FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Denton, RE Sonnerup, BUO Hasegawa, H Phan, TD Russell, CT Strangeway, RJ Giles, BL Gershman, D Torbert, RB AF Denton, R. E. Sonnerup, B. U. O. Hasegawa, H. Phan, T. D. Russell, C. T. Strangeway, R. J. Giles, B. L. Gershman, D. Torbert, R. B. TI Motion of the MMS spacecraft relative to the magnetic reconnection structure observed on 16 October 2015 at 1307UT SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; magnetopause; MMS spacecraft; electron diffusion region; reconnection X point ID FIELD MEASUREMENTS; CLUSTER AB We analyze a magnetopause crossing by the Magnetospheric Multiscale (MMS) spacecraft at 1307UT on 16 October 2016 that showed features of electron-scale reconnection. For this event, we find orthonormal LMN coordinates from the magnetic field, with N and L varying respectively along the maximum gradient and maximum variance directions. We find the motion along N from the Spatio-Temporal Difference analysis and motion along L from measured particle velocities. We locate the position of the magnetic X point, finding that MMS-4 passed within about 1.4km from the X point and that MMS-3 and MMS-2 passed within about 1.7km and 2.4km, respectively, from the position of maximum out of plane current. C1 [Denton, R. E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Sonnerup, B. U. O.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Hasegawa, H.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Phan, T. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Giles, B. L.; Gershman, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gershman, D.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Torbert, R. B.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM redenton@dartmouth.edu RI Hasegawa, Hiroshi/A-1192-2007; NASA MMS, Science Team/J-5393-2013 OI Hasegawa, Hiroshi/0000-0002-1172-021X; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA [NNX14AC38G]; JSPS [15K05306] FX Work at Dartmouth was supported by NASA grant NNX14AC38G. H.H. was supported by JSPS Grant-in-Aid for Scientific Research KAKENHI 15K05306. Solar wind parameters and geomagnetic indices were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. R.D. thanks Mike Shay, Marc Swisdak, Love Alm, and Paul Cassak for their useful discussions. B.G. thanks Levon Avanov and John Dorelli for their help in advancing the quality of the FPI products. MMS data are available at https://lasp.colorado.edu/mms/sdc/public/links. Supplementary data from our calculations can be found in the supporting information file. In addition to supporting information Figure S1 referenced in the text, supporting information Texts S1-S3 have more details on the calculation of the LMN coordinate system. Supporting information Data Set S1 lists the velocities and directions from the Shi et al. [2005, 2006] method, while Data Set S2 lists the L and N positions that we calculated. NR 18 TC 2 Z9 2 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5589 EP 5596 DI 10.1002/2016GL069214 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800007 ER PT J AU Eriksson, S Lavraud, B Wilder, FD Stawarz, JE Giles, BL Burch, JL Baumjohann, W Ergun, RE Lindqvist, PA Magnes, W Pollock, CJ Russell, CT Saito, Y Strangeway, RJ Torbert, RB Gershman, DJ Khotyaintsev, YV Dorelli, JC Schwartz, SJ Avanov, L Grimes, E Vernisse, Y Sturner, AP Phan, TD Marklund, GT Moore, TE Paterson, WR Goodrich, KA AF Eriksson, S. Lavraud, B. Wilder, F. D. Stawarz, J. E. Giles, B. L. Burch, J. L. Baumjohann, W. Ergun, R. E. Lindqvist, P. -A. Magnes, W. Pollock, C. J. Russell, C. T. Saito, Y. Strangeway, R. J. Torbert, R. B. Gershman, D. J. Khotyaintsev, Yu. V. Dorelli, J. C. Schwartz, S. J. Avanov, L. Grimes, E. Vernisse, Y. Sturner, A. P. Phan, T. D. Marklund, G. T. Moore, T. E. Paterson, W. R. Goodrich, K. A. TI Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE reconnection exhaust; guide-magnetic field reconnection; Kelvin-Helmholtz waves ID MAGNETOPAUSE; INSTABILITY; PLASMA; VORTICES; BOUNDARY; SIMULATIONS; TRANSPORT; FIELD; LAYER AB The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS. C1 [Eriksson, S.; Wilder, F. D.; Stawarz, J. E.; Ergun, R. E.; Schwartz, S. J.; Sturner, A. P.; Goodrich, K. A.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Lavraud, B.; Vernisse, Y.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.; Vernisse, Y.] CNRS, UMR 5277, Toulouse, France. [Giles, B. L.; Pollock, C. J.; Gershman, D. J.; Dorelli, J. C.; Avanov, L.; Moore, T. E.; Paterson, W. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. [Baumjohann, W.; Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Lindqvist, P. -A.; Marklund, G. T.] Royal Inst Technol, Stockholm, Sweden. [Russell, C. T.; Strangeway, R. J.; Grimes, E.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Russell, C. T.; Strangeway, R. J.; Grimes, E.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Saito, Y.] Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Torbert, R. B.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Khotyaintsev, Yu. V.] Swedish Inst Space Phys, Uppsala, Sweden. [Schwartz, S. J.] Imperial Coll London, Blackett Lab, London, England. [Phan, T. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Eriksson, S (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM eriksson@lasp.colorado.edu RI Stawarz, Julia/L-7387-2016; Baumjohann, Wolfgang/A-1012-2010; NASA MMS, Science Team/J-5393-2013; OI Stawarz, Julia/0000-0002-5702-5802; Baumjohann, Wolfgang/0000-0001-6271-0110; NASA MMS, Science Team/0000-0002-9504-5214; Eriksson, Stefan/0000-0002-5619-1577 FU NASA MMS-Phase E; NASA [NNX08AO84G, NNX12AH43G, NNH13AV26I, NNX16AF75G]; CNES; CNRS; Leverhulme Trust Research Fellowship FX This research is supported by NASA MMS-Phase E support to CU/LASP (S.E., F.D.W., J.E.S., R.E.E., A.P.S., and K.A.G.) as well as NASA grants NNX08AO84G, NNX12AH43G, NNH13AV26I, and NNX16AF75G (S.E.). IRAP contribution to MMS was supported by CNES and CNRS (B.L. and Y.V.). MMS observations are publically available via NASA resources and the Science Data Center at CU/LASP. Wind satellite observations from the NASA CDAWeb were used to analyze the interplanetary flux rope of 7-9 September 2015. S.E. acknowledges his immense gratitude in the collection of these unprecedented observations as MMS-SITL. S.E. thanks W. Daughton and T.K.M. Nakamura for insightful discussions on KH instability theory and analysis. S.J.S. is grateful for the receipt of a Leverhulme Trust Research Fellowship. NR 40 TC 5 Z9 5 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5606 EP 5615 DI 10.1002/2016GL068783 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800009 ER PT J AU Ergun, RE Holmes, JC Goodrich, KA Wilder, FD Stawarz, JE Eriksson, S Newman, DL Schwartz, SJ Goldman, MV Sturner, AP Malaspina, DM Usanova, ME Torbert, RB Argall, M Lindqvist, PA Khotyaintsev, Y Burch, JL Strangeway, RJ Russell, CT Pollock, CJ Giles, BL Dorelli, JJC Avanov, L Hesse, M Chen, LJ Lavraud, B Le Contel, O Retino, A Phan, TD Eastwood, JP Oieroset, M Drake, J Shay, MA Cassak, PA Nakamura, R Zhou, M Ashour-Abdalla, M Andre, M AF Ergun, R. E. Holmes, J. C. Goodrich, K. A. Wilder, F. D. Stawarz, J. E. Eriksson, S. Newman, D. L. Schwartz, S. J. Goldman, M. V. Sturner, A. P. Malaspina, D. M. Usanova, M. E. Torbert, R. B. Argall, M. Lindqvist, P-A. Khotyaintsev, Y. Burch, J. L. Strangeway, R. J. Russell, C. T. Pollock, C. J. Giles, B. L. Dorelli, J. J. C. Avanov, L. Hesse, M. Chen, L. J. Lavraud, B. Le Contel, O. Retino, A. Phan, T. D. Eastwood, J. P. Oieroset, M. Drake, J. Shay, M. A. Cassak, P. A. Nakamura, R. Zhou, M. Ashour-Abdalla, M. Andre, M. TI Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; large-amplitude waves; electron diffusion region; ion acoustic; electron acoustic; beam mode ID DIFFUSION REGION; PLASMA-WAVES; INSTABILITY; SPACECRAFT; MMS AB We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause. C1 [Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Stawarz, J. E.; Sturner, A. P.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Schwartz, S. J.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.] Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA. [Newman, D. L.; Goldman, M. V.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Schwartz, S. J.; Eastwood, J. P.] Imperial Coll London, Blackett Lab, London, England. [Torbert, R. B.; Argall, M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Torbert, R. B.; Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. [Lindqvist, P-A.] Royal Inst Technol, Stockholm, Sweden. [Khotyaintsev, Y.; Andre, M.] Swedish Inst Space Phys, Uppsala, Sweden. [Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Chen, L. J.; Drake, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, Toulouse, France. [Le Contel, O.; Retino, A.] Lab Phys Plasmas, Palaiseau, France. [Phan, T. D.; Oieroset, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Shay, M. A.] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA. [Cassak, P. A.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV USA. [Nakamura, R.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Zhou, M.; Ashour-Abdalla, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. RP Ergun, RE (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.; Ergun, RE (reprint author), Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA. EM ree@lasp.colorado.edu RI Stawarz, Julia/L-7387-2016; Nakamura, Rumi/I-7712-2013; NASA MMS, Science Team/J-5393-2013; OI Stawarz, Julia/0000-0002-5702-5802; Nakamura, Rumi/0000-0002-2620-9211; NASA MMS, Science Team/0000-0002-9504-5214; Eriksson, Stefan/0000-0002-5619-1577 FU NASA MMS project FX This work was funded by the NASA MMS project. The authors recognize the tremendous effort in developing and operating the MMS spacecraft and instruments and sincerely thank all involved. MMS data are open to the public. The IRAP contribution to MMS was supported by CNES. NR 34 TC 5 Z9 5 U1 9 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5626 EP 5634 DI 10.1002/2016GL068992 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800011 ER PT J AU Li, W Andre, M Khotyaintsev, YV Vaivads, A Graham, DB Toledo-Redondo, S Norgren, C Henri, P Wang, C Tang, BB Lavraud, B Vernisse, Y Turner, DL Burch, J Torbert, R Magnes, W Russell, CT Blake, JB Mauk, B Giles, B Pollock, C Fennell, J Jaynes, A Avanov, LA Dorelli, JC Gershman, DJ Paterson, WR Saito, Y Strangeway, RJ AF Li, W. Andre, M. Khotyaintsev, Yu. V. Vaivads, A. Graham, D. B. Toledo-Redondo, S. Norgren, C. Henri, P. Wang, C. Tang, B. B. Lavraud, B. Vernisse, Y. Turner, D. L. Burch, J. Torbert, R. Magnes, W. Russell, C. T. Blake, J. B. Mauk, B. Giles, B. Pollock, C. Fennell, J. Jaynes, A. Avanov, L. A. Dorelli, J. C. Gershman, D. J. Paterson, W. R. Saito, Y. Strangeway, R. J. TI Kinetic evidence of magnetic reconnection due to Kelvin-Helmholtz waves SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE kinetic evidence; reconnection; Kelvin-Helmholtz wave ID LATITUDE BOUNDARY-LAYER; PLASMA SHEET; SOLAR-WIND; TRANSPORT; MAGNETOPAUSE; VORTICES; FIELD; MAGNETOSPHERE; INSTABILITY AB The Kelvin-Helmholtz (KH) instability at the Earth's magnetopause is predominantly excited during northward interplanetary magnetic field (IMF). Magnetic reconnection due to KH waves has been suggested as one of the mechanisms to transfer solar wind plasma into the magnetosphere. We investigate KH waves observed at the magnetopause by the Magnetospheric Multiscale (MMS) mission; in particular, we study the trailing edges of KH waves with Alfvenic ion jets. We observe gradual mixing of magnetospheric and magnetosheath ions at the boundary layer. The magnetospheric electrons with energy up to 80keV are observed on the magnetosheath side of the jets, which indicates that they escape into the magnetosheath through reconnected magnetic field lines. At the same time, the low-energy (below 100eV) magnetosheath electrons enter the magnetosphere and are heated in the field-aligned direction at the high-density edge of the jets. Our observations provide unambiguous kinetic evidence for ongoing reconnection due to KH waves. C1 [Li, W.; Andre, M.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.] Swedish Inst Space Phys, Uppsala, Sweden. [Toledo-Redondo, S.] European Space Agcy, Sci Directorate, ESAC, Madrid, Spain. [Norgren, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Henri, P.] CNRS, LPC2E, Orleans, France. [Wang, C.; Tang, B. B.] Natl Space Sci Ctr, Beijing, Peoples R China. [Lavraud, B.; Vernisse, Y.] Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, Toulouse, France. [Turner, D. L.; Blake, J. B.; Fennell, J.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. [Burch, J.] Southwest Res Inst, San Antonio, TX USA. [Torbert, R.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Mauk, B.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Giles, B.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Pollock, C.] Denali Sci, Healy, AL USA. [Jaynes, A.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Gershman, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Saito, Y.] Japan Aerosp Explorat Agcy, Tokyo, Japan. RP Li, W (reprint author), Swedish Inst Space Phys, Uppsala, Sweden. EM wyli@irfu.se RI NASA MMS, Science Team/J-5393-2013; Mauk, Barry/E-8420-2017 OI NASA MMS, Science Team/0000-0002-9504-5214; Mauk, Barry/0000-0001-9789-3797 FU Swedish National Space Board (SNSB) [164/14, 176/15]; CNES; CNRS FX The OMNI data were generated by J. H. King and N. Papitashivilli and provided via http://cdaweb.gsfc.nasa.gov/. This work was supported by Swedish National Space Board (SNSB) contracts 164/14 and 176/15. The work at IRAP was supported by CNES and CNRS. MMS observations are publically available via NASA resources and the Science Data Center at CU/LASP (https://lasp.colorado.edu/mms/sdc/public/). W. Li thanks S. Eriksson and his colleagues as members in MMS scientist-in-the-loop (SITL) team for selecting the 8 September 2015 event. NR 41 TC 2 Z9 2 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5635 EP 5643 DI 10.1002/2016GL069192 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800012 ER PT J AU Kim, JE Alexander, MJ Bui, TP Dean-Day, JM Lawson, RP Woods, S Hlavka, D Pfister, L Jensen, EJ AF Kim, Ji-Eun Alexander, M. Joan Bui, T. Paul Dean-Day, Jonathan M. Lawson, R. Paul Woods, Sarah Hlavka, Dennis Pfister, Leonhard Jensen, Eric J. TI Ubiquitous influence of waves on tropical high cirrus clouds SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE cirrus clouds; tropical tropopause; tropical waves; cold point; stratospheric water vapor; airborne measurements ID STRATOSPHERIC WATER-VAPOR; TROPOPAUSE LAYER; CIRCULATION RESPONSE; DEHYDRATION; CLIMATE; AIRCRAFT AB Cirrus clouds in the tropical tropopause layer (TTL) and water vapor transported into the stratosphere have significant impacts on the global radiation budget and circulation patterns. Climate models, however, have large uncertainties in representing dehydration and cloud processes in the TTL, and thus their feedback on surface climate, prohibiting an accurate projection of future global and regional climate changes. Here we use unprecedented airborne measurements over the Pacific to reveal atmospheric waves as a strong modulator of ice clouds in the TTL. Wave-induced cold and/or cooling conditions are shown to exert a nearly ubiquitous influence on cirrus cloud occurrence at altitudes of 14-18km, except when air was very recently influenced by convective hydration. We further observe that various vertical scales of cloud layers are associated with various vertical scales of waves, suggesting the importance of representing TTL waves in models. C1 [Kim, Ji-Eun] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Kim, Ji-Eun] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Alexander, M. Joan] NorthWest Res Associates, CoRA Off, Boulder, CO USA. [Bui, T. Paul; Pfister, Leonhard; Jensen, Eric J.] NASA Ames Res Ctr, Moffett Field, CA USA. [Dean-Day, Jonathan M.] Bay Area Environm Res Inst, Petaluma, CA USA. [Lawson, R. Paul; Woods, Sarah] SPEC Inc, Boulder, CO USA. [Hlavka, Dennis] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD USA. RP Kim, JE (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM jieunk@colorado.edu FU NASA Ames Research Center as part of the Airborne Tropical TRopopause EXperiment (ATTREX) under the NASA Science Mission Directorate Earth Venture Program [NNA10DF70C] FX Data are available at https://espoarchive.nasa.gov/archive/browse/attrex (ATTREX) and http://cdaac-www.cosmic.ucar.edu/cdaac/products.html (COSMIC GPS). We thank two reviewers for their helpful comments that improved the manuscript. This work was supported by NASA Ames Research Center contract NNA10DF70C as part of the Airborne Tropical TRopopause EXperiment (ATTREX) under the NASA Science Mission Directorate Earth Venture Program. NR 30 TC 0 Z9 0 U1 5 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5895 EP 5901 DI 10.1002/2016GL069293 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800042 ER PT J AU Hirabayashi, M Scheeres, DJ Chesley, SR Marchi, S McMahon, JW Steckloff, J Mottola, S Naidu, SP Bowling, T AF Hirabayashi, Masatoshi Scheeres, Daniel J. Chesley, Steven R. Marchi, Simone McMahon, Jay W. Steckloff, Jordan Mottola, Stefano Naidu, Shantanu P. Bowling, Timothy TI Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov-Gerasimenko SO NATURE LA English DT Article ID OSIRIS OBSERVATIONS; ROTATIONAL FISSION; ASTEROIDS; YORP; ROSETTA/OSIRIS; CONSTRAINTS; PRESSURE; NUCLEUS; ORIGIN; SYSTEM AB The solid, central part of a comet-its nucleus-is subject to destructive processes(1,2), which cause nuclei to split at a rate of about 0.01 per year per comet(3). These destructive events are due to a range of possible thermophysical effects(4); however, the geophysical expressions of these effects are unknown. Separately, over two-thirds of comet nuclei that have been imaged at high resolution show bilobate shapes(5), including the nucleus of comet 67P/Churyumov-Gerasimenko (67P), visited by the Rosetta spacecraft. Analysis of the Rosetta observations suggests that 67P's components were brought together at low speed after their separate formation(6). Here, we study the structure and dynamics of 67P's nucleus. We find that sublimation torques have caused the nucleus to spin up in the past to form the large cracks observed on its neck. However, the chaotic evolution of its spin state has so far forestalled its splitting, although it should eventually reach a rapid enough spin rate to do so. Once this occurs, the separated components will be unable to escape each other; they will orbit each other for a time, ultimately undergoing a low-speed merger that will result in a new bilobate configuration. The components of four other imaged bilobate nuclei have volume ratios that are consistent with a similar reconfiguration cycle, pointing to such cycles as a fundamental process in the evolution of short-period comet nuclei. It has been shown(7,8) that comets were not strong contributors to the so-called late heavy bombardment about 4 billion years ago. The reconfiguration process suggested here would preferentially decimate comet nuclei during migration to the inner solar system, perhaps explaining this lack of a substantial cometary flux. C1 [Hirabayashi, Masatoshi; Scheeres, Daniel J.; McMahon, Jay W.] Univ Colorado, Dept Aerosp Engn Sci, 429 UCB, Boulder, CO 80309 USA. [Chesley, Steven R.; Naidu, Shantanu P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Marchi, Simone] Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. [Hirabayashi, Masatoshi; Steckloff, Jordan] Purdue Univ, Dept Earth Atmospher & Planetary Sci, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Mottola, Stefano] German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. [Bowling, Timothy] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. RP Hirabayashi, M; Scheeres, DJ (reprint author), Univ Colorado, Dept Aerosp Engn Sci, 429 UCB, Boulder, CO 80309 USA.; Hirabayashi, M (reprint author), Purdue Univ, Dept Earth Atmospher & Planetary Sci, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM thirabayashi@purdue.edu; scheeres@colorado.edu FU NASA [NNX14AL16G, NNX14AB08G, NNA14AB03A]; Jet Propulsion Laboratory FX M.H. acknowledges the use of ANSYS Academic APDL, version 15.03. D.J.S. and M.H. were supported by NASA grants NNX14AL16G, NNX14AB08G and NNA14AB03A. S.R.C. carried out his work at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. S.M. acknowledges support by the Jet Propulsion Laboratory. NR 51 TC 2 Z9 2 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 16 PY 2016 VL 534 IS 7607 BP 352 EP + DI 10.1038/nature17670 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DO5XQ UT WOS:000377856800028 PM 27281196 ER PT J AU Parcheta, CE Pavlov, CA Wiltsie, N Carpenter, KC Nash, J Parness, A Mitchell, KL AF Parcheta, Carolyn E. Pavlov, Catherine A. Wiltsie, Nicholas Carpenter, Kalind C. Nash, Jeremy Parness, Aaron Mitchell, Karl L. TI A robotic approach to mapping post-eruptive volcanic fissure conduits SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Hawaiian fountains; Fissure; Robots; Mapping; 3D model ID EXPLORATION AB VolcanoBot was developed to map volcanic vents and their underlying conduit systems, which are rarely preserved and generally inaccessible to human exploration. It uses a PrimeSense Carmine 1.09 sensor for mapping and carries an IR temperature sensor, analog distance sensor, and an inertial measurement unit (IMU) inside a protective shell. The first field test succeeded in collecting valuable scientific data but revealed several needed improvements, including more rugged cable connections and mechanical couplers, increased ground clearance, and higher-torque motors for uphill mobility. The second field test significantly improved on all of these aspects but it traded electrical ruggedness for reduced data collection speed. Data collected by the VolcanoBots, while intermittent, yield the first insights into the cm-scale geometry of volcanic fissures at depths of up to 25 m. VolcanoBot was deployed at the 1969 Mauna Ulu fissure system on Ialauea volcano in Hawai'i. It collected first of-its-kind data from inside the fissure system. We hypothesized that 1) fissure sinuosity should decrease with depth, 2) irregularity should be persistent with depth, 3) any blockages in the conduit should occur at the narrowest points, and 4) the fissure should narrow with depth until it is too narrow for VolcanoBot to pass or is plugged with solidified lava. Our field campaigns did not span enough lateral or vertical area to test sinuosity. The preliminary data indicate that 1) there were many irregularities along fissures at depth, 2) blockages occurred, but not at obviously narrow locations, and 3) the conduit width remained a consistent 0.4-0.5 m for most of the upper 10 m that we analyzed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Parcheta, Carolyn E.; Wiltsie, Nicholas; Carpenter, Kalind C.; Nash, Jeremy; Parness, Aaron; Mitchell, Karl L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pavlov, Catherine A.] CALTECH, Pasadena, CA 91125 USA. RP Parcheta, CE (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM carolyn.e.parcheta@jpl.nasa.gov NR 40 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD JUN 15 PY 2016 VL 320 BP 19 EP 28 DI 10.1016/j.jvolgeores.2016.03.006 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DR7JC UT WOS:000380074900003 ER PT J AU Duke, JW Elliott, JE Laurie, SS Lovering, AT AF Duke, Joseph W. Elliott, Jonathan E. Laurie, Steven S. Lovering, Andrew T. TI NEUROLOGICAL DECOMPRESSION SICKNESS IN BREATH-HOLD DIVING: A CASE OF HYPOXEMIA-INDUCED FLOATING BUBBLES? SO JOURNAL OF APPLIED PHYSIOLOGY LA English DT Letter ID EXERCISE C1 [Duke, Joseph W.] Ohio Univ, Athens, OH 45701 USA. [Elliott, Jonathan E.] Mayo Clin, Rochester, MI USA. [Laurie, Steven S.] NASA, Johnson Space Ctr, Washington, DC USA. [Lovering, Andrew T.] Univ Oregon, Eugene, OR 97403 USA. RP Duke, JW (reprint author), Ohio Univ, Athens, OH 45701 USA. NR 5 TC 0 Z9 0 U1 2 U2 3 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 8750-7587 EI 1522-1601 J9 J APPL PHYSIOL JI J. Appl. Physiol. PD JUN 15 PY 2016 VL 120 IS 12 BP 1479 EP 1480 PG 2 WC Physiology; Sport Sciences SC Physiology; Sport Sciences GA DO8SU UT WOS:000378054800017 ER PT J AU Briscoe, DK Parker, DM Balazs, GH Kurita, M Saito, T Okamoto, H Rice, M Polovina, JJ Crowder, LB AF Briscoe, D. K. Parker, D. M. Balazs, G. H. Kurita, M. Saito, T. Okamoto, H. Rice, M. Polovina, J. J. Crowder, L. B. TI Active dispersal in loggerhead sea turtles (Caretta caretta) during the 'lost years' SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE loggerhead sea turtle; ocean circulation model; migration; foraging; distribution ID CENTRAL NORTH PACIFIC; LIFE-HISTORY; LEATHERBACK TURTLES; MEDITERRANEAN SEA; MARINE TURTLES; OCEAN CURRENTS; MODEL; CONSERVATION; MIGRATION; BEHAVIOR AB Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their 'lost years' at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1-3 year old turtles released off Japan (29.7-37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population. C1 [Briscoe, D. K.; Crowder, L. B.] Stanford Univ, Biol, Hopkins Marine Stn, 120 Oceanview Blvd, Pacific Grove, CA 93950 USA. [Parker, D. M.] NOAA, Joint Inst Marine & Atmospher Res, 2032 Southeast Oregon State Univ Dr, Newport, OR 97365 USA. [Balazs, G. H.] Natl Ocean & Atmospher Adm Inouye Reg Ctr, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 WASP Blvd Bldg 176, Honolulu, HI 96818 USA. [Kurita, M.; Okamoto, H.; Polovina, J. J.] Port Nagoya Publ Aquarium, Minato Ku, Nagoya, Aichi 4550033, Japan. [Saito, T.] Kochi Univ, Usa Marine Biol Inst, Kochi 7811164, Japan. [Rice, M.] Hawaii Preparatory Acad, 65-1692 Kohala Mt Rd, Kamuela, HI 96743 USA. [Crowder, L. B.] Stanford Univ, Ctr Ocean Solut, 99 Pacific St,Suite 555E, Monterey, CA 93949 USA. RP Briscoe, DK (reprint author), Stanford Univ, Biol, Hopkins Marine Stn, 120 Oceanview Blvd, Pacific Grove, CA 93950 USA. EM dbriscoe@stanford.edu FU Crowder Laboratory at Hopkins Marine Station Stanford University FX Funding for D.K.B. was provided by the Crowder Laboratory at Hopkins Marine Station Stanford University. NR 61 TC 3 Z9 3 U1 23 U2 31 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8452 EI 1471-2954 J9 P ROY SOC B-BIOL SCI JI Proc. R. Soc. B-Biol. Sci. PD JUN 15 PY 2016 VL 283 IS 1832 AR 20160690 DI 10.1098/rspb.2016.0690 PG 8 WC Biology; Ecology; Evolutionary Biology SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA DP2KZ UT WOS:000378318700019 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Bejger, M Bell, AS Berger, BK Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Birnholtz, O Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Boer, M Bogaert, G Bogan, C Bohe, A Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Broida, JE Brooks, AF Brown, DA Brown, DD Brown, NM Brunett, S Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cabero, M Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Cheeseboro, BD Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dasgupta, A Costa, CFDS Dattilo, V Dave, I Davier, M Davies, GS Daw, EJ Day, R De, S Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Devine, RC Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Girolamo, T Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Fenyvesi, E Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fong, H Fournier, JD Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gaur, G Gehrels, N Gemme, G Geng, P Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Grado, A Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hamilton, H Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Healy, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Henry, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hofman, D Holt, K Holz, DE Hopkins, P Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jian, L Jimenez-Forteza, F Johnson, WW Johnson-McDaniel, NK Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kapadia, SJ Karki, S Karvinen, KS Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, CW Kim, C Kim, J Kim, K Kim, N Kim, W Kim, YM Kimbrell, SJ King, EJ King, PJ Kissel, JS Klein, B Kleybolte, L Klimenko, S Koehlenbeck, SM Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kumar, R Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Laxen, M Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Lewis, JB Li, TGF Libson, A Littenberg, TB Lockerbie, NA Lombardi, AL London, LT Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lousto, CO Luck, H Lundgren, AP Lynch, R Ma, Y Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Zertuche, LM Magee, RM Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ Mcrae, T McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mercer, RA Merilh, EL Merzougui, M Meshkov, S Messenger, C Messick, C Metzdorff, R Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, AL Miller, A Miller, BB Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Nedkova, K Nelemans, G Nelson, TJN Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Perri, LM Pfeiffer, HP Phelps, M Piccinni, OJ Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poe, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Qiu, S Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rajan, C Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Rizzo, M Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Sakellariadou, M Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, OES Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Setyawati, Y Shaddock, DA Shaffer, T Shahriar, MS Shaltev, M Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sieniawska, M Sigg, D Silva, AD Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, SP Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sunil, S Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Toland, K Tomlinson, C Tonelli, M Tornasi, Z Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, DV Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Woehler, J Worden, J Wright, JL Wu, DS Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J Boyle, M Hemberger, D Kidder, LE Lovelace, G Ossokine, S Scheel, M Szilagyi, B Teukolsky, S AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Bejger, M. Bell, A. S. Berger, B. K. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Birnholtz, O. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Broida, J. E. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Brunett, S. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cabero, M. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Cheeseboro, B. D. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dasgupta, A. Costa, C. F. Da Silva Dattilo, V. Dave, I. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Devine, R. C. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Girolamo, T. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Fenyvesi, E. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fong, H. Fournier, J. -D. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gaur, G. Gehrels, N. Gemme, G. Geng, P. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Abhirup Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Grado, A. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hamilton, H. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Healy, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Henry, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hofman, D. Holt, K. Holz, D. E. Hopkins, P. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jian, L. Jimenez-Forteza, F. Johnson, W. W. Johnson-McDaniel, N. K. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kapadia, S. J. Karki, S. Karvinen, K. S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, Chi-Woong Kim, Chunglee Kim, J. Kim, K. Kim, N. Kim, W. Kim, Y. -M. Kimbrell, S. J. King, E. J. King, P. J. Kissel, J. S. Klein, B. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kumar, R. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Laxen, M. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Lewis, J. B. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Lombardi, A. L. London, L. T. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lousto, C. O. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Zertuche, L. Magana Magee, R. M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. Mcrae, T. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mercer, R. A. Merilh, E. L. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Metzdorff, R. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. L. Miller, A. Miller, B. B. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Nedkova, K. Nelemans, G. Nelson, T. J. N. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Perri, L. M. Pfeiffer, H. P. Phelps, M. Piccinni, O. J. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poe, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Qiu, S. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rajan, C. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Rizzo, M. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Sakellariadou, M. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. E. S. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Setyawati, Y. Shaddock, D. A. Shaffer, T. Shahriar, M. S. Shaltev, M. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sieniawska, M. Sigg, D. Silva, A. D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sunil, S. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Toland, K. Tomlinson, C. Tonelli, M. Tornasi, Z. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. V. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Woehler, J. Worden, J. Wright, J. L. Wu, D. S. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. Boyle, M. Hemberger, D. Kidder, L. E. Lovelace, G. Ossokine, S. Scheel, M. Szilagyi, B. Teukolsky, S. CA LIGO Sci Collaboration Virgo Collaboration TI GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence SO PHYSICAL REVIEW LETTERS LA English DT Article ID COMPACT BINARIES; MASS-DISTRIBUTION; NEUTRON-STAR; MAXIMUM MASS; STELLAR; RADIATION; CHOICE; MERGER AB We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03: 38: 53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 sigma. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(-0.9)(+0.7) x 10(-22). The inferred source-frame initial black hole masses are 14.2(-3.7)(+8.3) M-circle dot and 7.5(-2.3)(+2.3) M-circle dot, and the final black hole mass is 20.8(-1.7)(+6.1) M-circle dot. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(-190)(+180) Mpc corresponding to a redshift of 0.09(-0.04)(+0.03). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Maros, E.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Schmidt, P.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Abernathy, M. R.; Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Di Girolamo, T.; Garufi, F.; Grado, A.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Costa, C. F. Da Silva; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Klimenko, S.; Miller, A. L.; Mitselmakher, G.; Mueller, G.; Mytidis, A.; Reitze, D. H.; Tanner, D. B.; Voss, D. V.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Laxen, M.; Lormand, M.; McCormick, S.; Mullavey, A.; Nelson, T. J. N.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Birnholtz, O.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Cabero, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Grote, H.; Hanke, M. M.; Heurs, M.; Hu, Y. M.; Indik, N.; Kapadia, S. J.; Karvinen, K. S.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Meadors, G. D.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prijatelj, M.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Singh, A.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.; Woehler, J.; Wu, D. S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Martynov, D. V.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Abhirup; Ghosh, Archisman; Iyer, B. R.; Johnson-McDaniel, N. K.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Poe, M.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Bisht, A.; Danzmann, K.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Singh, A.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Mcrae, T.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Read, J.; Smith, J. R.; Lovelace, G.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS, IN2P3, Univ Paris Saclay,LAL, F-91405 Orsay, France. [Arun, K. G.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Majorana, E.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Palomba, C.; Piccinni, O. J.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Meadors, G. D.; Ming, J.; Papa, M. A.; Pfeiffer, H. P.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.; Ossokine, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Lebigot, E. O.; Tacca, M.] Sorbonne Paris Cite, Univ Paris Diderot, AstroParticule & Cosmol, Observ Paris,CNRS,IN2P3,CEA Irfu,APC, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Hoak, D.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] European Gravitat Observ, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Zertuche, L. Magana; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bohe, A.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Reid, S.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, S.; Strain, K. A.; Toland, K.; Tornasi, Z.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Goetz, E.; Gray, C.; Hanke, M. M.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; McCarthy, R.; Mendell, G.; Merilh, E. L.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Shaffer, T.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.; Sieniawska, M.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S. P.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.; Rajan, C.] RRCAT, Indore 452013, MP, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Jian, L.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Chincarini, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, CNRS, Observ Cote Azur, Artemis, CS 34229, Nice 4, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.; Wang, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Cumming, A.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.; Metzdorff, R.] Univ Paris 06, Sorbonne Univ, CNRS, ENS PSL Res Univ,Lab Kastler Brossel,Coll France, F-75005 Paris, France. [Broida, J. E.; Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon 1, CNRS, IN2P3, Lab Materiaux Avances, F-69622 Villeurbanne, France. [Cagnoli, G.] Univ Lyon 1, F-69622 Villeurbanne, France. [Calloni, E.; De laurentis, M.; De Rosa, R.; Di Girolamo, T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.] Univ Tokyo, RESCEU, Tokyo 1130033, Japan. [Cao, J.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Cheeseboro, B. D.; Devine, R. C.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Vallisneri, M.; Hemberger, D.; Scheel, M.; Szilagyi, B.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Chi-Woong; Kim, Chunglee] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Piccinni, O. J.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Kalogera, V.; Klein, B.; Miller, B. B.; Pankow, C.; Perri, L. M.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Dasgupta, A.; Gaur, G.; Gupta, A.; Khan, Z.; Kumar, R.; Srivastava, A. K.; Sunil, S.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Diaz, M. C.; Geng, P.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Brownsville, Rio Grande Valley, Brownsville, TX 78520 USA. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tiwari, S.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; London, L. T.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Fenyvesi, E.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Kehl, M. S.; Kumar, P.; Pfeiffer, H. P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto M5S 3H8, ON, Canada. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Grado, A.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Gustafson, E. K.; Neunzert, A.; Riles, K.; Sauter, O. E. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Hamilton, H.; Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Healy, J.; Henry, J.; Lange, J.; Lousto, C. O.; O'Shaughnessy, R.; Rizzo, M.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Huerta, E. A.] Univ Illinois, NCSA, Urbana, IL 61801 USA. [Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3 IEEC, E-07122 Palma de Mallorca, Spain. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Kim, W.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Qiu, S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Li, T. G. F.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC Chilton, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Pedurand, R.] Univ Lyon, F-69361 Lyon, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Sakellariadou, M.] Kings Coll London, London WC2R 2LS, England. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Boyle, M.; Kidder, L. E.; Teukolsky, S.] Cornell Univ, Ithaca, NY 14853 USA. [Szilagyi, B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Zhu, Xingjiang/E-1501-2016; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Bondu, Francois/A-2071-2012; Iyer, Bala R./E-2894-2012; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Conti, Livia/F-8565-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni, Fabio/A-1920-2008; Strigin, Sergey/I-8337-2012; prodi, giovanni/B-4398-2010; Frasconi, Franco/K-1068-2016; Stratta, Maria Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Rocchi, Alessio/O-9499-2015; Costa, Cesar/G-7588-2012; Gemme, Gianluca/C-7233-2008; Strain, Kenneth/D-5236-2011; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016 OI Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Berry, Christopher/0000-0003-3870-7215; Piccinni, Ornella Juliana/0000-0001-5478-3950; Kanner, Jonah/0000-0001-8115-0577; Nelemans, Gijs/0000-0002-0752-2974; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Granata, Massimo/0000-0003-3275-1186; Dolique, Vincent/0000-0001-5644-9905; Zhu, Xingjiang/0000-0001-7049-6468; Boschi, Valerio/0000-0001-8665-2293; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; O'Shaughnessy, Richard/0000-0001-5832-8517; Guidi, Gianluca/0000-0002-3061-9870; Mastrogiovanni, Simone/0000-0003-1606-4183; Khan, Sebastian/0000-0003-4953-5754; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Bondu, Francois/0000-0001-6487-5197; Iyer, Bala R./0000-0002-4141-5179; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Conti, Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Marchesoni, Fabio/0000-0001-9240-6793; prodi, giovanni/0000-0001-5256-915X; Frasconi, Franco/0000-0003-4204-6587; Stratta, Maria Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Rocchi, Alessio/0000-0002-1382-9016; Gemme, Gianluca/0000-0002-1127-7406; Strain, Kenneth/0000-0002-2066-5355; Lazzaro, Claudia/0000-0001-5993-3372 FU EGO consortium; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science AMP; Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat of the Govern de les Illes Balears; Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Sciences and Engineering Research Council of Canada; Canadian Institute for Advanced Research, Taiwan; Brazilian Ministry of Science, Technology, and Innovation; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation, Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max Planck Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. NR 86 TC 167 Z9 167 U1 45 U2 79 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 15 PY 2016 VL 116 IS 24 AR 241103 DI 10.1103/PhysRevLett.116.241103 PG 14 WC Physics, Multidisciplinary SC Physics GA DO5HB UT WOS:000377813100001 ER PT J AU Michel, P Cheng, A Kuppers, M Pravec, P Blum, J Delbo, M Green, SF Rosenblatt, P Tsiganis, K Vincent, JB Biele, J Ciarletti, V Herique, A Ulamec, S Carnelli, I Galvez, A Benner, L Naidu, SP Barnouin, OS Richardson, DC Rivkin, A Scheirich, P Moskovitz, N Thirouin, A Schwartz, SR Bagatin, AC Yu, Y AF Michel, Patrick Cheng, A. Kueppers, M. Pravec, P. Blum, J. Delbo, M. Green, S. F. Rosenblatt, P. Tsiganis, K. Vincent, J. B. Biele, J. Ciarletti, V. Herique, A. Ulamec, S. Carnelli, I. Galvez, A. Benner, L. Naidu, S. P. Barnouin, O. S. Richardson, D. C. Rivkin, A. Scheirich, P. Moskovitz, N. Thirouin, A. Schwartz, S. R. Campo Bagatin, A. Yu, Y. TI Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Planetary defense; Near-Earth asteroids; Asteroid impact hazards; Kinetic impactor; Binary asteroids ID RUBBLE-PILE ASTEROIDS; NEAR-EARTH OBJECTS; 29075 1950 DA; GIANT IMPACT; ROTATIONAL BREAKUP; MOMENTUM-TRANSFER; BINARY ASTEROIDS; SMALL BODIES; GRAIN-SIZE; P/2010 A2 AB The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to test the kinetic impactor technique to deflect an asteroid. The European Asteroid Impact Mission (AIM) is set to rendezvous with the asteroid system to fully characterize the smaller of the two binary components a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near-Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Having direct information on the surface and internal properties of small asteroids will allow us to understand how the various processes they undergo work and transform these small bodies as well as, for this particular case, how a binary system forms. Making these measurements from up close and comparing them with ground-based data from telescopes will also allow us to calibrate remote observations and improve our data interpretation of other systems. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. AIDA will thus offer a great opportunity to test and refine our understanding and models at the actual scale of an asteroid, and to check whether the current extrapolations of material strength from laboratory-scale targets to the scale of AIDA's target are valid. Moreover, it will offer a first check of the validity of the kinetic impactor concept to deflect a small body and lead to improved efficiency for future kinetic impactor designs. This paper focuses on the science return of AIM, the current knowledge of its target from ground-based observations, and the instrumentation planned to get the necessary data. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Michel, Patrick; Delbo, M.; Schwartz, S. R.; Yu, Y.] Univ Cote Azur, Lab Lagrange, Observ Cote Azur, CNRS, CS 34229, F-06304 Nice 4, France. [Cheng, A.; Rivkin, A.] JHU APL, Howard County, MD USA. [Kueppers, M.] ESA ESAC, Madrid, Spain. [Pravec, P.; Scheirich, P.] Ondrejov Obs, Prague, Czech Republic. [Blum, J.] TU Braunschweig, Braunschweig, Germany. [Green, S. F.] Open Univ, Milton Keynes, Bucks, England. [Rosenblatt, P.] Royal Observ Belgium, Louvain, Belgium. [Tsiganis, K.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Vincent, J. B.] Max Planck Inst, Gottingen, Germany. [Biele, J.; Ulamec, S.] DLR, German Aerosp Ctr, Cologne, Germany. [Ciarletti, V.] UPMC, Univ Paris 04, UVSQ UPSay, CNRS INSU LATMOS IPSL, Guyancourt, France. [Herique, A.] Univ Grenoble Alpes, IPAG, CNRS, Grenoble, France. [Carnelli, I.; Galvez, A.] ESA Hq, Paris, France. [Benner, L.; Naidu, S. P.] JPL, Pasadena, CA USA. [Richardson, D. C.] Univ Maryland, College Pk, MD 20742 USA. [Moskovitz, N.; Thirouin, A.] Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA. [Campo Bagatin, A.] Univ Alicante, Alicante, Spain. RP Michel, P (reprint author), Univ Cote Azur, Lab Lagrange, Observ Cote Azur, CNRS, CS 34229, F-06304 Nice 4, France. EM michelp@oca.eu RI Barnouin, Olivier/I-7475-2015; Pravec, Petr/G-9037-2014; Scheirich, Peter/H-4331-2014; Herique, Alain/E-7210-2017; Campo Bagatin, Adriano/L-2809-2014; Green, Simon/C-7408-2009 OI Barnouin, Olivier/0000-0002-3578-7750; Scheirich, Peter/0000-0001-8518-9532; Herique, Alain/0000-0003-3699-883X; Campo Bagatin, Adriano/0000-0001-9840-2216; FU ESA; NASA; Grant Agency of the Czech Republic [15-07193S] FX The authors acknowledge support from ESA and NASA. The work of P.P. and P.S. was supported by the Grant Agency of the Czech Republic, Grant 15-07193S. NR 73 TC 6 Z9 6 U1 4 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 15 PY 2016 VL 57 IS 12 BP 2529 EP 2547 DI 10.1016/j.asr.2016.03.031 PG 19 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DN7BF UT WOS:000377229600011 ER PT J AU Mazuruk, K Volz, MP AF Mazuruk, K. Volz, M. P. TI Dynamic stability of detached solidification SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Solidification; Stability analysis; Bridgman technique; Detached growth; Microgravity conditions; Growth from melt ID DEWETTED BRIDGMAN GROWTH; CRYSTAL-GROWTH; MICROGRAVITY CONDITIONS; CZOCHRALSKI; GRAVITY AB A dynamic stability analysis model is developed for meniscus-defined crystal growth processes. The Young-Laplace equation is used to analyze the response of a growing crystal to perturbations to its radius and a thermal transport model is used to analyze the effect of perturbations on the evolution of the crystal-melt interface. A linearized differential equation is used to analyze radius perturbations but a linear integro-differential equation is required for the height perturbations. The stability model is applied to detached solidification under zero-gravity and terrestrial conditions. A numerical analysis is supplemented with an approximate analytical analysis, valid in the limit of small Bond numbers. For terrestrial conditions, a singularity is found to exist in the capillary stability coefficients where, at a critical value of the pressure differential across the meniscus, there is a transition from stability to instability. For the zero-gravity condition, exact formulas for the capillary stability coefficients are derived. Published by Elsevier B.V. C1 [Mazuruk, K.] Univ Alabama, Huntsville, AL 35899 USA. [Volz, M. P.] NASA, George C Marshall Space Flight Ctr, EM31, Huntsville, AL 35812 USA. RP Volz, MP (reprint author), NASA, George C Marshall Space Flight Ctr, EM31, Huntsville, AL 35812 USA. EM Martin.Volz@nasa.gov FU U.S. National Aeronautics and Space Administration [NNM11AA01A] FX This research was supported by the U.S. National Aeronautics and Space Administration under cooperative agreement NNM11AA01A. NR 26 TC 0 Z9 0 U1 3 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUN 15 PY 2016 VL 444 BP 1 EP 8 DI 10.1016/j.jcrysgro.2016.03.03 PG 8 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA DM6EO UT WOS:000376443600001 ER PT J AU Han, J Brearley, AJ AF Han, Jangmi Brearley, Adrian J. TI Microstructural constraints on complex thermal histories of refractory CAI-like objects in an amoeboid olivine aggregate from the ALHA77307 CO3.0 chondrite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Amoeboid olivine aggregates (AOAs); Refractory phases; TiO2 nanoparticles; Condensation; Solar nebula; Transport ID ALUMINUM-RICH INCLUSIONS; TO-RUTILE TRANSFORMATION; NANOCRYSTALLINE TITANIA; CARBONACEOUS CHONDRITES; PHASE-TRANSFORMATION; ALLENDE METEORITE; CV3 CHONDRITES; SOLAR NEBULA; CO CHONDRITES; CH CHONDRITE AB We have carried out a FIB/TEM study of refractory CAI-like objects in one AOA from the ALHA77307 CO3.0 chondrite. The CAI-like objects in the AOA consist of a zoned sequence with a spinel-rich core through an intergrowth layer of spinel and Al-Ti-rich diopside to a diopside rim. The spinel-rich core consists of polycrystalline aggregates of spinel and +/- minor melilite showing equilibrated grain boundary textures. The intergrowth layer contains fine-grained diopside and spinel with minor anorthite with highly curved and embayed grain boundaries. The diopside rim consists of polycrystalline aggregates of diopside. The compositions of pyroxene change significantly outward from Al-Ti-rich diopside in contact with the spinel-rich core to Al-Ti-poor diopside next to the surrounding olivine of the AOA. Overall microstructural and chemical characteristics suggest that the spinel-rich core formed under equilibrium conditions whereas the intergrowth layer is the result of reactions that occurred under conditions that departed significantly from equilibrium. The remarkable changes in formation conditions of the CAI-like objects may have been achieved by transport and injection of refractory objects into a region of a partially-condensed, Ca, Ti-saturated gas which reacted with spinel and melilite to form Al-Ti-rich diopside. Crystallographically-oriented TiO2 nanoparticles decorate the grain boundaries between spinel grains and between spinel and Al-Ti-rich diopside grains. During the disequilibrium back-reaction of spinel with a partially-condensed, Ca, Ti-saturated gas, metastable TiO2 nanoparticles may have condensed by an epitaxial nucleation mechanism and grown on the surface of spinel. These TiO2 nanoparticles are disordered intergrowths of the two TiO2 polymorphs, anatase and rutile. These nanoparticles are inferred to have nucleated as anatase that underwent partial transformation into rutile. The local presence of the TiO2 nanoparticles and intergrowth of anatase and rutile imply that the disequilibrium back-reaction of spinel with the gas occurred on a short timescale, i.e., minutes to hours at maximum. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Han, Jangmi; Brearley, Adrian J.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Han, J (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA.; Han, J (reprint author), NASA, Lyndon B Johnson Space Ctr, Lunar & Planetary Inst, 3600 Bay Area Blvd,2101 NASA Pkwy, Houston, TX 77058 USA. EM jangmi.han@nasa.gov; brearley@unm.edu FU State of New Mexico; National Science Foundation; NASA; NASA's Cosmochemistry Program [NNG06GG37G, NNX12AH59G] FX We thank Dr. Tim Fagan, Dr. Alex Ruzicka, and Dr. Steve Simon for their thoughtful and constructive reviews of the manuscript and Dr. Sara Russell for her comments and editorial handling of the manuscript. The technical assistance with the electron microprobe analysis from Mike Spilde and for FIB and TEM works from Dr. Ying-Bing Jiang is greatly appreciated. Electron microbeam analysis was carried out in the Electron Microbeam Analysis Facility, Department of Earth and Planetary Sciences and Institute of Meteoritics at the University of New Mexico. The facility is supported by funds from the State of New Mexico, the National Science Foundation, and NASA. This work was supported by NASA's Cosmochemistry Program through Grants NNG06GG37G and NNX12AH59G to A.J. Brearley (P.I). NR 64 TC 1 Z9 1 U1 4 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2016 VL 183 BP 176 EP 197 DI 10.1016/j.gca.2016.04.011 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DM2HP UT WOS:000376168000012 ER PT J AU Thorpe, AK Frankenberg, C Aubrey, AD Roberts, DA Nottrott, AA Rahn, TA Sauer, JA Dubey, MK Costigan, KR Arata, C Steffke, AM Hills, S Haselwimmer, C Charlesworth, D Funk, CC Green, RO Lundeen, SR Boardman, JW Eastwood, ML Sarture, CM Nolte, SH Mccubbin, IB Thompson, DR McFadden, JP AF Thorpe, A. K. Frankenberg, C. Aubrey, A. D. Roberts, D. A. Nottrott, A. A. Rahn, T. A. Sauer, J. A. Dubey, M. K. Costigan, K. R. Arata, C. Steffke, A. M. Hills, S. Haselwimmer, C. Charlesworth, D. Funk, C. C. Green, R. O. Lundeen, S. R. Boardman, J. W. Eastwood, M. L. Sarture, C. M. Nolte, S. H. Mccubbin, I. B. Thompson, D. R. McFadden, J. P. TI Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG) SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Methane; CH4; Mapping; Concentrations; Controlled; Release; Experiment; Next generation Airborne Visible/Infrared Imaging Spectrometer; AVIRIS-NG; Fugitive; Emissions; Attribution; Monitoring; Surveys; Detection; Plumes; Point sources; Sensitivity; Fluxes ID GAS PRODUCTION SITES; MATCHED-FILTER DETECTION; UNITED-STATES; PROCESS EQUIPMENT; EMISSIONS; RETRIEVAL; QUANTIFICATION; SPECTROSCOPY AB Emissions estimates of anthropogenic methane (CH4) sources are highly uncertain and many sources related to energy production are localized yet difficult to quantify. Airborne imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) are well suited for locating CH4 point sources due to their ability to map concentrations over large regions with the high spatial resolution necessary to resolve localized emissions. AVIRIS-NG was deployed during a field campaign to measure controlled CH4 releases at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming, U.S. for multiple flux rates and flight altitudes. Two algorithms were applied to AVIRIS-NG scenes, a matched filter detection algorithm and a hybrid retrieval approach using the Iterative Maximum a Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm and Singular Value Decomposition. Plumes for releases as low as 14.16 m(3)/h (0.09 kt/year) were consistently observed by AVIRIS-NG at multiple flight altitudes and images of plumes were in agreement with wind directions measured at ground stations. In some cases plumes as low as 3.40 m(3)/h (0.02 kt/year) were detected, indicating that AVIRIS-NG has the capability of detecting a wide range of fugitive CH4 source categories for natural gas fields. This controlled release experiment is the first of its kind using AVIRIS-NG and demonstrates the utility of imaging spectrometers for direct attribution of emissions to individual point source locations. This is particularly useful given the large uncertainties associated with anthropogenic CH4 emissions, including those from industry, gas transmission lines, and the oil and gas sectors. (C) 2015 Elsevier Inc. All rights reserved. C1 [Thorpe, A. K.; Frankenberg, C.; Aubrey, A. D.; Green, R. O.; Lundeen, S. R.; Eastwood, M. L.; Sarture, C. M.; Nolte, S. H.; Mccubbin, I. B.; Thompson, D. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Thorpe, A. K.; Roberts, D. A.; McFadden, J. P.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Frankenberg, C.] CALTECH, Pasadena, CA 91125 USA. [Nottrott, A. A.] Picarro Inc, Santa Clara, CA USA. [Rahn, T. A.; Sauer, J. A.; Dubey, M. K.; Costigan, K. R.] Los Alamos Natl Lab, Los Alamos, NM USA. [Arata, C.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Steffke, A. M.; Hills, S.; Haselwimmer, C.; Charlesworth, D.] Chevron Energy Technol Co, San Ramon, CA USA. [Funk, C. C.] US Geol Survey, Santa Barbara, CA USA. [Funk, C. C.] Univ Calif Santa Barbara, Dept Geog, Climate Hazards Grp, Santa Barbara, CA 93106 USA. [Boardman, J. W.] Analyt Imaging & Geophys LLC, Boulder, CO USA. RP Thorpe, AK (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM Andrew.K.Thorpe@jpl.nasa.gov RI Dubey, Manvendra/E-3949-2010; Frankenberg, Christian/A-2944-2013; OI Dubey, Manvendra/0000-0002-3492-790X; Frankenberg, Christian/0000-0002-0546-5857; Rahn, Thomas/0000-0001-8634-1348 FU NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX13AM95H]; Chevron Energy Technology Company FX The authors thank the AVIRIS/AVIRIS-NG team at JPL, additional collaborators at LANL, the Chevron Energy Technology Company, and the U.S. Department of Energy for use of RMOTC. Special thanks to Martin Evans, Lance Christensen, Glynn Hulley, Pierre Guillevic, and Simon Hook for their support of the project. Portions of this research were supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program grant NNX13AM95H as well as the Chevron Energy Technology Company. This work was undertaken in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA as well as at the University of California, Santa Barbara. The AVIRIS-NG data used in this study are available upon request at http://avirisng.jpl.nasa.gov/ or http://aviris.jpl.nasa.gov/. Copyright 2015. All rights reserved. NR 45 TC 4 Z9 4 U1 4 U2 27 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN 15 PY 2016 VL 179 BP 104 EP 115 DI 10.1016/j.rse.2016.03.032 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DL3AH UT WOS:000375506100009 ER PT J AU Gatebe, CK King, MD AF Gatebe, Charles K. King, Michael D. TI Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications SO REMOTE SENSING OF ENVIRONMENT LA English DT Review DE BRDF; Albedo; Directional reflectance; Remote sensing; Airborne; Ocean; Vegetation; Savannah; Croplands; Snow; Sea ice; Desert; Wetlands; Clouds; Smoke layers ID IMAGING SPECTRORADIOMETER MISR; ARCTIC SEA-ICE; BIDIRECTIONAL REFLECTANCE; DIRECTIONAL REFLECTANCE; ATMOSPHERE ANISOTROPY; OPTICAL-PROPERTIES; SOLAR-RADIATION; RADIOMETER; ROUGHNESS; PRODUCTS AB In this paper we describe measurements of the bidirectional reflectance-distribution function (BRDF) acquired over a 30-year period (1984-2014) by the National Aeronautics and Space Administration's (NASA's) Cloud Absorption Radiometer (CAR). Our BRDF database encompasses various natural surfaces that are representative of many land cover or ecosystem types found throughout the world. CAR's unique measurement geometry allows a comparison of measurements acquired from different satellite instruments with various geometrical configurations, none of which are capable of obtaining such a complete and nearly instantaneous BRDF. This database is therefore of great value in validating many satellite sensors and assessing corrections of reflectances for angular effects. These data can also be used to evaluate the ability of analytical models to reproduce the observed directional signatures, to develop BRDF models that are suitable for sub-kilometer-scale satellite observations over both homogeneous and heterogeneous landscape types, and to test future spaceborne sensors. All of these BRDF data are publicly available and accessible in hierarchical data format (http:car.gsfc.nasa.gov/). (C) 2016 Elsevier Inc. All rights reserved. C1 [Gatebe, Charles K.] Univ Space Res Assoc, Columbia, MD USA. [Gatebe, Charles K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [King, Michael D.