.6 +/- 1.3% (PanSTARRS), 28.9 +/- 3.6% (LINEAR), and 31.3 +/- 4.2% (Jager). These abundances are derived under the assumption that contamination from CO emission is negligible. The CO2 abundance for PanSTARRS is close to the average abundance measured in comets at similar heliocentric distance to date, while the abundances measured for LINEAR and Jager are significantly larger than the average abundance. From the coma morphology observed in PanSTARRS and the assumed gas expansion velocity, we derive a rotation period for the nucleus of about 9.2 h. Comparison of H2O production rates derived from ARCES and Swift data, as well as other observations, suggest the possibility of sublimation from icy grains in the inner coma. We evaluate the possibility that the [O I] emission can be employed as a proxy for CO2 by comparing CO2/H2O ratios inferred from the [O I] lines to those measured directly by Spitzer. We find that for PanSTARRS we can reproduce the observed CO2 abundance to an accuracy of similar to 20%. For LINEAR and Jager, we were only able to obtain upper limits on the CO2 abundance inferred from the [O I] lines. These upper limits are consistent with the CO2 abundances measured by Spitzer. (c) 2015 Elsevier Inc. All rights reserved.
C1 [McKay, Adam J.; Cochran, Anita L.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA.
[Kelley, Michael S. P.; Bodewits, Dennis] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[DiSanti, Michael A.] NASA, Goddard Ctr Astrobiol, GSFC, Greenbelt, MD 20771 USA.
[DiSanti, Michael A.] Solar Syst Explorat Div, Greenbelt, MD 20771 USA.
[Dello Russo, Neil; Lissee, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
RP McKay, AJ (reprint author), Univ Texas Austin, McDonald Observ, 1 Univ Stn, Austin, TX 78712 USA.
EM amckay@astro.as.utexas.edu; msk@astro.umd.edu;
anita@astro.as.utexas.edu; dennis@astro.umd.edu;
Michael.A.Disanti@nasa.gov; neil.dello.russo@jhuapl.edu;
carey.lisse@jhuapl.edu
RI Dello Russo, Neil/G-2727-2015;
OI Dello Russo, Neil/0000-0002-8379-7304; Lisse, Carey/0000-0002-9548-1526
FU NASA Planetary Atmospheres Program [NNX08A052G]; NASA
FX We thank two anonymous reviewers whose comments improved the quality of
this manuscript. This work was supported by the NASA Planetary
Atmospheres Program through Grant No. NNX08A052G. This work is partially
based on observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory, California Institute of
Technology under a contract with NASA. We thank the APO and Keck
observing staff for their invaluable help in conducting the
observations. We are thankful to Matthew Knight for productive
discussions concerning the coma morphology seen at optical wavelengths
for C/2012 K1 (PanSTARRS), as well as David Schleicher, Michael Combi,
and Erika Gibb for sharing their unpublished production rates. We thank
John Barentine, Jurek Krzesinski, Chris Churchill, Pey Lian Lim, Paul
Strycker, and Doug Hoffman for developing and optimizing the ARCES IRAF
reduction script used to reduce the ARCES data. We would also like to
acknowledge the JPL Horizons System, which was used to generate
ephemerides for nonsidereal tracking of the comets during the ARCES
observations, and the SIMBAD database, which was used for selection of
reference stars. The authors wish to recognize and acknowledge the very
significant cultural role and reverence that the summit of Maunakea has
always had within the indigenous Hawaiian community. We are most
fortunate to have the opportunity to conduct observations from this
mountain.
NR 58
TC 1
Z9 1
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 249
EP 260
DI 10.1016/j.icarus.2015.11.004
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300018
ER
PT J
AU Poppe, AR
Fatemi, S
Garrick-Bethell, I
Hemingway, D
Holmstrom, M
AF Poppe, Andrew R.
Fatemi, Shahab
Garrick-Bethell, Ian
Hemingway, Doug
Holmstrom, Mats
TI Solar wind interaction with the Reiner Gamma crustal magnetic anomaly:
Connecting source magnetization to surface weathering
SO ICARUS
LA English
DT Article
DE Moon; surface Magnetic fields Solar wind
ID LUNAR-PROSPECTOR; MOON; FIELDS; INSTRUMENT; MERCURY; ORIGIN; SWIRLS
AB Remanent magnetization has long been known to exist in the lunar crust, yet both the detailed topology and ultimate origin(s) of these fields remains uncertain. Some crustal magnetic fields coincide with surface albedo anomalies, known as lunar swirls, which are thought to be formed by differential surface weathering of the regolith underlying crustal fields due to deflection of incident solar wind protons. Here, we present results from a three-dimensional, self-consistent, plasma hybrid model of the solar wind interaction with two different possible source magnetizations for the Reiner Gamma anomaly. We characterize the plasma interaction with these fields and the resulting spatial distribution of charged-particle weathering of the surface and compare these results to optical albedo measurements of Reiner Gamma. The model results constrain the proposed source magnetizations for Reiner Gamma and suggest that vertical crustal magnetic fields are required to produce the observed "dark lanes." (c) 2015 Elsevier Inc. All rights reserved.
C1 [Poppe, Andrew R.; Fatemi, Shahab] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Poppe, Andrew R.; Fatemi, Shahab] NASA, Solar Syst Explorat Res Virtual Inst, Ames Res Ctr, Mountain View, CA 94035 USA.
[Garrick-Bethell, Ian; Hemingway, Doug] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Garrick-Bethell, Ian] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi Do, South Korea.
[Hemingway, Doug] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA.
[Holmstrom, Mats] Swedish Inst Space Phys, S-98128 Kiruna, Sweden.
RP Poppe, AR (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
EM poppe@ssl.berkeley.edu
RI Hemingway, Douglas/F-6332-2014
OI Hemingway, Douglas/0000-0001-5617-207X
FU NASA's Solar System Exploration Research Virtual Institute [NNX14AG16A];
National Research Foundation (NRF) - Ministry of Education of Korea
FX A.R.P. and S.F. gratefully acknowledge support from NASA's Solar System
Exploration Research Virtual Institute, grant #NNX14AG16A. This
publication is SSERVI contribution #SSERVI-2015-160. The authors
acknowledge the International Space Science Institute (ISSI) for hosting
a workshop series that in part inspired this work as well as two
reviewers for constructive and helpful comments. The software used in
this work was in part developed by the DOE NNSA-ASC OASCR Flash Center
at the University of Chicago. This research was conducted using
resources provided by the Swedish National Infrastructure for Computing
(SNIC) at the High Performance Computing Center North (HPC2N), Umea
University, Sweden. The LROC data are publicly available from the NASA
PDS Imaging Node (http://pds-imaging.jpl.nasa.gov/). I.G.-B. was
partially supported by the BK21 PLUS program through the National
Research Foundation (NRF), funded by the Ministry of Education of Korea.
NR 47
TC 4
Z9 4
U1 0
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 261
EP 266
DI 10.1016/j.icarus.2015.11.005
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300019
ER
PT J
AU Carli, C
Roush, TL
Pedrazzi, G
Capaccioni, F
AF Carli, C.
Roush, T. L.
Pedrazzi, G.
Capaccioni, F.
TI Visible and Near-Infrared (VNIR) reflectance spectroscopy of glassy
igneous material: Spectral variation, retrieving optical constants and
particle sizes by Hapke model
SO ICARUS
LA English
DT Article
DE Mineralogy; Regoliths; Spectroscopy
ID INTERSTELLAR SILICATE MINERALOGY; PLANETARY REGOLITH ANALOGS;
BIDIRECTIONAL REFLECTANCE; LABORATORY PHOTOMETRY; VARIABILITY; MIXTURES;
DENSITY; MERCURY; STEPS; ICE
AB Silicate glasses with igneous compositions can be an important constituent of planetary surface material via effusive volcanism or impact cratering processes. Different planetary surfaces are mapped with hyper-spectrometers in the VNIR, and in this spectral range crystal field absorptions are useful in discriminating iron bearing silicate components. For these reasons studying glassy materials, and their optical constants, is an important effort to better document and understand spectral features of Solar System silicate crusts where glasses are present, but may be difficult to map. In our work we present a set of four different synthetic glasses, produced under terrestrial conditions, with variable composition and in particular an increasing amount of iron. The VNIR spectra show, for all the compositions, two absorptions are present near 1.1 and 1.9 mu m but reflectance, slope and absorption shape varies with composition. We measured the reflectance of different particle sizes of the samples and used radiative transfer models to estimate the optical constants as a function of wavelength. We used the retrieved optical constants to estimate the particle size from the measured reflectances and the results fall within the known sieve range. We qualitatively discuss the effect of the shape and distribution of particles on the application of the model. (c) 2015 Elsevier Inc. All rights reserved.
C1 [Carli, C.; Capaccioni, F.] IAPS INAF, Rome, Italy.
[Roush, T. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Pedrazzi, G.] Univ Parma, Biophys & Med Phys Unit, Dept Neurosci, I-43100 Parma, Italy.
RP Carli, C (reprint author), IAPS INAF, Rome, Italy.
EM cristian.carli@iaps.inaf.it
OI carli, cristian/0000-0002-4674-1029
FU Agenzia Spaziale Italiana, SIMBIO-SYS project
FX This work was financially supported by Agenzia Spaziale Italiana,
SIMBIO-SYS project.
NR 42
TC 1
Z9 1
U1 1
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 267
EP 278
DI 10.1016/j.icarus.2015.10.032
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300020
ER
PT J
AU Farnocchia, D
Chesley, SR
Micheli, M
Delamere, WA
Heyd, RS
Tholen, DJ
Giorgini, JD
Owen, WM
Tamppari, LK
AF Farnocchia, D.
Chesley, S. R.
Micheli, M.
Delamere, W. A.
Heyd, R. S.
Tholen, D. J.
Giorgini, J. D.
Owen, W. M.
Tamppari, L. K.
TI High precision comet trajectory estimates: The Mars flyby of C/2013 A1
(Siding Spring)
SO ICARUS
LA English
DT Article
DE Comets Comets; dynamics Data reduction techniques Orbit determination
ID NONGRAVITATIONAL ACCELERATIONS; DISTANCES; CATALOG; FORCES; DUST
AB The Mars flyby of C/2013 A1 (Siding Spring) represented a unique opportunity for imaging a long-period comet and resolving its nucleus and rotation state. Because of the small encounter distance and the high relative velocity, the goal of successfully observing C/2013 A1 from the Mars orbiting spacecraft posed strict accuracy requirements on the comet's ephemeris. These requirements were hard to meet, as comets are known for being highly unpredictable: astrometric observations can be significantly biased and nongravitational perturbations affect comet trajectories. Therefore, even prior to the encounter, we remeasured a couple of hundred astrometric images obtained with ground-based and Earth-orbiting telescopes. We also observed the comet with the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera on 2014 October 7. In particular, these HiRISE observations were decisive in securing the trajectory and revealed that out-of-plane nongravitational perturbations were larger than previously assumed. Though the resulting ephemeris predictions for the Mars encounter allowed observations of the comet from the Mars orbiting spacecraft, post-encounter observations show a discrepancy with the pre-encounter trajectory. We reconcile this discrepancy by employing the Rotating Jet Model, which is a higher fidelity model for cometary nongravitational perturbations and provides an estimate of C/2013 A1's spin pole (RA, DEC) = (63 degrees, 14 degrees). (c) 2015 Elsevier Inc. All rights reserved.
C1 [Farnocchia, D.; Chesley, S. R.; Giorgini, J. D.; Owen, W. M.; Tamppari, L. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Micheli, M.] ESA NEO Coordinat Ctr, I-00044 Frascati, RM, Italy.
[Micheli, M.] SpaceDyS Srl, I-56023 Cascina, PI, Italy.
[Micheli, M.] INAF IAPS, I-00133 Rome, RM, Italy.
[Delamere, W. A.] Delamere Support Serv, Boulder, CO 80304 USA.
[Heyd, R. S.] Univ Arizona, Planetary Image Res Lab, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Tholen, D. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
RP Farnocchia, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Davide.Farnocchia@jpl.nasa.gov
OI Micheli, Marco/0000-0001-7895-8209
FU NASA
FX Part of this research was conducted at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA.
NR 29
TC 1
Z9 1
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 279
EP 287
DI 10.1016/j.icarus.2015.10.035
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300021
ER
PT J
AU Jenniskens, P
Nenon, Q
Albers, J
Gural, PS
Haberman, B
Holman, D
Morales, R
Grigsby, BJ
Samuels, D
Johannink, C
AF Jenniskens, P.
Nenon, Q.
Albers, J.
Gural, P. S.
Haberman, B.
Holman, D.
Morales, R.
Grigsby, B. J.
Samuels, D.
Johannink, C.
TI The established meteor showers as observed by CAMS
SO ICARUS
LA English
DT Article
DE Meteors Comets; dust Interplanetary dust Near-Earth Objects Asteroids
ID LONG-PERIOD COMET; TAURID COMPLEX; RADAR OBSERVATIONS; FAINT METEORS;
3200 PHAETHON; ORBIT-RADAR; 2005 UD; STREAM; ORIGIN; ANDROMEDIDS
AB Orbital elements are presented for 70 of the 95 meteor showers considered "established" by the International Astronomical Union. From 2010 October 21 until 2013 March 31, the low-light-video based Cameras for Allsky Meteor Surveillance project (CAMS) measured a total of 110,367 meteoroid trajectories and pre-atmospheric orbits from mostly -2 to +4 magnitude meteors with a precision of <2 degrees (median 0.4 degrees) in apparent radiant direction and <10% (median 0.9%) in speed. This paper discusses how the already established showers manifest in this data. Newly resolved components in the radiant distribution shed light on the dynamics and physical lifetime of parent bodies and their meteoroids. Many multicomponent showers have associated parent bodies with nodal lines not much rotated from that of their meteoroids (Encke Complex, Machholz Complex, Phaethon Complex, and now also the 169P/NEAT Complex). These may result from a parent body disruption cascade, with the disruption-generated meteoroids fading on the short timescale of a few hundred to a few thousand years. In particular, the Northern and Southern Taurids of the Encke Complex are decomposed here into 19 individual streams. Seven of these streams can be paired with mostly sub-km sized potential parent body asteroids that move in 2P/Encke-like orbits that span the narrow semi-major axis range of 2.20-2.35 AU. The meteoroids in these Taurid streams do not survive long enough for the nodal line to fully rotate relative to that of their parent body. (c) 2015 Elsevier Inc. All rights reserved.
C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Holman, D.; Grigsby, B. J.] SETI Inst, Mountain View, CA 94043 USA.
[Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Gural, P. S.] Leidos, Chantilly, VA 20151 USA.
[Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA.
[Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA.
[Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany.
RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM Petrus.M.Jenniskens@nasa.gov
FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth
Object Observation program [NNX12AM14G]
FX We thank all CAMS team members for their support of the project: amateur
astronomers and students who helped build CAMS, supported CAMS
operations over the years and assisted in the ongoing data reduction
effort. In particular, we thank Beth Johnson, Kathryn Steakley, and
Meridel Phillips of the SETI REU program, who supported the data
reduction effort. Michael Borden and Kevin Newman of the NASA Ames
Exploration Academy helped develop the CAMS hardware. Fremont Peak State
Park and Lick Observatory generously hosted the deployment of the CAMS
camera stations. The CAMS project was made possible by grants from
NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object
Observation (NNX12AM14G) programs.
NR 95
TC 7
Z9 7
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 331
EP 354
DI 10.1016/j.icarus.2015.09.013
PG 24
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300025
ER
PT J
AU Jenniskens, P
Nenon, Q
Gural, PS
Albers, J
Haberman, B
Johnson, B
Holman, D
Morales, R
Grigsby, BJ
Samuels, D
Johannink, C
AF Jenniskens, P.
Nenon, Q.
Gural, P. S.
Albers, J.
Haberman, B.
Johnson, B.
Holman, D.
Morales, R.
Grigsby, B. J.
Samuels, D.
Johannink, C.
TI CAMS confirmation of previously reported meteor showers
SO ICARUS
LA English
DT Article
DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects;
Asteroids
ID STATISTICAL-MODEL; ORBIT-RADAR; STREAM; CAMERAS; CATALOG; SEARCH
AB Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.(c) 2015 Elsevier Inc. All rights reserved.
C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Grigsby, B. J.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA.
[Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Gural, P. S.] Leidos, Chantily, VA 20151 USA.
[Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA.
[Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA.
[Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany.
RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM Petrus.M.Jenniskens@nasa.gov
FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth
Object Observation program [NNX12AM14G]
FX We thank all CAMS team members for their support of the project: amateur
astronomers and students who helped build CAMS hardware, supported CAMS
operations over the years, and assisted in the ongoing data reduction
effort. Fremont Peak State Park and Lick Observatory generously hosted
the deployment of the CAMS camera stations. The CAMS project was made
possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near
Earth Object Observation (NNX12AM14G) programs.
NR 59
TC 4
Z9 4
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 355
EP 370
DI 10.1016/j.icarus.2015.08.014
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300026
ER
PT J
AU Jenniskens, P
Nenon, Q
AF Jenniskens, Peter
Nenon, Quentin
TI CAMS verification of single-linked high-threshold D-criterion detected
meteor showers
SO ICARUS
LA English
DT Article
DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects;
Asteroids
ID STREAM; CAMERAS; RADIANT
AB From preliminary 2010-2011 results of the Cameras for Allsky Meteor Surveillance (CAMS) meteoroid orbit survey, which were combined with published 2007-2009 SonotaCo video meteor network data, 55 new meteor showers (##448-502) were identified and added to the IAU Working List on Meteor Showers in 2012. These showers were identified based on an automated single-linked D-SH-criterion analysis of a combined 105,000 orbits with high-threshold (a low D-SH < 0.05), but low acceptable sample size (>= 6 members). Three more years of CAMS and four more years of SonotaCo observations have now increased the meteoroid orbit database four fold. The earlier detections are verified by searching for number density enhancements in drift-corrected radiant and orbital element maps. Twenty showers are detected in both surveys and are now certain to exist. Median orbital elements are presented. Not detected in this manner were 19% of the fast V-g > 40 km/s showers, 54% of the V-g = 18-40 km/s showers, and 90% of the slow V-g < 18 km/s showers.(c) 2015 Elsevier Inc. All rights reserved.
C1 [Jenniskens, Peter; Nenon, Quentin] SETI Inst, Mountain View, CA 94043 USA.
[Jenniskens, Peter] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM Petrus.M.Jenniskens@nasa.gov
FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth
Object Observation program [NNX12AM14G]
FX We thank all CAMS team members for their support of the project: amateur
astronomers and students who helped build CAMS, supported CAMS
operations over the years and assisted in the ongoing data reduction
effort. Fremont Peak State Park and Lick Observatory (University of
California Santa Cruz) generously hosted the deployment of the CAMS
camera stations. The CAMS project was made possible by grants from
NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object
Observation (NNX12AM14G) programs.
NR 28
TC 1
Z9 1
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 371
EP 383
DI 10.1016/j.icarus.2015.10.004
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300027
ER
PT J
AU Jenniskens, P
Nenon, Q
Gural, PS
Albers, J
Haberman, B
Johnson, B
Morales, R
Grigsby, BJ
Samuels, D
Johannink, C
AF Jenniskens, P.
Nenon, Q.
Gural, P. S.
Albers, J.
Haberman, B.
Johnson, B.
Morales, R.
Grigsby, B. J.
Samuels, D.
Johannink, C.
TI CAMS newly detected meteor showers and the sporadic background
SO ICARUS
LA English
DT Article
DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects;
Asteroids
ID RADIANT DISTRIBUTION; ORBITAL DISTRIBUTION; DORMANT COMETS; STREAMS;
CAMERAS; CLOUD
AB The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from similar to 700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large similar to 7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grun et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 10(4)-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.
The meteors assigned to the various showers are identified in the CAMS Meteoroid Orbit Database 2.0 submitted to the IAU Meteor Data Center, and can be accessed also at http://cams.seti.org.(c) 2015 Published by Elsevier Inc.
C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Johnson, B.; Grigsby, B. J.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA.
[Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 95035 USA.
[Gural, P. S.] Leidos, Chantilly, VA 20151 USA.
[Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA.
[Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA.
[Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany.
RP Jenniskens, P (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM Petrus.M.Jenniskens@nasa.gov
FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth
Object Observation program [NNX12AM14G]
FX We thank all CAMS team members for their support of the project: amateur
astronomers and students who helped build CAMS, supported CAMS
operations over the years, and assisted in the ongoing data reduction
effort. We also thank David Nesvorny for helpful discussions during the
preparation of this manuscript. Fremont Peak State Park and Lick
Observatory generously hosted the deployment of the CAMS camera
stations. The CAMS project was made possible by grants from NASA's
Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation
(NNX12AM14G) programs.
NR 48
TC 2
Z9 2
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 384
EP 409
DI 10.1016/j.icarus.2015.11.009
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300028
ER
PT J
AU Zhang, X
West, RA
Banfield, D
Yung, YL
AF Zhang, X.
West, R. A.
Banfield, D.
Yung, Y. L.
TI Stratospheric aerosols on Jupiter from Cassini observations (vol 226, pg
159, 2013)
SO ICARUS
LA English
DT Correction
C1 [Zhang, X.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[West, R. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Banfield, D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Yung, Y. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
RP Zhang, X (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
EM xiz@ucsc.edu
NR 1
TC 0
Z9 0
U1 0
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD MAR 1
PY 2016
VL 266
BP 433
EP 434
DI 10.1016/j.icarus.2015.12.002
PG 2
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DA7DH
UT WOS:000367964300031
ER
PT J
AU Sainio, S
Jiang, H
Caro, MA
Koehne, J
Lopez-Acevedo, O
Koskinen, J
Meyyappan, M
Laurila, T
AF Sainio, S.
Jiang, H.
Caro, M. A.
Koehne, J.
Lopez-Acevedo, O.
Koskinen, J.
Meyyappan, M.
Laurila, T.
TI Structural morphology of carbon nanofibers grown on different substrates
SO CARBON
LA English
DT Article
ID AUGMENTED-WAVE METHOD; THIN-FILMS; NANOTUBES; SYSTEM; NANOSTRUCTURES;
REASSESSMENT; ELECTRODES; SENSORS; LAYER; NI
AB We present a detailed microstructural study comparing conventional carbon nanofibers (CNFs) and novel carbon hybrid CNF materials. The hybrid consists of CNFs grown on top of tetrahedral amorphous carbon (ta-C) thin films on silicon with nickel catalyst and Ti adhesion layers. The conventional CNFs were grown on silicon with nickel catalyst and Cr layers. Even though CNFs can be grown in both systems by tip growth, the micro-and nanoscale features are very different in the two systems. The crystalline structure of the CNF in the hybrid case changes from horizontal alignment to near-vertical alignment from the root to the tip and no bamboo structure is observed. The results show that micro-and nanoscale properties of CNFs grown under the same process conditions can be readily altered by using a sacrificial ta-C layer below the metallic layer to prevent the alloying of Ni with carbide-forming metals used as adhesion promoters and to act as an additional carbon source during the pre-annealing stage. The experimental results are further rationalized with the aid of assessed thermodynamic data and simulations based on density functional theory (DFT) with van der Waals (vdW) corrections. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Sainio, S.; Caro, M. A.; Laurila, T.] Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo, Finland.
[Jiang, H.] Aalto Univ, Sch Sci, Dept Appl Phys, Espoo, Finland.
[Caro, M. A.; Lopez-Acevedo, O.] Aalto Univ, Sch Sci, Dept Appl Phys, COMP Ctr Excellence Computat Nanosci, Espoo, Finland.
[Koskinen, J.] Aalto Univ, Sch Chem Technol, Dept Mat Sci, Espoo, Finland.
[Koehne, J.; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Laurila, T (reprint author), Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo, Finland.
EM tomi.laurila@aalto.fi
RI Koskinen, Jari/J-3886-2014; Lopez-Acevedo, Olga/B-9349-2009; Laurila,
Tomi/B-2076-2013;
OI Lopez-Acevedo, Olga/0000-0003-4489-6841; Caro, Miguel
A./0000-0001-9304-4261
FU Academy of Finland [285015, 285526]; Finnish Funding Agency for
Innovation [211488]
FX The authors acknowledge funding from the Academy of Finland (grant
numbers 285015 and 285526) and the Finnish Funding Agency for Innovation
(grant number 211488). Michael E. Salmon at Evans Analytical is
acknowledged for the FIB sample preparation. Dr. V. Protopopova is
acknowledged for fabrication of the Ti + ta-C + Ni substrates for the
CNF experiments. This work made use of the Aalto University
Nanomicroscopy Center facilities. The computational resources for this
project were provided by the Finnish Center for Scientific Computing
(CSC) through the Sisu supercomputer. M.A.C. would like to thank
Torbjorn Bjorkman for discussions regarding the use of van der Waals DFT
functionals.
NR 45
TC 6
Z9 6
U1 7
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
EI 1873-3891
J9 CARBON
JI Carbon
PD MAR
PY 2016
VL 98
BP 343
EP 351
DI 10.1016/j.carbon.2015.11.021
PG 9
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CZ6TD
UT WOS:000367233000042
ER
PT J
AU Adirosi, E
Baldini, L
Roberto, N
Gatlin, P
Tokay, A
AF Adirosi, E.
Baldini, L.
Roberto, N.
Gatlin, P.
Tokay, A.
TI Improvement of vertical profiles of raindrop size distribution from
micro rain radar using 2D video disdrometer measurements
SO ATMOSPHERIC RESEARCH
LA English
DT Article
DE Precipitation; Drop size distribution; Vertical profile of reflectivity
ID DOPPLER RADAR; VELOCITY; PRECIPITATION; AUSTRALIA; DARWIN; REFLECTIVITY;
DROPS; CLOUD
AB A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Adirosi, E.; Baldini, L.; Roberto, N.] Ist Sci Atmosfera & Clima, CNR, I-00133 Rome, Italy.
[Adirosi, E.] Univ Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00185 Rome, Italy.
[Gatlin, P.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Tokay, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Tokay, A.] Univ Maryland, Baltimore, MD 21201 USA.
RP Adirosi, E (reprint author), Ist Sci Atmosfera & Clima, Consiglio Nazl Ric, Via Fosso Cavaliere 100, I-00133 Rome, Italy.
EM elisa.adirosi@artov.isac.cnr.it
RI Measurement, Global/C-4698-2015;
OI Baldini, Luca/0000-0001-5217-1205; Gatlin, Patrick/0000-0001-9345-1457
NR 35
TC 2
Z9 2
U1 5
U2 17
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0169-8095
EI 1873-2895
J9 ATMOS RES
JI Atmos. Res.
PD MAR 1
PY 2016
VL 169
SI SI
BP 404
EP 415
DI 10.1016/j.atmosres.2015.07.002
PN B
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CZ1QA
UT WOS:000366879200003
ER
PT J
AU Thurai, M
Gatlin, PN
Bringi, VN
AF Thurai, M.
Gatlin, P. N.
Bringi, V. N.
TI Separating stratiform and convective rain types based on the drop size
distribution characteristics using 2D video disdrometer data
SO ATMOSPHERIC RESEARCH
LA English
DT Article
DE Stratiform and convective rain; 2D video disdrometer data; Vertically
pointing Doppler radar; UHF profiler; GPM ground validation campaign
ID DUAL-POLARIZED RADAR; SPECTRA; PROFILER; CLOUDS; PRECIPITATION;
PARAMETERS; DSD
AB A technique for separating stratiform and convective rain types using the characteristics of two of the main drop size distribution (DSD) parameters is presented. The method was originally developed based on observations from dual-frequency profiler and dual-polarization radar observations in Darwin, Australia. In this paper, we will present the testing of the method using data from 2D video disdrometers (2DVD) from two very different locations, namely, Ontario, Canada, and Huntsville, Alabama, USA One-minute DSDs from 2DVD are used as input to a gamma-fitting procedure and our separation technique uses the fitted values of log(10)(N-W) and D-0 (where N-W is the scaling parameter and Do is the median volume diameter) and an "index" to quantify where the points lie in the log(10)(N-W) versus D-0 domain.
For the Ontario location, the output of the classification is compared with simultaneous observations from a collocated, vertically pointing, X-band Doppler radar. A "bright-band" detection algorithm is used to classify each height profile as either stratiform or convective, depending on whether or not a clearly defined melting layer is present at an expected height. If present, the maximum reflectivity within the melting layer and the corresponding height are determined. Similar testing is carried out for two events in Huntsville and compared with observations from a collocated UHF profiler (with Doppler capability). Additional case studies are required, but these results indicate our separation technique seems to be applicable to many different locations and climatologies based on previously published data. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Thurai, M.; Bringi, V. N.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Gatlin, P. N.] NASA, MSFC, Huntsville, AL USA.
RP Thurai, M (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA.
EM merhala@engr.colostate.edu
RI Measurement, Global/C-4698-2015;
OI Gatlin, Patrick/0000-0001-9345-1457
FU NASA Precipitation Measurement Mission (PMM), NASA [NNX10AJ11G]
FX We wish to thank Dr. David Hudak and Peter Rodriguez of Environment
Canada for supplying the VertiX data from Ontario and to Dr. Kevin Knupp
for the UHF profiler data at the University of Alabama in Huntsville.
The bright-band detection software for the VertiX data was written by
Dr. C. Williams. Support for this work was provided by the NASA
Precipitation Measurement Mission (PMM), NASA Grant Award, NNX10AJ11G.
NR 32
TC 4
Z9 4
U1 1
U2 12
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0169-8095
EI 1873-2895
J9 ATMOS RES
JI Atmos. Res.
PD MAR 1
PY 2016
VL 169
SI SI
BP 416
EP 423
DI 10.1016/j.atmosres.2015.04.011
PN B
PG 8
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CZ1QA
UT WOS:000366879200004
ER
PT J
AU Li, X
Tang, W
Reynolds, AP
Tayon, WA
Brice, CA
AF Li, X.
Tang, W.
Reynolds, A. P.
Tayon, W. A.
Brice, C. A.
TI Strain and texture in friction extrusion of aluminum wire
SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
LA English
DT Article
DE Friction extrusion; Marker insert technique; Aluminum; Crystallographic
texture
ID MATERIAL FLOW; METAL FLOW; CHIPS; STRENGTH
AB Friction extrusion is a solid-state process that can produce high quality, fully consolidated wire or rod directly from metal chips, powder or billet. However, little is understood regarding the variation in material flow or extrusion strain with changes in processing parameters. Extrusion strain level may be of great import in determining whether or not the charge is fully consolidated. In order to explore the material deformation behavior during this process, flow visualization experiments were conducted using AA6061 billets with AA2195 as a marker insert. Variations in material flow during a single extrusion were documented and correlated with changes in grain size, which has previously been correlated with extrusion temperature. Marker shape was used to make an approximation of imposed strain during the extrusion as a function of relative extrusion temperature. Also, tests using various extrusion forces and die rotation speeds were conducted. The influence of extrusion parameters on deformation evolution was elucidated and discussed. Grain orientation analysis conducted using electron backscatter diffraction showed a fully recrystallized microstructure with weak texture indicating that recrystallization was likely a static process occurring after passage of the wire through the die. Key findings include: (1) longitudinal strain is solely a function of overall reduction (2) in plane shear strain decreases with increasing extrusion temperature, and (3) with increasing extrusion temperature, friction extrusion becomes similar to normal extrusion. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Li, X.; Tang, W.; Reynolds, A. P.] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
[Tayon, W. A.; Brice, C. A.] NASA Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA.
RP Li, X (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA.
EM li292@email.sc.edu; tangw@ornl.gov; craig.a.brice@lmco.com
RI Tang, Wei/E-3613-2017;
OI Tang, Wei/0000-0002-9274-9574; Li, Xiao/0000-0003-2096-298X
FU NASA-EPSCoR grant [520879-USC]; NSF [CMMI-1266043]
FX This work was supported by NASA-EPSCoR grant #520879-USC and NSF Grant
CMMI-1266043.
NR 24
TC 0
Z9 0
U1 2
U2 18
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0924-0136
J9 J MATER PROCESS TECH
JI J. Mater. Process. Technol.
PD MAR
PY 2016
VL 229
BP 191
EP 198
DI 10.1016/j.jmatprotec.2015.09.012
PG 8
WC Engineering, Industrial; Engineering, Manufacturing; Materials Science,
Multidisciplinary
SC Engineering; Materials Science
GA CZ4XJ
UT WOS:000367106000019
ER
PT J
AU Halekas, JS
Brain, DA
Ruhunusiri, S
McFadden, JP
Mitchell, DL
Mazelle, C
Connerney, JEP
Harada, Y
Hara, T
Espley, JR
DiBraccio, GA
Jakosky, BM
AF Halekas, J. S.
Brain, D. A.
Ruhunusiri, S.
McFadden, J. P.
Mitchell, D. L.
Mazelle, C.
Connerney, J. E. P.
Harada, Y.
Hara, T.
Espley, J. R.
DiBraccio, G. A.
Jakosky, B. M.
TI Plasma clouds and snowplows: Bulk plasma escape from Mars observed by
MAVEN
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID WIND MAGNETOSHEATH RELEASES; AMPTE ARTIFICIAL COMET; MARTIAN
MAGNETOSPHERE; MAGNETIC-FIELD; VENUS; OSCILLATIONS; SIMULATIONS;
DYNAMICS; FLUXES; IONS
AB We present initial Mars Atmosphere and Volatile EvolutioN (MAVEN) observations and preliminary interpretation of bulk plasma loss from Mars. MAVEN particle and field measurements show that planetary heavy ions derived from the Martian atmosphere can escape in the form of discrete coherent structures or "clouds." The ions in these clouds are unmagnetized or weakly magnetized, have velocities well above the escape speed, and lie directly downstream from magnetic field amplifications, suggesting a "snowplow" effect. This postulated escape process, similar to that successfully used to explain the dynamics of active gas releases in the solar wind and terrestrial magnetosheath, relies on momentum transfer from the shocked solar wind protons to the planetary heavy ions, with the electrons and magnetic field acting as intermediaries. Fluxes of planetary ions on the order of 10(7) cm(-2) s(-1) can escape by this process, and if it operates regularly, it could contribute 10-20% of the current ion escape from Mars.
C1 [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
[Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
[McFadden, J. P.; Mitchell, D. L.; Harada, Y.; Hara, T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Mazelle, C.] Inst Rech Astrophys & Planetol, Toulouse, France.
[Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Halekas, JS (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
EM jasper-halekas@uiowa.edu
OI Halekas, Jasper/0000-0001-5258-6128
FU NASA; Mars Exploration Program; CNES
FX We thank NASA and the Mars Exploration Program for supporting the MAVEN
mission and this research. Analysis of SWEA data was partially supported
by CNES. A portion of the research at NASA GSFC was supported by the
NASA postdoctoral program. The MAVEN data used in this study are all
archived in the Planetary Data System.
NR 34
TC 2
Z9 2
U1 4
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2016
VL 43
IS 4
BP 1426
EP 1434
DI 10.1002/2016GL067752
PG 9
WC Geosciences, Multidisciplinary
SC Geology
GA DH9IF
UT WOS:000373109000003
ER
PT J
AU Oberlander-Hayn, S
Gerber, EP
Abalichin, J
Akiyoshi, H
Kerschbaumer, A
Kubin, A
Kunze, M
Langematz, U
Meul, S
Michou, M
Morgenstern, O
Oman, LD
AF Oberlaender-Hayn, Sophie
Gerber, Edwin P.
Abalichin, Janna
Akiyoshi, Hideharu
Kerschbaumer, Andreas
Kubin, Anne
Kunze, Markus
Langematz, Ulrike
Meul, Stefanie
Michou, Martine
Morgenstern, Olaf
Oman, Luke D.
TI Is the Brewer-Dobson circulation increasing or moving upward?
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID STRATOSPHERIC WATER-VAPOR; CHEMISTRY-CLIMATE MODEL; CHANGING CLIMATE;
GENERAL-CIRCULATION; TROPOPAUSE HEIGHT; SIMULATIONS; OZONE; TROPOSPHERE;
AIR; AGE
AB The meridional circulation of the stratosphere, or Brewer-Dobson circulation (BDC), is projected to accelerate with increasing greenhouse gas (GHG) concentrations. The acceleration is typically quantified by changes in the tropical upward mass flux (F-trop) across a given pressure surface. Simultaneously, models project a lifting of the entire atmospheric circulation in response to GHGs; notably, the tropopause rises about a kilometer over this century. In this study, it is shown that most of the BDC trend is associated with the rise in the circulation. Using a chemistry-climate model (CCM), F-trop trends across 100 hPa are contrasted with those across the tropopause: while F-trop at 100 hPa increases 1-2 %/decade, the mass flux entering the atmosphere above the tropopause actually decreases. Similar results are found for other CCMs, suggesting that changes in the BDC may better be described as an upward shift of the circulation, as opposed to an increase, with implications for the mechanism and stratosphere-troposphere exchange.
C1 [Oberlaender-Hayn, Sophie; Abalichin, Janna; Kerschbaumer, Andreas; Kubin, Anne; Kunze, Markus; Langematz, Ulrike; Meul, Stefanie] Free Univ Berlin, Inst Meteorol, Berlin, Germany.
[Gerber, Edwin P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USA.
[Akiyoshi, Hideharu] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan.
[Kerschbaumer, Andreas] Senatsverwaltung Stadtentwicklung & Umwelt, Berlin, Germany.
[Kubin, Anne] Leibniz Inst Tropospharenforsch TROPOS, Leipzig, Germany.
[Michou, Martine] Ctr Natl Rech Meteorol, Meteofrance, GAME CNRM, Toulouse, France.
[Morgenstern, Olaf] Natl Inst Water & Atmospher Res, Wellington, New Zealand.
[Oman, Luke D.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA.
RP Oberlander-Hayn, S (reprint author), Free Univ Berlin, Inst Meteorol, Berlin, Germany.
EM sophie.oberlaender@met.fu-berlin.de
RI Oman, Luke/C-2778-2009;
OI Oman, Luke/0000-0002-5487-2598; Kunze, Markus/0000-0002-9608-1823;
Morgenstern, Olaf/0000-0002-9967-9740
FU DFG Research Unit [FOR 1095, LA1025/13-2, LA1025/14-2, LA1025/15-2]; DFG
[LA 1025/19-1]; BMBF MiKlip project [01LP1168A]; project StratoClim
[603557]; U.S. NSF [AGS-1264195]; Royal Society Marsden Fund; NIWA;
Environment Research and Technology Development Fund of the Ministry of
the Environment, Japan [2-1303]
FX This work was supported by the DFG Research Unit FOR 1095 (SHARP) grants
LA1025/13-2, LA1025/14-2, and LA1025/15-2, the DFG project ISOLAA (LA
1025/19-1), the BMBF MiKlip project (01LP1168A), the project StratoClim
(603557), and the U.S. NSF (AGS-1264195). We thank the North-German
Supercomputing Alliance (HLRN) and ECMWF computing center, the modeling
groups, and the WCRP SPARC/IGAC CCMI for organizing and coordinating the
model activity. O.M. acknowledges funding by the Royal Society Marsden
Fund and by NIWA under its Government-funded, core research. NIES'
research was supported by the Environment Research and Technology
Development Fund (2-1303) of the Ministry of the Environment, Japan.
Data for this paper are available at the Freie Universitat Berlin SHARP
data archive under GRL_BDC_increase_or_shift_Oberlaender-Hayn_2015.tar.
NR 38
TC 3
Z9 3
U1 3
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2016
VL 43
IS 4
BP 1772
EP 1779
DI 10.1002/2015GL067545
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DH9IF
UT WOS:000373109000047
ER
PT J
AU Li, JLF
Lee, WL
Waliser, D
Wang, YH
Yu, JY
Jiang, XN
L'Ecuyer, T
Chen, YC
Kubar, T
Fetzer, E
Mahakur, M
AF Li, J. -L. F.
Lee, Wei-Liang
Waliser, Duane
Wang, Yi-Hui
Yu, Jia-Yuh
Jiang, Xianan
L'Ecuyer, Tristan
Chen, Yi-Chun
Kubar, Terry
Fetzer, Eric
Mahakur, M.
TI Considering the radiative effects of snow on tropical Pacific Ocean
radiative heating profiles in contemporary GCMs using A-Train
observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE cloud radiation; GCM; heating rate; dynamics
ID COMMUNITY ATMOSPHERE MODEL; MADDEN-JULIAN OSCILLATION; FORECAST SYSTEM;
PART I; PARAMETERIZATION; SENSITIVITY; FORMULATION; SIMULATION; DESIGN;
CLOUDS
AB This study characterizes biases in water vapor, dynamics, shortwave (SW) and longwave (LW) radiative properties in contemporary global climate models (GCMs) against observations over tropical Pacific Ocean. The observations are based on Atmospheric Infrared Sounder for water vapor, CloudSat 2B-FLXHR-LIDAR for LW and SW radiative heating profiles, and radiative flux from Clouds and the Earth's Radiant Energy System products. The model radiative heating profiles are adopted from the coupled and uncoupled National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) and joint Year of Tropical Convection (YOTC)/Madden Julian Oscillation (MJO) Task Force-Global Energy and Water Cycle Experiment Atmospheric System Studies (GASS) Multi-Model Physical Processes Experiment (YOTC-GASS). The results from the model evaluation for YOTC-GASS and NCAR CESM1 demonstrate a number of systematic radiative biases. These biases include excessive outgoing LW radiation and excessive SW surface radiative fluxes, in conjunction with a radiatively unstable atmosphere with excessive LW cooling in the upper troposphere over convectively active areas, such as the Intertropical Convergence Zone/South Pacific Convergence Zone (ITCZ/SPCZ) and warm pool. Using sensitivity experiments with the NCAR-uncoupled/NCAR-coupled CESM1, we infer that these biases partly result from the interactions between falling snow and radiation that are missing in most contemporary GCMs (e.g., YOTC-GASS, Coupled Model Intercomparison Project 3 (CMIP)3, and Atmospheric Model Intercomparison Project 5 (AMIP5)/CMIP5). A number of biases in the YOTC-GASS model simulations are consistent with model biases in CMIP3, AMIP5/CMIP5, and NCAR-uncoupled/NCAR-coupled model simulation without snow-radiation interactions. These include excessive upper level convection and low level downward motion with outflow from ITCZ/SPCZ. This generates weaker low-level trade winds and excessive precipitation in the Central Pacific Trade wind regions. The excessive LW radiative cooling in NCAR-coupled/NCAR-uncoupled GCM simulations is reduced by 10-20% with snow-radiative effects considered.
C1 [Li, J. -L. F.; Waliser, Duane; Wang, Yi-Hui; Chen, Yi-Chun; Fetzer, Eric] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Lee, Wei-Liang] Acad Sinica, RCEC, Taipei 115, Taiwan.
[Yu, Jia-Yuh] Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan.
[Jiang, Xianan; Kubar, Terry] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.
[L'Ecuyer, Tristan] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA.