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. RP Gatebe, CK (reprint author), Univ Space Res Assoc, Columbia, MD USA.; Gatebe, CK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM charles.k.gatebe@nasa.gov RI King, Michael/C-7153-2011; Gatebe, Charles/G-7094-2011 OI King, Michael/0000-0003-2645-7298; Gatebe, Charles/0000-0001-9261-2239 FU Science Mission Directorate of the National Aeronautics and Space Administration FX The authors are especially grateful to Rajesh Poudyal, G. Thomas Arnold, Jason Y. Li, and Howard G. Meyer for data processing, and Manoj Kumar for support with some of the figures. This research is supported by the Science Mission Directorate of the National Aeronautics and Space Administration under the Radiation Sciences program managed by Hal Maring. NR 53 TC 8 Z9 8 U1 14 U2 41 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN 15 PY 2016 VL 179 BP 131 EP 148 DI 10.1016/j.rse.2016.03.029 PG 18 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DL3AH UT WOS:000375506100011 ER PT J AU Debats, SR Luo, D Estes, LD Fuchs, TJ Caylor, KK AF Debats, Stephanie R. Luo, Dee Estes, Lyndon D. Fuchs, Thomas J. Caylor, Kelly K. TI A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Land cover; Agriculture; Sub-Saharan Africa; Computer vision; Machine learning ID LAND-COVER CLASSIFICATION; SUB-SAHARAN AFRICA; RANDOM FOREST CLASSIFIER; REMOTE-SENSING IMAGES; CLIMATE-CHANGE; GLOBAL LAND; FOOD SECURITY; SUPERVISED CLASSIFICATION; ENERGY MINIMIZATION; SPATIAL-RESOLUTION AB Smallholder farms dominate in many parts of the world, particularly Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural land cover. Using a variety of sites in South Africa, we present a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. We achieved similar high performance across agricultural types, including the spectrally indistinct smallholder fields as well as the more easily distinguishable commercial fields, and demonstrated the ability to generalize performance across large geographic areas. In sensitivity analyses, we determined multi-temporal information provided greater gains in performance than the addition of multi-spectral bands available in DigitalGlobe Worldview-2 imagery. (C) 2016 Elsevier Inc. All rights reserved. C1 [Debats, Stephanie R.; Estes, Lyndon D.; Caylor, Kelly K.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Luo, Dee] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA. [Fuchs, Thomas J.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Debats, SR (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. EM sdebats@princeton.edu FU Princeton Environmental Institute through the Walbridge Fund; Mary and Randall Hack '69 Research Fund; Program in Science, Technology, and Environmental Policy (PEI-STEP) Fellowship; NASA Jet Propulsion Laboratory Strategic University Partnerships (JPL SURP) [1524338]; National Science Foundation [SES-1360463, BCS-1026776]; NASA New Investigator Program [NNX15AC64G] FX This work was supported by the Princeton Environmental Institute through the Walbridge Fund, the Mary and Randall Hack '69 Research Fund, and the Program in Science, Technology, and Environmental Policy (PEI-STEP) Fellowship; the NASA Jet Propulsion Laboratory Strategic University Partnerships (JPL SURP) Graduate Research Program (1524338); National Science Foundation (SES-1360463 and BCS-1026776); and the NASA New Investigator Program (NNX15AC64G). NR 113 TC 0 Z9 0 U1 13 U2 39 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN 15 PY 2016 VL 179 BP 210 EP 221 DI 10.1016/j.rse.2016.03.010 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DL3AH UT WOS:000375506100017 ER PT J AU Boulet, C Ma, Q AF Boulet, C. Ma, Q. TI The relaxation matrix for symmetric tops with inversion symmetry. II. Line mixing effects in the v(1) band of NH3 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PARALLEL BANDS; SPECTRA; AMMONIA; PARAMETERS; (NH3)-N-14; DOUBLETS; SHAPE; HE AB Line mixing effects have been calculated in the v(1) parallel band of self-broadened NH3. The theoretical approach is an extension of a semi-classical model to symmetric-top molecules with inversion symmetry developed in the companion paper [Q. Ma and C. Boulet, J. Chem. Phys. 144, 224303 (2016)]. This model takes into account line coupling effects and hence enables the calculation of the entire relaxation matrix. A detailed analysis of the various coupling mechanisms is carried out for Q and R inversion doublets. The model has been applied to the calculation of the shape of the Q branch and of some R manifolds for which an obvious signature of line mixing effects has been experimentally demonstrated. Comparisons with measurements show that the present formalism leads to an accurate prediction of the available experimental line shapes. Discrepancies between the experimental and theoretical sets of first order mixing parameters are discussed as well as some extensions of both theory and experiment. Published by AIP Publishing. C1 [Boulet, C.] Univ Paris Saclay, Univ Paris 11, CNRS, ISMO, Bat 350,Campus Orsay, F-91405 Orsay, France. [Ma, Q.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Ma, Q.] Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. RP Boulet, C (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS, ISMO, Bat 350,Campus Orsay, F-91405 Orsay, France. FU NSF [1501297]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank the referees for their valuable suggestions and comments and for greatly improving the manuscript. One of the authors (Q. Ma) acknowledges financial support from NSF under Grant No. 1501297. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 1 Z9 1 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2016 VL 144 IS 22 AR 224304 DI 10.1063/1.4952996 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DQ0XW UT WOS:000378926100018 PM 27306004 ER PT J AU Ma, Q Boulet, C AF Ma, Q. Boulet, C. TI The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened v(1) and pure rotational bands of NH3 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SPECTRAL-LINES; NU(4) BAND; IMPACT APPROXIMATION; AMMONIA; MICROWAVE; SHIFT; H-2; AR; SPECTROSCOPY; COEFFICIENTS AB The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the nu(1) and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II). Published by AIP Publishing. C1 [Ma, Q.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Ma, Q.] Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. [Boulet, C.] Univ Paris Saclay, Univ Paris 11, CNRS, ISMO, Bat 350,Campus Orsay, F-91405 Orsay, France. RP Ma, Q (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.; Ma, Q (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. FU NSF [1501297]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank the reviewers for their valuable suggestions and comments and for greatly improving the manuscript. One of the authors (Q. Ma) acknowledges financial support from NSF under Grant No. 1501297. This research used resources of the National Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 53 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2016 VL 144 IS 22 AR 224303 DI 10.1063/1.4952995 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DQ0XW UT WOS:000378926100017 PM 27306003 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Birnholtz, O Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Devine, C Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etienne, Z Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Fauchon-Jones, E Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gaebel, SM Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Healy, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Johnson-McDaniel, NK Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL London, LT Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lousto, CO Lovelace, G Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Pfeiffer, HP Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, SP Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ Van Den Broeck, C Vander-Hyde, DC van der Schaaf, L van der Sluys, MV van Heijningen, JV Vano-Vinuales, A van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J Boyle, M Brugmann, B Campanelli, M Clark, M Hamberger, D Kidder, LE Kinsey, M Laguna, P Ossokine, S Scheel, MA Szilagyi, B Teukolsky, S Zlochower, Y AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Birnholtz, O. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Devine, C. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etienne, Z. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Fauchon-Jones, E. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gaebel, S. M. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Healy, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Johnson-McDaniel, N. K. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. London, L. T. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lousto, C. O. Lovelace, G. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Pfeiffer, H. P. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van Den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van der Sluys, M. V. van Heijningen, J. V. Vano-Vinuales, A. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. Boyle, M. Bruegmann, B. Campanelli, M. Clark, M. Hamberger, D. Kidder, L. E. Kinsey, M. Laguna, P. Ossokine, S. Scheel, M. A. Szilagyi, B. Teukolsky, S. Zlochower, Y. CA Ligo Sci Collaboration Virgo Collaboration TI Properties of the Binary Black Hole Merger GW150914 SO PHYSICAL REVIEW LETTERS LA English DT Article ID INSPIRALLING COMPACT BINARIES; GRAVITATIONAL WAVE-FORMS; NEUTRON-STAR; ADVANCED LIGO; PARAMETER-ESTIMATION; RADIATION RECOIL; STANDARD SIRENS; MAXIMUM MASS; BOSON STARS; X-1 AB On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(-4)(+5) M-circle dot and 29(-4)(-4) M-circle dot; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be < 0.7 ( at 90% probability). The luminosity distance to the source is 410(-180)(+160) Mpc, corresponding to a redshift 0.09(-0.04)(+0.03) assuming standard cosmology. The source location is constrained to an annulus section of 610 deg(2), primarily in the southern hemisphere. The binary merges into a black hole of mass 62(-4)(+4) M-circle dot and spin 0.67(-0.07)(+0.05). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Sez Napoli, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, Lab Annecy Le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Birnholtz, O.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] NIKHEF H, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Gran Sasso Sci Inst, Ist Nazl Fis Nucl, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Johnson-McDaniel, N. K.; Mishra, C.; Mukherjee, Arunava; Reitze, D. H.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Lovelace, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris 11, LAL, CNRS IN2P3, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.; Kasprzack, M.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Pfeiffer, H. P.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.; Ossokine, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, CNRS IN2P3,CEA Irfu,APC,AstroParticule & Cosmol, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] European Gravitat Observ EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Gaebel, S. M.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S. P.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van der Sluys, M. V.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, Observ Cote Azur, Artemis, CNRS,CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.] ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.; Clark, M.; Kinsey, M.; Laguna, P.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.; Clark, M.; Kinsey, M.; Laguna, P.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, Inst Lumiere Mat, UMR CNRS 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, Lab Mat Avances LMA, CNRS IN2P3, F-69622 Villeurbanne, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC IAC3, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Complesso Univ Monte S Angelo, Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.; Pfeiffer, H. P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.; Hamberger, D.; Scheel, M. A.; Szilagyi, B.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Devine, C.; Etienne, Z.; Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trent, Dipartimento Fis, I-38123 Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Trento Inst Fundamental Phys & Applicat, Ist Nazl Fis Nucl, I-38123 Trento, Italy. [Fairhurst, S.; Fauchon-Jones, E.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; London, L. T.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Vano-Vinuales, A.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Healy, J.; Lange, J.; Lousto, C. O.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.; Campanelli, M.; Zlochower, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Boyle, M.; Kidder, L. E.; Teukolsky, S.] Cornell Univ, Ithaca, NY 14853 USA. [Bruegmann, B.] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany. [Szilagyi, B.] Caltech JPL, Pasadena, CA 91109 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Zhu, Xingjiang/E-1501-2016; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Bondu, Francois/A-2071-2012; Iyer, Bala R./E-2894-2012; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Conti, Livia/F-8565-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni, Fabio/A-1920-2008; Strigin, Sergey/I-8337-2012; prodi, giovanni/B-4398-2010; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Rocchi, Alessio/O-9499-2015; Pinto, Innocenzo/L-3520-2016; Costa, Cesar/G-7588-2012; Gemme, Gianluca/C-7233-2008; Strain, Kenneth/D-5236-2011; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016 OI Berry, Christopher/0000-0003-3870-7215; Piccinni, Ornella Juliana/0000-0001-5478-3950; Nelemans, Gijs/0000-0002-0752-2974; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Talukder, Dipongkar/0000-0002-9178-8870; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Zhu, Xingjiang/0000-0001-7049-6468; Boschi, Valerio/0000-0001-8665-2293; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Bondu, Francois/0000-0001-6487-5197; Iyer, Bala R./0000-0002-4141-5179; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Conti, Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Marchesoni, Fabio/0000-0001-9240-6793; prodi, giovanni/0000-0001-5256-915X; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Rocchi, Alessio/0000-0002-1382-9016; Gemme, Gianluca/0000-0002-1127-7406; Strain, Kenneth/0000-0002-2066-5355; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen, Germany; Australian Research Council; Netherlands Organisation for Scientific Research; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen, Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen, Germany for provision of computational resources. NR 135 TC 84 Z9 89 U1 36 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 14 PY 2016 VL 116 IS 24 AR 241102 DI 10.1103/PhysRevLett.116.241102 PG 19 WC Physics, Multidisciplinary SC Physics GA DO5GX UT WOS:000377812700005 ER PT J AU Cooper, G Rios, AC AF Cooper, George Rios, Andro C. TI Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbonaceous meteorites; sugar acids; enantiomer excesses; aldonic acids; polyols ID L-ASCORBIC-ACID; STAR-FORMING REGIONS; AMINO-ACIDS; MURCHISON METEORITE; ICE ANALOGS; CIRCULAR-POLARIZATION; POTENTIAL FORMATION; AQUEOUS ALTERATION; ORGANIC-MATTER; CHONDRITES AB Biological polymers such as nucleic acids and proteins are constructed of only one-the D or L-of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50: 50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System's earliest (similar to 4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the D enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life's carbohydrate-related biopolymers. C1 [Cooper, George; Rios, Andro C.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Exobiol Branch, Moffett Field, CA 94035 USA. [Rios, Andro C.] Univ Space Res Assoc, NASA, Postdoctoral Program, Columbia, MD 21046 USA. RP Cooper, G (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Exobiol Branch, Moffett Field, CA 94035 USA. EM george.cooper@nasa.gov FU NASA Exobiology and Evolutionary Biology Program FX We thank Joseph Solvason, Rhonda Franklin, Carol Elland, and Lorna Jones for assistance with the manuscript; Mary Noe and Winslow Briggs for comments on the manuscript; and Art Weber and Scott Sandford for helpful discussions. We thank Samantha Yim, Jeremy Lanoiselee, Mastewal Abate, Novelle Kimmich, Josh Sarinana, Cynthia Aysio, Ben Fasbinder, Patricia Chang, Malika Carter, Chris Reed, and David Macon for assistance with laboratory analyses at various times and Veda Bartlow for assistance with syntheses of deoxy sugar acids. We thank Donna Kleiner and Lisa Sewell for library resources; The NASA Johnson Space Center Antarctic Meteorite Program for Antarctic meteorites; and the Arizona State University Center for Meteorite Studies, Sandra Pizzarello, and Ted Bunch for samples of the Murchison meteorite. This work was partially supported by the NASA Exobiology and Evolutionary Biology Program. A. C. R. is supported by an appointment to the NASA Postdoctoral Program at Ames Research Center administered by Universities Space Research Association through a contract with NASA. NR 55 TC 4 Z9 4 U1 12 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 14 PY 2016 VL 113 IS 24 BP E3322 EP E3331 DI 10.1073/pnas.1603030113 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DO7FW UT WOS:000377948800005 PM 27247410 ER PT J AU Osipov, VV Marchenko, MP Khasin, M AF Osipov, V. V. Marchenko, M. P. Khasin, M. TI Radiation-stimulated explosive evaporation and burning of hydrogen droplets in hot aerosol mixtures SO APPLIED PHYSICS LETTERS LA English DT Article ID SOLID HYDROGEN; ABSORPTION; SINGLE; LIQUID; TUBE AB We present results of analytical and numerical investigation of explosive evaporation and burning scenarios of hydrogen droplets in hydrogen/oxygen aerosols. The following two scenarios have been elucidated. The first scenario, corresponding to sufficiently large droplets, is characterized by three stages: (i) an essentially homogeneous heating of a droplet to a near-critical temperature by IR radiation from the hot gas; (ii) explosive evaporation; and (iii) burning of hydrogen cloud formed by evaporation. The second scenario, corresponding to small droplets, differs in that a droplet is heated mainly by thermal conduction from the hot gas. The heating is accompanied by evaporation which can become explosive at the final stage of evaporation. The crossover droplet size separating the two scenarios is calculated. Conservative finite-difference numerical analysis is used to explore the predicted scenarios and verify analytical estimates. Published by AIP Publishing. C1 [Osipov, V. V.; Marchenko, M. P.; Khasin, M.] NASA, SGT Inc, Ames Res Ctr, MS 269-1, Moffett Field, CA 94035 USA. RP Osipov, VV (reprint author), NASA, SGT Inc, Ames Res Ctr, MS 269-1, Moffett Field, CA 94035 USA. NR 19 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 13 PY 2016 VL 108 IS 24 AR 244103 DI 10.1063/1.4952446 PG 4 WC Physics, Applied SC Physics GA DQ2MU UT WOS:000379037200069 ER PT J AU Sun, WB Hu, YX MacDonnell, DG Weimer, C Baize, RR AF Sun, Wenbo Hu, Yongxiang MacDonnell, David G. Weimer, Carl Baize, Rosemary R. TI Technique to separate lidar signal and sunlight SO OPTICS EXPRESS LA English DT Article ID LASER-BEAMS; POLARIZED SUNLIGHT; SCREW DISLOCATIONS; ANGULAR-MOMENTUM; WAVE-FRONTS; LIGHT AB Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise. C1 [Sun, Wenbo] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Hu, Yongxiang; MacDonnell, David G.; Baize, Rosemary R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Weimer, Carl] Ball Aerosp & Technologies Corp, Boulder, CO 80301 USA. RP Sun, WB (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM wenbo.sun-1@nasa.gov RI Hu, Yongxiang/K-4426-2012 FU Lab Demo (Photon Sieve) project of NASA Langley Research Center's IRAD; OAM project of NASA ESTO ACT FX This work was supported by the Lab Demo (Photon Sieve) project of NASA Langley Research Center's IRAD and the OAM project of NASA ESTO ACT. NR 19 TC 0 Z9 0 U1 5 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 13 PY 2016 VL 24 IS 12 BP 12949 EP 12954 DI 10.1364/OE.24.012949 PG 6 WC Optics SC Optics GA DP2DN UT WOS:000378298400049 PM 27410314 ER PT J AU Winkler, JM Grudinin, IS Yu, N AF Winkler, Justin M. Grudinin, Ivan S. Yu, Nan TI On the properties of single-mode optical resonators SO OPTICS EXPRESS LA English DT Article ID FREQUENCY COMB GENERATION; WHISPERING-GALLERY MODES; MICRODISK RESONATORS; RAYLEIGH-SCATTERING; MICRORESONATOR AB We study the quality factor of single-mode optical whispering gallery mode resonators using finite element method simulations, with a particular focus on the photonic belt resonator geometry. We experimentally observe a large difference between the quality factors of TM and TE modes in such resonators. Examining radiative losses, we conclude that the TM fundamental mode of single-mode resonators can have geometry related radiative losses caused by mode hybridization and coupling that limits their achievable quality factor. However, TE modes are free from mode hybridization radiative losses. This leads to much higher achievable Q factors for TE modes, only limited by fabrication and material quality. We experimentally observed photonic belt resonator quality factors on the order of one billion for TE modes, higher than in any other single mode optical resonator of similar dimensions. (C) 2016 Optical Society of America C1 [Winkler, Justin M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Winkler, Justin M.] Univ Rochester, Ctr Coherence & Quantum Opt, Rochester, NY 14627 USA. [Grudinin, Ivan S.; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Winkler, JM (reprint author), Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA.; Winkler, JM (reprint author), Univ Rochester, Ctr Coherence & Quantum Opt, Rochester, NY 14627 USA. EM jwinkle3@ur.rochester.edu FU National Aeronautics and Space Administration; NASA FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. This work was supported by a NASA Space Technology Research Fellowship. We thank Risaku Toda of JPL MDL for taking the profilometer images and Andrey Matsko of OEWaves for useful discussions of surface scattering physics. NR 22 TC 2 Z9 2 U1 3 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 13 PY 2016 VL 24 IS 12 BP 13231 EP 13243 DI 10.1364/OE.24.013231 PG 13 WC Optics SC Optics GA DP2DN UT WOS:000378298400075 PM 27410340 ER PT J AU He, XX Monk, J Singh, R Hung, FR AF He, Xiaoxia Monk, Joshua Singh, Ramesh Hung, Francisco R. TI Molecular modelling of ionic liquids in the ordered mesoporous carbon CMK-5 SO MOLECULAR SIMULATION LA English DT Article DE Ionic liquid; CMK-5; molecular dynamics ID DOUBLE-LAYER CAPACITORS; SENSITIZED SOLAR-CELLS; ENERGY-STORAGE; FORCE-FIELD; PORE-SIZE; DYNAMICS SIMULATIONS; COMPUTER-SIMULATION; PHASE-TRANSITIONS; SLIT NANOPORE; ELECTROLYTES AB We performed classical molecular dynamics simulations of the ionic liquids (ILs) [dmim(+)][Cl-] and [emim(+)][NTf2-], confined in a model CMK-5 material, which consists of amorphous carbon nanopipes (ACNPs) arranged in a hexagonal array. We compare our findings against the behaviour of the same ILs inside an isolated ACNP (i.e. no IL adsorbed on the outer surface of the ACNP) and inside a model CMK-3 material (which is similar to CMK-5, but is formed by amorphous carbon nanorods). Our results indicate that the presence of IL adsorbed in the outer surface of an uncharged ACNP in CMK-5 affects the dynamics and the density of an IL adsorbed inside the ACNP and vice versa. ILs adsorbed outside the nanopipes in CMK-5 (i.e. with IL also adsorbed inside the nanopipes) have faster dynamics and remain closer to the carbon surfaces when compared to the same ILs adsorbed on CMK-3 materials. The trends are IL-specific: [dmim(+)][Cl-] has slower dynamics when inside an isolated ACNP than when inside the ACNPs in CMK-5, but in contrast, [emim(+)][NTf2-] moves faster when it is inside an isolated ACNP than when it is inside the ACNPs in CMK-5 (i.e. with IL adsorbed outside the nanopipes). C1 [He, Xiaoxia; Monk, Joshua; Singh, Ramesh; Hung, Francisco R.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Monk, Joshua] NASA, Ames Res Ctr, Thermal Protect Mat Branch, Moffett Field, CA 94035 USA. [Hung, Francisco R.] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. RP Hung, FR (reprint author), Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA.; Hung, FR (reprint author), Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. EM frhung@lsu.edu FU National Science Foundation [CBET-1253075]; EPSCoR [EPS-1003897]; Louisiana Board of Regents FX This work was partially supported by the National Science Foundation-CAREER Award [CBET-1253075]; EPSCoR Cooperative Agreement [EPS-1003897]; and the Louisiana Board of Regents. High-performance computational resources for this research were provided by High-Performance Computing at Louisiana State University (http://www.hpc.lsu.edu) and by the Louisiana Optical Network Initiative (http://www.loni.org). NR 73 TC 0 Z9 0 U1 14 U2 35 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0892-7022 EI 1029-0435 J9 MOL SIMULAT JI Mol. Simul. PD JUN 12 PY 2016 VL 42 IS 9 BP 753 EP 763 DI 10.1080/08927022.2015.1089992 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DH6JZ UT WOS:000372898100008 ER PT J AU Kirk, D Omori, Y Benoit-Levy, A Cawthon, R Chang, C Larsen, P Amara, A Bacon, D Crawford, TM Dodelson, S Fosalba, P Giannantonio, T Holder, G Jain, B Kacprzak, T Lahav, O MacCrann, N Nicola, A Refregier, A Sheldon, E Story, KT Troxel, MA Vieira, JD Vikram, V Zuntz, J Abbott, TMC Abdalla, FB Becker, MR Benson, BA Bernstein, GM Bernstein, RA Bleem, LE Bonnett, C Bridle, SL Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Carlstrom, JE Rosell, AC Kind, MC Carretero, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Evrard, AE Flaugher, B Frieman, J Gerdes, DW Goldstein, DA Gruen, D Gruendl, RA Honscheid, K James, DJ Jarvis, M Kent, S Kuehn, K Kuropatkin, N Lima, M March, M Martini, P Melchior, P Miller, CJ Miquel, R Nichol, RC Ogando, R Plazas, AA Reichardt, CL Roodman, A Rozo, E Rykoff, ES Sako, M Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Simard, G Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thomas, D Wechsler, RH Weller, J AF Kirk, D. Omori, Y. Benoit-Levy, A. Cawthon, R. Chang, C. Larsen, P. Amara, A. Bacon, D. Crawford, T. M. Dodelson, S. Fosalba, P. Giannantonio, T. Holder, G. Jain, B. Kacprzak, T. Lahav, O. MacCrann, N. Nicola, A. Refregier, A. Sheldon, E. Story, K. T. Troxel, M. A. Vieira, J. D. Vikram, V. Zuntz, J. Abbott, T. M. C. Abdalla, F. B. Becker, M. R. Benson, B. A. Bernstein, G. M. Bernstein, R. A. Bleem, L. E. Bonnett, C. Bridle, S. L. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carlstrom, J. E. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Evrard, A. E. Flaugher, B. Frieman, J. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gruendl, R. A. Honscheid, K. James, D. J. Jarvis, M. Kent, S. Kuehn, K. Kuropatkin, N. Lima, M. March, M. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Nichol, R. C. Ogando, R. Plazas, A. A. Reichardt, C. L. Roodman, A. Rozo, E. Rykoff, E. S. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Simard, G. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Wechsler, R. H. Weller, J. TI Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; cosmic background radiation ID SOUTH-POLE TELESCOPE; DARK ENERGY SURVEY; POLARIZATION POWER SPECTRA; PHOTOMETRIC REDSHIFT PDFS; INTRINSIC ALIGNMENTS; COSMIC SHEAR; GALAXY ELLIPTICITIES; STATISTICAL-ANALYSIS; DISTANT GALAXIES; SZ SURVEY AB We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G. C1 [Kirk, D.; Benoit-Levy, A.; Lahav, O.; Abdalla, F. B.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Astrophys Grp, 132 Hampstead Rd, London NW1 2PS, England. [Omori, Y.; Holder, G.; Simard, G.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Benoit-Levy, A.] Univ Paris 06, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France. [Benoit-Levy, A.] CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Bd Arago, F-75014 Paris, France. [Benoit-Levy, A.; Dodelson, S.; Benson, B. A.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Kent, S.; Kuropatkin, N.; Scarpine, V.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Benoit-Levy, A.; Cawthon, R.; Crawford, T. M.; Dodelson, S.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, 933 East 56th St, Chicago, IL 60637 USA. [Cawthon, R.; Crawford, T. M.; Benson, B. A.; Carlstrom, J. E.] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA. [Chang, C.; Amara, A.; Kacprzak, T.; Nicola, A.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Larsen, P.; Giannantonio, T.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Larsen, P.; Giannantonio, T.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Dodelson, S.; Story, K. T.; Carlstrom, J. E.] Univ Chicago, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Fosalba, P.; Carretero, J.; Crocce, M.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Cambridge CB3 0WA, England. [Jain, B.; Bernstein, G. M.; Eifler, T. F.; Jarvis, M.; March, M.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [MacCrann, N.; Troxel, M. A.; Zuntz, J.; Bridle, S. L.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Sheldon, E.; Becker, M. R.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Vieira, J. D.; Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Vieira, J. D.; Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Phys, 1002 W Green St, Urbana, IL 61801 USA. [Vikram, V.; Bleem, L. E.] Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Becker, M. R.; Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Bonnett, C.; Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Benson, B. A.; Carnero Rosell, A.; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomputing Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.; Weller, J.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Garching, Germany. [D'Andrea, C. B.; Desai, S.; Dietrich, J. P.; Gruen, D.; Weller, J.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Tarle, G.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gruen, D.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Miquel, R.] Inst Catalana Rec & Estudis Avancats, E-08010 Barcelona, Spain. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Sobreira, F.] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil. RP Kirk, D (reprint author), UCL, Dept Phys & Astron, Astrophys Grp, 132 Hampstead Rd, London NW1 2PS, England.; Omori, Y (reprint author), McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. EM drgk@star.ucl.ac.uk; yomori@physics.mcgill.ca RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Weller, Jochen/0000-0002-8282-2010; Wechsler, Risa/0000-0003-2229-011X; Abdalla, Filipe/0000-0003-2063-4345 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory, Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766, PLR-1248097]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union; ERC [240672, 291329, 306478]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation [947]; European Research Council [FP7/291329]; CNES; Royal Society of New Zealand Rutherford Foundation Trust; Cambridge Commonwealth Trust; University of Melbourne; DOE [DE-AC02-98CH10886] FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.r The SPT programme is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant GBMF#947 to the University of Chicago.r OL acknowledges support from a European Research Council Advanced Grant FP7/291329, which also supported DK.r ABL thanks CNES for financial support through its post-doctoral programme.r PL is funded jointly by the Royal Society of New Zealand Rutherford Foundation Trust and the Cambridge Commonwealth Trust.r CR acknowledges support from the University of Melbourne.r ES is supported by DOE grant DE-AC02-98CH10886. NR 85 TC 8 Z9 8 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2016 VL 459 IS 1 BP 21 EP 34 DI 10.1093/mnras/stw570 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5KB UT WOS:000376386600003 ER PT J AU Strader, MJ Archibald, AM Meeker, SR Szypryt, P Walter, AB van Eyken, JC Ulbricht, G Stoughton, C Bumble, B Kaplan, DL Mazin, BA AF Strader, M. J. Archibald, A. M. Meeker, S. R. Szypryt, P. Walter, A. B. van Eyken, J. C. Ulbricht, G. Stoughton, C. Bumble, B. Kaplan, D. L. Mazin, B. A. TI Search for optical pulsations in PSR J0337+1715 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: neutron; pulsars: general; pulsars: individual: PSR J0337+1715 ID ISOLATED NEUTRON-STARS; MILLISECOND PULSAR; VLT OBSERVATIONS; RADIO PULSARS; EMISSION; ARCONS; COUNTERPART; J0108-1431; LUMINOSITY AB We report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 arcsec Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11 000 angstrom, and we can limit pulsed emission in g band to be fainter than 25 mag. C1 [Strader, M. J.; Meeker, S. R.; Szypryt, P.; Walter, A. B.; Ulbricht, G.; Mazin, B. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Archibald, A. M.] ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. [van Eyken, J. C.] CALTECH, NASA, Exoplanet Sci Inst, 770 South Wilson Ave,M-S 100-22, Pasadena, CA 91125 USA. [Stoughton, C.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Bumble, B.] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kaplan, D. L.] Univ Wisconsin, Dept Phys, 1900 E Kenwood Blvd, Milwaukee, WI 53211 USA. RP Strader, MJ (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM mstrader@physics.ucsb.edu FU NSF [AST-1411613]; NASA [NNX11AD55G]; NASA Space Technology Research Fellowships; United States Department of Energy [De-AC02-07CH11359] FX Observations were obtained with the Hale Telescope at the Palomar Observatory. This work was supported by NSF grant AST-1411613. Funding for the development of the MKID detectors used in this work was provided by NASA grant NNX11AD55G. PS and SRM were supported by NASA Space Technology Research Fellowships. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. The authors extend their thanks to Shri Kulkarni, Director of the Caltech Optical Observatories, and Tom Prince. NR 24 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2016 VL 459 IS 1 BP 427 EP 430 DI 10.1093/mnras/stw663 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5KB UT WOS:000376386600033 ER PT J AU Pintore, F Zampieri, L Sutton, AD Roberts, TP Middleton, MJ Gladstone, JC AF Pintore, Fabio Zampieri, Luca Sutton, Andrew D. Roberts, Timothy P. Middleton, Matthew J. Gladstone, Jeanette C. TI The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; X-rays: binaries; X-Rays: galaxies; X-rays: individual: NGC 5643 ULX1 ID ESO 243-49 HLX-1; ACTIVE GALACTIC NUCLEUS; YOUNG STAR-CLUSTERS; HOLMBERG IX X-1; XMM-NEWTON; SPECTRAL EVOLUTION; NEARBY GALAXIES; DISK ACCRETION; SOLAR MASSES; BROAD-BAND AB A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 10(40) erg s(-1), typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of similar to 10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class. C1 [Pintore, Fabio] INAF Ist Astrofis Spaziale & Fis Cosm Milano, Via E Bassini 15, I-20133 Milan, Italy. [Zampieri, Luca] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Sutton, Andrew D.] NASA, George C Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA. [Roberts, Timothy P.] Univ Durham, Dept Phys, Ctr Extragalact Astron, South Rd, Durham DH1 3LE, England. [Middleton, Matthew J.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gladstone, Jeanette C.] Univ Alberta, Dept Phys, 11322-89 Ave, Edmonton, AB T6G 2G7, Canada. RP Pintore, F (reprint author), INAF Ist Astrofis Spaziale & Fis Cosm Milano, Via E Bassini 15, I-20133 Milan, Italy. EM pintore@iasf-milano.inaf.it FU INAF [PRIN-2011-1, PRIN 2012-6]; ESA Member States; NASA; ASI/INAF [I/037/12/0]; ERC [340442]; STFC [ST/K00861/1, ST/L00075X/1] FX We thank the anonymous referee for his/her useful comments which helped us to improve the paper. We acknowledge financial support through INAF grant PRIN-2011-1 (Challenging ultraluminous X-ray sources: chasing their BHs and formation pathways) and INAF grant PRIN 2012-6. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. LZ acknowledges financial support from the ASI/INAF contract n. I/037/12/0. MJM appreciates support from ERC grant 340442. TPR was funded as part of the STFC consolidated grant awards ST/K00861/1 and ST/L00075X/1. ADS was supported by an appointment to the NASA Postdoctoral Program at Marshall Space Flight Center, administered by Universities Space Research Association through a contract with NASA. NR 77 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2016 VL 459 IS 1 BP 455 EP 466 DI 10.1093/mnras/stw669 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5KB UT WOS:000376386600036 ER PT J AU Gandhi, P Littlefair, SP Hardy, LK Dhillon, VS Marsh, TR Shaw, AW Altamirano, D Caballero-Garcia, MD Casares, J Casella, P Castro-Tirado, AJ Charles, PA Dallilar, Y Eikenberry, S Fender, RP Hynes, RI Knigge, C Kuulkers, E Mooley, K Munoz-Darias, T Pahari, M Rahoui, F Russell, DM Santisteban, JVH Shahbaz, T Terndrup, DM Tomsick, J Walton, DJ AF Gandhi, P. Littlefair, S. P. Hardy, L. K. Dhillon, V. S. Marsh, T. R. Shaw, A. W. Altamirano, D. Caballero-Garcia, M. D. Casares, J. Casella, P. Castro-Tirado, A. J. Charles, P. A. Dallilar, Y. Eikenberry, S. Fender, R. P. Hynes, R. I. Knigge, C. Kuulkers, E. Mooley, K. Munoz-Darias, T. Pahari, M. Rahoui, F. Russell, D. M. Santisteban, J. V. Hernandez Shahbaz, T. Terndrup, D. M. Tomsick, J. Walton, D. J. TI Furiously fast and red: sub-second optical flaring in V404 Cyg during the 2015 outburst peak SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; stars: black holes; stars: individual: V404 Cyg; stars: jets; X-rays: binaries ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; BLACK-HOLE XTE-J1118+480; TRANSIENT GS 2023+338; BROAD-BAND SPECTRUM; GX 339-4; SYNCHROTRON EMISSION; SWIFT J1753.5-0127; GRS 1915+105; COMPACT JET AB We present observations of rapid (sub-second) optical flux variability in V404 Cyg during its 2015 June outburst. Simultaneous three-band observations with the ULTRACAM fast imager on four nights show steep power spectra dominated by slow variations on similar to 100-1000 s time-scales. Near the peak of the outburst on June 26, a dramatic change occurs and additional, persistent sub-second optical flaring appears close in time to giant radio and X-ray flaring. The flares reach peak optical luminosities of similar to few x 10(36) erg s(-1). Some are unresolved down to a time resolution of 24 ms. Whereas the fast flares are stronger in the red, the slow variations are bluer when brighter. The redder slopes, emitted power and characteristic time-scales of the fast flares can be explained as optically thin synchrotron emission from a compact jet arising on size scales similar to 140-500 Gravitational radii (with a possible additional contribution by a thermal particle distribution). The origin of the slower variations is unclear. The optical continuum spectral slopes are strongly affected by dereddening uncertainties and contamination by strong Ha emission, but the variations of these slopes follow relatively stable loci as a function of flux. Cross-correlating the slow variations between the different bands shows asymmetries on all nights consistent with a small red skew (i.e. red lag). X-ray reprocessing and non-thermal emission could both contribute to these. These data reveal a complex mix of components over five decades in time-scale during the outburst. C1 [Gandhi, P.; Shaw, A. W.; Altamirano, D.; Charles, P. A.; Knigge, C.; Santisteban, J. V. Hernandez] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Littlefair, S. P.; Hardy, L. K.; Dhillon, V. S.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Dhillon, V. S.; Casares, J.; Munoz-Darias, T.; Shahbaz, T.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Santa Cruz De T, Spain. [Marsh, T. R.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. [Caballero-Garcia, M. D.] Acad Sci Czech Republic, Astron Inst, Bocni 2 1401, CZ-14100 Prague, Czech Republic. [Casares, J.; Munoz-Darias, T.; Shahbaz, T.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Casares, J.; Fender, R. P.; Mooley, K.] Univ Oxford, Dept Phys, Astrophys, Keble Rd, Oxford OX1 3RH, England. [Casella, P.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Castro-Tirado, A. J.] CSIC, Ist Astrofis Andalucia, E-18008 Granada, Spain. [Castro-Tirado, A. J.] Univ Malaga, Unidad Asociada, Dept Ingn Sistemas & Automat, E-29071 Malaga, Spain. [Dallilar, Y.; Eikenberry, S.] Univ Florida, Dept Astron, 211 Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Hynes, R. I.] Louisiana State Univ, Dept Phys & Astron, 202 Nicholson Hall,Tower Dr, Baton Rouge, LA 70803 USA. [Kuulkers, E.] European Space Astron Ctr ESA ESAC, Sci Operat Dept, E-28691 Madrid, Spain. [Pahari, M.] Interuniv Ctr Astron & Astrophys, Post Bag 4, Pune 411007, Maharashtra, India. [Rahoui, F.] European So Observ, K Schwarzschild Str 2, D-85748 Garching, Germany. [Rahoui, F.] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. [Russell, D. M.] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates. [Terndrup, D. M.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. [Tomsick, J.] Univ Calif Berkeley, Space Sci Lab, 7 GaussWay, Berkeley, CA 94720 USA. [Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. RP Gandhi, P (reprint author), Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. EM p.gandhi@soton.ac.uk RI Caballero-Garcia, Maria/D-5659-2017; OI Caballero-Garcia, Maria/0000-0001-7920-4564; Shaw, Aarran/0000-0002-8808-520X; Hernandez Santisteban, Juan Venancio/0000-0002-6733-5556 FU STFC [ST/J003697/1, PP/D002370/1, ST/L000733/1]; UK-India UKIERI/UGC [UGC 2014-15/02]; Royal Society; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2013-42627]; CONACyT (Mexico); University of Southampton; DGI of the Spanish Ministerio de Educacion, Cultura y Deporte [PR2015-00397]; Marie Curie FP7-Reintegration-Grants [2012-322259] FX PG acknowledges funding from STFC (ST/J003697/1), and thanks C. Done, P. Uttley, S.D. Connolly and R. E. Firth for discussions. PG also thanks A. Veledina for discussions. Part of this research was supported by the UK-India UKIERI/UGC Thematic Partnership grant UGC 2014-15/02. ULTRACAM is supported by STFC grant PP/D002370/1. DA thanks the Royal Society for support. TS, JC and TM-D were supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under the grant AYA2013-42627. TRM acknowledges STFC (ST/L000733/1). JVHS acknowledges support via studentships from CONACyT (Mexico) and the University of Southampton. JC also acknowledges support by DGI of the Spanish Ministerio de Educacion, Cultura y Deporte under grant PR2015-00397. PC acknowledges support by a Marie Curie FP7-Reintegration-Grants under contract no. 2012-322259. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. The report by the anonymous reviewer is acknowledged. NR 99 TC 7 Z9 7 U1 2 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2016 VL 459 IS 1 BP 554 EP 572 DI 10.1093/mnras/stw571 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5KB UT WOS:000376386600043 ER PT J AU Heida, M Jonker, PG Torres, MAP Roberts, TP Walton, DJ Moon, DS Stern, D Harrison, FA AF Heida, M. Jonker, P. G. Torres, M. A. P. Roberts, T. P. Walton, D. J. Moon, D. -S. Stern, D. Harrison, F. A. TI Keck/MOSFIRE spectroscopy of five ULX counterparts SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE infrared: stars; X-rays: individual: Holmberg II X-1; X-rays: individual: [SST2011] J022721.52+333500.7; X-rays: individual: [SST2011] J022727.53+333443.0; X-rays: individual: CXOU J120922.6+295551; X-rays: individual: [SST2011] J120922.18+295559.7 ID X-RAY SOURCE; BLACK-HOLE; ROTATION CURVES; SOLAR MASSES; HOLMBERG-II; GALAXIES; SPECTRA; MODELS; CONSTRAINTS; DISCOVERY AB We present H-band spectra of the candidate counterparts of five ultraluminous X-ray sources (ULXs; two in NGC 925, two in NGC 4136 and Holmberg II X-1) obtained with Keck/MOSFIRE (Multi-Object Spectrometer for Infra-Red Exploration). The candidate counterparts of two ULXs (J022721+333500 in NGC 925 and J120922+295559 in NGC 4136) have spectra consistent with (M-type) red supergiants (RSGs). We obtained two epochs of spectroscopy of the candidate counterpart to J022721+333500, separated by 10 months, but discovered no radial velocity variations with a 2 sigma upper limit of 40 km s(-1). If the RSG is the donor star of the ULX, the most likely options are that either the system is seen at low inclination (<40 degrees) or the black hole mass is less than 100 M-circle dot, unless the orbital period is longer than 6 years, in which case the obtained limit is not constraining. The spectrum of the counterpart to J120922+295559 shows emission lines on top of its stellar spectrum, and the remaining three counterparts do not show absorption lines that can be associated with the atmosphere of a star; their spectra are instead dominated by emission lines. Those counterparts with RSG spectra may be used in the future to search for radial velocity variations, and, if those are present, determine dynamical constraints on the mass of the accretor. C1 [Heida, M.; Walton, D. J.; Harrison, F. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Heida, M.; Jonker, P. G.; Torres, M. A. P.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Heida, M.; Jonker, P. G.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Torres, M. A. P.] European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago 19, Chile. [Roberts, T. P.] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. [Walton, D. J.; Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Moon, D. -S.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Heida, M (reprint author), CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA.; Heida, M (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands.; Heida, M (reprint author), Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. EM mheida@caltech.edu FU STFC [ST/L00075X/1]; NASA; ERC [647208]; W. M. Keck Foundation FX MH would like to thank Nick Konidaris for his help with the MOS-FIRE DRP. We thank Tom Marsh for developing MOLLY. TPR acknowledges support from STFC as part of the consolidated grant award ST/L00075X/1. The work of DJW and DS was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. PGJ acknowledges support from ERC consolidator grant number 647208. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 37 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2016 VL 459 IS 1 BP 771 EP 778 DI 10.1093/mnras/stw695 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5KB UT WOS:000376386600060 ER PT J AU Yuasa, T Hayashi, T Ishida, M AF Yuasa, Takayuki Hayashi, Takayuki Ishida, Manabu TI Suzaku X-ray observation of the GK Persei dwarf nova outburst in 2015 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: dwarf novae; X-rays: individual: GK Persei ID MAGNETIC CATACLYSMIC VARIABLES; MINIATURE SUPERNOVA REMNANT; INTERMEDIATE POLARS; REFLECTION; QUIESCENCE; COMPLEX; RXTE; TIME AB The intermediate polar GK Per exhibited a dwarf nova outburst in 2015 March-April. Suzaku X-ray telescope serendipitously captured the onset of the outburst during its pre-scheduled pointing observation spanning four days. In this paper, we present temporal and spectral analysis results of this outburst, together with those from archival data of quiescent obtained in 2009 and 2014. Our temporal analysis confirmed previously reported spin modulation of X-ray count rates in outburst with a white dwarf (WD) spin period of P-WD = 351.4 +/- 0.5 s. The modulation is also detected in the hard X-ray band (16-60 keV), and spectral modelling of the absorption suggests obscuration by a dense absorption with a line-of-sight column density of N-H > 10(23) cm(-2). A complex time evolution of spin modulation profiles is seen; the spin minimum phase shifts from phase similar to 0.25 in the first half of the observation to similar to 0.65 in the second one, and the pulse shape significantly changes epoch by epoch. Spectral fitting in the Fe K alpha band revealed an increase of the fluorescent line equivalent width, from similar to 80 eV (quiescent) to similar to 140 eV (outburst). The equivalent widths of He-like and H-like Fe K alpha are consistent with being constant at similar to 40 eV in the two states. Broad-band spectral fitting in the 2-60 keV band resulted in a sub-solar Fe abundance of similar to 0.1Z(circle dot) and the maximum plasma temperature kT(max) similar to 50-60 keV when the isobaric cooling-flow model was applied. Based on the very small temperature change against a 6-7 times increased accretion rate, the accretion geometry in early outburst is discussed. C1 [Yuasa, Takayuki] RIKEN, Nishina Ctr Accelerator based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Hayashi, Takayuki] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hayashi, Takayuki] Nagoya Univ, Dept Phys, Fac Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. [Ishida, Manabu] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Ishida, Manabu] Tokyo Metropolitan Univ, Dept Phys, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. RP Yuasa, T (reprint author), RIKEN, Nishina Ctr Accelerator based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM takayuki.yuasa@riken.jp FU Special Postdoctoral Researchers Program in RIKEN; JSPS KAKENHI Grant [15K17668] FX The authors appreciate the Suzaku operation team that made this research possible. We also acknowledge the use of public data from the Swift data archive. TY is supported by the Special Postdoctoral Researchers Program in RIKEN. This work was partly supported by JSPS KAKENHI Grant Number 15K17668. NR 33 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2016 VL 459 IS 1 BP 779 EP 788 DI 10.1093/mnras/stw734 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5KB UT WOS:000376386600061 ER PT J AU Tartaglia, L Pastorello, A Sullivan, M Baltay, C Rabinowitz, D Nugent, P Drake, AJ Djorgovski, SG Gal-Yam, A Fabrika, S Barsukova, EA Goranskij, VP Valeev, AF Fatkhullin, T Schulze, S Mehner, A Bauer, FE Taubenberger, S Nordin, J Valenti, S Howell, DA Benetti, S Cappellaro, E Fasano, G Elias-Rosa, N Barbieri, M Bettoni, D Harutyunyan, A Kangas, T Kankare, E Martin, JC Mattila, S Morales-Garoffolo, A Ochner, P Rebbapragada, UD Terreran, G Tomasella, L Turatto, M Verroi, E Wozniak, PR AF Tartaglia, L. Pastorello, A. Sullivan, M. Baltay, C. Rabinowitz, D. Nugent, P. Drake, A. J. Djorgovski, S. G. Gal-Yam, A. Fabrika, S. Barsukova, E. A. Goranskij, V. P. Valeev, A. F. Fatkhullin, T. Schulze, S. Mehner, A. Bauer, F. E. Taubenberger, S. Nordin, J. Valenti, S. Howell, D. A. Benetti, S. Cappellaro, E. Fasano, G. Elias-Rosa, N. Barbieri, M. Bettoni, D. Harutyunyan, A. Kangas, T. Kankare, E. Martin, J. C. Mattila, S. Morales-Garoffolo, A. Ochner, P. Rebbapragada, Umaa D. Terreran, G. Tomasella, L. Turatto, M. Verroi, E. Wozniak, P. R. TI Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: mass-loss; supernovae: general; supernovae: individual: SN 2009ip; supernovae: individual: SN 2010mc; supernovae: individual: LSQ13zm; galaxies: individual: SDSS J102654.56+195254.8 ID LUMINOUS BLUE VARIABLES; RICH CIRCUMSTELLAR MEDIUM; SN 2009IP CONSTRAINTS; CORE-COLLAPSE; ETA-CARINAE; IIN SUPERNOVAE; SKY SURVEY; SUPERLUMINOUS SUPERNOVAE; INFRARED-SPECTROSCOPY; SPECTRAL EVOLUTION AB We report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as '2013a') followed by a much brighter outburst ('2013b') three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. The absolute magnitude reached by LSQ13zm during 2013a (M-R = -14.87 +/- 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M-R = -18.46 +/- 0.21 mag) is consistent with those of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s(-1). The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. The detailed analysis of archival images suggest that the host galaxy is a star-forming Blue Dwarf Compact Galaxy. C1 [Tartaglia, L.; Benetti, S.; Cappellaro, E.; Fasano, G.; Elias-Rosa, N.; Bettoni, D.; Ochner, P.; Terreran, G.; Tomasella, L.; Turatto, M.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Tartaglia, L.; Pastorello, A.] Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Baltay, C.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Rabinowitz, D.; Nugent, P.] Lawrence Berkeley Natl Lab, Computat Res Div, Computat Cosmol Ctr, 1 Cyclotron Rd MS 50B-4206, Berkeley, CA 94611 USA. [Nugent, P.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Drake, A. J.; Djorgovski, S. G.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Gal-Yam, A.] Weizmann Inst Sci, Fac Phys, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Fabrika, S.; Barsukova, E. A.; Valeev, A. F.; Fatkhullin, T.] Special Astrophys Observ, Nizhnii Arkhyz 369167, Russia. [Fabrika, S.; Valeev, A. F.] Kazan Fed Univ, Kazan 420008, Russia. [Goranskij, V. P.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Univ Pr 13, Moscow 119992, Russia. [Schulze, S.; Bauer, F. E.] Millennium Inst Astrophys, Vicuna Mackenna 4860, Santiago 7820436, Chile. [Schulze, S.; Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Macul 4860436, Santiago De Chi, Spain. [Mehner, A.] European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago 19, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Taubenberger, S.] European So Observ, Karl Schwarzschild Str, D-85748 Garching, Germany. [Taubenberger, S.; Nordin, J.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Valenti, S.; Howell, D. A.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Valenti, S.; Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Broida Hall,Mail Code 9530, Santa Barbara, CA 93106 USA. [Barbieri, M.] Univ Atacama, Dept Fis, Copayapu 485, Copiapo, Chile. [Harutyunyan, A.] Fdn Galileo Galilei INAF, Telescopio Nazl Galileo, Rambla Jose AnaFernandez Perez 7, E-38712 Tenerife, Spain. [Kangas, T.; Mattila, S.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Vaisalantie 20, FI-21500 Piikkio, Finland. [Kankare, E.; Terreran, G.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Martin, J. C.] Astron Phys MS HSB 314,One Univ Plaza, Springfield, IL 62730 USA. [Mattila, S.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, FI-21500 Piikkio, Finland. [Morales-Garoffolo, A.] CSIC, Inst Ciencies Espai, IEEC, Campus UAB,Cami Can Magrans S-N, E-08193 Cerdanyola Del Valles, Barcelona, Spain. [Rebbapragada, Umaa D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Verroi, E.] Univ Padua, Ctr Interdipartimentale Studi & Attivita Spaziali, Via Venezia 15, I-35131 Padua, Italy. [Wozniak, P. R.] Los Alamos Natl Lab, Space & Remote Sensing, MS B244, POB 1663, Los Alamos, NM 87545 USA. RP Tartaglia, L (reprint author), Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy.; Tartaglia, L; Pastorello, A (reprint author), Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 5, I-35122 Padua, Italy. EM leonardo.tartaglia@oapd.inaf.it; andrea.pastorello@oapd.inaf.it RI Elias-Rosa, Nancy/D-3759-2014; OI Elias-Rosa, Nancy/0000-0002-1381-9125; Barbieri, Mauro/0000-0001-8362-3462; Wozniak, Przemyslaw/0000-0002-9919-3310; Schulze, Steve/0000-0001-6797-1889; Bettoni, Daniela/0000-0002-4158-6496; Sullivan, Mark/0000-0001-9053-4820 FU UK Science and Technology Facilities Council; PRIN-INAF; European Union [267251]; Royal Society; EU/FP7-ERC [615929]; TRR33, 'The dark Universe' of the German Research Foundation; EU/FP7 via ERC grant [307260]; Quantum Universe I-Core programme by the Israeli Committee for planning and budgeting; ISF; Minerva; Weizmann-UK 'making connections' program; Kimmel award; ARCHES award; Spanish Ministerio de Economia y Competitividad (MINECO) [ESP2013-41268-R]; Russian Foundation for Basic Research [14-02-00759]; Russian Government Program of Competitive Growth of Kazan University; CONICYT - Chile FONDECYT [3140534]; Basal - CATA PFB [06/2007]; Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009]; National Science Foundation (NSF) [1108890]; US National Science Foundation [AST-1313422, AST-1413600]; Office of the U.S. Department of Energy [DE-AC02-05CH11231]; National Aeronautics and Space Administration; US Government; US Department of Energy as part of the Laboratory Directed Research and Development program; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; NASA; NSF; Russian Scientific Foundation [14-50-00043]; [CN2013A-FT-12] FX Based on observations made with: The Cima Ekar 1.82 m Telescopio Copernico of the INAF (Istituto Nazionale di Astrofisica) - Astronomical Observatory of Padova, Italy. The Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The La Silla Quest (LSQ) ESO 1.5 m Schmidt telescope (ESO La Silla, Chile). The Intermediate Palomar Transient Factory (iPTF) 1.2 m Samuel Oschin telescope. The LCOGT 1.0-m telescope at McDonald Observatory (Texas, USA) and the 2.0-m FTN with FLOYDS of the LCOGT network. The Gran Telescopio Canarias (GTC) operated on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. The Nordic Optical Telescope (NOT), operated by the NOT Scientific Association at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The William Herschel Telescope (WHT) operated on island of La Palma by the Isaac Newton Group at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) and the 1 m Zeiss-1000 telescope (both located at Mount Pastukhov, Caucasus Mountains, Russia). The 0.6 m Rapid Eye Mount (REM) telescope (ESO La SIlla, Chile). The Catalina Real Time Survey (CRTS) Catalina Sky Survey (CSS) 0.7 m Schmidt and Mt Lemmon Survey (MLS) 1.5 m Cassegrain telescopes. The 2.2 m University of Hawaii telescope. The UIS Barber Research Observatory 20 arcsec telescope. The 2.2 m University of Hawaii telescope.; AP, SB, NER, AH, LT, GT, and MT are partially supported by the PRIN-INAF 2014 with the project 'Transient Universe: unveiling new types of stellar explosions with PESSTO'.; NER acknowledges the support from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 267251 'Astronomy Fellowships in Italy' (AstroFIt).; MS acknowledges support from the Royal Society and EU/FP7-ERC Grant No. [615929].; ST acknowledges support by TRR33, 'The dark Universe' of the German Research Foundation.; AGY is supported by the EU/FP7 via ERC grant No. 307260, the Quantum Universe I-Core programme by the Israeli Committee for planning and budgeting and the ISF, by Minerva and ISF grants, by the Weizmann-UK 'making connections' program and by Kimmel and ARCHES awards.; AMG acknowledges financial support by the Spanish Ministerio de Economia y Competitividad (MINECO), Grant ESP2013-41268-R.; VPG, EAB, AFV are supported by Russian Foundation for Basic Research Grant 14-02-00759.; SF acknowledges support of the Russian Government Program of Competitive Growth of Kazan University.; SS acknowledges support from CONICYT - Chile FONDECYT 3140534, Basal - CATA PFB - 06/2007 and Project IC120009 'Millennium Institute of Astrophysics (MAS)' of Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo. JM acknowledges the National Science Foundation (NSF, Grant 1108890).; REM data were obtained as part of the programme CN2013A-FT-12.; The CRTS survey is supported by the US National Science Foundation under grants AST-1313422 and AST-1413600.; This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; A portion of this work was carried out at the Jet Propulsion Laboratory under a Research and Technology Development Grant, under contract with the National Aeronautics and Space Administration. Copyright 2015 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.; LANL participation in iPTF is supported by the US Department of Energy as part of the Laboratory Directed Research and Development program.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.; The 2MASS project is a collaboration between The University of Massachusetts and the Infrared Processing and Analysis Center (JPL/Caltech). Funding is provided primarily by NASA and the NSF. The University of Massachusetts constructed and maintained the observatory facilities, and operated the survey. All data processing and data product generation is being carried out by IPAC. Survey operations began in Spring 1997 and concluded in Spring 2001.; This research was supported by the Russian Scientific Foundation (grant no. 14-50-00043). IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Associated Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.; This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 137 TC 3 Z9 4 U1 3 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2016 VL 459 IS 1 BP 1039 EP 1059 DI 10.1093/mnras/stw675 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5KB UT WOS:000376386600077 ER PT J AU Brasunas, J Mamoutkine, A Gorius, N AF Brasunas, J. Mamoutkine, A. Gorius, N. TI Simple parametric model for intensity calibration of Cassini composite infrared spectrometer data SO APPLIED OPTICS LA English DT Article ID FOURIER-TRANSFORM SPECTROMETERS AB Accurate intensity calibration of a linear Fourier-transform spectrometer typically requires the unknown science target and the two calibration targets to be acquired under identical conditions. We present a simple model suitable for vector calibration that enables accurate calibration via adjustments of measured spectral amplitudes and phases when these three targets are recorded at different detector or optics temperatures. Our model makes calibration more accurate both by minimizing biases due to changing instrument temperatures that are always present at some level and by decreasing estimate variance through incorporating larger averages of science and calibration interferogram scans. C1 [Brasunas, J.] NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. [Mamoutkine, A.] Adnet Syst, 8800 Greenbelt Rd,Code 693, Greenbelt, MD 20771 USA. [Gorius, N.] Catholic Univ, 8800 Greenbelt Rd,Code 693, Greenbelt, MD 20771 USA. RP Brasunas, J (reprint author), NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. EM john.c.brasunas@nasa.gov FU National Aeronautics and Space Administration (NASA); Cassini Mission; CIRS investigation FX National Aeronautics and Space Administration (NASA); Cassini Mission; CIRS investigation. NR 8 TC 0 Z9 0 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 10 PY 2016 VL 55 IS 17 BP 4699 EP 4705 DI 10.1364/AO.55.004699 PG 7 WC Optics SC Optics GA DO8ZN UT WOS:000378074200025 PM 27409028 ER PT J AU Arendt, RG Kashlinsky, A Moseley, SH Mather, J AF Arendt, Richard G. Kashlinsky, A. Moseley, S. H. Mather, J. TI COSMIC INFRARED BACKGROUND FLUCTUATIONS AND ZODIACAL LIGHT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; diffuse radiation; zodiacal dust ID COBE DIRBE MAPS; SPITZER-SPACE-TELESCOPE; SURVEY. SURVEY DESIGN; IRAC SOURCE COUNTS; ALL-SKY SURVEY; EXPERIMENT SEARCH; BRIGHTNESS; ANISOTROPIES; CONSTRAINTS; PHOTOMETRY AB We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of similar to 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or similar to 100") where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light. C1 [Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Arendt, Richard G.