[Mahakur, M.] Indian Inst Trop Meteorol, Pune, Maharashtra, India.
RP Li, JLF (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA.
EM Juilin.F.Li@jpl.nasa.gov
RI L'Ecuyer, Tristan/E-5607-2012
OI L'Ecuyer, Tristan/0000-0002-7584-4836
FU National Aeronautics and Space Administration (NASA) [NNH12ZDA001N
ROSES, NNH12ZDA001NCCST]; NASA; National Science Council
[NSC100-2119-M-001-029-MY5, NSC102-2111-M-001-009]; NASA [NAS5-99327];
NASA Jet Propulsion Laboratory [1439268]
FX We thank Jiundar Chern (GSFC/NASA), Graeme Stephens, and Qing Yue at Jet
Propulsion Laboratory for the useful comments and discussions. The
contribution by J.L.L. and D.E.W. to this study was carried out on
behalf of the Jet Propulsion Laboratory, California Institute of
Technology, under contracts of NNH12ZDA001N ROSES 2012, Earth Science
Program, the Modeling, Analysis, and Prediction (MAP), and ATMOS COMP
2013 (NNH12ZDA001NCCST) with the National Aeronautics and Space
Administration (NASA). This work has been supported in part by the NASA
Making Earth System Data Records for Use in Research Environments
(MEaSUREs) programs. The second author (W.L.L.) was supported by
National Science Council under contracts NSC100-2119-M-001-029-MY5 and
NSC102-2111-M-001-009. The development of the 2B-FLXHR-LIDAR algorithm
(TSL) was supported through NASA research grant NAS5-99327 and by
CloudSat subaward 1439268 from the NASA Jet Propulsion Laboratory. The
2B-FLXHR-LIDAR flux and heating rate algorithm [L'Ecuyer et al., 2011;
Henderson et al., 1997] makes use of liquid and ice water content
estimates from the CloudSat cloud profiling radar (CPR)
[http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr-
lidar]. The most up-to-date Radiative Longwave Upward at TOA (RLUT) and
Radiative Shortwave Upward at TOA (RSUT) fluxes are available from the
CERES Energy Balanced and Filled (EBAF) product (CERES_EBAF-TOA_Ed2.6r)
[Loeb et al., 2012, 2008]. The CERES EBAF product includes the latest
instrument calibration improvements, algorithm enhancements, and other
updates. CERES TOA SW and LW fluxes in the EBAF product are used for the
average global TOA fluxes in this study. The data can be found at
http://ceres.larc.nasa.gov/order_data.php. Specific Humidity Profile:
The AIRS L3 products used here are monthly averaged, gridded Level 2
(L2) retrievals [Olsen et al., 2012] of specific humidity profiles with
1 degrees x 1 degrees horizontal resolution. The AIRS is available at
http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings. The long-term mean
precipitation is obtained from the Global Precipitation Climatology
Project (GPCP) [Huffman et al., 2002]. As it is a merging of several
satellite observations (e.g., infrared and microwave) and in situ
measurements, it is representative of the late twentieth century. The
GPCP data are available at
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. The dynamical
fields are from the European Centre for Medium-Range Forecasts (ECMWF)
Interim reanalysis [Dee and Uppala, 2008] and can be downloaded at
http://www.ecmwf.int/products/data/archive/descriptions/ei/. All the
data are also available at obs4MIPs at
https://www.earthsystemcog.org/projects/obs4mips/satellite_products.
NR 55
TC 0
Z9 0
U1 4
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2016
VL 121
IS 4
BP 1621
EP 1636
DI 10.1002/2015JD023587
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7MK
UT WOS:000372977900016
ER
PT J
AU Khatri, P
Takamura, T
Nakajima, T
Estelles, V
Irie, H
Kuze, H
Campanelli, M
Sinyuk, A
Lee, SM
Sohn, BJ
Pandithurai, G
Kim, SW
Yoon, SC
Martinez-Lozano, JA
Hashimoto, M
Devara, PCS
Manago, N
AF Khatri, P.
Takamura, T.
Nakajima, T.
Estelles, V.
Irie, H.
Kuze, H.
Campanelli, M.
Sinyuk, A.
Lee, S. -M.
Sohn, B. J.
Pandithurai, G.
Kim, S. -W.
Yoon, S. C.
Martinez-Lozano, J. A.
Hashimoto, M.
Devara, P. C. S.
Manago, N.
TI Factors for inconsistent aerosol single scattering albedo between SKYNET
and AERONET
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE single scattering albedo
ID OPTICAL-PROPERTIES; RADIANCE MEASUREMENTS; MICROPHYSICAL PROPERTIES;
INVERSION ALGORITHM; RETRIEVAL; RADIOMETER; SUN; CALIBRATION;
IRRADIANCE; IMPACTS
AB SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (). The disk scan method (scan area: 1 degrees x1 degrees area of solar disk) of SKYNET is noted to produce stable wavelength-dependent values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks.
C1 [Khatri, P.; Takamura, T.; Irie, H.; Kuze, H.; Manago, N.] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan.
[Nakajima, T.; Hashimoto, M.] JAXA, Earth Observat Res Ctr, Tsukuba, Ibaraki, Japan.
[Estelles, V.; Martinez-Lozano, J. A.] Univ Valencia, Dept Earth Phys & Thermodynam, E-46100 Burjassot, Spain.
[Campanelli, M.] CNR, Inst Atmospher Sci & Climate, Rome, Italy.
[Sinyuk, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Lee, S. -M.; Sohn, B. J.; Kim, S. -W.; Yoon, S. C.] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea.
[Pandithurai, G.] Indian Inst Trop Meteorol, Pune, Maharashtra, India.
[Devara, P. C. S.] Univ Haryana, Amity Ctr Ocean Atmospher Sci & Technol, Gurgaon, India.
RP Khatri, P (reprint author), Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan.
EM pradeep@restaff.chiba-u.jp
RI MARTINEZ-LOZANO, JOSE ANTONIO/B-6986-2015; Nakajima,
Teruyuki/H-2370-2013
OI MARTINEZ-LOZANO, JOSE ANTONIO/0000-0002-5158-5112; Nakajima,
Teruyuki/0000-0002-9042-504X
FU JST/CREST/EMS, Japan; MEXT, Japan; Japan Society for the promotion of
science (JSPS) [24510007]; European Regional Development Fund
[GV/2014/046, CGL2011-24290, CGL2010-18782, CGL2012-33294,
PROMETEUII/2014/058]
FX This research was supported by "Improvement of Terrestrial Science Data
Availability and Development of the Energy Demand Models for a
Cooperative Distributed Energy Management System" project of
JST/CREST/EMS, Japan, "Virtual Laboratory for Diagnosing the Earth's
Climate System" program of MEXT, Japan, and the Japan Society for the
promotion of science (JSPS) research grant (grant 24510007). The
participation of the University of Valencia was possible thanks to
projects from the Valencia Autonomous Government, the Spanish Ministry
of Economy and Competitiveness, and the European Regional Development
Fund (GV/2014/046, CGL2011-24290, CGL2010-18782, CGL2012-33294, and
PROMETEUII/2014/058). All AERONET data used in this study are available
at http://aeronet.gsfc.nasa.gov/. SKYNET data of Chiba (Japan), Pune
(India), and Seoul (Korea) corresponding to Skyrad. pack (version 4.2)
are available at http://atmos2.cr.chiba-u.jp/skynet, and those for
Valencia (Spain) at http://www.euroskyrad.net/index.html. SKYNET data
corresponding to other versions of Skyrad. pack can be available from
the first author upon request (pradeep@restaff.chiba-u.jp). Thanks to
the three reviewers for their constructive comments and suggestions on
an earlier version of the manuscript.
NR 37
TC 1
Z9 1
U1 4
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2016
VL 121
IS 4
BP 1859
EP 1877
DI 10.1002/2015JD023976
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7MK
UT WOS:000372977900030
ER
PT J
AU Zhang, YZ
Wang, YH
Chen, G
Smeltzer, C
Crawford, J
Olson, J
Szykman, J
Weinheimer, AJ
Knapp, DJ
Montzka, DD
Wisthaler, A
Mikoviny, T
Fried, A
Diskin, G
AF Zhang, Yuzhong
Wang, Yuhang
Chen, Gao
Smeltzer, Charles
Crawford, James
Olson, Jennifer
Szykman, James
Weinheimer, Andrew J.
Knapp, David J.
Montzka, Denise D.
Wisthaler, Armin
Mikoviny, Tomas
Fried, Alan
Diskin, Glenn
TI Large vertical gradient of reactive nitrogen oxides in the boundary
layer: Modeling analysis of DISCOVER-AQ 2011 observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE NOx; 1-D model; boundary layer; vertical distribution; ozone production
rate; satellite retrieval
ID OZONE MONITORING INSTRUMENT; TROPOSPHERIC NO2; ATMOSPHERIC OXIDATION;
CONVECTIVE-TRANSPORT; SATELLITE RETRIEVALS; COLUMN RETRIEVAL; LIGHTNING
NOX; NORTH-AMERICA; CLOSURE-MODEL; MEXICO-CITY
AB An often used assumption in air pollution studies is a well-mixed boundary layer (BL), where pollutants are evenly distributed. Because of the difficulty in obtaining vertically resolved measurements, the validity of the assumption has not been thoroughly evaluated. In this study, we use more than 200 vertical profiles observed in the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) aircraft campaign in July 2011 to examine the vertical distributions of pollutants over the Washington-Baltimore area. While many long-lived species are well mixed in daytime, the observed average vertical profile of NOx shows a large negative gradient with increasing altitude in the BL. Our analysis suggests that the magnitude of the NOx gradient is highly sensitive to atmospheric stability. We investigate how parameterizations of the BL and land-surface processes impact vertical profiles in a 1-D chemical transport model, using three BL schemes (Asymmetric Convective Model version 2 (ACM2), Yonsei University (YSU), and Mellor-Yamada-Janjic (MYJ)) and two land-surface schemes (Noah and Rapid Update Cycle (RUC)). The model reasonably reproduces the median vertical profiles of NOx under different BL stability conditions within 30% of observations, classified based on potential temperature gradient and BL height. Comparisons with NOx observations for individual vertical profiles reveal that while YSU performs better in the turbulent and deep BL case, in general, ACM2 (RMSE=2.0ppbv) outperforms YSU (RMSE=2.5ppbv) and MYJ (RMSE=2.2ppbv). Results also indicate that the land-surface schemes in the Weather Research and Forecasting (WRF) model have a small impact on the NOx gradient. Using model simulations, we analyze the impact of BL NOx gradient on the calculation of the ozone production rate and satellite NO2 retrieval. We show that using surface measurements and the well-mixed BL assumption causes a similar to 45% high bias in the estimated BL ozone production rate and that the variability of NO2 vertical profiles is responsible for 5-10% variability in the retrieved NO2 tropospheric vertical columns.
C1 [Zhang, Yuzhong; Wang, Yuhang; Smeltzer, Charles] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Chen, Gao; Crawford, James; Olson, Jennifer; Szykman, James; Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Szykman, James] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA.
[Weinheimer, Andrew J.; Knapp, David J.; Montzka, Denise D.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA.
[Wisthaler, Armin] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria.
[Wisthaler, Armin; Mikoviny, Tomas] Univ Oslo, Dept Chem, Oslo, Norway.
[Mikoviny, Tomas] Oak Ridge Associated Univ, Oak Ridge, TN USA.
[Fried, Alan] Univ Colorado, Boulder, CO 80309 USA.
RP Zhang, YZ (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
EM yzhang425@gatech.edu
FU NASA ACMAP program; NASA DISCOVER-AQ program; NASA Postdoctoral Program
at the Langley Research Center; NASA
FX The data for this paper are available at the DISCOVER-AQ data archive
(http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html).
The research was supported by the NASA ACMAP and DISCOVER-AQ programs.
We thank David Parrish for his discussion with Y.W. that led to the
analyses reported here. PTR-MS measurements of VOCs were supported by
the Austrian Federal Ministry for Transport, Innovation, and Technology
(BMVIT) through the Austrian Space Applications Programme (ASAP) of the
Austrian Research Promotion Agency (FFG). The work of T.M. was supported
by an appointment to the NASA Postdoctoral Program at the Langley
Research Center administered by Oak Ridge Associated Universities
through a contract with NASA.
NR 66
TC 4
Z9 4
U1 8
U2 21
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2016
VL 121
IS 4
BP 1922
EP 1934
DI 10.1002/2015JD024203
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7MK
UT WOS:000372977900034
ER
PT J
AU Aydin, M
Campbell, JE
Fudge, TJ
Cuffey, KM
Nicewonger, MR
Verhulst, KR
Saltzman, ES
AF Aydin, M.
Campbell, J. E.
Fudge, T. J.
Cuffey, K. M.
Nicewonger, M. R.
Verhulst, K. R.
Saltzman, E. S.
TI Changes in atmospheric carbonyl sulfide over the last 54,000years
inferred from measurements in Antarctic ice cores
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE carbonyl sulfide; COS; ice cores; ice core gas records; gross primary
productivity
ID CYCLE CHANGES; GAS-EXCHANGE; CO2; HOLOCENE; RECORD; SYNCHRONIZATION;
CONSTRAINTS; CIRCULATION; METHANE; MODEL
AB We measured carbonyl sulfide (COS) in air extracted from ice core samples from the West Antarctic Ice Sheet (WAIS) Divide, Antarctica, with the deepest sample dated to 54,300years before present. These are the first ice core COS measurements spanning the Last Glacial Maximum (LGM), the last glacial/interglacial transition, and the early Holocene. The WAIS Divide measurements from the LGM and the last transition are the first COS measurements in air extracted from full clathrate (bubble-free) ice. This study also includes new COS measurements from Taylor Dome, Antarctica, including some in bubbly glacial ice that are concurrent with the WAIS Divide data from clathrate glacial ice. COS hydrolyzes in ice core air bubbles, and the recovery of an atmospheric record requires correcting for this loss. The data presented here suggest that the in situ hydrolysis of COS is significantly slower in clathrate ice than in bubbly ice. The clathrate ice measurements are corrected for the hydrolysis loss during the time spent as bubbly ice only. The corrected WAIS Divide record indicates that atmospheric COS was 250-300parts per trillion (ppt) during the LGM and declined by 80-100ppt during the last glacial/interglacial transition to a minimum of 160-210ppt at the beginning of the Holocene. This decline was likely caused by an increase in the gross primary productivity of terrestrial plants, with a possible contribution from a reduction in ocean sources. COS levels were above 300ppt in the late Holocene, indicating that large changes in the COS biogeochemical cycle occurred during the Holocene.
C1 [Aydin, M.; Nicewonger, M. R.; Verhulst, K. R.; Saltzman, E. S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
[Campbell, J. E.] Univ Calif, Environm Engn, Merced, CA USA.
[Fudge, T. J.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Cuffey, K. M.] Univ Calif Berkeley, Dept Geol, Berkeley, CA 94720 USA.
[Verhulst, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Aydin, M (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
EM maydin@uci.edu
FU NSF Division of Polar Programs [PLR-1043780, PLR-0944197]; NASA
FX We thank Gary Clow for borehole temperature measurements at Taylor Dome
and WAIS Divide. We thank the scientists, the drillers, and the support
personnel that contributed to the realization of the drilling projects
at Taylor Dome and WAIS Divide. We thank UCI undergraduates Spencer
Hernandez, Tina Ho, Vincent Hong, Mihai Leonte, Nancy Phu, and Michael
Mori for their help with ice core gas extraction and analysis. We thank
the three anonymous reviewers for their valuable comments. This work was
supported by the NSF Division of Polar Programs grant PLR-1043780 for
M.A., M.R.N., K.R.V., and E.S.S., and PLR-0944197 for T.J.F. T.J.F. also
received support form the NASA Earth and Space Science Fellowship. Data
presented in this paper can be accessed via the Antarctic Glaciological
Data Center (https://nsidc.org/agdc).
NR 38
TC 4
Z9 4
U1 3
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2016
VL 121
IS 4
BP 1943
EP 1954
DI 10.1002/2015JD024235
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7MK
UT WOS:000372977900036
ER
PT J
AU Pollack, IB
Homeyer, CR
Ryerson, TB
Aikin, KC
Peischl, J
Apel, EC
Campos, T
Flocke, F
Hornbrook, RS
Knapp, DJ
Montzka, DD
Weinheimer, AJ
Riemer, D
Diskin, G
Sachse, G
Mikoviny, T
Wisthaler, A
Bruning, E
MacGorman, D
Cummings, KA
Pickering, KE
Huntrieser, H
Lichtenstern, M
Schlager, H
Barth, MC
AF Pollack, I. B.
Homeyer, C. R.
Ryerson, T. B.
Aikin, K. C.
Peischl, J.
Apel, E. C.
Campos, T.
Flocke, F.
Hornbrook, R. S.
Knapp, D. J.
Montzka, D. D.
Weinheimer, A. J.
Riemer, D.
Diskin, G.
Sachse, G.
Mikoviny, T.
Wisthaler, A.
Bruning, E.
MacGorman, D.
Cummings, K. A.
Pickering, K. E.
Huntrieser, H.
Lichtenstern, M.
Schlager, H.
Barth, M. C.
TI Airborne quantification of upper tropospheric NOx production from
lightning in deep convective storms over the United States Great Plains
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE Lightning; nitrogen oxides; NOx production per flash; Deep Convective
Clouds and Chemistry Experiment; upper tropospheric chemistry
ID NITROGEN-FIXATION; RADAR OBSERVATIONS; TRANSPORT MODELS;
HIGH-SENSITIVITY; BOUNDARY-LAYER; NEW-MEXICO; JULY 10; THUNDERSTORMS;
SYSTEM; OZONE
AB The reported range for global production of nitrogen oxides (NOx=NO+NO2) by lightning remains large (e.g., 32 to 664mol NOx flash(-1)), despite incorporating results from over 30 individual laboratory, theoretical, and field studies since the 1970s. Airborne and ground-based observations from the Deep Convective Clouds and Chemistry experiment in May and June 2012 provide a new data set for calculating moles of NOx produced per lightning flash, P(NOx), in thunderstorms over the United States Great Plains. This analysis utilizes a combination of in situ observations of storm inflow and outflow from three instrumented aircraft, three-dimensional spatial information from ground-based radars and satellite observations, and spatial and temporal information for intracloud and cloud-to-ground lightning flashes from ground-based lightning mapping arrays. Evaluation of two analysis methods (e.g., a volume-based approach and a flux-based approach) for converting enhancements in lightning-produced NOx from volume-based mixing ratios to moles NOx flash(-1) suggests that both methods equally approximate P(NOx) for storms with elongated anvils, while the volume-based approach better approximates P(NOx) for storms with circular-shaped anvils. Results from the more robust volume-based approach for three storms sampled over Oklahoma and Colorado during DC3 suggest a range of 142 to 291 (average of 194) moles NOx flash(-1) (or 117-332mol NOx flash(-1) including uncertainties). Although not vastly different from the previously reported range for storms occurring in the Great Plains (e.g., 21-465mol NOx flash(-1)), results from this analysis of DC3 storms offer more constrained upper and lower limits for P(NOx) in this geographical region.
C1 [Pollack, I. B.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Homeyer, C. R.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA.
[Ryerson, T. B.; Aikin, K. C.; Peischl, J.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA.
[Aikin, K. C.; Peischl, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA.
[Apel, E. C.; Campos, T.; Flocke, F.; Hornbrook, R. S.; Knapp, D. J.; Montzka, D. D.; Weinheimer, A. J.; Barth, M. C.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA.
[Riemer, D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
[Diskin, G.] Oak Ridge Associated Univ, Oak Ridge, TN USA.
[Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Mikoviny, T.] Univ Oslo, Dept Chem, Oslo, Norway.
[Wisthaler, A.] Inst Ionenphys & Angew Phys, Innsbruck, Austria.
[Bruning, E.] Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 USA.
[MacGorman, D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
[Cummings, K. A.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
[Pickering, K. E.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA.
[Huntrieser, H.; Lichtenstern, M.; Schlager, H.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany.
RP Pollack, IB (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
EM ipollack@rams.colostate.edu
RI Peischl, Jeff/E-7454-2010; Pollack, Ilana/F-9875-2012; Homeyer,
Cameron/D-5034-2013; Pickering, Kenneth/E-6274-2012; Aikin,
Kenneth/I-1973-2013; Manager, CSD Publications/B-2789-2015
OI MacGorman, Donald/0000-0002-2395-8196; Peischl,
Jeff/0000-0002-9320-7101; Homeyer, Cameron/0000-0002-4883-6670;
FU U.S. National Science Foundation (NSF); National Aeronautics and Space
Administration (NASA); National Oceanic and Atmospheric Administration
(NOAA); Deutsches Zentrum fuer Luft- und Raumfahrt (DLR); NASA
[NNH12AT30I]
FX The Deep Convective Clouds and Chemistry (DC3) experiment is sponsored
by the U.S. National Science Foundation (NSF), the National Aeronautics
and Space Administration (NASA), the National Oceanic and Atmospheric
Administration (NOAA), and the Deutsches Zentrum fuer Luft- und
Raumfahrt (DLR). Archived field data can be accessed from
http://data.eol.ucar.edu/ or
http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs. NLDN data are
collected by Vaisala, Inc. and archived at NASA Marshall Space Flight
Center for NASA-related Earth Science research. Data provided by
NCAR/EOL are supported by the National Science Foundation. Support for
NOAA chemiluminescence-based measurements of O3, NO,
NO2, and NOy aboard the NASA DC-8 during DC3 comes
from NASA grant NNH12AT30I. Acetone/propanal measurements aboard the
DC-8 during DC3 were supported by the Austrian Federal Ministry for
Transport, Innovation, and Technology (BMVIT) through the Austrian Space
Applications Programme (ASAP) of the Austrian Research Promotion Agency
(FFG). The authors acknowledge R.C. Cohen and B. Nault (University of
California, Berkeley) for TD-LIF NO2 measurements aboard the
DC-8 aircraft, O. Cooper (NOAA) for digested images from the GOES
satellite, SPEC Inc. for cloud probe measurements aboard the DC-8, K.
Froyd (NOAA) and M. Markovic (Environment Canada) for providing a
visual-based cloud indicator for DC-8 flights, A. Minikin and D.
Fuetterer (DLR) for providing cloud probe data from the Falcon aircraft,
and J. Jensen and J. Stith (NCAR/EOL) for cloud data products from the
G-V. The authors appreciate discussions with S.A. Rutledge, B. Fuchs,
and B. Basarab (Colorado State University) and helpful comments on the
manuscript from B.A. Ridley (NCAR-emeritus) and M. Trainer (NOAA).
NR 73
TC 3
Z9 3
U1 2
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2016
VL 121
IS 4
BP 2002
EP 2028
DI 10.1002/2015JD023941
PG 27
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7MK
UT WOS:000372977900039
ER
PT J
AU Aasi, J
Abbott, BP
Abbott, R
Abbott, TD
Abernathy, MR
Acernese, F
Ackley, K
Adams, C
Adams, T
Addesso, P
Adhikari, RX
Adya, VB
Affeldt, C
Agathos, M
Agatsuma, K
Aggarwal, N
Aguiar, OD
Ain, A
Ajith, P
Allen, B
Allocca, A
Amariutei, DV
Andersen, M
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Arceneaux, CC
Areeda, JS
Arnaud, N
Ashton, G
Aston, SM
Astone, P
Aufmuth, P
Aulbert, C
Babak, S
Baker, PT
Baldaccini, F
Ballardin, G
Ballmer, SW
Barayoga, JC
Barclay, SE
Barish, BC
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Bartlett, J
Barton, MA
Bartos, I
Bassiri, R
Basti, A
Batch, JC
Baune, C
Bavigadda, V
Behnke, B
Bejger, M
Belczynski, C
Bell, AS
Berger, BK
Bergman, J
Bergmann, G
Berry, CPL
Bersanetti, D
Bertolini, A
Betzwieser, J
Bhagwat, S
Bhandare, R
Bilenko, IA
Billingsley, G
Birch, J
Birney, R
Biscans, S
Bitossi, M
Biwer, C
Bizouard, MA
Blackburn, JK
Blair, CD
Blair, D
Bloemen, S
Bock, O
Bodiya, TP
Boer, M
Bogaert, G
Bojtos, P
Bond, C
Bondu, F
Bonnand, R
Bork, R
Born, M
Boschi, V
Bose, S
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Branco, V
Brau, JE
Briant, T
Brillet, A
Brinkmann, M
Brisson, V
Brockill, P
Brooks, AF
Brown, DA
Brown, D
Brown, DD
Brown, NM
Buchanan, CC
Buikema, A
Bulik, T
Bulten, HJ
Buonanno, A
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Bustillo, JC
Calloni, E
Camp, JB
Cannon, KC
Cao, J
Capano, CD
Capocasa, E
Carbognani, F
Caride, S
Diaz, JC
Casentini, C
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Celerier, C
Cella, G
Cepeda, C
Baiardi, LC
Cerretani, G
Cesarini, E
Chakraborty, R
Chalermsongsak, T
Chamberlin, SJ
Chao, S
Charlton, P
Chassande-Mottin, E
Chen, X
Chen, Y
Cheng, C
Chincarini, A
Chiummo, A
Cho, HS
Cho, M
Chow, JH
Christensen, N
Chu, Q
Chua, S
Chung, S
Ciani, G
Clara, F
Clark, JA
Cleva, F
Coccia, E
Cohadon, PF
Colla, A
Collette, CG
Colombini, M
Constancio, M
Conte, A
Conti, L
Cook, D
Corbitt, TR
Cornish, N
Corsi, A
Costa, CA
Coughlin, MW
Coughlin, SB
Coulon, JP
Countryman, ST
Couvares, P
Coward, DM
Cowart, MJ
Coyne, DC
Coyne, R
Craig, K
Creighton, JDE
Cripe, J
Crowder, SG
Cumming, A
Cunningham, L
Cuoco, E
Dal Canton, T
Damjanic, MD
Danilishin, SL
D'Antonio, S
Danzmann, K
Darman, NS
Dattilo, V
Dave, I
Daveloza, HP
Davier, M
Davies, GS
Daw, EJ
Day, R
Debra, D
Debreczeni, G
Degallaix, J
De Laurentis, M
Deleglise, S
Del Pozzo, W
Denker, T
Dent, T
Dereli, H
Dergachev, V
De Rosa, R
DeRosa, RT
DeSalvo, R
Dhurandhar, S
Dia, MC
Di Fiore, L
Di Giovanni, M
Di Lieto, A
Di Palma, I
Di Virgilio, A
Dojcinoski, G
Dolique, V
Dominguez, E
Donovan, F
Dooley, KL
Doravari, S
Douglas, R
Downes, TP
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Ducrot, M
Dwyer, SE
Edo, TB
Edwards, MC
Edwards, M
Effler, A
Eggenstein, HB
Ehrens, P
Eichholz, JM
Eikenberry, SS
Essick, RC
Etzel, T
Evans, M
Evans, TM
Everett, R
Factourovich, M
Fafone, V
Fairhurst, S
Fang, Q
Farinon, S
Farr, B
Farr, WM
Favata, M
Fays, M
Fehrmann, H
Fejer, MM
Feldbaum, D
Ferrante, I
Ferreira, EC
Ferrini, F
Fidecaro, F
Fiori, I
Fisher, RP
Flaminio, R
Fournier, JD
Franco, S
Frasca, S
Frasconi, F
Frede, M
Frei, Z
Freise, A
Frey, R
Fricke, TT
Fritschel, P
Frolov, VV
Fulda, P
Fyffe, M
Gabbard, HAG
Gair, JR
Gammaitoni, L
Gaonkar, SG
Garufi, F
Gatto, A
Gehrels, N
Gemme, G
Gendre, B
Genin, E
Gennai, A
Gergely, LA
Germain, V
Ghosh, A
Ghosh, S
Giaime, JA
Giardina, KD
Giazotto, A
Gleason, JR
Goetz, E
Goetz, R
Gondan, L
Gonzalez, G
Gonzalez, J
Gopakumar, A
Gordon, NA
Gorodetsky, ML
Gossan, SE
Gosselin, M
Gossler, S
Gouaty, R
Graef, C
Graff, PB
Granata, M
Grant, A
Gras, S
Gray, C
Greco, G
Groot, P
Grote, H
Grover, K
Grunewald, S
Guidi, GM
Guido, CJ
Guo, X
Gupta, A
Gupta, MK
Gushwa, KE
Gustafson, EK
Gustafson, R
Hacker, JJ
Hall, BR
Hall, ED
Hammer, D
Hammond, G
Haney, M
Hanke, MM
Hanks, J
Hanna, C
Hannam, MD
Hanson, J
Hardwick, T
Harms, J
Harry, GM
Harry, IW
Hart, MJ
Hartman, MT
Haster, CJ
Haughian, K
Heidmann, A
Heintze, MC
Heitmann, H
Hello, P
Hemming, G
Hendry, M
Heng, IS
Hennig, J
Heptonstall, AW
Heurs, M
Hild, S
Hoak, D
Hodge, KA
Hoelscher-Obermaier, J
Hofman, D
Hollitt, SE
Holt, K
Hopkins, P
Hosken, DJ
Hough, J
Houston, EA
Howell, EJ
Hu, YM
Huang, S
Huerta, EA
Huet, D
Hughey, B
Husa, S
Huttner, SH
Huynh, M
Huynh-Dinh, T
Idrisy, A
Indik, N
Ingram, DR
Inta, R
Islas, G
Isler, JC
Isogai, T
Iyer, BR
Izumi, K
Jacobson, MB
Jang, H
Jaranowski, P
Jawahar, S
Ji, Y
Jimenez-Forteza, F
Johnson, WW
Jones, DI
Jones, R
Jonker, RJG
Ju, L
Haris, K
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, JB
Karki, S
Karlen, JL
Kasprzack, M
Katsavounidis, E
Katzman, W
Kaufer, S
Kaur, T
Kawabe, K
Kawazoe, F
Kefelian, F
Kehl, MS
Keitel, D
Kelley, DB
Kells, W
Kerrigan, J
Key, JS
Khalili, FY
Khan, Z
Khazanov, EA
Kijbunchoo, N
Kim, C
Kim, K
Kim, NG
Kim, N
Kim, YM
King, EJ
King, PJ
Kinzel, DL
Kissel, JS
Klimenko, S
Kline, JT
Koehlenbeck, SM
Kokeyama, K
Koley, S
Kondrashov, V
Korobko, M
Korth, WZ
Kowalska, I
Kozak, DB
Kringel, V
Krishnan, B
Krolak, A
Krueger, C
Kuehn, G
Kumar, A
Kumar, P
Kuo, L
Kutynia, A
Lackey, BD
Landry, M
Lantz, B
Lasky, PD
Lazzarini, A
Lazzaro, C
Leaci, P
Leavey, S
Lebigot, EO
Lee, CH
Lee, HK
Lee, HM
Lee, J
Lee, JP
Leonardi, M
Leong, JR
Leroy, N
Letendre, N
Levin, Y
Levine, BM
Lewis, JB
Li, TGF
Libson, A
Lin, AC
Littenberg, TB
Lockerbie, NA
Lockett, V
Lodhia, D
Logue, J
Lombardi, AL
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, JD
Lubinski, MJ
Luck, H
Lundgren, AP
Luo, J
Lynch, R
Ma, Y
Macarthur, J
Macdonald, EP
MacDonald, T
Machenschalk, B
MacInnis, M
Macleod, DM
Madden-Fong, DX
Magana-Sandoval, F
Magee, RM
Mageswaran, M
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mangano, V
Mangini, NM
Mansell, GL
Manske, M
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Ma, Z
Markosyan, AS
Maros, E
Martelli, F
Martellini, L
Martin, IW
Martin, RM
Martynov, DV
Marx, JN
Mason, K
Masserot, A
Massinger, TJ
Mastrogiovanni, S
Matichard, F
Matone, L
Mavalvala, N
Mazumder, N
Mazzolo, G
McCarthy, R
McClelland, DE
McCormick, S
McGuire, SC
McIntyre, G
McIver, J
McWilliams, ST
Meacher, D
Meadors, GD
Mehmet, M
Meidam, J
Meinders, M
Melatos, A
Mendell, G
Mercer, RA
Merzougui, M
Meshkov, S
Messenger, C
Messick, C
Meyers, PM
Mezzani, F
Miao, H
Michel, C
Middleton, H
Mikhailov, EE
Milano, L
Miller, J
Millhouse, M
Minenkov, Y
Ming, J
Mirshekari, S
Mishra, C
Mitra, S
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moe, B
Moggi, A
Mohan, M
Mohapatra, SRP
Montani, M
Moore, BC
Moraru, D
Moreno, G
Morriss, SR
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Mukherjee, A
Mukherjee, S
Mullavey, A
Munch, J
Murphy, DJ
Murray, PG
Mytidis, A
Nagy, MF
Nardecchia, I
Naticchioni, L
Nayak, RK
Necula, V
Nedkova, K
Nelemans, G
Neri, M
Newton, G
Nguyen, TT
Nielsen, AB
Nitz, A
Nocera, F
Nolting, D
Normandin, MEN
Nuttall, LK
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Ohme, F
Okounkova, M
Oppermann, P
Oram, R
O'Reilly, B
Ortega, WE
O'Shaughnessy, R
Ott, CD
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Padilla, CT
Pai, A
Pai, SA
Palamos, JR
Palashov, O
Palomba, C
Pal-Singh, A
Pan, H
Pan, Y
Pankow, C
Pannarale, F
Pant, BC
Paoletti, F
Papa, MA
Paris, HR
Pasqualetti, A
Passaquieti, R
Passuello, D
Patrick, Z
Pedraza, M
Pekowsky, L
Pele, A
Penn, S
Perreca, A
Phelps, M
Piccinni, O
Pichot, M
Pickenpack, M
Piergiovanni, F
Pierro, V
Pillant, G
Pinard, L
Pinto, IM
Pitkin, M
Poeld, JH
Poggiani, R
Post, A
Powell, J
Prasad, J
Predoi, V
Premachandra, SS
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prix, R
Prodi, GA
Prokhorov, L
Puncken, O
Punturo, M
Puppo, P
Purrer, M
Qin, J
Quetschke, V
Quintero, EA
Quitzow-James, R
Raab, FJ
Rabeling, DS
Racz, I
Radkins, H
Raffai, P
Raja, S
Rakhmanov, M
Rapagnani, P
Raymond, V
Razzano, M
Re, V
Reed, CM
Regimbau, T
Rei, L
Reid, S
Reitze, DH
Ricci, F
Riles, K
Robertson, NA
Robie, R
Robinet, F
Rocchi, A
Rodger, AS
Rolland, L
Rollins, JG
Roma, VJ
Romano, JD
Romano, R
Romanov, G
Romie, JH
Rosins, D
Rowan, S
Rud, A
Ruggi, P
Ryan, K
Sachdev, S
Sadecki, T
Sadeghian, L
Saleem, M
Salemi, F
Sammut, L
Sanchez, E
Sandberg, V
Sanders, JR
Santiago-Prieto, I
Sassolas, B
Sathyaprakash, BS
Saulson, PR
Savage, R
Sawadsky, A
Schale, P
Schilling, R
Schmidt, P
Schnabel, R
Schofield, RMS
Schonbeck, A
Schreiber, E
Schuette, D
Schutz, BF
Scott, J
Scott, SM
Sellers, D
Sentenac, D
Sequino, V
Sergeev, A
Serna, G
Sevigny, A
Shaddock, DA
Shaffery, P
Shah, S
Shahriar, MS
Shaltev, M
Shao, Z
Shapiro, B
Shawhan, P
Shoemaker, DH
Sidery, TL
Siellez, K
Siemens, X
Sigg, D
Silva, AD
Simakov, D
Singer, A
Singer, LP
Singh, R
Sintes, AM
Slagmolen, BJJ
Smith, JR
Smith, ND
Smith, RJE
Son, EJ
Sorazu, B
Souradeep, T
Srivastava, AK
Staley, A
Steinke, M
Steinlechner, J
Steinlechner, S
Steinmeyer, D
Stephens, BC
Steplewski, S
Stevenson, SP
Stone, R
Strain, KA
Straniero, N
Strauss, NA
Strigin, S
Sturani, R
Stuver, AL
Summerscales, TZ
Sun, L
Sutton, PJ
Swinkels, BL
Szczepanczyk, MJ
Tacca, M
Talukder, D
Tanner, DB
Tap, M
Tarabrin, SP
Taracchini, A
Taylor, R
Theeg, T
Thirugnanasambandam, MP
Thomas, M
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Tiwari, S
Tiwari, V
Tokmakov, KV
Tomlinson, C
Tonelli, M
Torres, CV
Torrie, CI
Travasso, F
Traylor, G
Trifiro, D
Tringali, MC
Tse, M
Turconi, M
Ugolini, D
Unnikrishnan, CS
Urban, AL
Usman, SA
Vahlbruch, H
Vajente, G
Valdes, G
Vallisneri, M
Van Bakel, N
Van Beuzekom, M
Van den Brand, JFJ
Van den Broeck, C
Van der Schaaf, L
Van der Sluys, MV
Eijningen, JV
Eggel, AAV
Vardaro, M
Vass, S
Vasuth, M
Vaulin, R
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Venkateswara, K
Verkindt, D
Vetrano, F
Vicere, A
Vinet, JY
Vitale, S
Vo, T
Vocca, H
Vorvick, C
Vousden, WD
Vyatchanin, SP
Wade, AR
Wade, M
Wade, LE
Walker, M
Wallace, L
Walsh, S
Wang, G
Wang, H
Wang, M
Wang, X
Ward, RL
Warner, J
Was, M
Weaver, B
Wei, LW
Weinert, M
Weinstein, AJ
Weiss, R
Welborn, T
Wen, L
Wessels, P
Westphal, T
Wette, K
Whelan, JT
Whitcomb, SE
White, DJ
Whiting, BF
Williams, KJ
Williams, L
Williams, RD
Williamson, AR
Willis, JL
Willke, B
Wimmer, MH
Winkler, W
Wipf, CC
Wittel, H
Woan, G
Worden, J
Yablon, J
Yakushin, I
Yam, W
Yamamoto, H
Yancey, CC
Yvert, M
Zadrozny, A
Zangrando, L
Zanolin, M
Zendri, JP
Zhang, F
Zhang, L
Zhang, M
Zhang, Y
Zhao, C
Zhou, M
Zhu, XJ
Zucker, ME
Zuraw, SE
Zweizig, J
AF Aasi, J.
Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M. R.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R. X.
Adya, V. B.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O. D.
Ain, A.
Ajith, P.
Allen, B.
Allocca, A.
Amariutei, D. V.
Andersen, M.
Anderson, S. B.
Anderson, W. G.
Arai, K.
Araya, M. C.
Arceneaux, C. C.
Areeda, J. S.
Arnaud, N.
Ashton, G.
Aston, S. M.
Astone, P.
Aufmuth, P.
Aulbert, C.
Babak, S.
Baker, P. T.
Baldaccini, F.
Ballardin, G.
Ballmer, S. W.
Barayoga, J. C.
Barclay, S. E.
Barish, B. C.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Bartlett, J.
Barton, M. A.
Bartos, I.
Bassiri, R.
Basti, A.
Batch, J. C.
Baune, C.
Bavigadda, V.
Behnke, B.
Bejger, M.
Belczynski, C.
Bell, A. S.
Berger, B. K.
Bergman, J.
Bergmann, G.
Berry, C. P. L.
Bersanetti, D.
Bertolini, A.
Betzwieser, J.
Bhagwat, S.
Bhandare, R.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Birney, R.
Biscans, S.
Bitossi, M.
Biwer, C.
Bizouard, M. A.
Blackburn, J. K.
Blair, C. D.
Blair, D.
Bloemen, S.
Bock, O.
Bodiya, T. P.
Boer, M.
Bogaert, G.
Bojtos, P.
Bond, C.
Bondu, F.
Bonnand, R.
Bork, R.
Born, M.
Boschi, V.
Bose, Sukanta
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Branchesi, M.
Branco, V.
Brau, J. E.
Briant, T.
Brillet, A.
Brinkmann, M.
Brisson, V.
Brockill, P.
Brooks, A. F.
Brown, D. A.
Brown, D.
Brown, D. D.
Brown, N. M.
Buchanan, C. C.
Buikema, A.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Buskulic, D.
Buy, C.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Bustillo, J. Calderon
Calloni, E.
Camp, J. B.
Cannon, K. C.
Cao, J.
Capano, C. D.
Capocasa, E.
Carbognani, F.
Caride, S.
Diaz, J. Casanueva
Casentini, C.
Caudill, S.
Cavaglia, M.
Cavalier, F.
Cavalieri, R.
Celerier, C.
Cella, G.
Cepeda, C.
Baiardi, L. Cerboni
Cerretani, G.
Cesarini, E.
Chakraborty, R.
Chalermsongsak, T.
Chamberlin, S. J.
Chao, S.
Charlton, P.
Chassande-Mottin, E.
Chen, X.
Chen, Y.
Cheng, C.
Chincarini, A.
Chiummo, A.
Cho, H. S.
Cho, M.
Chow, J. H.
Christensen, N.
Chu, Q.
Chua, S.
Chung, S.
Ciani, G.
Clara, F.
Clark, J. A.
Cleva, F.
Coccia, E.
Cohadon, P. -F.
Colla, A.
Collette, C. G.
Colombini, M.
Constancio, M., Jr.
Conte, A.
Conti, L.
Cook, D.
Corbitt, T. R.
Cornish, N.
Corsi, A.
Costa, C. A.
Coughlin, M. W.
Coughlin, S. B.
Coulon, J. -P.
Countryman, S. T.
Couvares, P.
Coward, D. M.
Cowart, M. J.
Coyne, D. C.
Coyne, R.
Craig, K.
Creighton, J. D. E.
Cripe, J.
Crowder, S. G.
Cumming, A.
Cunningham, L.
Cuoco, E.
Dal Canton, T.
Damjanic, M. D.
Danilishin, S. L.
D'Antonio, S.
Danzmann, K.
Darman, N. S.
Dattilo, V.
Dave, I.
Daveloza, H. P.
Davier, M.
Davies, G. S.
Daw, E. J.
Day, R.
Debra, D.
Debreczeni, G.
Degallaix, J.
De laurentis, M.
Deleglise, S.
Del Pozzo, W.
Denker, T.
Dent, T.
Dereli, H.
Dergachev, V.
De Rosa, R.
DeRosa, R. T.
DeSalvo, R.
Dhurandhar, S.
Dia, M. C.
Di Fiore, L.
Di Giovanni, M.
Di Lieto, A.
Di Palma, I.
Di Virgilio, A.
Dojcinoski, G.
Dolique, V.
Dominguez, E.
Donovan, F.
Dooley, K. L.
Doravari, S.
Douglas, R.
Downes, T. P.
Drago, M.
Drever, R. W. P.
Driggers, J. C.
Du, Z.
Ducrot, M.
Dwyer, S. E.
Edo, T. B.
Edwards, M. C.
Edwards, M.
Effler, A.
Eggenstein, H. -B.
Ehrens, P.
Eichholz, J. M.
Eikenberry, S. S.
Essick, R. C.
Etzel, T.
Evans, M.
Evans, T. M.
Everett, R.
Factourovich, M.
Fafone, V.
Fairhurst, S.
Fang, Q.
Farinon, S.
Farr, B.
Farr, W. M.
Favata, M.
Fays, M.
Fehrmann, H.
Fejer, M. M.
Feldbaum, D.
Ferrante, I.
Ferreira, E. C.
Ferrini, F.
Fidecaro, F.
Fiori, I.
Fisher, R. P.
Flaminio, R.
Fournier, J. -D.
Franco, S.
Frasca, S.
Frasconi, F.
Frede, M.
Frei, Z.
Freise, A.
Frey, R.
Fricke, T. T.
Fritschel, P.
Frolov, V. V.
Fulda, P.
Fyffe, M.
Gabbard, H. A. G.
Gair, J. R.
Gammaitoni, L.
Gaonkar, S. G.
Garufi, F.
Gatto, A.
Gehrels, N.
Gemme, G.
Gendre, B.
Genin, E.
Gennai, A.
Gergely, L. A.
Germain, V.
Ghosh, A.
Ghosh, S.
Giaime, J. A.
Giardina, K. D.
Giazotto, A.
Gleason, J. R.
Goetz, E.
Goetz, R.
Gondan, L.
Gonzalez, G.
Gonzalez, J.
Gopakumar, A.
Gordon, N. A.
Gorodetsky, M. L.
Gossan, S. E.
Gosselin, M.
Gossler, S.
Gouaty, R.
Graef, C.
Graff, P. B.
Granata, M.
Grant, A.
Gras, S.
Gray, C.
Greco, G.
Groot, P.
Grote, H.
Grover, K.
Grunewald, S.
Guidi, G. M.
Guido, C. J.
Guo, X.
Gupta, A.
Gupta, M. K.
Gushwa, K. E.
Gustafson, E. K.
Gustafson, R.
Hacker, J. J.
Hall, B. R.
Hall, E. D.
Hammer, D.
Hammond, G.
Haney, M.
Hanke, M. M.
Hanks, J.
Hanna, C.
Hannam, M. D.
Hanson, J.
Hardwick, T.
Harms, J.
Harry, G. M.
Harry, I. W.
Hart, M. J.
Hartman, M. T.
Haster, C. -J.
Haughian, K.
Heidmann, A.
Heintze, M. C.
Heitmann, H.
Hello, P.
Hemming, G.
Hendry, M.
Heng, I. S.
Hennig, J.
Heptonstall, A. W.
Heurs, M.
Hild, S.
Hoak, D.
Hodge, K. A.
Hoelscher-Obermaier, J.
Hofman, D.
Hollitt, S. E.
Holt, K.
Hopkins, P.
Hosken, D. J.
Hough, J.
Houston, E. A.
Howell, E. J.
Hu, Y. M.
Huang, S.
Huerta, E. A.
Huet, D.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh, M.
Huynh-Dinh, T.
Idrisy, A.
Indik, N.
Ingram, D. R.
Inta, R.
Islas, G.
Isler, J. C.
Isogai, T.
Iyer, B. R.
Izumi, K.
Jacobson, M. B.
Jang, H.
Jaranowski, P.
Jawahar, S.
Ji, Y.
Jimenez-Forteza, F.
Johnson, W. W.
Jones, D. I.
Jones, R.
Jonker, R. J. G.
Ju, L.
Haris, K.
Kalogera, V.
Kandhasamy, S.
Kang, G.
Kanner, J. B.
Karki, S.
Karlen, J. L.
Kasprzack, M.
Katsavounidis, E.
Katzman, W.
Kaufer, S.
Kaur, T.
Kawabe, K.
Kawazoe, F.
Kefelian, F.
Kehl, M. S.
Keitel, D.
Kelley, D. B.
Kells, W.
Kerrigan, J.
Key, J. S.
Khalili, F. Y.
Khan, Z.
Khazanov, E. A.
Kijbunchoo, N.
Kim, C.
Kim, K.
Kim, N. G.
Kim, N.
Kim, Y. -M.
King, E. J.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Klimenko, S.
Kline, J. T.
Koehlenbeck, S. M.
Kokeyama, K.
Koley, S.
Kondrashov, V.
Korobko, M.
Korth, W. Z.
Kowalska, I.
Kozak, D. B.
Kringel, V.
Krishnan, B.
Krolak, A.
Krueger, C.
Kuehn, G.
Kumar, A.
Kumar, P.
Kuo, L.
Kutynia, A.
Lackey, B. D.
Landry, M.
Lantz, B.
Lasky, P. D.
Lazzarini, A.
Lazzaro, C.
Leaci, P.
Leavey, S.
Lebigot, E. O.
Lee, C. H.
Lee, H. K.
Lee, H. M.
Lee, J.
Lee, J. P.
Leonardi, M.
Leong, J. R.
Leroy, N.
Letendre, N.
Levin, Y.
Levine, B. M.
Lewis, J. B.
Li, T. G. F.
Libson, A.
Lin, A. C.
Littenberg, T. B.
Lockerbie, N. A.
Lockett, V.
Lodhia, D.
Logue, J.
Lombardi, A. L.
Lorenzini, M.
Loriette, V.
Lormand, M.
Losurdo, G.
Lough, J. D.
Lubinski, M. J.
Luck, H.
Lundgren, A. P.
Luo, J.
Lynch, R.
Ma, Y.
Macarthur, J.
Macdonald, E. P.
MacDonald, T.
Machenschalk, B.
MacInnis, M.
Macleod, D. M.
Madden-Fong, D. X.
Magana-Sandoval, F.
Magee, R. M.
Mageswaran, M.
Majorana, E.
Maksimovic, I.
Malvezzi, V.
Man, N.
Mandel, I.
Mandic, V.
Mangano, V.
Mangini, N. M.
Mansell, G. L.
Manske, M.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Ma, Z.
Markosyan, A. S.
Maros, E.
Martelli, F.
Martellini, L.
Martin, I. W.
Martin, R. M.
Martynov, D. V.
Marx, J. N.
Mason, K.
Masserot, A.
Massinger, T. J.
Mastrogiovanni, S.
Matichard, F.
Matone, L.
Mavalvala, N.
Mazumder, N.
Mazzolo, G.
McCarthy, R.
McClelland, D. E.
McCormick, S.
McGuire, S. C.
McIntyre, G.
McIver, J.
McWilliams, S. T.
Meacher, D.
Meadors, G. D.
Mehmet, M.
Meidam, J.
Meinders, M.
Melatos, A.
Mendell, G.
Mercer, R. A.
Merzougui, M.
Meshkov, S.
Messenger, C.
Messick, C.
Meyers, P. M.
Mezzani, F.
Miao, H.
Michel, C.
Middleton, H.
Mikhailov, E. E.
Milano, L.
Miller, J.
Millhouse, M.
Minenkov, Y.
Ming, J.
Mirshekari, S.
Mishra, C.
Mitra, S.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moe, B.
Moggi, A.
Mohan, M.
Mohapatra, S. R. P.
Montani, M.
Moore, B. C.
Moraru, D.
Moreno, G.
Morriss, S. R.
Mossavi, K.
Mours, B.
Mow-Lowry, C. M.
Mueller, C. L.
Mueller, G.
Mukherjee, A.
Mukherjee, S.
Mullavey, A.
Munch, J.
Murphy, D. J.
Murray, P. G.
Mytidis, A.
Nagy, M. F.
Nardecchia, I.
Naticchioni, L.
Nayak, R. K.
Necula, V.
Nedkova, K.
Nelemans, G.
Neri, M.
Newton, G.
Nguyen, T. T.
Nielsen, A. B.
Nitz, A.
Nocera, F.
Nolting, D.
Normandin, M. E. N.
Nuttall, L. K.
Ochsner, E.
O'Dell, J.
Oelker, E.
Ogin, G. H.
Oh, J. J.
Oh, S. H.
Ohme, F.
Okounkova, M.
Oppermann, P.
Oram, R.
O'Reilly, B.
Ortega, W. E.
O'Shaughnessy, R.
Ott, C. D.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Padilla, C. T.
Pai, A.
Pai, S. A.
Palamos, J. R.
Palashov, O.
Palomba, C.
Pal-Singh, A.
Pan, H.
Pan, Y.
Pankow, C.
Pannarale, F.
Pant, B. C.
Paoletti, F.
Papa, M. A.
Paris, H. R.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Patrick, Z.
Pedraza, M.
Pekowsky, L.
Pele, A.
Penn, S.
Perreca, A.
Phelps, M.
Piccinni, O.
Pichot, M.
Pickenpack, M.
Piergiovanni, F.
Pierro, V.
Pillant, G.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Poeld, J. H.
Poggiani, R.
Post, A.
Powell, J.
Prasad, J.
Predoi, V.
Premachandra, S. S.
Prestegard, T.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prix, R.
Prodi, G. A.
Prokhorov, L.
Puncken, O.
Punturo, M.
Puppo, P.
Purrer, M.
Qin, J.
Quetschke, V.
Quintero, E. A.
Quitzow-James, R.
Raab, F. J.
Rabeling, D. S.
Racz, I.
Radkins, H.
Raffai, P.
Raja, S.
Rakhmanov, M.
Rapagnani, P.
Raymond, V.
Razzano, M.
Re, V.
Reed, C. M.
Regimbau, T.
Rei, L.
Reid, S.
Reitze, D. H.
Ricci, F.
Riles, K.
Robertson, N. A.
Robie, R.
Robinet, F.
Rocchi, A.
Rodger, A. S.
Rolland, L.
Rollins, J. G.
Roma, V. J.
Romano, J. D.
Romano, R.
Romanov, G.
Romie, J. H.
Rosins, D.
Rowan, S.
Rud, A.
Ruggi, P.
Ryan, K.
Sachdev, S.
Sadecki, T.
Sadeghian, L.
Saleem, M.
Salemi, F.
Sammut, L.
Sanchez, E.
Sandberg, V.
Sanders, J. R.
Santiago-Prieto, I.
Sassolas, B.
Sathyaprakash, B. S.
Saulson, P. R.
Savage, R.
Sawadsky, A.
Schale, P.
Schilling, R.
Schmidt, P.
Schnabel, R.
Schofield, R. M. S.
Schonbeck, A.
Schreiber, E.
Schuette, D.
Schutz, B. F.
Scott, J.
Scott, S. M.
Sellers, D.
Sentenac, D.
Sequino, V.
Sergeev, A.
Serna, G.
Sevigny, A.
Shaddock, D. A.
Shaffery, P.
Shah, S.
Shahriar, M. S.
Shaltev, M.
Shao, Z.
Shapiro, B.
Shawhan, P.
Shoemaker, D. H.
Sidery, T. L.
Siellez, K.
Siemens, X.
Sigg, D.
Silva, A. D.
Simakov, D.
Singer, A.
Singer, L. P.
Singh, R.
Sintes, A. M.
Slagmolen, B. J. J.
Smith, J. R.
Smith, N. D.
Smith, R. J. E.
Son, E. J.
Sorazu, B.
Souradeep, T.
Srivastava, A. K.
Staley, A.
Steinke, M.
Steinlechner, J.
Steinlechner, S.
Steinmeyer, D.
Stephens, B. C.
Steplewski, S.
Stevenson, S. P.
Stone, R.
Strain, K. A.
Straniero, N.
Strauss, N. A.
Strigin, S.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sun, L.
Sutton, P. J.
Swinkels, B. L.
Szczepanczyk, M. J.
Tacca, M.
Talukder, D.
Tanner, D. B.
Tap, M.
Tarabrin, S. P.
Taracchini, A.
Taylor, R.
Theeg, T.
Thirugnanasambandam, M. P.
Thomas, M.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Tiwari, S.
Tiwari, V.
Tokmakov, K. V.
Tomlinson, C.
Tonelli, M.
Torres, C. V.
Torrie, C. I.
Travasso, F.
Traylor, G.
Trifiro, D.
Tringali, M. C.
Tse, M.
Turconi, M.
Ugolini, D.
Unnikrishnan, C. S.
Urban, A. L.
Usman, S. A.
Vahlbruch, H.
Vajente, G.
Valdes, G.
Vallisneri, M.
Van Bakel, N.
Van Beuzekom, M.
Van den Brand, J. F. J.
Van den Broeck, C.
Van der Schaaf, L.
Van der Sluys, M. V.
Eijningen, J. V.
Eggel, A. A. V.
Vardaro, M.
Vass, S.
Vasuth, M.
Vaulin, R.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Venkateswara, K.
Verkindt, D.
Vetrano, F.
Vicere, A.
Vinet, J-Y
Vitale, S.
Vo, T.
Vocca, H.
Vorvick, C.
Vousden, W. D.
Vyatchanin, S. P.
Wade, A. R.
Wade, M.
Wade, L. E.
Walker, M.
Wallace, L.
Walsh, S.
Wang, G.
Wang, H.
Wang, M.
Wang, X.
Ward, R. L.
Warner, J.
Was, M.
Weaver, B.
Wei, L. -W.
Weinert, M.
Weinstein, A. J.
Weiss, R.
Welborn, T.
Wen, L.
Wessels, P.
Westphal, T.
Wette, K.
Whelan, J. T.
Whitcomb, S. E.
White, D. J.
Whiting, B. F.
Williams, K. J.
Williams, L.
Williams, R. D.
Williamson, A. R.
Willis, J. L.
Willke, B.
Wimmer, M. H.
Winkler, W.
Wipf, C. C.
Wittel, H.
Woan, G.
Worden, J.
Yablon, J.
Yakushin, I.
Yam, W.
Yamamoto, H.
Yancey, C. C.
Yvert, M.
Zadrozny, A.
Zangrando, L.
Zanolin, M.
Zendri, J. -P.
Zhang, Fan
Zhang, L.
Zhang, M.
Zhang, Y.
Zhao, C.
Zhou, M.
Zhu, X. J.
Zucker, M. E.
Zuraw, S. E.
Zweizig, J.
CA LIGO Sci Collaboration Virgo
TI First low frequency all-sky search for continuous gravitational wave
signals
SO PHYSICAL REVIEW D
LA English
DT Article
ID PERIODIC SOURCES; HIERARCHICAL SEARCH; NEUTRON-STARS; EMISSION
AB In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 x 10(-10) and +1.5 x 10(-11) Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the Frequency Hough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the Frequency Hough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10(-24) and 2 x 10(-23) at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of similar to 2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.
C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Dooley, K. L.; Drever, R. W. P.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M. B.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA.
[Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Acernese, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy.
[Acernese, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[Ackley, K.; Amariutei, D. V.; Brown, D.; Ciani, G.; Eichholz, J. M.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J. R.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA.
[Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; Doravari, S.; Evans, T. M.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ Livingston, Livingston, LA 70754 USA.
[Adams, T.; Coughlin, S. B.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Macdonald, E. P.; Ohme, F.; Pannarale, F.; Predoi, V.; Purrer, M.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales.
[Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France.
[Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.] INFN, Sez Napoli, I-80100 Naples, Italy.
[Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bock, O.; Born, M.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Damjanic, M. D.; Danzmann, K.; Denker, T.; Dent, T.; Eggenstein, H. -B.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Goetz, E.; Gossler, S.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Koehlenbeck, S. M.; Korobko, M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mehmet, M.; Meinders, M.; Mossavi, K.; Nielsen, A. B.; Oppermann, P.; Pal-Singh, A.; Pickenpack, M.; Poeld, J. H.; Post, A.; Prix, R.; Puncken, O.; Rud, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schonbeck, A.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Vahlbruch, H.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Agathos, M.; Agatsuma, K.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Shah, S.; Van Bakel, N.; Van Beuzekom, M.; Van den Brand, J. F. J.; Van den Broeck, C.; Van der Schaaf, L.; Van der Sluys, M. V.; Eijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands.
[Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Lee, J. P.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Zhang, Fan; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA.
[Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil.
[Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India.
[Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Hammer, D.; Huynh, M.; Kline, J. T.; Manske, M.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, M.; Wade, L. E.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA.
[Allen, B.; Aufmuth, P.; Danzmann, K.; Hoelscher-Obermaier, J.; Kaufer, S.; Krueger, C.; Luck, H.; Sawadsky, A.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Allocca, A.] Univ Siena, I-53100 Siena, Italy.
[Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez, J.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Andersen, M.; Bassiri, R.; Byer, R. L.; Celerier, C.; Debra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Madden-Fong, D. X.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA.
[Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA.
[Areeda, J. S.; Hacker, J. J.; Islas, G.; Lockett, V.; Padilla, C. T.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, IN2P3, CNRS, LAL, F-91898 Orsay, France.
[Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Majorana, E.; Mangano, V.; Mastrogiovanni, S.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Babak, S.; Behnke, B.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany.
[Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA.
[Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy.
[Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Ballardin, G.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy.
[Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Lackey, B. D.; Lough, J. D.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA.
[Barclay, S. E.; Barr, B.; Bell, A. S.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rodger, A. S.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Eggel, A. A. V.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Clara, F.; Cook, D.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA.
[Barone, F.; Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CEA Irfu, Observ Paris,APC,CNRS,IN2P3, F-75205 Paris 13, France.
[Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Ma, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA.
[Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez, J.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy.
[Bejger, M.; Rosins, D.] CAMK PAN, PL-00716 Warsaw, Poland.
[Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
[Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Grover, K.; Haster, C. -J.; Lodhia, D.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Sidery, T. L.; Stevenson, S. P.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy.
[Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Bhandare, R.; Dave, I.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India.
[Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia.
[Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland.
[Blair, C. D.; Blair, D.; Chen, X.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia.
[Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; Van der Sluys, M. V.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L. -W.] Univ Nice Sophia Antipolis, CNRS, ARTEMIS, F-06304 Nice, France.
[Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L. -W.] Observ Cote Azur, F-06304 Nice, France.
[Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary.
[Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France.
[Bose, Sukanta; Hall, B. R.; Magee, R. M.; Mazumder, N.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy.
[Branco, V.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA.
[Briant, T.; Chen, X.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, F-75005 Paris, France.
[Bulten, H. J.; Van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA.
[Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Lyon, France.
[Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears, IEEC, E-07122 Palma De Mallorca, Spain.
[Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, I-80126 Naples, Italy.
[Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Goetz, E.; Gustafson, R.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan.
[Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia.
[Chen, Y.; Gossan, S. E.; Okounkova, M.; Ott, C. D.; Thorne, K. S.; Vallisneri, M.] CALTECH, CaRT, Pasadena, CA 91125 USA.
[Cho, H. S.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea.
[Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia.
[Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA.
[Coccia, E.; Fafone, V.; Lorenzini, M.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Mangano, V.; Mastrogiovanni, S.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium.
[Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Darman, N. S.; Lasky, P. D.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia.
[Daveloza, H. P.; Dia, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA.
[Daw, E. J.; Edo, T. B.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary.
[Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA.
[Dominguez, E.; Ortega, W. E.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA.
[Farr, B.] Univ Chicago, Chicago, IL 60637 USA.
[Gair, J. R.; Principe, M.] Univ Cambridge, Cambridge CB2 1TN, England.
[Gergely, L. A.; Tap, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary.
[Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Gupta, M. K.; Khan, Z.; Kumar, A.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India.
[Harry, G. M.] Amer Univ, Washington, DC 20016 USA.
[Hoak, D.; Karlen, J. L.; Kerrigan, J.; Lombardi, A. L.; Mangini, N. M.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA.
[Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA.
[Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea.
[Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland.
[Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland.
[Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India.
[Kalogera, V.; Littenberg, T. B.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA.
[Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, K.; Lee, H. K.; Lee, J.] Hanyang Univ, Seoul 133791, South Korea.
[Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia.
[Lee, H. M.; Shaffery, P.] Seoul Natl Univ, Seoul 151742, South Korea.
[Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France.
[Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy.
[McGuire, S. C.; Williams, K. J.] Southern Univ, Baton Rouge, LA 70813 USA.
[McGuire, S. C.; Williams, K. J.] A&M Coll, Baton Rouge, LA 70813 USA.
[Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil.
[Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India.
[O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England.
[Ogin, G. H.] Whitman Coll, 280 Boyer Ave, Walla Walla, WA 9936 USA.
[Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea.
[O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[Rosins, D.] Inst Astron, PL-65265 Zielona Gora, Poland.
[Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
[Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy.
[Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA.
[Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA.
RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA.
RI Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012; Iyer, Bala
R./E-2894-2012; Strain, Kenneth/D-5236-2011; prodi,
giovanni/B-4398-2010; Gorodetsky, Michael/C-5938-2008; Gemme,
Gianluca/C-7233-2008; Strigin, Sergey/I-8337-2012; Rocchi,
Alessio/O-9499-2015; Prokhorov, Leonid/I-2953-2012; Khalili,
Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Bell,
Angus/E-7312-2011; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella
Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi,
Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Zhu,
Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Vicere,
Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Groot, Paul/K-4391-2016;
Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; De Laurentis,
Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Vecchio,
Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi,
Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante,
Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Garufi,
Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo,
Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Tiwari,
Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo,
Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini,
Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild,
Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow,
Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011;
Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev,
Alexander/F-3027-2017; Harms, Jan/J-4359-2012;
OI Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439;
Principe, Maria/0000-0002-6327-0628; Berry,
Christopher/0000-0003-3870-7215; Kanner, Jonah/0000-0001-8115-0577;
Tokmakov, Kirill/0000-0002-2808-6593; Mandel, Ilya/0000-0002-6134-8946;
Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772;
Pitkin, Matthew/0000-0003-4548-526X; Zweizig, John/0000-0002-1521-3397;
Del Pozzo, Walter/0000-0003-3978-2030; Gendre,
Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Zhang,
Liang/0000-0002-6317-0395; Collette, Christophe/0000-0002-4430-3703;
Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315;
Mastrogiovanni, Simone/0000-0003-1606-4183; Naticchioni,
Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Sorazu,
Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Puppo,
Paola/0000-0003-4677-5015; Iyer, Bala R./0000-0002-4141-5179; Strain,
Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X;
Gorodetsky, Michael/0000-0002-5159-2742; Gemme,
Gianluca/0000-0002-1127-7406; Rocchi, Alessio/0000-0002-1382-9016;
Heidmann, Antoine/0000-0002-0784-5175; Bell, Angus/0000-0003-1523-0821;
Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella
Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441;
Marchesoni, Fabio/0000-0001-9240-6793; Zhu,
Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587;
Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526;
Groot, Paul/0000-0002-4488-726X; Lazzaro, Claudia/0000-0001-5993-3372;
De Laurentis, Martina/0000-0002-3815-4078; Vecchio,
Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603;
Gammaitoni, Luca/0000-0002-4972-7062; Ferrante,
Isidoro/0000-0002-0083-7228; Garufi, Fabio/0000-0003-1391-6168;
McClelland, David/0000-0001-6210-5842; Losurdo,
Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156;
Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo,
Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338;
Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin,
Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548;
Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636;
Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora
Vittoria/0000-0002-2237-7533; Swinkels, Bas/0000-0002-3066-3601;
O'Shaughnessy, Richard/0000-0001-5832-8517; Dolique,
Vincent/0000-0001-5644-9905; Boschi, Valerio/0000-0001-8665-2293; Gatto,
Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298;
Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi,
Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431
FU Australian Research Council; International Science Linkages program of
the Commonwealth of Australia; Council of Scientific and Industrial
Research of India, Department of Science and Technology, India; Science
and Engineering Research Board, India; Ministry of Human Resource
Development, India; Spanish Ministerio de Economia y Competitividad;
Conselleria d'Economia i Competitivitat; Cultura i Universitats of the
Govern de les Illes Balears; Foundation for Fundamental Research on
Matter - Netherlands Organisation for Scientific Research; National
Science Centre of Poland; European Union; Royal Society; Scottish
Funding Council; Scottish Universities Physics Alliance; National
Aeronautics and Space Administration; Hungarian Scientific Research
Fund; Lyon Institute of Origins; National Research Foundation of Korea;
Industry Canada; Province of Ontario through the Ministry of Economic
Development and Innovation; National Science and Engineering Research
Council Canada; Brazilian Ministry of Science, Technology, and
Innovation; Carnegie Trust; Leverhulme Trust; David and Lucile Packard
Foundation; Research Corporation; Alfred P. Sloan Foundation;
Conselleria d'Educacio
FX The authors gratefully acknowledge the support of the United States
National Science Foundation (NSF) for the construction and operation of
the LIGO Laboratory, as well as the Science and Technology Facilities
Council (STFC) of the United Kingdom, the Max Planck Society (MPS), and
the State of Niedersachsen/Germany for support of the construction and
operation of the GEO600 detector. The authors gratefully acknowledge the
Italian Istituto Nazionale di Fisica Nucleare (INFN) and the French
Centre National de la Recherche Scientifique (CNRS) for the construction
and operation of the Virgo detector and the creation and support of the
EGO consortium. The authors also gratefully acknowledge research support
from these agencies as well as by the Australian Research Council; the
International Science Linkages program of the Commonwealth of Australia;
the Council of Scientific and Industrial Research of India, Department
of Science and Technology, India; Science and Engineering Research
Board, India; Ministry of Human Resource Development, India; the Spanish
Ministerio de Economia y Competitividad; the Conselleria d'Economia i
Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the
Govern de les Illes Balears; the Foundation for Fundamental Research on
Matter supported by the Netherlands Organisation for Scientific
Research; the National Science Centre of Poland; the European Union; the
Royal Society; the Scottish Funding Council; the Scottish Universities
Physics Alliance; the National Aeronautics and Space Administration; the
Hungarian Scientific Research Fund; the Lyon Institute of Origins; the
National Research Foundation of Korea; Industry Canada and the Province
of Ontario through the Ministry of Economic Development and Innovation;
the National Science and Engineering Research Council Canada; the
Brazilian Ministry of Science, Technology, and Innovation; the Carnegie
Trust; the Leverhulme Trust; the David and Lucile Packard Foundation;
the Research Corporation; and the Alfred P. Sloan Foundation. The
authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN,
CNRS, and the State of Niedersachsen/ Germany for the provision of
computational resources. The authors are also grateful to the anonymous
referees for their comments, which helped to improve the clarity of the
paper.
NR 29
TC 5
Z9 5
U1 9
U2 55
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 25
PY 2016
VL 93
IS 4
AR 042007
DI 10.1103/PhysRevD.93.042007
PG 25
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DE7HT
UT WOS:000370807300001
ER
PT J
AU Barkett, K
Scheel, MA
Haas, R
Ott, CD
Bernuzzi, S
Brown, DA
Szilagyi, B
Kaplan, JD
Lippuner, J
Muhlberger, CD
Foucart, F
Duez, MD
AF Barkett, Kevin
Scheel, Mark A.
Haas, Roland
Ott, Christian D.
Bernuzzi, Sebastiano
Brown, Duncan A.
Szilagyi, Bela
Kaplan, Jeffrey D.
Lippuner, Jonas
Muhlberger, Curran D.
Foucart, Francois
Duez, Matthew D.
TI Gravitational waveforms for neutron star binaries from binary black hole
simulations
SO PHYSICAL REVIEW D
LA English
DT Article
AB Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of <1 radian over similar to 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter lambda.
C1 [Barkett, Kevin; Scheel, Mark A.; Haas, Roland; Ott, Christian D.; Bernuzzi, Sebastiano; Kaplan, Jeffrey D.; Lippuner, Jonas] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Pasadena, CA 91125 USA.
[Haas, Roland] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany.
[Bernuzzi, Sebastiano] Univ Parma, DiFeST, I-43124 Parma, Italy.
[Bernuzzi, Sebastiano] INFN Parma, I-43124 Parma, Italy.
[Brown, Duncan A.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA.
[Szilagyi, Bela] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA.
[Muhlberger, Curran D.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[Foucart, Francois] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Foucart, Francois] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Duez, Matthew D.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA.
RP Barkett, K (reprint author), CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Pasadena, CA 91125 USA.
EM kbarkett@caltech.edu
RI Ott, Christian/G-2651-2011;
OI Ott, Christian/0000-0003-4993-2055; Lippuner, Jonas/0000-0002-5936-3485
FU Sherman Fairchild Foundation; NASA through Einstein Postdoctoral
Fellowship [PF4-150122]; NASA [NAS8-03060]; NSF [PHY-0960291,
PHY-1404569, AST-1333520, AST-1333142, PHY-1306125, AST-1333129]; NSF
XSEDE network [TG-PHY990007N]; NSF PRAC Grant [ACI-1440083]; Canada
Foundation for Innovation (CFI) under the Compute Canada; Government of
Ontario; Ontario Research Fund (ORF)-Research Excellence; University of
Toronto
FX We thank Harald Pfeiffer and Sanjay Reddy for helpful discussions. This
work was supported in part by the Sherman Fairchild Foundation and NSF
Grants No. PHY-1404569 and No. AST-1333520 at Caltech, NSF Grant No.
AST-1333142 at Syracuse University, the Sherman Fairchild Foundation and
NSF Grants No. PHY-1306125 and No. AST-1333129 at Cornell University and
by NASA through Einstein Postdoctoral Fellowship Grant No. PF4-150122
awarded by the Chandra X-ray Center, which is operated by the
Smithsonian Astrophysical Observatory for NASA under Contract No.
NAS8-03060. Computations were performed on the Zwicky cluster at
Caltech, which is supported by the Sherman Fairchild Foundation and by
NSF Grant No. PHY-0960291; on the NSF XSEDE network under Grant No.
TG-PHY990007N; on the NSF/NCSA Blue Waters at the University of Illinois
with allocation jr6 under NSF PRAC Grant No. ACI-1440083; and on the GPC
supercomputer at the SciNet HPC Consortium [60]; SciNet is funded by the
Canada Foundation for Innovation (CFI) under the auspices of Compute
Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research
Excellence; and the University of Toronto.
NR 58
TC 3
Z9 3
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 24
PY 2016
VL 93
IS 4
AR 044064
DI 10.1103/PhysRevD.93.044064
PG 6
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DE7HP
UT WOS:000370806900005
ER
PT J
AU Turyshev, SG
Yu, N
Toth, VT
AF Turyshev, Slava G.
Yu, Nan
Toth, Viktor T.
TI General relativistic observables for the ACES experiment
SO PHYSICAL REVIEW D
LA English
DT Article
ID TIME TRANSFER; LASER LINK
AB We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light-time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient J(2) and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required by the experiment. We construct a Doppler-canceled science observable representing the gravitational redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to < 1 ps and similar to 4 x 10(-17) for time and frequency transfers, correspondingly. These limits are determined by the higher-order harmonics in Earth's gravitational potential.
C1 [Turyshev, Slava G.; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RI Toth, Viktor/D-3502-2009
OI Toth, Viktor/0000-0003-3651-9843
NR 48
TC 1
Z9 1
U1 1
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 23
PY 2016
VL 93
IS 4
AR 045027
DI 10.1103/PhysRevD.93.045027
PG 22
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DE7HJ
UT WOS:000370806200010
ER
PT J
AU Flanigan, D
McCarrick, H
Jones, G
Johnson, BR
Abitbol, MH
Ade, P
Araujo, D
Bradford, K
Cantor, R
Che, G
Day, P
Doyle, S
Kjellstrand, CB
Leduc, H
Limon, M
Luu, V
Mauskopf, P
Miller, A
Mroczkowski, T
Tucker, C
Zmuidzinas, J
AF Flanigan, D.
McCarrick, H.
Jones, G.
Johnson, B. R.
Abitbol, M. H.
Ade, P.
Araujo, D.
Bradford, K.
Cantor, R.
Che, G.
Day, P.
Doyle, S.
Kjellstrand, C. B.
Leduc, H.
Limon, M.
Luu, V.
Mauskopf, P.
Miller, A.
Mroczkowski, T.
Tucker, C.
Zmuidzinas, J.
TI Photon noise from chaotic and coherent millimeter-wave sources measured
with horn-coupled, aluminum lumped-element kinetic inductance detectors
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID FLUCTUATIONS
AB We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP approximate to 2 x 10(-17) WH z(-1/2), referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP proportional to P for broadband (chaotic) illumination and NEP proportional to P-1/2 for continuous-wave (coherent) illumination. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
C1 [Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Araujo, D.; Kjellstrand, C. B.; Limon, M.; Luu, V.; Miller, A.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
[Ade, P.; Doyle, S.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Bradford, K.; Mauskopf, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Cantor, R.] STAR Cryoelect, Santa Fe, NM 87508 USA.
[Che, G.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
[Day, P.; Leduc, H.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Mroczkowski, T.] US Navy, Res Lab, Washington, DC 20375 USA.
[Zmuidzinas, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
RP Flanigan, D (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
EM daniel.flanigan@columbia.edu
OI Limon, Michele/0000-0002-5900-2698; Mroczkowski,
Tony/0000-0003-3816-5372
FU NASA; National Research Council Fellowship; Research Initiatives for
Science and Engineering program at Columbia University; internal
Columbia University
FX R.C. is both an author and the owner of STAR Cryoelectronics. H.M. is
supported by a NASA Earth and Space Sciences Fellowship. T.M. is
supported by a National Research Council Fellowship. This research is
supported, in part, by a grant from the Research Initiatives for Science
and Engineering program at Columbia University to B.R.J. and by internal
Columbia University funding to A.M. We thank the Xilinx University
Program for their donation of FPGA hardware and software tools used in
the readout system. We thank the anonymous reviewers for thoughtful and
helpful comments.
NR 18
TC 2
Z9 2
U1 6
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 22
PY 2016
VL 108
IS 8
AR 083504
DI 10.1063/1.4942804
PG 5
WC Physics, Applied
SC Physics
GA DH8PO
UT WOS:000373057000055
ER
PT J
AU Galametz, M
Hony, S
Albrecht, M
Galliano, F
Cormier, D
Lebouteiller, V
Lee, MY
Madden, SC
Bolatto, A
Bot, C
Hughes, A
Israel, F
Meixner, M
Oliviera, JM
Paradis, D
Pellegrini, E
Roman-Duval, J
Rubio, M
Sewilo, M
Fukui, Y
Kawamura, A
Onishi, T
AF Galametz, M.
Hony, S.
Albrecht, M.
Galliano, F.
Cormier, D.
Lebouteiller, V.
Lee, M. Y.
Madden, S. C.
Bolatto, A.
Bot, C.
Hughes, A.
Israel, F.
Meixner, M.
Oliviera, J. M.
Paradis, D.
Pellegrini, E.
Roman-Duval, J.
Rubio, M.
Sewilo, M.
Fukui, Y.
Kawamura, A.
Onishi, T.
TI The dust properties and physical conditions of the interstellar medium
in the LMC massive star-forming complex N11
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE ISM: general; galaxies: dwarf; galaxies: ISM; Magellanic Clouds;
infrared: ISM; submillimetre: ISM
ID LARGE-MAGELLANIC-CLOUD; SPECTRAL ENERGY-DISTRIBUTION;
SPITZER-SPACE-TELESCOPE; GIANT MOLECULAR CLOUDS; H-II REGIONS; MULTIBAND
IMAGING PHOTOMETER; CO-TO-H-2 CONVERSION FACTOR; GALAXY EVOLUTION SAGE;
INFRARED ARRAY CAMERA; ABSOLUTE CALIBRATION
AB We combine Spitzer and Herschel data of the star-forming region N11 in the Large Magellanic Cloud (LMC) to produce detailed maps of the dust properties in the complex and study their variations with the interstellar-medium conditions. We also compare Atacama Pathfinder EXperiment/Large APEX Bolometer Camera (APEX/LABOCA) 870 mu m observations with our model predictions in order to decompose the 870 mu m emission into dust and non-dust [free-free emission and CO(3-2) line] contributions. We find that in N11, the 870 mu m can be fully accounted for by these three components. The dust surface density map of N11 is combined with H I and CO observations to study local variations in the gas-to-dust mass ratios. Our analysis leads to values lower than those expected from the LMC low-metallicity as well as to a decrease of the gas-to-dustmass ratio with the dust surface density. We explore potential hypotheses that could explain the low 'observed' gas-to-dust mass ratios (variations in the XCO factor, presence of CO-dark gas or of optically thick H I or variations in the dust abundance in the dense regions). We finally decompose the local spectral energy distributions (SEDs) using a principal component analysis (i.e. with no a priori assumption on the dust composition in the complex). Our results lead to a promising decomposition of the local SEDs in various dust components (hot, warm, cold) coherent with that expected for the region. Further analysis on a larger sample of galaxies will follow in order to understand how unique this decomposition is or how it evolves from one environment to another.
C1 [Galametz, M.] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
[Hony, S.; Cormier, D.; Pellegrini, E.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany.
[Albrecht, M.] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany.
[Galliano, F.; Lebouteiller, V.; Lee, M. Y.; Madden, S. C.] Univ Paris Diderot, IRFU Serv Astrophys, Lab AIM, CEA, Bat 709, F-91191 Gif Sur Yvette, France.
[Bolatto, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Bolatto, A.] Univ Maryland, Lab Millimeter Wave Astron, College Pk, MD 20742 USA.
[Bot, C.] Univ Strasbourg, Observ Astron Strasbourg, UMR 7550, 11 Rue Univ, F-67000 Strasbourg, France.
[Hughes, A.; Paradis, D.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Israel, F.] Leiden Univ, Sterrewacht Leiden, POB 9513, NL-2300 RA Leiden, Netherlands.
[Meixner, M.; Roman-Duval, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Meixner, M.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 366, 3400 N Charles St, Baltimore, MD 21218 USA.
[Oliviera, J. M.] Keele Univ, Lennard Jones Labs, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England.
[Paradis, D.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France.
[Pellegrini, E.] Univ Toledo, Dept Phys Astron, Mail Drop 111,2801 West Bancroft St, Toledo, OH 43606 USA.
[Rubio, M.] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile.
[Sewilo, M.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA.
[Sewilo, M.] ORAU, Oak Ridge, TN 37831 USA.
[Fukui, Y.; Kawamura, A.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya 4648602, Japan.
[Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Gakuen 1-1, Sakai, Osaka 5998531, Japan.
RP Galametz, M (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
EM maud.galametz@eso.org
OI Bot, Caroline/0000-0001-6118-2985; Lebouteiller,
Vianney/0000-0002-7716-6223
FU NASA Herschel Science Center, JPL [1381522, 1381650, 1350371]; NASA
[NNX14AN06G]; CSA (Canada); NAOC (China); CEA (France); CNES (France);
CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK);
UKSA (UK); NASA (USA)
FX We would like to first thank the referee for his/her careful reading of
this paper and useful suggestions. We would also like to thank Karl
Gordon for providing us with the reprocessed Herschel maps and the
MegaSAGE consortium for our motivating collaboration and meetings. We
acknowledge financial support from the NASA Herschel Science Center, JPL
contracts no. 1381522, no. 1381650 and no. 1350371. Meixner acknowledges
support from NASA grant, NNX14AN06G, for this work. This publication is
based on data acquired with the Herschel Space Observatory. The
Herschel/PACS instrument has been developed by MPE (Germany); UVIE
(Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA
(Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This
development has been supported by BMVIT (Austria), ESA-PRODEX (Belgium),
CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT
(Spain). The Herschel/SPIRE has been developed by a consortium of
institutes led by Cardiff University (UK) and including the following:
University of Lethbridge (Canada); NAOC (China); CEA, LAM (France);
IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory
(Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of
Sussex (UK); and Caltech, JPL, NHSC, University of Colorado (USA). This
development has been supported by national funding agencies: CSA
(Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN
(Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). This
publication is also based on data acquired with the APEX. APEX is a
collaboration between the Max-Planck-Institut fur Radioastronomie, the
European Southern Observatory and the Onsala Space Observatory.
NR 107
TC 3
Z9 3
U1 1
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB 21
PY 2016
VL 456
IS 2
BP 1767
EP 1790
DI 10.1093/mnras/stv2773
PG 24
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7KW
UT WOS:000372264200046
ER
PT J
AU Marchetti, L
Vaccari, M
Franceschini, A
Arumugam, V
Aussel, H
Bethermin, M
Bock, J
Boselli, A
Buat, V
Burgarella, D
Clements, DL
Conley, A
Conversi, L
Cooray, A
Dowell, CD
Farrah, D
Feltre, A
Glenn, J
Griffin, M
Hatziminaoglou, E
Heinis, S
Ibar, E
Ivison, RJ
Nguyen, HT
O'Halloran, B
Oliver, SJ
Page, MJ
Papageorgiou, A
Pearson, CP
Perez-Fournon, I
Pohlen, M
Rigopoulou, D
Roseboom, IG
Rowan-Robinson, M
Schulz, B
Scott, D
Seymour, N
Shupe, DL
Smith, AJ
Symeonidis, M
Valtchanov, I
Viero, M
Wang, L
Wardlow, J
Xu, CK
Zemcov, M
AF Marchetti, L.
Vaccari, M.
Franceschini, A.
Arumugam, V.
Aussel, H.
Bethermin, M.
Bock, J.
Boselli, A.
Buat, V.
Burgarella, D.
Clements, D. L.
Conley, A.
Conversi, L.
Cooray, A.
Dowell, C. D.
Farrah, D.
Feltre, A.
Glenn, J.
Griffin, M.
Hatziminaoglou, E.
Heinis, S.
Ibar, E.
Ivison, R. J.
Nguyen, H. T.
O'Halloran, B.
Oliver, S. J.
Page, M. J.
Papageorgiou, A.
Pearson, C. P.
Perez-Fournon, I.
Pohlen, M.
Rigopoulou, D.
Roseboom, I. G.
Rowan-Robinson, M.
Schulz, B.
Scott, Douglas
Seymour, N.
Shupe, D. L.
Smith, A. J.
Symeonidis, M.
Valtchanov, I.
Viero, M.
Wang, L.
Wardlow, J.
Xu, C. K.
Zemcov, M.
TI The HerMES submillimetre local and low-redshift luminosity functions
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: evolution; galaxies: luminosity function, mass function;
galaxies: statistics; submillimetre: galaxies
ID STAR-FORMATION RATE; ACTIVE GALACTIC NUCLEI; EXTRAGALACTIC LEGACY
SURVEY; STELLAR MASS FUNCTION; PHOTOMETRIC REDSHIFTS; FORMATION HISTORY;
SOURCE EXTRACTION; FORMING GALAXIES; DEEP-FIELD; SPECTROSCOPIC SURVEY
AB We used wide-area surveys over 39 deg(2) by the HerMES (Herschel Multi-tiered Extragalactic Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength camera, to estimate the low-redshift, 0.02 < z < 0.5, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500 mu m. Within this redshift interval, we detected 7087 sources in five independent sky areas, similar to 40 per cent of which have spectroscopic redshifts, while for the remaining objects photometric redshifts were used. The SPIRE LFs in different fields did not show any field-to-field variations beyond the small differences to be expected from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry and multiwavelength archival data to perform a complete spectral energy distribution fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (IR; 8-1000 mu m) LFs and their low-z evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The LFs show significant and rapid luminosity evolution already at low redshifts, 0.02 < z < 0.2, with L-IR* proportional to (1 + z)(6.0 +/- 0.4) and Phi(IR)* proportional to (1 + z)(-2.1 +/- 0.4), L-250* (1 + z)(5.3 +/- 0.2) and Phi(250)* proportional to (1 + z)(-0.6 +/- 0.4) estimated using the IR bolometric and the 250 mu m LFs, respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter initial mass function and including the unobscured contribution based on the UV dust-uncorrected emission from local galaxies, we estimate an SFRD scaling of SFRD0 + 0.08z, where SFRD0 similar or equal to (1.9 +/- 0.03) x 10(-2) [M-circle dot Mpc(-3)] is our total SFRD estimate at z similar to 0.02.