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21228 USA. [Kashlinsky, A.] Sci Syst & Applicat Inc, Lanham, MD USA. [Moseley, S. H.; Mather, J.] NASA, Greenbelt, MD USA. RP Arendt, RG (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.; Arendt, RG (reprint author), Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21228 USA. EM Richard.G.Arendt@nasa.gov OI Arendt, Richard/0000-0001-8403-8548 FU JPL under Spitzer Cycle 8 [1464716]; LIBRAE: Looking at Infrared Background Radiation Anisotropies with Euclid [NASA/12-EUCLID11-0003] FX We thank the referee, M. Zemcov, for comments that improved this paper. Additional helpful comments were provided by M. Ashby. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was funded by JPL under Spitzer Cycle 8 funding contract 1464716, and in part through NASA/12-EUCLID11-0003 "LIBRAE: Looking at Infrared Background Radiation Anisotropies with Euclid." This research made use of NASA's Astrophysics Data System Bibliographic Services and the IDL Astronomy Library (Landsman 1993). NR 39 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 26 DI 10.3847/0004-637X/824/1/26 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300026 ER PT J AU Goad, MR Korista, KT De Rosa, G Kriss, GA Edelson, R Barth, AJ Ferland, GJ Kochanek, CS Netzer, H Peterson, BM Bentz, MC Bisogni, S Crenshaw, DM Denney, KD Ely, J Fausnaugh, MM Grier, CJ Gupta, A Horne, KD Kaastra, J Pancoast, A Pei, L Pogge, RW Skielboe, A Starkey, D Vestergaard, M Zu, Y Anderson, MD Arevalo, P Bazhaw, C Borman, GA Boroson, TA Bottorff, MC Brandt, WN Breeveld, AA Brewer, BJ Cackett, EM Carini, MT Croxall, KV Dalla Bonta, E De Lorenzo-Caceres, A Dietrich, M Efimova, NV Evans, PA Filippenko, AV Flatland, K Gehrels, N Geier, S Gelbord, JM Gonzalez, L Gorjian, V Grupe, D Hall, PB Hicks, S Horenstein, D Hutchison, T Im, M Jensen, JJ Joner, MD Jones, J Kaspi, S Kelly, BC Kennea, JA Kim, M Kim, SC Klimanov, SA Lee, JC Leonard, DC Lira, P MacInnis, F Manne-Nicholas, ER Mathur, S McHardy, IM Montouri, C Musso, R Nazarov, SV Norris, RP Nousek, JA Okhmat, DN Papadakis, I Parks, JR Pott, JU Rafter, SE Rix, HW Saylor, DA Schimoia, JS Schnulle, K Sergeev, SG Siegel, M Spencer, M Sung, HI Teems, KG Treu, T Turner, CS Uttley, P Villforth, C Weiss, Y Woo, JH Yan, H Young, S Zheng, WK AF Goad, M. R. Korista, K. T. De Rosa, G. Kriss, G. A. Edelson, R. Barth, A. J. Ferland, G. J. Kochanek, C. S. Netzer, H. Peterson, B. M. Bentz, M. C. Bisogni, S. Crenshaw, D. M. Denney, K. D. Ely, J. Fausnaugh, M. M. Grier, C. J. Gupta, A. Horne, K. D. Kaastra, J. Pancoast, A. Pei, L. Pogge, R. W. Skielboe, A. Starkey, D. Vestergaard, M. Zu, Y. Anderson, M. D. Arevalo, P. Bazhaw, C. Borman, G. A. Boroson, T. A. Bottorff, M. C. Brandt, W. N. Breeveld, A. A. Brewer, B. J. Cackett, E. M. Carini, M. T. Croxall, K. V. Dalla Bonta, E. De Lorenzo-Caceres, A. Dietrich, M. Efimova, N. V. Evans, P. A. Filippenko, A. V. Flatland, K. Gehrels, N. Geier, S. Gelbord, J. M. Gonzalez, L. Gorjian, V. Grupe, D. Hall, P. B. Hicks, S. Horenstein, D. Hutchison, T. Im, M. Jensen, J. J. Joner, M. D. Jones, J. Kaspi, S. Kelly, B. C. Kennea, J. A. Kim, M. Kim, S. C. Klimanov, S. A. Lee, J. C. Leonard, D. C. Lira, P. MacInnis, F. Manne-Nicholas, E. R. Mathur, S. McHardy, I. M. Montouri, C. Musso, R. Nazarov, S. V. Norris, R. P. Nousek, J. A. Okhmat, D. N. Papadakis, I. Parks, J. R. Pott, J. -U. Rafter, S. E. Rix, H. -W. Saylor, D. A. Schimoia, J. S. Schnuelle, K. Sergeev, S. G. Siegel, M. Spencer, M. Sung, H. -I. Teems, K. G. Treu, T. Turner, C. S. Uttley, P. Villforth, C. Weiss, Y. Woo, J. -H. Yan, H. Young, S. Zheng, W. -K. TI SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. IV. ANOMALOUS BEHAVIOR OF THE BROAD ULTRAVIOLET EMISSION LINES IN NGC 5548 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC-5548); galaxies: nuclei; galaxies: Seyfert ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; HIGH ACCRETION RATES; SEYFERT 1 GALAXIES; X-RAY; RECOMBINATION LINES; REGION; NGC-5548; MASS; VARIABILITY AB During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for similar to 60-70 days, starting similar to 75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterized by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission line flux deficits occurred for the high ionization, collisionally excited lines C IV and Si IV(+O IV]), and also He II(+O III]), while the anomaly in Ly alpha was substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with E-ph > 54 eV relative to those near 13.6 eV. We suggest two plausible mechanisms for the observed behavior: (i) temporary obscuration of the ionizing continuum incident upon broad line region (BLR) clouds by a moving veil of material lying between the inner accretion disk and inner (BLR), perhaps resulting from an episodic ejection of material from the disk, or (ii) a temporary change in the intrinsic ionizing continuum spectral energy distribution resulting in a deficit of ionizing photons with energies > 54 eV, possibly due to a transient restructuring of the Comptonizing atmosphere above the disk. Current evidence appears to favor the latter explanation. C1 [Goad, M. R.; Evans, P. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Korista, K. T.] Western Michigan Univ, Dept Phys, 1120 Everett Tower, Kalamazoo, MI 49008 USA. [De Rosa, G.; Kochanek, C. S.; Peterson, B. M.; Bisogni, S.; Denney, K. D.; Fausnaugh, M. M.; Gupta, A.; Pogge, R. W.; Croxall, K. V.; Mathur, S.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. [De Rosa, G.; Kochanek, C. S.; Peterson, B. M.; Denney, K. D.; Pogge, R. W.; Croxall, K. V.; Mathur, S.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA. [De Rosa, G.; Kriss, G. A.; Ely, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Kriss, G. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Edelson, R.; Young, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Barth, A. J.; Pei, L.] Univ Calif Irvine, Dept Phys & Astron, 4129 Frederick Reines Hall, Irvine, CA 92697 USA. [Ferland, G. J.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Netzer, H.; Kaspi, S.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bentz, M. C.; Crenshaw, D. M.; Anderson, M. D.; Bazhaw, C.; Horenstein, D.; Jones, J.; Manne-Nicholas, E. R.; Norris, R. P.; Parks, J. R.; Saylor, D. A.; Teems, K. G.; Turner, C. S.] Georgia State Univ, Dept Phys & Astron, 25 Pk Pl,Suite 605, Atlanta, GA 30303 USA. [Bisogni, S.] Osserv Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy. [Grier, C. J.; Brandt, W. N.; Kennea, J. A.; Nousek, J. A.; Siegel, M.] Penn State Univ, Dept Astron & Astrophys, Eberly Coll Sci, Davey Lab 525, University Pk, PA 16802 USA. [Grier, C. J.; Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Horne, K. D.; Starkey, D.; De Lorenzo-Caceres, A.; Villforth, C.] Univ St Andrews, SUPA Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Kaastra, J.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Kaastra, J.] Univ Utrecht, Dept Phys & Astron, POB 80000, NL-3508 Utrecht, Netherlands. [Kaastra, J.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Pancoast, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Skielboe, A.; Vestergaard, M.; Jensen, J. J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Vestergaard, M.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Zu, Y.] Carnegie Mellon Univ, Dept Phys, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile. [Borman, G. A.; Nazarov, S. V.; Okhmat, D. N.; Sergeev, S. G.] Crimean Astrophys Observ, P O Nauchny 298409, Crimea, Russia. [Boroson, T. A.] Las Cumbres Global Telescope Network, 6740 Cortona Dr,Suite 102, Santa Barbara, CA 93117 USA. [Bottorff, M. C.; Hutchison, T.; MacInnis, F.; Musso, R.] Southwestern Univ, Dept Phys FJS 149, Fountainwood Observ, 1011 East Univ Ave, Georgetown, TX 78626 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA. [Breeveld, A. A.] Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. [Brewer, B. J.] Univ Auckland, Dept Stat, Private Bag 92019, Auckland 1142, New Zealand. [Cackett, E. M.] Wayne State Univ, Dept Phys & Astron, 666 West Hancock St, Detroit, MI 48201 USA. [Carini, M. T.; Hicks, S.] Western Kentucky Univ, Dept Phys & Astron, 1906 Coll Hts Blvd 11077, Bowling Green, KY 42101 USA. [Dalla Bonta, E.] Univ Padua, Dipartimento Fis & Astron G Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Dalla Bonta, E.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Dietrich, M.] Worcester State Univ, Dept Earth Environm & Phys, 486 Chandler St, Worcester, MA 01602 USA. [Efimova, N. V.; Klimanov, S. A.] Pulkovo Observ, St Petersburg 196140, Russia. [Filippenko, A. V.; Zheng, W. -K.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Flatland, K.; Gonzalez, L.; Leonard, D. C.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Geier, S.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Geier, S.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Geier, S.] Gran Telescopio Canarias GRANTECAN, E-38205 San Cristobal La Laguna, Tenerife, Spain. [Gelbord, J. M.] Spectral Sci Inc, 4 Fourth Ave, Burlington, MA 01803 USA. [Gelbord, J. M.] Eureka Sci Inc, 2452 Delmer St,Suite 100, Oakland, CA 94602 USA. [Gorjian, V.] CALTECH, Jet Prop Lab, MS 169-327,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Grupe, D.] Morehead State Univ, Ctr Space Sci, 235 Martindale Dr, Morehead, KY 40351 USA. [Hall, P. B.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Im, M.; Woo, J. -H.] Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul, South Korea. [Joner, M. D.; Spencer, M.] Brigham Young Univ, Dept Phys & Astron, N283 ESC, Provo, UT 84602 USA. [Kaspi, S.; Rafter, S. E.; Weiss, Y.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Kelly, B. C.; Treu, T.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Kim, M.; Kim, S. C.; Lee, J. C.; Sung, H. -I.] Korea Astron & Space Sci Inst, Daejeon, South Korea. St Petersburg Univ, Astron Inst, St Petersburg 198504, Russia. [Lira, P.] Univ Chile, Dept Astron, Camino Observ 1515, Santiago, Chile. [McHardy, I. M.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Montouri, C.] Univ Insubria, DiSAT, Via Valleggio 11, I-22100 Como, Italy. [Papadakis, I.] Univ Crete, Dept Phys, GR-71003 Iraklion, Greece. [Papadakis, I.] Univ Crete, Inst Theoret & Computat Phys, GR-71003 Iraklion, Greece. [Papadakis, I.] Fdn Res & Technol Hellas, IESL, GR-71110 Iraklion, Greece. [Pott, J. -U.; Rix, H. -W.; Schnuelle, K.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Rafter, S. E.] Univ Haifa, Fac Nat Sci, Dept Phys, IL-31905 Haifa, Israel. [Schimoia, J. S.] Univ Fed Rio Grande do Sul, Inst Fis, Campus Vale, Porto Alegre, RS, Brazil. [Treu, T.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Uttley, P.] Univ Amsterdam, Astron Inst Anton Pannekoek, Postbus 94249, NL-1090 GE Amsterdam, Netherlands. [Villforth, C.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Yan, H.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RP Goad, MR (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RI Papadakis, Iossif/C-3235-2011; OI Zu, Ying/0000-0001-6966-6925; Vestergaard, Marianne/0000-0001-9191-9837; Im, Myungshin/0000-0002-8537-6714; Ferland, Gary/0000-0003-4503-6333; Barth, Aaron/0000-0002-3026-0562 FU NASA through Space Telescope Science Institute [GO-13330]; NASA [NAS5-26555, NNX13AC26G, NNX13AC63G, NNX13AE99G, NNH13CH61C]; National Science Foundation (NSF) [AST-1008882]; NSF [AST-1412693, AST-1211916, AST-1302093, AST0618209, AST-1009756, AST-1009571, AST-1210311, AST-1412315]; TABASGO Foundation; Christopher R. Redlich Fund; NSF CAREER grant [AST-1253702]; NSERC; UK Science and Technology Facilities Council [ST/J001651/1]; Creative Initiative program of the National Research Foundation of Korea (NRFK) - Korean government (MSIP) [2008-0060544]; NWO, the Netherlands Organization for Scientific Research; UC Center for Galaxy Evolution; Fondecyt [1120328]; UCSB; CNPq, National Council for Scientific and Technological Development (Brazil); Packard Foundation; Danish National Research Foundation; Danish Council for Independent Research [DFF4002-00275]; National Research Foundation of Korea (NRF) - Korean government [2010-0027910]; HHMI FX Support for HST program number GO-13330 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. M.M.F., G.D.R., B.M.P., C.J.G., and R.W.P. are grateful for the support of the National Science Foundation (NSF) through grant AST-1008882 to The Ohio State University. A.J.B. and L.P. have been supported by NSF grant AST-1412693. A.V.F. and W.-K.Z. are grateful for financial assistance from NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund. M.C. Bentz gratefully acknowledges support through NSF CAREER grant AST-1253702 to Georgia State University. M.C. Bottorff acknowledges HHMI for support through an undergraduate science education grant to Southwestern University. K.D.D. is supported by an NSF Fellowship awarded under grant AST-1302093. R.E. gratefully acknowledges support from NASA under awards NNX13AC26G, NNX13AC63G, and NNX13AE99G. J.M.G. gratefully acknowledges support from NASA under award NNH13CH61C. P.B.H. is supported by NSERC. K.D.H. acknowledges support from the UK Science and Technology Facilities Council through grant ST/J001651/1. M.I. acknowledges support from the Creative Initiative program, No. 2008-0060544, of the National Research Foundation of Korea (NRFK) funded by the Korean government (MSIP). M.D.J. acknowledges NSF grant AST0618209. S.R.O.N. is financially supported by NWO, the Netherlands Organization for Scientific Research. B.C.K. is partially supported by the UC Center for Galaxy Evolution. C.S.K. acknowledges the support of NSF grant AST-1009756. D.C.L. acknowledges support from NSF grants AST-1009571 and AST-1210311. P.L. acknowledges support from Fondecyt grant #1120328. A.P. acknowledges support from an NSF graduate fellowship and a UCSB Dean's Fellowship. J.S.S. acknowledges CNPq, National Council for Scientific and Technological Development (Brazil) for partial support and The Ohio State University for warm hospitality. T.T. has been supported by NSF grant AST-1412315. T.T. and B.C.K. acknowledge support from the Packard Foundation in the form of a Packard Research Fellowship to T.T; also, T.T. thanks the American Academy in Rome and the Observatory of Monteporzio Catone for kind hospitality. The Dark Cosmology Centre is funded by the Danish National Research Foundation. M.V. gratefully acknowledges support from the Danish Council for Independent Research via grant No. DFF4002-00275. J.-H.W. acknowledges support by the National Research Foundation of Korea (NRF) grant funded by the Korean government (No. 2010-0027910). This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 58 TC 1 Z9 1 U1 5 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 11 DI 10.3847/0004-637X/824/1/11 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300011 ER PT J AU Katsuda, S Maeda, K Nozawa, T David, P Immler, S AF Katsuda, Satoru Maeda, Keiichi Nozawa, Takaya David, Pooley Immler, Stefan TI SN 2005ip: A LUMINOUS TYPE IIn SUPERNOVA EMERGING FROM A DENSE CIRCUMSTELLAR MEDIUM AS REVEALED BY X-RAY OBSERVATIONS (vol 780, 184, 2014) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Katsuda, Satoru] Chuo Univ, Fac Sci & Engn, Dept Phys, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan. [Maeda, Keiichi] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. [Maeda, Keiichi] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Nozawa, Takaya] Natl Astron Observ Japan, Div Theoret Astrophys, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [David, Pooley] Sam Houston State Univ, Dept Phys, Huntsville, TX 77341 USA. [David, Pooley] Eureka Sci Inc, 2452 Delmer St,Suite 100, Oakland, CA 94602 USA. [Immler, Stefan] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Immler, Stefan] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Immler, Stefan] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Katsuda, S (reprint author), Chuo Univ, Fac Sci & Engn, Dept Phys, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan. EM katsuda@phys.chuo-u.ac.jp NR 1 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 64 DI 10.3847/0004-637X/824/1/64 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300064 ER PT J AU Krick, JE Ingalls, J Carey, S von Braun, K Kane, SR Ciardi, D Plavchan, P Wong, I Lowrance, P AF Krick, J. E. Ingalls, J. Carey, S. von Braun, K. Kane, S. R. Ciardi, D. Plavchan, P. Wong, I. Lowrance, P. TI SPITZER IRAC SPARSELY SAMPLED PHASE CURVE OF THE EXOPLANET WASP-14B SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: detectors; methods: data analysis; planetary systems; planets and satellites: atmospheres; stars: individual (WASP-14, HD 158460) ID INFRARED ARRAY CAMERA; 3-DIMENSIONAL ATMOSPHERIC CIRCULATION; EXTRASOLAR GIANT PLANETS; UPSILON ANDROMEDAE B; HOT JUPITERS; MU-M; LIGHT CURVES; SECONDARY ECLIPSE; THERMAL EMISSION; SPACE-TELESCOPE AB Motivated by a high Spitzer IRAC oversubscription rate, we present a new technique of randomly and sparsely sampling the phase curves of hot Jupiters. Snapshot phase curves are enabled by technical advances in precision pointing as well as careful characterization of a portion of the central pixel on the array. This method allows for observations which are a factor of approximately two more efficient than full phase curve observations, and are furthermore easier to insert into the Spitzer observing schedule. We present our pilot study from this program using the exoplanet WASP-14b. Data of this system were taken both as a sparsely sampled phase curve as well as a staring-mode phase curve. Both data sets, as well as snapshot-style observations of a calibration star, are used to validate this technique. By fitting our WASP-14b phase snapshot data set, we successfully recover physical parameters for the transit and eclipse depths as well as the amplitude and maximum and minimum of the phase curve shape of this slightly eccentric hot Jupiter. We place a limit on the potential phase to phase variation of these parameters since our data are taken over many phases over the course of a year. We see no evidence for eclipse depth variations compared to other published WASP-14b eclipse depths over a 3.5 year baseline. C1 [Krick, J. E.; Ingalls, J.; Carey, S.; Ciardi, D.; Lowrance, P.] CALTECH, Jet Prop Lab, Spitzer Sci Ctr, MS 314-6, Pasadena, CA 91125 USA. [von Braun, K.] Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA. [Kane, S. R.] San Francisco State Univ, San Francisco, CA 94132 USA. [Plavchan, P.] SW Missouri State Univ, Springfield, MO 65802 USA. [Wong, I.] CALTECH, Pasadena, CA 91125 USA. RP Krick, JE (reprint author), CALTECH, Jet Prop Lab, Spitzer Sci Ctr, MS 314-6, Pasadena, CA 91125 USA. EM jkrick@caltech.edu OI Plavchan, Peter/0000-0002-8864-1667; Wong, Ian/0000-0001-9665-8429; Ciardi, David/0000-0002-5741-3047 FU National Aeronautics and Space Administration; National Science Foundation FX We thank the referee Nikole Lewis for useful suggestions which have greatly improved the manuscript. This research has made use of data from the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work was based on observations obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of exoplanet. eu. NR 68 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 27 DI 10.3847/0004-637X/824/1/27 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300027 ER PT J AU Leggett, SK Tremblin, P Saumon, D Marley, MS Morley, CV Amundsen, DS Baraffe, I Chabrier, G AF Leggett, S. K. Tremblin, P. Saumon, D. Marley, M. S. Morley, Caroline V. Amundsen, D. S. Baraffe, I. Chabrier, G. TI NEAR-INFRARED SPECTROSCOPY OF THE Y0 WISEP J173835.52+273258.9 AND THE Y1 WISE J035000.32-565830.2: THE IMPORTANCE OF NON-EQUILIBRIUM CHEMISTRY SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; molecular processes; stars: atmospheres; stars: individual ID COOLEST BROWN DWARFS; COLLISION-INDUCED ABSORPTION; SURVEY-EXPLORER WISE; T-DWARFS; CARBON-MONOXIDE; GIANT PLANETS; L/T TRANSITION; T/Y TRANSITION; GLIESE 229B; ATMOSPHERES AB We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32 -565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R = 540 spectrum was obtained for W0350, covering 1.0 < lambda mu m < 1.7, and a cross-dispersed Gemini near-infrared spectrograph R = 2800 spectrum was obtained for W1738, covering 0.993-1.087 mu m, 1.191-1.305 mu m, 1.589-1.631 mu m, and 1.985-2.175 mu m, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H-band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs, the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH4/CO and NH3/N-2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T-eff = 425 +/- 25 K, and log g = 4.0 +/- 0.25, and for the Y1, W0350, T-eff = 350 +/- 25 K, and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3-9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3-3 Gyr, and the age of W1738 is 0.15-1 Gyr. C1 [Leggett, S. K.] Gemini Observ, Northern Operat Ctr, 670 N Aohoku Pl, Hilo, HI 96720 USA. [Tremblin, P.] UVSQ, UPS, Maison Simulat, CEA,CNRS,INRIA,USR 3441,Ctr Etud Saclay, F-91191 Gif Sur Yvette, France. [Tremblin, P.; Amundsen, D. S.; Baraffe, I.; Chabrier, G.] Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Saumon, D.] Los Alamos Natl Lab, POB 1663,MS F663, Los Alamos, NM 87545 USA. [Marley, M. S.] NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA. [Morley, Caroline V.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baraffe, I.; Chabrier, G.] Ecole Normale Super Lyon, CRAL, CNRS, UMR 5574, F-69364 Lyon 07, France. RP Leggett, SK (reprint author), Gemini Observ, Northern Operat Ctr, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu OI Tremblin, Pascal/0000-0001-6172-3403; Leggett, Sandy/0000-0002-3681-2989 FU Gemini Observatory; NASA from Astrophysics Theory [NNH12AT89I]; European Research Council through grant ERC-AdG [320478-TOFU]; National Aeronautics and Space Administration FX Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). S.L.'s research is supported by Gemini Observatory. D.S.'s work was supported in part by NASA grant NNH12AT89I from Astrophysics Theory. I.B.'s work is supported by the European Research Council through grant ERC-AdG No. 320478-TOFU. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 71 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 2 DI 10.3847/0004-637X/824/1/2 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300002 ER PT J AU Liu, T Zhang, QZ Kim, KT Wu, YF Lee, CW Goldsmith, PF Li, D Liu, SY Chen, HR Tatematsu, K Wang, K Lee, JE Qin, SL Mardones, D Cho, SH AF Liu, Tie Zhang, Qizhou Kim, Kee-Tae Wu, Yuefang Lee, Chang-Won Goldsmith, Paul F. Li, Di Liu, Sheng-Yuan Chen, Huei-Ru Tatematsu, Ken'ichi Wang, Ke Lee, Jeong-Eun Qin, Sheng-Li Mardones, Diego Cho, Se-Hyung TI DISCOVERY OF AN EXTREMELY WIDE-ANGLE BIPOLAR OUTFLOW IN AFGL 5142 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: jets and outflows; ISM: kinematics and dynamics; stars: formation ID STAR CLUSTER FORMATION; FORMING CORE W3-SE; MOLECULAR OUTFLOWS; PROTOSTELLAR CANDIDATES; HIGH-VELOCITY; HOT CORE; INFALL; FRAGMENTATION; ACCRETION; FEEDBACK AB Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle (similar to 180 degrees) bipolar outflow ("EWBO") in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3-2) and HCO+ (3-2) lines. This bipolar outflow is along a north-west to south-east direction with a line of sight flow velocity of about 3 km s(-1) and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejected mass and mass loss rate due to both high-velocity jet-like outflows and the "EWBO" are similar to 24.5 M-circle dot and similar to 1.7 x 10(-3)M(circle dot) yr(-1), respectively. Global collapse of the clump is revealed by the " blue profile" in the HCO+ (1-0) line. A hierarchical network of filaments was identified in NH3 (1, 1) emission. Clear velocity gradients of the order of 10 km s(-1) pc(-1) are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is similar to 3.1 x 10(-3) M-circle dot yr(-1), which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation. C1 [Liu, Tie; Kim, Kee-Tae; Lee, Chang-Won; Cho, Se-Hyung] Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 305348, South Korea. [Zhang, Qizhou] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Wu, Yuefang] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Lee, Chang-Won] Univ Sci & Technol, 217 Gajungro, Daejeon 305333, South Korea. [Goldsmith, Paul F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Li, Di] Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China. [Li, Di] Chinese Acad Sci, Key Lab Radio Astron, Nanjing 210008, Peoples R China. [Liu, Sheng-Yuan; Chen, Huei-Ru] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Chen, Huei-Ru] Natl Tsing Hua Univ, Inst Astron, Hsinchu, Taiwan. [Chen, Huei-Ru] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Tatematsu, Ken'ichi] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Wang, Ke] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Lee, Jeong-Eun] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi Do, South Korea. [Qin, Sheng-Li] Yunnan Univ, Dept Astron, Kunming 650091, Peoples R China. [Qin, Sheng-Li] Key Lab Astroparticle Phys Yunnan Prov, Kunming 650091, Peoples R China. [Mardones, Diego] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. RP Liu, T (reprint author), Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 305348, South Korea. EM liutiepku@gmail.com OI Wang, Ke/0000-0002-7237-3856; Chen, Huei-Ru/0000-0002-9774-1846; Zhang, Qizhou/0000-0003-2384-6589; Liu, Sheng-Yuan/0000-0003-4603-7119 FU Chinese Academy of Sciences [XDB09000000]; Science and Technology Facilities Council of the United Kingdom; KASI fellowship; China Ministry of Science and Technology under State Key Development Program for Basic Research [2012CB821800]; NSFC [11373009, 11433008, 11373026, 11433004]; Top Talents Program of Yunnan Province [2015HA030]; ESO fellowship; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science, and Technology [NRF-2013R1A1A2A10005125]; global research collaboration of Korea Research Council of Fundamental Science & Technology (KRCF); Basic Science Research Program through the National Research Foundation of Korea (NRF) [NRF-2015R1A2A2A01004769]; Korea Astronomy and Space Science Institute under the RD program [2015-1-320-18] FX We are grateful to the staff of SMA. The James Clerk Maxwell Telescope is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan, Academia Sinica Institute of Astronomy and Astrophysics, the Korea Astronomy and Space Science Institute, the National Astronomical Observatories of China and the Chinese Academy of Sciences (grant No. XDB09000000), with additional funding support from the Science and Technology Facilities Council of the United Kingdom and participating universities in the United Kingdom and Canada. We are grateful to the staff of KVN. The KVN is a facility operated by the Korea Astronomy and Space Science Institute. T.L. is supported by a KASI fellowship. Y.W. is partly supported by the China Ministry of Science and Technology under State Key Development Program for Basic Research (No. 2012CB821800), the grants of NSFC No. 11373009 and No. 11433008. S.-L. Q. is partly supported by NSFC under grant Nos. 11373026, 11433004, by Top Talents Program of Yunnan Province (2015HA030). K.W. acknowledges support from the ESO fellowship. C.W.L. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2013R1A1A2A10005125) and also by the global research collaboration of Korea Research Council of Fundamental Science & Technology (KRCF). This work was carried out in part at the Jet Propulsion Laboratory, operated for NASA by the California Institute of Technology. J.-E.L. was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF; grant No. NRF-2015R1A2A2A01004769) and the Korea Astronomy and Space Science Institute under the R&D program (Project No. 2015-1-320-18) supervised by the Ministry of Science, ICT, and Future Planning. NR 45 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 31 DI 10.3847/0004-637X/824/1/31 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300031 ER PT J AU Nunez, NE Nelson, T Mukai, K Sokoloski, JL Luna, GJM AF Nunez, N. E. Nelson, T. Mukai, K. Sokoloski, J. L. Luna, G. J. M. TI SYMBIOTIC STARS IN X-RAYS. III. SUZAKU OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: symbiotic; X-rays: individual (CD-28 3719, EG And, Hen 3-461, Hen 3-1591, 4 Dra) ID CATACLYSMIC VARIABLES; PLANETARY-NEBULA; LIKELIHOOD RATIO; RADIO-EMISSION; EG-ANDROMEDAE; BROAD-BAND; CH-CYGNI; BINARY; NOVA; ACCRETION AB We describe the X-ray emission as observed by Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA, and Swift. We find that the X-ray spectra of all five sources can be adequately fit with absorbed optically thin thermal plasma models, with either single-or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT > 3 keV for all five targets were greater than expected for colliding winds. Based on these high temperatures as well as previous measurements of UV variability and UV luminosity and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small optically thin portion of the emission from these boundary layers. Given the time between previous observations and these observations, we find that the intrinsic X-ray flux and the intervening absorbing column can vary by factors of three or more on a timescale of years. However, the location of the absorber and the relationship between changes in accretion rate and absorption are still elusive. C1 [Nunez, N. E.] UNSJ, CONICET, ICATE, Ave Espana S 1512,J5402DSP, San Juan, Argentina. [Nelson, T.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Sokoloski, J. L.] Columbia Univ, Columbia Astrophys Lab, 550 W120th St,1027 Pupin Hall,MC 5247, New York, NY 10027 USA. [Luna, G. J. M.] UBA, CONICET, IAFE, Ave Inte Guiraldes 2620,C1428ZAA, Buenos Aires, DF, Argentina. RP Nunez, NE (reprint author), UNSJ, CONICET, ICATE, Ave Espana S 1512,J5402DSP, San Juan, Argentina. EM nnunez@icate-conicet.gov.ar FU Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina (CONICET); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina [PIP D-4598/2012, ANPCYT-PICT 0478/14, D2771]; NASA through ADAP grant [NNX13AJ13G, NNX15AF19G] FX N.E.N. acknowledges Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina (CONICET) for the Post-doctoral Fellowship. G.J.M.L. and N.E.N. acknowledge funding from PIP D-4598/2012, ANPCYT-PICT 0478/14, and Cooperacion Internacional #D2771 from Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina. K.M. acknowledges support by NASA through ADAP grant NNX13AJ13G. L.S. acknowledges support by NASA through ADAP grant NNX15AF19G. This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA) and the VizieR catalog access tool, CDS, Strasbourg, France. The original description of the VizieR service was published in Ochsenbein et al. (2000). NR 49 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 23 DI 10.3847/0004-637X/824/1/23 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300023 ER PT J AU Ofek, EO Cenko, SB Shaviv, NJ Duggan, G Strotjohann, NL Rubin, A Kulkarni, SR Gal-Yam, A Sullivan, M Cao, Y Nugent, PE Kasliwal, MM Sollerman, J Fransson, C Filippenko, AV Perley, DA Yaron, O Laher, R AF Ofek, E. O. Cenko, S. B. Shaviv, N. J. Duggan, G. Strotjohann, N. -L. Rubin, A. Kulkarni, S. R. Gal-Yam, A. Sullivan, M. Cao, Y. Nugent, P. E. Kasliwal, M. M. Sollerman, J. Fransson, C. Filippenko, A. V. Perley, D. A. Yaron, O. Laher, R. TI PTF13efv-AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: mass-loss; supernovae: general; supernovae: individual (PTF13efv, SNHunt275) ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; INTERACTION-POWERED SUPERNOVAE; RICH CIRCUMSTELLAR MEDIUM; SN 2009IP; IIN SUPERNOVA; MASS-LOSS; X-RAY; PHOTOMETRIC CALIBRATION; PAIR-INSTABILITY; SHOCK-BREAKOUT AB The progenitors of some supernovae (SNe) exhibit outbursts with super-Eddington luminosities prior to their final explosions. This behavior is common among SNe IIn, but the driving mechanisms of these precursors are not yet well-understood. SNHunt 275 was announced as a possible new SN during 2015 May. Here we report on pre-explosion observations of the location of this event by the Palomar Transient Factory (PTF) and report the detection of a precursor about 500 days prior to the 2015 May activity (PTF 13efv). The observed velocities in the 2015 transient and its 2013 precursor absorption spectra are low (1000-2000 km s(-1)), so it is not clear yet if the recent activity indeed marks the final disruption of the progenitor. Regardless of the nature of this event, we use the PTF photometric and spectral observations, as well as Swift-UVOT observations, to constrain the efficiency of the radiated energy relative to the total kinetic energy of the precursor. We find that, using an order-of-magnitude estimate and under the assumption of spherical symmetry, the ratio of the radiated energy to the kinetic energy is in the range of 4 x 10(-2) to 3.4 x 10(3). C1 [Ofek, E. O.; Strotjohann, N. -L.; Rubin, A.; Gal-Yam, A.; Yaron, O.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Ofek, E. O.; Strotjohann, N. -L.; Rubin, A.; Gal-Yam, A.; Yaron, O.] Weizmann Inst Sci, Helen Kimmel Ctr Planetary Sci, IL-76100 Rehovot, Israel. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Shaviv, N. J.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Shaviv, N. J.] Inst Adv Study, Sch Nat Sci, Olden Lane, Princeton, NJ 08540 USA. [Duggan, G.; Kulkarni, S. R.; Cao, Y.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Nugent, P. E.; Filippenko, A. V.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kasliwal, M. M.] Observ Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Sollerman, J.; Fransson, C.] Stockholm Univ, AlbaNova Univ Ctr, Oskar Klein Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Perley, D. A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Laher, R.] CALTECH, Spitzer Sci Ctr, MS 314-6, Pasadena, CA 91125 USA. RP Ofek, EO (reprint author), Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel.; Ofek, EO (reprint author), Weizmann Inst Sci, Helen Kimmel Ctr Planetary Sci, IL-76100 Rehovot, Israel. OI Sullivan, Mark/0000-0001-9053-4820; Gal-Yam, Avishay/0000-0002-3653-5598 FU W.M. Keck Foundation; Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ); Israel Science Foundation; Minerva; Weizmann-UK; I-Core program by the Israeli Committee for Planning and Budgeting; Israel Science Foundation (ISF); EU/FP7 via ERC grant [307260]; Quantum universe I-Core program by the Israeli Committee for Planning and Budgeting; ISF; Weizmann-UK "making connections" program; Kimmel award; Royal Society; EU/FP7-ERC grant [615929]; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916]; ARCHES award FX We thank M. Graham, P. Kelly, A. Bostroem, I. Shivvers, and W. Zheng for their help obtaining some of the optical spectra. We are also grateful to the staffs of the Palomar, Lick, and Keck Observatories for their excellent assistance. Research at Lick Observatory is partially supported by a generous gift from Google. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. E.O.O. is the incumbent of the Arye Dissentshik career development chair and is grateful for support by grants from the Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ), the Israel Science Foundation, Minerva, Weizmann-UK, and the I-Core program by the Israeli Committee for Planning and Budgeting and the Israel Science Foundation (ISF). N.J.S. is grateful for the IBM Einstein Fellowship. A.G.Y. is supported by the EU/FP7 via ERC grant No. 307260, the Quantum universe I-Core program by the Israeli Committee for Planning and Budgeting and the ISF; by Minerva and ISF grants; by the Weizmann-UK "making connections" program; and by Kimmel and ARCHES awards. M.S. acknowledges support from the Royal Society and EU/FP7-ERC grant No. 615929. A.V.F.'s research is supported by the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. NR 90 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 6 DI 10.3847/0004-637X/824/1/6 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300006 ER PT J AU Pacifici, C Oh, S Oh, K Lee, J Yi, SK AF Pacifici, Camilla Oh, Sree Oh, Kyuseok Lee, Jaehyun Yi, Sukyoung K. TI TIMING THE EVOLUTION OF QUIESCENT AND STAR-FORMING LOCAL GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: star formation; galaxies: statistics; galaxies: stellar content ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; DARK-MATTER HALOS; FORMATION HISTORIES; STELLAR MASS; REDSHIFT GALAXIES; DUST ATTENUATION; FORMATION RATES; NUMBER DENSITY; GREEN VALLEY AB Constraining the star formation histories (SFHs) of individual galaxies is crucial for understanding the mechanisms that regulate their evolution. Here, we combine multi-wavelength (ultraviolet, optical, and infrared) measurements of a very large sample of galaxies (similar to 230,000) at z < 0.16, with physically motivated models of galaxy spectral energy distributions to extract constraints on galaxy physical parameters (such as stellar mass and star formation rate) as well as individual SFHs. In particular, we set constraints on the timescales in which galaxies form a certain percentage of their total stellar mass (namely, 10%, 50%, and 90%). The large statistics allows us to average such measurements over different populations of galaxies (quiescent and star-forming) and in narrow ranges of stellar mass. As in the downsizing scenario, we confirm that low-mass galaxies have more extended SFHs than high-mass galaxies. We also find that at the same observed stellar mass, galaxies that are now quiescent evolve more rapidly than galaxies that are currently still forming stars. This suggests that stellar mass is not the only driver of galaxy evolution, but plays along with other factors such as merger events and other environmental effects. C1 [Pacifici, Camilla] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Pacifici, Camilla] Yonsei Univ, Yonsei Univ Observ, Seoul 120749, South Korea. [Oh, Sree; Yi, Sukyoung K.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Oh, Kyuseok] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Lee, Jaehyun] Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 305348, South Korea. RP Pacifici, C (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.; Pacifici, C (reprint author), Yonsei Univ, Yonsei Univ Observ, Seoul 120749, South Korea. FU Korea Astronomy and Space Science Institute; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; National Aeronautics and Space Administration; National Research Foundation of Korea [Doyak 2014003730] FX We thank the referee for the nice and useful report that helped us to improve the paper. We thank Barbara Catinella, Stephane Charlot, Luca Cortese, Anna Feltre, Eric Gawiser, Michaela Hirschmann, and Rory Smith for useful discussions. C.P. acknowledges the KASI-Yonsei Joint Research Program for the Frontiers of Astronomy and Space Science funded by the Korea Astronomy and Space Science Institute and support by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by USRA through a contract with NASA. S.K.Y. acted as the head of the research group and as the corresponding author and acknowledges support from the National Research Foundation of Korea (Doyak 2014003730). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. GALEX (Galaxy Evolution Explorer) is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for the construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. NR 65 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 45 DI 10.3847/0004-637X/824/1/45 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300045 ER PT J AU Reeves, JN Braito, V Nardini, E Behar, E O'Brien, PT Tombesi, F Turner, TJ Costa, MT AF Reeves, J. N. Braito, V. Nardini, E. Behar, E. O'Brien, P. T. Tombesi, F. Turner, T. J. Costa, M. T. TI DISCOVERY OF BROAD SOFT X-RAY ABSORPTION LINES FROM THE QUASAR WIND IN PDS 456 SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; quasars: individual (PDS 456); X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; HIGH-VELOCITY OUTFLOW; ULTRA-FAST OUTFLOWS; RADIO-QUIET AGNS; BLACK-HOLE; SEYFERT-GALAXY; XMM-NEWTON; LUMINOUS QUASAR; EMISSION-LINE; DISK WIND AB High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of sigma(v) similar to 10,000 km s(-1). During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range similar to 0.1-0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c. C1 [Reeves, J. N.; Braito, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Reeves, J. N.; Nardini, E.; Costa, M. T.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Braito, V.] Osserv Astron Brera, INAF, Via Bianchi 46, I-23807 Merate, LC, Italy. [Behar, E.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Behar, E.; Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [O'Brien, P. T.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. [Tombesi, F.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. RP Reeves, JN (reprint author), Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA.; Reeves, JN (reprint author), Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. EM jreeves@umbc.edu FU STFC; NASA [NNX15AF12G, NNX13AM27G]; European Union [655324]; I-CORE program of the Planning and Budgeting Committee [1937/12]; ESA Member States FX N. Reeves, E. Nardini, P.T. O'Brien, and M.T. Costa acknowledge the financial support of STFC. J.N. Reeves also acknowledges NASA grant number NNX15AF12G, while T.J. Turner acknowledges NASA grant number NNX13AM27G. E. Behar received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 655324 and from the I-CORE program of the Planning and Budgeting Committee (grant number 1937/12). This research is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. NR 63 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2016 VL 824 IS 1 AR 20 DI 10.3847/0004-637X/824/1/20 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7BN UT WOS:000377937300020 ER PT J AU Koss, MJ Glidden, A Balokovic, M Stern, D Lamperti, I Assef, R Bauer, F Ballantyne, D Boggs, SE Craig, WW Farrah, D Furst, F Gandhi, P Gehrels, N Hailey, CJ Harrison, FA Markwardt, C Masini, A Ricci, C Treister, E Walton, DJ Zhang, WW AF Koss, Michael J. Glidden, Ana Balokovic, Mislav Stern, Daniel Lamperti, Isabella Assef, Roberto Bauer, Franz Ballantyne, David Boggs, Steven E. Craig, William W. Farrah, Duncan Furst, Felix Gandhi, Poshak Gehrels, Neil Hailey, Charles J. Harrison, Fiona A. Markwardt, Craig Masini, Alberto Ricci, Claudio Treister, Ezequiel Walton, Dominic J. Zhang, William W. TI NuSTAR RESOLVES THE FIRST DUAL AGN ABOVE 10 keV IN SWIFT J2028.5+2543 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: individual (NGC 6921, MCG+04-48-002); galaxies: interactions; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; X-RAY; HOST GALAXIES; CHANDRA; SAMPLE; I.; DISTRIBUTIONS; ABSORPTION; DISCOVERY; SPECTRA AB We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emission was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91 ''). NuSTAR's sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (N-H approximate to (1-2) x 10(24) cm(-2)) and contribute equally to the BAT detection (L-10-50 keV(int) approximate to 6 x 10(42) erg s(-1)). The observed luminosity of both sources is severely diminished in the 2-10 keV band (L-2-10keV(obs) < 0.1 x L-2-10keV(int)), illustrating the importance of > 10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (> 3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240. C1 [Koss, Michael J.; Lamperti, Isabella] Swiss Fed Inst Technol, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Glidden, Ana] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Balokovic, Mislav; Furst, Felix; Harrison, Fiona A.; Ricci, Claudio; Walton, Dominic J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, Daniel; Walton, Dominic J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. [Assef, Roberto] Univ Diego Port, Nucleo Astron, Fac Ingn, Ave Ejercito 441, Santiago, Chile. [Bauer, Franz; Treister, Ezequiel] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Bauer, Franz] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Ballantyne, David] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Farrah, Duncan] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Gandhi, Poshak] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Gehrels, Neil; Markwardt, Craig; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Masini, Alberto] INAF, Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Treister, Ezequiel] Univ Concepcion, Dept Astron, Concepcion, Chile. RP Koss, MJ (reprint author), Swiss Fed Inst Technol, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. EM mkoss@phys.ethz.ch RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Koss, Michael/0000-0002-7998-9581 FU Ambizione fellowship [PZ00P2_154799/1]; NASA [NNG08FD60C] FX We acknowledge the Ambizione fellowship grant PZ00P2_154799/1 (MK) and the Joanna Wall Muir and the Caltech Student Faculty Program (AG). This work was supported under NASA Contract No. NNG08FD60C and made use of NuSTAR mission data, a project led by the California Institute of Technology and managed by the Jet Propulsion Laboratory. NR 36 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2016 VL 824 IS 1 AR L4 DI 10.3847/2041-8205/824/1/L4 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO6OR UT WOS:000377903500004 ER PT J AU Ergun, RE Goodrich, KA Wilder, FD Holmes, JC Stawarz, JE Eriksson, S Sturner, AP Malaspina, DM Usanova, ME Torbert, RB Lindqvist, PA Khotyaintsev, Y Burch, JL Strangeway, RJ Russell, CT Pollock, CJ Giles, BL Hesse, M Chen, LJ Lapenta, G Goldman, MV Newman, DL Schwartz, SJ Eastwood, JP Phan, TD Mozer, FS Drake, J Shay, MA Cassak, PA Nakamura, R Marklund, G AF Ergun, R. E. Goodrich, K. A. Wilder, F. D. Holmes, J. C. Stawarz, J. E. Eriksson, S. Sturner, A. P. Malaspina, D. M. Usanova, M. E. Torbert, R. B. Lindqvist, P. -A. Khotyaintsev, Y. Burch, J. L. Strangeway, R. J. Russell, C. T. Pollock, C. J. Giles, B. L. Hesse, M. Chen, L. J. Lapenta, G. Goldman, M. V. Newman, D. L. Schwartz, S. J. Eastwood, J. P. Phan, T. D. Mozer, F. S. Drake, J. Shay, M. A. Cassak, P. A. Nakamura, R. Marklund, G. TI Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection SO PHYSICAL REVIEW LETTERS LA English DT Article ID EARTHS MAGNETOPAUSE; DIFFUSION REGION; PLASMA-WAVES; FLUX; ACCELERATION; DISSIPATION AB We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E-vertical bar vertical bar) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E-vertical bar vertical bar events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E-vertical bar vertical bar events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E-vertical bar vertical bar events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields. C1 [Ergun, R. E.; Goodrich, K. A.; Holmes, J. C.; Stawarz, J. E.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA. [Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Schwartz, S. J.] Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA. [Torbert, R. B.] Univ New Hampshire, Durham, NH 03824 USA. [Torbert, R. B.; Burch, J. L.] Southwest Res Inst, San Antonio, TX 78238 USA. [Lindqvist, P. -A.; Marklund, G.] KTH Royal Inst Technol, Stockholm, Sweden. [Khotyaintsev, Y.] Swedish Inst Space Phys Uppsala, Uppsala, Sweden. [Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Pollock, C. J.; Giles, B. L.; Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chen, L. J.; Drake, J.] Univ Maryland, College Pk, MD 20742 USA. [Lapenta, G.] Leuven Univ, Leuven, Belgium. [Goldman, M. V.; Newman, D. L.] Univ Colorado, Dept Phys, Boulder, CO 80303 USA. [Schwartz, S. J.; Eastwood, J. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [Phan, T. D.; Mozer, F. S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Shay, M. A.] Univ Delaware, Newark, DE 19716 USA. [Cassak, P. A.] W Virginia Univ, Morgantown, WV 26506 USA. [Nakamura, R.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. RP Ergun, RE (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA.; Ergun, RE (reprint author), Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA. RI Stawarz, Julia/L-7387-2016; Nakamura, Rumi/I-7712-2013; NASA MMS, Science Team/J-5393-2013; OI Stawarz, Julia/0000-0002-5702-5802; Nakamura, Rumi/0000-0002-2620-9211; NASA MMS, Science Team/0000-0002-9504-5214; Eriksson, Stefan/0000-0002-5619-1577; Lapenta, Giovanni/0000-0002-3123-4024 FU NASA MMS project; Leverhulme Trust research fellowship; CNES FX This work was funded by the NASA MMS project. The authors recognize the tremendous effort in developing and operating the MMS spacecraft and instruments and sincerely thank all involved. S. J. S. is supported by a Leverhulme Trust research fellowship. The IRAP contribution to MMS was supported by CNES. NR 42 TC 8 Z9 8 U1 5 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 10 PY 2016 VL 116 IS 23 AR 235102 DI 10.1103/PhysRevLett.116.235102 PG 6 WC Physics, Multidisciplinary SC Physics GA DO1AK UT WOS:000377510300004 PM 27341241 ER PT J AU Haskins, JB Wu, JJ Lawson, JW AF Haskins, Justin B. Wu, James J. Lawson, John W. TI Computational and Experimental Study of Li-Doped Ionic Liquids at Electrified Interfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SUM-FREQUENCY GENERATION; DOUBLE-LAYER STRUCTURE; MOLECULAR-DYNAMICS SIMULATIONS; ELECTROCHEMICAL DOUBLE-LAYER; POLARIZABLE FORCE-FIELDS; GLASSY-CARBON ELECTRODES; DIFFERENTIAL CAPACITANCE; IMPEDANCE SPECTROSCOPY; COMPUTER-SIMULATION; LITHIUM BATTERIES AB We evaluate the influence of Li-salt doping on the dynamics, capacitance, and structure of three ionic liquid electrolytes, [pyr14] [TFSI], [pyr13] [FSI], and [EMIM] [BF4], using molecular dynamics and polarizable force fields. In this respect, our focus is on the properties of the electric double layer (EDL) formed by the electrolytes at the electrode surface as a function of surface potential (Psi). The rates of EDL formation are found to be on the order of hundreds of picoseconds and only slightly influenced by the addition of Li salt. The EDLs of three electrolytes are shown to have different energy storage capacities, which we relate to the EDL formation free energy. The differential capacitance obtained from our computations exhibits asymmetry about the potential of zero charge and is consistent with the camel-like profiles noted from mean field theories and experiments on metallic electrodes. The introduction of Li salt reduces the noted asymmetry in the differential capacitance profile. Complementary experimental capacitance measurements have been made on our three electrolytes in their neat forms and with Li salt. The measurements, performed on glassy carbon electrodes, produce U-like profiles, and Li-salt doping is shown to strongly affect capacitance at high magnitudes of Psi. Differences in the theoretical and experimental shapes and magnitudes of capacitance are rationalized in terms of the electrode surface and pseudocapacitive effects. In both neat and Li-doped liquids, the details of the computational: capacitance profile are well described by Psi-induced changes in the density and moleculat orientation of ions in the molecular layer closest to the electrode. Our results suggest that the addition of Li+ induces disorder in the EDL, which originates from the strong binding of anions to Li+. An in-depth analysis of the distribution of Le in the EDL reveals that it does not readily enter the molecular layer at the electrode surface, preferring instead to be localized farther away from the surface in the second molecular layer. This behavior is validated through an analysis of the free energy of Li+ solvation as a function of distance from the electrode. Free energy wells are found to coincide with localized concentrations Li+, the depths of which increase with Psi and suggest a source of impedance for Li+ to reach the electrode. Finally, we make predictions of the specific energy at ideal graphite utilizing the computed capacitance and previously derived electrochemical windows of the liquids. C1 [Haskins, Justin B.] NASA, Ames Res Ctr, AMA Inc, Thermal Mat Protect Branch, Moffett Field, CA 94035 USA. [Lawson, John W.] NASA, Ames Res Ctr, Thermal Mat Protect Branch, Moffett Field, CA 94035 USA. [Wu, James J.] NASA, Glenn Res Ctr, Photovolta & Electrochem Syst Branch, Cleveland, OH 44135 USA. RP Lawson, JW (reprint author), NASA, Ames Res Ctr, Thermal Mat Protect Branch, Moffett Field, CA 94035 USA. EM john.w.lawson@nasa.gov FU NASA Aeronautics Research Institute's Seedling program; NASA Aeronautics Research Mission Directorate's Convergent Aeronautics Solutions (CAS) program FX This work was supported by funding from the NASA Aeronautics Research Institute's Seedling program and the NASA Aeronautics Research Mission Directorate's Convergent Aeronautics Solutions (CAS) program. We are grateful to V. F. Lvovich for fruitful discussions. NR 112 TC 0 Z9 0 U1 17 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 9 PY 2016 VL 120 IS 22 BP 11993 EP 12011 DI 10.1021/acs.jpcc.6b02449 PG 19 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DO5RV UT WOS:000377841400026 ER PT J AU Chen, HD Xiong, XX Angal, A Geng, X Wu, AS AF Chen, Hongda Xiong, Xiaoxiong Angal, Amit Geng, Xu Wu, Aisheng TI Alternative method of on-orbit response-versus-scan-angle characterization for MODIS reflective solar bands SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE moderate resolution imaging spectroradiometer; reflective solar bands; response-versus-scan-angle; scan mirror; Terra; Aqua ID TERRA MODIS; AQUA MODIS; CALIBRATION; PERFORMANCE; ALGORITHM; SITES AB The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 mu m, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard responses are fit first as a function of AOI before fitting temporally in order to eliminate the dependence on the stability of the desert site. Comprehensive comparisons are performed with current C6 RVS results for both Terra and Aqua MODIS. Results demonstrate that this alternative method provides a supplemental means to monitor the on- orbit RVS for MODIS RSB. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Chen, Hongda; Angal, Amit; Geng, Xu; Wu, Aisheng] Sci Syst & Applicat Inc, 10210 Greenbelt Rd, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Angal, A (reprint author), Sci Syst & Applicat Inc, 10210 Greenbelt Rd, Lanham, MD 20706 USA. EM amit.angal@ssaihq.com RI Richards, Amber/K-8203-2015 NR 13 TC 2 Z9 2 U1 1 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD JUN 9 PY 2016 VL 10 AR 024004 DI 10.1117/1.JRS.10.024004 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DO0MK UT WOS:000377472800001 ER PT J AU Yang, JS Barrila, J Roland, KL Ott, CM Nickerson, CA AF Yang, Jiseon Barrila, Jennifer Roland, Kenneth L. Ott, C. Mark Nickerson, Cheryl A. TI Physiological fluid shear alters the virulence potential of invasive multidrug-resistant non-typhoidal Salmonella Typhimurium D23580 SO NPJ MICROGRAVITY LA English DT Article ID RESPONSES; STRESS AB Salmonella enterica serovar Typhimurium strains belonging to sequence type ST313 are a major cause of fatal bacteremia among HIV-infected adults and children in sub-Saharan Africa. Unlike "classical" non-typhoidal Salmonella (NTS), gastroenteritis is often absent during ST313 infections and isolates are most commonly recovered from blood, rather than from stool. This is consistent with observations in animals, in which ST313 strains displayed lower levels of intestinal colonization and higher recovery from deeper tissues relative to classic NTS isolates. A better understanding of the key environmental factors regulating these systemic infections is urgently needed. Our previous studies using dynamic Rotating Wall Vessel (RWV) bioreactor technology demonstrated that physiological levels of fluid shear regulate virulence, gene expression, and stress response profiles of classic S. Typhimurium. Here we provide the first demonstration that fluid shear alters the virulence potential and pathogenesis-related stress responses of ST313 strain D23580 in a manner that differs from classic NTS. C1 [Yang, Jiseon; Barrila, Jennifer; Roland, Kenneth L.; Nickerson, Cheryl A.] Arizona State Univ, Biodesign Inst, Ctr Infect Dis & Vaccinol, Tempe, AZ 85287 USA. [Yang, Jiseon; Nickerson, Cheryl A.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Ott, C. Mark] NASA, Lyndon B Johnson Space Ctr, Div Biomed Res & Environm Sci, Houston, TX 77058 USA. RP Nickerson, CA (reprint author), Arizona State Univ, Biodesign Inst, Ctr Infect Dis & Vaccinol, Tempe, AZ 85287 USA.; Nickerson, CA (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. EM cheryl.nickerson@asu.edu NR 12 TC 0 Z9 0 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2373-8065 J9 NPJ MICROGRAVITY JI NPJ Microgravity PD JUN 9 PY 2016 VL 2 AR 16021 DI 10.1038/npjmgrav.2016.21 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN9HP UT WOS:000377390400001 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bohemier, K Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cabero, M Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Clayton, JH Cleva, F Coccia, E Cohadon, PF Cokelaer, T Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, TD Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R De, S Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, RT De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Dietz, A Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fotopoulos, N Fournier, JD Franco, S Frasca, S Frasconi, F Frei, M Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Goggin, LM Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, G Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Keppel, DG Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McKechan, DJA McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messaritaki, E Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Robinson, C Rocchi, A Rodriguez, AC Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Santamaria, L Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Sehreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbnich, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Henningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welbom, T Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Wiesner, K Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bohemier, K. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cabero, M. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Cokelaer, T. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. D. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. T. De Rosa, R. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Dietz, A. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fotopoulos, N. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, M. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Goggin, L. M. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Keppel, D. G. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messaritaki, E. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Robinson, C. Rocchi, A. Rodriguez, A. C. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Santamaria, L. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Sehreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbnich, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Henningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welbom, T. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Wiesner, K. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI GW150914: First results from the search for binary black hole coalescence with Advanced LIGO SO PHYSICAL REVIEW D LA English DT Article ID INSPIRALLING COMPACT BINARIES; GRAVITATIONAL-WAVES; RADIATION; CHOICE; MERGER; INTERFEROMETER; PARAMETERS; SYSTEMS; FILTERS; NOISE AB On September 14, 2015, at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 sigma. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Fotopoulos, N.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Messaritaki, E.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Santamaria, L.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Rodriguez, A. C.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welbom, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS, IN2P3, Lab Annecy le Vieux Phys Parricides LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Cabero, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Keppel, D. G.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Sehreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Wiesner, K.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Henningen, J. V.] Nikhel, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Moore, C. J.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Clayton, J. H.; Creighton, J. D. E.; Downes, T. P.; Goggin, L. M.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbnich, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dietz, A.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris 11, CNRS, LAL,IN2P3, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.; Kasprzack, M.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, CNRS,IN2P3,CEA,Irfu,APC,Astroparticule & Cosmol, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] European Gravitat Observ, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Bohemier, K.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, Dept Phys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, Observ Cote Azur, CNRS, Artemis,CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, Lendulet Astrophys Res Grp, MTA, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.] ENS PSL Res Univ, Univ Paris 04, UPMC, Lab Kastler Brossel,CNRS,Coll France, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Robinson, C.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, Inst Lumiere Matiere, CNRS, UMR 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, LMA, CNRS, IN2P3, F-69622 Lyon, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3 IEEC, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples 2, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Creighton, T. D.; Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trent, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Trento Inst Fundamental Phys & Applicat, Ist Nazl Fis Nucl, I-38123 Povo, Trento, Italy. [Cokelaer, T.