C1 [Marchetti, L.; Pearson, C. P.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.
[Marchetti, L.; Vaccari, M.; Franceschini, A.] Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy.
[Vaccari, M.] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Cape Town, South Africa.
[Vaccari, M.] INAF Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy.
[Arumugam, V.; Ivison, R. J.; Roseboom, I. G.] Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Aussel, H.; Bethermin, M.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA,DSM,Irfu, Pt Courrier 131, F-91191 Gif Sur Yvette, France.
[Bethermin, M.] Univ Paris 11, IAS, Batiment 121, F-91405 Orsay, France.
[Bethermin, M.] CNRS, UMR 8617, Batiment 121, F-91405 Orsay, France.
[Bethermin, M.; Hatziminaoglou, E.] ESO, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
[Bock, J.; Cooray, A.; Dowell, C. D.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Viero, M.; Xu, C. K.; Zemcov, M.] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
[Bock, J.; Dowell, C. D.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Boselli, A.; Buat, V.; Burgarella, D.; Heinis, S.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Clements, D. L.; O'Halloran, B.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England.
[Conley, A.; Glenn, J.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA.
[Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, E-28691 Madrid, Spain.
[Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA.
[Feltre, A.] Univ Paris 04, UPMC CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France.
[Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA UCB 389, Boulder, CO 80309 USA.
[Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Queens Buildings, Cardiff CF24 3AA, S Glam, Wales.
[Ibar, E.] Univ Valparaiso, Inst Fis & Astron, Avda Gran Bretana 1111, Valparaiso, Chile.
[Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Oliver, S. J.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England.
[Perez-Fournon, I.] IAC, E-38200 Tenerife, Spain.
[Perez-Fournon, I.] ULL, Dept Astrofis, E-38205 Tenerife, Spain.
[Rigopoulou, D.] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England.
[Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Jet Prop Lab, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA.
[Scott, Douglas] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada.
[Seymour, N.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6102, Australia.
[Wang, L.] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England.
[Wang, L.] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands.
[Wardlow, J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark.
RP Marchetti, L (reprint author), Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.; Marchetti, L (reprint author), Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy.
EM marchetti.lu@gmail.com
RI Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Wardlow,
Julie/C-9903-2015;
OI Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577;
Wardlow, Julie/0000-0003-2376-8971; Scott, Douglas/0000-0002-6878-9840;
Seymour, Nicholas/0000-0003-3506-5536
FU Science and Technology Facilities Council (STFC) [ST/J001597/1]; ASI
[I/005/07/1, I/005/11/0]; Danish National Research Foundation; Square
Kilometre Array South Africa project; South African National Research
Foundation; Department of Science and Technology [DST/CON 0134/2014];
European Commission Research Executive Agency [FP7-SPACE-2013-1 GA
607254]; Italian Ministry for Foreign Affairs and International
Cooperation [PGR GA ZA14GR02]; ARC; ERC [321323-NEOGAL]; CSA (Canada);
NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy);
MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA)
FX Lucia Marchetti (LM) acknowledges support from the Science and
Technology Facilities Council (STFC) under grant ST/J001597/1. Lucia
Marchetti, Mattia Vaccari and Alberto Franceschini acknowledge support
from ASI 'Herschel Science' Contracts I/005/07/1 and I/005/11/0. Mattia
Negrello produced additional predictions based on his models. Julie
Wardlow acknowledges the Dark Cosmology Centre funded by the Danish
National Research Foundation. Mattia Vaccari acknowledges support from
the Square Kilometre Array South Africa project, the South African
National Research Foundation and Department of Science and Technology
(DST/CON 0134/2014), the European Commission Research Executive Agency
(FP7-SPACE-2013-1 GA 607254) and the Italian Ministry for Foreign
Affairs and International Cooperation (PGR GA ZA14GR02). Nicholas
Seymour is the recipient of an ARC Future Fellowship. Anna Feltre
acknowledges support from the ERC via an Advanced Grant under grant
agreement no. 321323-NEOGAL. This work makes use of STILTS
http://www.starlink.ac.uk/stilts/and TOPCAT (Taylor 2005). SPIRE has
been developed by a consortium of institutes led by Cardiff University
(UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM
(France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory
(Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex
(UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has
been supported by national funding agencies: CSA (Canada); NAOC (China);
CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm
Observatory (Sweden); STFC (UK); and NASA (USA). The authors would like
to thank the anonymous referee for helpful comments.
NR 98
TC 4
Z9 4
U1 1
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB 21
PY 2016
VL 456
IS 2
BP 1999
EP 2023
DI 10.1093/mnras/stv2717
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7KW
UT WOS:000372264200063
ER
PT J
AU Agol, E
Deck, K
AF Agol, Eric
Deck, Katherine
TI TRANSIT TIMING TO FIRST ORDER IN ECCENTRICITY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE planets and satellites: detection; planets and satellites: dynamical
evolution and stability; planets and satellites: fundamental parameters
ID MULTIPLE-PLANET SYSTEMS; LOW-DENSITY PLANETS; KEPLER PLANETS;
TERRESTRIAL PLANETS; EXTRASOLAR PLANETS; LOW-MASS; CONFIRMATION;
VALIDATION; EXOPLANETS; MODELS
AB Characterization of transiting planets with transit timing variations (TTVs) requires understanding how to translate the observed TTVs into masses and orbital elements of the planets. This can be challenging in multi-planet transiting systems, but fortunately these systems tend to be nearly plane-parallel and low eccentricity. Here we present a novel derivation of analytic formulae for TTVs that are accurate to first order in the planet-star mass ratios and in the orbital eccentricities. These formulae are accurate in proximity to first-order resonances, as well as away from resonance, and compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems. We make code available for implementing these formulae.
C1 [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Agol, Eric] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
[Agol, Eric] NASA, Astrobiol Inst Virtual Planetary Lab, Seattle, WA 98195 USA.
[Deck, Katherine] CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
RP Agol, E (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA.; Agol, E (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.; Agol, E (reprint author), NASA, Astrobiol Inst Virtual Planetary Lab, Seattle, WA 98195 USA.
EM agol@uw.edu
OI /0000-0002-0802-9145
FU NASA [NNX13AF20G, NNX13AF62G, NNH05ZDA001C]; NASA Astrobiology
Institutes Virtual Planetary Laboratory; National Science Foundation
[NSF PHY11-25915]; Joint Center for Planetary Astronomy fellowship
FX E.A. acknowledges support from NASA grants NNX13AF20G, NNX13AF62G, and
NASA Astrobiology Institutes Virtual Planetary Laboratory, supported by
NASA under cooperative agreement NNH05ZDA001C. This research was
supported in part by the National Science Foundation under Grant No. NSF
PHY11-25915. E.A. thanks the Kavli Institute for Theoretical Physics and
the organizers of the "Dynamics and Evolution of Earth-like Planets"
workshop, where a portion of this work was completed; this manuscript is
preprint number NSF-KITP-15-132. K.D. acknowledges support from the
Joint Center for Planetary Astronomy fellowship. We thank Jack Wisdom
for sharing laplace.c, which computes Laplace coefficients and their
derivatives with series summation; we thank Eric Ford for advice on
implementation of the formula in Julia; and we thank Brett Morris and
Ethan Kruse for advice on implementation of the formula in Python
(requested by the referee).
NR 53
TC 4
Z9 4
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 177
DI 10.3847/0004-637X/818/2/177
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800076
ER
PT J
AU Basu-Zych, AR
Lehmer, B
Fragos, T
Hornschemeier, A
Yukita, M
Zezas, A
Ptak, A
AF Basu-Zych, Antara R.
Lehmer, Bret
Fragos, Tassos
Hornschemeier, Ann
Yukita, Mihoko
Zezas, Andreas
Ptak, Andy
TI EXPLORING THE OVERABUNDANCE OF ULXs IN METAL- AND DUST-POOR LOCAL LYMAN
BREAK ANALOGS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: evolution; galaxies: individual (Haro 11, VV 114); galaxies:
starburst; X-rays: binaries; X-rays: galaxies
ID X-RAY SOURCES; STAR-FORMATION RATE; MASS-METALLICITY RELATION; CHANDRA
MONITORING OBSERVATIONS; ULTRAVIOLET-LUMINOUS GALAXIES; NEARBY STARBURST
GALAXIES; COMPACT OBJECT FORMATION; UV-SELECTED GALAXIES; BLACK-HOLE
BINARIES; MERGER VV 114
AB We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z > 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (<87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV. luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e.,. neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV. emission with Chandra. to present the bright end of the X-ray luminosity distribution of HMXBs (L-X greater than or similar to 10(39) erg s(-1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximate to 4 times more L-X > 10(40) erg s(-1). sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(2) = 1.90) than the standard XLF (gamma(2) = 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and eliminate these sources from consideration, the luminosity distribution becomes poorly constrained but does appear to be consistent with a standard XLF.
C1 [Basu-Zych, Antara R.; Lehmer, Bret; Hornschemeier, Ann; Yukita, Mihoko; Ptak, Andy] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.
[Basu-Zych, Antara R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Lehmer, Bret] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA.
[Lehmer, Bret] Univ Arkansas, Dept Phys, 825 West Dickson St, Fayetteville, AR 72701 USA.
[Fragos, Tassos] Univ Geneva, Observ Geneva, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland.
[Yukita, Mihoko] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA.
[Zezas, Andreas] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Zezas, Andreas] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece.
[Zezas, Andreas] Univ Crete, Inst Theoret & Computat Phys, Iraklion 71003, Crete, Greece.
[Zezas, Andreas] Fdn Res & Technol Hellas, Iraklion 71110, Crete, Greece.
RP Basu-Zych, AR (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.; Basu-Zych, AR (reprint author), Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
RI Yukita, Mihoko/E-4135-2017; Zezas, Andreas/C-7543-2011; Fragos,
Tassos/A-3581-2016
OI Zezas, Andreas/0000-0001-8952-676X; Fragos, Tassos/0000-0003-1474-1523
FU NASA Astrophysics Data Analysis Program (ADAP) [09-ADP09-0071]; Swiss
National Science Foundation [PZ00P2_148123]; European Research Council
under the European Union/ERC [617001]; NASA/ADAP [NNX12AN05G]
FX We thank the referee for helpful suggestions that improved the
manuscript. A.R.B. and A.H. gratefully acknowledge the NASA Astrophysics
Data Analysis Program (ADAP grant 09-ADP09-0071, PI: A. Hornschemeier)
for providing financial support. T.F. acknowledges support from the
Ambizione Fellowship of the Swiss National Science Foundation (grant
PZ00P2_148123). A.Z. acknowledges funding from the European Research
Council under the European Union's Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement n. 617001 and financial support from
NASA/ADAP grant NNX12AN05G.
NR 97
TC 0
Z9 0
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 140
DI 10.3847/0004-637X/818/2/140
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800039
ER
PT J
AU Burlaga, LF
Ness, NF
Richardson, JD
Decker, RB
Krimigis, SM
AF Burlaga, L. F.
Ness, N. F.
Richardson, J. D.
Decker, R. B.
Krimigis, S. M.
TI HELIOSHEATH MAGNETIC FIELD AND PLASMA OBSERVED BY VOYAGER 2 DURING 2012
IN THE RISING PHASE OF SOLAR CYCLE 24
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE magnetic fields; plasmas; Sun: heliosphere
ID WIND TERMINATION SHOCK; 3-DIMENSIONAL FEATURES; INTERACTION REGIONS;
OUTER HELIOSPHERE; CURRENT SHEETS; 1 AU; HELIOPAUSE; FLOWS; TRANSITION;
BOUNDARY
AB We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2012, when V2 was observing the effects of increasing solar activity following the solar minimum in 2009. The average magnetic field strength B was 0.14 nT and B reached 0.29 nT on day 249. V2 was in a unipolar region in which the magnetic polarity was directed away from the Sun along the Parker spiral 88% of the time, indicating that V2 was poleward of the heliospheric current sheet throughout most of 2012. The magnetic flux at V2 during 2012 was constant. A merged interaction region (MIR) was observed, and the flow speed increased as the MIR moved past V2. The MIR caused a decrease in the > 70 MeV nuc(-1) cosmic-ray intensity. The increments of B can be described by a q-Gaussian distribution with q = 1.2 +/- 0.1 for daily averages and q = 1.82 +/- 0.03 for hour averages. Eight isolated current sheets ("PBLs") and four closely spaced pairs of current sheets were observed. The average change of B across the current sheets was a factor of approximate to 2, and B increased or decreased with equal probability. Magnetic holes and magnetic humps were also observed. The characteristic size of the PBLs was approximate to 6 R-L, where R-L is the Larmor radius of protons, and the characteristic sizes of the magnetic holes and humps were approximate to 38 R-L and approximate to 11 R-L, respectively.
C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA.
[Richardson, J. D.] MIT, Kavli Ctr Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Decker, R. B.; Krimigis, S. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
FU NASA [NNX12A63G, NNG14PN24P]; NASA from JPL [959203]; Voyager
Interstellar Mission under NASA [NNX07AB02G]
FX This work was partially supported by NASA grant NNX12A63G to N.F. Ness
at Catholic University of America. L.F.B. was supported by NASA grant
NNG14PN24P. J.D.R. was supported under NASA contract 959203 from JPL to
MIT. R.B.D. and S.M.K. were supported by the Voyager Interstellar
Mission under NASA Contract NNX07AB02G McClanahan and S. Kramer carried
out the processing of the data. The calibration tables were computed by
D. Berdichevsky using data from the magrols and the magcals. We thank
Edward Stone and his co-investigators on the CRS experiment on V2 for
making their data available for distribution on COHOweb.
NR 69
TC 1
Z9 1
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 147
DI 10.3847/0004-637X/818/2/147
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800046
ER
PT J
AU Burns, E
Connaughton, V
Zhang, BB
Lien, A
Briggs, MS
Goldstein, A
Pelassa, V
Troja, E
AF Burns, Eric
Connaughton, Valerie
Zhang, Bin-Bin
Lien, Amy
Briggs, Michael S.
Goldstein, Adam
Pelassa, Veronique
Troja, Eleonora
TI DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE
THE SAME SHORT GAMMA-RAY BURSTS?
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma-ray burst: general
ID MERGING NEUTRON-STARS; LONG; MERGERS; GRB; CLASSIFICATION; ERA
AB Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors.
C1 [Burns, Eric; Briggs, Michael S.] Univ Alabama, 320 Sparkman Dr, Huntsville, AL 35805 USA.
[Connaughton, Valerie] Univ Space Res Assoc, Inst Sci & Technol, 320 Sparkman Dr, Huntsville, AL 35805 USA.
[Zhang, Bin-Bin] Univ Alabama, CSPAR, Huntsville, AL 35899 USA.
[Lien, Amy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Goldstein, Adam] NASA, Postdoctoral Program, Space Sci Off, Marshall Space Flight Ctr, VP62, Huntsville, AL 35812 USA.
[Pelassa, Veronique] Smithsonian Astrophys Observ, POB 97, Amado, AZ 85645 USA.
[Troja, Eleonora] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Burns, E (reprint author), Univ Alabama, 320 Sparkman Dr, Huntsville, AL 35805 USA.
EM eb0016@uah.edu
FU GBM [NNM11AA01A/MSFC]; NASA Swift GI grant [NNX15AC05G]
FX We would like to acknowledge the contributions of two people. David
Palmer who generated BAT lightcurves, allowing us to further investigate
GBM SGRBs as viewed by the BAT, and Hans Krimm who compiled continuous
attitude files for Swift, saving us a great deal of time. We
additionally recognize the efforts of the HEASARC in providing the
searchable databases that were the source of our data. The GBM members
acknowledge support from GBM through NNM11AA01A/MSFC. Eric Burns
acknowledges support through NASA Swift GI grant NNX15AC05G.
NR 34
TC 4
Z9 4
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 110
DI 10.3847/0004-637X/818/2/110
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800009
ER
PT J
AU Chenevez, J
Galloway, DK
in 't Zand, JJM
Tomsick, JA
Barret, D
Chakrabarty, D
Fuerst, F
Boggs, SE
Christensen, FE
Craig, WW
Hailey, CJ
Harrison, FA
Romano, P
Stern, D
Zhang, WW
AF Chenevez, J.
Galloway, D. K.
in 't Zand, J. J. M.
Tomsick, J. A.
Barret, D.
Chakrabarty, D.
Fuerst, F.
Boggs, S. E.
Christensen, F. E.
Craig, W. W.
Hailey, C. J.
Harrison, F. A.
Romano, P.
Stern, D.
Zhang, W. W.
TI A SOFT X-RAY SPECTRAL EPISODE FOR THE CLOCKED BURSTER, GS 1826-24 AS
MEASURED BY SWIFT AND NuSTAR
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; binaries: close; stars: neutron; X-rays:
bursts; X-rays: individual (GS 1826-24)
ID ACCRETING NEUTRON-STARS; TIMING-EXPLORER; AQUILA X-1; MISSION; MASS;
BINARIES; TELESCOPE; GS-1826-238; EVOLUTION; GEOMETRY
AB We report on NuSTAR and Swift observations of a soft state of the neutron star low-mass X-ray binary GS 1826-24, commonly known as the "clocked" burster. The transition to the soft state was recorded in 2014 June through an increase of the 2-20 keV source intensity measured by MAXI, simultaneous with a decrease of the 15-50 keV intensity measured by Swift/BAT. The episode lasted approximately two months, after which the source returned to its usual hard state. We analyze the broadband spectrum measured by Swift/XRT and NuSTAR. and estimate the accretion rate during the soft episode to be approximate to 13% (m) over dot(Edd), within the range of previous observations. However, the best-fit spectral model, adopting the double Comptonization used previously, exhibits significantly softer components. We detect seven type-I X-ray bursts, all significantly weaker (and with shorter rise and decay times) than observed previously. The burst profiles and recurrence times vary significantly, ruling out the regular bursts that are typical for this source. One burst exhibited photospheric radius expansion. and we estimate the source distance as (5.7 +/- 0.2) xi(-1/2)(b) kpc, where xi(b) parameterizes the possible anisotropy of the burst emission. The observed soft state may most likely be interpreted as a change in accretion geometry at about similar bolometric luminosity as in the hard state. The different burst behavior can therefore be attributed to this change in accretion flow geometry, but the fundamental cause and process for this effect remain unclear.
C1 [Chenevez, J.; Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327-328, DK-2800 Lyngby, Denmark.
[Galloway, D. K.] Monash Univ, Sch Phys Astron, Clayton, Vic 3800, Australia.
[Galloway, D. K.] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia.
[in 't Zand, J. J. M.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands.
[in 't Zand, J. J. M.] Univ Utrecht, Astron Inst, POB 80000, NL-3508 TA Utrecht, Netherlands.
[Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Barret, D.] Inst Rech Astrophys & Planetol, 9 Ave Colonel Roche, F-31028 Toulouse, France.
[Chakrabarty, D.] MIT, Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA.
[Fuerst, F.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy.
[Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Chenevez, J (reprint author), Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327-328, DK-2800 Lyngby, Denmark.
EM jerome@space.dtu.dk
RI Boggs, Steven/E-4170-2015;
OI Boggs, Steven/0000-0001-9567-4224; Galloway, Duncan/0000-0002-6558-5121
FU ESA/PRODEX [90057]; National Aeronautics and Space Administration;
Australian Academy of Science; Australian Research Council; [ASI-INAF
I/004/11/0]; [ASI-INAF I/037/12/0]
FX J.C. would like to thank Niels Jorgen Westergaard for useful
discussions. J.C. acknowledges financial support from ESA/PRODEX Nr.
90057. P.R. acknowledges financial contribution from contract ASI-INAF
I/004/11/0 and ASI-INAF I/037/12/0. This work made use of data from the
NuSTAR mission, a project led by the California Institute of Technology,
managed by the Jet Propulsion Laboratory, and funded by the National
Aeronautics and Space Administration. We thank the NuSTAR and Swift
Operations teams for executing the ToO observations. and the Software
and Calibration teams for analysis support. This research has used the
NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI
Science Data Center (ASDC, Italy) and the California Institute of
Technology (USA). The MAXI data are provided by RIKEN, JAXA, and the
MAXI team. Swift/BAT transient monitor results are provided by the
Swift/BAT team. This work made use of data supplied by the UK Swift
Science Data Centre at the University of Leicester. This paper utilizes
preliminary analysis results from the Multi-INstrument Burst ARchive
(MINBAR), which is supported under the Australian Academy of Science's
Scientific Visits to Europe program, and the Australian Research
Council's Discovery Projects and Future Fellowship funding schemes.
NR 59
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 135
DI 10.3847/0004-637X/818/2/135
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800034
ER
PT J
AU Estrada, PR
Cuzzi, JN
Morgan, DA
AF Estrada, Paul R.
Cuzzi, Jeffrey N.
Morgan, Demitri A.
TI GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION
FRONTS. I. METHODOLOGY AND TYPICAL RESULTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; planets and satellites: formation;
protoplanetary disks
ID SPECTRAL ENERGY-DISTRIBUTIONS; INDUCED RELATIVE VELOCITY; PROTOPLANETARY
DISKS IMPLICATIONS; VERTICAL SHEAR INSTABILITY; PRIMORDIAL SOLAR NEBULA;
T-TAURI STARS; PLANETESIMAL FORMATION; DUST GROWTH; SOLID PARTICLES;
ACCRETION DISKS
AB We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at "evaporation fronts" (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 x 10(5) years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) "lucky" large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter. SEDs and the. inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the. enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter's core.
C1 [Estrada, Paul R.] SETI Inst, Carl Sagan Ctr, 189 N Bernardo Ave 100, Mountain View, CA 94043 USA.
[Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA.
[Morgan, Demitri A.] NASA, Ames Res Ctr, USRA, Mail Stop 245-3, Moffett Field, CA 94035 USA.
RP Estrada, PR (reprint author), SETI Inst, Carl Sagan Ctr, 189 N Bernardo Ave 100, Mountain View, CA 94043 USA.
EM Paul.R.Estrada@nasa.gov
FU NASA's Origins of Solar Systems program
FX We thank Fred Ciesla, Sandy Davis, Steve Desch, Pascale Garaud, Uma
Gorti, Phil Marcus, and Orkan Umurhan for helpful conversations. We
especially thank Chris Ormel for bringing our attention to a flaw in our
diffusion model. in an initial version of the paper. We also. thank an
anonymous reviewer for pointing out several aspects that will lead to
the improvement of our models. We thank Cameron Wehrfritz for his help
in the preparation of this manuscript. This work was supported by a
grant from NASA's Origins of Solar Systems program and a large amount of
cpu time awarded through NASA's HEC program, whose consultants also
helped with parallelizing the code.
NR 182
TC 2
Z9 2
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 200
DI 10.3847/0004-637X/818/2/200
PG 41
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800099
ER
PT J
AU Katagiri, H
Yoshida, K
Ballet, J
Grondin, MH
Hanabata, Y
Hewitt, JW
Kubo, H
Lemoine-Goumard, M
AF Katagiri, H.
Yoshida, K.
Ballet, J.
Grondin, M. -H.
Hanabata, Y.
Hewitt, J. W.
Kubo, H.
Lemoine-Goumard, M.
TI FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF
THE HB 3 SUPERNOVA REMNANT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE acceleration of particles; cosmic rays; gamma rays: ISM; ISM: individual
objects ( HB 3, W3); ISM: supernova remnants
ID LARGE-AREA TELESCOPE; GALACTIC PLANE SURVEY; COSMIC-RAY;
SYNCHROTRON-RADIATION; SPACE-TELESCOPE; MILKY-WAY; CATALOG; GAS;
ACCELERATION; ORIGIN
AB We report the discovery of extended gamma-ray emission measured by the Large Area Telescope. (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant. (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright (CO)-C-12 (J = 1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.
C1 [Katagiri, H.; Yoshida, K.] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan.
[Ballet, J.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France.
[Grondin, M. -H.; Lemoine-Goumard, M.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, CNRS, BP120, F-33175 Gradignan, France.
[Hanabata, Y.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan.
[Hewitt, J. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Hewitt, J. W.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Hewitt, J. W.] CRESST, Greenbelt, MD 20771 USA.
[Hewitt, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Kubo, H.] Kyoto Univ, Dept Phys, Grad Sch Sci, Kyoto 606, Japan.
RP Katagiri, H; Yoshida, K (reprint author), Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan.
EM hideaki.katagiri.sci@vc.ibaraki.ac.jp; 13nm169s@gmail.com
NR 34
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 114
DI 10.3847/0004-637X/818/2/114
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800013
ER
PT J
AU Lau, RM
Hankins, MJ
Herter, TL
Morris, MR
Mills, EAC
Ressler, ME
AF Lau, R. M.
Hankins, M. J.
Herter, T. L.
Morris, M. R.
Mills, E. A. C.
Ressler, M. E.
TI AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR:
EVIDENCE FOR BINARY INTERACTION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: close; dust, extinction; ISM: jets and outflows; stars:
massive; stars: mass-loss
ID HIGH ROTATIONAL VELOCITY; LUMINOUS BLUE VARIABLES;
SPITZER-SPACE-TELESCOPE; PASCHEN-ALPHA SURVEY; GAMMA-RAY BURSTS;
GALACTIC-CENTER; AG CARINAE; STELLAR PARAMETERS; DATA REDUCTION; ARRAY
CAMERA
AB Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid-to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical "helix" of warm dust (similar to 180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, tau(p) similar to 1.4 x 10(4) yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P less than or similar to 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.
C1 [Lau, R. M.; Hankins, M. J.; Herter, T. L.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Lau, R. M.; Ressler, M. E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, 430 Portola Plaza, Los Angeles, CA 90095 USA.
[Mills, E. A. C.] Natl Radio Astron Observ, POB O 1009,Lopezville Dr, Socorro, NM 87801 USA.
RP Lau, RM (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.; Lau, RM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
FU National Science Foundation [DGE-1144153]; NASA; National Aeronautics
and Space Administration; NASA [NAS2-97001]; Deutsches SOFIA Institut
(DSI) under DLR [50 OK 0901]; NASA - USRA [8500-98-014]
FX We would like to thank the rest of the FORCAST team, Joe Adams, George
Gull, Justin Schoenwald, and Chuck Henderson, the USRA Science and
Mission Ops teams, and the entire SOFIA staff. R.L. would like to thank
Dong Lai, Selma de Mink, Nathan Smith, and the anonymous referee for the
valuable feedback and discussion on binaries and massive stars. R.L.
would also like to thank Martin Steinke and Lida Oskinova for the
insightful exchanges on WR102c. This work is based on observations made
with the NASA/DLR Stratospheric Observatory for Infrared Astronomy
(SOFIA) and on work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-1144153. This work is
also based in part on observations obtained at the Hale Telescope,
Palomar Observatory as part of a continuing collaboration between the
California Institute of Technology, NASA/JPL, Oxford University, Yale
University, and the National Astronomical Observatories of China, as
well as work in part on archival data obtained with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. A
portion of this work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. SOFIA science mission operations
are conducted jointly by the Universities Space Research Association,
Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA
Institut (DSI) under DLR contract 50 OK 0901. Financial support for
FORCAST was provided by NASA through award 8500-98-014 issued by USRA.
NR 77
TC 2
Z9 2
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 117
DI 10.3847/0004-637X/818/2/117
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800016
ER
PT J
AU Levin, L
McLaughlin, MA
Jones, G
Cordes, JM
Stinebring, DR
Chatterjee, S
Dolch, T
Lam, MT
Lazio, TJW
Palliyaguru, N
Arzoumanian, Z
Crowter, K
Demorest, PB
Ellis, JA
Ferdman, RD
Fonseca, E
Gonzalez, ME
Jones, ML
Nice, DJ
Pennucci, TT
Ransom, SM
Stairs, IH
Stovall, K
Swiggum, JK
Zhu, WW
AF Levin, Lina
McLaughlin, Maura A.
Jones, Glenn
Cordes, James M.
Stinebring, Daniel R.
Chatterjee, Shami
Dolch, Timothy
Lam, Michael T.
Lazio, T. Joseph W.
Palliyaguru, Nipuni
Arzoumanian, Zaven
Crowter, Kathryn
Demorest, Paul B.
Ellis, Justin A.
Ferdman, Robert D.
Fonseca, Emmanuel
Gonzalez, Marjorie E.
Jones, Megan L.
Nice, David J.
Pennucci, Timothy T.
Ransom, Scott M.
Stairs, Ingrid H.
Stovall, Kevin
Swiggum, Joseph K.
Zhu, Weiwei
TI THE NANOGRAV NINE-YEAR DATA SET: MONITORING INTERSTELLAR SCATTERING
DELAYS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gravitational waves; ISM: general; methods: data analysis; pulsars:
general
ID MILLISECOND PULSAR; RADIO PULSARS; SPACE VELOCITIES; SCINTILLATION;
PRECISION; PLASMA; PROPAGATION; SPECTRUM; EVENTS; WAVES
AB We report on an effort to extract and monitor interstellar scintillation parameters in regular timing observations collected for the North American Nanohertz Observatory for Gravitational Waves pulsar timing array. Scattering delays are measured by creating dynamic spectra for each pulsar and observing epoch of wide-band observations centered near 1500 MHz and carried out at the Green Bank Telescope and the Arecibo Observatory. The similar to 800 MHz wide frequency bands imply dramatic changes in scintillation bandwidth across the bandpass, and a stretching routine has been included to account for this scaling. For most of the 10 pulsars for which the scaling has been measured, the bandwidths scale with frequency less steeply than expected for a Kolmogorov medium. We find estimated scattering delay values that vary with time by up to an order of magnitude. The mean measured scattering delays are similar to previously published values and are slightly higher than predicted by interstellar medium models. We investigate the possibility of increasing the timing precision by mitigating timing errors introduced by the scattering delays. For most of the pulsars, the uncertainty in the time of arrival of a single timing point is much larger than the maximum variation of the scattering delay, suggesting that diffractive scintillation remains as only a negligible part of their noise budget.
C1 [Levin, Lina; McLaughlin, Maura A.; Palliyaguru, Nipuni; Jones, Megan L.; Swiggum, Joseph K.] W Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26505 USA.
[Levin, Lina] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Jones, Glenn] Columbia Univ, Dept Phys, 550 W 120th St, New York, NY 10027 USA.
[Cordes, James M.; Chatterjee, Shami; Dolch, Timothy; Lam, Michael T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Stinebring, Daniel R.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA.
[Dolch, Timothy] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA.
[Lazio, T. Joseph W.; Ellis, Justin A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91106 USA.
[Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA.
[Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, XRay Astrophys Lab, Code 662, Greenbelt, MD 20771 USA.
[Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E.; Stairs, Ingrid H.; Zhu, Weiwei] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada.
[Demorest, Paul B.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA.
[Ferdman, Robert D.; Stairs, Ingrid H.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada.
[Gonzalez, Marjorie E.] Vancouver Coastal Hlth Author, Dept Nucl Med, Vancouver, BC V5Z 1M9, Canada.
[Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA.
[Pennucci, Timothy T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA.
[Ransom, Scott M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.
[Stovall, Kevin] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Zhu, Weiwei] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
RP Levin, L (reprint author), W Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26505 USA.
OI Fonseca, Emmanuel/0000-0001-8384-5049
FU National Science Foundation (NSF) PIRE program award [0968296]; NSERC;
Canadian Institute for Advanced Research
FX The NANOGrav project receives support from the National Science
Foundation (NSF) PIRE program award number 0968296. The National Radio
Astronomy Observatory is a facility of the NSF operated under
cooperative agreement by Associated Universities, Inc. The Arecibo
Observatory is operated by SRI International under a cooperative
agreement with the NSF (AST-1100968), and in alliance with Ana G.
Mendez-Universidad Metropolitana, and the Universities Space Research
Association. NANOGrav research at UBC is funded by an NSERC Discovery
Grant and Discovery Accelerator Supplement and by the Canadian Institute
for Advanced Research.
NR 40
TC 2
Z9 2
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 166
DI 10.3847/0004-637X/818/2/166
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800065
ER
PT J
AU Lionello, R
Alexander, CE
Winebarger, AR
Linker, JA
Mikic, Z
AF Lionello, Roberto
Alexander, Caroline E.
Winebarger, Amy R.
Linker, Jon A.
Mikic, Zoran
TI CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE
EXPLAINED IN IMPULSIVE HEATING?
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Sun: corona; Sun: UV radiation
ID ACTIVE-REGION LOOPS; EXTREME-ULTRAVIOLET OBSERVATIONS; EUV IMAGING
SPECTROMETER; ATOMIC DATABASE; EMISSION-LINES; SOLAR CORONA;
TEMPERATURE; DIAGNOSTICS; CHIANTI; DENSITY
AB The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%-26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.
C1 [Lionello, Roberto; Linker, Jon A.; Mikic, Zoran] Predict Sci Inc, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA.
[Alexander, Caroline E.; Winebarger, Amy R.] NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35805 USA.
RP Lionello, R; Linker, JA; Mikic, Z (reprint author), Predict Sci Inc, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA.; Alexander, CE; Winebarger, AR (reprint author), NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35805 USA.
EM lionel@predsci.com; caroline.alexander@nasa.gov;
amy.r.winebarger@nasa.gov; linkerj@predsci.com; mikicz@predsci.com
FU NASA; NASA SRT program
FX The authors are grateful to the referee for many helpful comments. The
authors thank Drs. Ron Moore and Alphonse Sterling for providing many
comments and discussions on the early text. R.L. thanks Dr. Ronald
Caplan for helpful elucidations. C.E.A. is supported by appointments to
the NASA Postdoctoral Program at the NASA/MSFC, administered by ORAU
through a contract with NASA. A.R.W. is supported by a grant from NASA
SR&T program. This work was supported by the NASA Heliophysics Theory
and Living With a Star programs.
NR 56
TC 4
Z9 4
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 129
DI 10.3847/0004-637X/818/2/129
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800028
ER
PT J
AU Liu, XM
Shemansky, DE
Yoshii, J
Johnson, PV
Malone, CP
Ajello, JM
AF Liu, Xianming
Shemansky, Donald E.
Yoshii, Jean
Johnson, Paul V.
Malone, Charles P.
Ajello, Joseph M.
TI SPECTRA, EMISSION YIELDS, CROSS SECTIONS, AND KINETIC ENERGY
DISTRIBUTIONS OF HYDROGEN ATOMS FROM H-2 X (1)Sigma(+)(g)- d (3)Pi(u)
EXCITATION BY ELECTRON IMPACT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE molecular data; molecular processes
ID QUANTUM-DEFECT THEORY; INFRARED-LASER SPECTROSCOPY; ANGULAR-MOMENTUM
STATES; TRIPLET GERADE COMPLEX; AB-INITIO CALCULATION;
MOLECULAR-HYDROGEN; HIGH-RESOLUTION; FINE-STRUCTURE; TRANSITION MOMENTS;
DISSOCIATIVE DECAY
AB Electron-impact excitation of H2 triplet states plays an important role in the heating of outer planet upper thermospheres. The d (3)Pi(u) state is the third ungerade triplet state, and the d (3)Pi(u)-a (3)Sigma(+)(g) emission is the largest cascade channel for the a (3)Sigma(+)(g) state. Accurate energies of the d (3)Pi(-)(u)(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the d (3)Pi(u)(v, J) levels are obtained by an accurate evaluation of the d (3)Pi(u)-a (3)Sigma(+)(g) transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic d (3)Pi(u)-a (3)Sigma(+)(g) spectra at 20 eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the X (1)Sigma(+)(g)-d (3)Pi(u) excitation, and significant cascade excitation occurs at the d (3)Pi(u)(v = 0,1) levels. Kinetic energy (E-k) distributions of H atoms produced via predissociation of the d (3)Pi(u) state and the d (3)Pi(u)-a (3)Sigma(+)(g)-b (3)Sigma u(+) cascade dissociative emission are obtained. Predissociation of the d (3)Pi(u) state produces H atoms with an average E-k of 2.3 +/- 0.4 eV/atom, while the E-k distribution of the d (3)Pi(u)-a (3)Sigma(+)(g)-b (3)Sigma(+)(u) channel is similar to that of the X (1)Sigma(+)(g)-a (3)Sigma(+)(g)-b (3)Sigma(+)(u) channel and produces H(1s) atoms with an average E-k of 1.15 +/- 0.05 eV/atom. On average, each H-2 excited to the d (3)Pi(u) state in an H-2-dominated atmosphere deposits 3.3 +/- 0.4 eV into the atmosphere, while each H-2 directly excited to the a (3)Sigma(+)(g) state gives 2.2-2.3 eV to the atmosphere. The spectral distribution of the calculated a (3)Sigma(+)(g)-b (3)Sigma(+)(u) continuum emission due to the X (1)Sigma(+)(g)-d (3)Pi(u) excitation is significantly different from that of direct a (3)Sigma(+)(g) excitation.
C1 [Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean] Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA.
[Johnson, Paul V.; Malone, Charles P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Ajello, Joseph M.] Univ Colorado, Lab Atmosphere & Space Phys, Boulder, CO 80303 USA.
RP Liu, XM (reprint author), Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA.
EM xliu@spacewx.com
RI Johnson, Paul/D-4001-2009
OI Johnson, Paul/0000-0002-0186-8456
FU National Aeronautics and Space Administration (NASA); NASA; National
Science Foundation [1518304]; Cassini UVIS contract; University of
Colorado
FX The analysis described in this paper was carried out at Space
Environment Technologies. A portion of the work was carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration (NASA).
We gratefully acknowledge financial support through NASA's Planetary
Atmospheres (PATM) and Astrophysics Research and Analysis (APRA)
programs, through the National Science Foundation's AST program
(#1518304), and through a Cassini UVIS contract with the University of
Colorado.
NR 127
TC 1
Z9 1
U1 2
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 120
DI 10.3847/0004-637X/818/2/120
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800019
ER
PT J
AU Meyer, ET
Sparks, WB
Georganopoulos, M
Anderson, J
van der Marel, R
Biretta, J
Sohn, ST
Chiaberge, M
Perlman, E
Norman, C
AF Meyer, Eileen T.
Sparks, William B.
Georganopoulos, Markos
Anderson, Jay
van der Marel, Roeland
Biretta, John
Sohn, Sangmo Tony
Chiaberge, Marco
Perlman, Eric
Norman, Colin
TI AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: jets; proper motions; quasars: individual
(3C 273); radiation mechanisms: non-thermal
ID ACTIVE GALACTIC NUCLEI; HUBBLE-SPACE-TELESCOPE; X-RAY-EMISSION;
CHARGE-TRANSFER EFFICIENCY; HIGH-ENERGY EMISSION; BASE-LINE ARRAY;
SUPERLUMINAL MOTION; M87 JET; 3C 273; BLACK-HOLE
AB The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of -0.2 +/- 0.5c over the whole jet. Assuming the knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Gamma < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer & Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.
C1 [Meyer, Eileen T.; Sparks, William B.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Meyer, Eileen T.; Georganopoulos, Markos] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA.
[Anderson, Jay; van der Marel, Roeland; Biretta, John; Chiaberge, Marco; Norman, Colin] Space Telescope Sci Inst, Baltimore, MD 21210 USA.
[Sohn, Sangmo Tony; Norman, Colin] Johns Hopkins Univ, Baltimore, MD 21210 USA.
[Perlman, Eric] Florida Inst Technol, Melbourne, FL 32901 USA.
[Georganopoulos, Markos] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Meyer, ET (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
EM meyer@stsci.edu
FU HST Grant [GO-13327]; NASA [14-ADAP14-0122]
FX E.T.M. acknowledges HST Grant GO-13327. E.T.M. and M.G. also acknolwedge
NASA grant 14-ADAP14-0122.
NR 60
TC 0
Z9 0
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 195
DI 10.3847/0004-637X/818/2/195
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800094
ER
PT J
AU Miller, NJ
Chuss, DT
Marriage, TA
Wollack, EJ
Appel, JW
Bennett, CL
Eimer, J
Essinger-Hileman, T
Fixsen, DJ
Harrington, K
Moseley, SH
Rostem, K
Switzer, ER
Watts, DJ
AF Miller, N. J.
Chuss, D. T.
Marriage, T. A.
Wollack, E. J.
Appel, J. W.
Bennett, C. L.
Eimer, J.
Essinger-Hileman, T.
Fixsen, D. J.
Harrington, K.
Moseley, S. H.
Rostem, K.
Switzer, E. R.
Watts, D. J.
TI RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS
EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic background radiation; methods: data analysis
ID MICROWAVE BACKGROUND POLARIZATION; B-MODE POLARIZATION; MAPS;
TEMPERATURE; EMISSION; RADIOMETERS; RADIATION; QUAD
AB Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.
C1 [Miller, N. J.; Marriage, T. A.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Harrington, K.; Rostem, K.; Watts, D. J.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.
[Miller, N. J.; Wollack, E. J.; Fixsen, D. J.; Moseley, S. H.; Rostem, K.; Switzer, E. R.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.
[Chuss, D. T.] Villanova Univ, Dept Phys, 800 E Lancaster, Villanova, PA 19085 USA.
RP Miller, NJ (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.; Miller, NJ (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.
EM Nathan.J.Miller@nasa.gov
RI Wollack, Edward/D-4467-2012;
OI Wollack, Edward/0000-0002-7567-4451; Watts, Duncan/0000-0002-5437-6121
FU NASA; NASA Space Technology Research Fellowship [NNX14AM49H]; National
Science Foundation [0959349, 1429236]
FX NJM's research was supported by an appointment to the NASA Postdoctoral
Program at Goddard Space Flight Center, administered by Oak Ridge
Associated Universities through a contract with NASA. K. Harrington was
supported by a NASA Space Technology Research Fellowship (NNX14AM49H).
Support for CLASS has been provided by the National Science Foundation
under grant numbers 0959349 and 1429236.
NR 61
TC 1
Z9 1
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 151
DI 10.3847/0004-637X/818/2/151
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800050
ER
PT J
AU Mooley, KP
Hallinan, G
Bourke, S
Horesh, A
Myers, ST
Frail, DA
Kulkarni, SR
Levitan, DB
Kasliwal, MM
Cenko, SB
Cao, Y
Bellm, E
Laher, RR
AF Mooley, K. P.
Hallinan, G.
Bourke, S.
Horesh, A.
Myers, S. T.
Frail, D. A.
Kulkarni, S. R.
Levitan, D. B.
Kasliwal, M. M.
Cenko, S. B.
Cao, Y.
Bellm, E.
Laher, R. R.
TI THE CALTECH-NRAO STRIPE 82 SURVEY (CNSS) PAPER. I. THE PILOT RADIO
TRANSIENT SURVEY IN 50 DEG(2)
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE catalogs; galaxies: active; radio continuum: galaxies; stars: activity;
supernovae: general; surveys
ID ACTIVE GALACTIC NUCLEI; GAMMA-RAY BURST; DIGITAL SKY SURVEY; DEEP
FIELD-SOUTH; ACCRETION-INDUCED COLLAPSE; NICKEL-RICH OUTFLOWS;
FALSE-DISCOVERY RATE; X-RAY; 1.4 GHZ; LARGE ARRAY
AB We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire similar to 270 deg(2) of Stripe 82, an eventual deep combined map with an rms noise of similar to 40 mu Jy and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 ''. This first paper presents the results from an initial pilot survey of a 50 deg2 region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 mu Jy. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg2 survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(-0.9)(+0.5)% of the few thousand detected point sources were found to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely associated with renewed AGN activity. The rates of such AGNs possibly imply episodes of enhanced accretion and jet activity occurring once every similar to 40,000 yr in these galaxies. We compile the revised radio transient rates and make recommendations for future transient surveys and joint radio-optical experiments.
C1 [Mooley, K. P.; Hallinan, G.; Bourke, S.; Kulkarni, S. R.; Cao, Y.; Bellm, E.] CALTECH, Cahill Ctr Astron, MC 249-17, Pasadena, CA 91125 USA.
[Mooley, K. P.; Myers, S. T.; Frail, D. A.] Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA.
[Horesh, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, Fac Phys, IL-76100 Rehovot, Israel.
[Levitan, D. B.] Microsoft, Bellevue, WA USA.
[Kasliwal, M. M.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA.
[Cenko, S. B.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA.
[Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Laher, R. R.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA.
[Mooley, K. P.] Oxford Ctr Astrophys Surveys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England.
RP Mooley, KP (reprint author), CALTECH, Cahill Ctr Astron, MC 249-17, Pasadena, CA 91125 USA.; Mooley, KP (reprint author), Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA.; Mooley, KP (reprint author), Oxford Ctr Astrophys Surveys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England.
EM kunal@astro.caltech.edu
RI Horesh, Assaf/O-9873-2016
OI Horesh, Assaf/0000-0002-5936-1156
FU NRAO; NASA; NSF; W. M. Keck Foundation
FX The authors extend sincere thanks to Joan Wrobel and other scheduling
staff at the NRAO in Socorro for extensive help with the scheduling of
the VLA observations, and to James Robnett and other computing staff for
their untiring assistance with the data storage and allocation of
computing resources. The authors also wish to thank Luis Ho, Branimir
Sesar, Eran Ofek, Sanjay Bhatnagar, Urvashi Rau, Kumar Golap, Vivek
Dhawan, Craig Walker, Talvikki Hovatta, Tim Pearson, Anthony Readhead,
Chuck Steidel, and Allison Strom for insightful discussions. The
contribution of PTF collaboration members to optical data processing and
optical follow-up observations relevant for this project is
acknowledged. K.P.M. is grateful to NRAO for the Grote Reber Fellowship,
and to Yamini Jangir for going over this manuscript and providing useful
suggestions. The National Radio Astronomy Observatory is a facility of
the National Science Foundation operated under cooperative agreement by
Associated Universities, Inc. S.R.K.'s research in part is supported by
NASA and NSF. Some of the data presented herein were obtained at the W.
M. Keck Observatory, which is operated as a scientific partnership among
the California, Institute of Technology, the University of California
and the National Aeronautics and Space Administration. The Observatory
was made possible by the generous financial support of the W. M. Keck
Foundation. This research has made extensive use of ADS, CDS (Vizier and
SIMBAD), NED, SDSS, and IRSA. We thank the anonymous referee for
comments that helped in improving certain parts of the manuscript.
NR 142
TC 9
Z9 9
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 105
DI 10.3847/0004-637X/818/2/105
PG 27
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800004
ER
PT J
AU Neeleman, M
Prochaska, JX
Ribaudo, J
Lehner, N
Howk, JC
Rafelski, M
Kanekar, N
AF Neeleman, Marcel
Prochaska, J. Xavier
Ribaudo, Joseph
Lehner, Nicolas
Howk, J. Christopher
Rafelski, Marc
Kanekar, Nissim
TI THE H I CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE evolution; galaxies: evolution; galaxies: ISM; intergalactic medium;
quasars: absorption lines
ID LY-ALPHA SYSTEMS; DAMPED LYMAN-ALPHA; HUBBLE-SPACE-TELESCOPE; DIGITAL
SKY SURVEY; COSMOLOGICAL MASS DENSITY; STAR-FORMING GALAXIES; SIMILAR-TO
5; Z LESS-THAN; ABSORPTION SYSTEMS; INTERMEDIATE REDSHIFT
AB We use the Hubble Space Telescope (HST) archive of ultraviolet (UV) quasar spectroscopy to conduct the first blind survey for damped Ly alpha absorbers (DLAs) at low redshift (z < 1.6). Our statistical sample includes 463 quasars with spectral coverage spanning a total redshift path Delta z = 123.3 or an absorption path Delta X = 229.7. Within this survey path, we identify 4 DLAs defined as absorbers with H I column density N-H I >= 10(20.3) cm(-2), which implies an incidence per absorption length l(DLA) (X) = 0.017(-0.008)(+0.014) at a median survey path redshift of z = 0.623. While our estimate of l(DLA) (X) is lower than earlier estimates at z approximate to 0 from H I 21 cm emission studies, the results are consistent within the measurement uncertainties. Our data set is too small to properly sample the N-H I frequency distribution function f (N-H I, X), but the observed distribution agrees with previous estimates at z > 2. Adopting the z > 2 shape of f (N-H I, X), we infer an H I mass density at z similar to 0.6 of rho(DLA)(H I) = 0.25(-0.12)(+0.20) x 10(8)M(circle dot) Mpc(-3). This is significantly lower than previous estimates from targeted DLA surveys with the HST, but consistent with results from low-z H I. 21 cm observations, and suggests that the neutral gas density of the universe has been decreasing over the past 10 Gyr.
C1 [Neeleman, Marcel] UCSD, Dept Phys, La Jolla, CA 92093 USA.
[Neeleman, Marcel] UCSD, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
[Neeleman, Marcel; Prochaska, J. Xavier] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA.
[Ribaudo, Joseph] Utica Coll, Dept Phys, 1600 Burrstone Rd, Utica, NY 13502 USA.
[Lehner, Nicolas; Howk, J. Christopher] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Rafelski, Marc] NASA, Postdoctoral Program Fellow, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.
[Kanekar, Nissim] Pune Univ, Natl Ctr Radio Astrophys, Tata Inst Fundamental Res, Pune 411007, Maharashtra, India.
RP Neeleman, M (reprint author), UCSD, Dept Phys, La Jolla, CA 92093 USA.; Neeleman, M (reprint author), UCSD, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.; Neeleman, M (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA.
EM marcel@ucsc.edu
FU NASA from the STScI [HST-AR-12854, HST-AR-12645]; NASA [HST-AR-12854,
NAS 5-26555]; NSF [AST-1109452, AST-1212012]; Department of Science and
Technology [DST/SJF/PSA-01/2012-13]
FX This research would not have been possible without the guidance and
insights of the late A.M. Wolfe during the initial phases of the
project. He will be sorely missed. We thank R. Sanchez-Ramirez for
providing their results before publication, and the referee for helpful
comments that improved the manuscript. This work was based on
observations made with the NASA/ESA Hubble Space Telescope, obtained
from the data archive at the Space Telescope Science Institute (STScI).
The COS G130M/G160M data presented in this work were obtained from the
COS-CGM Legacy database, which is funded by NASA through grant
HST-AR-12854 from the STScI. Finally, support for this work was provided
by NASA through grant HST-AR-12645 from the STScI. STScI is operated by
the Association of Universities for Research in Astronomy, Inc. under
NASA contract NAS 5-26555. M.N. and J.X.P. further acknowledge support
from NSF award AST-1109452. N.L. acknowledges support provided by NASA
through grant HST-AR-12854. J.C.H. and N.L. acknowledge support from NSF
award AST-1212012. M.R. acknowledges support from an appointment to the
NASA Postdoctoral Program at Goddard Space Flight Center. N.K.
acknowledges support from the Department of Science and Technology via a
Swarnajayanti Fellowship (DST/SJF/PSA-01/2012-13).
NR 63
TC 7
Z9 7
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 113
DI 10.3847/0004-637X/818/2/113
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800012
ER
PT J
AU Smith, RK
Valencic, LA
Corrales, L
AF Smith, Randall K.
Valencic, Lynne A.
Corrales, Lia
TI THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; methods: data analysis; X-rays: ISM
ID INTERSTELLAR DUST GRAINS; XMM-NEWTON; BINARY EXO-0748-676; NEUTRON-STAR;
EXO 0748-676; SCATTERING; HALOS; ASTROPHYSICS; ABSORPTION
AB Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model as a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.
C1 [Smith, Randall K.] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA.
[Valencic, Lynne A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Valencic, Lynne A.] Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA.
[Corrales, Lia] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave,37-241, Cambridge, MA 02139 USA.
RP Valencic, LA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Valencic, LA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA.
EM lynne.a.valencic@nasa.gov
FU Chandra grant [TM4-15002X]
FX The authors thank the anonymous referee for prompt and helpful comments
that significantly improved the work. We also thank Sebastian Heinz for
reviewing the xscat code and helping to debug it. Randall Smith
gratefully acknowledges helpful discussions and overall inspiration to
work on X-ray scattering from Eli Dwek. Financial support for this work
was made possible by Chandra grant TM4-15002X.
NR 37
TC 3
Z9 3
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 143
DI 10.3847/0004-637X/818/2/143
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800042
ER
PT J
AU Wang, YM
Warren, HP
Muglach, K
AF Wang, Y. -M.
Warren, H. P.
Muglach, K.
TI CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Sun: corona; Sun: magnetic fields; Sun: UV radiation
ID POLAR PLUMES; SOLAR-WIND; NETWORK ACTIVITY; SUNSPOTS
AB Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimes barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the similar to 1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows.
C1 [Wang, Y. -M.; Warren, H. P.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Muglach, K.] NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA.
[Muglach, K.] Catholic Univ Amer, Washington, DC 20064 USA.
RP Wang, YM; Warren, HP (reprint author), Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.; Muglach, K (reprint author), NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA.
EM yi.wang@nrl.navy.mil; harry.warren@nrl.navy.mil; karin.muglach@nasa.gov
NR 22
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 203
DI 10.3847/0004-637X/818/2/203
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800102
ER
PT J
AU Zhou, YF
Apai, D
Schneider, GH
Marley, MS
Showman, AP
AF Zhou, Yifan
Apai, Daniel
Schneider, Glenn H.
Marley, Mark S.
Showman, Adam P.
TI DISCOVERY OF ROTATIONAL MODULATIONS IN THE PLANETARY-MASS COMPANION
2M1207b: INTERMEDIATE ROTATION PERIOD AND HETEROGENEOUS CLOUDS IN A LOW
GRAVITY ATMOSPHERE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE brown dwarfs; planets and satellites: atmospheres; planets and
satellites: individual (2M1207b); techniques: photometric
ID HUBBLE-SPACE-TELESCOPE; YOUNG BROWN DWARF; ORBITING HR 8799; EDGE-ON
DISK; MODEL ATMOSPHERES; EXTRASOLAR PLANET; GIANT PLANETS; LIGHT CURVES;
T DWARFS; MU-M
AB Rotational modulations of brown dwarfs have recently provided powerful constraints on the properties of ultra-cool atmospheres, including longitudinal and vertical cloud structures and cloud evolution. Furthermore, periodic light curves directly probe the rotational periods of ultra-cool objects. We present here, for the first time, time-resolved high-precision photometric measurements of a planetary-mass companion, 2M1207b. We observed the binary system with Hubble Space Telescope/Wide Field Camera 3 in two bands and with two spacecraft roll angles. Using point-spread function-based photometry, we reach a nearly photon-noise limited accuracy for both the primary and the secondary. While the primary is consistent with a flat light curve, the secondary shows modulations that are clearly detected in the combined light curve as well as in different subsets of the data. The amplitudes are 1.36% in the F125W and 0.78% in the F160W filters, respectively. By fitting sine waves to the light curves, we find a consistent period of 10.7(0.6)(+1.2) hr and similar phases in both bands. The J- and H-band amplitude ratio of 2M1207b is very similar to a field brown dwarf that has identical spectral type but different J-H color. Importantly, our study also measures, for the first time, the rotation period for a directly imaged extra-solar planetary-mass companion.
C1 [Zhou, Yifan; Apai, Daniel; Schneider, Glenn H.] Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA.
[Apai, Daniel; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, 1640 E Univ Blvd, Tucson, AZ 85718 USA.
[Apai, Daniel] NASA, Nexus Exoplanet Syst Sci, Earths Other Solar Syst Team, Washington, DC 20546 USA.
[Marley, Mark S.] NASA, Ames Res Ctr, Naval Air Stn, Moffett Field, CA 94035 USA.
RP Zhou, YF (reprint author), Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA.
EM yifzhou@email.arizona.edu
OI Marley, Mark/0000-0002-5251-2943; Zhou, Yifan/0000-0003-2969-6040
FU NASA through Space Telescope Science Institute [13418]; NASA
[NAS5-26555]; NASA's Science Mission Directorate; NASA Astrophysics
Theory Program; NSF [AST1313444]
FX We thank the anonymous referee for valuable comments that helped improve
the manuscript. Support for program number 13418 was provided by NASA
through a grant from the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy,
Inc., under NASA contract NAS5-26555. The results reported herein
benefited from collaborations and/or information exchange within NASA's
Nexus for Exoplanet System Science (NExSS) research coordination network
sponsored by NASA's Science Mission Directorate. M.S.M. acknowledges
support from the NASA Astrophysics Theory Program. A.P.S. acknowledges
support from NSF grant AST1313444.
NR 52
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2016
VL 818
IS 2
AR 176
DI 10.3847/0004-637X/818/2/176
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DG7ZS
UT WOS:000372302800075
ER
PT J
AU Lin, ZY
Li, W
Gatebe, C
Poudyal, R
Stamnes, K
AF Lin, Zhenyi
Li, Wei
Gatebe, Charles
Poudyal, Rajesh
Stamnes, Knut
TI Radiative transfer simulations of the two-dimensional ocean glint
reflectance and determination of the sea surface roughness
SO APPLIED OPTICS
LA English
DT Article
ID WATER-LEAVING RADIANCES; SUN-GLINT; ATMOSPHERIC CORRECTION; LAYERED
MEDIA; SYSTEM; RETRIEVAL; AEROSOL; ALGORITHM; SEAWIFS; MODELS
AB An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications. (C) 2016 Optical Society of America
C1 [Lin, Zhenyi; Li, Wei; Stamnes, Knut] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA.
[Gatebe, Charles] Univ Space Res Assoc, Columbia, MD 20146 USA.
[Poudyal, Rajesh] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
[Gatebe, Charles; Poudyal, Rajesh] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Lin, ZY (reprint author), Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA.
EM lzhenyi@stevens.edu
RI Gatebe, Charles/G-7094-2011
OI Gatebe, Charles/0000-0001-9261-2239
FU National Aeronautics and Space Administration (NASA) as part of the
GEO-CAPE Oceans studies [613]
FX National Aeronautics and Space Administration (NASA) as part of the
GEO-CAPE Oceans studies managed by Paula Bontempi and Jassim Al-Saadi
(NASA: Cloud Absorption Radiometer (CAR)-Code 613).
NR 45
TC 1
Z9 1
U1 1
U2 3
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD FEB 20
PY 2016
VL 55
IS 6
BP 1206
EP 1215
DI 10.1364/AO.55.001206
PG 10
WC Optics
SC Optics
GA DE2GP
UT WOS:000370445400003
PM 26906570
ER
PT J
AU Abbott, BP
Abbott, R
Abbott, TD
Abernathy, MR
Acernese, F
Ackley, K
Adams, C
Adams, T
Addesso, P
Adhikari, RX
Adya, VB
Affeldt, C
Agathos, M
Agatsuma, K
Aggarwal, N
Aguiar, OD
Aiello, L
Ain, A
Ajith, P
Allen, B
Allocca, A
Altin, PA
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Arceneaux, CC
Areeda, JS
Arnaud, N
Arun, KG
Ascenzi, S
Ashton, G
Ast, M
Aston, SM
Astone, P
Aufmuth, P
Aulbert, C
Babak, S
Bacon, P
Bader, MKM
Baker, PT
Baldaccini, F
Ballardin, G
Ballmer, SW
Barayoga, JC
Barclay, SE
Barish, BC
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Barta, D
Bartlett, J
Bartos, I
Bassiri, R
Basti, A
Batch, JC
Baune, C
Bavigadda, V
Bazzan, M
Behnke, B
Bejger, M
Belczynski, C
Bell, AS
Bell, CJ
Berger, BK
Bergman, J
Bergmann, G
Berry, CPL
Bersanetti, D
Bertolini, A
Betzwieser, J
Bhagwat, S
Bhandare, R
Bilenko, IA
Billingsley, G
Birch, J
Birney, R
Biscans, S
Bisht, A
Bitossi, M
Biwer, C
Bizouard, MA
Blackburn, JK
Blair, CD
Blair, DG
Blair, RM
Bloemen, S
Bock, O
Bodiya, TP
Boer, M
Bogaert, G
Bogan, C
Bohe, A
Bojtos, P
Bond, C
Bondu, F
Bonnand, R
Boom, BA
Bork, R
Boschi, V
Bose, S
Bouffanais, Y
Bozzi, A
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Brau, JE
Briant, T
Brillet, A
Brinkmann, M
Brisson, V
Brockill, P
Brooks, AF
Brown, DA
Brown, DD
Brown, NM
Buchanan, CC
Buikema, A
Bulik, T
Bulten, HJ
Buonanno, A
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Cahillane, C
Bustillo, JC
Callister, T
Calloni, E
Camp, JB
Cannon, KC
Cao, J
Capano, CD
Capocasa, E
Carbognani, F
Caride, S
Diaz, JC
Casentini, C
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Cella, G
Cepeda, C
Baiardi, LC
Cerretani, G
Cesarini, E
Chakraborty, R
Chalermsongsak, T
Chamberlin, SJ
Chan, M
Chao, S
Charlton, P
Chassande-Mottin, E
Chen, HY
Chen, Y
Cheng, C
Chincarini, A
Chiummo, A
Cho, HS
Cho, M
Chow, JH
Christensen, N
Chu, Q
Chua, S
Chung, S
Ciani, G
Clara, F
Clark, JA
Cleva, F
Coccia, E
Cohadon, PF
Colla, A
Collette, CG
Cominsky, L
Constancio, M
Conte, A
Conti, L
Cook, D
Corbitt, TR
Cornish, N
Corsi, A
Cortese, S
Costa, CA
Coughlin, MW
Coughlin, SB
Coulon, JP
Countryman, ST
Couvares, P
Cowan, EE
Coward, DM
Cowart, MJ
Coyne, DC
Coyne, R
Craig, K
Creighton, JDE
Cripe, J
Crowder, SG
Cumming, A
Cunningham, L
Cuoco, E
Dal Canton, T
Danilishin, SL
D'Antonio, S
Danzmann, K
Darman, NS
Dattilo, V
Dave, I
Daveloza, HP
Davier, M
Davies, GS
Daw, EJ
Day, R
Debra, D
Debreczeni, G
Degallaix, J
De Laurentis, M
Deleglise, S
Del Pozzo, W
Denker, T
Dent, T
Dereli, H
Dergachev, V
DeRosa, R
DeRosa, RT
DeSalvo, R
Dhurandhar, S
Diaz, MC
Di Fiore, L
Di Giovanni, M
Di Lieto, A
Di Pace, S
Di Palma, I
Di Virgilio, A
Dojcinoski, G
Dolique, V
Donovan, F
Dooley, KL
Doravari, S
Douglas, R
Downes, TP
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Ducrot, M
Dwyer, SE
Edo, TB
Edwards, MC
Effler, A
Eggenstein, HB
Ehrens, P
Eichholz, J
Eikenberry, SS
Engels, W
Essick, RC
Etzel, T
Evans, M
Evans, TM
Everett, R
Factourovich, M
Fafone, V
Fair, H
Fairhurst, S
Fan, X
Fang, Q
Farinon, S
Farr, B
Farr, WM
Favata, M
Fays, M
Fehrmann, H
Fejer, MM
Ferrante, I
Ferreira, EC
Ferrini, F
Fidecaro, F
Fiori, I
Fiorucci, D
Fisher, RP
Flaminio, R
Fletcher, M
Fournier, JD
Franco, S
Frasca, S
Frasconi, F
Frei, Z
Freise, A
Frey, R
Frey, V
Fricke, TT
Fritschel, P
Frolov, VV
Fulda, P
Fyffe, M
Gabbard, HAG
Gair, JR
Gammaitoni, L
Gaonkar, SG
Garufi, F
Gatto, A
Gaur, G
Gehrels, N
Gemme, G
Gendre, B
Genin, E
Gennai, A
George, J
Gergely, L
Germain, V
Ghosh, A
Ghosh, S
Giaime, JA
Giardina, KD
Giazotto, A
Gill, K
Glaefke, A
Goetz, E
Goetz, R
Gondan, L
Gonzalez, G
Gonzalez Castro, JM
Gopakumar, A
Gordon, NA
Gorodetsky, ML
Gossan, SE
Gosselin, M
Gouaty, R
Graef, C
Graff, PB
Granata, M
Grant, A
Gras, S
Gray, C
Greco, G
Green, AC
Groot, P
Grote, H
Grunewald, S
Guidi, GM
Guo, X
Gupta, A
Gupta, MK
Gushwa, KE
Gustafson, EK
Gustafson, R
Hacker, JJ
Hall, BR
Hall, ED
Hammond, G
Haney, M
Hanke, MM
Hanks, J
Hanna, C
Hannam, MD
Hanson, J
Hardwick, T
Harms, J
Harry, GM
Harry, IW
Hart, MJ
Hartman, MT
Haster, CJ
Haughian, K
Heidmann, A
Heintze, MC
Heitmann, H
Hello, P
Hemming, G
Hendry, M
Heng, IS
Hennig, J
Heptonstall, AW
Heurs, M
Hild, S
Hoak, D
Hodge, KA
Hofman, D
Hollitt, SE
Holt, K
Holz, DE
Hopkins, P
Hosken, DJ
Hough, J
Houston, EA
Howell, EJ
Hu, YM
Huang, S
Huerta, EA
Huet, D
Hughey, B
Husa, S
Huttner, SH
Huynh-Dinh, T
Idrisy, A
Indik, N
Ingram, DR
Inta, R
Isa, HN
Isac, JM
Isi, M
Islas, G
Isogai, T
Iyer, BR
Izumi, K
Jacqmin, T
Jang, H
Jani, K
Jaranowski, P
Jawahar, S
Jimenez-Forteza, F
Johnson, WW
Jones, DI
Jones, R
Jonker, RJG
Ju, L
Haris, K
Kalaghatgi, CV
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, JB
Karki, S
Kasprzack, M
Katsavounidis, E
Katzman, W
Kaufer, S
Kaur, T
Kawabe, K
Kawazoe, F
Kefelian, F
Kehl, MS
Keitel, D
Kelley, DB
Kells, W
Kennedy, R
Key, JS
Khalaidovski, A
Khalili, FY
Khan, I
Khan, S
Khan, Z
Khazanov, EA
Kijbunchoo, N
Kim, C
Kim, J
Kim, K
Kim, NG
Kim, N
Kim, YM
King, EJ
King, PJ
Kinzel, DL
Kissel, JS
Kleybolte, L
Klimenko, S
Koehlenbeck, SM
Kokeyama, K
Koley, S
Kondrashov, V
Kontos, A
Korobko, M
Korth, WZ
Kowalska, I
Kozak, DB
Kringel, V
Krishnan, B
Krolak, A
Krueger, C
Kuehn, G
Kumar, P
Kuo, L
Kutynia, A
Lackey, BD
Landry, M
Lange, J
Lantz, B
Lasky, PD
Lazzarini, A
Lazzaro, C
Leaci, P
Leavey, S
Lebigot, EO
Lee, CH
Lee, HK
Lee, HM
Lee, K
Lenon, A
Leonardi, M
Leong, JR
Leroy, N
Letendre, N
Levin, Y
Levine, BM
Li, TGF
Libson, A
Littenberg, TB
Lockerbie, NA
Logue, J
Lombardi, AL
Lord, JE
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, JD
Lueck, H
Lundgren, AP
Luo, J
Lynch, R
Ma, Y
MacDonald, T
Machenschalk, B
MacInnis, M
Macleod, DM
Magna-Sandoval, F
Magee, RM
Mageswaran, M
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mangano, V
Mansell, GL
Manske, M
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Markosyan, AS
Maros, E
Martelli, F
Martellini, L
Martin, IW
Martin, RM
Martynov, DV
Marx, JN
Mason, K
Masserot, A
Massinger, TJ
Masso-Reid, M
Matichard, F
Matone, L
Mavalvala, N
Mazumder, N
Mazzolo, G
McCarthy, R
McClelland, DE
McCormick, S
McGuire, SC
McIntyre, G
McIver, J
McManus, J
McWilliams, ST
Meacher, D
Meadors, GD
Meidam, J
Melatos, A
Mendell, G
Mendoza-Gandara, D
Mercer, RA
Merilh, E
Merzougui, M
Meshkov, S
Messenger, C
Messick, C
Meyers, PM
Mezzani, F
Miao, H
Michel, C
Middleton, H
Mikhailov, EE
Milano, L
Miller, J
Millhouse, M
Minenkov, Y
Ming, J
Mirshekari, S
Mishra, C
Mitra, S
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moggi, A
Mohan, M
Mohapatra, SRP
Montani, M
Moore, BC
Moore, CJ
Moraru, D
Moreno, G
Morriss, SR
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Muir, AW
Mukherjee, A
Mukherjee, D
Mukherjee, S
Mukund, N
Mullavey, A
Munch, J
Murphy, DJ
Murray, PG
Mytidis, A
Nardecchia, I
Naticchioni, L
Nayak, RK
Necula, V
Nedkova, K
Nelemans, G
Neri, M
Neunzert, A
Newton, G
Nguyen, TT
Nielsen, AB
Nissanke, S
Nitz, A
Nocera, F
Nolting, D
Normandin, MEN
Nuttall, LK
Oberling, J
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Ohme, F
Oliver, M
Oppermann, P
Oram, RJ
O'Reilly, B
O'Shaughnessy, R
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Pai, A
Pai, SA
Palamos, JR
Palashov, O
Palomba, C
Pal-Singh, A
Pan, H
Pankow, C
Pannarale, F
Pant, BC
Paoletti, F
Paoli, A
Papa, MA
Paris, HR
Parker, W
Pascucci, D
Pasqualetti, A
Passaquieti, R
Passuello, D
Patricelli, B
Patrick, Z
Pearlstone, BL
Pedraza, M
Pedurand, R
Pekowsky, L
Pele, A
Penn, S
Perreca, A
Phelps, M
Piccinni, O
Pichot, M
Piergiovanni, F
Pierro, V
Pillant, G
Pinard, L
Pinto, IM
Pitkin, M
Poggiani, R
Popolizio, P
Post, A
Powell, J
Prasad, J
Predoi, V
Premachandra, SS
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prix, R
Prodi, GA
Prokhorov, L
Puncken, O
Punturo, M
Puppo, P
Puerrer, M
Qi, H
Qin, J
Quetschke, V
Quintero, EA
Quitzow-James, R
Raab, FJ
Rabeling, DS
Radkins, H
Raffai, P
Raja, S
Rakhmanov, M
Rapagnani, P
Raymond, V
Razzano, M
Re, V
Read, J
Reed, CM
Regimbau, T
Rei, L
Reid, S
Reitze, DH
Rew, H
Reyes, SD
Ricci, F
Riles, K
Robertson, NA
Robie, R
Robinet, F
Rocchi, A
Rolland, L
Rollins, JG
Roma, VJ
Romano, JD
Romano, R
Romanov, G
Romie, JH
RosiNska, D
Rowan, S
Ruediger, A
Ruggi, P
Ryan, K
Sachdev, S
Sadecki, T
Sadeghian, L
Salconi, L
Saleem, M
Salemi, F
Samajdar, A
Sammut, L
Sanchez, EJ
Sandberg, V
Sandeen, B
Sanders, JR
Sassolas, B
Sathyaprakash, S
Saulson, PR
Sauter, O
Savage, RL
Sawadsky, A
Schale, P
Schilling, R
Schmidt, J
Schmidt, P
Schnabel, R
Schofield, RMS
Schoenbeck, A
Schreiber, E
Schuette, D
Schutz, BF
Scott, J
Scott, SM
Sellers, D
Sentenac, D
Sequino, V
Sergeev, A
Serna, G
Setyawati, Y
Sevigny, A
Shaddock, DA
Shah, S
Shahriar, MS
Shaltev, M
Shao, Z
Shapiro, B
Shawhan, P
Sheperd, A
Shoemaker, DH
Shoemaker, DM
Siellez, K
Siemens, X
Sigg, D
Silva, AD
Simakov, D
Singer, A
Singer, LP
Singh, A
Singh, R
Singhal, A
Sintes, AM
Slagmolen, BJJ
Smith, JR
Smith, ND
Smith, RJE
Son, EJ
Sorazu, B
Sorrentino, F
Souradeep, T
Srivastava, AK
Staley, A
Steinke, M
Steinlechner, J
Steinlechner, S
Steinmeyer, D
Stephens, BC
Stevenson, SP
Stone, R
Strain, KA
Straniero, N
Stratta, G
Strauss, NA
Strigin, S
Sturani, R
Stuver, AL
Summerscales, TZ
Sun, L
Sutton, PJ
Swinkels, BL
Szczepanczyk, MJ
Tacca, M
Talukder, D
Tanner, DB
Tapai, M
Tarabrin, SP
Taracchini, A
Taylor, R
Theeg, T
Thirugnanasambandam, MP
Thomas, EG
Thomas, M
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Tiwari, S
Tiwari, V
Tokmakov, KV
Tomlinson, C
Tonelli, M
Torres, CV
Torrie, CI
Toyra, D
Travasso, F
Traylor, G
Trifir, D
Tringali, MC
Trozzo, L
Tse, M
Turconi, M
Tuyenbayev, D
Ugolini, D
Unnikrishnan, CS
Urban, AL
Usman, SA
Vahlbruch, H
Vajente, G
Valdes, G
Van Bakel, N
Van Beuzekom, M
Van den Brand, JFJ
Van den Broeck, C
Vander-Hyde, DC
Van der Schaaf, L
Van Heijningen, JV
Van Veggel, AA
Vardaro, M
Vass, S
Vasuth, M
Vaulin, R
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Venkateswara, K
Verkindt, D
Vetrano, F
Vicere, A
Vinciguerra, S
Vine, DJ
Vinet, JY
Vitale, S
Vo, T
Vocca, H
Vorvick, C
Voss, D
Vousden, WD
Vyatchanin, SP
Wade, AR
Wade, LE
Wade, M
Walker, M
Wallace, L
Walsh, S
Wang, G
Wang, H
Wang, M
Wang, X
Wang, Y
Ward, RL
Warner, J
Was, M
Weaver, B
Wei, LW
Weinert, M
Weinstein, AJ
Weiss, R
Welborn, T
Wen, L
Wessels, P
Westphal, T
Wette, K
Whelan, JT
White, DJ
Whiting, BF
Williams, RD
Williamson, AR
Willis, JL
Willke, B
Wimmer, MH
Winkler, W
Wipf, CC
Wittel, H
Woan, G
Worden, J
Wright, JL
Wu, G
Yablon, J
Yam, W
Yamamoto, H
Yancey, CC
Yap, MJ
Yu, H
Yvert, M
Zadrozny, A
Zangrando, L
Zanolin, M
Zendri, JP
Zevin, M
Zhang, F
Zhang, L
Zhang, M
Zhang, Y
Zhao, C
Zhou, M
Zhou, Z
Zhu, XJ
Zucker, ME
Zuraw, SE
Zweizig, J
AF Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M. R.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R. X.
Adya, V. B.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O. D.
Aiello, L.
Ain, A.
Ajith, P.
Allen, B.
Allocca, A.
Altin, P. A.
Anderson, S. B.
Anderson, W. G.
Arai, K.
Araya, M. C.
Arceneaux, C. C.
Areeda, J. S.
Arnaud, N.
Arun, K. G.
Ascenzi, S.
Ashton, G.
Ast, M.
Aston, S. M.
Astone, P.
Aufmuth, P.
Aulbert, C.
Babak, S.
Bacon, P.
Bader, M. K. M.
Baker, P. T.
Baldaccini, F.
Ballardin, G.
Ballmer, S. W.
Barayoga, J. C.
Barclay, S. E.
Barish, B. C.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Barta, D.
Bartlett, J.
Bartos, I.
Bassiri, R.
Basti, A.
Batch, J. C.
Baune, C.
Bavigadda, V.
Bazzan, M.
Behnke, B.
Bejger, M.
Belczynski, C.
Bell, A. S.
Bell, C. J.
Berger, B. K.
Bergman, J.
Bergmann, G.
Berry, C. P. L.
Bersanetti, D.
Bertolini, A.
Betzwieser, J.
Bhagwat, S.
Bhandare, R.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Birney, R.
Biscans, S.
Bisht, A.
Bitossi, M.
Biwer, C.
Bizouard, M. A.
Blackburn, J. K.
Blair, C. D.
Blair, D. G.
Blair, R. M.
Bloemen, S.
Bock, O.
Bodiya, T. P.
Boer, M.
Bogaert, G.
Bogan, C.
Bohe, A.
Bojtos, P.
Bond, C.
Bondu, F.
Bonnand, R.
Boom, B. A.
Bork, R.
Boschi, V.
Bose, S.
Bouffanais, Y.
Bozzi, A.
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Branchesi, M.
Brau, J. E.
Briant, T.
Brillet, A.
Brinkmann, M.
Brisson, V.
Brockill, P.
Brooks, A. F.
Brown, D. A.
Brown, D. D.
Brown, N. M.
Buchanan, C. C.
Buikema, A.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Buskulic, D.
Buy, C.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Cahillane, C.
Bustillo, J. Calderon
Callister, T.
Calloni, E.
Camp, J. B.
Cannon, K. C.
Cao, J.
Capano, C. D.
Capocasa, E.
Carbognani, F.
Caride, S.
Diaz, J. Casanueva
Casentini, C.
Caudill, S.
Cavaglia, M.
Cavalier, F.
Cavalieri, R.
Cella, G.
Cepeda, C.
Baiardi, L. Cerboni
Cerretani, G.
Cesarini, E.
Chakraborty, R.
Chalermsongsak, T.
Chamberlin, S. J.
Chan, M.
Chao, S.
Charlton, P.
Chassande-Mottin, E.
Chen, H. Y.
Chen, Y.
Cheng, C.
Chincarini, A.
Chiummo, A.
Cho, H. S.
Cho, M.
Chow, J. H.
Christensen, N.
Chu, Q.
Chua, S.
Chung, S.
Ciani, G.
Clara, F.
Clark, J. A.
Cleva, F.
Coccia, E.
Cohadon, P-F.
Colla, A.
Collette, C. G.
Cominsky, L.
Constancio, M., Jr.
Conte, A.
Conti, L.
Cook, D.
Corbitt, T. R.
Cornish, N.
Corsi, A.
Cortese, S.
Costa, C. A.
Coughlin, M. W.
Coughlin, S. B.
Coulon, J-P
Countryman, S. T.
Couvares, P.
Cowan, E. E.
Coward, D. M.
Cowart, M. J.
Coyne, D. C.
Coyne, R.
Craig, K.
Creighton, J. D. E.
Cripe, J.
Crowder, S. G.
Cumming, A.
Cunningham, L.
Cuoco, E.
Dal Canton, T.
Danilishin, S. L.
D'Antonio, S.
Danzmann, K.
Darman, N. S.
Dattilo, V.
Dave, I.
Daveloza, H. P.
Davier, M.
Davies, G. S.
Daw, E. J.
Day, R.
Debra, D.
Debreczeni, G.
Degallaix, J.
De Laurentis, M.
Deleglise, S.
Del Pozzo, W.
Denker, T.
Dent, T.
Dereli, H.
Dergachev, V.
DeRosa, R.
DeRosa, R. T.
DeSalvo, R.
Dhurandhar, S.
Diaz, M. C.
Di Fiore, L.
Di Giovanni, M.
Di Lieto, A.
Di Pace, S.
Di Palma, I.
Di Virgilio, A.
Dojcinoski, G.
Dolique, V.
Donovan, F.
Dooley, K. L.
Doravari, S.
Douglas, R.
Downes, T. P.
Drago, M.
Drever, R. W. P.
Driggers, J. C.
Du, Z.
Ducrot, M.
Dwyer, S. E.
Edo, T. B.
Edwards, M. C.
Effler, A.
Eggenstein, H-B
Ehrens, P.
Eichholz, J.
Eikenberry, S. S.
Engels, W.
Essick, R. C.
Etzel, T.
Evans, M.
Evans, T. M.
Everett, R.
Factourovich, M.
Fafone, V.
Fair, H.
Fairhurst, S.
Fan, X.
Fang, Q.
Farinon, S.
Farr, B.
Farr, W. M.
Favata, M.
Fays, M.
Fehrmann, H.
Fejer, M. M.
Ferrante, I.
Ferreira, E. C.
Ferrini, F.
Fidecaro, F.
Fiori, I.
Fiorucci, D.
Fisher, R. P.
Flaminio, R.
Fletcher, M.
Fournier, J. -D.
Franco, S.
Frasca, S.
Frasconi, F.
Frei, Z.
Freise, A.
Frey, R.
Frey, V.
Fricke, T. T.
Fritschel, P.
Frolov, V. V.
Fulda, P.
Fyffe, M.
Gabbard, H. A. G.
Gair, J. R.
Gammaitoni, L.
Gaonkar, S. G.
Garufi, F.
Gatto, A.
Gaur, G.
Gehrels, N.
Gemme, G.
Gendre, B.
Genin, E.
Gennai, A.
George, J.
Gergely, L.
Germain, V.
Ghosh, Archisman
Ghosh, S.
Giaime, J. A.
Giardina, K. D.
Giazotto, A.
Gill, K.
Glaefke, A.
Goetz, E.
Goetz, R.
Gondan, L.
Gonzalez, G.
Gonzalez Castro, J. M.
Gopakumar, A.
Gordon, N. A.
Gorodetsky, M. L.
Gossan, S. E.
Gosselin, M.
Gouaty, R.
Graef, C.
Graff, P. B.
Granata, M.
Grant, A.
Gras, S.
Gray, C.
Greco, G.
Green, A. C.
Groot, P.
Grote, H.
Grunewald, S.
Guidi, G. M.
Guo, X.
Gupta, A.
Gupta, M. K.
Gushwa, K. E.
Gustafson, E. K.
Gustafson, R.
Hacker, J. J.
Hall, B. R.
Hall, E. D.
Hammond, G.
Haney, M.
Hanke, M. M.
Hanks, J.
Hanna, C.
Hannam, M. D.
Hanson, J.
Hardwick, T.
Harms, J.
Harry, G. M.
Harry, I. W.
Hart, M. J.
Hartman, M. T.
Haster, C. -J.
Haughian, K.
Heidmann, A.
Heintze, M. C.
Heitmann, H.
Hello, P.
Hemming, G.
Hendry, M.
Heng, I. S.
Hennig, J.
Heptonstall, A. W.
Heurs, M.
Hild, S.
Hoak, D.
Hodge, K. A.
Hofman, D.
Hollitt, S. E.
Holt, K.
Holz, D. E.
Hopkins, P.
Hosken, D. J.
Hough, J.
Houston, E. A.
Howell, E. J.
Hu, Y. M.
Huang, S.
Huerta, E. A.
Huet, D.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh-Dinh, T.
Idrisy, A.
Indik, N.
Ingram, D. R.
Inta, R.
Isa, H. N.
Isac, J-M
Isi, M.
Islas, G.
Isogai, T.
Iyer, B. R.
Izumi, K.
Jacqmin, T.
Jang, H.
Jani, K.
Jaranowski, P.
Jawahar, S.
Jimenez-Forteza, F.
Johnson, W. W.
Jones, D. I.
Jones, R.
Jonker, R. J. G.
Ju, L.
Haris, K.
Kalaghatgi, C. V.
Kalogera, V.
Kandhasamy, S.
Kang, G.
Kanner, J. B.
Karki, S.
Kasprzack, M.
Katsavounidis, E.
Katzman, W.
Kaufer, S.
Kaur, T.
Kawabe, K.
Kawazoe, F.
Kefelian, F.
Kehl, M. S.
Keitel, D.
Kelley, D. B.
Kells, W.
Kennedy, R.
Key, J. S.
Khalaidovski, A.
Khalili, F. Y.
Khan, I.
Khan, S.
Khan, Z.
Khazanov, E. A.
Kijbunchoo, N.
Kim, C.
Kim, J.
Kim, K.
Kim, Nam-Gyu
Kim, Namjun
Kim, Y-M
King, E. J.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Kleybolte, L.
Klimenko, S.
Koehlenbeck, S. M.
Kokeyama, K.
Koley, S.
Kondrashov, V.
Kontos, A.
Korobko, M.
Korth, W. Z.
Kowalska, I.
Kozak, D. B.
Kringel, V.
Krishnan, B.
Krolak, A.
Krueger, C.
Kuehn, G.
Kumar, P.
Kuo, L.
Kutynia, A.
Lackey, B. D.
Landry, M.
Lange, J.
Lantz, B.
Lasky, P. D.
Lazzarini, A.
Lazzaro, C.
Leaci, P.
Leavey, S.
Lebigot, E. O.
Lee, C. H.
Lee, H. K.
Lee, H. M.
Lee, K.
Lenon, A.
Leonardi, M.
Leong, J. R.
Leroy, N.
Letendre, N.
Levin, Y.
Levine, B. M.
Li, T. G. F.
Libson, A.
Littenberg, T. B.
Lockerbie, N. A.
Logue, J.
Lombardi, A. L.
Lord, J. E.
Lorenzini, M.
Loriette, V.
Lormand, M.
Losurdo, G.
Lough, J. D.
Lueck, H.
Lundgren, A. P.
Luo, J.
Lynch, R.
Ma, Y.
MacDonald, T.
Machenschalk, B.
MacInnis, M.
Macleod, D. M.
Magna-Sandoval, F.
Magee, R. M.
Mageswaran, M.
Majorana, E.
Maksimovic, I.
Malvezzi, V.