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Jones, G.; Kalaghatgi, C. V.; Khan, S.; McKechan, D. J. A.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Frei, M.; Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Iyer, Bala R./E-2894-2012; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Pinto, Innocenzo/L-3520-2016; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni, Fabio/A-1920-2008; Strigin, Sergey/I-8337-2012; De Laurentis, Martina/L-3022-2016; Strain, Kenneth/D-5236-2011; Costa, Cesar/G-7588-2012; prodi, giovanni/B-4398-2010; Rocchi, Alessio/O-9499-2015; Zhu, Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Gemme, Gianluca/C-7233-2008; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016 OI Piccinni, Ornella Juliana/0000-0001-5478-3950; Kanner, Jonah/0000-0001-8115-0577; Nelemans, Gijs/0000-0002-0752-2974; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Berry, Christopher/0000-0003-3870-7215; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Addesso, Paolo/0000-0003-0895-184X; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Boschi, Valerio/0000-0001-8665-2293; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Marchesoni, Fabio/0000-0001-9240-6793; De Laurentis, Martina/0000-0002-3815-4078; Strain, Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X; Rocchi, Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Gemme, Gianluca/0000-0002-1127-7406; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Australian Research Council; Netherlands Organisation for Scientific Research; Italian Istituto Nazionale di Fisica Nucleare (INFN); French Centre National de la Recherche Scientifique (CNRS); Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science AMP; Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada through the Ministry of Economic Development and Innovation; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation, Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; the National Science Centre of Poland; the European Commission; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the National Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; the Leverhulme Trust; the Research Corporation, Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. NR 99 TC 30 Z9 30 U1 19 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 7 PY 2016 VL 93 IS 12 AR 122003 DI 10.1103/PhysRevD.93.122003 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DN8BK UT WOS:000377303700002 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwa, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WC Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blackburn, L Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brocki, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chatterji, S Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Clark, M Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, RT De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RR Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritsche, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Haas, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Healy, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hinder, I Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijhunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinsey, M Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Laguna, P Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, R Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mende, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Page, J Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prolchorov, L Puncken, O Punturo, M Puppo, P Puerrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Ruediger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schoenbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shithriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlhruch, H Vajente, G Valdes, G Van Bakel, N Van Beuzekom, M Van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC Van der Schaaf, L Van Heijningen, JV Van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, RJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, D Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwa, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. C. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blackburn, L. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brocki, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chatterji, S. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Clark, M. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. T. De Rosa, R. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. R. Flaminio, R. Fletcher, M. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritsche, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Haas, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Healy, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hinder, I. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijhunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y. -M. King, E. J. King, P. J. Kinsey, M. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Laguna, P. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, R. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mende, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Page, J. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prolchorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shithriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlhruch, H. Vajente, G. Valdes, G. Van Bakel, N. Van Beuzekom, M. Van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. Van der Schaaf, L. Van Heijningen, J. V. Van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, R. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, D. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Observing gravitational-wave transient GW150914 with minimal assumptions SO PHYSICAL REVIEW D LA English DT Article ID ADVANCED LIGO; VIRGO AB The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of similar to 600 Mpc. In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of similar to 30 M-circle dot and a total mass before merger of similar to 70 M-circle dot in the detector frame. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-030167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; Van Bakel, N.; Van Beuzekom, M.; Van den Brand, J. F. J.; Van den Broeck, C.; Van der Schaaf, L.; Van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwa, N.; Barsotti, L.; Biscans, S.; Blackburn, L.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Chatterji, S.; Donovan, F.; Essick, R. C.; Evans, M.; Fritsche, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. C.; Brady, P. R.; Brocki, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlhruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Bavigadda, V.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, CNRS, IN2P3, LAL,Univ Paris Sud, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.; Kasprzack, M.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, R.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Haas, R.; Harry, I. W.; Hinder, I.; Leaci, R.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, APC AstroParticule & Cosmol, Sorbonne Paris Cite, CNRS,IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. R.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Van Veggel, A. A.; Williams, D.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijhunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mende, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prolchorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, Artemis, CNRS, Observ Cote Azur, CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.] Univ Paris 06, Sorbonne Univ, Lab Kastler Brossel, CNRS,ENS,PSL Res Univ,Coll France, F-75005 Paris, France. [Bulik, T.; Kowalska, I.; Sellers, D.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; Van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HT Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Clark, M.; Cowan, E. E.; Jani, K.; Kinsey, M.; Laguna, P.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Clark, M.; Cowan, E. E.; Jani, K.; Kinsey, M.; Laguna, P.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, Inst Lumiere Mat, CNRS, UMR 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3, IEEC, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3HS, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, R.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussel, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shithriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Trento Inst Fundamental Phys & Applicat, Ist Nazl Fis Nucl, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Ain, A.; Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, R. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Healy, J.; Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.; Page, J.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Borer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Pinto, Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni, Fabio/A-1920-2008; Strain, Kenneth/D-5236-2011; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Costa, Cesar/G-7588-2012; Stratta, Maria Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016; prodi, giovanni/B-4398-2010; Rocchi, Alessio/O-9499-2015; Zhu, Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Gemme, Gianluca/C-7233-2008; Strigin, Sergey/I-8337-2012; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Iyer, Bala R./E-2894-2012; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; OI Conti, Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Marchesoni, Fabio/0000-0001-9240-6793; Strain, Kenneth/0000-0002-2066-5355; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078; prodi, giovanni/0000-0001-5256-915X; Rocchi, Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Gemme, Gianluca/0000-0002-1127-7406; Berry, Christopher/0000-0003-3870-7215; Piccinni, Ornella Juliana/0000-0001-5478-3950; Kanner, Jonah/0000-0001-8115-0577; Nelemans, Gijs/0000-0002-0752-2974; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Williams, Daniel/0000-0003-3772-198X; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Addesso, Paolo/0000-0003-0895-184X; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Boschi, Valerio/0000-0001-8665-2293 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Australian Research Council; Italian Istituto Nazionale di Fisica Nucleare (INFN); French Centre National de la Recherche Scientifique (CNRS); Netherlands Organisation for Scientific Research; Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science AMP; Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada through the Ministry of Economic Development and Innovation; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; the National Science Centre of Poland; the European Commission; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the National Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; the Leverhulme Trust; the Research Corporation; Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned the document number LIGO-P1500229. NR 60 TC 13 Z9 13 U1 14 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 7 PY 2016 VL 93 IS 12 AR 122004 DI 10.1103/PhysRevD.93.122004 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DN8BK UT WOS:000377303700003 ER PT J AU Armano, M Audley, H Auger, G Baird, JT Bassan, M Binetruy, P Born, M Bortoluzzi, D Brandt, N Caleno, M Carbone, L Cavalleri, A Cesarini, A Ciani, G Congedo, G Cruise, AM Danzmann, K Silva, MD De Rosa, R Diaz-Aguilo, M Di Fiore, L Diepholz, I Dixon, G Dolesi, R Dunbar, N Ferraioli, L Ferroni, V Fichter, W Fitzsimons, ED Flatscher, R Freschi, M Marin, AFG Marirrodriga, CG Gerndt, R Gesa, L Gibert, F Giardini, D Giusteri, R Guzman, F Grado, A Grimani, C Grynagier, A Grzymisch, J Harrison, I Heinzel, G Hewitson, M Hollington, D Hoyland, D Hueller, M Inchauspe, H Jennrich, O Jetzer, P Johann, U Johlander, B Karnesis, N Kaune, B Korsakova, N Killow, CJ Lobo, JA Lloro, I Liu, L Lopez-Zaragoza, JP Maarschalkerweerd, R Mance, D Martin, V Martin-Polo, L Martino, J Martin-Porqueras, F Madden, S Mateos, I McNamara, PW Mendes, J Mendes, L Monsky, A Nicolodi, D Nofrarias, M Paczkowski, S Perreur-Lloyd, M Petiteau, A Pivato, P Plagnol, E Prat, P Ragnit, U Rais, B Ramos-Castro, J Reiche, J Robertson, DI Rozemeijer, H Rivas, F Russano, G Sanjuan, J Sarra, P Schleicher, A Shaul, D Slutsky, J Sopuerta, CF Stanga, R Steier, F Sumner, T Texier, D Thorpe, JI Trenkel, C Trobs, M Tu, HB Vetrugno, D Vitale, S Wand, V Wanner, G Ward, H Warren, C Wass, PJ Wealthy, D Weber, WJ Wissel, L Wittchen, A Zambotti, A Zanoni, C Ziegler, T Zweifel, P AF Armano, M. Audley, H. Auger, G. Baird, J. T. Bassan, M. Binetruy, P. Born, M. Bortoluzzi, D. Brandt, N. Caleno, M. Carbone, L. Cavalleri, A. Cesarini, A. Ciani, G. Congedo, G. Cruise, A. M. Danzmann, K. de Deus Silva, M. De Rosa, R. Diaz-Aguilo, M. Di Fiore, L. Diepholz, I. Dixon, G. Dolesi, R. Dunbar, N. Ferraioli, L. Ferroni, V. Fichter, W. Fitzsimons, E. D. Flatscher, R. Freschi, M. Marin, A. F. Garcia Marirrodriga, C. Garcia Gerndt, R. Gesa, L. Gibert, F. Giardini, D. Giusteri, R. Guzman, F. Grado, A. Grimani, C. Grynagier, A. Grzymisch, J. Harrison, I. Heinzel, G. Hewitson, M. Hollington, D. Hoyland, D. Hueller, M. Inchauspe, H. Jennrich, O. Jetzer, P. Johann, U. Johlander, B. Karnesis, N. Kaune, B. Korsakova, N. Killow, C. J. Lobo, J. A. Lloro, I. Liu, L. Lopez-Zaragoza, J. P. Maarschalkerweerd, R. Mance, D. Martin, V. Martin-Polo, L. Martino, J. Martin-Porqueras, F. Madden, S. Mateos, I. McNamara, P. W. Mendes, J. Mendes, L. Monsky, A. Nicolodi, D. Nofrarias, M. Paczkowski, S. Perreur-Lloyd, M. Petiteau, A. Pivato, P. Plagnol, E. Prat, P. Ragnit, U. Rais, B. Ramos-Castro, J. Reiche, J. Robertson, D. I. Rozemeijer, H. Rivas, F. Russano, G. Sanjuan, J. Sarra, P. Schleicher, A. Shaul, D. Slutsky, J. Sopuerta, C. F. Stanga, R. Steier, F. Sumner, T. Texier, D. Thorpe, J. I. Trenkel, C. Troebs, M. Tu, H. B. Vetrugno, D. Vitale, S. Wand, V. Wanner, G. Ward, H. Warren, C. Wass, P. J. Wealthy, D. Weber, W. J. Wissel, L. Wittchen, A. Zambotti, A. Zanoni, C. Ziegler, T. Zweifel, P. TI Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERFEROMETER; MISSION AB We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(-2)/root Hz, or (0.54 +/- 0.01) x 10(-15) g/root Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm/root Hz, about 2 orders of magnitude better than requirements. At f <= 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(-2)/root Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA. C1 [Armano, M.; de Deus Silva, M.; Freschi, M.; Martin-Polo, L.; Martin-Porqueras, F.; Mendes, L.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain. [Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Marin, A. F. Garcia; Guzman, F.; Heinzel, G.; Hewitson, M.; Karnesis, N.; Kaune, B.; Korsakova, N.; Monsky, A.; Paczkowski, S.; Reiche, J.; Steier, F.; Troebs, M.; Wand, V.; Wanner, G.; Wissel, L.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Callinstr 38, D-30167 Hannover, Germany. [Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Marin, A. F. Garcia; Guzman, F.; Heinzel, G.; Hewitson, M.; Karnesis, N.; Kaune, B.; Korsakova, N.; Monsky, A.; Paczkowski, S.; Reiche, J.; Steier, F.; Troebs, M.; Wand, V.; Wanner, G.; Wissel, L.; Wittchen, A.] Leibniz Univ Hannover, Callinstr 38, D-30167 Hannover, Germany. [Auger, G.; Binetruy, P.; Inchauspe, H.; Martino, J.; Petiteau, A.; Plagnol, E.; Prat, P.; Rais, B.] Univ Paris Diderot, APC, Sorbonne Paris Cite, CNRS IN2P3,CEA lrfu,Obs Paris, Paris, France. [Baird, J. T.; Hollington, D.; Shaul, D.; Sumner, T.; Wass, P. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, High Energy Phys Grp, Prince Consort Rd, London SW7 2BW, England. [Bassan, M.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Bassan, M.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Bortoluzzi, D.; Zambotti, A.; Zanoni, C.] Univ Trento, Dept Ind Engn, Via Sommarive 9, I-38123 Trento, Italy. [Bortoluzzi, D.; Zambotti, A.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, Trento, Italy. [Brandt, N.; Flatscher, R.; Gerndt, R.; Johann, U.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, Claude Dornier Str, D-88090 Immenstaad, Germany. [Caleno, M.; Marirrodriga, C. Garcia; Grzymisch, J.; Jennrich, O.; Johlander, B.; Madden, S.; McNamara, P. W.; Ragnit, U.; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. [Carbone, L.; Cesarini, A.; Ciani, G.; Congedo, G.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Nicolodi, D.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Carbone, L.; Cesarini, A.; Ciani, G.; Congedo, G.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Nicolodi, D.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Cavalleri, A.] Fdn Bruno Kessler, CNR, Ist Foton & Nanotecnol, I-38123 Povo, Trento, Italy. [Cruise, A. M.; Dixon, G.; Hoyland, D.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [De Rosa, R.] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy. [De Rosa, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Diaz-Aguilo, M.; Gesa, L.; Lobo, J. A.; Lloro, I.; Lopez-Zaragoza, J. P.; Martin, V.; Mateos, I.; Nofrarias, M.; Rivas, F.; Sanjuan, J.; Sopuerta, C. F.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Cerdanyola Del Valles 08193, Spain. [Di Fiore, L.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Dunbar, N.; Trenkel, C.; Warren, C.; Wealthy, D.] Airbus Def & Space, Gunnels Wood Rd, Stevenage SG1 2AS, Herts, England. [Ferraioli, L.; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland. [Fichter, W.; Grynagier, A.] Univ Stuttgart, Inst Flugmechan & Flugregelung, Pfaffenwaldring 27, D-70569 Stuttgart, Germany. [Fitzsimons, E. D.] Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Grado, A.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Grado, A.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Grimani, C.] Univ Urbino Carlo Bo, DISPEA, Ist Nazl Fis Nucl, Via S Chiara 27, I-61029 Urbino, Italy. [Harrison, I.; Maarschalkerweerd, R.; Mendes, J.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany. [Jetzer, P.] Univ Zurich, Inst Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. [Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Ward, H.] Univ Glasgow, Sch Phys & Astron, Inst Gravitat Res, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Ramos-Castro, J.] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain. [Sarra, P.] CGS SpA, Compagnia Generale Spazio, Via Gallarate 150, I-20151 Milan, Italy. [Slutsky, J.; Thorpe, J. I.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Stanga, R.] Univ Florence, Dipartimento Fis & Astron, I-50019 Florence, Italy. [Stanga, R.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Ciani, G.] Univ Florida, Gainesville, FL 32611 USA. [Congedo, G.] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. [Marin, A. F. Garcia; Monsky, A.; Steier, F.] OHB Syst AG, Univ Allee 27-29, D-28359 Bremen, Germany. [Guzman, F.] Univ Maryland, Natl Inst Stand & Technol, 100 Bur Dr,MS 8212, Gaithersburg, MD 20899 USA. [Guzman, F.] Univ Maryland, JQI, 100 Bur Dr,MS 8212, Gaithersburg, MD 20899 USA. [Grynagier, A.] Thales Alenia Space, 5 All Gabians,BP 99, F-06156 Cannes, France. [Nicolodi, D.] Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA. [Sanjuan, J.] Deutsch Zentrum Luft & Raumfahrt, Robert Hooke Str 7, D-28359 Bremen, Germany. [Tu, H. B.] Chinese Acad Sci, Inst Geodesy & Geophys, 340 Xudong St, Wuhan 430077, Peoples R China. [Wand, V.] Jena Optronik GmbH, Otto Eppenstein Str 3, D-07745 Jena, Germany. RP Armano, M (reprint author), European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain. RI Pivato, Paolo/K-6641-2015; Weber, William/H-4351-2012; Nofrarias, Miquel/N-6249-2015; Wass, Peter/C-5767-2017; Ciani, Giacomo/G-1036-2011; Vitale, Stefano/C-2312-2012; OI Pivato, Paolo/0000-0003-2691-5236; Weber, William/0000-0003-1536-2410; Nofrarias, Miquel/0000-0003-1518-2196; Wass, Peter/0000-0002-2945-399X; Ciani, Giacomo/0000-0003-4258-9338; Vitale, Stefano/0000-0002-2427-8918; Zanoni, Carlo/0000-0002-5767-9064; F. Sopuerta, Carlos/0000-0002-1779-4447 FU CNES [CNES 1316634/CNRS 103747]; CNRS; Observatoire de Paris; University Paris-Diderot; UnivEarthS Labex program at Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; German Space Agency, DLR; Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag [FKZ 50OQ0501, FKZ 50OQ1601]; Agenzia Spaziale Italiana; Instituto Nazionale di Fisica Nucleare; MICINN [AYA2010-15709]; MINECO [ESP2013-47637-P, ESP2015-67234-P]; Fundacion General CSIC (Programa ComFuturo); Formacion de Personal Investigador (MINECO); Swiss Space Office (SSO) via the PRODEX Programme of ESA; Swiss National Science Foundation; United Kingdom Space Agency (UKSA); University of Glasgow; University of Birmingham, Imperial College; Scottish Universities Physics Alliance (SUPA); U.S. National Aeronautics and Space Administration (NASA) FX The French contribution has been supported by CNES (Accord Specific de projet CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris and the University Paris-Diderot. E. P. and H. I. would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02).; The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (FKZ 50OQ0501 and FKZ 50OQ1601).; The Italian contribution has been supported by Agenzia Spaziale Italiana and Instituto Nazionale di Fisica Nucleare.; The Spanish contribution has been supported by Contracts No. AYA2010-15709 (MICINN), No. ESP2013-47637-P, and No. ESP2015-67234-P (MINECO). M. N. acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. R. acknowledges support from a Formacion de Personal Investigador (MINECO) contract.; The Swiss contribution acknowledges the support of the Swiss Space Office (SSO) via the PRODEX Programme of ESA. L. F. acknowledges the support of the Swiss National Science Foundation.; The UK groups wish to acknowledge support from the United Kingdom Space Agency (UKSA), the University of Glasgow, the University of Birmingham, Imperial College, and the Scottish Universities Physics Alliance (SUPA).; J. I. T. and J. S. acknowledge the support of the U.S. National Aeronautics and Space Administration (NASA). NR 24 TC 21 Z9 21 U1 6 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 7 PY 2016 VL 116 IS 23 AR 231101 DI 10.1103/PhysRevLett.116.231101 PG 10 WC Physics, Multidisciplinary SC Physics GA DN8OI UT WOS:000377338100005 PM 27341221 ER PT J AU Connor, HK Zesta, E Fedrizzi, M Shi, Y Raeder, J Codrescu, MV Fuller-Rowell, TJ AF Connor, Hyunju Kim Zesta, Eftyhia Fedrizzi, Mariangel Shi, Yong Raeder, Joachim Codrescu, Mihail V. Fuller-Rowell, Tim J. TI Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results SO JOURNAL OF SPACE WEATHER AND SPACE CLIMATE LA English DT Article DE Space Weather; Magnetosphere; Ionosphere; Thermosphere; Modeling ID DENSITY ENHANCEMENT; ELECTRIC-FIELDS; PRECIPITATION; CONDUCTANCE; FLUX; SIMULATION; AURORA AB The magnetosphere is a major source of energy for the Earth's ionosphere and thermosphere (IT) system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere Model (CTIM). OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD) equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe). CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCM-CTIM reproduces localized neutral density peaks at similar to 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset, which in turn effectively heats the thermosphere and causes the neutral density increase at 400 km altitude. C1 [Connor, Hyunju Kim; Zesta, Eftyhia] NASA, Goddard Space Flight Ctr, Code 674,Bldg 21,Room 218, Greenbelt, MD 20771 USA. [Fedrizzi, Mariangel; Codrescu, Mihail V.; Fuller-Rowell, Tim J.] NOAA, Space Weather Predict Ctr, Boulder, CO 80305 USA. [Shi, Yong] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Raeder, Joachim] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Connor, HK (reprint author), NASA, Goddard Space Flight Ctr, Code 674,Bldg 21,Room 218, Greenbelt, MD 20771 USA. EM hyunju.k.connor@nasa.gov FU National Science Foundation [1331368, AGS-1143895]; NASA Heliophysics Supporting Research program [13-SRITM13_2-0011]; Air Force Office of Sponsored Research [FA95501210264]; NSF MRI program [PHY-1229408] FX The work by H. K. Connor was supported by the National Science Foundation under Award No. 1331368 and by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The work by E. Zesta and Y. Shi was supported by Grant 13-SRITM13_2-0011 from NASA Heliophysics Supporting Research program. The work by Dr. Raeder was supported by Grant FA95501210264 from the Air Force Office of Sponsored Research and by Grant AGS-1143895 from the National Science Foundation. Computations were performed on Trillian, a Cary XE6m-200 supercomputer at UNH supported by the NSF MRI program under Grant PHY-1229408. H. K. Connor thanks C. Y. Huang and Y.-J. Su for useful discussions. The editor thanks two anonymous referees for their assistance in evaluating this paper. NR 60 TC 1 Z9 1 U1 6 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2115-7251 J9 J SPACE WEATHER SPAC JI J. Space Weather Space Clim. PD JUN 6 PY 2016 VL 6 AR A25 DI 10.1051/swsc/2016019 PG 15 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DN4WC UT WOS:000377066900001 ER PT J AU Mazaheri, A Nishikawa, H AF Mazaheri, Alireza Nishikawa, Hiroaki TI High-order shock-capturing hyperbolic residual-distribution schemes on irregular triangular grids SO COMPUTERS & FLUIDS LA English DT Article DE High order; Shock capturing; Shock sensor; Entropy fix; Blended schemes; Hyperbolic residual distribution ID FLUCTUATION-SPLITTING SCHEMES; DIFFERENCE WENO SCHEMES; NAVIER-STOKES EQUATIONS; STEADY-STATE PROBLEMS; MULTIDIMENSIONAL UPWIND; UNSTRUCTURED MESHES; NONSMOOTH MESHES; ADVECTION; CONSTRUCTION; FORMULATION AB In this paper, we construct second- and third-order non-oscillatory shock-capturing hyperbolic residual distribution schemes for irregular triangular grids, extending the schemes developed in J. Comput. Phys., 300 (2015), 455-491 to discontinuous problems. We present extended first-order N- and Rusanov-scheme formulations for a hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffusion term does not have any adverse effect on the solution of inviscid problems for a vanishingly small viscous coefficient. We then construct second- and third-order non-oscillatory hyperbolic residual distribution schemes by blending the non-monotone second- and third-order schemes with the extended first-order schemes as typically done in the residual-distribution schemes, and examine them for discontinuous problems on irregular triangular grids. We also propose to use the Rusanov scheme to avoid non-physical shocks in combination with an improved characteristics-based nonlinear wave sensor for detecting shocks, compression, and expansion regions. We then verify the design order of accuracy of these blended schemes on irregular triangular grids. Published by Elsevier Ltd. C1 [Mazaheri, Alireza] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Nishikawa, Hiroaki] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Mazaheri, A (reprint author), NASA Langley Res Ctr, Hampton, VA 23681 USA. EM alireza.mazaheri@nasa.gov RI Nishikawa, Hiroaki/M-1247-2016 OI Nishikawa, Hiroaki/0000-0003-4472-5313 FU Center Chief Technology Office of NASA Langley Research Center through the Center Innovation Fund (CIF) project FX The authors would like to thank Dr. Mario Ricchiuto from INRIA Bordeaux-Sud Ouest for his invaluable comments. The authors would also like to thank the Center Chief Technology Office of NASA Langley Research Center for their support through the Center Innovation Fund (CIF) project. NR 42 TC 1 Z9 1 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD JUN 5 PY 2016 VL 131 BP 29 EP 44 DI 10.1016/j.compfluid.2016.03.012 PG 16 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA DL6HI UT WOS:000375739900003 ER PT J AU Burch, JL Torbert, RB Phan, TD Chen, LJ Moore, TE Ergun, RE Eastwood, JP Gershman, DJ Cassak, PA Argall, MR Wang, S Hesse, M Pollock, CJ Giles, BL Nakamura, R Mauk, BH Fuselier, SA Russell, CT Strangeway, RJ Drake, JF Shay, MA Khotyaintsev, YV Lindqvist, PA Marklund, G Wilder, FD Young, DT Torkar, K Goldstein, J Dorelli, JC Avanov, LA Oka, M Baker, DN Jaynes, AN Goodrich, KA Cohen, IJ Turner, DL Fennell, JF Blake, JB Clemmons, J Goldman, M Newman, D Petrinec, SM Trattner, KJ Lavraud, B Reiff, PH Baumjohann, W Magnes, W Steller, M Lewis, W Saito, Y Coffey, V Chandler, M AF Burch, J. L. Torbert, R. B. Phan, T. D. Chen, L. -J. Moore, T. E. Ergun, R. E. Eastwood, J. P. Gershman, D. J. Cassak, P. A. Argall, M. R. Wang, S. Hesse, M. Pollock, C. J. Giles, B. L. Nakamura, R. Mauk, B. H. Fuselier, S. A. Russell, C. T. Strangeway, R. J. Drake, J. F. Shay, M. A. Khotyaintsev, Yu. V. Lindqvist, P. -A. Marklund, G. Wilder, F. D. Young, D. T. Torkar, K. Goldstein, J. Dorelli, J. C. Avanov, L. A. Oka, M. Baker, D. N. Jaynes, A. N. Goodrich, K. A. Cohen, I. J. Turner, D. L. Fennell, J. F. Blake, J. B. Clemmons, J. Goldman, M. Newman, D. Petrinec, S. M. Trattner, K. J. Lavraud, B. Reiff, P. H. Baumjohann, W. Magnes, W. Steller, M. Lewis, W. Saito, Y. Coffey, V. Chandler, M. TI Electron-scale measurements of magnetic reconnection in space SO SCIENCE LA English DT Article ID MULTISCALE MMS MISSION; DIFFUSION REGION; MAGNETOSPHERIC MULTISCALE; EARTHS MAGNETOPAUSE; ACCELERATION AB Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region. C1 [Burch, J. L.; Torbert, R. B.; Fuselier, S. A.; Young, D. T.; Goldstein, J.; Lewis, W.] Southwest Res Inst, San Antonio, TX USA. [Torbert, R. B.; Argall, M. R.] Univ New Hampshire, Durham, NH 03824 USA. [Phan, T. D.; Oka, M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Chen, L. -J.; Wang, S.; Drake, J. F.] Univ Maryland, College Pk, MD 20742 USA. [Moore, T. E.; Gershman, D. J.; Hesse, M.; Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Avanov, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Ergun, R. E.; Wilder, F. D.; Baker, D. N.; Jaynes, A. N.; Goodrich, K. A.; Trattner, K. J.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Eastwood, J. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [Cassak, P. A.] W Virginia Univ, Morgantown, WV 26506 USA. [Nakamura, R.; Torkar, K.; Baumjohann, W.; Magnes, W.; Steller, M.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Mauk, B. H.; Cohen, I. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Shay, M. A.] Univ Delaware, Newark, DE USA. [Khotyaintsev, Yu. V.] Swedish Inst Space Phys, Uppsala, Sweden. [Lindqvist, P. -A.; Marklund, G.] Royal Inst Technol, Stockholm, Sweden. [Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J.] Aerosp Corp, El Segundo, CA 90245 USA. [Goldman, M.; Newman, D.] Univ Colorado, Boulder, CO 80309 USA. [Petrinec, S. M.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA. [Lavraud, B.] Inst Rech Astrophys & Planetol, Toulouse, France. [Reiff, P. H.] Rice Univ, Dept Phys & Astron, Houston, TX USA. [Saito, Y.] Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229, Japan. [Coffey, V.; Chandler, M.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Burch, JL (reprint author), Southwest Res Inst, San Antonio, TX USA. EM jburch@swri.edu RI Nakamura, Rumi/I-7712-2013; Baumjohann, Wolfgang/A-1012-2010; Cohen, Ian/K-3038-2015; NASA MMS, Science Team/J-5393-2013; Mauk, Barry/E-8420-2017; OI Nakamura, Rumi/0000-0002-2620-9211; Baumjohann, Wolfgang/0000-0001-6271-0110; Cohen, Ian/0000-0002-9163-6009; NASA MMS, Science Team/0000-0002-9504-5214; Mauk, Barry/0000-0001-9789-3797; Clemmons, James/0000-0002-5298-5222 FU NASA [NNG04EB99C, NNX16AG76G, NNS16AF75G]; CNES; Austrian Research Promotion Agency FFG; UK Science and Technology Facilities Council [ST/K001051/1, ST/N000692/1]; NASA Solar Terrestrial Probes program; NASA Goddard Planetary Heliophysics Institute [NNG11PL02A]; NASA MMS-IDS grant through the University of California [NNX08A083G]; NASA MMS-IDS Grant through the University of Colorado [NNX08A084G]; Swedish National Space Board; NSF [AGS-0953463, AGS-1460037] FX The dedicated efforts of the entire MMS team are greatly appreciated. We are especially grateful to the leadership of C. Tooley, B. Robertson, and R. Black. Special thanks are due to C. Pankratz and K. Larsen of the University of Colorado for their leadership of the MMS Science Operations Center. Supported by NASA contract NNG04EB99C at Southwest Research Institute, which funded work at most of the co-author institutions in the United States. The IRAP contribution to MMS was supported by CNES. The Austrian contributions to the MMS mission are supported by grants from the Austrian Research Promotion Agency FFG. The UK work was supported by the UK Science and Technology Facilities Council through grants ST/K001051/1 and ST/N000692/1. The work by NASA GSFC authors was supported by the NASA Solar Terrestrial Probes program. The work of the GSFC-resident University of Maryland co-authors was supported by NASA Goddard Planetary Heliophysics Institute contract NNG11PL02A. Work at U.C. Berkeley was supported by NASA MMS-IDS grant NNX08A083G through the University of California. Work at the University of Colorado by M.G. and D.N. was supported by NASA MMS-IDS Grant NNX08A084G through the University of Colorado. Work at the Swedish Institute for Space Physics and the Royal Institute of Technology was supported by the Swedish National Space Board. Work at West Virginia University was supported by NSF grants AGS-0953463 and AGS-1460037 and by NASA grants NNX16AG76G and NNS16AF75G. NR 28 TC 51 Z9 51 U1 18 U2 41 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUN 3 PY 2016 VL 352 IS 6290 AR aaf2939 DI 10.1126/science.aaf2939 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN4NY UT WOS:000377045700034 ER PT J AU Mayer, T Blachowicz, A Probst, AJ Vaishampayan, P Checinska, A Swarmer, T de Leon, P Venkateswaran, K AF Mayer, Teresa Blachowicz, Adriana Probst, Alexander J. Vaishampayan, Parag Checinska, Aleksandra Swarmer, Tiffany de Leon, Pablo Venkateswaran, Kasthuri TI Microbial succession in an inflated lunar/Mars analog habitat during a 30-day human occupation SO MICROBIOME LA English DT Article DE Closed habitat; Surface; Bacteriome; Microbial succession ID INTERNATIONAL-SPACE-STATION; CORYNEBACTERIUM-AMYCOLATUM; CLEANROOM ENVIRONMENTS; PROPIDIUM MONOAZIDE; BUILT ENVIRONMENT; DIVERSITY; BACTERIAL; MICROORGANISMS; ARCHAEAL; SKIN AB Background: For potential future human missions to the Moon or Mars and sustained presence in the International Space Station, a safe enclosed habitat environment for astronauts is required. Potential microbial contamination of closed habitats presents a risk for crewmembers due to reduced human immune response during long-term confinement. To make future habitat designs safer for crewmembers, lessons learned from characterizing analogous habitats is very critical. One of the key issues is that how human presence influences the accumulation of microorganisms in the closed habitat. Results: Molecular technologies, along with traditional microbiological methods, were utilized to catalog microbial succession during a 30-day human occupation of a simulated inflatable lunar/Mars habitat. Surface samples were collected at different time points to capture the complete spectrum of viable and potential opportunistic pathogenic bacterial population. Traditional cultivation, propidium monoazide (PMA)-quantitative polymerase chain reaction (qPCR), and adenosine triphosphate (ATP) assays were employed to estimate the cultivable, viable, and metabolically active microbial population, respectively. Next-generation sequencing was used to elucidate the microbial dynamics and community profiles at different locations of the habitat during varying time points. Statistical analyses confirm that occupation time has a strong influence on bacterial community profiles. The Day 0 samples (before human occupation) have a very different microbial diversity compared to the later three time points. Members of Proteobacteria (esp. Oxalobacteraceae and Caulobacteraceae) and Firmicutes (esp. Bacillaceae) were most abundant before human occupation (Day 0), while other members of Firmicutes (Clostridiales) and Actinobacteria (esp. Corynebacteriaceae) were abundant during the 30-day occupation. Treatment of samples with PMA (a DNA-intercalating dye for selective detection of viable microbial population) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Conclusions: Statistical analyses revealed a significant difference in community structure of samples over time, particularly of the bacteriomes existing before human occupation of the habitat (Day 0 sampling) and after occupation (Day 13, Day 20, and Day 30 samplings). Actinobacteria (mainly Corynebacteriaceae) and Firmicutes (mainly Clostridiales Incertae Sedis XI and Staphylococcaceae) were shown to increase over the occupation time period. The results of this study revealed a strong relationship between human presence and succession of microbial diversity in a closed habitat. Consequently, it is necessary to develop methods and tools for effective maintenance of a closed system to enable safe human habitation in enclosed environments on Earth and beyond. C1 [Mayer, Teresa; Blachowicz, Adriana; Vaishampayan, Parag; Checinska, Aleksandra; Venkateswaran, Kasthuri] CALTECH, Biotechnol & Planetary Protect Grp, Jet Prop Lab, Pasadena, CA USA. [Probst, Alexander J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Swarmer, Tiffany; de Leon, Pablo] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. RP Venkateswaran, K (reprint author), CALTECH, Biotechnol & Planetary Protect Grp, Jet Prop Lab, Pasadena, CA USA. EM kjvenkat@jpl.nasa.gov RI Probst, Alexander/K-2813-2016 FU Space Biology under Task Orde [NNH12ZTT001N, 19-12829-26, NNN13D111T] FX The authors are grateful to the three student crews that participated in this program. Special thanks to Mr. Tim Buli who physically collected the samples during occupation. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This research was funded by a 2012 Space Biology NNH12ZTT001N Grant No. 19-12829-26 under Task Order NNN13D111T award to KV. We would also like to thank the Department of Space Studies, University of North Dakota for allowing sampling in the ILMAH, and the members of the Planetary Protection group at JPL for their technical assistance. We appreciate M. Jones and S. Ozyildirim of JPL for critically reading the manuscript. NR 85 TC 0 Z9 0 U1 7 U2 15 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD JUN 2 PY 2016 VL 4 AR 22 DI 10.1186/s40168-016-0167-0 PG 17 WC Microbiology SC Microbiology GA DP6PN UT WOS:000378619700001 PM 27250991 ER PT J AU McKinnon, WB Nimmo, F Wong, T Schenk, PM White, OL Roberts, JH Moore, JM Spencer, JR Howard, AD Umurhan, OM Stern, SA Weaver, HA Olkin, CB Young, LA Smith, KE AF McKinnon, William B. Nimmo, Francis Wong, Teresa Schenk, Paul M. White, Oliver L. Roberts, J. H. Moore, J. M. Spencer, J. R. Howard, A. D. Umurhan, O. M. Stern, S. A. Weaver, H. A. Olkin, C. B. Young, L. A. Smith, K. E. CA New Horizons Geology Geophys TI Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour SO NATURE LA English DT Article ID VISCOSITY; RHEOLOGY; IMPACT; RELAXATION; CRATERS; SURFACE; TRITON; MANTLE; ONSET; N-2 AB The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity(1,2). Composed of molecular nitrogen, methane, and carbon monoxide ices(3), but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection(1,2). Here we report, on the basis of available rheological measurements(4), that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated presentday heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime(5), a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum(2). Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies. C1 [McKinnon, William B.; Wong, Teresa] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [McKinnon, William B.; Wong, Teresa] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [Nimmo, Francis] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Schenk, Paul M.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [White, Oliver L.; Moore, J. M.; Umurhan, O. M.; Smith, K. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Roberts, J. H.; Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Spencer, J. R.; Stern, S. A.; Olkin, C. B.; Young, L. A.] SW Res Inst, Boulder, CO 80302 USA. [Howard, A. D.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. RP McKinnon, WB (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA.; McKinnon, WB (reprint author), Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. EM mckinnon@wustl.edu RI Roberts, James/I-9030-2012 FU NASA's New Horizons project FX New Horizons was built and operated by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, USA, for NASA. We thank the many engineers who have contributed to the success of the New Horizons mission, and NASA's Deep Space Network (DSN) for a decade of support of New Horizons. This work was supported by NASA's New Horizons project. NR 40 TC 9 Z9 9 U1 6 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 2 PY 2016 VL 534 IS 7605 BP 82 EP + DI 10.1038/nature18289 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN3LB UT WOS:000376962300037 PM 27251279 ER PT J AU Ong, C Mueller, A Thome, K Pierce, LE Malthus, T AF Ong, Cindy Mueller, Andreas Thome, Kurtis Pierce, Leland E. Malthus, Timothy TI The Geoscience Spaceborne Imaging Spectroscopy Technical Committee's Calibration and Validation Workshop SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article C1 [Ong, Cindy] CSIRO, Mineral Resources, Spectral Sensing Team, Canberra, ACT, Australia. [Mueller, Andreas] German Remote Sensing Data Ctr, Wessling, Germany. [Thome, Kurtis] Coll Opt Sci, Greenbelt, MD USA. [Thome, Kurtis] Remote Sensing Grp, Greenbelt, MD USA. [Thome, Kurtis] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD USA. [Thome, Kurtis] Int Soc Opt & Photon, Bellingham, WA USA. [Pierce, Leland E.] Univ Michigan, Microwave Image Proc Facil, Radiat Lab, Elect Engn & Comp Sci Dept, Ann Arbor, MI 48109 USA. [Malthus, Timothy] Univ Edinburgh, Remote Sensing, Edinburgh EH8 9YL, Midlothian, Scotland. [Malthus, Timothy] Univ Edinburgh, Nat Environm Res Council, Field Spect Facil, Edinburgh EH8 9YL, Midlothian, Scotland. [Malthus, Timothy] CSIRO, Oceans & Atmosphere, Coastal Management & Dev Program, Coastal Monitoring Modeling & Informat Grp, Canberra, ACT, Australia. RP Ong, C (reprint author), CSIRO, Mineral Resources, Spectral Sensing Team, Canberra, ACT, Australia. EM cindy.ong@csiro.au; andreas.mueller@dlr.de; kurtis.thome@nasa.gov; lep@umich.edu; tim.malthus@csiro.au NR 9 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD JUN PY 2016 VL 4 IS 2 SI SI BP 94 EP 97 DI 10.1109/MGRS.2016.2540661 PG 4 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA EF0HV UT WOS:000390007400009 ER PT J AU Sridharan, DM Asaithamby, A Blattnig, SR Costes, SV Doetsch, PW Dynan, WS Hahnfeldt, P Hlatky, L Kidane, Y Kronenberg, A Naidu, MD Peterson, LE Plante, I Ponomarev, AL Saha, J Snijders, AM Srinivasan, K Tang, J Werner, E Pluth, JM AF Sridharan, Deepa M. Asaithamby, Aroumougame Blattnig, Steve R. Costes, Sylvain V. Doetsch, Paul W. Dynan, William S. Hahnfeldt, Philip Hlatky, Lynn Kidane, Yared Kronenberg, Amy Naidu, Mamta D. Peterson, Leif E. Plante, Ianik Ponomarev, Artem L. Saha, Janapriya Snijders, Antoine M. Srinivasan, Kalayarasan Tang, Jonathan Werner, Erica Pluth, Janice M. TI Evaluating biomarkers to model cancer risk post cosmic ray exposure SO LIFE SCIENCES IN SPACE RESEARCH LA English DT Review DE Biomarkers; Modeling; Cancer risk; HZE; Space radiation ID DOUBLE-STRAND BREAKS; HIGH-LET RADIATION; PERIPHERAL-BLOOD LYMPHOCYTES; NORMAL HUMAN FIBROBLASTS; CLUSTERED DNA-DAMAGE; LOW-DOSE-RATE; HUMAN-LYMPHOBLASTOID-CELLS; ACCELERATED HEAVY-IONS; HUMAN SKIN FIBROBLASTS; TOTAL-BODY IRRADIATION AB Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens. (C) 2016 The Committee on Space Research (COSPAR). C1 [Sridharan, Deepa M.; Costes, Sylvain V.; Kronenberg, Amy; Snijders, Antoine M.; Pluth, Janice M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Asaithamby, Aroumougame; Saha, Janapriya; Srinivasan, Kalayarasan] Univ Texas Southwestern Med Ctr Dallas, Dallas, TX USA. [Blattnig, Steve R.] Langley Res Ctr, Hampton, VA USA. [Doetsch, Paul W.; Dynan, William S.; Werner, Erica] Emory Univ, Atlanta, GA USA. [Hahnfeldt, Philip; Hlatky, Lynn; Naidu, Mamta D.] CCSB Tufts Sch Med, Boston, MA USA. [Kidane, Yared; Plante, Ianik; Ponomarev, Artem L.] Wyle Sci Technol & Engn Grp, Houston, TX USA. [Peterson, Leif E.] Houston Methodist Res Inst, Houston, TX USA. [Tang, Jonathan] Exogen Biotechnol Inc, Berkeley, CA USA. RP Pluth, JM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jmpluth@lbl.gov OI Peterson, Leif/0000-0002-1187-0883 FU NCI NIH HHS [R33 CA095941] NR 390 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-5524 EI 2214-5532 J9 LIFE SCI SPACE RES JI Life Sci. Space Res. PD JUN PY 2016 VL 9 BP 19 EP 47 DI 10.1016/j.lssr.2016.05.004 PG 29 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC3GN UT WOS:000388014300004 PM 27345199 ER PT J AU Graham, T Wheeler, R AF Graham, Thomas Wheeler, Raymond TI Root restriction: A tool for improving volume utilization efficiency in bioregenerative life-support systems SO LIFE SCIENCES IN SPACE RESEARCH LA English DT Article DE Mechanical stimulation; Root volume restriction; Capsicum annuum cv. California Wonder; Stem height reduction; Canopy diameter reduction ID LYCOPERSICON-ESCULENTUM MILL.; GROWTH; PHOTOSYNTHESIS; PLANTS AB The objective of this study was to evaluate root restriction as a tool to increase volume utilization efficiency in spaceflight crop production systems. Bell pepper plants (Capsicum annuum cv. California Wonder) were grown under restricted rooting volume conditions in controlled environment chambers. The rooting volume was restricted to 500 ml and 60 ml in a preliminary trial, and 1500 ml (large), 500 ml (medium), and 250 ml (small) for a full fruiting trial. To reduce the possible confounding effects of water and nutrient restrictions, care was taken to ensure an even and consistent soil moisture throughout the study, with plants being watered/fertilized several times daily with a low concentration soluble fertilizer solution. Root restriction resulted in a general reduction in biomass production, height, leaf area, and transpiration rate; however, the fruit production was not significantly reduced in the root restricted plants under the employed environmental and horticultural conditions. There was a 21% reduction in total height and a 23% reduction in overall crown diameter between the large and small pot size in the fruiting study. Data from the fruiting trial were used to estimate potential volume utilization efficiency improvements for edible biomass in a fixed production volume. For fixed lighting and rooting hardware situations, the majority of improvement from root restriction was in the reduction of canopy area per plant, while height reductions could also improve volume utilization efficiency in high stacked or vertical agricultural systems. (C) 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved. C1 [Graham, Thomas] Univ Guelph, Sch Environm Sci, Guelph, ON, Canada. [Graham, Thomas; Wheeler, Raymond] NASA, Kennedy Space Ctr, FL USA. RP Graham, T (reprint author), Univ Guelph, Guelph, ON N1G 2W1, Canada. EM tgraham@uoguelph.ca NR 18 TC 0 Z9 0 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-5524 EI 2214-5532 J9 LIFE SCI SPACE RES JI Life Sci. Space Res. PD JUN PY 2016 VL 9 BP 62 EP 68 DI 10.1016/j.lssr.2016.04.001 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC3GN UT WOS:000388014300007 PM 27345202 ER PT J AU Wilson, JW Slaba, TC Badavi, FF Reddell, BD Bahadori, AA AF Wilson, John W. Slaba, Tony C. Badavi, Francis F. Reddell, Brandon D. Bahadori, Amir A. TI Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry SO LIFE SCIENCES IN SPACE RESEARCH LA English DT Article DE Space radiation; Radiation shielding; Radiation transport; HZETRN ID CODE; HZETRN; PHITS AB The 3DHZETRN code, with improved neutron and light ion (Z <= 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency. Published by Elsevier Ltd on behalf of The Committee on Space Research (COSPAR). C1 [Wilson, John W.; Badavi, Francis F.] Old Dominion Univ, Norfolk, VA 23529 USA. [Slaba, Tony C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Reddell, Brandon D.; Bahadori, Amir A.] NASA, Johnson Space Ctr, Houston, TX 77004 USA. RP Slaba, TC (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM tony.c.slaba@nasa.gov NR 26 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-5524 EI 2214-5532 J9 LIFE SCI SPACE RES JI Life Sci. Space Res. PD JUN PY 2016 VL 9 BP 69 EP 76 DI 10.1016/j.lssr.2016.05.002 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC3GN UT WOS:000388014300008 PM 27345203 ER PT J AU Slaba, TC Wilson, JW Badavi, FF Reddell, BD Bahadori, AA AF Slaba, Tony C. Wilson, John W. Badavi, Francis F. Reddell, Brandon D. Bahadori, Amir A. TI Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry SO LIFE SCIENCES IN SPACE RESEARCH LA English DT Article DE Space radiation; Radiation shielding; Radiation transport; HZETRN ID ISS; HZETRN; PHITS AB A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z <= 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. Published by Elsevier Ltd on behalf of The Committee on Space Research (COSPAR). C1 [Slaba, Tony C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Wilson, John W.; Badavi, Francis F.] Old Dominion Univ, Norfolk, VA 23529 USA. [Reddell, Brandon D.; Bahadori, Amir A.] NASA, Johnson Space Ctr, Houston, TX 77004 USA. RP Slaba, TC (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM Tony.C.Slaba@nasa.gov NR 23 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-5524 EI 2214-5532 J9 LIFE SCI SPACE RES JI Life Sci. Space Res. PD JUN PY 2016 VL 9 BP 77 EP 83 DI 10.1016/j.lssr.2016.05.001 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC3GN UT WOS:000388014300009 PM 27345204 ER PT J AU Fischer, DA Anglada-Escude, G Arriagada, P Baluev, RV Bean, JL Bouchy, F Buchhave, LA Carroll, T Chakraborty, A Crepp, JR Dawson, RI Diddams, SA Dumusque, X Eastman, JD Endl, M Figueira, P Ford, EB Foreman-Mackey, D Fournier, P Furesz, G Gaudi, BS Gregory, PC Grundahl, F Hatzes, AP Hebrard, G Herrero, E Hogg, DW Howard, AW Johnson, JA Jorden, P Jurgenson, CA Latham, DW Laughlin, G Loredo, TJ Lovis, C Mahadevan, S McCracken, TM Pepe, F Perez, M Phillips, DF Plavchan, PP Prato, L Quirrenbach, A Reiners, A Robertson, P Santos, NC Sawyer, D Segransan, D Sozzetti, A Steinmetz, T Szentgyorgyi, A Udry, S Valenti, JA Wang, SX Wittenmyer, RA Wright, JT AF Fischer, Debra A. Anglada-Escude, Guillem Arriagada, Pamela Baluev, Roman V. Bean, Jacob L. Bouchy, Francois Buchhave, Lars A. Carroll, Thorsten Chakraborty, Abhijit Crepp, Justin R. Dawson, Rebekah I. Diddams, Scott A. Dumusque, Xavier Eastman, Jason D. Endl, Michael Figueira, Pedro Ford, Eric B. Foreman-Mackey, Daniel Fournier, Paul Furesz, Gabor Gaudi, B. Scott Gregory, Philip C. Grundahl, Frank Hatzes, Artie P. Hebrard, Guillaume Herrero, Enrique Hogg, David W. Howard, Andrew W. Johnson, John A. Jorden, Paul Jurgenson, Colby A. Latham, David W. Laughlin, Greg Loredo, Thomas J. Lovis, Christophe Mahadevan, Suvrath McCracken, Tyler M. Pepe, Francesco Perez, Mario Phillips, David F. Plavchan, Peter P. Prato, Lisa Quirrenbach, Andreas Reiners, Ansgar Robertson, Paul Santos, Nuno C. Sawyer, David Segransan, Damien Sozzetti, Alessandro Steinmetz, Tilo Szentgyorgyi, Andrew Udry, Stephane Valenti, Jeff A. Wang, Sharon X. Wittenmyer, Robert A. Wright, Jason T. TI State of the Field: Extreme Precision Radial Velocities SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE instrumentation: spectrographs; methods: observational; methods: statistical; techniques: radial velocities; techniques: spectroscopic ID EARTH-LIKE PLANETS; OPTICAL FREQUENCY COMB; FIBER-FED SPECTROGRAPH; PULSAR-TIMING PACKAGE; ORBITING HD 7924; SOLAR-TYPE STARS; LOW-MASS PLANETS; SUN-LIKE STAR; 1 CM S(-1); HIGH-RESOLUTION AB The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm s(-1) measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this bold precision are summarized here. Beginning with the High Accuracy Radial Velocity Planet Searcher spectrograph, technological advances for precision radial velocity (RV) measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to improve upon the state of the art, producing even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision RV community include distinguishing center of mass (COM) Keplerian motion from photospheric velocities (time correlated noise) and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. COM velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. However, higher precision RV measurements are required to serve as a discovery technique for potentially habitable worlds, to confirm and characterize detections from transit missions, and to provide mass measurements for other space-based missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements. C1 [Fischer, Debra A.; Jurgenson, Colby A.; McCracken, Tyler M.; Sawyer, David] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Anglada-Escude, Guillem] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Coll Lane, Hatfield AL10 9AB, Herts, England. [Anglada-Escude, Guillem] Queen Mary Univ London, Sch Phys & Astron, 327 Mile End Rd, London E1 4NS, England. [Arriagada, Pamela] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Baluev, Roman V.] Russian Acad Sci, Cent Astron Observ Pulkovo, Pulkovskoje Shosse 65, St Petersburg 196140, Russia. [Baluev, Roman V.] St Petersburg State Univ, Sobolev Astron Inst, Univ Skij Prospekt 28, St Petersburg 198504, Russia. [Bean, Jacob L.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Bouchy, Francois] Aix Marseille Univ, CNRS, UMR 7326, LAM, F-13388 Marseille, France. [Buchhave, Lars A.] Univ Copenhagen, Ctr Star & Planet Format, Nat Hist Museum Denmark, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. [Carroll, Thorsten] Leibniz Inst Astrophys Potsdam, Sternwarte 16, D-14482 Potsdam, Germany. [Chakraborty, Abhijit] PRL, Astron & Astrophys Div, Ahmadabad 380009, Gujarat, India. [Crepp, Justin R.] Univ Notre Dame, Dept Phys, South Bend, IN USA. [Dawson, Rebekah I.; Ford, Eric B.; Mahadevan, Suvrath; Robertson, Paul; Wang, Sharon X.; Wright, Jason T.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Dawson, Rebekah I.; Ford, Eric B.; Mahadevan, Suvrath; Robertson, Paul; Wang, Sharon X.; Wright, Jason T.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Diddams, Scott A.] NIST, 325 Broadway, Boulder, CO 80305 USA. [Diddams, Scott A.] Univ Colorado, Dept Phys, 2000 Colorado Ave, Boulder, CO 80309 USA. [Dumusque, Xavier; Lovis, Christophe; Pepe, Francesco; Segransan, Damien; Udry, Stephane] Univ Geneva, Astron Observ, 51 Chemin Maillettes, CH-1290 Versoix, Switzerland. [Eastman, Jason D.; Johnson, John A.; Latham, David W.; Phillips, David F.; Szentgyorgyi, Andrew] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Endl, Michael] Univ Texas Austin, 2515 Speedway,C1400, Austin, TX 78712 USA. [Endl, Michael] Dept Astron, 2515 Speedway,C1400, Austin, TX 78712 USA. [Endl, Michael] McDonald Observ, 2515 Speedway,C1400, Austin, TX 78712 USA. [Figueira, Pedro; Santos, Nuno C.] Univ Porto, CAUP, Inst Astrofis & Ciencias Espaco, Rua Estrelas, P-4150762 Oporto, Portugal. [Foreman-Mackey, Daniel; Hogg, David W.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Foreman-Mackey, Daniel] Univ Washington, Dept Astron, Box 951580, Seattle, WA 98195 USA. [Fournier, Paul] Fibertech Opt Inc, Kitchener, ON N2M 5C6, Canada. [Furesz, Gabor] MIT, Kavli Inst Astrophys & Space Res, 77 Mass Ave,37-515, Cambridge, MA 02139 USA. [Gaudi, B. Scott] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. [Gregory, Philip C.] Univ British Columbia, Phys & Astron, 6244 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Grundahl, Frank] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Hatzes, Artie P.] Thuringer Landessternwarte, Sternwarte 5,Tautenburg 5, D-07778 Tautenburg, Germany. [Hebrard, Guillaume] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, 98Bis Blvd Arago, F-75014 Paris, France. [Hebrard, Guillaume] Univ Aix Marseille, Observ Haute Provence, F-04870 St Michel Lobservatoire, France. [Hebrard, Guillaume] CNRS, F-04870 St Michel Lobservatoire, France. [Herrero, Enrique] Fac Ciencies, Inst Ciencies Espai CSICIEEC, Campus UAB,Torre C5 Parell,2a Pl, E-08193 Bellaterra, Spain. [Hogg, David W.] NYU, Ctr Data Sci, New York, NY 10003 USA. [Howard, Andrew W.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Jorden, Paul] E2v Technol, 106 Waterhouse Lane, Chelmsford, Essex, England. [Laughlin, Greg] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Loredo, Thomas J.] Cornell Univ, Ctr Radiophys & Space Res, Space Sci Bldg, Ithaca, NY 14853 USA. [Mahadevan, Suvrath; Wright, Jason T.] Penn State Univ, Penn State Astrobiol Res Ctr, University Pk, PA 16802 USA. [Perez, Mario] NASA Headquarters, Washington, DC USA. [Plavchan, Peter P.] Missouri State Univ, Dept Phys Astron & Mat Sci, 901 S Natl Ave, Springfield, MO 65897 USA. [Prato, Lisa] Lowell Observ, 1400 West Mars Hill, Flagstaff, AZ 86001 USA. [Quirrenbach, Andreas] Heidelberg Univ, Zentrum Astron, Landessternwarte, Konigstuhl 12, D-69117 Heidelberg, Germany. [Reiners, Ansgar] Georg August Univ, Inst Astrophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. [Santos, Nuno C.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre, P-4169007 Oporto, Portugal. [Sozzetti, Alessandro] Osservatorio Astrofis Torino, INAF, Via Osservatorio 20, I-10025 Pino Torinese, Italy. [Steinmetz, Tilo] Menlo Syst GmbH, Klopferspitz 19a, D-82152 Martinsried, Germany. [Valenti, Jeff A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Wittenmyer, Robert A.] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. [Wittenmyer, Robert A.] Univ New South Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Wittenmyer, Robert A.] Univ Southern Queensland, Computat Engn & Sci Res Ctr, Toowoomba, Qld 4350, Australia. RP Fischer, DA (reprint author), Yale Univ, Dept Astron, New Haven, CT 06511 USA. EM debra.fischer@yale.edu RI Baluev, Roman/H-3312-2013; Figueira, Pedro/J-4916-2013; OI Baluev, Roman/0000-0001-9535-3965; Figueira, Pedro/0000-0001-8504-283X; Wright, Jason/0000-0001-6160-5888; Anglada Escude, Guillem/0000-0002-3645-5977 FU Yale University; National Science Foundation [AST-1458915, AST-1313075]; NASA Exoplanet Science Institute (NExScI); NIST; NSF [AST-1310875, AST-1211441, AST1109727]; Society in Science; NASA [NNX15AE21G, NNX14AN81H, NNX12AC01G]; NSF CAREER [AST-1056524]; NASA Astrobiology Institute; NASA TESS Mission; European Research Council [279347]; DFG [RE 1664/9-1]; Fundacao para a Ciencia e a Tecnologia (FCT) [UID/FIS/04434/2013, PTDC/FIS-AST/1526/2014]; FCT [IF/01037/2013, IF/00169/2012, IF/01037/2013CP1191/CT0001]; POPH/FSE (EC) by FEDER through the program "Programa Operacional de Factores de Competitividade-COMPETE"; Giant Magellan Telescope Organization [GMT-INS-CON-00584]; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; Department of Space, Govt. of India; Physical Research Laboratory (PRL), Ahmedabed, India; Centre of Exoplanets and Habitable Worlds at Penn State University; NASA FX We thank the anonymous referee for providing an exceptionally careful review of this paper and for many suggested changes which improved the quality of the paper. We are grateful to Yale University, to the National Science Foundation grant AST-1458915 and to the NASA Exoplanet Science Institute (NExScI) for providing financial support that enabled this workshop and provided support for participants. D.A.F. thanks NASA NNX12ACG01 C for inspiring the study of extreme precision RV measurements. R.I.D. acknowledges the Miller Institute at the Univ of California, Berkeley for Basic Research in Science. S.A.D. acknowledges support from NIST and the NSF grant AST-1310875. X.D. would like to thank the Society in Science for its support through a Branco Weiss Fellowship. E.B.F. was supported in part by NASA Exoplanet Research Program award NNX15AE21G. Work by B.S.G. was partially supported by NSF CAREER Grant AST-1056524. G.L. acknowledges support from the NASA Astrobiology Institute through a cooperative agreement between NASA Ames Research Center and the University of California at Santa Cruz, and from the NASA TESS Mission through a cooperative agreement between M.I.T. and UCSC. A.R. acknowledges support from the European Research Council under the FP7 Starting Grant agreement number 279347 and from DFG grant RE 1664/9-1. N.C.S. and P.F. acknowledge support by Fundacao para a Ciencia e a Tecnologia (FCT) through the research grants UID/FIS/04434/2013 and PTDC/FIS-AST/1526/2014 as well as through Investigador FCT contracts of reference IF/01037/2013 and IF/00169/2012, and POPH/FSE (EC) by FEDER funding through the program "Programa Operacional de Factores de Competitividade-COMPETE." P.F. further acknowledges support from FCT in the form of an exploratory project reference IF/01037/2013CP1191/CT0001. A.S. thanks the Giant Magellan Telescope Organization for their support for much the work described in his contribution to this paper under Contract No. GMT-INS-CON-00584. S.X.W. is supported by a NASA Earth and Space Science Fellowship (NNX14AN81H). S.X.W. and J.T.W. acknowledge support from NSF grant AST-1211441 for the work on telluric contamination. J.T.W. acknowledges NSF grant AST1109727 and NASA grant NNX12AC01G for work on barycentric corrections. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. The PARAS program is fully supported and funded by the Department of Space, Govt. of India and Physical Research Laboratory (PRL), Ahmedabed, India. The PARAS team would like to acknowledge the support of the Director, PRL, and the Mt. Abu Observatory staff for running the program and Francesco Pepe (Geneva Observatory) and Larry Ramsey (Pen State University) for many scientific and technical inputs. Two of the PARAS team members, Suvrath Mahadevan and Arpita Roy would like to thank the Centre of Exoplanets and Habitable Worlds at Penn State University for their partial support. The McDonald Observatory planet search is currently supported by the National Science Foundation under Astrophysics grant AST-1313075, and has been supported in the past by various NASA grants. NR 231 TC 13 Z9 13 U1 9 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUN PY 2016 VL 128 IS 964 AR 066001 DI 10.1088/1538-3873/128/964/066001 PG 43 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1KP UT WOS:000387110500005 ER PT J AU Annis, J Soares-Santos, M Berger, E Brout, D Chen, H Chornock, R Cowperthwaite, PS Diehl, HT Doctor, Z Drlica-Wagner, A Drout, MR Farr, B Finley, DA Flaugher, B Foley, RJ Frieman, J Gruendl, RA Herner, K Holz, D Kessler, R Lin, H Marriner, J Neilsen, E Rest, A Sako, M Smith, M Smith, N Sobreira, F Walker, AR Yanny, B Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Bernstein, RA Bertin, E Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Castander, FJ Cenko, SB Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Dietrich, JP Eifler, TF Evrard, AE Fernandez, E Fischer, J Fong, W Fosalba, P Fox, DB Fryer, CL Garcia-Bellido, J Gaztanaga, E Gerdes, DW Goldstein, DA Gruen, D Gutierrez, G Honscheid, K James, DJ Karliner, I Kasen, D Kent, S Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Maia, MAG Martini, P Metzger, BD Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Peoples, J Petravic, D Plazas, AA Quataert, E Romer, AK Roodman, A Rykoff, ES Sanchez, E Santiago, B Scarpine, V Schindler, R Schubnell, M Sevilla-Noarbe, I Sheldon, E Smith, RC Stebbins, A Swanson, MEC Tarle, G Thaler, J Thomas, RC Tucker, DL Vikram, V Wechsler, RH Weller, J Wester, W AF Annis, J. Soares-Santos, M. Berger, E. Brout, D. Chen, H. Chornock, R. Cowperthwaite, P. S. Diehl, H. T. Doctor, Z. Drlica-Wagner, A. Drout, M. R. Farr, B. Finley, D. A. Flaugher, B. Foley, R. J. Frieman, J. Gruendl, R. A. Herner, K. Holz, D. Kessler, R. Lin, H. Marriner, J. Neilsen, E. Rest, A. Sako, M. Smith, M. Smith, N. Sobreira, F. Walker, A. R. Yanny, B. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bernstein, R. A. Bertin, E. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Castander, F. J. Cenko, S. B. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Dietrich, J. P. Eifler, T. F. Evrard, A. E. Fernandez, E. Fischer, J. Fong, W. Fosalba, P. Fox, D. B. Fryer, C. L. Garcia-Bellido, J. Gaztanaga, E. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gutierrez, G. Honscheid, K. James, D. J. Karliner, I. Kasen, D. Kent, S. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. Martini, P. Metzger, B. D. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Peoples, J. Petravic, D. Plazas, A. A. Quataert, E. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Santiago, B. Scarpine, V. Schindler, R. Schubnell, M. Sevilla-Noarbe, I. Sheldon, E. Smith, R. C. Stebbins, A. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, R. C. Tucker, D. L. Vikram, V. Wechsler, R. H. Weller, J. Wester, W. CA DES Collaboration TI A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: individual (LMC); gravitational waves; Magellanic Clouds; supergiants; supernovae: general ID LARGE-MAGELLANIC-CLOUD; CORE-COLLAPSE SUPERNOVAE; MASSIVE STARS; FAILED SUPERNOVAE; NEUTRINO BURST; CONSTRAINTS; I. AB The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(2) of the localization area, including 38 deg(2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates. C1 [Annis, J.; Soares-Santos, M.; Diehl, H. T.; Drlica-Wagner, A.; Finley, D. A.; Flaugher, B.; Frieman, J.; Herner, K.; Lin, H.; Marriner, J.; Neilsen, E.; Yanny, B.; Allam, S.; Buckley-Geer, E.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Nord, B.; Peoples, J.; Scarpine, V.; Stebbins, A.; Tucker, D. L.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Berger, E.; Cowperthwaite, P. S.; Drout, M. R.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Brout, D.; Sako, M.; Eifler, T. F.; Fischer, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Chen, H.; Doctor, Z.; Farr, B.; Frieman, J.; Holz, D.; Kessler, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Chornock, R.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, 251B Clippinger Lab, Athens, OH 45701 USA. [Foley, R. J.; Gruendl, R. A.; Kind, M. Carrasco; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.; Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Gruendl, R. A.; Kind, M. Carrasco; Petravic, D.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Rest, A.] STScI, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Smith, M.; D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Smith, N.; Fong, W.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Sobreira, F.] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil. [Walker, A. R.; Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.; Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Schindler, R.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Fernandez, E.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fox, D. B.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Particle & Gravitat Astrophys, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, University Pk, PA 16802 USA. [Fryer, C. L.] Los Alamos Natl Lab, CCS Div, POB 1663, Los Alamos, NM 87545 USA. [Garcia-Bellido, J.; Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.; Kasen, D.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, D.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Metzger, B. D.] Columbia Univ, Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Quataert, E.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Sheldon, E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Weller, J.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. RP Annis, J (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Weller, Jochen/0000-0002-8282-2010; Gaztanaga, Enrique/0000-0001-9632-0815; Soares-Santos, Marcelle/0000-0001-6082-8529; Abdalla, Filipe/0000-0003-2063-4345; Garcia-Bellido, Juan/0000-0002-9370-8360 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union, ERC [240672, 291329, 306478]; NSF [AST-1518052]; Alfred P. Sloan Foundation; So Paulo Research Foundation (FAPESP) [2015/12338-1] FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r The DES data management system is supported by the National Science Foundation under grant number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.r R.J.F. gratefully acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan Foundation. F.S. acknowledges financial support provided by So Paulo Research Foundation (FAPESP) under grants 2015/12338-1. NR 44 TC 6 Z9 6 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L34 DI 10.3847/2041-8205/823/2/L34 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4JL UT WOS:000377031700013 ER PT J AU Annis, J Soares-Santos, M Berger, E Brout, D Chen, H Chornock, R Cowperthwaite, PS Diehl, HT Doctor, Z Drlica-Wagner, A Drout, MR Farr, B Finley, DA Flaugher, B Foley, RJ Frieman, J Gruendl, RA Herner, K Holz, D Kessler, R Lin, H Marriner, J Neilsen, E Rest, A Sako, M Smith, M Smith, N Sobreira, F Walker, AR Yanny, B Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Bernstein, RA Bertin, E Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Castander, FJ Cenko, SB Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Dietrich, JP Eifler, TF Evrard, AE Fernandez, E Fischer, J Fong, W Fosalba, P Fox, DB Fryer, CL Garcia-Bellido, J Gaztanaga, E Gerdes, DW Goldstein, DA Gruen, D Gutierrez, G Honscheid, K James, DJ Karliner, I Kasen, D Kent, S Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Maia, MAG Martini, P Metzger, BD Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Peoples, J Petravic, D Plazas, AA Quataert, E Romer, AK Roodman, A Rykoff, ES Sanchez, E Santiago, B Scarpine, V Schindler, R Schubnell, M Sevilla-Noarbe, I Sheldon, E Smith, RC Stebbins, A Swanson, MEC Tarle, G Thaler, J Thomas, RC Tucker, DL Vikram, V Wechsler, RH Weller, J Wester, W AF Annis, J. Soares-Santos, M. Berger, E. Brout, D. Chen, H. Chornock, R. Cowperthwaite, P. S. Diehl, H. T. Doctor, Z. Drlica-Wagner, A. Drout, M. R. Farr, B. Finley, D. A. Flaugher, B. Foley, R. J. Frieman, J. Gruendl, R. A. Herner, K. Holz, D. Kessler, R. Lin, H. Marriner, J. Neilsen, E. Rest, A. Sako, M. Smith, M. Smith, N. Sobreira, F. Walker, A. R. Yanny, B. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bernstein, R. A. Bertin, E. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Carrasco Kind, M. Carretero, J. Castander, F. J. Cenko, S. B. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Dietrich, J. P. Eifler, T. F. Evrard, A. E. Fernandez, E. Fischer, J. Fong, W. Fosalba, P. Fox, D. B. Fryer, C. L. Garcia-Bellido, J. Gaztanaga, E. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gutierrez, G. Honscheid, K. James, D. J. Karliner, I. Kasen, D. Kent, S. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. Martini, P. Metzger, B. D. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Peoples, J. Petravic, D. Plazas, A. A. Quataert, E. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Santiago, B. Scarpine, V. Schindler, R. Schubnell, M. Sevilla-Noarbe, I. Sheldon, E. Smith, R. C. Stebbins, A. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, R. C. Tucker, D. L. Vikram, V. Wechsler, R. H. Weller, J. Wester, W. CA DES Collaboration TI A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: individual (LMC); gravitational waves; Magellanic Clouds; supergiants; supernovae: general ID LARGE-MAGELLANIC-CLOUD; CORE-COLLAPSE SUPERNOVAE; WOLF-RAYET STARS; MASSIVE STARS; FAILED SUPERNOVAE; NEUTRINO BURST; CONSTRAINTS; I. AB The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(2) of the localization area, including 38 deg(2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates. C1 [Annis, J.; Soares-Santos, M.; Diehl, H. T.; Drlica-Wagner, A.; Finley, D. A.; Flaugher, B.; Frieman, J.; Herner, K.; Lin, H.; Marriner, J.; Neilsen, E.; Yanny, B.; Allam, S.; Buckley-Geer, E.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Nord, B.; Peoples, J.; Scarpine, V.; Stebbins, A.; Tucker, D. L.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Berger, E.; Cowperthwaite, P. S.; Drout, M. R.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Brout, D.; Sako, M.; Eifler, T. F.; Fischer, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Chen, H.; Doctor, Z.; Farr, B.; Frieman, J.; Holz, D.; Kessler, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Chen, H.; Doctor, Z.; Farr, B.; Frieman, J.; Holz, D.; Kessler, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Chornock, R.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Clippinger Lab 251B, Athens, OH 45701 USA. [Foley, R. J.; Gruendl, R. A.; Carrasco Kind, M.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.; Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Gruendl, R. A.; Carrasco Kind, M.; Petravic, D.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Rest, A.] STScI, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Smith, M.; D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Smith, N.; Fong, W.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Sobreira, F.] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil. [Walker, A. R.; Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.; Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Schindler, R.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Fernandez, E.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fox, D. B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Particle & Gravitat Astrophys, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, University Pk, PA 16802 USA. [Fryer, C. L.] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. [Garcia-Bellido, J.; Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.; Kasen, D.; Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, D.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Metzger, B. D.] Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Weller, J.] Ludwig Maximilians Univ Munchen, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. RP Annis, J (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Weller, Jochen/0000-0002-8282-2010; Gaztanaga, Enrique/0000-0001-9632-0815; Soares-Santos, Marcelle/0000-0001-6082-8529; Abdalla, Filipe/0000-0003-2063-4345; Garcia-Bellido, Juan/0000-0002-9370-8360 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478]; NSF [AST-1518052]; Alfred P. Sloan Foundation; So Paulo Research Foundation (FAPESP) [2015/12338-1] FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under grant number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; R.J.F. gratefully acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan Foundation. F.S. acknowledges financial support provided by So Paulo Research Foundation (FAPESP) under grants 2015/12338-1. NR 43 TC 6 Z9 6 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L34 DI 10.3847/2041-8205/823/2/L34 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ3WH UT WOS:000385779800002 ER PT J AU Soares-Santos, M Kessler, R Berger, E Annis, J Brout, D Buckley-Geer, E Chen, H Cowperthwaite, PS Diehl, HT Doctor, Z Drlica-Wagner, A Farr, B Finley, DA Flaugher, B Foley, RJ Frieman, J Gruendl, RA Herner, K Holz, D Lin, H Marriner, J Neilsen, E Rest, A Sako, M Scolnic, D Sobreira, F Walker, AR Wester, W Yanny, B Abbott, TMC Abdalla, FB Allam, S Armstrong, R Banerji, M Benoit-Levy, A Bernstein, RA Bertin, E Brown, DA Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Castander, FJ Cenko, SB Chornock, R Crocce, M D'Andrea, CB da Costa, LN Desai, S Dietrich, JP Drout, MR Eifler, TF Estrada, J Evrard, AE Fairhurst, S Fernandez, E Fischer, J Fong, W Fosalba, P Fox, DB Fryer, CL Garcia-Bellido, J Gaztanaga, E Gerdes, DW Goldstein, DA Gruen, D Gutierrez, G Honscheid, K James, DJ Karliner, I Kasen, D Kent, S Kuropatkin, N Kuehn, K Lahav, O Li, TS Lima, M Maia, MAG Margutti, R Martini, P Matheson, T McMahon, RG Metzger, BD Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Peoples, J Plazas, AA Quataert, E Romer, AK Roodman, A Rykoff, ES Sanchez, E Scarpine, V Schindler, R Schubnell, M Sevilla-Noarbe, I Sheldon, E Smith, M Smith, N Smith, RC Stebbins, A Sutton, PJ Swanson, MEC Tarle, G Thaler, J Thomas, RC Tucker, DL Vikram, V Wechsler, RH Weller, J AF Soares-Santos, M. Kessler, R. Berger, E. Annis, J. Brout, D. Buckley-Geer, E. Chen, H. Cowperthwaite, P. S. Diehl, H. T. Doctor, Z. Drlica-Wagner, A. Farr, B. Finley, D. A. Flaugher, B. Foley, R. J. Frieman, J. Gruendl, R. A. Herner, K. Holz, D. Lin, H. Marriner, J. Neilsen, E. Rest, A. Sako, M. Scolnic, D. Sobreira, F. Walker, A. R. Wester, W. Yanny, B. Abbott, T. M. C. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Benoit-Levy, A. Bernstein, R. A. Bertin, E. Brown, D. A. Burke, D. L. Capozzi, D. Carnero Rosell, A. Carrasco Kind, M. Carretero, J. Castander, F. J. Cenko, S. B. Chornock, R. Crocce, M. D'Andrea, C. B. da Costa, L. N. Desai, S. Dietrich, J. P. Drout, M. R. Eifler, T. F. Estrada, J. Evrard, A. E. Fairhurst, S. Fernandez, E. Fischer, J. Fong, W. Fosalba, P. Fox, D. B. Fryer, C. L. Garcia-Bellido, J. Gaztanaga, E. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gutierrez, G. Honscheid, K. James, D. J. Karliner, I. Kasen, D. Kent, S. Kuropatkin, N. Kuehn, K. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. Margutti, R. Martini, P. Matheson, T. McMahon, R. G. Metzger, B. D. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Peoples, J. Plazas, A. A. Quataert, E. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Scarpine, V. Schindler, R. Schubnell, M. Sevilla-Noarbe, I. Sheldon, E. Smith, M. Smith, N. Smith, R. C. Stebbins, A. Sutton, P. J. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, R. C. Tucker, D. L. Vikram, V. Wechsler, R. H. Weller, J. CA DES Collaboration TI A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; catalogs; gravitational waves; stars: neutron; surveys ID RADIOACTIVELY POWERED TRANSIENTS; NEUTRON-STAR MERGERS; EMISSION; VIRGO AB We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg(2) area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4-5, 7, and 24 days after the trigger. The median 5 sigma point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg(2), corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i -z) = 1, 0, -1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field. C1 [Soares-Santos, M.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Drlica-Wagner, A.; Finley, D. A.; Flaugher, B.; Frieman, J.; Herner, K.; Lin, H.; Marriner, J.; Neilsen, E.; Wester, W.; Yanny, B.; Allam, S.; Estrada, J.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Nord, B.; Peoples, J.; Scarpine, V.; Stebbins, A.; Tucker, D. L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kessler, R.; Chen, H.; Doctor, Z.; Farr, B.; Frieman, J.; Holz, D.; Scolnic, D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Berger, E.; Cowperthwaite, P. S.; Drout, M. R.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Brout, D.; Sako, M.; Eifler, T. F.; Fischer, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Foley, R. J.; Gruendl, R. A.; Carrasco Kind, M.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.; Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Gruendl, R. A.; Carrasco Kind, M.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Rest, A.] STScI, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Sobreira, F.] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil. [Walker, A. R.; Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Banerji, M.; McMahon, R. G.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.; McMahon, R. G.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Benoit-Levy, A.; Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Brown, D. A.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Schindler, R.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Fernandez, E.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Chornock, R.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Clippinger Lab 251B, Athens, OH 45701 USA. [D'Andrea, C. B.; Smith, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fairhurst, S.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Fong, W.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Fox, D. B.] Penn State Univ, Ctr Particle & Gravitat Astrophys, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, University Pk, PA 16802 USA. [Fryer, C. L.] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. [Garcia-Bellido, J.; Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Goldstein, D. A.; Kasen, D.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.; Kasen, D.; Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Margutti, R.] NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Metzger, B. D.] Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Quataert, E.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Smith, N.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Sutton, P. J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Weller, J.] Ludwig Maximilians Univ Munchen, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. RP Soares-Santos, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Weller, Jochen/0000-0002-8282-2010; Gaztanaga, Enrique/0000-0001-9632-0815; Soares-Santos, Marcelle/0000-0001-6082-8529; Abdalla, Filipe/0000-0003-2063-4345; Garcia-Bellido, Juan/0000-0002-9370-8360 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council [240672, 291329, 306478] FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under grant No. AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and the Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013), including ERC grant agreements 240672, 291329, and 306478. NR 27 TC 11 Z9 11 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L33 DI 10.3847/2041-8205/823/2/L33 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ3WH UT WOS:000385779800001 ER PT J AU Soares-Santos, M Kessler, R Berger, E Annis, J Brout, D Buckley-Geer, E Chen, H Cowperthwaite, PS Diehl, HT Doctor, Z Drlica-Wagner, A Farr, B Finley, DA Flaugher, B Foley, RJ Frieman, J Gruendl, RA Herner, K Holz, D Lin, H Marriner, J Neilsen, E Rest, A Sako, M Scolnic, D Sobreira, F Walker, AR Wester, W Yanny, B Abbott, TMC Abdalla, FB Allam, S Armstrong, R Banerji, M Benoit-Levy, A Bernstein, RA Bertin, E Brown, DA Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Castander, FJ Cenko, SB Chornock, R Crocce, M D'Andrea, CB da Costa, LN Desai, S Dietrich, JP Drout, MR Eifler, TF Estrada, J Evrard, AE Fairhurst, S Fernandez, E Fischer, J Fong, W Fosalba, P Fox, DB Fryer, CL Garcia-Bellido, J Gaztanaga, E Gerdes, DW Goldstein, DA Gruen, D Gutierrez, G Honscheid, K James, DJ Karliner, I Kasen, D Kent, S Kuropatkin, N Kuehn, K Lahav, O Li, TS Lima, M Maia, MAG Margutti, R Martini, P Matheson, T McMahon, RG Metzger, BD Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Peoples, J Plazas, AA Quataert, E Romer, AK Roodman, A Rykoff, ES Sanchez, E Scarpine, V Schindler, R Schubnell, M Sevilla-Noarbe, I Sheldon, E Smith, M Smith, N Smith, RC Stebbins, A Sutton, PJ Swanson, MEC Tarle, G Thaler, J Thomas, RC Tucker, DL Vikram, V Wechsler, RH Weller, J AF Soares-Santos, M. Kessler, R. Berger, E. Annis, J. Brout, D. Buckley-Geer, E. Chen, H. Cowperthwaite, P. S. Diehl, H. T. Doctor, Z. Drlica-Wagner, A. Farr, B. Finley, D. A. Flaugher, B. Foley, R. J. Frieman, J. Gruendl, R. A. Herner, K. Holz, D. Lin, H. Marriner, J. Neilsen, E. Rest, A. Sako, M. Scolnic, D. Sobreira, F. Walker, A. R. Wester, W. Yanny, B. Abbott, T. M. C. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Benoit-Levy, A. Bernstein, R. A. Bertin, E. Brown, D. A. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Castander, F. J. Cenko, S. B. Chornock, R. Crocce, M. D'Andrea, C. B. da Costa, L. N. Desai, S. Dietrich, J. P. Drout, M. R. Eifler, T. F. Estrada, J. Evrard, A. E. Fairhurst, S. Fernandez, E. Fischer, J. Fong, W. Fosalba, P. Fox, D. B. Fryer, C. L. Garcia-Bellido, J. Gaztanaga, E. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gutierrez, G. Honscheid, K. James, D. J. Karliner, I. Kasen, D. Kent, S. Kuropatkin, N. Kuehn, K. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. Margutti, R. Martini, P. Matheson, T. McMahon, R. G. Metzger, B. D. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Peoples, J. Plazas, A. A. Quataert, E. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Scarpine, V. Schindler, R. Schubnell, M. Sevilla-Noarbe, I. Sheldon, E. Smith, M. Smith, N. Smith, R. C. Stebbins, A. Sutton, P. J. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, R. C. Tucker, D. L. Vikram, V. Wechsler, R. H. Weller, J. CA DES Collaboration TI A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; catalogs; gravitational waves; stars: neutron; surveys ID RADIOACTIVELY POWERED TRANSIENTS; NEUTRON-STAR MERGERS; VIRGO AB We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg(2) area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4-5, 7, and 24 days after the trigger. The median 5 sigma point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg(2), corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i - z) = 1, 0, - 1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field. C1 [Soares-Santos, M.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Drlica-Wagner, A.; Finley, D. A.; Flaugher, B.; Frieman, J.; Herner, K.; Lin, H.; Marriner, J.; Neilsen, E.; Wester, W.; Yanny, B.; Allam, S.; Estrada, J.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Nord, B.; Peoples, J.; Scarpine, V.; Stebbins, A.; Tucker, D. L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kessler, R.; Chen, H.; Doctor, Z.; Farr, B.; Frieman, J.; Holz, D.; Scolnic, D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Berger, E.; Cowperthwaite, P. S.; Drout, M. R.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Brout, D.; Sako, M.; Eifler, T. F.; Fischer, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Foley, R. J.; Gruendl, R. A.; Kind, M. Carrasco; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.; Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Gruendl, R. A.; Kind, M. Carrasco; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Rest, A.] STScI, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Sobreira, F.] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil. [Walker, A. R.; Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Banerji, M.; McMahon, R. G.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.; McMahon, R. G.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Benoit-Levy, A.; Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Brown, D. A.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Schindler, R.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Fernandez, E.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Chornock, R.] Ohio Univ, Clippinger Lab 251B, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [D'Andrea, C. B.; Smith, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fairhurst, S.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Fong, W.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Fox, D. B.] Penn State Univ, Dept Astron & Astrophys, Ctr Particle & Gravitat Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, University Pk, PA 16802 USA. [Fryer, C. L.] Los Alamos Natl Lab, CCS Div, POB 1663, Los Alamos, NM 87545 USA. [Garcia-Bellido, J.; Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Goldstein, D. A.; Kasen, D.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.; Kasen, D.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Margutti, R.] NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Metzger, B. D.] Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Smith, N.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Sutton, P. J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Weller, J.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. RP Soares-Santos, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Weller, Jochen/0000-0002-8282-2010; Gaztanaga, Enrique/0000-0001-9632-0815; Soares-Santos, Marcelle/0000-0001-6082-8529; Abdalla, Filipe/0000-0003-2063-4345; Garcia-Bellido, Juan/0000-0002-9370-8360 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union, ERC [240672, 291329, 306478] FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r The DES data management system is supported by the National Science Foundation under grant No. AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and the Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013), including ERC grant agreements 240672, 291329, and 306478. NR 31 TC 11 Z9 11 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L33 DI 10.3847/2041-8205/823/2/L33 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4JL UT WOS:000377031700012 ER PT J AU Kremser, S Thomason, LW von Hobe, M Hermann, M Deshler, T Timmreck, C Toohey, M Stenke, A Schwarz, JP Weigel, R Fueglistaler, S Prata, FJ Vernier, JP Schlager, H Barnes, JE Antuna-Marrero, JC Fairlie, D Palm, M Mahieu, E Notholt, J Rex, M Bingen, C Vanhellemont, F Bourassa, A Plane, JMC Klocke, D Carn, SA Clarisse, L Trickl, T Neely, R James, AD Rieger, L Wilson, JC Meland, B AF Kremser, Stefanie Thomason, Larry W. von Hobe, Marc Hermann, Markus Deshler, Terry Timmreck, Claudia Toohey, Matthew Stenke, Andrea Schwarz, Joshua P. Weigel, Ralf Fueglistaler, Stephan Prata, Fred J. Vernier, Jean-Paul Schlager, Hans Barnes, John E. Antuna-Marrero, Juan-Carlos Fairlie, Duncan Palm, Mathias Mahieu, Emmanuel Notholt, Justus Rex, Markus Bingen, Christine Vanhellemont, Filip Bourassa, Adam Plane, John M. C. Klocke, Daniel Carn, Simon A. Clarisse, Lieven Trickl, Thomas Neely, Ryan James, Alexander D. Rieger, Landon Wilson, James C. Meland, Brian TI Stratospheric aerosol-Observations, processes, and impact on climate SO REVIEWS OF GEOPHYSICS LA English DT Review ID CARBONYL SULFIDE COS; SULFURIC-ACID VAPOR; SIZE DISTRIBUTION MEASUREMENTS; TROPICAL UPPER TROPOSPHERE; LARGE VOLCANIC-ERUPTIONS; IN-SITU OBSERVATIONS; OZONE MONITORING INSTRUMENT; METEORIC SMOKE PARTICLES; MOUNT-PINATUBO ERUPTION; ASIAN MONSOON TRANSPORT AB Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climatemodels have substantially increased in quantity and sophistication. Inmanymodels the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes. C1 [Kremser, Stefanie] Bodeker Sci, Alexandra, New Zealand. [Thomason, Larry W.; Vernier, Jean-Paul; Fairlie, Duncan] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [von Hobe, Marc] Forschungszentrum Julich, Inst Energy & Climate Res, Julich, Germany. [Hermann, Markus] Leibniz Inst Tropospher Res, Leipzig, Germany. [Deshler, Terry] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Timmreck, Claudia; Toohey, Matthew] Max Planck Inst Meteorol, Hamburg, Germany. [Toohey, Matthew] GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany. [Stenke, Andrea] Swiss Fed Inst Technol, Zurich, Switzerland. [Schwarz, Joshua P.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Weigel, Ralf] Johannes Gutenberg Univ Mainz, Inst Phys Atmosphere, Mainz, Germany. [Fueglistaler, Stephan] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Fueglistaler, Stephan] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Prata, Fred J.] Nicarnica Aviat, Kjeller, Norway. [Schlager, Hans] Deutsch Zentrum Luft & Raumfahrt, Inst Atmospher Phys, Cologne, Germany. [Barnes, John E.] NOAA, Mauna Loa Observ, Hilo, HI USA. [Antuna-Marrero, Juan-Carlos] Meteorol Inst Cuba, Camaguey, Cuba. [Palm, Mathias; Notholt, Justus] IUP Univ Bremen, Bremen, Germany. [Mahieu, Emmanuel] Univ Liege, Inst Astrophys & Geophys, Liege, Belgium. [Rex, Markus] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Potsdam, Germany. [Bingen, Christine; Vanhellemont, Filip] Royal Belgian Inst Space Aeron, Brussels, Belgium. [Bourassa, Adam; Rieger, Landon] Univ Saskatchewan, Inst Space & Atmospher Studies, Saskatoon, SK, Canada. [Plane, John M. C.; James, Alexander D.] Univ Leeds, Sch Chem, Leeds, W Yorkshire, England. [Klocke, Daniel] Deutsch Wetterdienst, Offenbach, Germany. [Carn, Simon A.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Clarisse, Lieven] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Brussels, Belgium. [Trickl, Thomas] Karlsruher Inst Technol, IMK IFU, Karlsruhe, Germany. [Neely, Ryan] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Neely, Ryan] Univ Leeds, Sch Earth & Environm, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Wilson, James C.; Meland, Brian] Univ Denver, Dept Mech & Mat Engn, Denver, CO USA. RP Kremser, S (reprint author), Bodeker Sci, Alexandra, New Zealand. EM stefanie@bodekerscientific.com RI Fueglistaler, Stephan/I-5803-2013; Plane, John/C-7444-2015; Trickl, Thomas/F-7331-2010; schwarz, joshua/G-4556-2013; Rex, Markus/A-6054-2009; Notholt, Justus/P-4520-2016; Manager, CSD Publications/B-2789-2015; Toohey, Matthew/G-3129-2010; OI Plane, John/0000-0003-3648-6893; schwarz, joshua/0000-0002-9123-2223; Rex, Markus/0000-0001-7847-8221; Notholt, Justus/0000-0002-3324-885X; Toohey, Matthew/0000-0002-7070-405X; von Hobe, Marc/0000-0001-6034-6562; Mahieu, Emmanuel/0000-0002-5251-0286; Palm, Mathias/0000-0001-7191-6911; /0000-0002-3573-7083 FU International Space Science Institute (ISSI, Bern, Switzerland); SPARC; Royal Society of New Zealand; European Research Council [291332-CODITA]; German federal Ministry of Education (BMBF) [FKZ:01LP130A, 01LP1130B]; German BMBF under the ROMIC (ROle of the Middle atmosphere in Climate) programme; European Union [603557] FX We would like to thank Thomas Peter, Stephan Borrmann, and Beiping Luo for the many very helpful discussions and suggestions. We would like to thank Aimee V. Amin, SSAI (Hampton, VA, USA) for the design of Figure 1, Michael Hopfner for providing Figure 6, Horst Jager for his assistance in generating underlying data files for parts of Figure 10/Figure 12, and Steven Smith for providing the anthropogenic sulfur emissions data for Figure 14. The authors thank the International Space Science Institute (ISSI, Bern, Switzerland) through their support of the SSiRC science team that made this publication possible. We would like to thank SPARC for their support of the SSiRC activity. L. Clarisse is a research associate with the F.N.R.S. S. Kremser would like to thank the Royal Society of New Zealand for support through the Marsden Fast Start fund. J.M.C. Plane and A.D. James are supported by a grant from the European Research Council (project 291332-CODITA). C. Timmreck and M. Toohey acknowledge support from the German federal Ministry of Education (BMBF), research program "MiKlip" (FKZ:01LP130A(CT):/01LP1130B (MT)). R. Weigel and M. v. Hobe are supported by SPITFIRE which is funded by the German BMBF under the ROMIC (ROle of the Middle atmosphere in Climate) programme. Work on this review was partly supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 603557. The data presented in this study are listed in the provided references. Requests for data used in this paper can be directed to S. Kremser (stefanie@bodekerscientific.com). NR 377 TC 11 Z9 11 U1 12 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD JUN PY 2016 VL 54 IS 2 BP 278 EP 335 DI 10.1002/2015RG000511 PG 58 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DZ3AY UT WOS:000385716900002 ER PT J AU Bullard, JE Baddock, M Bradwell, T Crusius, J Darlington, E Gaiero, D Gasso, S Gisladottir, G Hodgkins, R McCulloch, R McKenna-Neuman, C Mockford, T Stewart, H Thorsteinsson, T AF Bullard, Joanna E. Baddock, Matthew Bradwell, Tom Crusius, John Darlington, Eleanor Gaiero, Diego Gasso, Santiago Gisladottir, Gudrun Hodgkins, Richard McCulloch, Robert McKenna-Neuman, Cheryl Mockford, Tom Stewart, Helena Thorsteinsson, Throstur TI High-latitude dust in the Earth system SO REVIEWS OF GEOPHYSICS LA English DT Review ID GREENLAND ICE-SHEET; SUSPENDED SEDIMENT FLUXES; LAST GLACIAL PERIOD; MCMURDO DRY VALLEYS; MIXED-PHASE CLOUDS; SOUTHERN-OCEAN; WIND EROSION; DESERT DUST; NEW-ZEALAND; VICTORIA-LAND AB Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (>= 50 degrees N and >= 40 degrees S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km(2) and contribute at least 80-100 Tg yr(-1) of dust to the Earth system (similar to 5% of the global dust budget); both are projected to increase under future climate change scenarios. C1 [Bullard, Joanna E.; Baddock, Matthew; Darlington, Eleanor; Hodgkins, Richard; Mockford, Tom] Univ Loughborough, Dept Geog, Loughborough, Leics, England. [Bradwell, Tom; McCulloch, Robert; Stewart, Helena] Univ Stirling, Sch Nat Sci, Biol & Environm Sci, Stirling, Scotland. [Crusius, John] Univ Washington, Sch Oceanog, USGS, Seattle, WA 98195 USA. [Gaiero, Diego] Univ Nacl Cordoba, CICTERRA FCEFyN, Cordoba, Argentina. [Gasso, Santiago] NASA, GESTAR, Greenbelt, MD USA. [Gisladottir, Gudrun] Univ Iceland, Inst Life & Earth Sci, Reykjavik, Iceland. [Gisladottir, Gudrun; Thorsteinsson, Throstur] Univ Iceland, Inst Earth Sci, Reykjavik, Iceland. [McKenna-Neuman, Cheryl] Trent Univ, Dept Geog, Peterborough, ON, Canada. [Thorsteinsson, Throstur] Univ Iceland, Environm & Nat Resources, Reykjavik, Iceland. RP Bullard, JE (reprint author), Univ Loughborough, Dept Geog, Loughborough, Leics, England. EM J.E.Bullard@lboro.ac.uk RI Baddock, Matthew/A-5739-2012; BGS University Funding Initiative, BUFI/H-4822-2011; OI Baddock, Matthew/0000-0003-1490-7511; BGS University Funding Initiative, BUFI/0000-0003-3097-5530; Thorsteinsson, Throstur/0000-0001-5964-866X FU Leverhulme Trust International Network grant [IN-2013-036]; CONICET; SeCyT-UNC; Antorchas; FONCyT; IAI; Weizmann Institute FX This research was funded through a Leverhulme Trust International Network grant (IN-2013-036) awarded to Bullard, Crusius, Gaiero, Gasso, McCulloch, Mckenna Neuman, and Thorsteinsson. We would like to thank Mark Szegner for his assistance with the figures. Gaiero received additional support from CONICET, SeCyT-UNC, Antorchas, FONCyT, IAI, and the Weizmann Institute. Further information about the high-latitude, cold environment dust network including the geolocated referenced studies used in this paper is available at http://www.hlccd.org. NR 275 TC 5 Z9 5 U1 15 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD JUN PY 2016 VL 54 IS 2 BP 447 EP 485 DI 10.1002/2016RG000518 PG 39 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DZ3AY UT WOS:000385716900007 ER PT J AU Sokolov, AA Sokolova, NA Ims, RA Brucker, L Ehrich, D AF Sokolov, Aleksandr A. Sokolova, Natalya A. Ims, Rolf A. Brucker, Ludovic Ehrich, Dorothee TI Emergent Rainy Winter Warm Spells May Promote Boreal Predator Expansion into the Arctic SO ARCTIC LA English DT Article DE Arctic fox (Vulpes lagopus); red fox (Vulpes vulpes); Hooded Crow (Corvus cornix); domestic reindeer; ground icing; rain on snow; food web; range expansion ID FOX POPULATION; CLIMATE-CHANGE; DENSITY-DEPENDENCE; DYNAMICS; REINDEER; TUNDRA; COMMUNITY; EVENTS; RUSSIA; RED AB Climate change has been characterized as the most serious threat to Arctic biodiversity. In addition to gradual changes such as climate warming, extreme weather events, such as melting temperatures in winter and rain on snow, can have profound consequences for ecosystems. Rain-on-snow events lead to the formation of ice layers in the snow pack, which can restrict access to forage plants and cause crashes of herbivore populations. These direct impacts can have cascading effects on other ecosystem components, often mediated by trophic interactions. Here we document how heavy rain in early winter, leading to the formation of a thick layer of ice, was associated with dramatic mortality of domestic reindeer on Yamal Peninsula, Russia. In the subsequent summer, breeding of two boreal generalist predators, red fox and Hooded Crow, was recorded for the first time in a monitoring area in the Low Arctic tundra of this region. We suggest that the resource pulse created by the abnormally high reindeer mortality and abundance of carrion may have facilitated these breeding events north of the known breeding range of the two species. Our observations provide an example of how specific emergent weather events may indirectly pave the way for more abrupt, although possibly temporary, species range changes. C1 [Sokolov, Aleksandr A.; Sokolova, Natalya A.] Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Arctic Res Stn, Labytnangi, Russia. [Sokolov, Aleksandr A.; Sokolova, Natalya A.] State Org Yamal Nenets Autonomous Dist, Sci Ctr Arctic Studies, Salekhard, Russia. [Ims, Rolf A.; Ehrich, Dorothee] Univ Tromso, Dept Arct & Marine Biol, Tromso, Norway. [Brucker, Ludovic] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Code 615, Greenbelt, MD 20771 USA. [Brucker, Ludovic] Univ Space Res Assoc, GESTAR, Columbia, MD 21046 USA. RP Sokolov, AA (reprint author), Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Arctic Res Stn, Labytnangi, Russia.; Sokolov, AA (reprint author), State Org Yamal Nenets Autonomous Dist, Sci Ctr Arctic Studies, Salekhard, Russia.; Ehrich, D (reprint author), Univ Tromso, Dept Arct & Marine Biol, Tromso, Norway. EM sokhol@yandex.ru; dorothee.ehrich@uit.no RI Brucker, Ludovic/A-8029-2010 OI Brucker, Ludovic/0000-0001-7102-8084 FU programs of Ural Branch of the Russian Academy of Sciences [12-4-7-022-Arctic, 15-15-4-35-Arctic]; Norwegian Environment Agency; Inter-regional Expedition Centre "Arctic" FX We thank the Laptander family for their support throughout this study, and Maite Cerezo, Nikolay Erokhin, Ivan Fufachev, Tatyana Strukova, and Sergey Zykov for help and company in the field. This study has been partly supported by the programs of Ural Branch of the Russian Academy of Sciences 12-4-7-022-Arctic and 15-15-4-35-Arctic, and by the Norwegian Environment Agency. The Inter-regional Expedition Centre "Arctic" contributed funding and logistical support. NR 50 TC 1 Z9 1 U1 20 U2 20 PU ARCTIC INST N AMER PI CALGARY PA UNIV OF CALGARY 2500 UNIVERSITY DRIVE NW 11TH FLOOR LIBRARY TOWER, CALGARY, ALBERTA T2N 1N4, CANADA SN 0004-0843 EI 1923-1245 J9 ARCTIC JI Arctic PD JUN PY 2016 VL 69 IS 2 BP 121 EP 129 DI 10.14430/arctic4559 PG 9 WC Environmental Sciences; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA DY3LJ UT WOS:000384993600001 ER PT J AU Sliwinski, MG Kitajima, K Kozdon, R Spicuzza, MJ Fournelle, JH Denny, A Valley, JW AF Sliwinski, Maciej G. Kitajima, Kouki Kozdon, Reinhard Spicuzza, Michael J. Fournelle, John H. Denny, Adam Valley, John W. TI Secondary Ion Mass Spectrometry Bias on Isotope Ratios in Dolomite-Ankerite, Part I: delta O-18 Matrix Effects SO GEOSTANDARDS AND GEOANALYTICAL RESEARCH LA English DT Article DE secondary ion mass spectrometry; oxygen isotopes; dolomite; ankerite; matrix effects ID MARTIAN METEORITE ALH84001; PRECAMBRIAN CARBONATES; MICROPROBE ANALYSIS; OXYGEN ISOTOPES; EVOLUTION; WATER; SIMS; GEOCHEMISTRY; MINERALS; PRECISION AB We document the development of a suite of carbonate mineral reference materials for calibrating SIMS determinations of delta O-18 in samples with compositions along the dolomite-ankerite solid solution series [CaMg (CO3)(2)-CaFe(CO3)(2)]. Under routine operating conditions for the analysis of carbonates for delta O-18 with a CAMECA IMS 1280 instrument (at WiscSIMS, University of Wisconsin-Madison), the magnitude of instrumental bias along the dolomite-ankerite series decreased exponentially by similar to 10 parts per thousand with increasing Fe content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mol% Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the sample matrix effect) was calibrated using the Hill equation, which relates bias to the Fe# of dolomite-ankerite [i.e., molar Fe/(Mg+Fe)] for thirteen reference materials (Fe# = 0.004-0.789); for calibrations employing either 10 or 3 mu m diameter spot size measurements, this yielded residual values <= 0.3-0.4 parts per thousand relative to CRM NBS 19 for most reference materials in the suite. Analytical precision was +/- 0.3 parts per thousand (2s, standard deviations) for 10-mu m spots and +/- 0.7 parts per thousand (2s) for 3-mu m spots, based on the spot-to-spot repeatability of a drift monitor material that 'bracketed' each set of ten sample-spot analyses. Analytical uncertainty for individual sample analyses was approximated by a combination of precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of +/- 0.5 parts per thousand (2s) for 10-mu m spots and +/- 1 parts per thousand (2s) for 3-mu m spots. C1 [Sliwinski, Maciej G.; Kitajima, Kouki; Kozdon, Reinhard; Spicuzza, Michael J.; Denny, Adam; Valley, John W.] Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA. [Sliwinski, Maciej G.; Kitajima, Kouki; Spicuzza, Michael J.; Fournelle, John H.; Denny, Adam; Valley, John W.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Kitajima, Kouki; Valley, John W.] Univ Wisconsin, Dept Geosci, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Kozdon, Reinhard] Rutgers State Univ, Dept Marine & Coastal Sci, New Brunswick, NJ 08901 USA. RP Sliwinski, MG (reprint author), Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA.; Sliwinski, MG (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM msliwinski@wisc.edu FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences [DE-FG02-93ER14389]; U.S. National Science Foundation [EAR-1355590]; NASA Astrobiology Institute FX This research was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-93ER14389. WiscSIMS is partly supported by the U.S. National Science Foundation (EAR-1355590). KK and JWV were also supported by the NASA Astrobiology Institute. We thank our colleagues at UW-Madison: Noriko Kita for many constructive discussions and SIMS support, Jim Kern for SIMS support and Phil Gopon for assistance with SEM. We thank B.C. Schreiber and M. Harrell (both at the University of Washington) for help in acquiring sample material that became reference material UWAnk8. The ankerite specimen that became reference material UWAnk4 was provided by the Smithsonian Institution (USNM number 93418). We thank Rick Hervig and Richard Stern for constructive reviews of this work. NR 52 TC 4 Z9 4 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1639-4488 EI 1751-908X J9 GEOSTAND GEOANAL RES JI Geostand. Geoanal. Res. PD JUN PY 2016 VL 40 IS 2 BP 157 EP 172 DI 10.1111/j.1751-908X.2015.00364.x PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DX9WA UT WOS:000384746500001 ER PT J AU Sliwinski, MG Kitajima, K Kozdon, R Spicuzza, MJ Fournelle, JH Denny, A Valley, JW AF Sliwinski, Maciej G. Kitajima, Kouki Kozdon, Reinhard Spicuzza, Michael J. Fournelle, John H. Denny, Adam Valley, John W. TI Secondary Ion Mass Spectrometry Bias on Isotope Ratios in Dolomite-Ankerite, Part II: delta C-13 Matrix Effects SO GEOSTANDARDS AND GEOANALYTICAL RESEARCH LA English DT Article DE SIMS; carbon isotopes; dolomite; ankerite; matrix effects ID OXYGEN ISOTOPES; SIMS; MINERALS; CARBON AB This study is Part II of a series that documents the development of a suite of calibration reference materials for in situ SIMS analysis of stable isotope ratios in Ca-Mg-Fe carbonates. Part I explored the effects of Fe2+ substitution on SIMS delta O-18 bias measured from the dolomite-ankerite solid solution series [CaMg(CO3)(2)-CaFe(CO3)(2)], whereas this complementary work explores the compositional dependence of SIMS delta C-13 bias (calibrated range: Fe# = 0.004-0.789, where Fe# = molar Fe/(Mg+Fe)). Under routine operating conditions for carbonate delta C-13 analysis at WiscSIMS (CAMECA IMS 1280), the magnitude of instrumental bias increased exponentially by 2.5-5.5 parts per thousand (session-specific) with increasing Fe-content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mole % Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the matrix effect) was expressed using the Hill equation, yielding calibration residual values <= 0.3 parts per thousand relative to CRM NBS-19 for eleven carbonate reference materials (6-mu m-diameter spot size measurements). Based on the spot-to-spot repeatability of a drift monitor material that 'bracketed' each set of ten sample-spot analyses, the analytical precision was +/- 0.6-1.2 parts per thousand(2s, standard deviations). The analytical uncertainty for individual sample analyses was approximated by combining the precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of +/- 1.0-1.5 parts per thousand (2s). C1 [Sliwinski, Maciej G.; Kitajima, Kouki; Kozdon, Reinhard; Spicuzza, Michael J.; Denny, Adam; Valley, John W.] Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA. [Sliwinski, Maciej G.; Kitajima, Kouki; Spicuzza, Michael J.; Fournelle, John H.; Denny, Adam; Valley, John W.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Kitajima, Kouki; Valley, John W.] Univ Wisconsin, Dept Geosci, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Kozdon, Reinhard] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Sliwinski, MG (reprint author), Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA.; Sliwinski, MG (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM msliwinski@wisc.edu FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences [DE-FG02-93ER14389]; U.S. National Science Foundation [EAR-1355590] FX This research was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-93ER14389. WiscSIMS is partly supported by the U.S. National Science Foundation (EAR-1355590). We thank our colleagues at UW-Madison: Noriko Kita for many constructive discussions and SIMS support, Jim Kern for SIMS support and Phil Gopon for assistance with SEM. We thank B.C. Schreiber and M. Harrell (both at the University of Washington) for help in acquiring sample material that became reference material UWAnk8. The ankerite specimen that became reference material UWAnk4 was provided by the Smithsonian Institution (USNM number 93418). NR 17 TC 2 Z9 2 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1639-4488 EI 1751-908X J9 GEOSTAND GEOANAL RES JI Geostand. Geoanal. Res. PD JUN PY 2016 VL 40 IS 2 BP 173 EP 184 DI 10.1111/j.1751-908X.2015.00380.x PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DX9WA UT WOS:000384746500002 ER PT J AU Dargent, J Aunai, N Belmont, G Dorville, N Lavraud, B Hesse, M AF Dargent, J. Aunai, N. Belmont, G. Dorville, N. Lavraud, B. Hesse, M. TI Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID DIFFUSION REGION; MAGNETOPAUSE AB Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet. C1 [Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.] Univ Paris 11, UPMC, CNRS, LPP,Ecole Polytech, F-91128 Palaiseau, France. [Dargent, J.; Lavraud, B.] Inst Rech Astrophys & Planetol, F-31400 Toulouse, France. [Dargent, J.; Lavraud, B.] CNRS, Toulouse, France. [Hesse, M.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Dargent, J (reprint author), Univ Paris 11, UPMC, CNRS, LPP,Ecole Polytech, F-91128 Palaiseau, France.; Dargent, J (reprint author), Inst Rech Astrophys & Planetol, F-31400 Toulouse, France.; Dargent, J (reprint author), CNRS, Toulouse, France. EM jeremy.dargent@lpp.polytechnique.fr FU ANR [ANR-13-PDOC-0027]; HPC resource of CINES; HPC resource IDRIS [i2015047231] FX This is a pleasure to thank L. Rezeau for enlightening discussions regarding this work. The authors acknowledge the ANR for funding the project MON-ANR (ANR-13-PDOC-0027) supporting this research. This work was granted access to the HPC resources of CINES and IDRIS under the allocation i2015047231. Some simulations were also performed on CALMIP. We would like to especially thanks IDRIS staff for their help with regarding computational devices. NR 27 TC 0 Z9 0 U1 2 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD JUN PY 2016 VL 82 AR 905820305 DI 10.1017/S002237781600057X PN 3 PG 19 WC Physics, Fluids & Plasmas SC Physics GA DS9LA UT WOS:000381103200019 ER PT J AU Harding, AK AF Harding, A. K. TI Gamma-ray pulsar light curves as probes of magnetospheric structure SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID POLAR CAPS; PARTICLE-ACCELERATION; OUTER MAGNETOSPHERE; MILLISECOND PULSARS; AREA TELESCOPE; PAIR FORMATION; LOW-ALTITUDE; VELA PULSAR; SLOT GAPS; X-RAY AB The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modelling will continue to be a powerful tool for constraining the pulsar magnetosphere physics. C1 [Harding, A. K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Harding, AK (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM Alice.K.Harding@nasa.gov FU Fermi Guest Investigator Program FX I would like to thank my collaborators M. Breed, G. Brambilla, M. DeCesar, I. Grenier, T. Johnson, K. Kalapotharakos, D. Kazanas, A. Muslimov, M. Pierbattista, B. Seyffert, and C. Venter, and E. Ferrara for help with the Fermi pulsar data. I also acknowledge support from the Fermi Guest Investigator Program. NR 64 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD JUN PY 2016 VL 82 AR 635820306 DI 10.1017/S0022377816000477 PN 3 PG 22 WC Physics, Fluids & Plasmas SC Physics GA DS9LA UT WOS:000381103200013 ER PT J AU Alonzo, M McFadden, JP Nowak, DJ Roberts, DA AF Alonzo, Michael McFadden, Joseph P. Nowak, David J. Roberts, Dar A. TI Mapping urban forest structure and function using hyperspectral imagery and lidar data SO URBAN FORESTRY & URBAN GREENING LA English DT Article ID LEAF-AREA INDEX; AIRBORNE LIDAR; MEDITERRANEAN FOREST; CARBON STORAGE; UNITED-STATES; TREE; VEGETATION; BIOMASS; AVIRIS; SEATTLE AB Cities measure the structure and function of their urban forest resource to optimize forest management and the provision of ecosystem services. Measurements made using plot sampling methods yield useful results including citywide or land-use level estimates of species counts, leaf area, biomass, and air pollution reduction. However, these quantities are statistical estimates made over large areas and thus are not spatially explicit. Maps of forest structure and function at the individual tree crown scale can enhance management decision-making and improve understanding of the spatial distribution of ecosystem services relative to humans and infrastructure. In this research we used hyperspectral imagery and waveform lidar data to directly map urban forest species, leaf area index (LAI), and carbon storage in downtown Santa Barbara, California. We compared these results to estimates produced using field-plot sampling and the i-Tree Eco model. Remote sensing methods generally reduced uncertainty in species-level canopy cover estimates compared to field-plot methods. This was due to high classification accuracy for species with large canopies (e.g., Platanus racemosa with similar to 90% average accuracy, Pinus pinea at similar to 93%, Quercus agrifolia at similar to 83%) and high standard error of the plot-based estimates due to the uneven distribution of canopy throughout the city. Average LAI in canopy, based on lidar measurements was 4.47 while field measurements and allometry resulted in an LAI of 5.57. Citywide carbon storage, based on lidar measurements and allometry was estimated at 50,991 metric tons (t) and 55,900 t from plot-sampling. As others have noted, carbon density varied substantially by development intensity based largely on differences in fractional cover but less so when only evaluating canopy biomass. Using separate biomass equations for each leaf type (broadleaf, needleleaf, palm) resulted in a more accurate carbon map but a less accurate citywide estimate. (C) 2016 Elsevier GmbH. All rights reserved. C1 [Alonzo, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McFadden, Joseph P.; Roberts, Dar A.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Nowak, David J.] SUNY Coll Environm Sci & Forestry, US Forest Serv, USDA, Northern Res Stn,Moon Lib 5, Syracuse, NY 13210 USA. RP Alonzo, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM michael.g.alonzo@nasa.gov FU EPA-STAR Fellowship [FP-91768801-0]; National Science Foundation [BCS-0948914]; Garden Club of America Fellowship in Urban Forestry FX This research was funded by the first author's EPA-STAR Fellowship (FP-91768801-0), the National Science Foundation (BCS-0948914), and the Garden Club of America Fellowship in Urban Forestry. Special thanks to Robert Hoehn, Alexis Ellis, and Satoshi Hirabayashi for their work customizing, running, and communicating i-Tree Eco sub-models. NR 58 TC 3 Z9 3 U1 14 U2 15 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 1618-8667 J9 URBAN FOR URBAN GREE JI Urban For. Urban Green. PD JUN 1 PY 2016 VL 17 BP 135 EP 147 DI 10.1016/j.ufug.2016.04.003 PG 13 WC Plant Sciences; Environmental Studies; Forestry; Urban Studies SC Plant Sciences; Environmental Sciences & Ecology; Forestry; Urban Studies GA DY2HL UT WOS:000384913600015 ER PT J AU Gonzales, AA Stoker, CR AF Gonzales, Andrew A. Stoker, Carol R. TI An efficient approach for Mars Sample Return using emerging commercial capabilities SO ACTA ASTRONAUTICA LA English DT Article DE Red Dragon; SpaceX; Commercial; Mars Sample Return; Supersonic Retropropulsion; Mars Entry, Descent and Landing ID SUPERSONIC RETROPROPULSION AB Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science (Squyres, 2011 [1]). This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit-an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022. (C) 2016 Published by Elsevier Ltd. on behalf of IAA. C1 [Gonzales, Andrew A.] NASA, Ames Res Ctr, Bldg N-213,MS-213-13, Moffett Field, CA 94035 USA. [Stoker, Carol R.] NASA, Ames Res Ctr, Bldg N-245,MS-245-3, Moffett Field, CA 94035 USA. RP Gonzales, AA (reprint author), NASA, Ames Res Ctr, Bldg N-213,MS-213-13, Moffett Field, CA 94035 USA. EM andrew.gonzales@nasa.gov; carol.r.stoker@nasa.gov FU Ames Center Investment Fund FX The work described in this paper was performed with funding support from the Ames Center Investment Fund. The contributions of the study team including the following individuals are gratefully acknowledged: Steven Hu, Millennium Engineering & Integration Co., Project Management Lawrence G. Lemke, NASA, Ames, EDL and ERV design Joseph A. Garcia, NASA, Ames, ERV design Cyrus J. Foster, Stinger Ghaffarian Technologies Inc., in-space trajectories Jeffrey V. Bowles, NASA, Ames, MAV Loc C Huynh, Science and Technology Corp., EDL and MAV launch David Willson, KISS Institute for Practical Robotics, sample transfer on Mars Nicolas T. Faber, Stinger Ghaffarian Technologies Inc., sample transfer in space and Planetary Protection Michael Soulage, Stinger Ghaffarian Technologies Inc., Mechanical Engineering Eddie A. Uribe, Millennium Engineering & Integration Co., capsule internal systems Charles J. Hatsell, Universities Space Research Association, capsule internal system Jeffrey R. Feller, NASA, Ames, ISRU and cryogenics Bernardus P. Helvensteijn, Dynamac, ISRU and cryogenics Ali Kashani, Dynamic, ISRU and cryogenics Sasha V. Weston, Millennium Engineering & Integration Co., trade studies and engineering research John F. Love, NASA, Ames, propulsion NR 29 TC 1 Z9 1 U1 13 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2016 VL 123 BP 16 EP 25 DI 10.1016/j.actaastro.2016.02.013 PG 10 WC Engineering, Aerospace SC Engineering GA DX8GS UT WOS:000384626700003 PM 27642199 ER PT J AU Ho, KK de Weck, OL Hoffman, JA Shishko, R AF Ho, Koki de Weck, Olivier L. Hoffman, Jeffrey A. Shishko, Robert TI Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept SO ACTA ASTRONAUTICA LA English DT Article DE Space systems; Space logistics; NEO exploration; Mars exploration; Network optimization ID ARCHITECTURES; TIME; EXPLORATION; MARS AB This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Ho, Koki] Univ Illinois, Urbana, IL 61801 USA. [de Weck, Olivier L.; Hoffman, Jeffrey A.] MIT, Cambridge, MA 02139 USA. [Shishko, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Ho, KK (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM kokiho@illinois.edu; deweck@mit.edu; jhoffma1@mit.edu; robert.shishko@jpl.nasa.gov NR 32 TC 1 Z9 1 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2016 VL 123 BP 51 EP 61 DI 10.1016/j.actaastro.2016.03.006 PG 11 WC Engineering, Aerospace SC Engineering GA DX8GS UT WOS:000384626700006 ER PT J AU Milinevsky, G Yatskiv, Y Degtyaryov, O Syniayskyi, I Mishchenko, M Rosenbush, V Ivanov, Y Makarov, A Bovchaliuk, A Danylevsky, V Sosonkin, M Moskalov, S Bovchaliuk, V Lukenyuk, A Shymkiv, A Udodov, E AF Milinevsky, G. Yatskiv, Ya. Degtyaryov, O. Syniayskyi, I. Mishchenko, M. Rosenbush, V. Ivanov, Yu. Makarov, A. Bovchaliuk, A. Danylevsky, V. Sosonkin, M. Moskalov, S. Bovchaliuk, V. Lukenyuk, A. Shymkiv, A. Udodov, E. TI New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere SO ACTA ASTRONAUTICA LA English DT Article DE Atmosphere; Aerosol; Cloud; Climate; Polarimetry; Remote sensing ID AERONET; RETRIEVAL; MODIS; VALIDATION; SCATTERING; MISSION; NETWORK AB We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi-functional high-precision scanning polarimeter and an imager polarimeter should make a significant contribution to the study of natural and anthropogenic aerosols and their climatic and ecological effects. (C) 2016 IAA Published by Elsevier Ltd. All rights reserved. C1 [Milinevsky, G.; Yatskiv, Ya.; Syniayskyi, I.; Rosenbush, V.; Ivanov, Yu.; Bovchaliuk, A.; Sosonkin, M.] Natl Acad Sci Ukraine, Main Astron Observ, 27 Akad Zabolotnoho Str, UA-03680 Kiev, Ukraine. [Milinevsky, G.; Degtyaryov, O.; Makarov, A.; Moskalov, S.] State Space Agcy Ukraine, Yangel Yuzhnoye State Design Off, 3 Krivorozhskaya Str, UA-49008 Dnepropetrovsk, Ukraine. [Milinevsky, G.; Danylevsky, V.; Bovchaliuk, V.; Udodov, E.] Taras Shevchenko Natl Univ Kyiv, 64-13 Volodymyrska Str, UA-01601 Kiev, Ukraine. [Mishchenko, M.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Bovchaliuk, A.; Bovchaliuk, V.] Univ Lille 1, CNRS, Lab Opt Atmospher, Villeneuve Dascq, France. [Lukenyuk, A.; Shymkiv, A.] Natl Acad Sci, Lviv Ctr Inst Space Res, 5a Naukova Str, UA-79060 Lvov, Ukraine. [Lukenyuk, A.; Shymkiv, A.] State Space Agcy Ukraine, 5a Naukova Str, UA-79060 Lvov, Ukraine. RP Milinevsky, G (reprint author), Taras Shevchenko Natl Univ Kyiv, 64-13 Volodymyrska Str, UA-01601 Kiev, Ukraine. EM genmilinevsky@gmail.com; yatskiv@mao.kiev.ua; space@yuzhnoye.com; syniavskyki@gmail.com; michael.i.mishchenko@nasa.gov; rosevera@mao.kiev.ua; yutiv@gmail.com; space@yuzhnoye.com; boychaliuk@gmail.com; vdanylevsky@gmail.com; msosonkin@gmail.com; seimos@ua.fm; bovchaliukv@gmail.com; sha@isr.lviv.ua; udodoveneniy@gmail.com RI Danylevsky, Vassyl/F-5383-2017 OI Danylevsky, Vassyl/0000-0001-8311-0907 FU Special Complex Program for Space Research of the National Academy of Sciences of Ukraine (NASU); NASU; Taras Shevchenko National University of Kyiv [11BF051-01-12]; NASA ACE Mission Project; project PICS of CNRS FX The work was supported by the Special Complex Program for Space Research 2012-2016 of the National Academy of Sciences of Ukraine (NASU), project PICS 2013-2015 of CNRS and NASU, and project 11BF051-01-12 of the Taras Shevchenko National University of Kyiv. M. Mishchenko was supported by the NASA ACE Mission Project. We thank B. Holben (NASA/GSFC) for managing the AERONET program and its sites. NR 30 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2016 VL 123 BP 292 EP 300 DI 10.1016/j.actaastro.2016.02.027 PG 9 WC Engineering, Aerospace SC Engineering GA DX8GS UT WOS:000384626700033 ER PT J AU Scharf, DP Martin, SR Liebe, CC Rahman, ZH Seubert, CR Noecker, MC Purcell, GH AF Scharf, Daniel P. Martin, Stefan R. Liebe, Carl Christian Rahman, Zahidul H. Seubert, Carl R. Noecker, Martin Charles Purcell, George H. TI Precision formation flying at megameter separations for exoplanet characterization SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 8th International Workshop on Satellite Constellations and Formation Flying (IWSCFF) CY JUN 08-10, 2015 CL Delft Univ Technol, Fac Aerosp Engn, Delft, NETHERLANDS HO Delft Univ Technol, Fac Aerosp Engn ID SPACECRAFT; PLANETS AB Starshade missions offer a near-term capability to measure the spectra of Earth-sized exoplanets, searching for possible bio-indicators. To function, a starshade and telescope separated by approximately 50 Mm must align to the meter-level on the line to the target star. From the telescope's perspective, this alignment in turn requires sensing the bearing between target star and starshade to approximately 1 milli-arcsecond (5 nrad). Previously, several fine bearing sensors have been proposed based on pupil images of the starshade's shadow. In this paper, a fine bearing sensor is presented based on measuring in the focal plane the bearing between a laser beacon on the starshade and the diffracted centroid of the target star that "leaks" around the starshade outside the science wavelengths. Coarse and medium bearing sensors are also introduced that allow for autonomous operation. The performance of extended Kalman filters using the bearing sensors is presented, as well as deadbanding performance in science mode. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Scharf, Daniel P.] CALTECH, Jet Prop Lab, Guidance & Control Anal Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Martin, Stefan R.] CALTECH, Jet Prop Lab, High Contrast Imaging Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Liebe, Carl Christian] CALTECH, Jet Prop Lab, GN & C Hardware & Testbed Dev Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rahman, Zahidul H.; Seubert, Carl R.] CALTECH, Jet Prop Lab, Guidance & Control Anal Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Noecker, Martin Charles] CALTECH, Jet Prop Lab, Opt Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Purcell, George H.] CALTECH, Jet Prop Lab, Global Positioning Satellite Syst Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Scharf, DP (reprint author), CALTECH, Jet Prop Lab, Guidance & Control Anal Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Daniel.P.Scharf@jpl.nasa.gov NR 35 TC 2 Z9 2 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2016 VL 123 BP 420 EP 434 DI 10.1016/j.actaastro.2015.12.044 PG 15 WC Engineering, Aerospace SC Engineering GA DX8GS UT WOS:000384626700046 ER PT J AU Finkleman, D AF Finkleman, Dave TI Statistics matter, NOW more than ever SO AEROSPACE AMERICA LA English DT Article C1 [Finkleman, Dave] North Amer Aerosp Def Command, Colorado Springs, CO USA. [Finkleman, Dave] US Space Command, Peterson AFB, CO USA. EM dfinkleman@comcast.net NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD JUN PY 2016 VL 54 IS 6 BP 34 EP 37 PG 4 WC Engineering, Aerospace SC Engineering GA DX9TG UT WOS:000384737400011 ER PT J AU Vakilinia, K Ranganathan, SVS Divsalar, D Wesel, RD AF Vakilinia, Kasra Ranganathan, Sudarsan V. S. Divsalar, Dariush Wesel, Richard D. TI Optimizing Transmission Lengths for Limited Feedback With Nonbinary LDPC Examples SO IEEE TRANSACTIONS ON COMMUNICATIONS LA English DT Article DE blocklength optimization; channel coding; feedback; hybrid ARQ; LDPC codes; quantization ID HYBRID ARQ SCHEME; CONVOLUTIONAL-CODES; ERROR-CONTROL; RETRANSMISSION; CHANNEL; REGIME; HARQ AB This paper presents a general approach for optimizing the number of symbols in increments (packets of incremental redundancy) in a feedback communication system with a limited number of increments. This approach is based on a tight normal approximation on the rate for successful decoding. Applying this approach to a variety of feedback systems using nonbinary (NB) low-density parity-check (LDPC) codes shows that greater than 90% of capacity can be achieved with average blocklengths fewer than 500 transmitted bits. One result is that the performance with ten increments closely approaches the performance with an infinite number of increments. The paper focuses on binary-input additive-white Gaussian noise (BI-AWGN) channels but also demonstrates that the normal approximation works well on examples of fading channels as well as high-SNR AWGN channels that require larger QAM constellations. This paper explores both variable-length feedback codes with termination (VLFT) and the more practical variable length feedback (VLF) codes without termination that require no assumption of noiseless transmitter confirmation. For VLF, we consider both a two-phase scheme and CRC-based scheme. C1 [Vakilinia, Kasra; Ranganathan, Sudarsan V. S.; Wesel, Richard D.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Divsalar, Dariush] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Vakilinia, K (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. EM vakiliniak@ucla.edu FU National Science Foundation [1162501, 1161822]; JPL Task Plan [82-17473] FX This material is based upon work supported by the National Science Foundation under Grant Numbers 1162501 and 1161822. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and JPL Task Plan 82-17473. The associate editor coordinating the review of this paper and approving it for publication was K. Abdel-Ghaffar. NR 39 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0090-6778 EI 1558-0857 J9 IEEE T COMMUN JI IEEE Trans. Commun. PD JUN PY 2016 VL 64 IS 6 BP 2245 EP 2257 DI 10.1109/TCOMM.2016.2538770 PG 13 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DX3VH UT WOS:000384303400001 ER PT J AU Hadaegh, FY Chung, SJ Manohara, HM AF Hadaegh, Fred Y. Chung, Soon-Jo Manohara, Harish M. TI On Development of 100-Gram-Class Spacecraft for Swarm Applications SO IEEE SYSTEMS JOURNAL LA English DT Article DE Autonomous agents; control systems; distributed control; satellites; space technology ID FORMATION-FLYING SPACECRAFT; TETHERED FORMATION FLIGHT; PROPELLANT-FREE CONTROL; CONCURRENT SYNCHRONIZATION; COOPERATIVE CONTROL; LAGRANGIAN SYSTEMS; ARRAYS; COMMUNICATION; NETWORKS; GUIDANCE AB A novel space system architecture is proposed, which would enable 100-g-class spacecraft to be flown as swarms (100 s-1000 s) in low Earth orbit. Swarms of Silicon Wafer Integrated Femtosatellites (SWIFT) present a paradigm-shifting approach to distributed spacecraft development, missions, and applications. Potential applications of SWIFT swarms include sparse aperture arrays and distributed sensor networks. New swarm array configurations are introduced and shown to achieve the effective sparse aperture driven from optical performance metrics. A system cost analysis based on this comparison justifies deploying a large number of femtosatellites for sparse aperture applications. Moreover, this paper discusses promising guidance, control, and navigation methods for swarms of femtosatellites equipped with modest sensing and control capabilities. C1 [Hadaegh, Fred Y.; Manohara, Harish M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Chung, Soon-Jo] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. [Chung, Soon-Jo] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA. RP Hadaegh, FY (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM fred.y.hadaegh@jpl.nasa.gov; sjchung@illinois.edu; harish.manohara@jpl.nasa.gov OI Chung, Soon-Jo/0000-0002-6657-3907 FU Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. California Institute of Technology FX The research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. 2014 California Institute of Technology. Government sponsorship is acknowledged. The SWIFT Swarm Project team includes D. Bayard, E. Mettler, B. Acikmese, L. Blackmore, M. Mandic, M. Quadrelli, R. Toda, E. Urgiles, T. Wilson, M. Mojarradi, D. Hunter, R. Kinnet, D. Muthulingam, C. Maresse-Reading, S. Mobasser, C. Bergh, J. Zimer at JPL; D. Morgan at the University of Illinois at Urbana-Champaign; and R. Mehra at Scientific Systems Company, Inc. NR 50 TC 2 Z9 2 U1 4 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1932-8184 EI 1937-9234 J9 IEEE SYST J JI IEEE Syst. J. PD JUN PY 2016 VL 10 IS 2 BP 673 EP 684 DI 10.1109/JSYST.2014.2327972 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Operations Research & Management Science; Telecommunications SC Computer Science; Engineering; Operations Research & Management Science; Telecommunications GA DV9KF UT WOS:000383258600026 ER PT J AU Panteleev, G Yaremchuk, M Francis, O Stabeno, PJ Weingartner, T Zhang, J AF Panteleev, Gleb Yaremchuk, Max Francis, Oceana Stabeno, Phyllis J. Weingartner, T. Zhang, J. TI An inverse modeling study of circulation in the Eastern Bering Sea during 2007-2010 SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID DATA ASSIMILATION; SLOPE CURRENT; CHUKCHI SEAS; OCEAN MODEL; ICE; NORTHERN; VARIABILITY; PACIFIC; RECONSTRUCTION; BASIN AB A two-way nested 4d-variational data assimilation system is implemented in the Eastern Bering Sea (EBS) to investigate changes in circulation and thermodynamic state for a 3.8 year period. Assimilated observations include data from 19 moorings deployed on the shelf and in the Bering Strait, 1705 hydrographic stations occupied during eight surveys, and remotely sensed sea surface temperature and sea surface height (SSH) data. Validation of the presented 4dVar reanalysis against the output of two sequential data-assimilative systems (the Bering Ecosystem Study ice-ocean Modeling and Assimilation System (BESTMAS) and the Arctic Cap Nowcast-Forecast System (ACNFS)) has shown that the product is more consistent with the observed transports in the Bering Strait and in the EBS interior both in terms of their magnitude and time variability. Analysis of the data-optimized solution quantifies a sequence of wind-forced events that resulted in the anomalous heat and freshwater transports through the Bering Strait, including a 28 day long flow reversal that occurred in November 2009 and carried Siberian Coastal Current water down to the Gulf of Anadyr. Lagrangian study of the Arctic-bound Pacific waters indicates the extreme importance of the cross-shelf exchange along the path of the Bering Slope Current and quantifies the spectrum of residence times for the waters entering EBS through Unimak Pass and through Aleutian passages. Residence times in the EBS cold pool are diagnosed to be 2-3 times longer than those in the surrounding waters. C1 [Panteleev, Gleb] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA. [Panteleev, Gleb] Natl Tomsk Res Polytech Univ, Tomsk, Russia. [Yaremchuk, Max] Naval Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS USA. [Francis, Oceana] Univ Hawaii, Dept Civil & Environm Engn, Honolulu, HI 96822 USA. [Stabeno, Phyllis J.] Natl Atmospher & Ocean Adm, Pacific Marine Environm Lab, Seattle, WA USA. [Weingartner, T.] Univ Alaska, Sch Fisheries & Marine Sci, Fairbanks, AK 99701 USA. [Zhang, J.] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. RP Panteleev, G (reprint author), Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA.; Panteleev, G (reprint author), Natl Tomsk Res Polytech Univ, Tomsk, Russia. EM gleb@iarc.uaf.edu FU NSF [1107925, 1203740]; ONR; Russia government [megagrant 2013-220-04-157]; International Arctic Research Center; [ARC-1107327] FX This study was supported by International Arctic Research Center, NSF grants 1107925, 1203740, and ARC-1107327. Max Yaremchuk was supported by the ONR core projects" Adjoint-free 4dvar for navy ocean models" and "Coupled data assimilation." We further thank the support of the Russia government (megagrant 2013-220-04-157). The authors are indebted to R. Woodgate of APL UW for providing current meter data in the Bering Strait. The results of the reanalysis can be downloaded from http://people.iarc.uaf.edu/g1eb/best_reanalysis/final_report/final_repor t.htm). NR 58 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUN PY 2016 VL 121 IS 6 BP 3970 EP 3989 DI 10.1002/2015JC011287 PG 20 WC Oceanography SC Oceanography GA DW2JD UT WOS:000383467800018 ER PT J AU Moses, WJ Ackleson, SG Hair, JW Hostetler, CA Miller, WD AF Moses, Wesley J. Ackleson, Steven G. Hair, Johnathan W. Hostetler, Chris A. Miller, W. David TI Spatial scales of optical variability in the coastal ocean: Implications for remote sensing and in situ sampling SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID UNIVERSAL MULTIFRACTALS; ATMOSPHERIC CORRECTION; CONTINENTAL-SHELF; CLIMATE-CHANGE; GEORGES BANK; SEA-SURFACE; CHLOROPHYLL; PHYTOPLANKTON; PATCHINESS; COLOR AB Use of ocean color remote sensing to understand the effects of environmental changes and anthropogenic activities on estuarine and coastal waters requires the capability to measure and track optically detectable complex biogeochemical processes. An important remote sensor design consideration is the minimum spatial resolution required to resolve key ocean features of physical and biological significance. The spatial scale of variability in optical properties of coastal waters has been investigated using continuous, along-track measurements collected using instruments deployed from ships, aircraft, and satellites. We defined the average coefficient of variance, (CV) over bar (a), within an image pixel as the primary statistical measure of subpixel variability and investigated how (CV) over bar (a)changes as a function of the Ground Sampling Distance (GSD). In general, d (CV) over bar (a)/dGSD is positive, indicating that the subpixel variability increases with GSD. The relationship between (CV) over bar (a) and GSD is generally nonlinear and the greatest rate of change occurs at small spatial scales. Points of distinct transition in the relationship between (CV) over bar (a) and GSD are evident between 75 and 600 m, varying depending on the location and the optical parameter, and representing the GSD above which most of the spatial variability due to small-scale features is subsumed within a pixel. At GSDs greater than the transition point, most of the small-scale variability occurs at subpixel scales and, therefore, cannot be resolved. On average, the transition GSD is around 200 m. The results have application in both sensor design and in situ sampling strategy in support of coastal remote sensing operations. C1 [Moses, Wesley J.; Ackleson, Steven G.; Miller, W. David] Naval Res Lab, Washington, DC 20375 USA. [Hair, Johnathan W.; Hostetler, Chris A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Moses, WJ (reprint author), Naval Res Lab, Washington, DC 20375 USA. EM wesley.moses@nrl.navy.mil OI Miller, W. David/0000-0002-4940-5987 FU NASA through the PACE-Science Team; GEO-CAPE Science Working Group grants; Ship-Aircraft Bio-Optical Research experiment FX We thank Michael Twardowski, who is currently at the Harbor Branch Oceanographic Institute, and Scott Freeman, who is currently at NASA, for their help in collecting data from Long Island Sound. This work was supported by funds from NASA through the PACE-Science Team and GEO-CAPE Science Working Group grants and the Ship-Aircraft Bio-Optical Research experiment. The data from the Tara Oceans expedition are available at a repository maintained by the University of Maine, http://misclab.umeoce.maine.edu/research/research19.php. The AVIRIS data can be obtained from http://aviris.jpl.nasa.gov/, the OLI data from http://earthexplorer.usgs.gov/, and the HICO data from http://oceancolor.gsfc.nasa.gov/cms/. The in-water data from Long Island Sound, lidar data, and airborne remote sensing data from CASI, were collected by the authors and are available upon request through direct contact with any of the authors. NR 46 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUN PY 2016 VL 121 IS 6 BP 4194 EP 4208 DI 10.1002/2016JC011767 PG 15 WC Oceanography SC Oceanography GA DW2JD UT WOS:000383467800030 ER PT J AU Komar, CM Cassak, PA AF Komar, C. M. Cassak, P. A. TI The local dayside reconnection rate for oblique interplanetary magnetic fields SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOPAUSE RECONNECTION; PLASMASPHERIC PLUME; SOLAR-WIND; SIMULATIONS; SEPARATORS; DEPENDENCE; DYNAMICS AB We present an analysis of local properties of magnetic reconnection at the dayside magnetopause for various interplanetary magnetic field (IMF) orientations in global magnetospheric simulations. This has heretofore not been practical because it is difficult to locate where reconnection occurs for oblique IMF, but new techniques make this possible. The approach is to identify magnetic separators, the curves separating four regions of differing magnetic topology, which map the reconnection X line. The electric field parallel to the X line is the local reconnection rate. We compare results to a simple model of local two-dimensional asymmetric reconnection. To do so, we find the plasma parameters that locally drive reconnection in the magnetosheath and magnetosphere in planes perpendicular to the X line at a large number of points along the X line. The global magnetohydrodynamic simulations are from the three-dimensional Block-Adaptive, Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the techniques described here are extensible to any global magnetospheric simulation model. We find that the predicted local reconnection rates scale well with the measured values for all simulations, being nearly exact for due southward IMF. However, the absolute predictions differ by an undetermined constant of proportionality, whose magnitude increases as the IMF clock angle changes from southward to northward. We also show similar scaling agreement in a simulation with oblique southward IMF and a dipole tilt. The present results will be an important component of a full understanding of the local and global properties of dayside reconnection. C1 [Komar, C. M.; Cassak, P. A.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Komar, C. M.] NASA, Geospace Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Komar, C. M.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Komar, CM (reprint author), West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA.; Komar, CM (reprint author), NASA, Geospace Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Komar, CM (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. EM colin.m.komar@gmail.com FU NSF [AGS-0953463]; NASA [NNX10AN08A]; NASA West Virginia Space Grant Consortium FX Support from NSF grant AGS-0953463 and NASA grant NNX10AN08A (PAC), and NASA West Virginia Space Grant Consortium (CMK) are gratefully acknowledged. Simulations were performed at the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The CCMC is a multi-agency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF, and ONR. The BATS-R-US Model was developed by the Center for Space Environment Modeling at the University of Michigan. The analysis presented here was made possible via the Kameleon software package provided by the Community Coordinated Modeling Center at NASA Goddard Space Flight Center (http://ccmc.gsfc.nasa.gov). Software Developers are M.M. Maddox, D.H. Berrios, and L. Rastaetter. The data used to produce the results of this paper are publicly available for free from CCMC. The authors would like to thank J.C. Dorelli, B. Lavraud, Y.H. Liu, D.G. Sibeck, and F.D. Wilder for their insight and interesting discussions, and CMK thanks A. Glocer for his mentorship. NR 65 TC 1 Z9 1 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5105 EP 5120 DI 10.1002/2016JA022530 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100011 ER PT J AU Li, W Ma, Q Thorne, RM Bortnik, J Zhang, XJ Li, J Baker, DN Reeves, GD Spence, HE Kletzing, CA Kurth, WS Hospodarsky, GB Blake, JB Fennell, JF Kanekal, SG Angelopoulos, V Green, JC Goldstein, J AF Li, W. Ma, Q. Thorne, R. M. Bortnik, J. Zhang, X. -J. Li, J. Baker, D. N. Reeves, G. D. Spence, H. E. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Blake, J. B. Fennell, J. F. Kanekal, S. G. Angelopoulos, V. Green, J. C. Goldstein, J. TI Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID VAN ALLEN PROBES; PITCH-ANGLE DISTRIBUTIONS; OUTER-ZONE ELECTRONS; WHISTLER-MODE CHORUS; RELATIVISTIC ELECTRONS; INNER MAGNETOSPHERE; MAGNETIC-FIELD; PLASMASPHERIC HISS; MAGNETOSONIC WAVES; ENERGETIC PARTICLE AB Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to similar to 7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm. C1 [Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X. -J.; Li, J.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Zhang, X. -J.; Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys Earth Planetary & S, Los Angeles, CA USA. [Baker, D. N.] Univ Colorado, Lab Atmospher & Space Res, Boulder, CO 80309 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Blake, J. B.; Fennell, J. F.] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Green, J. C.] Space Hazard Applicat, Golden, CO USA. [Goldstein, J.] Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA. [Goldstein, J.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. RP Li, W (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM moonli@atmos.ucla.edu OI Ma, Qianli/0000-0001-5452-4756; Reeves, Geoffrey/0000-0002-7985-8098 FU RBSP-ECT; EMFISIS by JHU/APL under NASA [967399, 921647, NAS5-01072]; AFOSR [FA9550-15-1-0158]; NASA [NNX15AI96G, NNX15AF61G, NNX11AR64G, NNX13AI61G, NNX14AI18G]; NSF [AGS 1405054, 1564510] FX This work was supported by RBSP-ECT and EMFISIS funding provided by JHU/APL contract 967399 and 921647 under NASA's prime contract NAS5-01072. The analysis at UCLA was supported by AFOSR award FA9550-15-1-0158, NASA grants NNX15AI96G, NNX15AF61G, NNX11AR64G, NNX13AI61G, and NNX14AI18G, and the NSF grants AGS 1405054 and 1564510. We acknowledge the Van Allen Probes data from EMFISIS obtained from https://emfisis.physics.uiowa.edu/data/index, REPT and MagEIS data obtained from http://www.rbsp-ect.lanl.gov/data_pub/, and THEMIS wave data obtained from http://themis.ssl.berkeley.edu/themis-data/. We also acknowledge plasmapause location data from http://enarc.space.swri.edu/PTP/. Furthermore, we greatly appreciate the NOAA POES data obtained from http://satdat.ngdc.noaa.gov/sem/poes/data/ and the NOAA POES team for providing helpful advice. We also thank the World Data Center for Geomagnetism, Kyoto, for providing SYM-H and AL index (http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html) and the Space Physics Data Facility at the NASA Goddard Space Flight Center for providing the OMNI2 data (ftp://spdf.gsfc.nasa.gov/pub/data/omni/omni_cdaweb/). We also would like to thank Kyle Murphy and Anthony Chan for providing helpful discussions in this study. NR 115 TC 2 Z9 2 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5520 EP 5536 DI 10.1002/2016JA022400 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100038 ER PT J AU Foster, JC Erickson, PJ Baker, DN Jaynes, AN Mishin, EV Fennel, JF Li, X Henderson, MG Kanekal, SG AF Foster, J. C. Erickson, P. J. Baker, D. N. Jaynes, A. N. Mishin, E. V. Fennel, J. F. Li, X. Henderson, M. G. Kanekal, S. G. TI Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HIGHLY RELATIVISTIC ELECTRONS; EARTHS INNER MAGNETOSPHERE; ALLEN PROBES OBSERVATIONS; RADIATION BELTS; ZONE ELECTRONS; WAVES; PRECIPITATION; ACCELERATION; SCATTERING; EMISSIONS AB Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF transmitter signals extend beyond the eroded plasmapause, electron loss processes set up near the outer extent of the VLF bubble create an earthward limit to the region of local acceleration near L = 2.8 as MeV electrons are scattered into the atmospheric loss cone. C1 [Foster, J. C.; Erickson, P. J.] MIT, Haystack Observ, Westford, MA 01886 USA. [Baker, D. N.; Jaynes, A. N.; Li, X.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Mishin, E. V.] Air Force Res Lab, Albuquerque, NM USA. [Fennel, J. F.] Aerosp Corp, Space Sci Lab, Los Angeles, CA 90009 USA. [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Foster, JC (reprint author), MIT, Haystack Observ, Westford, MA 01886 USA. EM jfoster@haystack.mit.edu RI Henderson, Michael/A-3948-2011 OI Henderson, Michael/0000-0003-4975-9029 FU University of Minnesota; Air Force Office of Scientific Research; JHU/APL under NASA [967399, NAS5-01072] FX We thank W. Kurth for input concerning the EMFISIS wave observations, J. Bonnell for discussions of EFW antenna sensitivity, M. Starks for guidance on VLF propagation characteristics, and J. Albert for helpful discussions and for providing the relativistic electron resonance code used in Figure 7. J.C.F. and P.J.E. received support from a University of Minnesota subcontract award to the Massachusetts Institute of Technology. E.M. was supported by the Air Force Office of Scientific Research. Van Allen Probes data access was provided through the Johns Hopkins University/Applied Physics Lab Mission Operations Center and the Los Alamos National Laboratory Science Operations Center. This work was supported by JHU/APL contract 967399 under NASA's prime contract NAS5-01072. All Van Allen Probes data used are publicly available at (www.rbsp-ect.lanl.gov). NR 29 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5537 EP 5548 DI 10.1002/2016JA022509 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100039 ER PT J AU Kessel, M AF Kessel, Mona TI Things we do not yet understand about solar driving of the radiation belts SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID VAN ALLEN PROBES; RELATIVISTIC ELECTRONS; MAGNETIC STORM; OCTOBER 2012; DIFFUSION; WAVE; MAGNETOSPHERE; ACCELERATION; SEPTEMBER; DYNAMICS AB This commentary explores how close we are to predicting the behavior of the radiations belts-the primary science objective of NASA's Van Allen Probes mission. Starting with what we know or think we know about competing sources, enhancement, transport, and loss, I walk through recent papers that have improved our understanding and then focus on flux dropouts as one particular yardstick of success. I mention a new paradigm for electrons and the importance of reliably matching models and observations for different solar inputs. Although the case for prediction remains a work in progress, there are encouraging signs of progress. C1 [Kessel, Mona] NASA, GSFC HQ, Greenbelt, MD 20771 USA. RP Kessel, M (reprint author), NASA, GSFC HQ, Greenbelt, MD 20771 USA. EM mona.kessel@nasa.gov NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5549 EP 5552 DI 10.1002/2016JA022472 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100040 ER PT J AU Liemohn, MW Balikhin, M Kepko, L Rodger, A Wang, YM AF Liemohn, Michael W. Balikhin, Michael Kepko, Larry Rodger, Alan Wang, Yuming TI Editorial: Reviewer selection process and new areas of expertise in GEMS SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Editorial Material AB One method of selecting potential reviewers for papers submitted to the Journal of Geophysical Research Space Physics is to filter the user database within the Geophysical Electronic Manuscript System (GEMS) by areas of expertise. The list of these areas in GEMS can be self selected by users in their profile settings. The Editors have added 18 new entries to this list, an increase of 33% more than the previous 55 entries. All space physicists are strongly encouraged to update their profile settings in GEMS, especially their areas of expertise selections, and details of how to do this are provided. C1 [Liemohn, Michael W.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Balikhin, Michael] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England. [Kepko, Larry] NASA, Goddard Space Flight Ctr, Space Weather Lab, Heliophys Sci Div, Greenbelt, MD USA. [Rodger, Alan] Climate Change Risk & Resilience, Cambridge, England. [Wang, Yuming] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei, Peoples R China. RP Liemohn, MW (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5566 EP 5570 DI 10.1002/2016JA022977 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100043 ER PT J AU Michell, RG Samara, M Grubbs, G Ogasawara, K Miller, G Trevino, JA Webster, J Stange, J AF Michell, R. G. Samara, M. Grubbs, G., II Ogasawara, K. Miller, G. Trevino, J. A. Webster, J. Stange, J. TI APES: Acute Precipitating Electron Spectrometer-A high time resolution monodirectional magnetic deflection electron spectrometer SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article AB We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV. C1 [Michell, R. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Michell, R. G.; Samara, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Grubbs, G., II] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. [Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.] Southwest Res Inst, San Antonio, TX USA. RP Michell, RG (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Michell, RG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM robert.g.michell@nasa.gov OI Grubbs, Guy/0000-0002-3540-3577 FU NASA [NNX15AG06G, NNX12AE76G] FX This work was supported by NASA grant NNX15AG06G to UMD and NASA grant NNX12AE76G to Southwest Research Institute. The data analyzed here are available upon request from the authors. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5959 EP 5965 DI 10.1002/2016JA022637 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100072 ER PT J AU Weimer, DR Sutton, EK Mlynczak, MG Hunt, LA AF Weimer, D. R. Sutton, E. K. Mlynczak, M. G. Hunt, L. A. TI Intercalibration of neutral density measurements for mapping the thermosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ACCELEROMETER DATA; SOLAR; ATMOSPHERE; STORMS; CHAMP; MODEL; ENERGY; SPHERE AB This paper describes a technique for mapping exospheric temperatures, derived from neutral density measurements from the Challenging Mini-satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites. The Naval Reasearch Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRLMSISE-00) thermosphere model is used for the conversion. Adjustments for each satellite were needed in order for the time-averaged densities to agree with the model. It was necessary to correct for inexact modeling of the annual and semiannual oscillations in the density, as well as the declining densities during the solar minimum. It was found that a time-varying perturbation in the atomic oxygen in the model could produce a good agreement at both altitudes. The time series of this oxygen variation was found to have a very high correlation with independent measurements of CO2 emissions measured with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The temperature data are averaged on a spherical grid having equal areas in each pixel, avoiding functional fits that would blur finer details. The use of solar magnetic rather than geographic coordinates enhances the auroral ovals. There are strong elevations in the exospheric temperatures in the polar regions, particularly near the dayside cusp. Spatial filtering with spherical wavelets is used to remove statistical fluctuations, although some details are lost. The exospheric temperature maps are well ordered by the nitric oxide emission measurements from SABER. The technique that is described here could be applied to future improvements of empirical density models, having an accuracy and spatial resolution that is not presently available. C1 [Weimer, D. R.] Virginia Tech, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA. [Weimer, D. R.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Sutton, E. K.] Air Force Res Lab, Space Environm Branch, Albuquerque, NM USA. [Mlynczak, M. G.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23665 USA. [Hunt, L. A.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Weimer, DR (reprint author), Virginia Tech, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA.; Weimer, DR (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA. EM dweimer@vt.edu RI Sutton, Eric/A-1574-2016; OI Sutton, Eric/0000-0003-1424-7189; Hunt, Linda/0000-0002-5330-541X FU NASA [NNX13AD73G]; NASA Heliophysics Division Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics Project FX The authors thank J. T. Emmert and J. M. Picone for useful comments and suggestions. The work at Virginia Tech was supported by NASA grant NNX13AD73G. Authors M.G.M. and L.A.H. acknowledge support from the NASA Heliophysics Division Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics Project. The CHAMP and GRACE density measurements are available by contacting author E.K.S. (email: eric.k.sutton@gmail.com). The code for the NRLMSISE-00 neutral density model is available from the NASA CCMC, at ftp://hanna.ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/nrlmsise00/ . The empirical W05 heating model is available by contacting author D.R.W. (email: dweimer@vt.edu). The SABER measurements can be obtained from author M.G.M. (email: m.g.mlynczak@nasa.gov). The HEALPix software is available at http://healpix.jpl.nasa.gov/index.shtml. The iSAP wavelet software is at http://www.cosmostat.org/software/isap/ and http://jstarck.free.fr/mrs.html. NR 43 TC 1 Z9 1 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5975 EP 5990 DI 10.1002/2016JA022691 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100074 ER PT J AU Grubbs, G Michell, R Samara, M Hampton, D Jahn, JM AF Grubbs, Guy, II Michell, Robert Samara, Marilia Hampton, Don Jahn, Jorg-Micha TI A synthesis of star calibration techniques for ground-based narrowband electron-multiplying charge-coupled device imagers used in auroral photometry SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article AB A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 angstrom) ground-based imager data with multiple fields of view (19, 47, and 180 degrees) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models. C1 [Grubbs, Guy, II; Jahn, Jorg-Micha] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Grubbs, Guy, II; Jahn, Jorg-Micha] Southwest Res Inst, Space Sci & Engn, San Antonio, TX 78228 USA. [Michell, Robert; Samara, Marilia] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Michell, Robert] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Hampton, Don] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. RP Grubbs, G (reprint author), Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA.; Grubbs, G (reprint author), Southwest Res Inst, Space Sci & Engn, San Antonio, TX 78228 USA. EM guygrubbs@gmail.com OI Grubbs, Guy/0000-0002-3540-3577 FU National Aeronautics and Space Administration [NNX12AE76G]; National Science Foundation [ATM-0923412] FX This work was funded by the National Aeronautics and Space Administration grant (NNX12AE76G). The imagers employed in this work were funded through a National Science Foundation Major Research Instrumentation grant (ATM-0923412) to Southwest Research Institute (PI: M. Samara) from 2009 to 2012. Telecentric optics for the imagers were developed and tested by Keo Scientific. MOOSE data are freely available and can be obtained through Marilia Samara, marilia.samara@nasa.gov; more information can be found at moose.space.swri.edu. NR 24 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2016 VL 121 IS 6 BP 5991 EP 6002 DI 10.1002/2015JA022186 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1RU UT WOS:000383421100075 ER PT J AU Case, NA Kingman, D MacDonald, EA AF Case, N. A. Kingman, D. MacDonald, E. A. TI A real-time hybrid aurora alert system: Combining citizen science reports with an auroral ovalmodel SO EARTH AND SPACE SCIENCE LA English DT Article ID OVATION AB Accurately predicting when, and from where, an aurora will be visible is particularly difficult, yet it is a service much desired by the general public. Several aurora alert services exist that attempt to provide such predictions but are, generally, based upon fairly coarse estimates of auroral activity (e.g., Kp or Dst). Additionally, these services are not able to account for a potential observer's local conditions (such as cloud cover or level of darkness). Aurorasaurus, however, combines data from the well-used, solar wind-driven, OVATION Prime auroral oval model with real-time observational data provided by a global network of citizen scientists. This system is designed to provide more accurate and localized alerts for auroral visibility than currently available. Early results are promising and show that over 100,000 auroral visibility alerts have been issued, including nearly 200 highly localized alerts, to over 2000 users located right across the globe. C1 [Case, N. A.; Kingman, D.; MacDonald, E. A.] New Mexico Consortium, Los Alamos, NM 87544 USA. [Case, N. A.; MacDonald, E. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Case, N. A.] Univ Lancaster, Dept Phys, Lancaster, England. RP Case, NA (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA.; Case, NA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Case, NA (reprint author), Univ Lancaster, Dept Phys, Lancaster, England. EM n.case@lancaster.ac.uk OI Case, Nathan/0000-0003-0692-1778 NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD JUN PY 2016 VL 3 IS 6 BP 257 EP 265 DI 10.1002/2016EA000167 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DU9XR UT WOS:000382572000002 ER PT J AU Kirkpatrick, JD Kellogg, K Schneider, AC Fajardo-Acosta, S Cushing, MC Greco, J Mace, GN Gelino, CR Wright, EL Eisenhardt, PRM Stern, D Faherty, JK Sheppard, SS Lansbury, GB Logsdon, SE Martin, EC McLean, IS Schurr, SD Cutri, RM Conrow, T AF Kirkpatrick, J. Davy Kellogg, Kendra Schneider, Adam C. Fajardo-Acosta, Sergio Cushing, Michael C. Greco, Jennifer Mace, Gregory N. Gelino, Christopher R. Wright, Edward L. Eisenhardt, Peter R. M. Stern, Daniel Faherty, Jacqueline K. Sheppard, Scott S. Lansbury, George B. Logsdon, Sarah E. Martin, Emily C. McLean, Ian S. Schurr, Steven D. Cutri, Roc M. Conrow, Tim TI THE ALLWISE MOTION SURVEY, PART 2 SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE brown dwarfs; catalogs; solar neighborhood; stars: fundamental parameters; stars: low-mass; subdwarfs ID HIGH PROPER MOTION; LOW-MASS STARS; INFRARED-SURVEY-EXPLORER; VERY-LOW MASS; DIGITAL SKY SURVEY; DWARF CARBON STAR; MAIN-SEQUENCE STARS; KECK-II TELESCOPE; BLUE L DWARF; SUBSTELLAR CANDIDATE MEMBERS AB We use the AllWISE Data Release to continue our search for Wide-field Infrared Survey Explorer (WISE)-detected motions. In this paper, we publish another 27,846 motion objects, bringing the total number to 48,000 when objects found during our original AllWISE motion survey are included. We use this list, along with the lists of confirmed WISE-based motion objects from the recent papers by Luhman and by Schneider et al., and candidate motion objects from the recent paper by Gagne et al., to search for widely separated, common-proper-motion systems. We identify 1039 such candidate systems. All 48,000 objects are further analyzed using color-color and color-mag plots to provide possible characterizations prior to spectroscopic follow-up. We present spectra of 172 of these, supplemented with new spectra of 23 comparison objects from the literature, and provide classifications and physical interpretations of interesting sources. Highlights include: (1) the identification of three G/K dwarfs that can be used as standard candles to study clumpiness and grain size in nearby molecular clouds because these objects are currently moving behind the clouds, (2) the confirmation/discovery of several M, L, and T dwarfs and one white dwarf whose spectrophotometric distance estimates place them 5-20 pc from the Sun, (3) the suggestion that the Na I "D" line be used as a diagnostic tool for interpreting and classifying metal-poor late-M and L dwarfs, (4) the recognition of a triple system including a carbon dwarf and late-M subdwarf, for which model fits of the late-M subdwarf (giving [Fe/H] approximate to -1.0) provide a measured metallicity for the carbon star, and (5) a possible 24 pc distant K5 dwarf + peculiar red L5 system with an apparent physical separation of 0.1 pc. C1 [Kirkpatrick, J. Davy; Kellogg, Kendra; Fajardo-Acosta, Sergio; Gelino, Christopher R.; Schurr, Steven D.; Cutri, Roc M.; Conrow, Tim] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Kellogg, Kendra] Western Univ, Dept Phys & Astron, 1151 Richmond Ave, London, ON N6A 3K7, Canada. [Schneider, Adam C.; Cushing, Michael C.; Greco, Jennifer] Univ Toledo, Dept Phys & Astron, MS 111,2801 W Bancroft St, Toledo, OH 43606 USA. [Mace, Gregory N.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Wright, Edward L.; Logsdon, Sarah E.; Martin, Emily C.; McLean, Ian S.] Univ Calif Los Angeles, Dept Phys & Astron, 430 Portola Plaza,Box 951547, Los Angeles, CA 90095 USA. [Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Faherty, Jacqueline K.; Sheppard, Scott S.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Lansbury, George B.] Univ Durham, Dept Phys, Durham DH1 3LE, England. RP Kirkpatrick, JD (reprint author), CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. EM davy@ipac.caltech.edu OI , Kendra/0000-0002-1819-3387; Cushing, Michael/0000-0001-7780-3352 FU National Aeronautics and Space Administration [NNG05GF22G] FX This publication makes use of data products from WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL)/California Institute of Technology (Caltech), funded by the National Aeronautics and Space Administration (NASA). This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by JPL/Caltech, under contract with NASA. We are indebted to the SIMBAD database and the VizieR catalog access tool, provided by CDS, Strasbourg, France. This paper makes use of data from the Catalina Sky Survey, which is funded by the National Aeronautics and Space Administration under grant No. NNG05GF22G, issued through the Science Mission Directorate Near-Earth Objects Observations Program. J.D.K. acknowledges fruitful discussions with Richard Gray, Lee Rottler, and Patrick Lowrance. This research has benefitted from the M, L, T, and Y dwarf compendium housed at DwarfArchives.org. We thank Sebastien Lepine for providing published spectra of his subdwarf standards. NR 212 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2016 VL 224 IS 2 AR 36 DI 10.3847/0067-0049/224/2/36 PG 60 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS8DK UT WOS:000381013200023 ER PT J AU Xue, YQ Luo, B Brandt, WN Alexander, DM Bauer, FE Lehmer, BD Yang, G AF Xue, Y. Q. Luo, B. Brandt, W. N. Alexander, D. M. Bauer, F. E. Lehmer, B. D. Yang, G. TI THE 2Ms CHANDRA DEEP FIELD-NORTH SURVEY AND THE 250 Ks EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: IMPROVED POINT-SOURCE CATALOGS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; cosmology: observations; diffuse radiation; galaxies: active; surveys; X-rays: galaxies ID X-RAY SOURCES; CCD IMAGING SPECTROMETER; ACTIVE GALACTIC NUCLEI; MS SOURCE CATALOGS; CHARGE-TRANSFER INEFFICIENCY; EXTRAGALACTIC LEGACY SURVEY; NEAR-INFRARED CATALOG; 1.4 GHZ OBSERVATIONS; YALE-CHILE MUSYC; GOODS-N FIELD AB We present improved point-source catalogs for the 2Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S) Surveys, implementing a number of recent improvements in Chandra source-cataloging methodology. For CDF-N/E-CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with WAVDETECT at a false-positive probability threshold of 10(-5) that also satisfy a binomial-probability source-selection criterion of P < 0.004/P < 0.002. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. CDF-N/Lehmer et al. E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same WAVDETECT threshold and having P of 0.004-0.1/0.002-0.1 and K-s <= 22.9/K-s <= 22.3 mag counterparts. For all approximate to 1800 CDF-N and E-CDF-S sources, including the approximate to 500 newly detected ones (these being generally fainter and more obscured), we determine X-ray source positions utilizing centroid and matched-filter techniques; we also provide multiwavelength identifications, apparent magnitudes of counterparts, spectroscopic and/or photometric redshifts, basic source classifications, and estimates of observed active galactic nucleus and galaxy source densities around respective field centers. Simulations show that both the CDF-N and E-CDF-S main catalogs are highly reliable and reasonably complete. Background and sensitivity analyses indicate that the on-axis mean flux limits reached represent a factor of approximate to 1.5-2.0 improvement over the previous CDF-N and E-CDF-S limits. We make our data products publicly available. C1 [Xue, Y. Q.] Chinese Acad Sci, Univ Sci & Technol China, Ctr Astrophys, Dept Astron,CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China. [Luo, B.; Brandt, W. N.; Yang, G.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Luo, B.; Brandt, W. N.; Yang, G.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Alexander, D. M.] Univ Durham, Ctr Extragalact Astron, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Bauer, F. E.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Lehmer, B. D.] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Lehmer, B. D.] Univ Arkansas, Dept Phys, 226 Phys Bldg,835 West Dickson St, Fayetteville, AR 72701 USA. RP Xue, YQ (reprint author), Chinese Acad Sci, Univ Sci & Technol China, Ctr Astrophys, Dept Astron,CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China. EM xuey@ustc.edu.cn OI Yang, Guang/0000-0001-8835-7722 FU National Thousand Young Talents program [KJ2030220004]; 973 Program [2015CB857004]; USTC startup funding [ZC9850290195]; National Natural Science Foundation of China [NSFC-11473026, 11421303]; Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences [XDB09000000]; Fundamental Research Funds for the Central Universities [WK3440000001]; Chandra X-ray Center [AR3-14015X, GO4-15130A]; Chandra ACIS team contract [SV4-74018]; Science and Technology Facilities Council [ST/I505656/1, ST/L00075X/1]; CONICYT-Chile [Basal-CATA PFB-06/2007, FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; Huntingdon Institute for X-ray Astronomy, LLC [SV2-82024] FX We thank the referees for their helpful feedback that improved this work. Y.Q.X. acknowledges support from the National Thousand Young Talents program (KJ2030220004), the 973 Program (2015CB857004), the USTC startup funding (ZC9850290195), the National Natural Science Foundation of China (NSFC-11473026, 11421303), the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (XDB09000000), and the Fundamental Research Funds for the Central Universities (WK3440000001). B.L., W.N.B., and G.Y. acknowledge support from Chandra X-ray Center grants AR3-14015X and GO4-15130A, and Chandra ACIS team contract SV4-74018. D.M.A. acknowledges support from the Science and Technology Facilities Council through grant codes ST/I505656/1 and ST/L00075X/1. F.E.B. acknowledges support from CONICYT-Chile (Basal-CATA PFB-06/2007, FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to the Millennium Institute of Astrophysics, MAS. The Guaranteed Time Observations (GTO) for the CDF-N included here were selected by the ACIS Instrument Principal Investigator, Gordon P. Garmire, currently of the Huntingdon Institute for X-ray Astronomy, LLC, which is under contract to the Smithsonian Astrophysical Observatory; Contract SV2-82024. NR 92 TC 2 Z9 2 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2016 VL 224 IS 2 AR 15 DI 10.3847/0067-0049/224/2/15 PG 49 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS8DK UT WOS:000381013200002 ER PT J AU Christensen, MW Behrangi, A L'ecuyer, TS Wood, NB Lebsock, MD Stephens, GL AF Christensen, Matthew W. Behrangi, Ali L'ecuyer, Tristan S. Wood, Norman B. Lebsock, Matthew D. Stephens, Graeme L. TI Arctic Observation and Reanalysis Integrated System: A New Data Product for Validation and Climate Study SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID CLOUDS C1 [Christensen, Matthew W.] Colorado State Univ, Ft Collins, CO 80523 USA. [Christensen, Matthew W.; Behrangi, Ali; Lebsock, Matthew D.; Stephens, Graeme L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [L'ecuyer, Tristan S.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA. [Wood, Norman B.] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI USA. RP Christensen, MW (reprint author), Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. EM matt.christensen@jpl.nasa.gov RI L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU NASA [NAS5-99237, NNN13D771T]; JPL CloudSat [1439268] FX We thank the following distribution centers for the data used to construct this product: NASA Goddard Earth Sciences Data and Information Center for AIRS, MODIS, MERRA, and GLDAS products; Centre for Environmental Data Analysis (CEDA) for ATSR-2 and AATSR ESA CCI_Cloud (European Space Agency Climate Change Initiative Cloud) products; CIRA for CloudSat data products; NASA Langley Research Center for CERES, GEWEX-SRB, and CALIOP data products; Jet Propulsion Laboratory (JPL) for GRACE products; National Snow and Ice Data Center, NOAA Earth System Research Laboratory for CMAP, GPCP, NCEP, GPCC, and climate indices; Automated Mutual-Assistance Vessel Rescue center for shipping data; National Center for Atmospheric Research for ASR; European Centre for Medium-range Weather Forecasts for ECWMF and MACC products; Climate Research Facility for ARM data; and the Cooperative Institute for Research in Environmental Sciences for GCNET products. We would also like to thank our programmer, Ryan Fuller, for his input and contributions to the construction of this integrated dataset. Part of the research was carried out at Colorado State University under NASA Grant NAS5-99237, and the other portion at JPL, Caltech, under a contract with NASA funded by Grant NNN13D771T and JPL CloudSat Subcontract 1439268. NR 6 TC 4 Z9 4 U1 7 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2016 VL 97 IS 6 BP 907 EP 915 DI 10.1175/BAMS-D-14-00273.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS1HA UT WOS:000380345200003 ER PT J AU Jain, A Kuo, C Jayakumar, P Cameron, J AF Jain, Abhinandan Kuo, Calvin Jayakumar, Paramsothy Cameron, Jonathan TI CONSTRAINT EMBEDDING FOR VEHICLE SUSPENSION DYNAMICS SO ARCHIVE OF MECHANICAL ENGINEERING LA English DT Article AB The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle. C1 [Jain, Abhinandan; Cameron, Jonathan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91016 USA. [Kuo, Calvin] Stanford Univ, Dept Mech Engn, Palo Alto, CA 91016 USA. [Jayakumar, Paramsothy] US Army TARDEC, 6501 E 11 Mile Rd, Warren, MI 48397 USA. RP Jain, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91016 USA. EM jain@jpl.nasa.gov; calvink@stanford.edu; paramsothy.jayakumar.civ@mail.mil; jmc@jpl.nasa.gov NR 11 TC 0 Z9 0 U1 3 U2 3 PU DE GRUYTER OPEN LTD PI WARSAW PA BOGUMILA ZUGA 32A ST, 01-811 WARSAW, POLAND SN 0004-0738 EI 2300-1895 J9 ARCH MECH ENG JI Arch. Mech. Eng. PD JUN PY 2016 VL 63 IS 2 BP 193 EP 213 DI 10.1515/meceng-2016-0011 PG 21 WC Engineering, Mechanical SC Engineering GA DT7AC UT WOS:000381635500002 ER PT J AU Heenan, A Gorospe, K Williams, I Levine, A Maurin, P Nadon, M Oliver, T Rooney, J Timmers, M Wongbusarakum, S Brainard, R AF Heenan, Adel Gorospe, Kelvin Williams, Ivor Levine, Arielle Maurin, Paulo Nadon, Marc Oliver, Thomas Rooney, John Timmers, Molly Wongbusarakum, Supin Brainard, Russell TI Ecosystem monitoring for ecosystem-based management: using a polycentric approach to balance information trade-offs SO JOURNAL OF APPLIED ECOLOGY LA English DT Article DE conservation; ecosystem approach; ecosystem-based fisheries management; fisheries assessment; long-term ecosystem monitoring ID FISHERIES MANAGEMENT C1 [Heenan, Adel; Gorospe, Kelvin; Nadon, Marc; Oliver, Thomas; Rooney, John; Timmers, Molly; Wongbusarakum, Supin] Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Heenan, Adel; Gorospe, Kelvin; Williams, Ivor; Nadon, Marc; Oliver, Thomas; Rooney, John; Timmers, Molly; Wongbusarakum, Supin; Brainard, Russell] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI 96813 USA. [Levine, Arielle] San Diego State Univ, Dept Geog, San Diego, CA 92182 USA. [Levine, Arielle; Maurin, Paulo] NOAA, Coral Reef Conservat Program, Baldwin Grp Inc, Silver Spring, MD 20910 USA. RP Heenan, A (reprint author), Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA.; Heenan, A (reprint author), NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI 96813 USA. EM adel.heenan@gmail.com NR 12 TC 3 Z9 3 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8901 EI 1365-2664 J9 J APPL ECOL JI J. Appl. Ecol. PD JUN PY 2016 VL 53 IS 3 BP 699 EP 704 DI 10.1111/1365-2664.12633 PG 6 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DR7FM UT WOS:000380065400009 ER PT J AU Schmieder, M Kring, DA Swindle, TD Bond, JC Moore, CB AF Schmieder, Martin Kring, David A. Swindle, Timothy D. Bond, Jade C. Moore, Carleton B. TI The Gao-Guenie impact melt breccia-Sampling a rapidly cooled impact melt dike on an H chondrite asteroid? SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR-SYSTEM; PARENT BODY; THERMAL HISTORY; COOLING RATE; IRON-METEORITES; FE-NI; REHEATED CHONDRITES; SHOCK METAMORPHISM; METALLIC PHASES; MAIN-BELT AB The Gao-Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact-melted on an H chondrite asteroid at similar to 300 Ma and, through later impact events in space, sent into an Earth-crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao-Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous-textured impact melt domain. Olivine is predominantly Fo(80-82). The clast domain contains low-Ca pyroxene. Impact melt-grown pyroxene is commonly zoned from low-Ca pyroxene in cores to pigeonite and augite in rims. Metal-troilite orbs in the impact melt domain measure up to similar to 2 mm across. The cores of metal orbs in the impact melt domain contain similar to 7.9 wt% of Ni and are typically surrounded by taenite and Ni-rich troilite. The metallography of metal-troilite droplets suggest a stage I cooling rate of order 10 degrees C s(-1) for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao-Guenie impact melt breccia and the impact-melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of similar to 5000-40,000 degrees C yr(-1). A simple model of conductive heat transfer shows that the Gao-Guenie impact melt breccia may have formed in a melt injection dike similar to 0.5-5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid. C1 [Schmieder, Martin; Kring, David A.] Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. [Schmieder, Martin; Kring, David A.] NASA, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA USA. [Swindle, Timothy D.] Univ Arizona, Lunar & Planetary Lab, 1629 East Univ Blvd, Tucson, AZ 85721 USA. [Bond, Jade C.] Univ New S Wales, Sch Phys, Dept Astrophys, Sydney, NSW 2052, Australia. [Moore, Carleton B.] Arizona State Univ, Ctr Meteorite Studies, Tempe, AZ 85287 USA. RP Schmieder, M (reprint author), Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA.; Schmieder, M (reprint author), NASA, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA USA. EM schmieder@lpi.usra.edu FU NASA Solar System Exploration Research Virtual Institute [NNA14AB07A] FX We acknowledge the earlier contributions of Dr. Claudia M. Jones (Berkeley) during her time as a student at the University of Arizona. Drs. Anne Peslier and Kent Ross (Jacobs, NASA Johnson Space Center) are thanked for their technical support in electron microprobe analysis. We thank the reviewers Drs. Alan Rubin (UCLA) and Axel Wittmann (ASU) for their very helpful suggestions that significantly improved the quality of our article, as well as Associate Editor Dr. Gordon Osinski for his thorough handling of this article. This work was supported by NASA Solar System Exploration Research Virtual Institute contract NNA14AB07A (David A. Kring PI). The authors confirm that there is no conflict of interest associated with this study. This is LPI Contribution #1907. NR 126 TC 1 Z9 1 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2016 VL 51 IS 6 BP 1022 EP 1045 DI 10.1111/maps.12642 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS0GL UT WOS:000380273400002 ER PT J AU Harries, D Zolensky, ME AF Harries, Dennis Zolensky, Michael E. TI Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID NI-S SYSTEM; AQUEOUS ALTERATION; PHASE-RELATIONS; PARENT BODY; CHONDRITES; PYRRHOTITE; METEORITE; PENTLANDITE; EXSOLUTION; ASSEMBLAGES AB The polymict Kaidun microbreccia contains lithologies of C-type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB-TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe-rich pyrrhotite with nonintegral vacancy superstructures (NC-pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe-Ni-S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100-300 degrees C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light delta S-34 compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of S-34-enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe-poor, monoclinic 4C-pyrrhotite and NC-pyrrhotite and probably formed at lower temperatures and higher fS(2) relative to the CM1 lithology. However, a better understanding of the stability of Fe-poor pyrrhotites at temperatures below 300 degrees C is required to better constrain these conditions. C1 [Harries, Dennis] Univ Jena, Inst Geosci, Carl Zeiss Promenade 10, D-07445 Jena, Germany. [Zolensky, Michael E.] NASA, Johnson Space Ctr, Astromat Res & Explorat Sci, Houston, TX 77058 USA. RP Harries, D (reprint author), Univ Jena, Inst Geosci, Carl Zeiss Promenade 10, D-07445 Jena, Germany. EM dennis.harries@uni-jena.de RI Harries, Dennis/P-1755-2016 FU German Research Foundation (DFG) [LA 830/14-1, HA 7187/1-1]; NASA FX D.H. gratefully acknowledges support by the German Research Foundation (DFG grants LA 830/14-1 and HA 7187/1-1). M.Z. thanks the NASA Cosmochemistry Program for support. The Kaidun section was provided by Andrey Ivanov and the Vernadsky Institute. Falko Langenhorst is thanked for supporting and discussing the FIB-TEM work. Helpful reviews and editorial comments by Emma Bullock, Martin Lee, and Ed Scott are gratefully acknowledged. NR 52 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2016 VL 51 IS 6 BP 1096 EP 1109 DI 10.1111/maps.12648 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS0GL UT WOS:000380273400006 ER PT J AU Liebe, CC Murphy, N Dorsky, L Udomkesmalee, N AF Liebe, Carl C. Murphy, Neil Dorsky, Len Udomkesmalee, Nythi TI Three-Axis Sun Sensor for Attitude Determination SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article C1 [Liebe, Carl C.; Murphy, Neil; Dorsky, Len; Udomkesmalee, Nythi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Liebe, Carl C.; Murphy, Neil; Dorsky, Len; Udomkesmalee, Nythi] Jet Prop Lab, Sect 344,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Liebe, CC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.; Liebe, CC (reprint author), Jet Prop Lab, Sect 344,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM carl.c.liebe@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the JET, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration. NR 10 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 EI 1557-959X J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD JUN PY 2016 VL 31 IS 6 BP 6 EP 11 DI 10.1109/MAES.2010.150024 PG 6 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA DR6VM UT WOS:000380039400002 ER PT J AU Yan, K Park, T Yan, GJ Liu, Z Yang, B Chen, C Nemani, RR Knyazikhin, Y Myneni, RB AF Yan, Kai Park, Taejin Yan, Guangjian Liu, Zhao Yang, Bin Chen, Chi Nemani, Ramakrishna R. Knyazikhin, Yuri Myneni, Ranga B. TI Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison SO REMOTE SENSING LA English DT Article DE Leaf Area Index (LAI); Fraction of Photosynthetically-Active Radiation (FPAR); MODIS; Collection 6; evaluation; validation; intercomparison ID LEAF-AREA INDEX; ESSENTIAL CLIMATE VARIABLES; CYCLOPES GLOBAL PRODUCTS; LAI PRODUCTS; VEGETATION INDEX; GEOV1 LAI; SERIES; FAPAR; PRINCIPLES; ALGORITHM AB The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product (MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three approaches: validation with field measurements, intercomparison with other LAI/FPAR products and comparison with climate variables. Comparisons between ground measurements and C6, as well as C5 LAI/FPAR indicate: (1) MODIS LAI is closer to true LAI than effective LAI; (2) the C6 product is considerably better than C5 with RMSE decreasing from 0.80 down to 0.66; (3) both C5 and C6 products overestimate FPAR over sparsely-vegetated areas. Intercomparisons with three existing global LAI/FPAR products (GLASS, CYCLOPES and GEOV1) are carried out at site, continental and global scales. MODIS and GLASS (CYCLOPES and GEOV1) agree better with each other. This is expected because the surface reflectances, from which these products were derived, were obtained from the same instrument. Considering all biome types, the RMSE of LAI (FPAR) derived from any two products ranges between 0.36 (0.05) and 0.56 (0.09). Temporal comparisons over seven sites for the 2001-2004 period indicate that all products properly capture the seasonality in different biomes, except evergreen broadleaf forests, where infrequent observations due to cloud contamination induce unrealistic variations. Thirteen years of C6 LAI, temperature and precipitation time series data are used to assess the degree of correspondence between their variations. The statistically-significant associations between C6 LAI and climate variables indicate that C6 LAI has the potential to provide reliable biophysical information about the land surface when diagnosing climate-driven vegetation responses. C1 [Yan, Kai; Yan, Guangjian] Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China. [Yan, Kai; Park, Taejin; Liu, Zhao; Yang, Bin; Chen, Chi; Knyazikhin, Yuri; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Yang, Bin] Peking Univ, Beijing Key Lab Spatial Informat Integrat & Its A, Inst RS & GIS, Beijing 100871, Peoples R China. [Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Yan, GJ (reprint author), Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China. EM kaiyan.earthscience@gmail.com; taejin1392@gmail.com; gjyan@bnu.edu.cn; liuzhaofairy@gmail.com; ybjason@bu.edu; chenchi@bu.edu; rama.nemani@nasa.gov; jknjazi@bu.edu; ranga.myneni@gmail.com RI Myneni, Ranga/F-5129-2012; OI Yan, Guangjian/0000-0001-5030-748X; yan, kai/0000-0003-4262-1772; Yang, Bin/0000-0001-6127-3385 FU MODIS program of NASA; National Basic Research Program of China [2013CB733402]; NSFC [41331171]; China Scholarship Council FX Help from MODIS and VIIRS Science team members is gratefully acknowledged. This work is supported by the MODIS program of NASA and partially funded by the National Basic Research Program of China (Grant No. 2013CB733402) and the key program of NSFC (Grant No. 41331171). Kai Yan gives thanks for the scholarship from the China Scholarship Council. NR 40 TC 0 Z9 0 U1 9 U2 10 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2016 VL 8 IS 6 AR 460 DI 10.3390/rs8060460 PG 26 WC Remote Sensing SC Remote Sensing GA DR6BE UT WOS:000379985300020 ER PT J AU Yang, Y Saatchi, SS Xu, L Yu, YF Lefsky, MA White, L Knyazikhin, Y Myneni, RB AF Yang, Yan Saatchi, Sassan S. Xu, Liang Yu, Yifan Lefsky, Michael A. White, Lee Knyazikhin, Yuri Myneni, Ranga B. TI Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height SO REMOTE SENSING LA English DT Article DE tropical forest; height; lidar; climate; soil; biomass ID CLIMATE-CHANGE; ABOVEGROUND BIOMASS; DROUGHT SENSITIVITY; RAIN-FOREST; SRTM DATA; CARBON; GROWTH; AMAZON; VARIABILITY; PATTERNS AB Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS) satellite observations (2004-2008). We used top canopy height (TCH) of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM) to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and influencing patterns of aboveground biomass stocks and dynamics. Other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics. C1 [Yang, Yan; Saatchi, Sassan S.; Xu, Liang] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA. [Yang, Yan; Knyazikhin, Yuri; Myneni, Ranga B.] Boston Univ, Earth & Environm, Boston, MA 02215 USA. [Saatchi, Sassan S.; Yu, Yifan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Lefsky, Michael A.