Man, N.
Mandel, I.
Mandic, V.
Mangano, V.
Mansell, G. L.
Manske, M.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Marka, Z.
Markosyan, A. S.
Maros, E.
Martelli, F.
Martellini, L.
Martin, I. W.
Martin, R. M.
Martynov, D. V.
Marx, J. N.
Mason, K.
Masserot, A.
Massinger, T. J.
Masso-Reid, M.
Matichard, F.
Matone, L.
Mavalvala, N.
Mazumder, N.
Mazzolo, G.
McCarthy, R.
McClelland, D. E.
McCormick, S.
McGuire, S. C.
McIntyre, G.
McIver, J.
McManus, J.
McWilliams, S. T.
Meacher, D.
Meadors, G. D.
Meidam, J.
Melatos, A.
Mendell, G.
Mendoza-Gandara, D.
Mercer, R. A.
Merilh, E.
Merzougui, M.
Meshkov, S.
Messenger, C.
Messick, C.
Meyers, P. M.
Mezzani, F.
Miao, H.
Michel, C.
Middleton, H.
Mikhailov, E. E.
Milano, L.
Miller, J.
Millhouse, M.
Minenkov, Y.
Ming, J.
Mirshekari, S.
Mishra, C.
Mitra, S.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moggi, A.
Mohan, M.
Mohapatra, S. R. P.
Montani, M.
Moore, B. C.
Moore, C. J.
Moraru, D.
Moreno, G.
Morriss, S. R.
Mossavi, K.
Mours, B.
Mow-Lowry, C. M.
Mueller, C. L.
Mueller, G.
Muir, A. W.
Mukherjee, Arunava
Mukherjee, D.
Mukherjee, S.
Mukund, N.
Mullavey, A.
Munch, J.
Murphy, D. J.
Murray, P. G.
Mytidis, A.
Nardecchia, I.
Naticchioni, L.
Nayak, R. K.
Necula, V.
Nedkova, K.
Nelemans, G.
Neri, M.
Neunzert, A.
Newton, G.
Nguyen, T. T.
Nielsen, A. B.
Nissanke, S.
Nitz, A.
Nocera, F.
Nolting, D.
Normandin, M. E. N.
Nuttall, L. K.
Oberling, J.
Ochsner, E.
O'Dell, J.
Oelker, E.
Ogin, G. H.
Oh, J. J.
Oh, S. H.
Ohme, F.
Oliver, M.
Oppermann, P.
Oram, Richard J.
O'Reilly, B.
O'Shaughnessy, R.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Pai, A.
Pai, S. A.
Palamos, J. R.
Palashov, O.
Palomba, C.
Pal-Singh, A.
Pan, H.
Pankow, C.
Pannarale, F.
Pant, B. C.
Paoletti, F.
Paoli, A.
Papa, M. A.
Paris, H. R.
Parker, W.
Pascucci, D.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Patricelli, B.
Patrick, Z.
Pearlstone, B. L.
Pedraza, M.
Pedurand, R.
Pekowsky, L.
Pele, A.
Penn, S.
Perreca, A.
Phelps, M.
Piccinni, O.
Pichot, M.
Piergiovanni, F.
Pierro, V.
Pillant, G.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Poggiani, R.
Popolizio, P.
Post, A.
Powell, J.
Prasad, J.
Predoi, V.
Premachandra, S. S.
Prestegard, T.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prix, R.
Prodi, G. A.
Prokhorov, L.
Puncken, O.
Punturo, M.
Puppo, P.
Puerrer, M.
Qi, H.
Qin, J.
Quetschke, V.
Quintero, E. A.
Quitzow-James, R.
Raab, F. J.
Rabeling, D. S.
Radkins, H.
Raffai, P.
Raja, S.
Rakhmanov, M.
Rapagnani, P.
Raymond, V.
Razzano, M.
Re, V.
Read, J.
Reed, C. M.
Regimbau, T.
Rei, L.
Reid, S.
Reitze, D. H.
Rew, H.
Reyes, S. D.
Ricci, F.
Riles, K.
Robertson, N. A.
Robie, R.
Robinet, F.
Rocchi, A.
Rolland, L.
Rollins, J. G.
Roma, V. J.
Romano, J. D.
Romano, R.
Romanov, G.
Romie, J. H.
RosiNska, D.
Rowan, S.
Ruediger, A.
Ruggi, P.
Ryan, K.
Sachdev, S.
Sadecki, T.
Sadeghian, L.
Salconi, L.
Saleem, M.
Salemi, F.
Samajdar, A.
Sammut, L.
Sanchez, E. J.
Sandberg, V.
Sandeen, B.
Sanders, J. R.
Sassolas, B.
Sathyaprakash, S.
Saulson, P. R.
Sauter, O.
Savage, R. L.
Sawadsky, A.
Schale, P.
Schilling, R.
Schmidt, J.
Schmidt, P.
Schnabel, R.
Schofield, R. M. S.
Schoenbeck, A.
Schreiber, E.
Schuette, D.
Schutz, B. F.
Scott, J.
Scott, S. M.
Sellers, D.
Sentenac, D.
Sequino, V.
Sergeev, A.
Serna, G.
Setyawati, Y.
Sevigny, A.
Shaddock, D. A.
Shah, S.
Shahriar, M. S.
Shaltev, M.
Shao, Z.
Shapiro, B.
Shawhan, P.
Sheperd, A.
Shoemaker, D. H.
Shoemaker, D. M.
Siellez, K.
Siemens, X.
Sigg, D.
Silva, A. D.
Simakov, D.
Singer, A.
Singer, L. P.
Singh, A.
Singh, R.
Singhal, A.
Sintes, A. M.
Slagmolen, B. J. J.
Smith, J. R.
Smith, N. D.
Smith, R. J. E.
Son, E. J.
Sorazu, B.
Sorrentino, F.
Souradeep, T.
Srivastava, A. K.
Staley, A.
Steinke, M.
Steinlechner, J.
Steinlechner, S.
Steinmeyer, D.
Stephens, B. C.
Stevenson, S. P.
Stone, R.
Strain, K. A.
Straniero, N.
Stratta, G.
Strauss, N. A.
Strigin, S.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sun, L.
Sutton, P. J.
Swinkels, B. L.
Szczepanczyk, M. J.
Tacca, M.
Talukder, D.
Tanner, D. B.
Tapai, M.
Tarabrin, S. P.
Taracchini, A.
Taylor, R.
Theeg, T.
Thirugnanasambandam, M. P.
Thomas, E. G.
Thomas, M.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Tiwari, S.
Tiwari, V.
Tokmakov, K. V.
Tomlinson, C.
Tonelli, M.
Torres, C. V.
Torrie, C. I.
Toyra, D.
Travasso, F.
Traylor, G.
Trifir, D.
Tringali, M. C.
Trozzo, L.
Tse, M.
Turconi, M.
Tuyenbayev, D.
Ugolini, D.
Unnikrishnan, C. S.
Urban, A. L.
Usman, S. A.
Vahlbruch, H.
Vajente, G.
Valdes, G.
Van Bakel, N.
Van Beuzekom, M.
Van den Brand, J. F. J.
Van den Broeck, C.
Vander-Hyde, D. C.
Van der Schaaf, L.
Van Heijningen, J. V.
Van Veggel, A. A.
Vardaro, M.
Vass, S.
Vasuth, M.
Vaulin, R.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Venkateswara, K.
Verkindt, D.
Vetrano, F.
Vicere, A.
Vinciguerra, S.
Vine, D. J.
Vinet, J-Y
Vitale, S.
Vo, T.
Vocca, H.
Vorvick, C.
Voss, D.
Vousden, W. D.
Vyatchanin, S. P.
Wade, A. R.
Wade, L. E.
Wade, M.
Walker, M.
Wallace, L.
Walsh, S.
Wang, G.
Wang, H.
Wang, M.
Wang, X.
Wang, Y.
Ward, R. L.
Warner, J.
Was, M.
Weaver, B.
Wei, L-W
Weinert, M.
Weinstein, A. J.
Weiss, R.
Welborn, T.
Wen, L.
Wessels, P.
Westphal, T.
Wette, K.
Whelan, J. T.
White, D. J.
Whiting, B. F.
Williams, R. D.
Williamson, A. R.
Willis, J. L.
Willke, B.
Wimmer, M. H.
Winkler, W.
Wipf, C. C.
Wittel, H.
Woan, G.
Worden, J.
Wright, J. L.
Wu, G.
Yablon, J.
Yam, W.
Yamamoto, H.
Yancey, C. C.
Yap, M. J.
Yu, H.
Yvert, M.
Zadrozny, A.
Zangrando, L.
Zanolin, M.
Zendri, J-P
Zevin, M.
Zhang, F.
Zhang, L.
Zhang, M.
Zhang, Y.
Zhao, C.
Zhou, M.
Zhou, Z.
Zhu, X. J.
Zucker, M. E.
Zuraw, S. E.
Zweizig, J.
CA Ligo Sci Collaboration
Virgo Collaboration
TI ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE gravitational waves; stars: black holes; stars: massive
ID GRAVITATIONAL-WAVE DETECTION; COMPACT-OBJECT BINARIES; YOUNG
STAR-CLUSTERS; X-RAY BINARIES; GLOBULAR-CLUSTERS; MASSIVE STARS;
NEUTRON-STAR; LOCAL UNIVERSE; MAXIMUM MASS; CYGNUS X-1
AB The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" BHs (greater than or similar to 25M(circle dot)) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (greater than or similar to 1 Gpc(-3) yr(-1)) from both types of formation models. The low measured redshift (z similar or equal to 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.] CALTECH, LIGO, Pasadena, CA 91125 USA.
[Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy.
[Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; DeRosa, R. T.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy.
[Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.] Univ Florida, Gainesville, FL 32611 USA.
[Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.] LIGO Livingston Observ, Livingston, LA 70754 USA.
[Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.] Univ Savoie Mt Blanc, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France.
[Adya, V. B.; Affeldt, C.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H-B; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands.
[Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil.
[Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India.
[Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin, Milwaukee, WI 53201 USA.
[Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez Castro, J. M.; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy.
[Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez Castro, J. M.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia.
[Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifir, D.] Univ Mississippi, Oxford, MS 38677 USA.
[Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, LAL,IN2P3, Orsay, France.
[Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Chennai, Tamil Nadu, India.
[Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany.
[Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Singh, A.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany.
[Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, APC,AstroParticule & Cosmol,IN2P3,CEA,Irfu, F-75205 Paris 13, France.
[Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA.
[Baldaccini, F.; Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy.
[Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy.
[Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magna-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.] Syracuse Univ, Syracuse, NY 13244 USA.
[Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.] LIGO Hanford Observ, Richland, WA 99352 USA.
[Barta, D.; Debreczeni, G.] RMKI, Wigner RCP, Konkoly Thege Mikos Ut 29-33, H-1121 Budapest, Hungary.
[Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA.
[Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA.
[Bazzan, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy.
[Bazzan, M.; Conti, L.; Lazzaro, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bejger, M.; RosiNska, D.] CAMK PAN, PL-00716 Warsaw, Poland.
[Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
[Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S. P.; Thomas, E. G.; Toyra, D.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy.
[Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, MP, India.
[Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia.
[Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland.
[Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.] Univ Western Australia, Crawley, WA 6009, Australia.
[Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.] Univ Cote Azur, Artemis, CNRS, Observ Cote Azur, F-34229 Nice 4, France.
[Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary.
[Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France.
[Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy.
[Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA.
[Briant, T.; Chua, S.; Cohadon, P-F.; Deleglise, S.; Heidmann, A.; Isac, J-M; Jacqmin, T.] UPMC, Sorbonne Univ, Lab Kastler Brossel, CNRS,ENS,PSL Res Uni,Coll France, F-75005 Paris, France.
[Bulten, H. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA.
[Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Cagnoli, G.] Univ Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69622 Villeurbanne, France.
[Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France.
[Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC, IAC3, E-07122 Palma De Mallorca, Spain.
[Calloni, E.; De Laurentis, M.; DeRosa, R. T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy.
[Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA.
[Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan.
[Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia.
[Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA.
[Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] CALTECH, CaRT, Pasadena, CA 91125 USA.
[Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea.
[Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA.
[Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium.
[Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA.
[Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.] Northwestern Univ, Evanston, IL 60208 USA.
[Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia.
[Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA.
[Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[Dojcinoski, G.; Favata, M.; Moore, B. C.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy.
[Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales.
[Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland.
[Gaur, G.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India.
[Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India.
[Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary.
[Gill, K.; Hughey, B.; Szczepanczyk, M. J.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Harry, G. M.] Amer Univ, Washington, DC 20016 USA.
[Hoak, D.; Lombardi, A. L.; McIver, J.; Nedkova, K.] Univ Massachusetts, Amherst, MA 01003 USA.
[Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA.
[Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland.
[Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland.
[Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India.
[Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, J.; Kim, Y-M; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea.
[Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea.
[Krolak, A.; Kutynia, A.] NCBJ, PL-05400 Otwock, Poland.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Lange, J.; O'Shaughnessy, R.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia.
[Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea.
[Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA.
[Loriette, V.; Maksimovic, I.] ESPCI, CNRS, F-75005 Paris, France.
[Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy.
[McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA.
[Mikhailov, E. E.; Rew, H.; Romanov, G.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil.
[Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England.
[Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India.
[O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England.
[Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA.
[Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea.
[Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[RosiNska, D.] Inst Astron, PL-65265 Zielona Gora, Poland.
[Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Trozzo, L.] Univ Siena, I-53100 Siena, Italy.
[Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
Univ Washington, Seattle, WA 98195 USA.
Kenyon Coll, Gambier, OH 43022 USA.
[Sammut, L.] Abilene Christian Univ, Abilene, TX 79699 USA.
RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA.
RI Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos,
Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella,
Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin,
Stefan/K-7262-2012; Steinlechner, Sebastian/D-5781-2013; Chow,
Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011;
Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev,
Alexander/F-3027-2017; De Laurentis, Martina/L-3022-2016; Pinto,
Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Groot,
Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef,
Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante,
Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino,
Fiodor/M-6662-2016; Garufi, Fabio/K-3263-2015; McClelland,
David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Costa,
Cesar/G-7588-2012; Iyer, Bala R./E-2894-2012; Nelemans,
Gijs/D-3177-2012; Piccinni, Ornella Juliana/C-1319-2016; Tacca,
Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni,
Fabio/A-1920-2008; Frasconi, Franco/K-1068-2016; Vicere,
Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Kumar, Prem/B-6691-2009;
Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016;
Gammaitoni, Luca/B-5375-2009; Bell, Angus/E-7312-2011; Hild,
Stefan/A-3864-2010; Rocchi, Alessio/O-9499-2015; Zhu,
Xingjiang/E-1501-2016; Strain, Kenneth/D-5236-2011; prodi,
giovanni/B-4398-2010; Gemme, Gianluca/C-7233-2008; Gorodetsky,
Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov,
Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann,
Antoine/G-4295-2016; Harms, Jan/J-4359-2012; Howell, Eric/H-5072-2014;
OI Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X;
Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439;
Principe, Maria/0000-0002-6327-0628; Travasso,
Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625;
Punturo, Michele/0000-0001-8722-4485; Cella,
Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167;
Danilishin, Stefan/0000-0001-7758-7493; Steinlechner,
Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey,
Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di
Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Gendre,
Bruce/0000-0002-9077-2025; Allen, Bruce/0000-0003-4285-6256; Granata,
Massimo/0000-0003-3275-1186; Berry, Christopher/0000-0003-3870-7215;
Leavey, Sean/0000-0001-8253-0272; Mitra, Sanjit/0000-0002-0800-4626;
Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515;
Callister, Thomas/0000-0001-9892-177X; Sorazu,
Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig,
John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; De
Laurentis, Martina/0000-0002-3815-4078; Conti,
Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio,
Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603;
Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino,
Fiodor/0000-0002-9605-9829; Garufi, Fabio/0000-0003-1391-6168;
McClelland, David/0000-0001-6210-5842; Losurdo,
Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179;
Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella
Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441;
Marchesoni, Fabio/0000-0001-9240-6793; Frasconi,
Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg,
Daniel/0000-0003-4606-6526; Lazzaro, Claudia/0000-0001-5993-3372;
Stratta, Maria Giuliana/0000-0003-1055-7980; Gammaitoni,
Luca/0000-0002-4972-7062; Bell, Angus/0000-0003-1523-0821; Rocchi,
Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; Strain,
Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X; Gemme,
Gianluca/0000-0002-1127-7406; Gorodetsky, Michael/0000-0002-5159-2742;
Heidmann, Antoine/0000-0002-0784-5175; Vocca,
Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Swinkels,
Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Drago,
Marco/0000-0002-3738-2431; Collette, Christophe/0000-0002-4430-3703;
Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315;
Naticchioni, Luca/0000-0003-2918-0730; Dolique,
Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517;
Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293;
Gatto, Alberto/0000-0001-9090-983X; Papa,
M.Alessandra/0000-0002-1007-5298
FU United States National Science Foundation (NSF); Science and Technology
Facilities Council (STFC) of the United Kingdom; MaxPlanck- Society
(MPS); State of Niedersachsen/Germany [GEO600]; Australian Research
Council; Netherlands Organisation for Scientific Research; EGO
consortium; Council of Scientific and Industrial Research of India,
Department of Science and Technology, India; Science AMP; Engineering
Research Board (SERB), India; Ministry of Human Resource Development,
India; Spanish Ministerio de Economia y Competitividad; Conselleria
d'Economia i Competitivitat and Conselleria d'Educacio Cultura i
Universitats of the Govern de les Illes Balears; National Science Centre
of Poland; European Union; Royal Society; Scottish Funding Council;
Scottish Universities Physics Alliance; Lyon Institute of Origins (LIO);
National Research Foundation of Korea, Industry Canada; Province of
Ontario through the Ministry of Economic Development and Innovation;
National Science and Engineering Research Council Canada; Brazilian
Ministry of Science, Technology, and Innovation; Leverhulme Trust;
Research Corporation, Ministry of Science and Technology (MOST), Taiwan;
Kavli Foundation; NSF; STFC; MPS; INFN; CNRS; State of
Niedersachsen/Germany
FX The authors gratefully acknowledge the support of the United States
National Science Foundation (NSF) for the construction and operation of
the LIGO Laboratory and Advanced LIGO, as well as the Science and
Technology Facilities Council (STFC) of the United Kingdom, the
MaxPlanck- Society (MPS), and the State of Niedersachsen/Germany for
support of the construction of Advanced LIGO and construction and
operation of the GEO600 detector. Additional support for Advanced LIGO
was provided by the Australian Research Council. The authors gratefully
acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN),
the French Centre National de la Recherche Scientifique (CNRS), and the
Foundation for Fundamental Research on Matter supported by the
Netherlands Organisation for Scientific Research for the construction
and operation of the Virgo detector and the creation and support of the
EGO consortium. The authors also gratefully acknowledge research support
from these agencies as well as by the Council of Scientific and
Industrial Research of India, Department of Science and Technology,
India, Science & Engineering Research Board (SERB), India, Ministry of
Human Resource Development, India, the Spanish Ministerio de Economia y
Competitividad, the Conselleria d'Economia i Competitivitat and
Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes
Balears, the National Science Centre of Poland, the European Union, the
Royal Society, the Scottish Funding Council, the Scottish Universities
Physics Alliance, the Lyon Institute of Origins (LIO), the National
Research Foundation of Korea, Industry Canada and the Province of
Ontario through the Ministry of Economic Development and Innovation, the
National Science and Engineering Research Council Canada, the Brazilian
Ministry of Science, Technology, and Innovation, the Leverhulme Trust,
the Research Corporation, Ministry of Science and Technology (MOST),
Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the
support of the NSF, STFC, MPS, INFN, CNRS, and the State of
Niedersachsen/Germany for provision of computational resources.
NR 142
TC 104
Z9 104
U1 30
U2 90
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2016
VL 818
IS 2
AR L22
DI 10.3847/2041-8205/818/2/L22
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DE2GK
UT WOS:000370444800001
ER
PT J
AU Abeysekara, AU
Archambault, S
Archer, A
Benbow, W
Bird, R
Buchovecky, M
Buckley, JH
Byrum, K
Cardenzana, JV
Cerruti, M
Chen, X
Christiansen, JL
Ciupik, L
Cui, W
Dickinson, HJ
Eisch, JD
Errando, M
Falcone, A
Fegan, DJ
Feng, Q
Finley, JP
Fleischhack, H
Fortin, P
Fortson, L
Furniss, A
Gillanders, GH
Griffin, S
Grube, J
Gyuk, G
Hutten, M
Hakansson, N
Hanna, D
Holder, J
Humensky, TB
Johnson, CA
Kaaret, P
Kar, P
Kelley-Hoskins, N
Kertzman, M
Kieda, D
Krause, M
Krennrich, F
Kumar, S
Lang, MJ
Lin, TTY
Maier, G
McArthur, S
McCann, A
Meagher, K
Moriarty, P
Mukherjee, R
Nieto, D
O'Brien, S
de Bhroithe, AO
Ong, RA
Otte, AN
Park, N
Perkins, JS
Petrashyk, A
Pohl, M
Popkow, A
Pueschel, E
Quinn, J
Ragan, K
Ratliff, G
Reynolds, PT
Richards, GT
Roache, E
Santander, M
Sembroski, GH
Shahinyan, K
Staszak, D
Telezhinsky, I
Tucci, JV
Tyler, J
Vincent, S
Wakely, SP
Weiner, OM
Weinstein, A
Williams, DA
Zitzer, B
AF Abeysekara, A. U.
Archambault, S.
Archer, A.
Benbow, W.
Bird, R.
Buchovecky, M.
Buckley, J. H.
Byrum, K.
Cardenzana, J. V.
Cerruti, M.
Chen, X.
Christiansen, J. L.
Ciupik, L.
Cui, W.
Dickinson, H. J.
Eisch, J. D.
Errando, M.
Falcone, A.
Fegan, D. J.
Feng, Q.
Finley, J. P.
Fleischhack, H.
Fortin, P.
Fortson, L.
Furniss, A.
Gillanders, G. H.
Griffin, S.
Grube, J.
Gyuk, G.
Huetten, M.
Hakansson, N.
Hanna, D.
Holder, J.
Humensky, T. B.
Johnson, C. A.
Kaaret, P.
Kar, P.
Kelley-Hoskins, N.
Kertzman, M.
Kieda, D.
Krause, M.
Krennrich, F.
Kumar, S.
Lang, M. J.
Lin, T. T. Y.
Maier, G.
McArthur, S.
McCann, A.
Meagher, K.
Moriarty, P.
Mukherjee, R.
Nieto, D.
O'Brien, S.
de Bhroithe, A. O'Faolain
Ong, R. A.
Otte, A. N.
Park, N.
Perkins, J. S.
Petrashyk, A.
Pohl, M.
Popkow, A.
Pueschel, E.
Quinn, J.
Ragan, K.
Ratliff, G.
Reynolds, P. T.
Richards, G. T.
Roache, E.
Santander, M.
Sembroski, G. H.
Shahinyan, K.
Staszak, D.
Telezhinsky, I.
Tucci, J. V.
Tyler, J.
Vincent, S.
Wakely, S. P.
Weiner, O. M.
Weinstein, A.
Williams, D. A.
Zitzer, B.
TI A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC
8462852
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE astrobiology; extraterrestrial intelligence; methods: observational;
stars: individual ( KIC 8462852); techniques: photometric
ID EXTRATERRESTRIAL INTELLIGENCE; TELESCOPES; SPECTRA; STARS; VERITAS;
BURSTS; SYSTEM; OSETI
AB The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.
C1 [Abeysekara, A. U.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Archambault, S.; Griffin, S.; Hanna, D.; Lin, T. T. Y.; McCann, A.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
[Archer, A.; Buckley, J. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Bird, R.; Fegan, D. J.; O'Brien, S.; Pueschel, E.; Quinn, J.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Buchovecky, M.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Byrum, K.; Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Chen, X.; Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany.
[Christiansen, J. L.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA.
[Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA.
[Errando, M.; Mukherjee, R.; Santander, M.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Falcone, A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
[Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA.
[Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland.
[Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Holder, J.] Florida Inst Technol, Dept Phys & Space Sci, W Melbourne, FL 32901 USA.
[Humensky, T. B.; Nieto, D.; Petrashyk, A.; Weiner, O. M.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA.
[Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA.
[Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA.
[Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA.
[Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Perkins, J. S.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork, Ireland.
RP Dickinson, HJ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.; Holder, J (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.; Holder, J (reprint author), Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.; Holder, J (reprint author), Florida Inst Technol, Dept Phys & Space Sci, W Melbourne, FL 32901 USA.
EM hughd@iastate.edu; jholder@physics.udel.edu
RI Nieto, Daniel/J-7250-2015;
OI Nieto, Daniel/0000-0003-3343-0755; Pueschel, Elisa/0000-0002-0529-1973;
Krause, Maria/0000-0001-7595-0914; Bird, Ralph/0000-0002-4596-8563
FU U.S. Department of Energy Office of Science; U.S. National Science
Foundation; Smithsonian Institution; NSERC in Canada
FX This research is supported by grants from the U.S. Department of Energy
Office of Science, the U.S. National Science Foundation, and the
Smithsonian Institution, and by NSERC in Canada. We acknowledge the
excellent work of the technical support staff at the Fred Lawrence
Whipple Observatory and at the collaborating institutions in the
construction and operation of the instrument. The VERITAS Collaboration
is grateful to Trevor Weekes for his seminal contributions and
leadership in the field of VHE gamma-ray astrophysics. and for his
interest in the wider applications of IACTs, which made this study
possible.
NR 40
TC 3
Z9 3
U1 3
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2016
VL 818
IS 2
AR L33
DI 10.3847/2041-8205/818/2/L33
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DE2GK
UT WOS:000370444800012
ER
PT J
AU Cenko, SB
Cucchiara, A
Roth, N
Veilleux, S
Prochaska, JX
Yan, L
Guillochon, J
Maksym, WP
Arcavi, I
Butler, NR
Filippenko, AV
Fruchter, AS
Gezari, S
Kasen, D
Levan, AJ
Miller, JM
Pasham, DR
Ramirez-Ruiz, E
Strubbe, LE
Tanvir, NR
Tombesi, F
AF Cenko, S. Bradley
Cucchiara, Antonino
Roth, Nathaniel
Veilleux, Sylvain
Prochaska, J. Xavier
Yan, Lin
Guillochon, James
Maksym, W. Peter
Arcavi, Iair
Butler, Nathaniel R.
Filippenko, Alexei V.
Fruchter, Andrew S.
Gezari, Suvi
Kasen, Daniel
Levan, Andrew J.
Miller, Jon M.
Pasham, Dheeraj R.
Ramirez-Ruiz, Enrico
Strubbe, Linda E.
Tanvir, Nial R.
Tombesi, Francesco
TI AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE accretion, accretion disks; stars: flare; ultraviolet: general
ID DIGITAL SKY SURVEY; NITROGEN-ENRICHED QUASARS; SUPERMASSIVE BLACK-HOLE;
MAIN-SEQUENCE STAR; DATA RELEASE; LY-ALPHA; GALAXIES; PS1-10JH; EVENTS;
ABSORPTION
AB We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T-UV 3.5 x 10(4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (similar to 2000-8000 km s(-1)) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta nu = -(250-400) km s(-1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], NIV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and "N-rich" quasars.
C1 [Cenko, S. Bradley; Cucchiara, Antonino; Pasham, Dheeraj R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA.
[Cenko, S. Bradley; Veilleux, Sylvain; Pasham, Dheeraj R.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Cucchiara, Antonino; Fruchter, Andrew S.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Roth, Nathaniel; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Veilleux, Sylvain; Gezari, Suvi; Tombesi, Francesco] Univ Maryland, Dept Astron, Stadium Dr, College Pk, MD 20742 USA.
[Prochaska, J. Xavier; Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Yan, Lin] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Guillochon, James] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA.
[Maksym, W. Peter] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Maksym, W. Peter] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Arcavi, Iair] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA.
[Arcavi, Iair] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
[Butler, Nathaniel R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Filippenko, Alexei V.; Kasen, Daniel] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
[Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Levan, Andrew J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Miller, Jon M.] Univ Michigan, Dept Astron, 1085 South Univ Ave, Ann Arbor, MI 48103 USA.
[Strubbe, Linda E.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada.
[Strubbe, Linda E.] Univ British Columbia, Carl Wieman Sci Educ Initiat, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada.
[Tanvir, Nial R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Tombesi, Francesco] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.
RP Cenko, SB (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA.
EM brad.cenko@nasa.gov
OI Roth, Nathaniel/0000-0002-6485-2259; Maksym, Walter/0000-0002-2203-7889;
Guillochon, James/0000-0002-9809-8215
FU Aspen Center for Physics; NSF [1066293, AST-1211916]; TABASGO
Foundation; Christopher R. Redlich Fund; Association of Universities for
Research in Astronomy, Inc., under NASA [NAS 5-26555]
FX We thank R. Chornock, M. Eracleous, P. Hall, and C. Kochanek for
valuable discussions, and the HST staff for the prompt scheduling of
these ToO observations. S.B.C. acknowledges the Aspen Center for Physics
and NSF Grant #1066293 for hospitality. AVF's research was funded by NSF
grant AST-1211916, the TABASGO Foundation, and the Christopher R.
Redlich Fund.; Based on observations made with the NASA/ESA Hubble Space
Telescope, obtained from the Data Archive at the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS 5-26555.
NR 50
TC 5
Z9 5
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2016
VL 818
IS 2
AR L32
DI 10.3847/2041-8205/818/2/L32
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DE2GK
UT WOS:000370444800011
ER
PT J
AU Konishi, M
Grady, CA
Schneider, G
Shibai, H
McElwain, MW
Nesvold, ER
Kuchner, MJ
Carson, J
Debes, JH
Gaspar, A
Henning, TK
Hines, DC
Hinz, PM
Jang-Condell, H
Moro-Martin, A
Perrin, M
Rodigas, TJ
Serabyn, E
Silverstone, MD
Stark, CC
Tamura, M
Weinberger, AJ
Wisniewski, JP
AF Konishi, Mihoko
Grady, Carol A.
Schneider, Glenn
Shibai, Hiroshi
McElwain, Michael W.
Nesvold, Erika R.
Kuchner, Marc J.
Carson, Joseph
Debes, John. H.
Gaspar, Andras
Henning, Thomas K.
Hines, Dean C.
Hinz, Philip M.
Jang-Condell, Hannah
Moro-Martin, Amaya
Perrin, Marshall
Rodigas, Timothy J.
Serabyn, Eugene
Silverstone, Murray D.
Stark, Christopher C.
Tamura, Motohide
Weinberger, Alycia J.
Wisniewski, John. P.
TI DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE circumstellar matter; stars: imaging; stars: individual (HD 141569 A)
ID CIRCUMSTELLAR DISK; DEBRIS DISK; MOLECULAR GAS; HD-141569; ASYMMETRIES;
STARS; EXOPLANETS; REDUCTION; EMISSION; IMAGES
AB We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25, and can be traced from 0 ''.4 (similar to 46 AU) to 1 ''.0 (similar to 116 AU) after deprojection using i = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of similar to 6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 ''(similar to 232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 +/- 3 M-J is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M-J, which is broadly consistent with previous estimates.
C1 [Konishi, Mihoko; Shibai, Hiroshi] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka, Japan.
[Grady, Carol A.; Silverstone, Murray D.] Eureka Sci, Oakland, CA USA.
[Grady, Carol A.; McElwain, Michael W.; Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Schneider, Glenn; Gaspar, Andras; Hinz, Philip M.] Univ Arizona, Tucson, AZ USA.
[Nesvold, Erika R.; Rodigas, Timothy J.] Carnegie Inst Sci, Washington, DC 20005 USA.
[Carson, Joseph] Coll Charleston, Charleston, SC 29401 USA.
[Debes, John. H.; Hines, Dean C.; Moro-Martin, Amaya; Perrin, Marshall; Stark, Christopher C.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Henning, Thomas K.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
[Jang-Condell, Hannah] Univ Wyoming, Laramie, WY 82071 USA.
[Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tamura, Motohide] Univ Tokyo, Tokyo, Japan.
[Wisniewski, John. P.] Univ Oklahoma, Norman, OK 73019 USA.
RP Konishi, M (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka, Japan.
EM konishi@iral.ess.sci.osaka-u.ac.jp
OI Perrin, Marshall/0000-0002-3191-8151
FU NASA through a grant from STScI [13786]; NASA exchange program; Osaka
University Scholarship; South Carolina Space Grant Consortium REAP
Program
FX This study is based on observations made with the NASA/ESA HST, obtained
at STScI, which is operated by the Association of Universities for
Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.
These observations are associated with program No. 13786. Support for
program No. 13786 was provided by NASA through a grant from STScI. We
thank the anonymous referee for helpful suggestions. M.K. acknowledges
the support of the NASA exchange program operated by Universities Space
Research Association and of the Osaka University Scholarship for
Overseas Research Activities 2015. J.C. acknowledges support from the
South Carolina Space Grant Consortium REAP Program.
NR 39
TC 3
Z9 3
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2016
VL 818
IS 2
AR L23
DI 10.3847/2041-8205/818/2/L23
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DE2GK
UT WOS:000370444800002
ER
PT J
AU Mo, WL
Gonzalez, A
Jee, MJ
Massey, R
Rhodes, J
Brodwin, M
Eisenhardt, P
Marrone, DP
Stanford, SA
Zeimann, GR
AF Mo, Wenli
Gonzalez, Anthony
Jee, M. James
Massey, Richard
Rhodes, Jason
Brodwin, Mark
Eisenhardt, Peter
Marrone, Daniel P.
Stanford, S. A.
Zeimann, Gregory R.
TI IDCS J1426.5+3508: WEAK LENSING ANALYSIS OF A MASSIVE GALAXY CLUSTER AT
z=1.75
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE cosmology: observations; dark matter; galaxies: clusters: individual
(IDCS J1426.5+3508); gravitational lensing: weak
ID HUBBLE-SPACE-TELESCOPE; CHARGE-TRANSFER INEFFICIENCY; POINT-SPREAD
FUNCTION; GREATER-THAN 1.5; STAR-FORMATION; ADVANCED CAMERA; SCALING
RELATIONS; COSMOLOGY; RESOLUTION; UNIVERSE
AB We present a weak lensing study of the galaxy cluster IDCS. J1426.5+3508 at z = 1.75, which is the highest-redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect tangential shear at 2 sigma significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass M-200,M-crit 2.3(-1.4)(+2.1)x10(14) M circle dot. This mass is consistent with previous mass estimates from the Sunyaev-Zel'dovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation.
C1 [Mo, Wenli; Gonzalez, Anthony] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA.
[Jee, M. James] Yonsei Univ, Dept Astron, 50 Yonsei Ro, Seoul 03722, South Korea.
[Jee, M. James] Yonsei Univ, Ctr Galaxy Evolut Res, 50 Yonsei Ro, Seoul 03722, South Korea.
[Massey, Richard] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England.
[Rhodes, Jason; Eisenhardt, Peter] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA.
[Brodwin, Mark] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA.
[Marrone, Daniel P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA.
[Stanford, S. A.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA.
[Zeimann, Gregory R.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Zeimann, Gregory R.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Zeimann, Gregory R.] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA.
RP Mo, WL (reprint author), Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA.
FU NASA through a grant from the Space Telescope Science Institute [11663,
12203, 12994]; National Science Foundation Graduate Research Fellowship
[DGE-1315138]; NRF of Korea; Royal Society University Research
Fellowship; JPL; Caltech under a contract for NASA
FX The authors thank the anonymous referee and Daniel Stern for their
insightful suggestions and Audrey Galametz for her help with the
CANDELS-UDS data. Support for HST GO-program 11663, 12203, and 12994 was
provided by NASA through a grant from the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS 5-26555. We also
acknowledge funding received from the National Science Foundation
Graduate Research Fellowship under grant No. DGE-1315138 (W.M.), NRF of
Korea to CGER (M.J.J.), and Royal Society University Research Fellowship
(R.M.). J.R. is supported by JPL, which is run by Caltech under a
contract for NASA.
NR 47
TC 0
Z9 0
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2016
VL 818
IS 2
AR L25
DI 10.3847/2041-8205/818/2/L25
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DE2GK
UT WOS:000370444800004
ER
PT J
AU Yamamoto, M
Shiokawa, K
Nakamura, T
Gopalswamy, N
AF Yamamoto, Mamoru
Shiokawa, Kazuo
Nakamura, Takuji
Gopalswamy, Nat
TI Special issue "International CAWSES-II Symposium"
SO EARTH PLANETS AND SPACE
LA English
DT Editorial Material
DE Sun-Earth system; Solar-terrestrial physics; International program;
CAWSES-II; SCOSTEP
ID SOLAR-CYCLE 24; UPPER-ATMOSPHERE; IONOSPHERE; THERMOSPHERE; TIDES;
IRREGULARITIES; PERSPECTIVES; VARIABILITY; PARAMETERS; PROGRESS
AB This special issue gathered papers from the International CAWSES-II Symposium (November 18-22, 2013 at Nagoya University, Japan). Climate and Weather of the Sun-Earth System II (CAWSES-II) is an international scientific program sponsored by Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) that continued from 2009 to 2013. The program was established with the aim of significantly enhancing our understanding of the space environment and its impacts on life and society. The International CAWSES-II Symposium was successful with 388 presentations; and from that, 38 papers were published in this special issue. In this preface, we briefly discuss the contents of the special issue as well as the CAWSES-II review papers published in Progress in Earth and Planetary Science (PEPS) in 2014-2015.
C1 [Yamamoto, Mamoru] Kyoto Univ, RISH, Uji, Kyoto 6110011, Japan.
[Shiokawa, Kazuo] Nagoya Univ, Inst Space Earth Environm Res ISEE, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan.
[Nakamura, Takuji] Nat Inst Polar Res, 10 3 Midori Cho, Tachikawa, Tokyo 1908518, Japan.
[Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Heliophys Div, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA.
RP Yamamoto, M (reprint author), Kyoto Univ, RISH, Uji, Kyoto 6110011, Japan.
EM yamamoto@rish.kyoto-u.ac.jp
NR 44
TC 0
Z9 0
U1 1
U2 5
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1880-5981
J9 EARTH PLANETS SPACE
JI Earth Planets Space
PD FEB 19
PY 2016
VL 68
AR 26
DI 10.1186/s40623-016-0392-6
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DE2QH
UT WOS:000370471300001
ER
PT J
AU Kumarasinghe, CS
Premaratne, M
Gunapala, SD
Agrawal, GP
AF Kumarasinghe, Chathurangi S.
Premaratne, Malin
Gunapala, Sarath D.
Agrawal, Govind P.
TI Design of all-optical, hot-electron current-direction-switching device
based on geometrical asymmetry
SO SCIENTIFIC REPORTS
LA English
DT Article
ID METAL NANOPARTICLES; SEMICONDUCTOR ELECTRODE; PHOTOCURRENT DIRECTION;
SURFACE-PLASMONS; TIO2 FILMS; SPECTROSCOPY; QUANTUM; TRANSPORT;
DYNAMICS; CARRIERS
AB We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.
C1 [Kumarasinghe, Chathurangi S.; Premaratne, Malin] Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia.
[Gunapala, Sarath D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Agrawal, Govind P.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA.
RP Kumarasinghe, CS (reprint author), Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia.
EM chathurangi.kumarasinghe@monash.edu
RI Agrawal, Govind/D-5380-2013;
OI Agrawal, Govind/0000-0003-4486-8533; Premaratne,
Malin/0000-0002-2419-4431
FU Monash University Institute of Graduate Research; Australian Research
Council [DP140100883]
FX The work of C.S.K. is supported by the Monash University Institute of
Graduate Research. The work of M.P., S.D.G. and G.P.A. are supported by
the Australian Research Council, through its Discovery Grant
DP140100883.
NR 70
TC 3
Z9 3
U1 8
U2 31
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD FEB 18
PY 2016
VL 6
AR 21470
DI 10.1038/srep21470
PG 15
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DE0XD
UT WOS:000370348000001
PM 26887286
ER
PT J
AU Williams, J
Chiow, SW
Yu, N
Muller, H
AF Williams, Jason
Chiow, Sheng-wey
Yu, Nan
Mueller, Holger
TI Quantum test of the equivalence principle and space-time aboard the
International Space Station
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
DE equivalence principle; atom interferometry; microgravity
ID ATOM-INTERFEROMETRY; PRECISION-MEASUREMENT; GENERAL-RELATIVITY; COOLING
ATOMS; MATTER WAVES; DARK-MATTER; BALANCE; ENERGY; GRAVITATION;
PARTICLES
AB We describe the Quantum Test of the Equivalence principle and Space Time (QTEST), a concept for an atom interferometry mission on the International Space Station (ISS). The primary science objective of the mission is a test of Einstein's equivalence principle with two rubidium isotope gases at a precision of better than 10(-15), a 100-fold improvement over the current limit on equivalence principle violations, and over 1,000,000 fold improvement over similar quantum experiments demonstrated in laboratories. Distinct from the classical tests is the use of quantum wave packets and their expected large spatial separation in the QTEST experiment. This dual species atom interferometer experiment will also be sensitive to time-dependent equivalence principle violations that would be signatures for ultralight dark-matter particles. In addition, QTEST will be able to perform photon recoil measurements to better than 10(-11) precision. This improves upon terrestrial experiments by a factor of 100, enabling an accurate test of the standard model of particle physics and contributing to mass measurement, in the proposed new international system of units (SI), with significantly improved precision. The predicted high measurement precision of QTEST comes from the microgravity environment on ISS, offering extended free fall times in a well-controlled environment. QTEST plans to use high-flux, dual-species atom sources, and advanced cooling schemes, for N > 10(6) non-condensed atoms of each species at temperatures below 1 nK. Suppression of systematic errors by use of symmetric interferometer configurations and rejection of common-mode errors drives the QTEST design. It uses Bragg interferometry with a single laser beam at the 'magic' wavelength, where the two isotopes have the same polarizability, for mitigating sensitivities to vibrations and laser noise, imaging detection for correcting cloud initial conditions and maintaining contrast, modulation of the atomic hyperfine states for reduced sensitivity to magnetic field gradients, two source-regions for simultaneous time reversal measurements and redundancy, and modulation of the gravity vector using a rotating platform to reduce otherwise difficult systematics to below 10(-16).
C1 [Williams, Jason; Chiow, Sheng-wey; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Yu, N (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM Nan.Yu@jpl.nasa.gov; hm@berkeley.edu
FU National Aeronautics and Space Administration (NASA); NASA
FX The authors wish to acknowledge useful discussions with Rob Thompson,
Ernst Rasel, Markus Krutzik, Justin Khoury, Jay Tasson, and Eric
Copenhaver. We are especially appreciative of assistance from Surjeet
Rajendran for contributing the ultralight dark matter study. We also
want to thank Jason Hogan and David Johnson for use of their software
package, which was originally developed and validated by the Kasevich
team at Stanford University, and was modified for QTEST. Government
sponsorship is acknowledged. This work was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration (NASA).
HM acknowledges support from NASA. Copyright 2015. All rights reserved.
NR 129
TC 7
Z9 7
U1 15
U2 29
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 17
PY 2016
VL 18
AR 025018
DI 10.1088/1367-2630/18/2/025018
PG 25
WC Physics, Multidisciplinary
SC Physics
GA DH0JQ
UT WOS:000372470900002
ER
PT J
AU Aasi, J
Abbott, BP
Abbott, R
Abbott, TD
Abernathy, MR
Acernese, F
Ackley, K
Adams, C
Adams, T
Addesso, P
Adhikari, RX
Adya, VB
Affeldt, C
Agathos, M
Agatsuma, K
Aggarwal, N
Aguiar, OD
Ain, A
Ajith, P
Allen, B
Allocca, A
Amariutei, DV
Andersen, M
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Arceneaux, CC
Areeda, JS
Arnaud, N
Ashton, G
Aston, SM
Astone, P
Aufmuth, P
Aulbert, C
Babak, S
Baker, PT
Baldaccini, F
Ballardin, G
Ballmer, SW
Barayoga, JC
Barclay, SE
Barish, BC
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Bartlett, J
Barton, MA
Bartos, I
Bassiri, R
Basti, A
Batch, JC
Baune, C
Bavigadda, V
Behnke, B
Bejger, M
Belczynski, C
Bell, AS
Berger, BK
Bergman, J
Bergmann, G
Berry, CPL
Bersanetti, D
Bertolini, A
Betzwieser, J
Bhagwat, S
Bhandare, R
Bilenko, IA
Billingsley, G
Birch, J
Birney, R
Biscans, S
Bitossi, M
Biwer, C
Bizouard, MA
Blackburn, JK
Blair, CD
Blair, D
Bloemen, S
Bock, O
Bodiya, TP
Boer, M
Bogaert, G
Bojtos, P
Bond, C
Bondu, F
Bonnand, R
Bork, R
Born, M
Boschi, V
Bose, S
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Branco, V
Brau, JE
Briant, T
Brillet, A
Brinkmann, M
Brisson, V
Brockill, P
Brooks, AF
Brown, DA
Brown, D
Brown, DD
Brown, NM
Buchanan, CC
Buikema, A
Bulik, T
Bulten, HJ
Buonanno, A
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Bustillo, JC
Calloni, E
Camp, JB
Cannon, KC
Cao, J
Capano, CD
Capocasa, E
Carbognani, F
Caride, S
Diaz, JC
Casentini, C
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Celerier, C
Cella, G
Cepeda, C
Baiardi, LC
Cerretani, G
Cesarini, E
Chakraborty, R
Chalermsongsak, T
Chamberlin, SJ
Chao, S
Charlton, P
Chassande-Mottin, E
Chen, X
Chen, Y
Cheng, C
Chincarini, A
Chiummo, A
Cho, HS
Cho, M
Chow, JH
Christensen, N
Chu, Q
Chua, S
Chung, S
Ciani, G
Clara, F
Clark, JA
Cleva, F
Coccia, E
Cohadon, PF
Colla, A
Collette, CG
Colombini, M
Constancio, M
Conte, A
Conti, L
Cook, D
Corbitt, TR
Cornish, N
Corsi, A
Costa, CA
Coughlin, MW
Coughlin, SB
Coulon, JP
Countryman, ST
Couvares, P
Coward, DM
Cowart, MJ
Coyne, DC
Coyne, R
Craig, K
Creighton, JDE
Creighton, T
Cripe, J
Crowder, SG
Cumming, A
Cunningham, L
Cuoco, E
Dal Canton, T
Damjanic, MD
Danilishin, SL
D'Antonio, S
Danzmann, K
Darman, NS
Dattilo, V
Dave, I
Daveloza, HP
Davier, M
Davies, GS
Daw, EJ
Day, R
DeBra, D
Debreczeni, G
Degallaix, J
De Laurentis, M
Deleglise, S
Del Pozzo, W
Denker, T
Dent, T
Dereli, H
Dergachev, V
De Rosa, R
DeRosa, RT
DeSalvo, R
Dhurandhar, S
Diaz, MC
Di Fiore, L
Di Giovanni, M
Di Lieto, A
Di Palma, I
Di Virgilio, A
Dojcinoski, G
Dolique, V
Dominguez, E
Donovan, F
Dooley, KL
Doravari, S
Douglas, R
Downes, TP
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Ducrot, M
Dwyer, SE
Edo, TB
Edwards, MC
Edwards, M
Effler, A
Eggenstein, HB
Ehrens, P
Eichholz, JM
Eikenberry, SS
Essick, RC
Etzel, T
Evans, M
Evans, TM
Everett, R
Factourovich, M
Fafone, V
Fairhurst, S
Fang, Q
Farinon, S
Farr, B
Farr, WM
Favata, M
Fays, M
Fehrmann, H
Fejer, MM
Feldbaum, D
Ferrante, I
Ferreira, EC
Ferrini, F
Fidecaro, F
Fiori, I
Fisher, RP
Flaminio, R
Fournier, JD
Franco, S
Frasca, S
Frasconi, F
Frede, M
Frei, Z
Freise, A
Frey, R
Fricke, TT
Fritschel, P
Frolov, VV
Fulda, P
Fyffe, M
Gabbard, HAG
Gair, JR
Gammaitoni, L
Gaonkar, SG
Garufi, F
Gatto, A
Gehrels, N
Gemme, G
Gendre, B
Genin, E
Gennai, A
Gergely, LA
Germain, V
Ghosh, A
Ghosh, S
Giaime, JA
Giardina, KD
Giazotto, A
Gleason, JR
Goetz, E
Goetz, R
Gondan, L
Gonzalez, G
Gonzalez, J
Gopakumar, A
Gordon, NA
Gorodetsky, ML
Gossan, SE
Gosselin, M
Gossler, S
Gouaty, R
Graef, C
Graff, PB
Granata, M
Grant, A
Gras, S
Gray, C
Greco, G
Groot, P
Grote, H
Grover, K
Grunewald, S
Guidi, GM
Guido, CJ
Guo, X
Gupta, A
Gupta, MK
Gushwa, KE
Gustafson, EK
Gustafson, R
Hacker, JJ
Hall, BR
Hall, ED
Hammer, D
Hammond, G
Haney, M
Hanke, MM
Hanks, J
Hanna, C
Hannam, MD
Hanson, J
Hardwick, T
Harms, J
Harry, GM
Harry, IW
Hart, MJ
Hartman, MT
Haster, CJ
Haughian, K
Heidmann, A
Heintze, MC
Heitmann, H
Hello, P
Hemming, G
Hendry, M
Heng, IS
Hennig, J
Heptonstall, AW
Heurs, M
Hild, S
Hoak, D
Hodge, KA
Hoelscher-Obermaier, J
Hofman, D
Hollitt, SE
Holt, K
Hopkins, P
Hosken, DJ
Hough, J
Houston, EA
Howell, EJ
Hu, YM
Huang, S
Huerta, EA
Huet, D
Hughey, B
Husa, S
Huttner, SH
Huynh, M
Huynh-Dinh, T
Idrisy, A
Indik, N
Ingram, DR
Inta, R
Islas, G
Isler, JC
Isogai, T
Iyer, BR
Izumi, K
Jacobson, MB
Jang, H
Jaranowski, P
Jawahar, S
Ji, Y
Jimenez-Forteza, F
Johnson, WW
Jones, DI
Jones, R
Jonker, RJG
Ju, L
Haris, K
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, JB
Karki, S
Karlen, JL
Kasprzack, M
Katsavounidis, E
Katzman, W
Kaufer, S
Kaur, T
Kawabe, K
Kawazoe, F
Kefelian, F
Kehl, MS
Keitel, D
Kelecsenyi, N
Kelley, DB
Kells, W
Kerrigan, J
Key, JS
Khalili, FY
Khan, Z
Khazanov, EA
Kijbunchoo, N
Kim, C
Kim, K
Kim, NG
Kim, N
Kim, YM
King, EJ
King, PJ
Kinzel, DL
Kissel, JS
Klimenko, S
Kline, JT
Koehlenbeck, SM
Kokeyama, K
Koley, S
Kondrashov, V
Korobko, M
Korth, WZ
Kowalska, I
Kozak, DB
Kringel, V
Krishnan, B
Krolak, A
Krueger, C
Kuehn, G
Kumar, A
Kumar, P
Kuo, L
Kutynia, A
Lackey, BD
Landry, M
Lantz, B
Lasky, PD
Lazzarini, A
Lazzaro, C
Leaci, P
Leavey, S
Lebigot, EO
Lee, CH
Lee, HK
Lee, HM
Lee, J
Lee, JP
Leonardi, M
Leong, JR
Leroy, N
Letendre, N
Levin, Y
Levine, BM
Lewis, JB
Li, TGF
Libson, A
Lin, AC
Littenberg, TB
Lockerbie, NA
Lockett, V
Lodhia, D
Logue, J
Lombardi, AL
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, JD
Lubinski, MJ
Luck, H
Lundgren, AP
Luo, J
Lynch, R
Ma, Y
Macarthur, J
Macdonald, EP
MacDonald, T
Machenschalk, B
MacInnis, M
Macleod, DM
Madden-Fong, DX
Magana-Sandoval, F
Magee, RM
Mageswaran, M
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mangano, V
Mangini, NM
Mansell, GL
Manske, M
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Markosyan, AS
Maros, E
Martelli, F
Martellini, L
Martin, IW
Martin, RM
Martynov, DV
Marx, JN
Mason, K
Masserot, A
Massinger, TJ
Matichard, F
Matone, L
Mavalvala, N
Mazumder, N
Mazzolo, G
McCarthy, R
McClelland, DE
McCormick, S
McGuire, SC
McIntyre, G
McIver, J
McWilliams, ST
Meacher, D
Meadors, GD
Mehmet, M
Meidam, J
Meinders, M
Melatos, A
Mendell, G
Mercer, RA
Merzougui, M
Meshkov, S
Messenger, C
Messick, C
Meyers, PM
Mezzani, F
Miao, H
Michel, C
Middleton, H
Mikhailov, EE
Milano, L
Miller, J
Millhouse, M
Minenkov, Y
Ming, J
Mirshekari, S
Mishra, C
Mitra, S
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moe, B
Moggi, A
Mohan, M
Mohapatra, SRP
Montani, M
Moore, BC
Moraru, D
Moreno, G
Morriss, SR
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Mukherjee, A
Mukherjee, S
Mullavey, A
Munch, J
Murphy, DJ
Murray, PG
Mytidis, A
Nagy, MF
Nardecchia, I
Naticchioni, L
Nayak, RK
Necula, V
Nedkova, K
Nelemans, G
Neri, M
Newton, G
Nguyen, TT
Nielsen, AB
Nitz, A
Nocera, F
Nolting, D
Normandin, MEN
Nuttall, LK
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Ohme, F
Okounkova, M
Oppermann, P
Oram, R
O'Reilly, B
Ortega, WE
O'Shaughnessy, R
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Padilla, CT
Pai, A
Pai, SA
Palamos, JR
Palashov, O
Palomba, C
Pal-Singh, A
Pan, H
Pan, Y
Pankow, C
Pannarale, F
Pant, BC
Paoletti, F
Papa, MA
Paris, HR
Pasqualetti, A
Passaquieti, R
Passuello, D
Patrick, Z
Pedraza, M
Pekowsky, L
Pele, A
Penn, S
Perreca, A
Phelps, M
Piccinni, O
Pichot, M
Pickenpack, M
Piergiovanni, F
Pierro, V
Pillant, G
Pinard, L
Pinto, IM
Pitkin, M
Poeld, JH
Poggiani, R
Post, A
Powell, J
Prasad, J
Predoi, V
Premachandra, SS
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prix, R
Prodi, GA
Prokhorov, L
Puncken, O
Punturo, M
Puppo, P
Purrer, M
Qin, J
Quetschke, V
Quintero, EA
Quitzow-James, R
Raab, FJ
Rabeling, DS
Racz, I
Radkins, H
Raffai, P
Raja, S
Rakhmanov, M
Rapagnani, P
Raymond, V
Razzano, M
Re, V
Reed, CM
Regimbau, T
Rei, L
Reid, S
Reitze, DH
Ricci, F
Riles, K
Robertson, NA
Robie, R
Robinet, F
Rocchi, A
Rodger, AS
Rolland, L
Rollins, JG
Roma, VJ
Romano, R
Romanov, G
Romie, JH
Rosinska, D
Rowan, S
Rudiger, A
Ruggi, P
Ryan, K
Sachdev, S
Sadecki, T
Sadeghian, L
Saleem, M
Salemi, F
Sammut, L
Sanchez, E
Sandberg, V
Sanders, JR
Santiago-Prieto, I
Sassolas, B
Saulson, PR
Savage, R
Sawadsky, A
Schale, P
Schilling, R
Schmidt, P
Schnabel, R
Schofield, RMS
Schonbeck, A
Schreiber, E
Schuette, D
Schutz, BF
Scott, J
Scott, SM
Sellers, D
Sentenac, D
Sequino, V
Sergeev, A
Serna, G
Sevigny, A
Shaddock, DA
Shaffery, P
Shah, S
Shahriar, MS
Shaltev, M
Shao, Z
Shapiro, B
Shawhan, P
Shoemaker, DH
Sidery, TL
Siellez, K
Siemens, X
Sigg, D
Silva, AD
Simakov, D
Singer, A
Singer, LP
Singh, R
Sintes, AM
Slagmolen, BJJ
Smith, JR
Smith, ND
Smith, RJE
Son, EJ
Sorazu, B
Souradeep, T
Srivastava, AK
Staley, A
Stebbins, J
Steinke, M
Steinlechner, J
Steinlechner, S
Steinmeyer, D
Stephens, BC
Steplewski, S
Stevenson, SP
Stone, R
Strain, KA
Straniero, N
Strauss, NA
Strigin, S
Sturani, R
Stuver, AL
Summerscales, TZ
Sun, L
Sutton, PJ
Swinkels, BL
Szczepanczyk, MJ
Tacca, M
Talukder, D
Tanner, DB
Tapai, M
Tarabrin, SP
Taracchini, A
Taylor, R
Theeg, T
Thirugnanasambandam, MP
Thomas, M
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Tiwari, S
Tiwari, V
Tokmakov, KV
Tomlinson, C
Tonelli, M
Torres, CV
Torrie, CI
Travasso, F
Traylor, G
Trifiro, D
Tringali, MC
Tse, M
Turconi, M
Ugolini, D
Unnikrishnan, CS
Urban, AL
Usman, SA
Vahlbruch, H
Vajente, G
Valdes, G
Vallisneri, M
van Bakel, N
van Beuzekom, M
van den Brand, JFJ
van den Broeck, C
van der Schaaf, L
van der Sluys, MV
van Heijningen, J
van Veggel, AA
Vansuch, G
Vardaro, M
Vass, S
Vasuth, M
Vaulin, R
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Venkateswara, K
Verkindt, D
Vetrano, F
Vicere, A
Vinet, JY
Vitale, S
Vo, T
Vocca, H
Vorvick, C
Vousden, WD
Vyatchanin, SP
Wade, AR
Wade, M
Wade, LE
Walker, M
Wallace, L
Walsh, S
Wang, G
Wang, H
Wang, M
Wang, X
Ward, RL
Warner, J
Was, M
Weaver, B
Wei, LW
Weinert, M
Weinstein, AJ
Weiss, R
Welborn, T
Wen, L
Wessels, P
Westphal, T
Wette, K
Whelan, JT
White, DJ
Whiting, BF
Williams, KJ
Williams, L
Williams, RD
Williamson, AR
Willis, JL
Willke, B
Wimmer, MH
Winkler, W
Wipf, CC
Wittel, H
Woan, G
Worden, J
Yablon, J
Yakushin, I
Yam, W
Yamamoto, H
Yancey, CC
Yvert, M
Zadrozny, A
Zangrando, L
Zanolin, M
Zendri, JP
Zhang, F
Zhang, L
Zhang, M
Zhang, Y
Zhao, C
Zhou, M
Zhu, XJ
Zucker, ME
Zuraw, SE
Zweizig, J
AF Aasi, J.
Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M. R.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R. X.
Adya, V. B.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O. D.
Ain, A.
Ajith, P.
Allen, B.
Allocca, A.
Amariutei, D. V.
Andersen, M.
Anderson, S. B.
Anderson, W. G.
Arai, K.
Araya, M. C.
Arceneaux, C. C.
Areeda, J. S.
Arnaud, N.
Ashton, G.
Aston, S. M.
Astone, P.
Aufmuth, P.
Aulbert, C.
Babak, S.
Baker, P. T.
Baldaccini, F.
Ballardin, G.
Ballmer, S. W.
Barayoga, J. C.
Barclay, S. E.
Barish, B. C.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Bartlett, J.
Barton, M. A.
Bartos, I.
Bassiri, R.
Basti, A.
Batch, J. C.
Baune, C.
Bavigadda, V.
Behnke, B.
Bejger, M.
Belczynski, C.
Bell, A. S.
Berger, B. K.
Bergman, J.
Bergmann, G.
Berry, C. P. L.
Bersanetti, D.
Bertolini, A.
Betzwieser, J.
Bhagwat, S.
Bhandare, R.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Birney, R.
Biscans, S.
Bitossi, M.
Biwer, C.
Bizouard, M. A.
Blackburn, J. K.
Blair, C. D.
Blair, D.
Bloemen, S.
Bock, O.
Bodiya, T. P.
Boer, M.
Bogaert, G.
Bojtos, P.
Bond, C.
Bondu, F.
Bonnand, R.
Bork, R.
Born, M.
Boschi, V.
Bose, Sukanta
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Branchesi, M.
Branco, V.
Brau, J. E.
Briant, T.
Brillet, A.
Brinkmann, M.
Brisson, V.
Brockill, P.
Brooks, A. F.
Brown, D. A.
Brown, D.
Brown, D. D.
Brown, N. M.
Buchanan, C. C.
Buikema, A.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Buskulic, D.
Buy, C.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Calderon Bustillo, J.
Calloni, E.
Camp, J. B.
Cannon, K. C.
Cao, J.
Capano, C. D.
Capocasa, E.
Carbognani, F.
Caride, S.
Diaz, J. Casanueva
Casentini, C.
Caudill, S.
Cavaglia, M.
Cavalier, F.
Cavalieri, R.
Celerier, C.
Cella, G.
Cepeda, C.
Baiardi, L. Cerboni
Cerretani, G.
Cesarini, E.
Chakraborty, R.
Chalermsongsak, T.
Chamberlin, S. J.
Chao, S.
Charlton, P.
Chassande-Mottin, E.
Chen, X.
Chen, Y.
Cheng, C.
Chincarini, A.
Chiummo, A.
Cho, H. S.
Cho, M.
Chow, J. H.
Christensen, N.
Chu, Q.
Chua, S.
Chung, S.
Ciani, G.
Clara, F.
Clark, J. A.
Cleva, F.
Coccia, E.
Cohadon, P. -F.
Colla, A.
Collette, C. G.
Colombini, M.
Constancio, M., Jr.
Conte, A.
Conti, L.
Cook, D.
Corbitt, T. R.
Cornish, N.
Corsi, A.
Costa, C. A.
Coughlin, M. W.
Coughlin, S. B.
Coulon, J. -P.
Countryman, S. T.
Couvares, P.
Coward, D. M.
Cowart, M. J.
Coyne, D. C.
Coyne, R.
Craig, K.
Creighton, J. D. E.
Creighton, T.
Cripe, J.
Crowder, S. G.
Cumming, A.
Cunningham, L.
Cuoco, E.
Dal Canton, T.
Damjanic, M. D.
Danilishin, S. L.
D'Antonio, S.
Danzmann, K.
Darman, N. S.
Dattilo, V.
Dave, I.
Daveloza, H. P.
Davier, M.
Davies, G. S.
Daw, E. J.
Day, R.
DeBra, D.
Debreczeni, G.
Degallaix, J.
De Laurentis, M.
Deleglise, S.
Del Pozzo, W.
Denker, T.
Dent, T.
Dereli, H.
Dergachev, V.
De Rosa, R.
DeRosa, R. T.
DeSalvo, R.
Dhurandhar, S.
Diaz, M. C.
Di Fiore, L.
Di Giovanni, M.
Di Lieto, A.
Di Palma, I.
Di Virgilio, A.
Dojcinoski, G.
Dolique, V.
Dominguez, E.
Donovan, F.
Dooley, K. L.
Doravari, S.
Douglas, R.
Downes, T. P.
Drago, M.
Drever, R. W. P.
Driggers, J. C.
Du, Z.
Ducrot, M.
Dwyer, S. E.
Edo, T. B.
Edwards, M. C.
Edwards, M.
Effler, A.
Eggenstein, H. -B.
Ehrens, P.
Eichholz, J. M.
Eikenberry, S. S.
Essick, R. C.
Etzel, T.
Evans, M.
Evans, T. M.
Everett, R.
Factourovich, M.
Fafone, V.
Fairhurst, S.
Fang, Q.
Farinon, S.
Farr, B.
Farr, W. M.
Favata, M.
Fays, M.
Fehrmann, H.
Fejer, M. M.
Feldbaum, D.
Ferrante, I.
Ferreira, E. C.
Ferrini, F.
Fidecaro, F.
Fiori, I.
Fisher, R. P.
Flaminio, R.
Fournier, J. -D.
Franco, S.
Frasca, S.
Frasconi, F.
Frede, M.
Frei, Z.
Freise, A.
Frey, R.
Fricke, T. T.
Fritschel, P.
Frolov, V. V.
Fulda, P.
Fyffe, M.
Gabbard, H. A. G.
Gair, J. R.
Gammaitoni, L.
Gaonkar, S. G.
Garufi, F.
Gatto, A.
Gehrels, N.
Gemme, G.
Gendre, B.
Genin, E.
Gennai, A.
Gergely, L. A.
Germain, V.
Ghosh, A.
Ghosh, S.
Giaime, J. A.
Giardina, K. D.
Giazotto, A.
Gleason, J. R.
Goetz, E.
Goetz, R.
Gondan, L.
Gonzalez, G.
Gonzalez, J.
Gopakumar, A.
Gordon, N. A.
Gorodetsky, M. L.
Gossan, S. E.
Gosselin, M.
Gossler, S.
Gouaty, R.
Graef, C.
Graff, P. B.
Granata, M.
Grant, A.
Gras, S.
Gray, C.
Greco, G.
Groot, P.
Grote, H.
Grover, K.
Grunewald, S.
Guidi, G. M.
Guido, C. J.
Guo, X.
Gupta, A.
Gupta, M. K.
Gushwa, K. E.
Gustafson, E. K.
Gustafson, R.
Hacker, J. J.
Hall, B. R.
Hall, E. D.
Hammer, D.
Hammond, G.
Haney, M.
Hanke, M. M.
Hanks, J.
Hanna, C.
Hannam, M. D.
Hanson, J.
Hardwick, T.
Harms, J.
Harry, G. M.
Harry, I. W.
Hart, M. J.
Hartman, M. T.
Haster, C. -J.
Haughian, K.
Heidmann, A.
Heintze, M. C.
Heitmann, H.
Hello, P.
Hemming, G.
Hendry, M.
Heng, I. S.
Hennig, J.
Heptonstall, A. W.
Heurs, M.
Hild, S.
Hoak, D.
Hodge, K. A.
Hoelscher-Obermaier, J.
Hofman, D.
Hollitt, S. E.
Holt, K.
Hopkins, P.
Hosken, D. J.
Hough, J.
Houston, E. A.
Howell, E. J.
Hu, Y. M.
Huang, S.
Huerta, E. A.
Huet, D.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh, M.
Huynh-Dinh, T.
Idrisy, A.
Indik, N.
Ingram, D. R.
Inta, R.
Islas, G.
Isler, J. C.
Isogai, T.
Iyer, B. R.
Izumi, K.
Jacobson, M. B.
Jang, H.
Jaranowski, P.
Jawahar, S.
Ji, Y.
Jimenez-Forteza, F.
Johnson, W. W.
Jones, D. I.
Jones, R.
Jonker, R. J. G.
Ju, L.
Haris, K.
Kalogera, V.
Kandhasamy, S.
Kang, G.
Kanner, J. B.
Karki, S.
Karlen, J. L.
Kasprzack, M.
Katsavounidis, E.
Katzman, W.
Kaufer, S.
Kaur, T.
Kawabe, K.
Kawazoe, F.
Kefelian, F.
Kehl, M. S.
Keitel, D.
Kelecsenyi, N.
Kelley, D. B.
Kells, W.
Kerrigan, J.
Key, J. S.
Khalili, F. Y.
Khan, Z.
Khazanov, E. A.
Kijbunchoo, N.
Kim, C.
Kim, K.
Kim, N. G.
Kim, N.
Kim, Y. -M.
King, E. J.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Klimenko, S.
Kline, J. T.
Koehlenbeck, S. M.
Kokeyama, K.
Koley, S.
Kondrashov, V.
Korobko, M.
Korth, W. Z.
Kowalska, I.
Kozak, D. B.
Kringel, V.
Krishnan, B.
Krolak, A.
Krueger, C.
Kuehn, G.
Kumar, A.
Kumar, P.
Kuo, L.
Kutynia, A.
Lackey, B. D.
Landry, M.
Lantz, B.
Lasky, P. D.
Lazzarini, A.
Lazzaro, C.
Leaci, P.
Leavey, S.
Lebigot, E. O.
Lee, C. H.
Lee, H. K.
Lee, H. M.
Lee, J.
Lee, J. P.
Leonardi, M.
Leong, J. R.
Leroy, N.
Letendre, N.
Levin, Y.
Levine, B. M.
Lewis, J. B.
Li, T. G. F.
Libson, A.
Lin, A. C.
Littenberg, T. B.
Lockerbie, N. A.
Lockett, V.
Lodhia, D.
Logue, J.
Lombardi, A. L.
Lorenzini, M.
Loriette, V.
Lormand, M.
Losurdo, G.
Lough, J. D.
Lubinski, M. J.
Lueck, H.
Lundgren, A. P.
Luo, J.
Lynch, R.
Ma, Y.
Macarthur, J.
Macdonald, E. P.
MacDonald, T.
Machenschalk, B.
MacInnis, M.
Macleod, D. M.
Madden-Fong, D. X.
Magana-Sandoval, F.
Magee, R. M.
Mageswaran, M.
Majorana, E.
Maksimovic, I.
Malvezzi, V.
Man, N.
Mandel, I.
Mandic, V.
Mangano, V.
Mangini, N. M.
Mansell, G. L.
Manske, M.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Marka, Z.
Markosyan, A. S.
Maros, E.
Martelli, F.
Martellini, L.
Martin, I. W.
Martin, R. M.
Martynov, D. V.
Marx, J. N.
Mason, K.
Masserot, A.
Massinger, T. J.
Matichard, F.
Matone, L.
Mavalvala, N.
Mazumder, N.
Mazzolo, G.
McCarthy, R.
McClelland, D. E.
McCormick, S.
McGuire, S. C.
McIntyre, G.
McIver, J.
McWilliams, S. T.
Meacher, D.
Meadors, G. D.
Mehmet, M.
Meidam, J.
Meinders, M.
Melatos, A.
Mendell, G.
Mercer, R. A.
Merzougui, M.
Meshkov, S.
Messenger, C.
Messick, C.
Meyers, P. M.
Mezzani, F.
Miao, H.
Michel, C.
Middleton, H.
Mikhailov, E. E.
Milano, L.
Miller, J.
Millhouse, M.
Minenkov, Y.
Ming, J.
Mirshekari, S.
Mishra, C.
Mitra, S.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moe, B.
Moggi, A.
Mohan, M.
Mohapatra, S. R. P.
Montani, M.
Moore, B. C.
Moraru, D.
Moreno, G.
Morriss, S. R.
Mossavi, K.
Mours, B.
Mow-Lowry, C. M.
Mueller, C. L.
Mueller, G.
Mukherjee, A.
Mukherjee, S.
Mullavey, A.
Munch, J.
Murphy, D. J.
Murray, P. G.
Mytidis, A.
Nagy, M. F.
Nardecchia, I.
Naticchioni, L.
Nayak, R. K.
Necula, V.
Nedkova, K.
Nelemans, G.
Neri, M.
Newton, G.
Nguyen, T. T.
Nielsen, A. B.
Nitz, A.
Nocera, F.
Nolting, D.
Normandin, M. E. N.
Nuttall, L. K.
Ochsner, E.
O'Dell, J.
Oelker, E.
Ogin, G. H.
Oh, J. J.
Oh, S. H.
Ohme, F.
Okounkova, M.
Oppermann, P.
Oram, R.
O'Reilly, B.
Ortega, W. E.
O'Shaughnessy, R.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Padilla, C. T.
Pai, A.
Pai, S. A.
Palamos, J. R.
Palashov, O.
Palomba, C.
Pal-Singh, A.
Pan, H.
Pan, Y.
Pankow, C.
Pannarale, F.
Pant, B. C.
Paoletti, F.
Papa, M. A.
Paris, H. R.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Patrick, Z.
Pedraza, M.
Pekowsky, L.
Pele, A.
Penn, S.
Perreca, A.
Phelps, M.
Piccinni, O.
Pichot, M.
Pickenpack, M.
Piergiovanni, F.
Pierro, V.
Pillant, G.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Poeld, J. H.
Poggiani, R.
Post, A.
Powell, J.
Prasad, J.
Predoi, V.
Premachandra, S. S.
Prestegard, T.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prix, R.
Prodi, G. A.
Prokhorov, L.
Puncken, O.
Punturo, M.
Puppo, P.
Puerrer, M.
Qin, J.
Quetschke, V.
Quintero, E. A.
Quitzow-James, R.
Raab, F. J.
Rabeling, D. S.
Racz, I.
Radkins, H.
Raffai, P.
Raja, S.
Rakhmanov, M.
Rapagnani, P.
Raymond, V.
Razzano, M.
Re, V.
Reed, C. M.
Regimbau, T.
Rei, L.
Reid, S.
Reitze, D. H.
Ricci, F.
Riles, K.
Robertson, N. A.
Robie, R.
Robinet, F.
Rocchi, A.
Rodger, A. S.
Rolland, L.
Rollins, J. G.
Roma, V. J.
Romano, R.
Romanov, G.
Romie, J. H.
Rosinska, D.
Rowan, S.
Ruediger, A.
Ruggi, P.
Ryan, K.
Sachdev, S.
Sadecki, T.
Sadeghian, L.
Saleem, M.
Salemi, F.
Sammut, L.
Sanchez, E.
Sandberg, V.
Sanders, J. R.
Santiago-Prieto, I.
Sassolas, B.
Saulson, P. R.
Savage, R.
Sawadsky, A.
Schale, P.
Schilling, R.
Schmidt, P.
Schnabel, R.
Schofield, R. M. S.
Schoenbeck, A.
Schreiber, E.
Schuette, D.
Schutz, B. F.
Scott, J.
Scott, S. M.
Sellers, D.
Sentenac, D.
Sequino, V.
Sergeev, A.
Serna, G.
Sevigny, A.
Shaddock, D. A.
Shaffery, P.
Shah, S.
Shahriar, M. S.
Shaltev, M.
Shao, Z.
Shapiro, B.
Shawhan, P.
Shoemaker, D. H.
Sidery, T. L.
Siellez, K.
Siemens, X.
Sigg, D.
Silva, A. D.
Simakov, D.
Singer, A.
Singer, L. P.
Singh, R.
Sintes, A. M.
Slagmolen, B. J. J.
Smith, J. R.
Smith, N. D.
Smith, R. J. E.
Son, E. J.
Sorazu, B.
Souradeep, T.
Srivastava, A. K.
Staley, A.
Stebbins, J.
Steinke, M.
Steinlechner, J.
Steinlechner, S.
Steinmeyer, D.
Stephens, B. C.
Steplewski, S.
Stevenson, S. P.
Stone, R.
Strain, K. A.
Straniero, N.
Strauss, N. A.
Strigin, S.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sun, L.
Sutton, P. J.
Swinkels, B. L.
Szczepanczyk, M. J.
Tacca, M.
Talukder, D.
Tanner, D. B.
Tapai, M.
Tarabrin, S. P.
Taracchini, A.
Taylor, R.
Theeg, T.
Thirugnanasambandam, M. P.
Thomas, M.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Tiwari, S.
Tiwari, V.
Tokmakov, K. V.
Tomlinson, C.
Tonelli, M.
Torres, C. V.
Torrie, C. I.
Travasso, F.
Traylor, G.
Trifiro, D.
Tringali, M. C.
Tse, M.
Turconi, M.
Ugolini, D.
Unnikrishnan, C. S.
Urban, A. L.
Usman, S. A.
Vahlbruch, H.
Vajente, G.
Valdes, G.
Vallisneri, M.
van Bakel, N.
van Beuzekom, M.
van den Brand, J. F. J.
van den Broeck, C.
van der Schaaf, L.
van der Sluys, M. V.
van Heijningen, J.
van Veggel, A. A.
Vansuch, G.
Vardaro, M.
Vass, S.
Vasuth, M.
Vaulin, R.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Venkateswara, K.
Verkindt, D.
Vetrano, F.
Vicere, A.
Vinet, J. -Y.
Vitale, S.
Vo, T.
Vocca, H.
Vorvick, C.
Vousden, W. D.
Vyatchanin, S. P.
Wade, A. R.
Wade, M.
Wade, L. E.
Walker, M.
Wallace, L.
Walsh, S.
Wang, G.
Wang, H.
Wang, M.
Wang, X.
Ward, R. L.
Warner, J.
Was, M.
Weaver, B.
Wei, L. -W.
Weinert, M.
Weinstein, A. J.
Weiss, R.
Welborn, T.
Wen, L.
Wessels, P.
Westphal, T.
Wette, K.
Whelan, J. T.
White, D. J.
Whiting, B. F.
Williams, K. J.
Williams, L.
Williams, R. D.
Williamson, A. R.
Willis, J. L.
Willke, B.
Wimmer, M. H.
Winkler, W.
Wipf, C. C.
Wittel, H.
Woan, G.
Worden, J.
Yablon, J.
Yakushin, I.
Yam, W.
Yamamoto, H.
Yancey, C. C.
Yvert, M.
Zadrozny, A.
Zangrando, L.
Zanolin, M.
Zendri, J. -P.
Zhang, Fan
Zhang, L.
Zhang, M.
Zhang, Y.
Zhao, C.
Zhou, M.
Zhu, X. J.
Zucker, M. E.
Zuraw, S. E.
Zweizig, J.
TI Search of the Orion spur for continuous gravitational waves using a
loosely coherent algorithm on data from LIGO interferometers
SO PHYSICAL REVIEW D
LA English
DT Article
ID PULSAR
AB We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87 degrees in diameter and centered on 20(h)10(m)54.71(s) + 33 degrees 33'25.29 '', and the other (B) is 7.45 degrees in diameter and centered on 8(h)35(m)20.61(s) - 46 degrees 49'25.151 ''. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5 x 10(-9) Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h(0) of 6.3 x 10(-25), while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 x 10(-24) for all polarizations and sky locations.
C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Dooley, K. L.; Drever, R. W. P.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M. B.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA.
[Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy.
[Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Sez Napoli, Ist Nazl Fis Nucl, I-80126 Naples, Italy.
[Ackley, K.; Amariutei, D. V.; Brown, D.; Ciani, G.; Eichholz, J. M.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J. R.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA.
[Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; Doravari, S.; Evans, T. M.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA.
[Adams, T.; Colla, A.; Coughlin, S. B.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Macdonald, E. P.; Ohme, F.; Pannarale, F.; Predoi, V.; Puerrer, M.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales.
[Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France.
[Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy.
[Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bock, O.; Born, M.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Damjanic, M. D.; Danzmann, K.; Denker, T.; Dent, T.; Eggenstein, H. -B.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Goetz, E.; Gossler, S.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Koehlenbeck, S. M.; Korobko, M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mehmet, M.; Meinders, M.; Mossavi, K.; Nielsen, A. B.; Oppermann, P.; Pal-Singh, A.; Pickenpack, M.; Poeld, J. H.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Vahlbruch, H.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Agathos, M.; Agatsuma, K.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.] NIKHEF H, Sci Pk, NL-1098 XG Amsterdam, Netherlands.
[Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Lee, J. P.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Yam, W.; Zhang, Fan; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA.
[Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.; Weiss, R.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil.
[Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India.
[Ain, A.; Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Hammer, D.; Huynh, M.; Kline, J. T.; Manske, M.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, M.; Wade, L. E.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA.
[Allen, B.; Aufmuth, P.; Danzmann, K.; Hoelscher-Obermaier, J.; Kaufer, S.; Krueger, C.; Lueck, H.; Sawadsky, A.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Allocca, A.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy.
[Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez, J.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Andersen, M.; Bassiri, R.; Byer, R. L.; Celerier, C.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Madden-Fong, D. X.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.; Stebbins, J.] Stanford Univ, Stanford, CA 94305 USA.
[Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA.
[Areeda, J. S.; Hacker, J. J.; Islas, G.; Lockett, V.; Padilla, C. T.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France.
[Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Majorana, E.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Babak, S.; Behnke, B.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany.
[Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA.
[Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy.
[Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Ballardin, G.; Basti, A.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy.
[Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Lackey, B. D.; Lough, J. D.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA.
[Barclay, S. E.; Barr, B.; Bell, A. S.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rodger, A. S.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Clara, F.; Cook, D.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA.
[Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France.
[Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA.
[Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez, J.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy.
[Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland.
[Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
[Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Grover, K.; Haster, C. -J.; Lodhia, D.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Sidery, T. L.; Stevenson, S. P.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy.
[Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Bhandare, R.; Dave, I.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India.
[Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia.
[Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland.
[Blair, C. D.; Blair, D.; Chen, X.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia.
[Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; van der Sluys, M. V.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Nice Sophia Antipolis, ARTEMIS, CNRS, F-06304 Nice, France.
[Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Observ Cote Azur, F-06304 Nice, France.
[Bojtos, P.; Frei, Z.; Gondan, L.; Kelecsenyi, N.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary.
[Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France.
[Bose, Sukanta; Hall, B. R.; Magee, R. M.; Mazumder, N.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy.
[Branco, V.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA.
[Briant, T.; Chen, X.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] ENS PSL Res Univ, CNRS, Coll France, Lab Kastler Brossel,UPMC Sorbonne Univ, F-75005 Paris, France.
[Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA.
[Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, LMA, CNRS, IN2P3, F-69622 Lyon, France.
[Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears IEEC, E-07122 Palma de Mallorca, Spain.
[Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy.
[Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Goetz, E.; Gustafson, R.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan.
[Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia.
[Chen, Y.; Gossan, S. E.; Okounkova, M.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA.
[Cho, H. S.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea.
[Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia.
[Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA.
[Coccia, E.; Fafone, V.; Lorenzini, M.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
[Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium.
[Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Darman, N. S.; Lasky, P. D.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia.
[Creighton, T.; Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA.
[Daw, E. J.; Edo, T. B.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary.
[Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA.
[Dominguez, E.; Ortega, W. E.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trent, Dipartimento Fis, I-38123 Trento, Italy.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy.
[Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA.
[Farr, B.] Univ Chicago, Chicago, IL 60637 USA.
[Gair, J. R.] Univ Cambridge, Cambridge CB2 1TN, England.
[Gergely, L. A.; Tapai, M.] Univ Szeged, Dom ter 9, H-6720 Szeged, Hungary.
[Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India.
[Gupta, M. K.; Khan, Z.; Kumar, A.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India.
[Harry, G. M.] Amer Univ, Washington, DC 20016 USA.
[Hoak, D.; Karlen, J. L.; Kerrigan, J.; Lombardi, A. L.; Mangini, N. M.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA.
[Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA.
[Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea.
[Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland.
[Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland.
[Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum Kerala 695016, India.
[Kalogera, V.; Littenberg, T. B.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA.
[Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, K.; Lee, H. K.; Lee, J.] Hanyang Univ, Seoul 133791, South Korea.
[Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia.
[Lee, H. M.; Shaffery, P.] Seoul Natl Univ, Seoul 151742, South Korea.
[Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France.
[Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy.
[McGuire, S. C.; Williams, K. J.] Southern Univ, Baton Rouge, LA 70813 USA.
[McGuire, S. C.; Williams, K. J.] A&M Coll, Baton Rouge, LA 70813 USA.
[Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil.
[Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India.
[O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Ogin, G. H.] Whitman Coll, 280 Boyer Ave, Walla Walla, WA 99362 USA.
[Oh, J. J.; Oh, S. H.; Son, E. J.] Nat Inst Math Sci, Daejeon 305390, South Korea.
[O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[Rosinska, D.] Astron Inst, PL-65265 Zielona Gora, Poland.
[Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
[Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy.
[Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA.
[Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA.
[Vansuch, G.] Emory Univ, Atlanta, GA 30322 USA.
RP Aasi, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA.