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [White, Lee] Agence Natl Pk Nationaux, Battery 4,BP 20379, Libreville, Gabon. RP Saatchi, SS (reprint author), Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA.; Saatchi, SS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yangyannn@gmail.com; Saatchi@jpl.nasa.gov; bireme@gmail.com; yifan.f.yu@jpl.nasa.gov; lefsky@gmail.com; lwhite@parcsgabon.ga; jknjazi@bu.edu; ranga.myneni@gmail.com RI Myneni, Ranga/F-5129-2012; OI Xu, Liang/0000-0001-7400-3827 FU Gabon National Park (ANPN) at UCLA [011-ANPN/2012/SE-LJTW] FX The research was funded by Gabon National Park (ANPN) under the contract of 011-ANPN/2012/SE-LJTW at UCLA. We thank IIASA, FAO, USGS, NASA, Worldclim science teams for making their data available. NR 64 TC 0 Z9 0 U1 9 U2 10 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2016 VL 8 IS 6 AR 494 DI 10.3390/rs8060494 PG 18 WC Remote Sensing SC Remote Sensing GA DR6BE UT WOS:000379985300053 ER PT J AU Yu, YF Saatchi, S AF Yu, Yifan Saatchi, Sassan TI Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests SO REMOTE SENSING LA English DT Article DE radar; biomass; saturation; ALOS PALSAR; GLAS; NISAR ID TERRESTRIAL CARBON-CYCLE; SPATIAL VARIABILITY; RADAR BACKSCATTER; TROPICAL REGIONS; BOREAL FORESTS; DENSE FORESTS; VEGETATION; AIRBORNE; MAP; INTERFEROMETRY AB Synthetic Aperture Radar (SAR) backscatter measurements are sensitive to forest aboveground biomass (AGB), and the observations from space can be used for mapping AGB globally. However, the radar sensitivity saturates at higher AGB values depending on the wavelength and geometry of radar measurements, and is influenced by the structure of the forest and environmental conditions. Here, we examine the sensitivity of SAR at the L-band frequency (similar to 25 cm wavelength) to AGB in order to examine the performance of future joint National Aeronautics and Space Administration, Indian Space Research Organisation NASA-ISRO SAR mission in mapping the AGB of global forests. For SAR data, we use the Phased Array L-Band SAR (PALSAR) backscatter from the Advanced Land Observing Satellite (ALOS) aggregated at a 100-m spatial resolution; and for AGB data, we use more than three million AGB values derived from the Geoscience Laser Altimeter System (GLAS) LiDAR height metrics at about 0.16-0.25 ha footprints across eleven different forest types globally. The results from statistical analysis show that, over all eleven forest types, saturation level of L-band radar at HV polarization on average remains >= 100 Mgha(-1). Fresh water swamp forests have the lowest saturation with AGB at similar to 80 Mgha(-1), while needleleaf forests have the highest saturation at similar to 250 Mgha(-1). Swamp forests show a strong backscatter from the vegetation-surface specular reflection due to inundation that requires to be treated separately from those on terra firme. Our results demonstrate that L-Band backscatter relations to AGB can be significantly different depending on forest types and environmental effects, requiring multiple algorithms to map AGB from time series of satellite radar observations globally. C1 [Yu, Yifan; Saatchi, Sassan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Yu, YF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yifany@ucla.edu; saatchi@jpl.nasa.gov FU National Aeronautic and Space Administration as part of the NASA grant [209249.04.01.01.19] FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract from National Aeronautic and Space Administration, as part of the NASA grant for NISAR science team member for biomass algorithm development (209249.04.01.01.19). NR 49 TC 0 Z9 0 U1 13 U2 13 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2016 VL 8 IS 6 DI 10.3390/rs8060522 PG 18 WC Remote Sensing SC Remote Sensing GA DR6BE UT WOS:000379985300081 ER PT J AU Durand, M Gleason, CJ Garambois, PA Bjerklie, D Smith, LC Roux, H Rodriguez, E Bates, PD Pavelsky, TM Monnier, J Chen, X Di Baldassarre, G Fiset, JM Flipo, N Frasson, RPDM Fulton, J Goutal, N Hossain, F Humphries, E Minear, JT Mukolwe, MM Neal, JC Ricci, S Sanders, BF Schumann, G Schubert, JE Vilmin, L AF Durand, M. Gleason, C. J. Garambois, P. A. Bjerklie, D. Smith, L. C. Roux, H. Rodriguez, E. Bates, P. D. Pavelsky, T. M. Monnier, J. Chen, X. Di Baldassarre, G. Fiset, J. -M. Flipo, N. Frasson, R. P. D. M. Fulton, J. Goutal, N. Hossain, F. Humphries, E. Minear, J. T. Mukolwe, M. M. Neal, J. C. Ricci, S. Sanders, B. F. Schumann, G. Schubert, J. E. Vilmin, L. TI An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope SO WATER RESOURCES RESEARCH LA English DT Article DE discharge algorithms; remote sensing of rivers; SWOT ID STATIONS HYDRAULIC GEOMETRY; SATELLITE ALTIMETRY; GLOBAL-SCALE; PARAMETER-ESTIMATION; WATER-SURFACE; FLOOD WAVE; IMAGERY; OPTIMIZATION; ASSIMILATION; EQUATIONS AB The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily remote sensing measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results. C1 [Durand, M.; Frasson, R. P. D. M.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Durand, M.; Frasson, R. P. D. M.] Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH 43210 USA. [Gleason, C. J.] Univ Massachusetts, Dept Civil & Environm Engn, Amherst, MA 01003 USA. [Garambois, P. A.] INSA Strasbourg, Dept Civil Engn, Fluid Mech Team, ICUBE, Strasbourg, France. [Bjerklie, D.] USGS, Connecticut Water Sci Ctr, Hartford, CT USA. [Smith, L. C.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA. [Roux, H.] Univ Toulouse, Inst Mecan Fluides Toulouse, INPT, UPS, Toulouse, France. [Roux, H.] CNRS, IMFT, Toulouse, France. [Rodriguez, E.] NASA, Jet Prop Lab, Pasadena, CA USA. [Bates, P. D.; Neal, J. C.; Schumann, G.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Pavelsky, T. M.; Humphries, E.] Univ N Carolina, Dept Geol Sci, Chapel Hill, NC USA. [Monnier, J.] INSA, Inst Math Toulouse, Toulouse, France. [Chen, X.] NOAA NWS Ohio River Forecast Ctr, Wilmington, OH USA. [Di Baldassarre, G.] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden. [Fiset, J. -M.] Environm Canada, Quebec City, PQ, Canada. [Flipo, N.; Vilmin, L.] PSL Res Univ, MINES ParisTech, Ctr Geosci, Paris, France. [Fulton, J.] USGS Colorado Water Sci Ctr, Lakewood, CO USA. [Goutal, N.] Univ Paris Est, St Venant Lab Hydraul & EDF R&D, Champs Sur Marne, France. [Hossain, F.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Minear, J. T.] USGS Geomorphol & Sediment Transport Lab, Golden, CO USA. [Mukolwe, M. M.] UNESCO IHE Inst Water Educ, Delft, Netherlands. [Ricci, S.] CERFACS CNRS, CECI, Toulouse, France. [Sanders, B. F.; Schubert, J. E.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. [Schumann, G.] Remote Sensing Solut Inc, Monrovia, CA USA. RP Durand, M (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.; Durand, M (reprint author), Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH 43210 USA. EM durand.8@osu.edu RI Di Baldassarre, Giuliano/C-7304-2009; Bates, Paul/C-8026-2012; Smith, Laurence/E-7785-2012; OI Di Baldassarre, Giuliano/0000-0002-8180-4996; Bates, Paul/0000-0001-9192-9963; Smith, Laurence/0000-0001-6866-5904; Frasson, Renato Prata de Moraes/0000-0003-4299-1730 FU NASA SWOT Science Definition Team [NNX13AD96G, NNX13AD88G]; NASA Terrestrial Hydrology Program [NNX13AD05G]; NASA SWOT Algorithm Definition Team; CNES SWOT Science Definition Team FX Funding for this work was provided by NASA SWOT Science Definition Team grants NNX13AD96G and NNX13AD88G, NASA Terrestrial Hydrology Program grant NNX13AD05G, NASA SWOT Algorithm Definition Team, and CNES SWOT Science Definition Team grant (TOSCA). The authors thank Alison Macneil of the NOAA/National Weather Service Northeast River Forecast Center for providing the Connecticut River HEC-RAS model, and Albert Kettner for providing WBM discharge estimates. Mike Jasinski and two anonymous reviewers provided comments that helped improve the quality of the manuscript. If interested in gaining access to data or codes utilized in this study, contact Michael Durand (durand.8@osu.edu). NR 72 TC 2 Z9 2 U1 9 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN PY 2016 VL 52 IS 6 BP 4527 EP 4549 DI 10.1002/2015WR018434 PG 23 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DR7SO UT WOS:000380100200018 ER PT J AU Hensley, S Moller, D Oveisgharan, S Michel, T Wu, XQ AF Hensley, Scott Moller, Delwyn Oveisgharan, Shadi Michel, Thierry Wu, Xiaoqing TI Ka-Band Mapping and Measurements of Interferometric Penetration of the Greenland Ice Sheets by the GLISTIN Radar SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article; Proceedings Paper CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS) CY JUL 26-31, 2015 CL Milan, ITALY SP IEEE DE Glaciers; ice sheets; interferometry; Ka-band; penetration; radar ID SNOW ACCUMULATION; DRY-SNOW; PERMITTIVITY; SCATTERING; MEDIA; LAND; HOAR AB Measuring ice surface topography over the major ice caps of Greenland and Antarctica is crucial to quantifying and understanding the effect of climate change on the Earth's environment. Multiple sensors including radars, lidars, and optical systems have been utilized in making these measurements. To integrate data from these multiple sensors into a coherent and self-consistent history of ice cap topography requires knowledge of where vertically within the snow volume the elevation measurement corresponds. This paper examines the penetration of a Ka-band cross-track interferometric radar into the dry firn at Greenland's summit using the NASA GLISTIN Ka-band interferometric radar. GLISTIN elevation measurements are compared to NASA Wallop's Airborne Terrain Mapper lidar and kinematic GPS survey measurements to assess the amount of relative penetration with GPS-surveyed corner reflectors deployed to establish the absolute vertical positioning of the radar data. We found an interferometric penetration depth estimate of 27 +/- 0.3 cm. Moreover, we compare these penetration measurements to model derived estimates of the amount of interferometric penetration and provide sensitivity analysis of the amount of penetration to various ice properties. Interferometric radar mapping systems also have the ability to make wide swath topographic measurements over a wide range of weather conditions either day or night making them ideal instruments for wide area mapping. We illustrate this aspect of interferometric radar mapping with a mosaic of 24 passes of the GLISTIN instrument of the Jakobshavn Glacier area. C1 [Hensley, Scott; Oveisgharan, Shadi; Michel, Thierry; Wu, Xiaoqing] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Moller, Delwyn] Remote Sensing Solut Inc, Barnstable, MA 02630 USA. RP Moller, D (reprint author), Remote Sensing Solut Inc, Barnstable, MA 02630 USA. EM scott.hensley@jpl.nasa.gov; dkmoller@remotesensingsolutions.com; Shadi.Oveisgharan@jpl.nasa.gov; Thierry.R.Michel@jpl.nasa.gov; Xiaoqing.Wu@jpl.nasa.gov NR 32 TC 1 Z9 1 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2016 VL 9 IS 6 SI SI BP 2436 EP 2450 DI 10.1109/JSTARS.2016.2560626 PG 15 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DR5HW UT WOS:000379935100029 ER PT J AU Maiwald, F Montes, O Padmanabhan, S Michaels, D Kitiyakara, A Jarnot, R Brown, ST Dawson, D Wu, A Hatch, W Stek, P Gaier, T AF Maiwald, Frank Montes, Oliver Padmanabhan, Sharmila Michaels, Darren Kitiyakara, Amarit Jarnot, Robert Brown, Shannon T. Dawson, Douglas Wu, Amy Hatch, William Stek, Paul Gaier, Todd TI Reliable and Stable Radiometers for Jason-3 SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article; Proceedings Paper CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS) CY JUL 26-31, 2015 CL Milan, ITALY SP IEEE DE Earth observation; internal noise source; microwave radiometer; radiometer performance ID CALIBRATION; PERFORMANCE; ANTENNA AB The Jason-3 mission employs the Advanced Microwave Radiometer (AMR) to provide a tropospheric path delay measurement in support of ocean altimetry. NOAA and EUMETSAT are Jason-3 lead agencies with CNES and NASA/JPL providing implementation support. Jason-3 continues the measurements of TOPEX/Poseidon [1], [2], Jason-1, and Ocean Surface Topography Mission (OSTM)/Jason-2 supporting a multidecadal ocean topography studies, including ocean circulation, climate change, hurricane intensity forecasts, and sea level change. The objective of the Jason-3 AMR is to measure the columnar water vapor in the path of the Poseidon radar altimeter (CNES instrument) to correct for water in the atmospheric path delay in the altimeter range measurement. In this paper, the design and performance of AMR are described along with the changes made compared to the predecessor Jason-2 instrument to reduce development risks and improve the stability of the AMR instrument. C1 [Maiwald, Frank; Montes, Oliver; Padmanabhan, Sharmila; Michaels, Darren; Kitiyakara, Amarit; Jarnot, Robert; Brown, Shannon T.; Dawson, Douglas; Wu, Amy; Hatch, William; Stek, Paul; Gaier, Todd] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Maiwald, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Frank.Maiwald@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2016 VL 9 IS 6 SI SI BP 2754 EP 2762 DI 10.1109/JSTARS.2016.2535281 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DR5HW UT WOS:000379935100058 ER PT J AU Lou, YL Clark, D Marks, P Muellerschoen, RJ Wang, CC AF Lou, Yunling Clark, Duane Marks, Phillip Muellerschoen, Ronald J. Wang, Charles C. TI Onboard Radar Processor Development for Rapid Response to Natural Hazards SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article; Proceedings Paper CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS) CY JUL 26-31, 2015 CL Milan, ITALY SP IEEE DE On-board processor (OBP); rapid response; real-time processing; synthetic aperture radar (SAR); UAVSAR ID POLARIMETRIC SAR; MANAGEMENT; EARTHQUAKE AB The unique capabilities of imaging radar to penetrate cloud cover and collect data in darkness over large areas at high resolution makes it a key information provider for the management and mitigation of natural and human-induced hazards. Researchers have demonstrated the use of UAVSAR data to determine flood extent, forest fire extent, lava flow, and landslide. Data latency of at most 2-3 h is required for the radar data to be of use to the disaster responders. We have developed a UAVSAR on-board processor for real time and autonomous operations that has high fidelity and accuracy to enable timely generation of polarimetric and interferometric data products for rapid response applications. This on-board processor design provides a space-qualification path for technology infusion into future space missions in a high-radiation environment with modest power and weight allocations. The processor employs a hybrid architecture where computations are divided between field-programmable gate arrays, which are better suited to rapid, repetitious computations, and a microprocessor with a floating-point coprocessor that is better suited to the less frequent and irregular computations. Prior to implementing phase preserving processor algorithms in FPGA code, we developed a bit-true processor model in MATLAB that is modularized and parameterized for ease of testing and the ability to tradeoff processor design with performance. The on-board processor has been demonstrated on UAVSAR flights. C1 [Lou, Yunling; Clark, Duane; Marks, Phillip; Muellerschoen, Ronald J.; Wang, Charles C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wang, Charles C.] Qualcomm Corp, Irvine, CA 92618 USA. RP Lou, YL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Yunling.Lou@jpl.nasa.gov; Duane.I.Clark@jpl.nasa.gov; phillip.marks@jpl.nasa.gov; Ronald.J.Muellerschoen@jpl.nasa.gov; charles.wang@stanfordalumni.org NR 23 TC 0 Z9 0 U1 11 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2016 VL 9 IS 6 SI SI BP 2770 EP 2776 DI 10.1109/JSTARS.2016.2558505 PG 7 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DR5HW UT WOS:000379935100060 ER PT J AU Wada, Y de Graaf, IEM van Beek, LPH AF Wada, Yoshihide de Graaf, Inge E. M. van Beek, Ludovicus P. H. TI High-resolution modeling of human and climate impacts on global water resources SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE high-resolution modeling; global hydrology; human impacts; climate variability; groundwater; water scarcity ID NORTH-AMERICAN DROUGHT; GROUNDWATER DEPLETION; INTEGRATED MODEL; SURFACE-WATER; IRRIGATION; VARIABILITY; BALANCE; PARAMETERIZATION; AVAILABILITY; REQUIREMENTS AB A number of global hydrological models [GHMs) have been developed in recent decades in order to understand the impacts of climate variability and human activities on water resources availability. The spatial resolution of GHMs is mostly constrained at a 0.5 degrees by 0.5 degrees grid [approximate to 50km by approximate to 50km at the equator). However, for many of the water-related problems facing society, the current spatial scale of GHMs is insufficient to provide locally relevant information. Here using the PCR-GLOBWB model we present for the first time an analysis of human and climate impacts on global water resources at a 0.1 degrees by 0.1 degrees grid [approximate to 10km by approximate to 10km at the equator) in order to depict more precisely regional variability in water availability and use. Most of the model input data (topography, vegetation, soil properties, routing, human water use) have been parameterized at a 0.1 degrees global grid and feature a distinctively higher resolution. Distinct from many other GHMs, PCR-GLOBWB includes groundwater representation and simulates groundwater heads and lateral groundwater flows based on MODFLOW with existing geohydrological information. This study shows that global hydrological simulations at higher spatial resolutions are feasible for multi-decadal to century periods. C1 [Wada, Yoshihide] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. [Wada, Yoshihide; de Graaf, Inge E. M.; van Beek, Ludovicus P. H.] Univ Utrecht, Dept Phys Geog, NL-3584 CS Utrecht, Netherlands. [Wada, Yoshihide] Int Inst Appl Syst Anal, Laxenburg, Austria. [de Graaf, Inge E. M.] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. RP Wada, Y (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.; Wada, Y (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA.; Wada, Y (reprint author), Univ Utrecht, Dept Phys Geog, NL-3584 CS Utrecht, Netherlands.; Wada, Y (reprint author), Int Inst Appl Syst Anal, Laxenburg, Austria. EM y.wada@uu.nl RI van Beek, Rens/B-4904-2014 OI van Beek, Rens/0000-0002-4758-108X FU Japan Society for the Promotion of Science (JSPS) [JSPS-2014-878] FX We cordially thank two anonymous referees for their thorough review and constructive comments, which have substantially improved the quality of the manuscript. Y. Wada is supported by Japan Society for the Promotion of Science (JSPS) Oversea Research Fellowship (grant JSPS-2014-878). The PCR-GLOBWB model is an open source hydrological model that can be obtained from Utrecht University (http://www.globalhydrology.nl/models/pcr-globwb-2-0/). NR 98 TC 1 Z9 1 U1 8 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD JUN PY 2016 VL 8 IS 2 BP 735 EP 763 DI 10.1002/2015MS000618 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR7II UT WOS:000380072800013 ER PT J AU Sasai, T Obikawa, H Murakami, K Kato, S Matsunaga, T Nemani, RR AF Sasai, Takahiro Obikawa, Hiroki Murakami, Kazutaka Kato, Soushi Matsunaga, Tsuneo Nemani, Ramakrishna R. TI Estimation of net ecosystem production in Asia using the diagnostic-type ecosystem model with a 10km grid-scale resolution SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE net ecosystem production; terrestrial carbon cycle; ecosystem; remote sensing; climate change; BEAMS ID EAST-ASIA; CARBON-CYCLE; TERRESTRIAL ECOSYSTEMS; CLIMATE-CHANGE; INTERANNUAL VARIABILITY; SURFACE; FORESTS; CO2; TEMPERATURE; CHINA AB The terrestrial carbon cycle in Asia is highly uncertain, and it affects our understanding of global warming. One of the important issues is the need for an enhancement of spatial resolution, since local regions in Asia are heterogeneous with regard to meteorology, land form, and land cover type, which greatly impacts the detailed spatial patterns in its ecosystem. Thus, an important goal of this study is to reasonably reproduce the heterogeneous biogeochemical patterns in Asia by enhancing the spatial resolution of the ecosystem model biosphere model integrating eco-physiological and mechanistic approaches using satellite data (BEAMS). We estimated net ecosystem production (NEP) over eastern Asia and examined the spatial differences in the factors controlling NEP by using a 10km grid-scale approach over two different decades (2001-2010 and 2091-2100). The present and future meteorological inputs were derived from satellite observations and the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) data set, respectively. The results showed that the present NEP in whole eastern Asia was carbon source (-214.9TgCyr(-1)) and in future scenarios, the greatest positive (76.4TgCyr(-1)) and least negative (-95.9TgCyr(-1)) NEPs were estimated from the Representative Concentration Pathways (RCP) 6.0 and RCP8.5 scenarios, respectively. Calculated annual NEP in RCP8.5 was mostly positive in the southern part of East Asia and Southeast Asia and negative in northern and central parts of East Asia. Under the RCP scenario with higher greenhouse gases emission (RCP8.5), deciduous needleleaf and mixed forests distributed in the middle and high latitudes served as carbon source. In contrast, evergreen broadleaf forests distributed in low latitudes served as carbon sink. The sensitivity study demonstrated that the spatial tendency of NEP was largely influenced by atmospheric CO2 and temperature. C1 [Sasai, Takahiro] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi, Japan. [Obikawa, Hiroki] NTT DATA Corp, Tokyo, Japan. [Murakami, Kazutaka; Matsunaga, Tsuneo] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Kato, Soushi] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Nemani, Ramakrishna R.] NASA Ames Res Ctr, Moffett Field, CA USA. RP Sasai, T (reprint author), Tohoku Univ, Grad Sch Sci, Sendai, Miyagi, Japan. EM taka.s.h.g@gmail.com FU National Institute for Environmental Studies (NIES) GOSAT-2 project; Global Change Observation Mission (GCOM: PI) of the Japan Aerospace Exploration Agency (JAXA) [102]; Social Implementation Program on Climate Change Adaptation Technology (SI-CAT); Japan Society for the Promotion of Science (JSPS) KAKENHI [25281003] FX The corresponding author is deeply grateful to Kazuhito Ichii, Nobuko Saigusa, Kenlo Nasahara, and Kuniaki Miyamoto. And we thank an anonymous reviewer for helpful scientific and technical suggestions. We are also grateful to the MODIS (https://lpdaac.usgs.gov), JRA-55 reanalysis (http://jra.kishou.go.jp), GPCP (http://precip.gsfc.nasa.gov), atmospheric CO2 (http://cdiac.ornl.gov), soil data set (https://daac.ornl.gov) producers (NASA, JMA, JAXA/JASMES, CDIAC, and IGBP), and their collaborators. All data for this paper are properly cited and referred to in the reference list. A part of this research was supported by the National Institute for Environmental Studies (NIES) GOSAT-2 project, the Global Change Observation Mission (GCOM: PI#102) of the Japan Aerospace Exploration Agency (JAXA), the Social Implementation Program on Climate Change Adaptation Technology (SI-CAT), and the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant 25281003). NR 73 TC 0 Z9 0 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUN PY 2016 VL 121 IS 6 BP 1484 EP 1502 DI 10.1002/2015JG003157 PG 19 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DR5TJ UT WOS:000379965000007 ER PT J AU Dey, A Chroneos, A Braithwaite, NS Gandhiraman, RP Krishnamurthy, S AF Dey, A. Chroneos, A. Braithwaite, N. St J. Gandhiraman, Ram P. Krishnamurthy, S. TI Plasma engineering of graphene SO APPLIED PHYSICS REVIEWS LA English DT Review ID NITROGEN-DOPED GRAPHENE; CHEMICAL-VAPOR-DEPOSITION; SENSITIZED SOLAR-CELLS; LITHIUM-ION BATTERIES; SINGLE-LAYER GRAPHENE; ATMOSPHERIC-PRESSURE; CARBON NANOTUBES; COUNTER ELECTRODES; MONOLAYER GRAPHENE; FUEL-CELL AB Recently, there have been enormous efforts to tailor the properties of graphene. These improved properties extend the prospect of graphene for a broad range of applications. Plasmas find applications in various fields including materials science and have been emerging in the field of nanotechnology. This review focuses on different plasma functionalization processes of graphene and its oxide counterpart. The review aims at the advantages of plasma functionalization over the conventional doping techniques. Selectivity and controllability of the plasma techniques opens up future pathways for large scale, rapid functionalization of graphene for advanced applications. We also emphasize on atmospheric pressure plasma jet as the future prospect of plasma based functionalization processes. Published by AIP Publishing. C1 [Dey, A.; Krishnamurthy, S.] Open Univ, Mat Engn, Milton Keynes MK7 6AA, Bucks, England. [Chroneos, A.] Coventry Univ, Fac Engn Environm & Comp, Priory St, Coventry CV1 5FB, W Midlands, England. [Chroneos, A.] Imperial Coll London, Dept Mat, London SW7 2AZ, England. [Braithwaite, N. St J.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Gandhiraman, Ram P.] NASA, Ames Res Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. RP Krishnamurthy, S (reprint author), Open Univ, Mat Engn, Milton Keynes MK7 6AA, Bucks, England. EM Satheesh.Krishnamurthy@open.ac.uk OI DEY, Avishek/0000-0003-3256-1825 FU British Council; DST UK India Education and Research Initiative FX A.D. would like to thank The Open University for the financial support for pursuing his Ph.D. S.K. gratefully acknowledges the support from British Council and DST UK India Education and Research Initiative. NR 144 TC 3 Z9 3 U1 47 U2 72 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1931-9401 J9 APPL PHYS REV JI Appl. Phys. Rev. PD JUN PY 2016 VL 3 IS 2 AR 021301 DI 10.1063/1.4947188 PG 19 WC Physics, Applied SC Physics GA DQ4GG UT WOS:000379161500002 ER PT J AU Stamenkovic, V Hoink, T Lenardic, A AF Stamenkovic, V. Hoink, T. Lenardic, A. TI The importance of temporal stress variation and dynamic disequilibrium for the initiation of plate tectonics SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE planetary geodynamics; plate tectonics; comparative planetology; models; interior evolution ID TEMPERATURE-DEPENDENT VISCOSITY; 3-DIMENSIONAL THERMAL-CONVECTION; HIGH-RAYLEIGH-NUMBER; MANTLE CONVECTION; SUPER-EARTHS; TERRESTRIAL PLANETS; SPHERICAL-SHELL; HIGH-PRESSURE; SCALING LAWS; EVOLUTION AB We use 1-D thermal history models and 3-D numerical experiments to study the impact of dynamic thermal disequilibrium and large temporal variations of normal and shear stresses on the initiation of plate tectonics. Previous models that explored plate tectonics initiation from a steady state, single plate mode of convection concluded that normal stresses govern the initiation of plate tectonics, which based on our 1-D model leads to plate yielding being more likely with increasing interior heat and planet mass for a depth-dependent Byerlee yield stress. Using 3-D spherical shell mantle convection models in an episodic regime allows us to explore larger temporal stress variations than can be addressed by considering plate failure from a steady state stagnant lid configuration. The episodic models show that an increase in convective mantle shear stress at the lithospheric base initiates plate failure, which leads with our 1-D model to plate yielding being less likely with increasing interior heat and planet mass. In this out-of-equilibrium and strongly time-dependent stress scenario, the onset of lithospheric overturn events cannot be explained by boundary layer thickening and normal stresses alone. Our results indicate that in order to understand the initiation of plate tectonics, one should consider the temporal variation of stresses and dynamic disequilibrium. C1 [Stamenkovic, V.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Stamenkovic, V.] Jet Prop Labs, Pasadena, CA 91109 USA. [Hoink, T.; Lenardic, A.] Rice Univ, Dept Earth Sci, Houston, TX USA. RP Stamenkovic, V (reprint author), CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA.; Stamenkovic, V (reprint author), Jet Prop Labs, Pasadena, CA 91109 USA. EM rinsan@caltech.edu OI Stamenkovic, Vlada/0000-0003-2416-3683 FU Simons Foundation [338555]; NSF [EAR-0944156] FX This work was supported by a fellowship from the Simons Foundation (award 338555, VS) and by the NSF grant EAR-0944156 (A.L. and T.H.). Simulation data are available upon request. We thank two anonymous reviewers for their suggestions and their support. NR 60 TC 1 Z9 1 U1 2 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN PY 2016 VL 121 IS 6 BP 896 EP 915 DI 10.1002/2016JE004994 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5EX UT WOS:000379927200001 ER PT J AU Karasozen, E Andrews-Hanna, JC Dohm, JM Anderson, RC AF Karasozen, Ezgi Andrews-Hanna, Jeffrey C. Dohm, J. M. Anderson, R. C. TI The formation of the South Tharsis Ridge Belt: Basin and Range-style extension on early Mars? SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE South Tharsis Ridge Belt; Mars; tectonics; Basin and Range; Tharsis ID WESTERN UNITED-STATES; POLYGONAL IMPACT CRATERS; LOCALIZATION INSTABILITY; TECTONIC IMPLICATIONS; VALLES MARINERIS; PLATE-TECTONICS; GROOVED TERRAIN; THRUST FAULTS; NORTH-AMERICA; GPS DATA AB The South Tharsis Ridge Belt (STRB) is located along the northeastern edge of Terra Sirenum and partially surrounds the southwestern part of Tharsis in an arc. It consists of 29 large ridges separated by distances 130 to 260km, with average relief of 1.5km above the surrounding plains. Because the STRB is among the oldest tectonic features associated both spatially and developmentally with Tharsis, it may provide key information on the early evolution of Tharsis and possibly pre-Tharsis processes. Earlier studies concluded that the ridges formed through compressional tectonism. However, the shape, size, and separation of the ridges support the interpretation that the STRB resembles the extensional Basin and Range Province on Earth. Both regions are characterized by series of parallel mountain ranges separated by broad valleys. In this study, we evaluate both extensional and compressional hypotheses for the origin of the ridges using evidence from topography, deformed craters, crustal thickness models, and strain modeling. Though neither interpretation explains all aspects of the ridges, the topography of the ridges and crustal thinning associated with the western part of the ridge belt support an extensional origin. Strain models predict that Basin and Range-style wide rifting would be expected for early Martian conditions. This extension may have been initiated by plume-induced uplift in the early stages of Tharsis formation, but the large amount of extensional strain inferred in the western STRB must have been accommodated by compression elsewhere, possibly in the heavily deformed craters of western Terra Sirenum. C1 [Karasozen, Ezgi; Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Karasozen, Ezgi; Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Ctr Space Resources, Golden, CO 80401 USA. [Andrews-Hanna, Jeffrey C.] Southwest Res Inst, Boulder, CO USA. [Dohm, J. M.] Univ Tokyo, Univ Museum, Tokyo, Japan. [Anderson, R. C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Karasozen, E (reprint author), Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA.; Karasozen, E (reprint author), Colorado Sch Mines, Ctr Space Resources, Golden, CO 80401 USA. EM ekarasoz@mines.edu FU NASA Mars Fundamental Research Program [NNX10AM91G]; Planetary Geology and Geophysics Program [NNX14AO75G]; JSPS KAKENHI [26106002]; Tokyo Dome Corporation; University Museum; University of Tokyo FX We are grateful to An Yin, Amanda Nahm, and an anonymous reviewer for their thorough and thoughtful reviews. This work was supported by grants to J.C.A.H. from the NASA Mars Fundamental Research Program (NNX10AM91G) and Planetary Geology and Geophysics Program (NNX14AO75G). J.M.D. was supported by both the JSPS KAKENHI grant 26106002 (Hadean BioScience (Grant-in-Aid for Scientific Research on Innovative Areas)) and the Tokyo Dome Corporation regarding the TeNQ exhibit and the branch of Space Exploration Education & Discovery, the University Museum, the University of Tokyo. The MOLA data were obtained from NASA Planetary Data System (http://pdsgeosciences.wustl.edu/missions/mgs), THEMIS data were obtained from (http://www.mars.asu.edu/data/), and National elevation data set data were obtained from (http://ned.usgs.gov/). The data used in section 4.4 are available in the supporting information. NR 159 TC 0 Z9 0 U1 10 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN PY 2016 VL 121 IS 6 BP 916 EP 943 DI 10.1002/2015JE004936 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5EX UT WOS:000379927200002 ER PT J AU Hurford, TA Asphaug, E Spitale, JN Hemingway, D Rhoden, AR Henning, WG Bills, BG Kattenhorn, SA Walker, M AF Hurford, T. A. Asphaug, E. Spitale, J. N. Hemingway, D. Rhoden, A. R. Henning, W. G. Bills, B. G. Kattenhorn, S. A. Walker, M. TI Tidal disruption of Phobos as the cause of surface fractures SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE satellites; tectonics; tides ID POSSIBLE ORIGIN; EUROPA; DEIMOS; EVOLUTION; STRESSES; ENCELADUS; GROOVES; BODIES; MARS AB Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises on Mars lagging behind Phobos' orbital position and will suffer tidal disruption before colliding with Mars in a few tens of millions of years. We calculate the surface stress field of the deorbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos' prominent grooves have an excellent correlation with computed stress orientations. The model requires a weak interior that has very low rigidity on the tidal evolution time scale, overlain by an similar to 10-100m exterior shell that has elastic properties similar to lunar regolith as described by Horvath et al. (1980). C1 [Hurford, T. A.; Henning, W. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Asphaug, E.; Rhoden, A. R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Spitale, J. N.] Planetary Sci Inst, Tucson, AZ USA. [Hemingway, D.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Rhoden, A. R.] Johns Hopkins Appl Phys Lab, Laurel, MD USA. [Henning, W. G.] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, College Pk, MD 20742 USA. [Bills, B. G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kattenhorn, S. A.] Univ Alaska Anchorage, Dept Geol Sci, Anchorage, AK USA. [Walker, M.] Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA. RP Hurford, TA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM terry.a.hurford@nasa.gov RI Hurford, Terry/F-2625-2012 NR 41 TC 3 Z9 3 U1 5 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN PY 2016 VL 121 IS 6 BP 1054 EP 1065 DI 10.1002/2015JE004943 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5EX UT WOS:000379927200008 ER PT J AU Halekas, JS Poppe, AR Farrell, WM McFadden, JP AF Halekas, J. S. Poppe, A. R. Farrell, W. M. McFadden, J. P. TI Structure and composition of the distant lunar exosphere: Constraints from ARTEMIS observations of ion acceleration in time-varying fields SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Moon; exosphere; pickup ions; ion acceleration ID CRUSTAL MAGNETIC-ANOMALIES; ATMOSPHERE; MOON; SOLAR; SPECTROMETER; VARIABILITY; INSTRUMENT; SODIUM AB By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes similar to 3000-5000km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface. C1 [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Halekas, J. S.; Poppe, A. R.; Farrell, W. M.] NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA. [Poppe, A. R.; McFadden, J. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Farrell, W. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Halekas, JS (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.; Halekas, JS (reprint author), NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA. EM jasper-halekas@uiowa.edu RI Farrell, William/I-4865-2013 FU Solar System Exploration Research Virtual Institute; NASA LASER grant [NNX13AJ97G]; NASA [NAS5-02099]; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302] FX This research was supported by the Solar System Exploration Research Virtual Institute. A.R.P. also acknowledges NASA LASER grant NNX13AJ97G. We acknowledge NASA contract NAS5-02099 for supporting the ARTEMIS mission and K.H. Glassmeier, U. Auster, and W. Baumjohann for FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. ARTEMIS data are publicly available on NASA's CDAWeb. NR 36 TC 0 Z9 0 U1 3 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN PY 2016 VL 121 IS 6 BP 1102 EP 1115 DI 10.1002/2016JE005082 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5EX UT WOS:000379927200011 ER PT J AU Haughton, N Abramowitz, G Pitman, AJ Or, D Best, MJ Johnson, HR Balsamo, G Boone, A Cuntz, M Decharme, B Dirmeyer, PA Dong, JR Ek, M Guo, ZC Haverd, V van den Hurk, BJJ Nearing, GS Pak, B Santanello, JA Stevens, LE Vuichard, N AF Haughton, Ned Abramowitz, Gab Pitman, Andy J. Or, Dani Best, Martin J. Johnson, Helen R. Balsamo, Gianpaolo Boone, Aaron Cuntz, Matthias Decharme, Bertrand Dirmeyer, Paul A. Dong, Jairui Ek, Michael Guo, Zichang Haverd, Vanessa van den Hurk, Bart J. J. Nearing, Grey S. Pak, Bernard Santanello, Joe A., Jr. Stevens, Lauren E. Vuichard, Nicolas TI The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality? SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID ENERGY-BALANCE CLOSURE; ATMOSPHERE COUPLING EXPERIMENT; SOIL WETNESS PROJECT; PARAMETRIZATION SCHEMES; CLIMATE; MOISTURE; SITES; CO2; IMPACT; GLACE AB The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) illustrated the value of prescribing a priori performance targets inmodel intercomparisons. It showed that the performance of turbulent energy flux predictions from different land surface models, at a broad range of flux tower sites using common evaluation metrics, was on average worse than relatively simple empirical models. For sensible heat fluxes, all land surface models were outperformed by a linear regression against downward short wave radiation. For latent heat flux, all land surface models were outperformed by a regression against downward shortwave radiation, surface air temperature, and relative humidity. These results are explored here in greater detail and possible causes are investigated. It is examined whether particular metrics or sites unduly influence the collated results, whether results change according to time-scale aggregation, and whether a lack of energy conservation in flux tower data gives the empirical models an unfair advantage in the intercomparison. It is demonstrated that energy conservation in the observational data is not responsible for these results. It is also shown that the partitioning between sensible and latent heat fluxes in LSMs, rather than the calculation of available energy, is the cause of the original findings. Finally, evidence is presented that suggests that the nature of this partitioning problem is likely shared among all contributing LSMs. While a single candidate explanation for why land surface models perform poorly relative to empirical benchmarks in PLUMBER could not be found, multiple possible explanations are excluded and guidance is provided on where future research should focus. C1 [Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.] ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia. [Or, Dani] ETH, Dept Environm Syst Sci, Zurich, Switzerland. [Best, Martin J.; Johnson, Helen R.] Met Off, Exeter, Devon, England. [Balsamo, Gianpaolo] ECMWF, Reading, Berks, England. [Boone, Aaron; Decharme, Bertrand] Meteo France, CNRM GAME, Toulouse, France. [Cuntz, Matthias] UFZ Helmholtz Ctr Environm Res, Leipzig, Germany. [Dirmeyer, Paul A.; Guo, Zichang] George Mason Univ, Ctr Ocean Land Atmosphere Studies, Fairfax, VA 22030 USA. [Dong, Jairui; Ek, Michael] NOAA, NCEP, EMC, College Pk, MD USA. [Haverd, Vanessa] Oceans & Atmosphere CSIRO, Canberra, ACT, Australia. [van den Hurk, Bart J. J.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Nearing, Grey S.; Santanello, Joe A., Jr.] NASA, Hydrol Sci Lab, GSFC, Greenbelt, MD USA. [Pak, Bernard; Stevens, Lauren E.] CSIRO, Oceans & Atmosphere, Aspendale, Vic, Australia. [Vuichard, Nicolas] UVSQ, CNRS, CEA, UMR 8212,IPSL,LSCE, Gif Sur Yvette, France. RP Haughton, N (reprint author), Univ New S Wales, ARC Ctr Excellence Climate Syst Sci, Level 4,Matthews Bldg, Sydney, NSW 2052, Australia. EM ned@nedhaughton.com RI haverd, vanessa/G-8683-2011; Pitman, Andrew/A-7353-2011; Santanello, Joseph/D-4438-2012; Or, Dani/D-8768-2012 OI Pitman, Andrew/0000-0003-0604-3274; Santanello, Joseph/0000-0002-0807-6590; Or, Dani/0000-0002-3236-2933 FU Australian Research Council Centre of Excellence for Climate System Science [CE110001028]; Joint DECC/Defra Met Office Hadley Centre Climate Programme [CA01101]; U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program [DE-FG02-04ER63917, DE-FG02-04ER63911]; CFCAS; NSERC; BIOCAP; Environment and Climate Change Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval; U.S. Department of Energy FX We acknowledge the support of the Australian Research Council Centre of Excellence for Climate System Science (CE110001028). M. Best and H. Johnson were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (CA01101). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux [U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)], AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, FLUXNET-Canada (supported by CFCAS, NSERC, BIOCAP, Environment and Climate Change Canada, and NRCan), Green-Grass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, and USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment and Climate Change Canada, and U.S. Department of Energy and the database development and technical support from Berkeley Water Center; Lawrence Berkeley National Laboratory; Microsoft Research eScience; Oak Ridge National Laboratory; University of California, Berkeley; and University of Virginia. NR 38 TC 3 Z9 3 U1 6 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2016 VL 17 IS 6 BP 1705 EP 1723 DI 10.1175/JHM-D-15-0171.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DQ9CK UT WOS:000379507800002 ER PT J AU Tokay, A D'Adderio, LP Wolff, DB Petersen, WA AF Tokay, Ali D'Adderio, Leo Pio Wolff, David B. Petersen, Walter A. TI A Field Study of Pixel-Scale Variability of Raindrop Size Distribution in the Mid-Atlantic Region SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID DISDROMETER OBSERVATIONS; SPATIAL VARIABILITY; RAINFALL; RADAR; PARAMETERS; NETWORK; ERROR; SHAPE AB The spatial variability of parameters of the raindrop size distribution and its derivatives is investigated through a field study where collocated Particle Size and Velocity (Parsivel 2) and two-dimensional video disdrometers were operated at six sites at Wallops Flight Facility, Virginia, from December 2013 to March 2014. The three-parameter exponential function was employed to determine the spatial variability across the study domain where the maximum separation distance was 2.3 km. The nugget parameter of the exponential function was set to 0.99 and the correlation distance d(0) and shape parameter s(0) were retrieved by minimizing the root-mean-square error, after fitting it to the correlations of physical parameters. Fits were very good for almost all 15 physical parameters. The retrieved d(0) and s(0) were about 4.5 km and 1.1, respectively, for rain rate (RR) when all 12 disdrometers were reporting rainfall with a rain-rate threshold of 0.1mmh 21 for 1-min averages. The d(0) decreased noticeably when one or more disdrometers were required to report rain. The d(0) was considerably different for a number of parameters (e.g., mass-weighted diameter) but was about the same for the other parameters (e.g., RR) when rainfall threshold was reset to 12 and 18 dBZ for Ka- and Ku-band reflectivity, respectively, following the expected Global Precipitation Measurement mission's spaceborne radar minimum detectable signals. The reduction of the database through elimination of a site did not alter d(0) as long as the fit was adequate. The correlations of 5-min rain accumulations were lower when disdrometer observations were simulated for a rain gauge at different bucket sizes. C1 [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Greenbelt, MD USA. [Tokay, Ali] NASA, Goddard Space Flight Ctr, Code 612-0, Greenbelt, MD 20771 USA. [D'Adderio, Leo Pio] Univ Ferrara, Dept Phys & Earth Sci, Ferrara, Italy. [Wolff, David B.] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Petersen, Walter A.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. RP Tokay, A (reprint author), NASA, Goddard Space Flight Ctr, Code 612-0, Greenbelt, MD 20771 USA. EM tokay@umbc.edu FU Federico Porcu of the University of Bologna, Italy; NASA Precipitation Measurement Mission Grant [NNX10AJ12G]; Global Precipitation Measurement mission FX The authors are grateful to the NASA Wallops Precipitation Facility team, Matthew Wingo, Katherine (Rhonie) Wolff, Paul G. Bashor, and Jason C. Bashor, for their efforts on maintaining the disdrometer network. Discussion with Robert Meneghini of NASA Goddard Space Flight Center (GSFC) was very helpful. Constructive comments from three anonymous reviewers were helpful. This study was partly conducted during the second author's visit to NASA GSFC. The funding for the second author's visit was provided through Federico Porcu of the University of Bologna, Italy. This study was funded through NASA Precipitation Measurement Mission Grant NNX10AJ12G and funding from the Global Precipitation Measurement mission. NR 30 TC 0 Z9 0 U1 4 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2016 VL 17 IS 6 BP 1855 EP 1868 DI 10.1175/JHM-D-15-0159.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DQ9CK UT WOS:000379507800010 ER PT J AU de Roode, SR Sandu, I van der Dussen, JJ Ackerman, AS Blossey, P Jarecka, D Lock, A Siebesma, AP Stevens, B AF de Roode, Stephan R. Sandu, Irina van der Dussen, Johan J. Ackerman, Andrew S. Blossey, Peter Jarecka, Dorota Lock, Adrian Siebesma, A. Pier Stevens, Bjorn TI Large-Eddy Simulations of EUCLIPSE-GASS Lagrangian Stratocumulus-to-Cumulus Transitions: Mean State, Turbulence, and Decoupling SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MARINE BOUNDARY-LAYER; TOPPED MIXED LAYERS; AIRCRAFT OBSERVATIONS; STRONG INVERSION; CLOUD MODEL; ASTEX; CONVECTION; DYNAMICS; ENTRAINMENT; CLIMATE AB Results of four Lagrangian stratocumulus-to-shallow-cumulus transition cases as obtained from six different large-eddy simulation models are presented. The model output is remarkably consistent in terms of the representation of the evolution of the mean state, which is characterized by a stratocumulus cloud layer that rises with time and that warms and dries relative to the subcloud layer. Also, the effect of the diurnal insolation on cloud-top entrainment and the moisture flux at the top of the subcloud layer are consistently captured by the models. For some cases, the models diverge in terms of the liquid water path (LWP) during nighttime, which can be explained from the difference in the sign of the buoyancy flux at cloud base. If the subcloud buoyancy fluxes are positive, turbulence sustains a vertically well-mixed layer, causing a cloud layer that is relatively cold and moist and consequently has a high LWP. After some simulation time, all cases exhibit subcloud-layer dynamics that appear to be similar to those of the dry convective boundary layer. The humidity flux from the subcloud layer toward the stratocumulus cloud layer, which is one of the major sources of stratocumulus cloud liquid water, is larger during the night than during the day. The sensible heat flux becomes constant in time, whereas the latent heat flux tends to increase during the transition. These findings are explained from a budget analysis of the subcloud layer. C1 [de Roode, Stephan R.; van der Dussen, Johan J.; Stevens, Bjorn] Delft Univ Technol, Delft, Netherlands. [Sandu, Irina; Stevens, Bjorn] MPI Meteorol, Hamburg, Germany. [Sandu, Irina] ECMWF, Reading, Berks, England. [Ackerman, Andrew S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Blossey, Peter] Univ Washington, Seattle, WA 98195 USA. [Jarecka, Dorota] Univ Warsaw, Warsaw, Poland. [Lock, Adrian] Met Off, Exeter, Devon, England. [Siebesma, A. Pier] KNMI, De Bilt, Netherlands. RP de Roode, SR (reprint author), Delft Univ Technol, Delft, Netherlands.; de Roode, SR (reprint author), Delft Univ Technol, Dept Geosci & Remote Sensing, Stevinweg 1, NL-2628 CN Delft, Netherlands. EM s.r.deroode@tudelft.nl RI Stevens, Bjorn/A-1757-2013 OI Stevens, Bjorn/0000-0003-3795-0475 FU European Union Cloud Intercomparison, Process Study and Evaluation Project (EUCLIPSE); Alexander von Humboldt Foundation; Max Planck Institute for Meteorology; National Computing Facilities Foundation (NCF); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA High End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NOAA MAPP [NA13OAR4310104] FX These investigations were done as part of the European Union Cloud Intercomparison, Process Study and Evaluation Project (EUCLIPSE), funded under Framework Program 7 of the European Union. The setup of the composite transition cases and the LES simulations with MPI/UCLA were supported by the Alexander von Humboldt Foundation and the Max Planck Institute for Meteorology. The simulations with the Dutch LES model were sponsored by the National Computing Facilities Foundation (NCF) for the use of supercomputer facilities. DHARMA simulations used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and the NASA High End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The simulations with SAM were supported by NOAA MAPP Grant NA13OAR4310104. EULAG simulations used resources of the National Center for Atmospheric Research, which is sponsored by the National Science Foundation. We thank Erwin de Beus for his kind technical assistance and Chris Bretherton and three reviewers for their suggestions, which helped to improve the manuscript. NR 61 TC 0 Z9 0 U1 4 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUN PY 2016 VL 73 IS 6 BP 2485 EP 2508 DI 10.1175/JAS-D-15-0215.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DQ7OO UT WOS:000379397300001 ER PT J AU Dill, ET de Haag, MU AF Dill, Evan T. de Haag, Maarten Uijt TI 3D Multi-Copter Navigation and Mapping Using GPS, Inertial, and LiDAR SO NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION LA English DT Article AB As the use of unmanned aerial vehicles has become more prevalent, the need for a reliable three-dimensional positioning and navigation capability is required to enable operation in challenging environments where the Global Positioning System (GPS) may not be available. For many of these environments, there may not be one particular method to solve the positioning navigation problem. Therefore, we have selected a set of dissimilar sensor technologies and implemented an integrated navigation method that can support reliable operation in an outdoor and structured indoor environment. The integrated navigation design is based on three types of sensors: a GPS receiver, an inertial measurement unit, and three laser scanners. This paper will show that decimeter-level relative positioning accuracies can be achieved for structured indoor operations and that when segments are included where GPS is available, the platform's trajectory is globally anchored with meter-level accuracy. A secondary goal of the proposed method is the generation of a three-dimensional map of the environment. Copyright (C) 2016 Institute of Navigation C1 [Dill, Evan T.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [de Haag, Maarten Uijt] Ohio Univ, Athens, OH 45701 USA. RP Dill, ET (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. NR 22 TC 0 Z9 0 U1 13 U2 13 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 0028-1522 EI 2161-4296 J9 NAVIGATION-US JI Navigation PD SUM PY 2016 VL 63 IS 2 BP 205 EP 220 DI 10.1002/navi.134 PG 16 WC Engineering, Aerospace; Remote Sensing; Telecommunications SC Engineering; Remote Sensing; Telecommunications GA DR2BS UT WOS:000379710600008 ER PT J AU Mueller, J Booth, JG AF Mueller, Jim Booth, J. Greg TI Managing Excessive Methanogenesis During ERD/ISCR Remedial Action SO REMEDIATION-THE JOURNAL OF ENVIRONMENTAL CLEANUP COSTS TECHNOLOGIES & TECHNIQUES LA English DT Article ID BACTERIA; REDUCTASE; IRON AB Excessive production of methane has been observed at some remediation sites following the addition of organic hydrogen donors such as (emulsified) oils/lecithin, sugars, and conventional carbon +zero-valent iron (ZVI) amendments. This is due to the fact that methanogens are commonly the most ubiquitous indigenous microbes in anoxic aquifer settings, and, under enriched environmental conditions, methanogens replicate every one to two hours (whereas Dehalococcoides spp., e.g., double in 24-48 hr). Hence, methanogens often bloom and dominate themicrobial ecosystem following the addition of remedial amendments, thereby liberating large amounts of methane gas. There are at least three important consequences of this response: i. By utilizing hydrogen, the methanogens compete with dechlorinating microbes, thus making inefficient use of the remedial amendment (just 20 ppm methane in groundwater represents an approximate 30 percent "waste" of added fermentable substrate (i.e., hydrogen donor)-this is a common and tangible detriment); ii. Methanogens can methylate heavy metals and their rapid growth consumes alkalinity, while generating acidity, thereby facilitating multiple potential mechanisms for creating secondary contaminant issues (i.e., arsenic plumes); and iii. Elevated methane concentrations can exceed current and pending regulations of <10 to <28 ppm methane in groundwater and/or 0.5 percent by volume methane in soil gas (e.g., 10 percent of the lower explosive limit) and/or indoor air (methane is flammable between 5 percent and 15 percent by volume) and this will induce migration of contaminant vapors potentially causing indoor air issues. Considering the recent guidelines for indoor air published by the US Environmental Protection Agency, it is increasingly important to prevent excessive methanogenesis associated with remedial actions. From a regulatory perspective, public safety issues are paramount; from a property re-use or real estate (brownfield) developers' perspective, project delays are costly and can jeopardize an entire program. The use of antimethanogenic compounds as inhibitors of protein biosynthesis and the activity of enzyme systems unique to Archaea (i.e.,methanogens) during in situ remedial action can improve contaminant removal while offering safer, more efficacious treatment, simply by impeding the methanogenic bacteria's ability to proliferate and out compete desired bacterial communities (e.g., Dehalococcoides spp.). (C) 2016 Wiley Periodicals, Inc. C1 [Mueller, Jim] SBP Technol Inc, Stone Mt, GA USA. [Mueller, Jim] URS Corp, Stone Mt, GA 30083 USA. [Mueller, Jim] Adventus Americas Inc, Union, NJ USA. [Mueller, Jim; Booth, J. Greg] Provectus Environm Prod Inc, Freeport, IL USA. [Booth, J. Greg] NASA, Washington, DC 20546 USA. RP Mueller, J (reprint author), URS Corp, Stone Mt, GA 30083 USA. EM jim.mueller@provectusenv.com; greg.booth@provectusenv.com NR 30 TC 0 Z9 0 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1051-5658 EI 1520-6831 J9 REMEDIATION JI Remediation PD SUM PY 2016 VL 26 IS 3 BP 53 EP 71 DI 10.1002/rem.21469 PG 19 WC Engineering, Environmental SC Engineering GA DQ8YJ UT WOS:000379497300004 ER PT J AU Ogasawara, K Grubbs, G Michell, RG Samara, M Stange, JL Trevino, JA Webster, J Jahn, JM AF Ogasawara, Keiichi Grubbs, Guy, II Michell, Robert G. Samara, Marilia Stange, Jason L. Trevino, John A. Webster, James Jahn, Jorg-Micha TI Development and performance of a suprathermal electron spectrometer to study auroral precipitations SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID X-RAY-DETECTOR; AVALANCHE PHOTODIODE; PARTICLE PRECIPITATION; ROCKET OBSERVATION; PULSATING AURORA; PLASMA SHEET; IONOSPHERE; AREA; ION; ACCELERATION AB The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora. Published by AIP Publishing. C1 [Ogasawara, Keiichi; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jorg-Micha] Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. [Grubbs, Guy, II; Jahn, Jorg-Micha] Univ Texas San Antonio, One UTSA Circle, San Antonio, TX 78249 USA. [Grubbs, Guy, II; Michell, Robert G.; Samara, Marilia] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Ogasawara, K (reprint author), Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. EM kogasawara@swri.edu OI Grubbs, Guy/0000-0002-3540-3577 FU GREECE mission in NASA's HTIDES Program [NNX12AE76G]; Southwest Research Institute's Internal Research and Development (IRD) Program [15-R8016] FX This work was carried out as a part of the GREECE mission in NASA's HTIDES Program No. NNX12AE76G. The MESP prototype instrument was developed by Southwest Research Institute's Internal Research and Development (IR&D) Program No. 15-R8016. NR 45 TC 1 Z9 1 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2016 VL 87 IS 5 AR 053307 DI 10.1063/1.4950901 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DQ4QE UT WOS:000379187600049 PM 27250414 ER PT J AU Schwindt, PDD Jau, YY Partner, H Casias, A Wagner, AR Moorman, M Manginell, RP Kellogg, JR Prestage, JD AF Schwindt, Peter D. D. Jau, Yuan-Yu Partner, Heather Casias, Adrian Wagner, Adrian R. Moorman, Matthew Manginell, Ronald P. Kellogg, James R. Prestage, John D. TI A highly miniaturized vacuum package for a trapped ion atomic clock SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm(3) in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of Yb-171(+). The fractional frequency stability of the clock was measured to be 2 x 10(-11)/tau(1/2). Published by AIP Publishing. C1 [Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kellogg, James R.; Prestage, John D.] Jet Prop Lab, Pasadena, CA 91109 USA. [Partner, Heather] Humboldt Univ, Newtonstr 15, D-12489 Berlin, Germany. RP Schwindt, PDD (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM pschwin@sandia.gov OI Casias, Adrian/0000-0002-6781-9294 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Defense Advanced Research Projects Agency (DARPA) FX The authors thank John Anderson for aid in the fabrication of the silicon hotplates and Jeff Hunker for experimental support. We also wish to thank Carl Smith and Cathy Sobczak for their help with sputter deposition processing, and Chuck Walker for his advice and guidance with the brazing operations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Approved for public release, distribution unlimited. NR 21 TC 0 Z9 0 U1 13 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2016 VL 87 IS 5 AR 053112 DI 10.1063/1.4948739 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DQ4QE UT WOS:000379187600032 PM 27250397 ER PT J AU Wollack, EJ Datesman, AM Jhabvala, CA Miller, KH Quijada, MA AF Wollack, E. J. Datesman, A. M. Jhabvala, C. A. Miller, K. H. Quijada, M. A. TI A broadband micro-machined far-infrared absorber SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SURFACES; ARRAY; SUBMILLIMETER; BACKSHORT; ASTRONOMY; THICKNESS; SILICON; REGION; MODEL AB The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is >0.95 from 1 to 20 THz (300-15 mu m) over a temperature range spanning 5-300 K. The meta-material, realized from an array of tapers approximate to 100 mu m in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model. C1 [Wollack, E. J.; Datesman, A. M.; Jhabvala, C. A.; Miller, K. H.; Quijada, M. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wollack, EJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM edward.j.wollack@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU National Aeronautics and Space Administration [NNH08ZDA009O-SOFIA2G] FX A second generation SOFIA (Stratospheric Observatory for Infrared Astronomy) instrumentation award provided by the National Aeronautics and Space Administration under No. NNH08ZDA009O-SOFIA2G is gratefully acknowledged by the authors. NR 46 TC 0 Z9 0 U1 5 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2016 VL 87 IS 5 AR 054701 DI 10.1063/1.4947513 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DQ4QE UT WOS:000379187600080 PM 27250445 ER PT J AU Liu, YH Hesse, M AF Liu, Yi-Hsin Hesse, Michael TI Suppression of collisionless magnetic reconnection in asymmetric current sheets SO PHYSICS OF PLASMAS LA English DT Article ID SOLAR-WIND; 1 OSCILLATIONS; SHEAR EVIDENCE; TEARING MODE; PLASMA BETA; M=1 MODE; MAGNETOPAUSE; TOKAMAKS; STABILIZATION; DEPENDENCE AB Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux mitigates the suppression and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the x-line, and then the x-line is run over and swallowed by the faster-moving following flux. Published by AIP Publishing. C1 [Liu, Yi-Hsin; Hesse, Michael] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Liu, YH (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA; NASA's MMS Mission FX Y.-H. Liu thanks for helpful discussions with J. F. Drake, M. Swisdak, P. Cassak, W. Daughton, A. Spiro, J. Dorelli, and A. Otto. Y.