RI Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo,
Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini,
Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Steinlechner,
Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey,
Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela
Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms,
Jan/J-4359-2012; Lazzaro, Claudia/L-2986-2016; De Laurentis,
Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Groot,
Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef,
Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante,
Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Garufi,
Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo,
Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Howell,
Eric/H-5072-2014; Gemme, Gianluca/C-7233-2008; Gorodetsky,
Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov,
Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann,
Antoine/G-4295-2016; Strain, Kenneth/D-5236-2011; Gammaitoni,
Luca/B-5375-2009; Hild, Stefan/A-3864-2010; Rocchi, Alessio/O-9499-2015;
Zhu, Xingjiang/E-1501-2016; prodi, giovanni/B-4398-2010; Bell,
Angus/E-7312-2011; Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012;
Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella
Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi,
Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Frasconi,
Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg,
Daniel/I-4308-2015; Kumar, Prem/B-6691-2009
OI Kanner, Jonah/0000-0001-8115-0577; Mandel, Ilya/0000-0002-6134-8946;
Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772;
Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713;
Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628;
Zweizig, John/0000-0002-1521-3397; Del Pozzo,
Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Granata,
Massimo/0000-0003-3275-1186; Guidi, Gianluca/0000-0002-3061-9870; Drago,
Marco/0000-0002-3738-2431; Collette, Christophe/0000-0002-4430-3703;
Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315;
Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515;
Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197;
Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy,
Richard/0000-0001-5832-8517; Boschi, Valerio/0000-0001-8665-2293; Gatto,
Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298;
Vocca, Helios/0000-0002-1200-3917; Swinkels, Bas/0000-0002-3066-3601;
Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo,
Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338;
Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin,
Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548;
Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636;
Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora
Vittoria/0000-0002-2237-7533; Lazzaro, Claudia/0000-0001-5993-3372; De
Laurentis, Martina/0000-0002-3815-4078; Groot, Paul/0000-0002-4488-726X;
Vecchio, Alberto/0000-0002-6254-1617; Graef,
Christian/0000-0002-4535-2603; Ferrante, Isidoro/0000-0002-0083-7228;
Garufi, Fabio/0000-0003-1391-6168; McClelland,
David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X;
Travasso, Flavio/0000-0002-4653-6156; Howell, Eric/0000-0001-7891-2817;
Gemme, Gianluca/0000-0002-1127-7406; Gorodetsky,
Michael/0000-0002-5159-2742; Heidmann, Antoine/0000-0002-0784-5175;
Strain, Kenneth/0000-0002-2066-5355; Gammaitoni,
Luca/0000-0002-4972-7062; Rocchi, Alessio/0000-0002-1382-9016; Zhu,
Xingjiang/0000-0001-7049-6468; prodi, giovanni/0000-0001-5256-915X;
Bell, Angus/0000-0003-1523-0821; Puppo, Paola/0000-0003-4677-5015; Iyer,
Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974;
Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca,
Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793;
Frasconi, Franco/0000-0003-4204-6587; Vicere,
Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526;
FU Science and Technology Facilities Council of the United Kingdom;
Max-Planck-Society; Australian Research Council; International Science
Linkages program of the Commonwealth of Australia; Council of Scientific
and Industrial Research of India; Istituto Nazionale di Fisica Nucleare
of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria
d'Economia Hisenda i Innovacio of the Govern de les Illes Balears;
Foundation for Fundamental Research on Matter - Netherlands Organisation
for Scientific Research; Polish Ministry of Science and Higher
Education; FOCUS Programme of Foundation for Polish Science; Royal
Society; Scottish Funding Council; Scottish Universities Physics
Alliance; National Aeronautics and Space Administration; Carnegie Trust;
Leverhulme Trust; David and Lucile Packard Foundation; Alfred P. Sloan
Foundation
FX The authors gratefully acknowledge the support of the United States
National Science Foundation for the construction and operation of the
LIGO Laboratory, the Science and Technology Facilities Council of the
United Kingdom, the Max-Planck-Society, and the State of
Niedersachsen/Germany for support of the construction and operation of
the GEO600 detector, and the Nucleare and the French Centre National de
la Recherche Scientifique for the construction and operation of the
Virgo detector. The authors also gratefully acknowledge the support of
the research by these agencies and by the Australian Research Council,
the International Science Linkages program of the Commonwealth of
Australia, the Council of Scientific and Industrial Research of India,
the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish
Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i
Innovacio of the Govern de les Illes Balears, the Foundation for
Fundamental Research on Matter supported by the Netherlands Organisation
for Scientific Research, the Polish Ministry of Science and Higher
Education, the FOCUS Programme of Foundation for Polish Science, the
Royal Society, the Scottish Funding Council, the Scottish Universities
Physics Alliance, The National Aeronautics and Space Administration, the
Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard
Foundation, the Research Corporation, and the Alfred P. Sloan
Foundation. This document has been assigned LIGO Laboratory document
number LIGO-P1500034-v23.
NR 30
TC 2
Z9 2
U1 6
U2 35
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 17
PY 2016
VL 93
IS 4
AR 042006
DI 10.1103/PhysRevD.93.042006
PG 14
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DD9LT
UT WOS:000370247800001
ER
PT J
AU Griko, YV
Yan, XL
AF Griko, Yuri V.
Yan, Xiaoli
TI Protective Effect of Pyruvate Against Radiation-Induced Damage in
Collagenized Tissues
SO BIOPHYSICAL JOURNAL
LA English
DT Meeting Abstract
CT 60th Annual Meeting of the Biophysical-Society
CY FEB 27-MAR 02, 2016
CL Los Angeles, CA
SP Biophys Soc
C1 [Griko, Yuri V.] NASA, Life Sci, Ames Res Ctr, Mountain View, CA USA.
[Yan, Xiaoli] Clearant Inc, Gaithersburg, MD USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
EI 1542-0086
J9 BIOPHYS J
JI Biophys. J.
PD FEB 16
PY 2016
VL 110
IS 3
SU 1
MA 1055-Pos
BP 212A
EP 212A
PG 1
WC Biophysics
SC Biophysics
GA DK7XZ
UT WOS:000375141600033
ER
PT J
AU Kandel, S
Larsen, AB
Jain, A
Vaidehi, N
AF Kandel, Saugat
Larsen, Adrien B.
Jain, Abhinandan
Vaidehi, Nagarajan
TI Gneimosim: Multiscale Internal Coordinates Molecular Dynamics for
Proteins
SO BIOPHYSICAL JOURNAL
LA English
DT Meeting Abstract
CT 60th Annual Meeting of the Biophysical-Society
CY FEB 27-MAR 02, 2016
CL Los Angeles, CA
SP Biophys Soc
C1 [Kandel, Saugat; Larsen, Adrien B.; Vaidehi, Nagarajan] City Hope, Duarte, CA USA.
[Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA USA.
NR 0
TC 0
Z9 0
U1 3
U2 3
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
EI 1542-0086
J9 BIOPHYS J
JI Biophys. J.
PD FEB 16
PY 2016
VL 110
IS 3
SU 1
MA 3161-Pos
BP 641A
EP 641A
PG 1
WC Biophysics
SC Biophysics
GA DK7YN
UT WOS:000375143200223
ER
PT J
AU Harada, Y
Mitchell, DL
Halekas, JS
McFadden, JP
Mazelle, C
Connerney, JEP
Espley, J
Brain, DA
Larson, DE
Lillis, RJ
Hara, T
Livi, R
DiBraccio, GA
Ruhunusiri, S
Jakosky, BM
AF Harada, Y.
Mitchell, D. L.
Halekas, J. S.
McFadden, J. P.
Mazelle, C.
Connerney, J. E. P.
Espley, J.
Brain, D. A.
Larson, D. E.
Lillis, R. J.
Hara, T.
Livi, R.
DiBraccio, G. A.
Ruhunusiri, S.
Jakosky, B. M.
TI MAVEN observations of energy-time dispersed electron signatures in
Martian crustal magnetic fields
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE energy-time dispersion; electrons; Mars; MAVEN; crustal magnetic fields
ID PLASMA ENVIRONMENT; MARS; MAGNETOSPHERE; ION; RECONNECTION; PROTON
AB Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.
C1 [Harada, Y.; Mitchell, D. L.; McFadden, J. P.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Mazelle, C.] CNRS, IRAP, Toulouse, France.
[Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France.
[Connerney, J. E. P.; Espley, J.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
RP Harada, Y (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
EM haraday@ssl.berkeley.edu
RI Lillis, Robert/A-3281-2008;
OI Lillis, Robert/0000-0003-0578-517X; Halekas, Jasper/0000-0001-5258-6128
FU NASA MAVEN Project
FX The authors wish to acknowledge great support from the team members of
the MAVEN mission. The research presented in this paper was funded by
the NASA MAVEN Project, and the French space agency CNES MAVEN data are
publicly available through the Planetary Data System.
NR 31
TC 5
Z9 5
U1 2
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2016
VL 43
IS 3
BP 939
EP 944
DI 10.1002/2015GL067040
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA DG4QI
UT WOS:000372056600001
ER
PT J
AU Melgar, D
Fan, WY
Riquelme, S
Geng, JH
Liang, CR
Fuentes, M
Vargas, G
Allen, RM
Shearer, PM
Fielding, EJ
AF Melgar, Diego
Fan, Wenyuan
Riquelme, Sebastian
Geng, Jianghui
Liang, Cunren
Fuentes, Mauricio
Vargas, Gabriel
Allen, Richard M.
Shearer, Peter M.
Fielding, Eric J.
TI Slip segmentation and slow rupture to the trench during the 2015,
M(w)8.3 Illapel, Chile earthquake
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE earthquake seismology; tsunami; subfuction zone
ID MEGATHRUST EARTHQUAKE; SUBDUCTION ZONE; GPS
AB The 2015 M(w)8.3 Illapel, Chile earthquake is the latest megathrust event on the central segment of that subduction zone. It generated strong ground motions and a large (up to 11m runup) tsunami which prompted the evacuation of more than 1 million people in the first hours following the event. Observations during recent earthquakes suggest that these phenomena can be associated with rupture on different parts of the megathrust. The deep portion generates strong shaking while slow, large slip on the shallow fault is responsible for the tsunami. It is unclear whether all megathrusts can have shallow slip during coseismic rupture and what physical properties regulate this. Here we show that the Illapel event ruptured both deep and shallow segments with substantial slip. We resolve a kinematic slip model using regional geophysical observations and analyze it jointly with teleseismic backprojection. We find that the shallow and deep portions of the megathrust are segmented and have fundamentally different behavior. We forward calculate local tsunami propagation from the resolved slip and find good agreement with field measurements, independently validating the slip model. These results show that the central portion of the Chilean subduction zone has accumulated a significant shallow slip deficit and indicates that, given enough time, shallow slip might be possible everywhere along the subduction zone.
C1 [Melgar, Diego; Allen, Richard M.] Univ Calif Berkeley, Seismol Lab, Berkeley, CA 94720 USA.
[Fan, Wenyuan; Shearer, Peter M.] Univ Calif San Diego, Scripps Inst Oceanog, Cecil H & Ida M Green Inst Geophys & Planetary Ph, San Diego, CA 92103 USA.
[Riquelme, Sebastian] Univ Chile, Ctr Sismol Nacl, Santiago, Chile.
[Geng, Jianghui] Wuhan Univ, GNSS Ctr, Wuhan 430072, Peoples R China.
[Liang, Cunren; Fielding, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Fuentes, Mauricio] Univ Chile, Dept Geofis, Santiago, Chile.
[Vargas, Gabriel] Univ Chile, Dept Geog, Santiago, Chile.
RP Melgar, D (reprint author), Univ Calif Berkeley, Seismol Lab, Berkeley, CA 94720 USA.
EM dmelgar@berkeley.edu
RI fan, wenyuan/I-2220-2016; Vargas, Victor Gabriel/I-6826-2016; Fan,
Wenyuan/M-2748-2016; Shearer, Peter/K-5247-2012; Fielding,
Eric/A-1288-2007; GEOFON, GlobalSeismicNetwork/E-4273-2012
OI fan, wenyuan/0000-0002-2983-8240; Vargas, Victor
Gabriel/0000-0002-7521-7891; Fan, Wenyuan/0000-0002-2983-8240; Shearer,
Peter/0000-0002-2992-7630; Fielding, Eric/0000-0002-6648-8067;
FU Gordon and Betty Moore Foundation [GBMF3024]; National Science
Foundation [EAR-1111111]; NASA Earth Surface and Interior program
FX The teleseismic seismic data were provided by the Data Management Center
(DMC) of the Incorporated Research Institutions for Seismology (IRIS).
Local seismic and geodetic data are provided by the Centro Sismologico
Nacional (CSN) and are available upon request. Tide gauges are operated
by the Servicio Hidrografico Oceanografico de la Armada de Chile (SHOA)
and data is available at http://www.ioc-sealevel-monitoring.org/.
Sentinel-1 interferograms are derived works of Copernicus data. Original
Sentinel-1 data is available from ESA and processed interferograms are
available from the UNAVCO InSAR archive
(https://winsar.unavco.org/portal/insar/). We extend our thanks to
Roland Burgmann and Marcelo Lagos for helpful discussions and Piyush
Agram for use of the prototype Sentinel-1 TOPS processing programs. We
are indebted to J. Gonzalez and A. Villalobos for field support. We
thank two anonymous reviewers for constructive critiques which improved
the content and presentation of this manuscript. This research was
funded by the Gordon and Betty Moore Foundation through grant GBMF3024
to UC Berkeley. Funding at the Scripps Institution of Oceanography is
through National Science Foundation grant EAR-1111111. Part of this
research was supported by the NASA Earth Surface and Interior program
and performed at the Jet Propulsion Laboratory with support for an
appointment to the NASA Postdoctoral Program, California Institute of
Technology.
NR 26
TC 22
Z9 22
U1 9
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2016
VL 43
IS 3
BP 961
EP 966
DI 10.1002/2015GL067369
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA DG4QI
UT WOS:000372056600004
ER
PT J
AU Alves, LR
Da Silva, LA
Souza, VM
Sibeck, DG
Jauer, PR
Vieira, LEA
Walsh, BM
Silveira, MVD
Marchezi, JP
Rockenbach, M
Dal Lago, A
Mendes, O
Tsurutani, BT
Koga, D
Kanekal, SG
Baker, DN
Wygant, JR
Kletzing, CA
AF Alves, L. R.
Da Silva, L. A.
Souza, V. M.
Sibeck, D. G.
Jauer, P. R.
Vieira, L. E. A.
Walsh, B. M.
Silveira, M. V. D.
Marchezi, J. P.
Rockenbach, M.
Dal Lago, A.
Mendes, O.
Tsurutani, B. T.
Koga, D.
Kanekal, S. G.
Baker, D. N.
Wygant, J. R.
Kletzing, C. A.
TI Outer radiation belt dropout dynamics following the arrival of two
interplanetary coronal mass ejections
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE relativistic electron loss; magnetopause shadowing; nonadiabatic radial
transport; adiabatic radial transport; outer radiation belt dynamics
ID WAVE-PARTICLE INTERACTIONS; WHISTLER-MODE CHORUS; RELATIVISTIC
ELECTRONS; GEOMAGNETIC STORMS; SOLAR-WIND; LOCAL ACCELERATION; LOSS
MECHANISMS; RING CURRENT; 30 SEPTEMBER; PRECIPITATION
AB Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, using satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks/sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (MC) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 daylong quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown approximate to 2 to 5MeV energy, equatorially mirroring electrons with initial values of L5.5 can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shown to be viable mechanisms.
C1 [Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Jauer, P. R.; Vieira, L. E. A.; Marchezi, J. P.; Rockenbach, M.; Dal Lago, A.; Mendes, O.; Koga, D.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil.
[Sibeck, D. G.; Silveira, M. V. D.; Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Walsh, B. M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
[Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
RP Alves, LR (reprint author), Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil.
EM livia.alves@inpe.br
RI Vieira, Luis Eduardo/A-5548-2008;
OI Vieira, Luis Eduardo/0000-0002-9376-475X; Kletzing,
Craig/0000-0002-4136-3348; Alves, Livia/0000-0002-5680-7271
NR 61
TC 3
Z9 3
U1 2
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2016
VL 43
IS 3
BP 978
EP 987
DI 10.1002/2015GL067066
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA DG4QI
UT WOS:000372056600006
ER
PT J
AU Yuan, TL
Oreopoulos, L
Zelinka, M
Yu, HB
Norris, JR
Chin, M
Platnick, S
Meyer, K
AF Yuan, Tianle
Oreopoulos, Lazaros
Zelinka, Mark
Yu, Hongbin
Norris, Joel R.
Chin, Mian
Platnick, Steven
Meyer, Kerry
TI Positive low cloud and dust feedbacks amplify tropical North Atlantic
Multidecadal Oscillation
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE AMO; cloud feedback; dust feedback; climate model; coupled dynamics
ID MERIDIONAL OVERTURNING CIRCULATION; AFRICAN DUST; ATMOSPHERIC RESPONSE;
SAHEL RAINFALL; CLIMATE-CHANGE; OCEAN; MODEL; SST; VARIABILITY;
PARAMETERIZATION
AB The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.
C1 [Yuan, Tianle] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD USA.
[Yuan, Tianle; Oreopoulos, Lazaros; Yu, Hongbin; Chin, Mian; Platnick, Steven; Meyer, Kerry] NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD USA.
[Zelinka, Mark] Lawrence Livermore Natl Lab, Program Climate Modeling Diag & Intercomparison, Livermore, CA USA.
[Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Norris, Joel R.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Meyer, Kerry] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA.
RP Yuan, TL (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD USA.; Yuan, TL (reprint author), NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD USA.
EM tianle.yuan@nasa.gov
RI Oreopoulos, Lazaros/E-5868-2012; Platnick, Steven/J-9982-2014; Yu,
Hongbin/C-6485-2008; Zelinka, Mark/C-4627-2011; Meyer,
Kerry/E-8095-2016; Chin, Mian/J-8354-2012
OI Oreopoulos, Lazaros/0000-0001-6061-6905; Platnick,
Steven/0000-0003-3964-3567; Yu, Hongbin/0000-0003-4706-1575; Zelinka,
Mark/0000-0002-6570-5445; Meyer, Kerry/0000-0001-5361-9200;
FU NASA's MAP program
FX We acknowledge the funding support from NASA's MAP program. All the data
used in this study are based on publically available data sets.
NR 49
TC 9
Z9 9
U1 2
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2016
VL 43
IS 3
BP 1349
EP 1356
DI 10.1002/2016GL067679
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DG4QI
UT WOS:000372056600050
ER
PT J
AU Choi, Y
Ghim, YS
Holben, BN
AF Choi, Yongjoo
Ghim, Young Sung
Holben, B. N.
TI Identification of columnar aerosol types under high aerosol optical
depth conditions for a single AERONET site in Korea
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE dominant aerosol types; cluster analysis; mean properties; occurrence
rate; anmyon site; well-characterized global sites
ID BLACK CARBON; LIGHT-ABSORPTION; ORGANIC-CARBON; ASIAN DUST; WAVELENGTH
DEPENDENCE; BROWN CARBON; ATMOSPHERIC AEROSOLS; PHYSICAL-PROPERTIES;
PARTICULATE MATTER; SCATTERING ALBEDO
AB Dominant aerosol types were classified using level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET) site in Korea for the period 1999-2007. The aerosol types were mineral dust (MD), MD mixed with carbon, and black carbon mixed coarse particles (BCCP) for coarse mode aerosols, black carbon (BC), organic carbon (OC), and secondary inorganic ions (SII) for fine mode aerosols, and mixed particles between. The classification was carried out using a clustering method based on parameters, including single scattering albedo (SSA), absorption Angstrom exponent (AAE), and fine mode volume fraction (FMVF). Among the seven aerosol types, MD was distinct, with the highest AAE and a very low FMVF and SII with the highest SSA and FMVF. BCCP was introduced to designate coarse particles mixed with BC, of which the AAE was lower than 1, despite a low FMVF. In addition to a large difference in AAE between BC and OC, the SSA of OC was larger than that of BC, indicating the effects of the white smoke produced from the smoldering phase of biomass burning. Monthly variations of the aerosol types were well interpreted by meteorology and emissions and coincided with those in the previous studies. Applying our results to well-characterized global AERONET sites, we confirmed that the aerosol types at Anmyon were valid at other sites. However, the results also showed that the mean properties for aerosol types were influenced by the specific aerosols prevalent at the study sites.
C1 [Choi, Yongjoo; Ghim, Young Sung] Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin, South Korea.
[Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Ghim, YS (reprint author), Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin, South Korea.
EM ysghim@hufs.ac.kr
FU Korea Meteorological Administration Research and Development Program
[KMIPA 2015-6010]
FX This work was funded by the Korea Meteorological Administration Research
and Development Program under the grant KMIPA 2015-6010. We are grateful
to the following principal investigators for establishing and
maintaining AERONET sites: H.-B. Chen and P. Goloub of Beijing, D. Tanre
of Cape Verde, and A. L. Contreras of Mexico City. The data used in this
study are available at
http://aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_inv.
NR 79
TC 1
Z9 1
U1 6
U2 14
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2016
VL 121
IS 3
BP 1264
EP 1277
DI 10.1002/2015JD024115
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF6QW
UT WOS:000371481700015
ER
PT J
AU Tao, WK
Wu, D
Lang, S
Chern, JD
Peters-Lidard, C
Fridlind, A
Matsui, T
AF Tao, Wei-Kuo
Wu, Di
Lang, Stephen
Chern, Jiun-Dar
Peters-Lidard, Christa
Fridlind, Ann
Matsui, Toshihisa
TI High-resolution NU-WRF simulations of a deep convective-precipitation
system during MC3E: Further improvements and comparisons between Goddard
microphysics schemes and observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE ice microphysics; heavy rainfall; WRF
ID MIDLATITUDE SQUALL LINE; CLOUD-RESOLVING MODEL; SECONDARY ICE PARTICLES;
PART I; NUMERICAL-SIMULATION; STRATIFORM PRECIPITATION; BULK
PARAMETERIZATION; OROGRAPHIC SNOWFALL; AEROSOL IMPACTS;
SATELLITE-OBSERVATIONS
AB The Goddard microphysics was recently improved by adding a fourth ice class (frozen drops/hail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of ice/snow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.
C1 [Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Matsui, Toshihisa] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA.
[Wu, Di; Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA.
[Chern, Jiun-Dar] Morgan State Univ, Goddard Earth Sci Technol & Res Program, Baltimore, MD 21239 USA.
[Peters-Lidard, Christa] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA.
[Fridlind, Ann] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Matsui, Toshihisa] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Tao, WK (reprint author), NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA.
EM Wei-Kuo.Tao-1@nasa.gov
RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015
OI Peters-Lidard, Christa/0000-0003-1255-2876;
FU NASA Precipitation Measurement Missions (PMM); NASA Modeling, Analysis,
and Prediction (MAP) Program; Office of Science (BER), U.S. Department
of Energy/Atmospheric System Research (DOE/ASR) [DE-AI02-04ER63755]
FX This research was supported by the NASA Precipitation Measurement
Missions (PMM), the NASA Modeling, Analysis, and Prediction (MAP)
Program, and the Office of Science (BER), U.S. Department of
Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement
(DE-AI02-04ER63755). NMQ radar and precipitation products were provided
by Xiquan Dong (dong@aero.und.edu) at the University of North Dakota and
Carrie Langston (carrie.langston@noaa.gov) at the National Severe Storms
Laboratory, while Yudong Tian (University of Maryland,
yudong.tian-1@nasa.gov) at NASA GSFC provided the bias-corrected Q2
data. For model related data sets, the GFS data can be downloaded from:
http://rda.ucar.edu/datasets/ds083.2. NU-WRF software and microphysics
codes can be requested from: http://nuwrf.gsfc.nasa.gov/software. For
accessing NU-WRF simulation output, please contact Di Wu
(di.wu@nasa.gov). The authors are grateful to Ramesh Kakar and David B.
Considine at NASA headquarters for their support of this research.
Acknowledgment is also made to the NASA Goddard Space Flight Center and
NASA Ames Research Center computing facilities and to Tsengdar Lee at
NASA HQ for the computational resources used in this research.
NR 155
TC 5
Z9 5
U1 2
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2016
VL 121
IS 3
BP 1278
EP 1305
DI 10.1002/2015JD023986
PG 28
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF6QW
UT WOS:000371481700016
ER
PT J
AU Corr, CA
Ziemba, LD
Scheuer, E
Anderson, BE
Beyersdorf, AJ
Chen, G
Crosbie, E
Moore, RH
Shook, M
Thornhill, KL
Winstead, E
Lawson, RP
Barth, MC
Schroeder, JR
Blake, DR
Dibb, JE
AF Corr, C. A.
Ziemba, L. D.
Scheuer, E.
Anderson, B. E.
Beyersdorf, A. J.
Chen, G.
Crosbie, E.
Moore, R. H.
Shook, M.
Thornhill, K. L.
Winstead, E.
Lawson, R. P.
Barth, M. C.
Schroeder, J. R.
Blake, D. R.
Dibb, J. E.
TI Observational evidence for the convective transport of dust over the
Central United States
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE mineral dust; convection; vertical transport; ice nuclei
ID ATMOSPHERIC ICE NUCLEI; SAHARAN DUST; AEROSOL COMPOSITION;
OPTICAL-PROPERTIES; EASTERN ATLANTIC; MINERAL DUST; CIRRUS; AIRBORNE;
PARTICLES; AIRCRAFT
AB Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (<5km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude>9km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 mu m50 mu m) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 mu m0.5 kJ/kg hydrothermal fluid) than those in the modern serpentinization-associated seafloor hydrothermal systems (e.g., Kairei field). Furthermore, the recently proposed methanotrophic acetogenesis pathway was also thermodynamically investigated. It is known that methanotrophic acetogenesis would require additional exergonic reactions to compensate its most endergonic methane-to-methanol conversion reaction at the oxidative entry to the metabolic pathway. Our calculations support the view that this thermodynamic barrier could be overcome by the reduction of nitrate in seawater at low temperature, as previously suggested. However, the thermodynamic calculations also revealed that the reduction of ferric iron-bearing minerals would occur at the outer margin and within the hydrothermal chimney wall. The maximum available energy of iron-reducing methanotrophic acetogenesis was calculated to be 0.25-0.35 kJ/kg hydrothermal fluid. Although this value is lower than theoretically available through nitrate reduction, which approaches similar to 0.45-1.25 kJ/kg hydrothermal fluid on the outer cool margins of a putative Hadean alkaline chimney, it is higher than that of sulfate-reducing anaerobic oxidation of methane in the Lost City field. These results suggest that iron reduction had the potential to drive methanotrophy and that the Hadean hydrothermal mixing zone was energetically more favorable to methanotrophy than previously thought. We conclude that iron oxidation and reduction in oxyhydroxides probably played important roles in the early evolution of energy metabolisms in the Hadean alkaline hydrothermal system. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Lab Ocean Earth Life Evolut Res OELE, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan.
[Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res & Dev Ctr Submarine Resources, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan.
[Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Project Team Dev New Generat Res Protocol Submari, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan.
[Shibuya, Takazo; Russell, Michael J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91108 USA.
[Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Dept Subsurface Geobiol Anal & Res SUGAR, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan.
RP Shibuya, T (reprint author), Japan Agcy Marine Earth Sci & Technol JAMSTEC, Lab Ocean Earth Life Evolut Res OELE, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan.
EM takazos@jamstec.go.jp
FU Japan Society for Promotion of Science (JSPS) [22740333, 25707038];
NASA's Astrobiology Institute (Icy Worlds); US Government
FX We thank M. Nishizawa, S. Kato, S. E. McGlynn and E. Branscomb for
discussions. We are grateful to four anonymous reviewers for their
valuable comments, and W. Bach for editorial handling and suggestions.
This work was partially supported by the Grants-in-Aid for Scientific
Research from Japan Society for Promotion of Science (JSPS) (No.
22740333 and 25707038). MJR's research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration:
Exobiology and Evolutionary Biology and supported by NASA's Astrobiology
Institute (Icy Worlds). US Government sponsorship acknowledged.
NR 132
TC 3
Z9 3
U1 20
U2 56
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD FEB 15
PY 2016
VL 175
BP 1
EP 19
DI 10.1016/j.gca.2015.11.021
PG 19
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DC2TR
UT WOS:000369070000001
ER
PT J
AU Kotov, DV
Yee, HC
Wray, AA
Sjogreen, B
Kritsuk, AG
AF Kotov, D. V.
Yee, H. C.
Wray, A. A.
Sjoegreen, B.
Kritsuk, A. G.
TI Numerical dissipation control in high order shock-capturing schemes for
LES of low speed flows
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE DNS; LES; High order shock-capturing methods; Flow sensors; Numerical
dissipation control; Low speed turbulence; Shock free turbulence
ID LARGE-EDDY SIMULATION; TAYLOR-GREEN VORTEX; COMPRESSIBLE TURBULENCE;
ISOTROPIC TURBULENCE
AB The Yee & Sjogreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov etal. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjogreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the versatility of the Yee & Sjogreen scheme for DNS and LES of traditional low speed flows without forcing. Special attention is focused on the accuracy performance of this scheme using the Smagorinsky and the Germano-Lilly SGS models. Published by Elsevier Inc.
C1 [Kotov, D. V.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA.
[Yee, H. C.; Wray, A. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Sjoegreen, B.] Lawrence Livermore Natl Lab, Box 808,L-422, Livermore, CA 94551 USA.
[Kritsuk, A. G.] Univ Calif San Diego, La Jolla, CA 92093 USA.
RP Yee, HC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM dmitry.v.kotov@nasa.gov; helen.m.yee@nasa.gov; Alan.A.Wray@nasa.gov;
sjogreen2@llnl.gov; akritsuk@ucsd.edu
FU DOE/SciDAC SAP [DE-AI02-06ER25796]; NASA Aerosciences Project - RCA;
U.S. Department of Energy at Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; National Science Foundation [AST-1412271]; UC Santa
Cruz sub award [A16-0243-S001]
FX The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is
acknowledged. Financial support from the NASA Aerosciences Project - RCA
for the second author is gratefully acknowledged. Work by the fourth
author was performed under the auspices of the U.S. Department of Energy
at Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Work by the fifth author was support in part by the
National Science Foundation grant AST-1412271 and UC Santa Cruz sub
award A16-0243-S001.
NR 45
TC 0
Z9 0
U1 0
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD FEB 15
PY 2016
VL 307
BP 189
EP 202
DI 10.1016/j.jcp.2015.11.029
PG 14
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA DC2YR
UT WOS:000369085500011
ER
PT J
AU Abbott, BP
Abbott, R
Abbott, TD
Abernathy, MR
Acernese, F
Ackley, K
Adams, C
Adams, T
Addesso, P
Adhikari, RX
Adya, VB
Affeldt, C
Agathos, M
Agatsuma, K
Aggarwal, N
Aguiar, OD
Ain, A
Ajith, P
Allen, B
Allocca, A
Amariutei, DV
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Arceneaux, CC
Areeda, JS
Arnaud, N
Arun, KG
Ashton, G
Ast, M
Aston, SM
Astone, P
Aufmuth, P
Aulbert, C
Babak, S
Baker, PT
Baldaccini, F
Ballardin, G
Ballmer, SW
Barayoga, JC
Barclay, SE
Barish, BC
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Barta, D
Bartlett, J
Bartos, I
Bassiri, R
Basti, A
Batch, JC
Baune, C
Bavigadda, V
Bazzan, M
Behnke, B
Bejger, M
Belczynski, C
Bell, AS
Bell, J
Berger, BK
Bergman, J
Bergmann, G
Berry, CPL
Bersanetti, D
Bertolini, A
Betzwieser, J
Bhagwat, S
Bhandare, R
Bilenko, IA
Billingsley, G
Birch, J
Birney, R
Biscans, S
Bisht, A
Bitossi, M
Biwer, C
Bizouard, MA
Blackburn, JK
Blair, CD
Blair, D
Blair, RM
Bloemen, S
Bock, O
Bodiya, TP
Boer, M
Bogaert, G
Bogan, C
Bohe, A
Bojtos, P
Bond, C
Bondu, F
Bonnand, R
Bork, R
Boschi, V
Bose, S
Bozzi, A
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Brau, JE
Briant, T
Brillet, A
Brinkmann, M
Brisson, V
Brockill, P
Brooks, AF
Brown, DA
Brown, D
Brown, DD
Brown, NM
Buchanan, CC
Buikema, A
Bulik, T
Bulten, HJ
Buonanno, A
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Cahillane, C
Bustillo, JC
Callister, T
Calloni, E
Camp, JB
Cannon, KC
Cao, J
Capano, CD
Capocasa, E
Carbognani, F
Caride, S
Diaz, JC
Casentini, C
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Cella, G
Cepeda, C
Baiardi, LC
Cerretani, G
Cesarini, E
Chakraborty, R
Chalermsongsak, T
Chamberlin, SJ
Chan, M
Chao, S
Charlton, P
Chassande-Mottin, E
Chen, HY
Chen, Y
Cheng, C
Chincarini, A
Chiummo, A
Cho, HS
Cho, M
Chow, JH
Christensen, N
Chu, Q
Chua, S
Chung, S
Ciani, G
Clara, F
Clark, JA
Cleva, F
Coccia, E
Cohadon, PF
Colla, A
Collette, CG
Constancio, M
Conte, A
Conti, L
Cook, D
Corbitt, TR
Cornish, N
Corsi, A
Cortese, S
Costa, CA
Coughlin, MW
Coughlin, SB
Coulon, JP
Countryman, ST
Couvares, P
Coward, DM
Cowart, MJ
Coyne, DC
Coyne, R
Craig, K
Creighton, JDE
Cripe, J
Crowder, SG
Cumming, A
Cunningham, L
Cuoco, E
Dal Canton, T
Danilishin, SL
D'Antonio, S
Danzmann, K
Darman, NS
Dattilo, V
Dave, I
Daveloza, HP
Davier, M
Davies, GS
Daw, EJ
Day, R
DeBra, D
Debreczeni, G
Degallaix, J
De Laurentis, M
Deleglise, S
Del Pozzo, W
Denker, T
Dent, T
Dereli, H
Dergachev, V
DeRosa, R
De Rosa, R
DeSalvo, R
Dhurandhar, S
Diaz, MC
Di Fiore, L
Di Giovanni, M
Di Lieto, A
Di Palma, I
Di Virgilio, A
Dojcinoski, G
Dolique, V
Donovan, F
Dooley, KL
Doravari, S
Douglas, R
Downes, TP
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Ducrot, M
Dwyer, SE
Edo, TB
Edwards, MC
Effler, A
Eggenstein, HB
Ehrens, P
Eichholz, JM
Eikenberry, SS
Engels, W
Essick, RC
Etzel, T
Evans, M
Evans, TM
Everett, R
Factourovich, M
Fafone, V
Fair, H
Fairhurst, S
Fan, X
Fang, Q
Farinon, S
Farr, B
Farr, WM
Favata, M
Fays, M
Fehrmann, H
Fejer, MM
Ferrante, I
Ferreira, EC
Ferrini, F
Fidecaro, F
Fiori, I
Fisher, RP
Flaminio, R
Fletcher, M
Fournier, JD
Franco, S
Frasca, S
Frasconi, F
Frei, Z
Freise, A
Frey, R
Frey, V
Fricke, TT
Fritschel, P
Frolov, VV
Fulda, P
Fyffe, M
Gabbard, HAG
Gair, JR
Gammaitoni, L
Gaonkar, SG
Garufi, F
Gatto, A
Gaur, G
Gehrels, N
Gemme, G
Gendre, B
Genin, E
Gennai, A
George, J
Gergely, L
Germain, V
Ghosh, A
Ghosh, S
Giaime, JA
Giardina, KD
Giazotto, A
Gill, K
Glaefke, A
Goetz, E
Goetz, R
Gondan, L
Gonzalez, G
Castro, JMG
Gopakumar, A
Gordon, NA
Gorodetsky, ML
Gossan, SE
Gosselin, M
Gouaty, R
Graef, C
Graff, B
Granata, M
Grant, A
Gras, S
Gray, C
Greco, G
Green, AC
Groot, P
Grote, H
Grunwald, S
Guidi, GM
Guo, X
Gupta, A
Gupta, MK
Gushwa, E
Gustafson, EK
Gustafson, R
Hacker, JJ
Hall, BR
Hall, ED
Hammond, G
Haney, M
Hanke, MM
Hanks, J
Hanna, C
Hannam, MD
Hanson, J
Hardwick, T
Harms, J
Harry, GM
Harry, IW
Hart, MJ
Hartman, MT
Haster, CJ
Haughian, K
Heidmann, A
Heintze, MC
Heitmann, H
Hello, P
Hemming, G
Hendry, M
Heng, IS
Hennig, J
Heptonstall, AW
Heurs, M
Hild, S
Hoak, D
Hodge, KA
Hofman, D
Hollitt, SE
Holt, K
Holz, DE
Hopkins, P
Hosken, DJ
Hough, J
Houston, EA
Howell, J
Hu, YM
Huang, S
Huerta, EA
Huet, D
Hughey, B
Husa, S
Huttner, SH
Huynh-Dinh, T
Idrisy, A
Indik, N
Ingram, DR
Inta, R
Isa, HN
Isac, JM
Isi, M
Islas, G
Isogai, T
Iyer, BR
Izumi, K
Jacqmin, T
Jang, H
Jani, K
Jaranowski, P
Jawahar, S
Jimenez-Forteza, F
Johnson, WW
Jones, I
Jones, R
Jonker, RJG
Ju, L
Haris, K
Kalaghatgi, CV
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, JB
Karki, S
Kasprzack, M
Katsavounidis, E
Katzman, W
Kaufer, S
Kaur, T
Kawabe, K
Kawazoe, F
Kefelian, F
Kehl, MS
Keitel, D
Kelley, DB
Kells, W
Kennedy, R
Key, JS
Khalaidovski, A
Khalili, FY
Khan, S
Khan, Z
Khazanov, EA
Kijbunchoo, N
Kim, C
Kim, J
Kim, K
Kim, N
Kim, N
Kim, YM
King, EJ
King, PJ
Kinzel, DL
Kissel, JS
Kleybolte, L
Klimenko, S
Koehlenbeck, SM
Kokeyama, K
Koley, S
Kondrashov, V
Kontos, A
Korobko, M
Korth, WZ
Kowalska, I
Kozak, DB
Kringel, V
Krishnan, B
Krolak, A
Krueger, C
Kuehn, G
Kumar, P
Kuo, L
Kutynia, A
Lackey, BD
Landry, M
Lange, J
Lantz, B
Lasky, PD
Lazzarini, A
Lazzaro, C
Leaci, P
Leavey, S
Lebigot, E
Lee, CH
Lee, HK
Lee, HM
Lee, K
Leonardi, M
Leong, JR
Leroy, N
Letendre, N
Levin, Y
Levine, BM
Li, TGF
Libson, A
Littenberg, TB
Lockerbie, NA
Logue, J
Lombardi, AL
Lord, JE
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, JD
Luck, H
Lundgren, AP
Luo, J
Lynch, R
Ma, Y
MacDonald, T
Machenschalk, B
MacInnis, M
Macleod, DM
Magana-Sandoval, F
Magee, RM
Mageswaran, M
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mangano, V
Mansell, GL
Manske, M
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Markosyan, AS
Maros, E
Martelli, F
Martellini, L
Martin, IW
Martin, RM
Martynov, DV
Marx, JN
Mason, K
Masserot, A
Massinger, TJ
Masso-Reid, M
Matichard, F
Matone, L
Mavalvala, N
Mazumder, N
Mazzolo, G
McCarthy, R
McClelland, DE
McCormick, S
McGuire, SC
McIntyre, G
McIver, J
McWilliams, ST
Meacher, D
Meadors, GD
Meidam, J
Melatos, A
Mendell, G
Mendoza-Gandara, D
Mercer, RA
Merzougui, M
Meshkov, S
Messenger, C
Messick, C
Meyers, PM
Mezzani, F
Miao, H
Michel, C
Middleton, H
Mikhailov, EE
Milano, L
Miller, J
Millhouse, M
Minenkov, Y
Ming, J
Mirshekari, S
Mishra, C
Mitra, S
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moggi, A
Mohapatra, SRP
Montani, M
Moore, BC
Moore, CJ
Moraru, D
Moreno, G
Morriss, SR
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Muir, AW
Mukherjee, A
Mukherjee, D
Mukherjee, S
Mullavey, A
Munch, J
Murphy, DJ
Murray, PG
Mytidis, A
Nardecchia, I
Naticchioni, L
Nayak, RK
Necula, V
Nedkova, K
Nelemans, G
Neri, M
Neunzert, A
Newton, G
Nguyen, TT
Nielsen, AB
Nissanke, S
Nitz, A
Nocera, F
Nolting, D
Normandin, MEN
Nuttall, LK
Oberling, J
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Ohme, F
Oliver, M
Oppermann, P
Oram, RJ
O'Reilly, B
O'Shaughnessy, R
Ott, CD
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Pai, A
Pai, SA
Palamos, JR
Palashov, O
Palomba, C
Pal-Singh, A
Pan, H
Pankow, C
Pannarale, F
Pant, BC
Paoletti, F
Paoli, A
Papa, MA
Paris, HR
Parker, W
Pascucci, D
Pasqualetti, A
Passaquieti, R
Passuello, D
Patrick, Z
Pearlstone, BL
Pedraza, M
Pedurand, R
Pekowsky, L
Pele, A
Penn, S
Pereira, R
Perreca, A
Phelps, M
Piccinni, O
Pichot, M
Piergiovanni, F
Pierro, V
Pillant, G
Pinard, L
Pinto, M
Pitkin, M
Poggiani, R
Post, A
Powell, J
Prasad, J
Predoi, V
Premachandra, SS
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prodi, GA
Prokhorov, L
Punturo, M
Puppo, P
Purrer, M
Qi, H
Qin, J
Quetschke, V
Quintero, EA
Quitzow-James, R
Raab, FJ
Rabeling, DS
Radkins, H
Raffai, P
Raja, S
Rakhmanov, M
Rapagnani, P
Raymond, V
Razzano, M
Re, V
Read, J
Reed, CM
Regimbau, T
Rei, L
Reid, S
Reitze, DH
Rew, H
Ricci, F
Riles, K
Robertson, NA
Robie, R
Robinet, F
Rocchi, A
Rolland, L
Rollins, JG
Roma, VJ
Romano, JD
Romano, R
Romanov, G
Romie, JH
Rosinska, D
Rowan, S
Rudiger, A
Ruggi, P
Ryan, K
Sachdev, S
Sadecki, T
Sadeghian, L
Saleem, M
Salemi, F
Samajdar, A
Sammut, L
Sanchez, EJ
Sandberg, V
Sandeen, B
Sanders, JR
Sassolas, B
Saulson, PR
Sauter, O
Savage, R
Sawadsky, A
Schale, P
Schilling, R
Schmidt, J
Schmidt, P
Schnabel, R
Schofield, RMS
Schonbeck, A
Schreiber, E
Schuette, D
Schutz, BF
Scott, J
Scott, SM
Sellers, D
Sentenac, D
Sequino, V
Sergeev, A
Serna, G
Setyawati, Y
Sevigny, A
Shaddock, DA
Shah, S
Shahriar, MS
Shaltev, M
Shao, Z
Shapiro, B
Shawhan, P
Sheperd, A
Shoemaker, DH
Shoemaker, DM
Siellez, K
Siemens, X
Sigg, D
Silva, AD
Simakov, D
Singer, A
Singer, LP
Singh, A
Singh, R
Sintes, M
Slagmolen, BJJ
Smith, JR
Smith, ND
Smith, RJE
Son, EJ
Sorazu, B
Sorrentino, F
Souradeep, T
Srivastava, AK
Staley, A
Steinke, M
Steinlechner, J
Steinlechner, S
Steinmeyer, D
Stephens, BC
Stone, R
Strain, KA
Straniero, N
Stratta, G
Strauss, NA
Strigin, S
Sturani, R
Stuver, AL
Summerscales, TZ
Sun, L
Sutton, PJ
Swinkels, BL
Szczepanczyk, MJ
Tacca, M
Talukder, D
Tanner, DB
Tapai, M
Tarabrin, SP
Taracchini, A
Taylor, R
Theeg, T
Thirugnanasambandam, MP
Thomas, EG
Thomas, M
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Tiwari, S
Tiwari, V
Tomlinson, C
Tonelli, M
Torres, CV
Torrie, CI
Toyra, D
Travasso, F
Traylor, G
Trifiro, D
Tringali, MC
Trozzo, L
Tse, M
Turconi, M
Tuyenbayev, D
Ugolini, D
Unnikrishnan, CS
Urban, AL
Usman, SA
Vahlbruch, H
Vajente, G
Valdes, G
van Bakel, N
van Beuzekom, M
van den Brand, JFJ
van den Broeck, C
van der Schaaf, L
van der Sluys, MV
van Heijningen, JV
van Veggel, AA
Vardaro, M
Vass, S
Vasuth, M
Vaulin, R
Vecchio, A
Vedovato, G
Veitch, J
Veitch, J
Venkates