-H. Liu was supported by an appointment to the NASA Postdoctoral Program at the NASA-GSFC, administered by Universities Space Research Association through a contract with NASA. M. Hesse acknowledges the support from NASA's MMS Mission. Simulations were performed with NASA Advanced Supercomputing, NERSC Advanced Supercomputing, and LANL Institutional Computing Program. NR 51 TC 1 Z9 1 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2016 VL 23 IS 6 AR 060704 DI 10.1063/1.4954818 PG 5 WC Physics, Fluids & Plasmas SC Physics GA DQ4KH UT WOS:000379172200004 ER PT J AU Shebalin, JV AF Shebalin, John V. TI Dynamo action in dissipative, forced, rotating MHD turbulence SO PHYSICS OF PLASMAS LA English DT Article ID MEAN MAGNETIC-FIELD; MAGNETOHYDRODYNAMIC TURBULENCE; BROKEN ERGODICITY; ISOTROPIC TURBULENCE; NUMERICAL-SIMULATION; HELICITY AB Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 64 3 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields. C1 [Shebalin, John V.] NASA, Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA. RP Shebalin, JV (reprint author), NASA, Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA. NR 48 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2016 VL 23 IS 6 AR 062318 DI 10.1063/1.4954817 PG 14 WC Physics, Fluids & Plasmas SC Physics GA DQ4KH UT WOS:000379172200049 ER PT J AU Bresina, JL AF Bresina, John L. TI Activity Planning for a Lunar Orbital Mission SO AI MAGAZINE LA English DT Article AB This article describes a challenging, real-world planning problem within the context of a NASA mission called LADEE (Lunar Atmospheric and Dust Environment Explorer). I present the approach taken to reduce the complexity of the activity-planning task in order to perform it effectively under the time pressures imposed by the mission requirements. One key aspect of this approach is the design of the activity planning process based on principles of problem decomposition and planning abstraction levels. The second key aspect is the mixed-initiative system developed for this task, called LASS (LADEE Activity Scheduling System). The primary challenge for LASS was representing and managing the science constraints that were tied to key points in the spacecraft's orbit, given their dynamic nature due to the continually updated orbit determination solution. C1 [Bresina, John L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bresina, JL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 13 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC ARTIFICIAL INTELL PI MENLO PK PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496 USA SN 0738-4602 J9 AI MAG JI AI Mag. PD SUM PY 2016 VL 37 IS 2 BP 7 EP 18 PG 12 WC Computer Science, Artificial Intelligence SC Computer Science GA DP4LC UT WOS:000378466400003 ER PT J AU Soldati, A Sehlke, A Chigna, G Whittington, A AF Soldati, A. Sehlke, A. Chigna, G. Whittington, A. TI Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala) SO BULLETIN OF VOLCANOLOGY LA English DT Article DE Viscosity; Rheology; Morphology; Lava flow; Pacaya ID SUB-LIQUIDUS TEMPERATURES; BUBBLE-BEARING MAGMAS; MOUNT-ETNA; VISCOSITY MEASUREMENTS; SUBLIQUIDUS MAGMAS; SILICATE MELTS; SIMPLE SHEAR; FLOW; SUSPENSIONS; PARTICLES AB We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at similar to 2.8 m/s on the steep similar to 45 degrees slope 50 m from the vent, while 550 m further downflow it was moving at only similar to 0.3 m/s on a similar to 4 degrees slope. Estimates of effective viscosity based on Jeffreys' equation increased from similar to 7600 Pa s near the vent to similar to 28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 degrees C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement. C1 [Soldati, A.; Sehlke, A.; Whittington, A.] Univ Missouri, Dept Geol Sci, Columbia, MO 65211 USA. [Sehlke, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Chigna, G.] Inst Nacl Sismol Vulcanol Meterol & Hidrol, Guatemala City, Guatemala. RP Soldati, A (reprint author), Univ Missouri, Dept Geol Sci, Columbia, MO 65211 USA. EM arianna.soldati@mizzou.edu RI Soldati, Arianna/F-3206-2017; OI Soldati, Arianna/0000-0001-9835-4429; Sehlke, Alexander/0000-0001-7929-1776 FU National Science Foundation [EAR-1220051] FX This research was supported by the National Science Foundation grant EAR-1220051. Logistical support in Guatemala was provided by Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia (INSIVUMEH); in particular we thank INSIVUMEH Director Don Eddy Sanchez Bennett, and volcano observers Pastor and Luiz. Jose was our guide on the flows. Paul Carpenter assisted us with microprobe analyses at Washington University in St. Louis. We are grateful to reviewers Einat Lev and Ed Llewellin for their thorough and constructive comments, which greatly contributed to improving this paper. NR 61 TC 2 Z9 2 U1 2 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0258-8900 EI 1432-0819 J9 B VOLCANOL JI Bull. Volcanol. PD JUN PY 2016 VL 78 IS 6 AR 43 DI 10.1007/s00445-016-1031-6 PG 19 WC Geosciences, Multidisciplinary SC Geology GA DQ0GP UT WOS:000378877300002 ER PT J AU Ponomarev, EI Kharuk, VI Ranson, KJ AF Ponomarev, Evgenii I. Kharuk, Viacheslav I. Ranson, Kenneth J. TI Wildfires Dynamics in Siberian Larch Forests SO FORESTS LA English DT Article DE wildfires; drought index; larch stands; fire return interval; fire frequency; burned area; climate-induced trends in Siberian wildfires ID FIRE; SEVERITY AB Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45 degrees - 73 degrees N) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data and field measurements for the period 1996-2015. In addition, fire return interval (FRI) along the south-north transect was analyzed. Both the number of forest fires and the size of the burned area increased during recent decades (p < 0.05). Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (The Standardized Precipitation Evapotranspiration Index, SPEI) (r = -0.43). Within larch stands along the transect, wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62 degrees N to 200 years at the Arctic Circle (66 degrees 33'N), and to about 300 years near the northern limit of closed forest stands (about 71 degrees + N). That increase was negatively correlated with incoming solar radiation (r = -0.95). C1 [Ponomarev, Evgenii I.; Kharuk, Viacheslav I.] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia. [Ponomarev, Evgenii I.; Kharuk, Viacheslav I.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. [Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kharuk, VI (reprint author), Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.; Kharuk, VI (reprint author), Siberian Fed Univ, Krasnoyarsk 660041, Russia. EM evg@ksc.krasn.ru; kharuk@ksc.krasn.ru; kenneth.j.ranson@nasa.gov RI Evgenii, Ponomarev/A-7595-2013 OI Evgenii, Ponomarev/0000-0002-7185-3639 FU Russian Science Foundation [14-24-00112] FX The work was supported by Russian Science Foundation (project #14-24-00112). Field measurements and K.J. Ranson's activities were supported by NASA's Earth Science Division. NR 21 TC 1 Z9 1 U1 4 U2 6 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1999-4907 J9 FORESTS JI Forests PD JUN PY 2016 VL 7 IS 6 AR 125 DI 10.3390/f7060125 PG 9 WC Forestry SC Forestry GA DP9XT UT WOS:000378852000016 ER PT J AU Javanainen, A Galloway, KF Ferlet-Cavrois, V Lauenstein, JM Pintacuda, F Schrimpf, RD Reed, RA Virtanen, A AF Javanainen, Arto Galloway, Kenneth F. Ferlet-Cavrois, Veronique Lauenstein, Jean-Marie Pintacuda, Francesco Schrimpf, Ronald D. Reed, Robert A. Virtanen, A. TI Charge Transport Mechanisms in Heavy-Ion Driven Leakage Current in Silicon Carbide Schottky Power Diodes SO IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY LA English DT Article DE Current-voltage characteristics; ion radiation effects; modeling; power semiconductor devices; Schottky diodes; silicon carbide (SiC) ID SINGLE-EVENT BURNOUT; BARRIER DIODES; MOSFETS; SOLIDS; ENERGY; DAMAGE AB Under heavy-ionexposure at sufficiently high reversebias voltages, silicon carbide (SiC) Schottky diodes are observed to exhibit gradual increases in leakage current with increasing ion fluence. Heavy-ion exposure alters the overall reverse current-voltage characteristics of these diodes, leaving the forward characteristics practically unchanged. This paper discusses the charge transport mechanisms in the heavy-ion damaged SiC Schottky diodes. A macro model, describing the reverse current-voltage characteristics in the degraded SiC Schottky diodes is proposed. C1 [Javanainen, Arto; Virtanen, A.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Javanainen, Arto; Galloway, Kenneth F.; Schrimpf, Ronald D.; Reed, Robert A.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA. [Ferlet-Cavrois, Veronique] European Space Agcy, European Space Res & Technol Ctr, NL-2200 Noordwijk, Netherlands. [Lauenstein, Jean-Marie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pintacuda, Francesco] STMicroelectronics Srl, I-95121 Catania, Italy. RP Javanainen, A (reprint author), Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. EM arto.javanainen@jyu.fi; kenneth.f.galloway@vanderbilt.edu; veronique.ferlet-cavrois@esa.int; jean.m.lauenstein@nasa.gov; francesco.pintacuda@st.com; ron.schrimpf@vanderbilt.edu; robert.reed@vanderbilt.edu; ari.j.virtanen@jyu.fi RI Javanainen, Arto/P-6355-2016; OI Javanainen, Arto/0000-0001-7906-3669; Virtanen, Ari/0000-0002-6591-6787 FU Walter Ahlstrom Foundation through Tutkijat Maailmalle program; European Space Research and Technology Centre, European Space Agency [4000111630/14/NL/PA]; Academy of Finland through Finnish Centre of Excellence Programme [2513553] FX This work was supported in part by the Walter Ahlstrom Foundation through the Tutkijat Maailmalle program, by the European Space Research and Technology Centre, European Space Agency, under Contract 4000111630/14/NL/PA, and the Academy of Finland through the Finnish Centre of Excellence Programme 2012-2017 under Project 2513553 (Nuclear and Accelerator Based Physics). NR 19 TC 1 Z9 1 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-4388 EI 1558-2574 J9 IEEE T DEVICE MAT RE JI IEEE Trans. Device Mater. Reliab. PD JUN PY 2016 VL 16 IS 2 BP 208 EP 212 DI 10.1109/TDMR.2016.2557585 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DP5BB UT WOS:000378509900014 ER PT J AU Kolodziej, KE McMichael, JG Perry, BT AF Kolodziej, Kenneth E. McMichael, Joseph G. Perry, Bradley T. TI Multitap RF Canceller for In-Band Full-Duplex Wireless Communications SO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS LA English DT Article DE Adaptive canceller; analog cancellation; IBFD; in-band full-duplex wireless communication; interference cancellation; RF cancellation; simultaneous transmit and receive; STAR ID SELF-INTERFERENCE CANCELLATION; DESIGN; RADIOS; SYSTEM AB In-band full-duplex wireless communications are challenging because they require the mitigation of self-interference caused by the co-located transmitter to operate effectively. This paper presents a novel tapped delay line RF canceller architecture with multiple non-uniform pre-weighted taps to improve system isolation by cancelling both the direct antenna coupling as well as multipath effects that comprise a typical interference channel. A four-tap canceller prototype was measured over several different operating conditions, and was found to provide an average of 30 dB signal cancellation over a 30 MHz bandwidth centered at 2.45 GHz in isolated scenarios. When combined with an omni-directional high-isolation antenna, the canceller improved the overall analog isolation to 90 dB for these cases. In an indoor setting, the canceller suppressed a +30 dBm OFDM signal by 22 dB over a 20 MHz bandwidth centered at 2.45 GHz, and produced 78 dB of total analog isolation. This complete evaluation demonstrates not only the performance limitations of an optimized multitap RF canceller, but also establishes the amount of analog interference suppression that can be expected for the different environments considered. C1 [Kolodziej, Kenneth E.; Perry, Bradley T.] MIT, Lincoln Lab, Lexington, MA 02420 USA. [McMichael, Joseph G.] CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA. RP Kolodziej, KE (reprint author), MIT, Lincoln Lab, Lexington, MA 02420 USA. EM kenneth.kolodziej@ll.mit.edu; joseph.g.mcmichael@jpl.nasa.gov; bperry@ll.mit.edu FU Office of Naval Research (ONR) under Air Force Contract [FA8721-05-C-0002] FX This work was supported by the Office of Naval Research (ONR) under Air Force Contract FA8721-05-C-0002. The associate editor coordinating the review of this paper and approving it for publication was M. Manteghi. NR 38 TC 1 Z9 2 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-1276 EI 1558-2248 J9 IEEE T WIREL COMMUN JI IEEE Trans. Wirel. Commun. PD JUN PY 2016 VL 15 IS 6 BP 4321 EP 4334 DI 10.1109/TWC.2016.2539169 PG 14 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DP4ZU UT WOS:000378506600040 ER PT J AU Pietrofesa, RA Velalopoulou, A Lehman, SL Arguiri, E Solomides, P Koch, CJ Mishra, OP Koumenis, C Goodwin, TJ Christofidou-Solomidou, M AF Pietrofesa, Ralph A. Velalopoulou, Anastasia Lehman, Stacey L. Arguiri, Evguenia Solomides, Pantelis Koch, Cameron J. Mishra, Om P. Koumenis, Constantinos Goodwin, Thomas J. Christofidou-Solomidou, Melpo TI Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE cell cycle; DNA damage; extravehicular activity; hyperoxia; ionizing radiation; lung cell injury; oxidative stress; reactive oxygen species; and space exploration ID LUNG INJURY; DNA-DAMAGE; MOUSE LUNG; MAMMALIAN-CELLS; CYCLE ARREST; APOPTOSIS; PATHWAYS; ASTRONAUTS; OXYGEN; EQUILIBRATION AB Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O-2 for 8 h only (O-2), 0.25 Gy ionizing gamma-radiation (IR) only, or a double-hit combination of both challenges (O-2 + IR) followed by 16 h of normoxia (ambient air containing 21% O-2 and 5% CO2) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45 alpha and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O-2 + IR exacerbated cell death and DNA damage compared to individual exposures O-2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that leads to oxidative lung cell injury, DNA damage, apoptosis, and cell cycle arrest. C1 [Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Arguiri, Evguenia; Solomides, Pantelis; Mishra, Om P.; Christofidou-Solomidou, Melpo] Univ Penn, Div Pulm Allergy & Crit Care Med, Perelman Sch Med, 3450 Hamilton Walk, Philadelphia, PA 19104 USA. [Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Arguiri, Evguenia; Solomides, Pantelis; Mishra, Om P.; Christofidou-Solomidou, Melpo] Univ Penn, Dept Med, Perelman Sch Med, 3450 Hamilton Walk, Philadelphia, PA 19104 USA. [Lehman, Stacey L.; Koch, Cameron J.; Koumenis, Constantinos] Univ Penn, Dept Med, Dept Radiat Oncol, Philadelphia, PA 19104 USA. [Goodwin, Thomas J.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. RP Christofidou-Solomidou, M (reprint author), Univ Penn, Div Pulm Allergy & Crit Care Med, Perelman Sch Med, 3450 Hamilton Walk, Philadelphia, PA 19104 USA.; Christofidou-Solomidou, M (reprint author), Univ Penn, Dept Med, Perelman Sch Med, 3450 Hamilton Walk, Philadelphia, PA 19104 USA. EM ralphp@mail.med.upenn.edu; avela@mail.med.upenn.edu; staceylehman87@gmail.com; evguenia@mail.med.upenn.edu; pantelis.solomides@temple.edu; kochc@mail.med.upenn.edu; mishra.o@gmail.com; costas.Koumenis@uphs.upenn.edu; tgoodwin3@comcast.net; melpo@mail.med.upenn.edu FU National Aeronautics and Space Administration (NASA) Human Research Program through a NASA-National Institutes of Health (NIH) Interagency Agreement; NASA award [NNX12AK19G, NIH-R01 CA133470, NIH-1R21AT008291-01, NIH-R03 CA180548, 1P42ES023720-01]; [1P30 ES013508-02] FX We would like to thank Ruth Globus for the helpful comments and suggestions. We would also like to thank Sonia Tyagi for her help in the comet analysis and quantification of apoptosis. This work was funded in part by: the National Aeronautics and Space Administration (NASA) Human Research Program through a NASA-National Institutes of Health (NIH) Interagency Agreement for supplemental award to NIH and by NASA award #NNX12AK19G (Melpo Christofidou-Solomidou), NIH-R01 CA133470 (Melpo Christofidou-Solomidou), NIH-1R21AT008291-01 (Melpo Christofidou-Solomidou), NIH-R03 CA180548 (Melpo Christofidou-Solomidou), 1P42ES023720-01 (Melpo Christofidou-Solomidou) and by pilot project support from 1P30 ES013508-02 awarded to Melpo Christofidou-Solomidou (its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH). NR 50 TC 0 Z9 0 U1 1 U2 1 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JUN PY 2016 VL 17 IS 6 AR 953 DI 10.3390/ijms17060953 PG 23 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA DP9EK UT WOS:000378799300166 ER PT J AU Rezaei, A Sadovsky, AV Speyer, JL AF Rezaei, Ali Sadovsky, Alexander V. Speyer, Jason L. TI Existence and Determination of Separation-Compliant Speed Control in Terminal Airspace SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation, and Control (GNC) Conference / AIAA Infotech at Aerospace Conference CY AUG 19-22, 2013 CL Boston, MA SP AIAA ID HYBRID SYSTEMS AB Among the premises of the Next Generation Air Transportation System initiative is the necessity for precision procedures in air traffic operations. Conformance with such procedures can help safety and the ability to accommodate higher traffic demand. The contribution of this paper is an algorithm for automating the process of speed control, aimed at separation assurance and conducted in current air traffic operations by human air traffic controllers. If a separation-compliant collective speed profile for the given set of aircraft exists, the algorithm computes this profile. If no such speed profile exists, the computer reports the nonexistence. Uncertainties such as weather are not considered, but the algorithm can be modified to include them. The algorithm proceeds in two stages. First, it finds an arrival sequence for the aircraft. The computational complexity of this stage is factorial in the number of aircraft but allows substantial parallelization. The second stage finds a collective speed profile for a given arrival sequence and has computational complexity that is polynomial in the number of aircraft. The algorithm is proved to find a solution whenever one exists and to ascertain nonexistence correctly. C1 [Rezaei, Ali; Speyer, Jason L.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, 420 Westwood Plaza, Los Angeles, CA 90095 USA. [Sadovsky, Alexander V.] NASA, Ames Res Ctr, Aviat Syst Div, Mail Stop 210-6, Moffett Field, CA 94035 USA. RP Rezaei, A (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, 420 Westwood Plaza, Los Angeles, CA 90095 USA. EM arezaei@ucla.edu; speyer@seas.ucla.edu NR 21 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD JUN PY 2016 VL 39 IS 6 BP 1374 EP 1391 DI 10.2514/1.G001779 PG 18 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DP6XF UT WOS:000378642400015 ER PT J AU Jensen, EJ Ueyama, R Pfister, L Bui, TV Lawson, RP Woods, S Thornberry, T Rollins, AW Diskin, GS DiGangi, JP Avery, MA AF Jensen, Eric J. Ueyama, Rei Pfister, Leonhard Bui, Thaopaul V. Lawson, R. Paul Woods, Sarah Thornberry, Troy Rollins, Andrew W. Diskin, Glenn S. DiGangi, Joshua P. Avery, Melody A. TI On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Physical Meteorology and Climatology; Cirrus clouds ID WATER-VAPOR TRANSPORT; TROPOPAUSE LAYER; CLOUD FORMATION; MICROPHYSICAL PROPERTIES; UPPER TROPOSPHERE; SUBVISIBLE CIRRUS; AIRCRAFT OBSERVATIONS; ATMOSPHERIC AEROSOLS; LOWER STRATOSPHERE; GLASSY AEROSOLS AB Numerical simulations of cirrus formation in the tropical tropopause layer (TTL) during boreal wintertime are used to evaluate the impact of heterogeneous ice nuclei (IN) abundance on cold cloud microphysical properties and occurrence frequencies. The cirrus model includes homogeneous and heterogeneous ice nucleation, deposition growth/sublimation, and sedimentation. Reanalysis temperature and wind fields with high-frequency waves superimposed are used to force the simulations. The model results are constrained by comparison with in situ and satellite observations of TTL cirrus and relative humidity. Temperature variability driven by high-frequency waves has a dominant influence on TTL cirrus microphysical properties and occurrence frequencies, and inclusion of these waves is required to produce agreement between the simulated and observed abundance of TTL cirrus. With homogeneous freezing only and small-scale gravity waves included in the temperature curtains, the model produces excessive ice concentrations compared with in situ observations. Inclusion of relatively numerous heterogeneous ice nuclei (N-IN 100 L-1) in the simulations improves the agreement with observed ice concentrations. However, when IN contribute significantly to TTL cirrus ice nucleation, the occurrence frequency of large supersaturations with respect to ice is less than indicated by in situ measurements. The model results suggest that the sensitivity of TTL cirrus extinction and ice water content statistics to heterogeneous ice nuclei abundance is relatively weak. The simulated occurrence frequencies of TTL cirrus are quite insensitive to ice nuclei abundance, both in terms of cloud frequency height distribution and regional distribution throughout the tropics. C1 [Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Thaopaul V.] NASA, Ames Res Ctr, MS 245-5, Moffett Field, CA 94035 USA. [Lawson, R. Paul; Woods, Sarah] Spec Inc, Boulder, CO USA. [Thornberry, Troy; Rollins, Andrew W.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Thornberry, Troy; Rollins, Andrew W.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Diskin, Glenn S.; DiGangi, Joshua P.; Avery, Melody A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, MS 245-5, Moffett Field, CA 94035 USA. EM eric.j.jensen@nasa.gov RI Rollins, Andrew/G-7214-2012; Manager, CSD Publications/B-2789-2015 FU NASA Airborne Tropical Tropopause Experiment (ATTREX) Earth Ventures mission; NASA Atmospheric Composition Campaign Data Analysis and Modeling project FX This work was supported by the NASA Airborne Tropical Tropopause Experiment (ATTREX) Earth Ventures mission as well as the NASA Atmospheric Composition Campaign Data Analysis and Modeling project managed by Hal Maring and Ken Jucks. NR 72 TC 1 Z9 1 U1 8 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUN PY 2016 VL 73 IS 6 BP 2445 EP 2464 DI 10.1175/JAS-D-15-0274.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DP5FX UT WOS:000378522600003 ER PT J AU Copeman, LA Laurel, BJ Boswell, KM Sremba, AL Klinck, K Heintz, RA Vollenweider, JJ Helser, TE Spencer, ML AF Copeman, Louise A. Laurel, Benjamin J. Boswell, Kevin M. Sremba, Angie L. Klinck, Karolin Heintz, Ron A. Vollenweider, Johanna J. Helser, Thomas E. Spencer, Mara L. TI Ontogenetic and spatial variability in trophic biomarkers of juvenile saffron cod (Eleginus gracilis) from the Beaufort, Chukchi and Bering Seas SO POLAR BIOLOGY LA English DT Article DE Saffron cod; Arctic; Ontogeny; Fatty acids; Lipids; Nutrition ID POLLOCK THERAGRA-CHALCOGRAMMA; STABLE-ISOTOPE ANALYSES; FATTY-ACID BIOMARKERS; PRINCE-WILLIAM-SOUND; BOREOGADUS-SAIDA; GADUS-MORHUA; ATLANTIC COD; POLAR COD; FISH ASSEMBLAGES; WALLEYE POLLOCK AB Climate models indicate the Arctic will undergo dramatic environmental change with forecasted increases in temperature and river runoff. Saffron cod (Eleginus gracilis) is abundant in nearshore waters and appears in the diet of many Arctic sea birds and marine mammals; however, little is known about its early ecology and consequently how they might be affected by environmental changes. We aimed to characterize the mechanisms of spatial and ontogenetic variation in trophic biomarkers (lipid classes, fatty acids and bulk C and N stable isotopes) of saffron cod from the Western Arctic, Chukchi and Bering Seas. Size-standardized analyses showed a significant difference in lipid condition metrics and trophic biomarkers as a function of survey location. Both ontogeny and sampling location played an important role in determining lipid stores with elevated levels in both small offshore juveniles (< 55 mm) and larger inshore juveniles (> 75 mm). Higher lipid storage in Arctic juveniles was associated with elevated levels of diatom fatty acid markers, but not with nearshore carbon input. Increased lipids were found in age-1 juveniles from Prudhoe Bay in the Western Beaufort that were feeding at a lower trophic level than similarly sized age-0 juveniles from surface trawls in the Bering Sea. The use of otolith annuli revealed two discrete patterns of growth that help explain the trade-offs between energy storage and rapid growth that diverge between the Arctic and Bering Sea. Laboratory temperature-growth experiments confirmed that saffron cod have a eurythermal growth response and are able to store excess lipids at temperatures as high as 20 A degrees C. C1 [Copeman, Louise A.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. [Copeman, Louise A.; Sremba, Angie L.; Klinck, Karolin] Oregon State Univ, Cooperat Inst Marine Resources Studies, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. [Laurel, Benjamin J.; Spencer, Mara L.] NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. [Boswell, Kevin M.] Florida Int Univ, Dept Biol Sci, Marine Sci Program, Biscayne Bay Campus,Marine Sci Bldg, North Miami, FL 33181 USA. [Heintz, Ron A.; Vollenweider, Johanna J.] Auke Bay Labs, Recruitment Energet & Coastal Assessment Program, Alaska Fisheries Sci Ctr, Ted Stephens Marine Res Inst, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. [Helser, Thomas E.] NOAA, Age & Growth Program, Resource Ecol & Fisheries Management Div, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA. RP Copeman, LA (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. EM lcopeman@coas.oregonstate.edu FU Bureau of Ocean Energy Management (BOEM); Coastal Impact Assistance Programs (CIAP); North Pacific Research Board [1228] FX We would like to thank the field crews of the Arctic EIS survey and the ACES survey for helping with the collections of saffron cod in 2012. Fish in this study were supplied from field collections that were supported by both the Bureau of Ocean Energy Management (BOEM) and Coastal Impact Assistance Programs (CIAP). We would like to thank Dr. Franz Mueter for helpful advice and coordination of the large Arctic EIS project. We would also like to acknowledge Michele Ottmar, Scott Hains, Paul Iseri and Chris Magel for help with saffron cod husbandry. Finally, we would like to thank the North Pacific Research Board for Grant # 1228 that supported our research on juvenile Arctic gadids. This is NPRB publication number 571. NR 82 TC 2 Z9 2 U1 8 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0722-4060 EI 1432-2056 J9 POLAR BIOL JI Polar Biol. PD JUN PY 2016 VL 39 IS 6 SI SI BP 1109 EP 1126 DI 10.1007/s00300-015-1792-y PG 18 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DP8XW UT WOS:000378782300014 ER PT J AU Laurel, BJ Spencer, M Iseri, P Copeman, LA AF Laurel, Benjamin J. Spencer, Mara Iseri, Paul Copeman, Louise A. TI Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids SO POLAR BIOLOGY LA English DT Article DE Climate change; Thermal sensitivity; Walleye pollock; Pacific cod; Saffron cod; Biogeography ID POLLOCK THERAGRA-CHALCOGRAMMA; EASTERN BERING-SEA; GADUS-MORHUA L; WALLEYE POLLOCK; ATLANTIC COD; CLIMATE-CHANGE; BEAUFORT SEA; FISH DISTRIBUTIONS; REACTION NORMS; ENERGY STORES AB The thermal sensitivity of Arctic fish species is poorly understood, yet such data are a critical component of forecasting and understanding ecosystem impacts of climate change. In this study, we experimentally measured temperature-dependent growth and routine swim activity in the juvenile stage of two Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus) over a 6-week growth period across five temperatures (0, 5, 9, 16 and 20 A degrees C). Arctic cod demonstrated a cold-water, stenothermic response in that there was relatively high growth at 0 A degrees C (0.73 % day(-1)), near-maximal growth at 5 A degrees C (1.35 % day(-1)) and negative impacts on activity, growth and survival at 16 A degrees C. In contrast, saffron cod demonstrated a warmer-water, eurythermic response, and temperature had a positive effect on growth and condition beyond 16 A degrees C. However, despite these distinct thermal responses, walleye pollock and Pacific cod grew 2-3 times faster than Arctic gadids across a relatively broad temperature range above 5 A degrees C. These results, coupled with possible northward expansion by both Pacific cod and walleye pollock, suggest Arctic cod are highly vulnerable to continued climate change in the Arctic, especially in coastal areas of the Beaufort and Chukchi Seas where temperatures already exceed 14 A degrees C in the summer growth period. C1 [Laurel, Benjamin J.; Spencer, Mara; Iseri, Paul] NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, Newport, OR 97365 USA. [Copeman, Louise A.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. RP Laurel, BJ (reprint author), NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, Newport, OR 97365 USA. EM ben.laurel@noaa.gov FU North Pacific Research Board (NPRB) [R1228]; NOAA-AFSC FX We thank C. Ryer, T. Hurst, and I. Bradbury for reviewing earlier drafts of this manuscript. Thanks also to Bill Kopplin, Robert Fechhelm, Kyle McCain, Bill Streever and the LGL field crew for their assistance in the collection of Arctic and saffron cod in Prudhoe Bay as well as to Scott Haines, Michele Ottmar, and Eric Hanneman for their assistance in the fish transport and animal husbandry. This project was supported with funding from the North Pacific Research Board (NPRB) Grant #R1228 and 2014 Essential Fish Habitat funding from NOAA-AFSC. This study is NPRB contribution no. 560. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. NR 59 TC 8 Z9 8 U1 9 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0722-4060 EI 1432-2056 J9 POLAR BIOL JI Polar Biol. PD JUN PY 2016 VL 39 IS 6 SI SI BP 1127 EP 1135 DI 10.1007/s00300-015-1761-5 PG 9 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DP8XW UT WOS:000378782300015 ER PT J AU Nikzad, S Hoenk, M Jewell, AD Hennessy, JJ Carver, AG Jones, TJ Goodsall, TM Hamden, ET Suvarna, P Bulmer, J Shahedipour-Sandvik, F Charbon, E Padmanabhan, P Hancock, B Bell, LD AF Nikzad, Shouleh Hoenk, Michael Jewell, April D. Hennessy, John J. Carver, Alexander G. Jones, Todd J. Goodsall, Timothy M. Hamden, Erika T. Suvarna, Puneet Bulmer, J. Shahedipour-Sandvik, F. Charbon, Edoardo Padmanabhan, Preethi Hancock, Bruce Bell, L. Douglas TI Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials SO SENSORS LA English DT Review DE ultraviolet; quantum efficiency; MBE; ALD; EMCCD; APD; ROIC; Avalanche; visible rejection; MOCVD; GaN ID CHARGE-COUPLED-DEVICE; QUANTUM EFFICIENCY; INTERFERENCE FILTERS; ULTRAVIOLET; SPECTROGRAPH; BAND; DESIGN; 67P/CHURYUMOV-GERASIMENKO; INTENSIFIER; ROSETTA AB Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE congruent to 80% at similar to 206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. C1 [Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hancock, Bruce; Bell, L. Douglas] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hamden, Erika T.] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. [Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.] SUNY Polytech Inst, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Charbon, Edoardo; Padmanabhan, Preethi] Delft Univ Technol, Dept Microelect, Delft, Netherlands. RP Nikzad, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shouleh.nikzad@jpl.nasa.gov; michael.hoenk@jpl.nasa.gov; April.D.Jewell@jpl.nasa.gov; John.J.Hennessy@jpl.nasa.gov; Alexander.G.Carver@jpl.nasa.gov; todd.jones@jpl.nasa.gov; timothy.goodsall@jpl.nasa.gov; hamden@caltech.edu; psuvarna@albany.edu; jbulmer@albany.edu; sshahedipour-sandvik@albany.edu; e.charbon@tudelft.nl; PreethiPadmanabhan@student.tudelft.nl; bruce.hancock@jpl.nasa.gov; lloyddoug.bell@jpl.nasa.gov OI Hennessy, John/0000-0002-0135-0219 FU NASA; W.M. Keck Institute (Pasadena, CA, USA); NSF; R.M & G.B. Millikan Prize Fellowship; JPL Visiting Research Student Program (JVRSP); TU Delft Faculty of Electrical Engineering FX We gratefully acknowledge the collaborative effort with e2v, Inc. (Chelmsford, UK) and helpful discussions with P. Pool, P. Fochi, A. Reinheimer, P. Jorden, and P. Jerram of e2v. We acknowledge excellent collaborative effort and support from M. McClish at Radiation Monitoring Devices (RMD, Watertown, MA, USA) and D. Hitlin of Caltech. The authors thank S. Riccardi and R. Myers of RMD for QE measurements on superlattice-doped avalanche photodiodes. This work was carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We also acknowledge the support of W.M. Keck Institute (Pasadena, CA, USA) for Space Studies for partial support of this work. One of us, E.T.H acknowledges the support of NASA Earth and Space Science Fellowship, NSF Fellowship, and R.M & G.B. Millikan Prize Fellowship at different stages of this project. P. P. was supported by an internship supported through JPL Visiting Research Student Program (JVRSP) and TU Delft Faculty of Electrical Engineering. NR 52 TC 3 Z9 3 U1 21 U2 39 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUN PY 2016 VL 16 IS 6 AR 927 DI 10.3390/s16060927 PG 21 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DP8OC UT WOS:000378756500174 ER PT J AU Archambault, S Archer, A Benbow, W Bird, R Biteau, J Buchovecky, M Buckley, JH Bugaev, V Byrum, K Cerruti, M Chen, X Ciupik, L Connolly, MP Cui, W Eisch, JD Errando, M Falcone, A Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Hutten, M Hakansson, N Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Kertzman, M Kieda, D Krause, M Krennrich, F Kumar, S Lang, MJ Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nguyen, T Nieto, D de Bhroithe, AO Ong, RA Otte, AN Park, N Perkins, JS Pichel, A Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Reynolds, PT Richards, GT Roache, E Rovero, AC Santander, M Sembroski, GH Shahinyan, K Smith, AW Staszak, D Telezhinsky, I Tucci, JV Tyler, J Vincent, S Wakely, SP Weiner, OM Weinstein, A Williams, DA Zitzer, B Fumagalli, M Prochaska, JX AF Archambault, S. Archer, A. Benbow, W. Bird, R. Biteau, J. Buchovecky, M. Buckley, J. H. Bugaev, V. Byrum, K. Cerruti, M. Chen, X. Ciupik, L. Connolly, M. P. Cui, W. Eisch, J. D. Errando, M. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Kertzman, M. Kieda, D. Krause, M. Krennrich, F. Kumar, S. Lang, M. J. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nguyen, T. Nieto, D. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Perkins, J. S. Pichel, A. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Reynolds, P. T. Richards, G. T. Roache, E. Rovero, A. C. Santander, M. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Williams, D. A. Zitzer, B. Fumagalli, M. Prochaska, J. X. CA VERITAS Collaboration TI UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES SO ASTRONOMICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; galaxies: active; gamma rays: galaxies; radiation mechanisms: non-thermal ID BL-LACERTAE OBJECTS; ACTIVE GALACTIC NUCLEI; ENERGY GAMMA-RAYS; ALL-SKY SURVEY; SPECTRUM RADIO QUASARS; LARGE-AREA TELESCOPE; FERMI-LAT BLAZARS; X-RAY; OPTICAL SPECTROSCOPY; COMPLETE SAMPLE AB Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) gamma-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of similar to 570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4s excess. C1 [Archambault, S.; Griffin, S.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Buckley, J. H.; Bugaev, V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Pueschel, E.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Buchovecky, M.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chen, X.; Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Errando, M.; Mukherjee, R.; Santander, M.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.; Nieto, D.; Weiner, O. M.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Meagher, K.; Nguyen, T.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Nguyen, T.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Pichel, A.; Rovero, A. C.] Inst Astron & Fis Espacio, Casilla Correo 67 Sucursal 28,C1428ZAA, RA-1428 Buenos Aires, DF, Argentina. [Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork, Ireland. [Smith, A. W.] Univ Maryland, College Pk, MD 20742 USA. [Smith, A. W.] NASA GSFC, College Pk, MD 20742 USA. [Fumagalli, M.] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. [Fumagalli, M.] Univ Durham, Ctr Extragalact Astron, Dept Phys, South Rd, Durham DH1 3LE, England. [Prochaska, J. X.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Cerruti, M.] Univ Paris Diderot, Univ Paris 06, Sorbonne Univ, LPNHE,CNRS, 4 Pl Jussieu, F-75252 Paris 5, France. RP Benbow, W (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM wystan.benbow@cfa.harvard.edu; matteo.cerruti@lpnhe.in2p3.fr; caajohns@ucsc.edu RI Fumagalli, Michele/K-9510-2015; OI Fumagalli, Michele/0000-0001-6676-3842; Pueschel, Elisa/0000-0002-0529-1973; Krause, Maria/0000-0001-7595-0914; Santander, Juan Marcos/0000-0001-7297-8217 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science and Technology Facilities Council [ST/L00075X/1] FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible. M.F. acknowledges support by the Science and Technology Facilities Council (grant number ST/L00075X/1). NR 149 TC 4 Z9 4 U1 3 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 AR 142 DI 10.3847/0004-6256/151/6/142 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300009 ER PT J AU Gordon, D Jacobs, C Beasley, A Peck, A Gaume, R Charlot, P Fey, A Ma, C Titov, O Boboltz, D AF Gordon, David Jacobs, Christopher Beasley, Anthony Peck, Alison Gaume, Ralph Charlot, Patrick Fey, Alan Ma, Chopo Titov, Oleg Boboltz, David TI SECOND EPOCH VLBA CALIBRATOR SURVEY OBSERVATIONS: VCS-II SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; quasars: general; radio continuum: galaxies; reference systems; surveys; techniques: interferometric ID BASE-LINE INTERFEROMETRY; CELESTIAL REFERENCE FRAME; MOTIONS AB Six very successful Very Long Baseline Array (VLBA) calibrator survey campaigns were run between 1994 and 2007 to build up a large list of compact radio sources with positions precise enough for use as very long baseline interferometry (VLBI) phase reference calibrators. We report on the results of a second epoch VLBA Calibrator Survey campaign (VCS-II) in which 2400 VCS sources were re-observed in the X and S bands in order to improve the upcoming third realization of the International Celestial Reference Frame (ICRF3) as well as to improve their usefulness as VLBI phase reference calibrators. In this survey, some 2062 previously detected sources and 324 previously undetected sources were detected and revised positions are presented. Average position uncertainties for the re-observed sources were reduced from 1.14 and 1.98 mas to 0.24 and 0.41 mas in R.A. and decl., respectively, or by nearly a factor of 5. Minimum detected flux values were approximately 15 and 28 mJy in the X and S bands, respectively, and median total fluxes are approximately 230 and 280 mJy. The vast majority of these sources are flat-spectrum sources, with similar to 82% having spectral indices greater than -0.5. C1 [Gordon, David] NASA, Goddard Space Flight Ctr, NVI Inc, Code 698-2, Greenbelt, MD 20771 USA. [Jacobs, Christopher] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Beasley, Anthony; Peck, Alison] Natl Radio Astron Observ, Charlottesville, VA USA. [Gaume, Ralph; Fey, Alan] US Naval Observ, Washington, DC 20392 USA. [Charlot, Patrick] Univ Bordeaux, LAB, UMR 5804, F-33270 Floirac, France. [Charlot, Patrick] CNRS, LAB, UMR 5804, F-33270 Floirac, France. [Ma, Chopo] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Titov, Oleg] Geosci Australia, Canberra, ACT 2601, Australia. [Boboltz, David] Natl Sci Fdn, Washington, DC 20550 USA. RP Gordon, D (reprint author), NASA, Goddard Space Flight Ctr, NVI Inc, Code 698-2, Greenbelt, MD 20771 USA. EM David.Gordon-1@nasa.gov; Christopher.S.Jacobs@jpl.nasa.gov; tbeasley@nrao.edu; apeck@nrao.edu; rgaume@usno.navy.mil; patrick.charlot@obs.u-bordeaux1.fr; alan.fey@usno.navy.mil; Chopo.Ma-1@nasa.gov; Oleg.Titov@ga.gov.au; dboboltz@nsf.gov FU NASA [NNG12HP00C] FX The VLBA is operated by the National Radio Astronomy Observatory, which is a facility of the National Science Foundation, and operated under cooperative agreement by Associated Universities, Inc. This work made use of the Swinburne University of Technology software correlator, DiFX, developed as part of the Australian Major National Research Facilities Programme and operated under license. For a description of the DiFX correlator, see Deller et al. (2011). Partial support for this work was provided through NASA contract NNG12HP00C. IVS VLBI databases are available at the three IVS data centers, one of them being ftp://cddis.gsfc.nasa.gov/pub/vlbi/ivsdata/db/. NR 23 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 AR 154 DI 10.3847/0004-6256/151/6/154 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300021 ER PT J AU Grav, T Mainzer, AK Spahr, T AF Grav, T. Mainzer, A. K. Spahr, T. TI MODELING THE PERFORMANCE OF THE LSST IN SURVEYING THE NEAR-EARTH OBJECT POPULATION SO ASTRONOMICAL JOURNAL LA English DT Article DE minor planets, asteroids: general; surveys; telescopes ID INFRARED-SURVEY-EXPLORER; COMET SHOEMAKER-LEVY-9; PROCESSING SYSTEM; NEOWISE; CHELYABINSK; IMPACT; ORBIT AB We have performed a detailed survey simulation of the LSST performance with regards to near-Earth objects (NEOs) using the project's current baseline cadence. The survey shows that if the project is able to reliably generate linked sets of positions and times (a so-called "tracklet") using two detections of a given object per night and can link these tracklets into a track with a minimum of three tracklets covering more than a 12 day length -of arc, then they would be able to discover 62% of the potentially hazardous asteroids (PHAs) larger than 140 m in its projected 10 year survey lifetime. This completeness would be reduced to 58% if the project is unable to implement a pipeline using the two detection cadence and has to adopt the four detection cadence more commonly used by existing NEO surveys. When including the estimated performance from the current operating surveys, assuming these would continue running until the start of LSST and perhaps beyond, the completeness fraction for PHAs larger than 140 m would be 73% for the baseline cadence and 71% for the four detection cadence. This result is a lower completeness than the estimate of Ivezic et al.; however, the result is quite close to that of Jones et al., who show 70% completeness using the identical survey cadence as used here. We show that the traditional method of using absolute magnitude H < 22 mag as a proxy for the population with diameters larger than 140 m results in completeness values that are too high by 5%. Our simulation makes use of the most recent models of the physical and orbital properties of the NEO and PHA populations, as well as simulated cadences and telescope performance estimates provided by the LSST project. The consistency of the results presented here when compared to those of Jones et al. demonstrates the robustness of these survey modeling approaches. We also show that while neither LSST nor a space-based IR platform like NEOCam individually can complete the survey for 140 m diameter NEOs, the combination of these systems can achieve that goal after a decade of observation. C1 [Grav, T.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Mainzer, A. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Spahr, T.] NEO Sci LLC, Great Neck, NY USA. RP Grav, T (reprint author), Planetary Sci Inst, Tucson, AZ 85719 USA. EM tgrav@psi.edu FU National Aeronautics and Space Administration; JPL Office of the Chief Information Officer FX This publication makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication makes use of data products from the Wide field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We gratefully acknowledge the support of the JPL High-Performance Computing Facility, which is supported by the JPL Office of the Chief Information Officer. NR 38 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 AR 172 DI 10.3847/0004-6256/151/6/172 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300039 ER PT J AU Jones, TJ Gordon, M Shenoy, D Gehrz, RD Vaillancourt, JE Krejny, M AF Jones, T. J. Gordon, Michael Shenoy, Dinesh Gehrz, R. D. Vaillancourt, John E. Krejny, M. TI SOFIA MID-INFRARED IMAGING AND CSO SUBMILLIMETER POLARIMETRY OBSERVATIONS OF G034.43+00.24 MM1 SO ASTRONOMICAL JOURNAL LA English DT Article DE ISM: magnetic fields; stars: formation; stars: pre-main sequence ID INFRARED-DARK CLOUD; MAGNETIC-FIELD; STAR-FORMATION; GRAIN ALIGNMENT; MSXDC G034.43+00.24; MOLECULAR CLOUDS; PIPE NEBULA; POLARIZATION; CAMERA; CORES AB We present 11.1 to 37.1 mu m imaging observations of the very dense molecular cloud core MM1 in G034.43+00.24 using FORCAST on SOFIA and submillimeter (submm) polarimetry using SHARP on the Caltech Submillimeter Observatory. We find that at the spatial resolution of SOFIA, the point-spread function (PSF) of MM1 is consistent with being a single source, as expected based on millimeter (mm) and submm observations. The spectral energy distributions (SEDs) of MM1 and MM2 have a warm component at the shorter wavelengths not seen in mm and submm SEDs. Examination of H(1.65 mu m) stellar polarimetry from the Galactic Plane Infrared Polarization Survey shows that G034 is embedded in an external magnetic field aligned with the Galactic Plane. The SHARP polarimetry at 450 mu m shows a magnetic field geometry in the vicinity of MM1 that does not line up with either the Galactic Plane or the mean field direction inferred from the CARMA interferometric polarization map of the central cloud core, but is perpendicular to the long filament in which G034 is embedded. The CARMA polarimetry does show evidence for grain alignment in the central region of the cloud core, and thus does trace the magnetic field geometry near the embedded Class 0 YSO. C1 [Jones, T. J.; Gordon, Michael; Shenoy, Dinesh; Gehrz, R. D.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Vaillancourt, John E.] NASA, Ames Res Ctr, Univ Space Res Assoc, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Krejny, M.] Cree Inc, 4600 Silicon Dr, Durham, NC USA. RP Jones, TJ (reprint author), Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. EM tjj@astro.umn.edu OI Vaillancourt, John/0000-0001-8916-1828 FU NASA by USRA [SOF-0029]; NSF [AST 06-07500, 09-07790]; NASA; NSF; W.M. Keck Foundation; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain) FX Financial support for this work was provided in part by NASA through award # SOF-0029 issued by USRA. This research used data from the Boston University (BU) Galactic Plane Infrared Polarization Survey (GPIPS), funded in part by NSF grants AST 06-07500 and 09-07790. GPIPS used the Mimir instrument, jointly developed at BU and Lowell Observatory and supported by NASA, NSF, and the W.M. Keck Foundation. We thank Kathleen DeWahl for assistance with the observations at CSO.; PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). NR 61 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 AR 156 DI 10.3847/0004-6256/151/6/156 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300023 ER PT J AU Li, TS DePoy, DL Marshall, JL Tucker, D Kessler, R Annis, J Bernstein, GM Boada, S Burke, DL Finley, DA James, DJ Kent, S Lin, H Marriner, J Mondrik, N Nagasawa, D Rykoff, ES Scolnic, D Walker, AR Wester, W Abbott, TMC Allam, S Benoit-Levy, A Bertin, E Brooks, D Capozzi, D Rosell, AC Kind, MC Carretero, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Diehl, HT Doel, P Flaugher, B Fosalba, P Frieman, J Gaztanaga, E Goldstein, DA Gruen, D Gruendl, RA Gutierrez, G Honscheid, K Kuehn, K Kuropatkin, N Maia, MAG Melchior, P Miller, CJ Miquel, R Mohr, JJ Neilsen, E Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sako, M Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Tarle, G Thomas, D Vikram, V AF Li, T. S. DePoy, D. L. Marshall, J. L. Tucker, D. Kessler, R. Annis, J. Bernstein, G. M. Boada, S. Burke, D. L. Finley, D. A. James, D. J. Kent, S. Lin, H. Marriner, J. Mondrik, N. Nagasawa, D. Rykoff, E. S. Scolnic, D. Walker, A. R. Wester, W. Abbott, T. M. C. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Doel, P. Flaugher, B. Fosalba, P. Frieman, J. Gaztanaga, E. Goldstein, D. A. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. Kuehn, K. Kuropatkin, N. Maia, M. A. G. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Neilsen, E. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Tarle, G. Thomas, D. Vikram, V. CA DES Collaboration TI ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS SO ASTRONOMICAL JOURNAL LA English DT Article DE atmospheric effects; methods: observational; surveys; techniques: photometric ID ATMOSPHERIC EXTINCTION; HOMOGENEOUS PHOTOMETRY; COLOR CALIBRATION; STANDARD STARS; UBVRI; REGRESSION; PASSBANDS; REDSHIFTS; SOFTWARE; GALAXIES AB Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1 %-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position -dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color -dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non - uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts. C1 [Li, T. S.; DePoy, D. L.; Marshall, J. L.; Boada, S.; Mondrik, N.; Nagasawa, D.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; DePoy, D. L.; Marshall, J. L.; Boada, S.; Mondrik, N.; Nagasawa, D.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Tucker, D.; Annis, J.; Finley, D. A.; Kent, S.; Lin, H.; Marriner, J.; Wester, W.; Allam, S.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kessler, R.; Scolnic, D.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bernstein, G. M.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Burke, D. L.; Rykoff, E. S.; Gruen, D.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Burke, D. L.; Rykoff, E. S.; Cunha, C. E.; Gruen, D.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [James, D. J.; Walker, A. R.; Abbott, T. M. C.; Smith, R. C.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Benoit-Levy, A.; Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [Honscheid, K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43201 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Li, TS (reprint author), Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.; Li, TS (reprint author), Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RI Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014 OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; ERDF funds from European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 49 TC 1 Z9 1 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 AR 157 DI 10.3847/0004-6256/151/6/157 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300024 ER PT J AU Roberts, LC Mason, BD Aguilar, J Carson, J Crepp, J Beichman, C Brenner, D Burruss, R Cady, E Luszcz-Cook, S Dekany, R Hillenbrand, L Hinkley, S King, D Lockhart, TG Nilsson, R Oppenheimer, R Parry, IR Pueyo, L Rice, EL Sivaramakrishnan, A Soummer, R Vasisht, G Veicht, A Wang, J Zhai, CX Zimmerman, NT AF Roberts, Lewis C., Jr. Mason, Brian D. Aguilar, Jonathan Carson, Joseph Crepp, Justin Beichman, Charles Brenner, Douglas Burruss, Rick Cady, Eric Luszcz-Cook, Statia Dekany, Richard Hillenbrand, Lynne Hinkley, Sasha King, David Lockhart, Thomas G. Nilsson, Ricky Oppenheimer, Rebecca Parry, Ian R. Pueyo, Laurent Rice, Emily L. Sivaramakrishnan, Anand Soummer, Remi Vasisht, Gautam Veicht, Aaron Wang, Ji Zhai, Chengxing Zimmerman, Neil T. TI CHARACTERIZATION OF THE COMPANION mu HER SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics; stars: individual (HD 161797); stars: solar-type ID ADAPTIVE OPTICS SYSTEM; PROPER-MOTION STARS; PHOTOGRAPHIC ASTROMETRY; BINARY STARS; PHOTOMETRY; TELESCOPE; DWARFS; MULTIPLICITY; SPECTROGRAPH; PARAMETERS AB mu Her is a nearby quadruple system with a G-subgiant primary and several low-mass companions arranged in a 2+2 architecture. While the BC components have been well characterized, the Ab component has been detected astrometrically and with direct imaging but there has been some confusion over its nature, in particular, whether the companion is stellar or substellar. Using near-infrared spectroscopy, we are able to estimate the spectral type of the companion as an M4 +/- 1V star. In addition, we have measured the astrometry of the system for over a decade. We combined the astrometry with archival radial velocity measurements to compute an orbit of the system. From the combined orbit, we are able to compute the mass sum of the system. Using the estimated mass of the primary, we estimate the mass of the secondary as 0.32 MG, which agrees with the estimated spectral type. Our computed orbit is preliminary due to the incomplete orbital phase coverage, but it should be sufficient to predict ephemerides over the next decade. C1 [Roberts, Lewis C., Jr.; Beichman, Charles; Burruss, Rick; Cady, Eric; Lockhart, Thomas G.; Vasisht, Gautam; Zhai, Chengxing] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mason, Brian D.] US Naval Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA. [Aguilar, Jonathan; Pueyo, Laurent] Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA. [Carson, Joseph] Coll Charleston, Dept Phys & Astron, 58 Coming St, Charleston, SC 29424 USA. [Crepp, Justin] Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. [Beichman, Charles; Dekany, Richard; Hillenbrand, Lynne] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Beichman, Charles] NASA, Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA USA. [Brenner, Douglas; Luszcz-Cook, Statia; Nilsson, Ricky; Oppenheimer, Rebecca; Veicht, Aaron] Amer Museum Nat Hist, Cent Pk West & 79th St, New York, NY 10024 USA. [Hinkley, Sasha] Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England. [King, David; Parry, Ian R.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 OHA, England. [Nilsson, Ricky] Stockholm Univ, Dept Astron, AlbaNova, Univ Ctr, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden. [Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Rice, Emily L.] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Wang, Ji] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Zimmerman, Neil T.] Princeton Univ, MAE, D207 Engn Quad, Princeton, NJ 08544 USA. RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration (NASA); NASA ROSES Origins of Solar Systems grant [NMO710830/102190]; National Science Foundation [1640, AST-0520822, AST-0804417, AST-0908484]; NASA through the Sagan Fellowship Program; Laboratory for Physical Sciences, College Park, MD, through the National Physical Science Consortium graduate fellowship program; U.S. National Science Foundation [1009203]; Swedish Research Council [637-2013-474]; Cordelia Corporation [1640]; Hilary and Ethel Lipsitz, the Vincent Astor Fund; NASA's Origins Theme and Exoplanet Exploration Program FX Our thanks to Nils Turner for assistance with the Mt. Wilson log books. We also thank Andrei Tokovinin for assistance with the latest version of his ORBITX code. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). This work was partially funded through the NASA ROSES Origins of Solar Systems grant NMO710830/102190. Project 1640 is funded by National Science Foundation grants AST-0520822, AST-0804417, and AST-0908484. In addition, part of this work was performed under a contract with the California Institute of Technology funded by NASA through the Sagan Fellowship Program. J.A. is supported by the Laboratory for Physical Sciences, College Park, MD, through the National Physical Science Consortium graduate fellowship program. J.C. was supported by the U.S. National Science Foundation under Award No. 1009203. R.N. was funded by the Swedish Research Council's International Postdoctoral Grant No. 637-2013-474. The members of the Project 1640 team are also grateful for support from the Cordelia Corporation, Hilary and Ethel Lipsitz, the Vincent Astor Fund, Judy Vale, Andrew Goodwin, and an anonymous donor. This paper is based on observations obtained at the Maui Space Surveillance System operated by the US Air Force Research Laboratory's Directed Energy Directorate and at the Hale Telescope, Palomar Observatory. This research made use of the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. NExScI is sponsored by NASA's Origins Theme and Exoplanet Exploration Program, and operated by the California Institute of Technology in coordination with the Jet Propulsion Laboratory. This research made use of the Washington Double Star Catalogue maintained at the U.S. Naval Observatory, the SIMBAD database, operated by the CDS in Strasbourg, France and NASA's Astrophysics Data System. NR 41 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 AR 169 DI 10.3847/0004-6256/151/6/169 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300036 ER PT J AU Rodriguez, JE Colon, KD Stassun, KG Wright, D Cargile, PA Bayliss, D Pepper, J Collins, KA Kuhn, RB Lund, MB Siverd, RJ Zhou, G Gaudi, BS Tinney, CG Penev, K Tan, TG Stockdale, C Curtis, IA James, D Udry, S Segransan, D Bieryla, A Latham, DW Beatty, TG Eastman, JD Myers, G Bartz, J Bento, J Jensen, ELN Oberst, TE Stevens, DJ AF Rodriguez, Joseph E. Colon, Knicole D. Stassun, Keivan G. Wright, Duncan Cargile, Phillip A. Bayliss, Daniel Pepper, Joshua Collins, Karen A. Kuhn, Rudolf B. Lund, Michael B. Siverd, Robert J. Zhou, George Gaudi, B. Scott Tinney, C. G. Penev, Kaloyan Tan, T. G. Stockdale, Chris Curtis, Ivan A. James, David Udry, Stephane Segransan, Damien Bieryla, Allyson Latham, David W. Beatty, Thomas G. Eastman, Jason D. Myers, Gordon Bartz, Jonathan Bento, Joao Jensen, Eric L. N. Oberst, Thomas E. Stevens, Daniel J. TI KELT-14b AND KELT-15b: AN INDEPENDENT DISCOVERY OF WASP-122b AND A NEW HOT JUPITER SO ASTRONOMICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (KELT-14, KELT-15); techniques: photometric; techniques: radial velocities; techniques: spectroscopic ID TRANSITING PLANET; SHORT-PERIOD; SKY SURVEY; F-DWARF; STARS; EVOLUTION; MIGRATION; MISSION; ORBIT; SPECTROGRAPH AB We report the discovery of KELT-14b and KELT-15b, two hot Jupiters from the KELT-South survey. KELT-14b, an independent discovery of the recently announced WASP-122b, is an inflated Jupiter mass planet that orbits a similar to 5.0(-0.7)(+0.3) (0)7 Gyr, V= 11.0, G2 star that is near the main sequence turnoff. The host star, KELT-14 (TYC 7638-981-1), has an inferred mass M* = 1.18(-0.7)(+0.3) M-circle dot and radius R* = 1.37 +/- -0.08 R-circle dot), and has T-eff = 58021 K, log g* = 4.23(-0.7)(+0.3) SI and [Fe/H] = 0.33 +/- -0.09. The planet orbits with a period of 1.7100588 +/- 0.0000025 days (T-0 = 2457091.02863 +/- 0.00047) and has a radius R-p = 1.521 Ri and mass Mp = 1.196 +/- 0.072 MI, and the eccentricity is consistent with zero. KELT-15b is another inflated Jupiter mass planet that orbits a similar to 4.6(-0.4)(+0.5) Gyr, V = 11.2, GO star (TYC 8146-86-1) that is near the "blue hook" stage of evolution prior to the Hertzsprung gap, and has an inferred mass M* = 1.181(0.050)(+0.05) M-circle dot and radius R* = 1.481 R-circle dot, and T-eff = 6003-% K, log g* = 4.17(-0.04)(+0.02) and [Fe/H] = 0.05 +/- 0.03. The planet orbits on a period of 3.329441 +/- 0.000016 days (T0 = 2457029.1663 0.0073) and has a radius Rp = 1.443 (o)Ols7 Ri and mass M-p = 0.91 531 MI and an eccentricity consistent with zero. KELT-14b has the second largest expected emission signal in the K-band for known transiting planets brighter than K < 10.5. Both KELT-14b and KELT-15b are predicted to have large enough emission signals that their secondary eclipses should be detectable using ground-based observatories. C1 [Rodriguez, Joseph E.; Stassun, Keivan G.; Collins, Karen A.; Lund, Michael B.] Vanderbilt Univ, Dept Phys & Astron, Stevenson Ctr 6301, Nashville, TN 37235 USA. [Colon, Knicole D.] NASA, Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. [Colon, Knicole D.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, 1000 17th Ave North, Nashville, TN 37208 USA. [Wright, Duncan; Tinney, C. G.] UNSW Australia, Sch Phys, Sydney, NSW 2052, Australia. [Wright, Duncan; Tinney, C. G.] UNSW Australia, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Cargile, Phillip A.; Zhou, George; Bieryla, Allyson; Latham, David W.; Eastman, Jason D.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Bayliss, Daniel; Udry, Stephane; Segransan, Damien] Univ Geneva, Astron Observ, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland. [Pepper, Joshua; Bartz, Jonathan] Lehigh Univ, Dept Phys, 16 Mem Dr East, Bethlehem, PA 18015 USA. [Kuhn, Rudolf B.] S African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Siverd, Robert J.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Santa Barbara, CA 93117 USA. [Zhou, George; Bento, Joao] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Gaudi, B. Scott; Stevens, Daniel J.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Penev, Kaloyan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Tan, T. G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia. [Stockdale, Chris; Myers, Gordon] Amer Assoc Variable Star Observers, 49 Bay State Rd, Cambridge, MA 02138 USA. [Stockdale, Chris] Hazelwood Observ, Hazelwood South, Vic, Australia. [Curtis, Ivan A.] IAU Minor Planet Ctr Observ Code D79, Vale Pk, Adelaide, SA, Australia. [James, David] Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Beatty, Thomas G.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Beatty, Thomas G.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, Davey Lab 525, University Pk, PA 16802 USA. [Myers, Gordon] 5 Inverness Way, Hillsborough, CA 94010 USA. [Jensen, Eric L. N.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Oberst, Thomas E.] Westminster Coll, Dept Phys, New Wilmington, PA 16172 USA. RP Rodriguez, JE (reprint author), Vanderbilt Univ, Dept Phys & Astron, Stevenson Ctr 6301, Nashville, TN 37235 USA. OI Jensen, Eric/0000-0002-4625-7333; Rodriguez, Joseph/0000-0001-8812-0565; Tan, Thiam-Guan/0000-0001-5603-6895; Pepper, Joshua/0000-0002-3827-8417; Lund, Michael/0000-0003-2527-1598; Stassun, Keivan/0000-0002-3481-9052 FU NASA [NNX13AQ62G]; NSF [AST-1056524]; NSF PAARE grant [AST-1358862]; ARC LIEF grant [LE0989347]; ARC Super Science Fellowship [FS100100046]; ARC [DP130102695]; National Aeronautics and Space Administration; National Science Foundation; Robert Martin Ayers Sciences Fund FX KELT-South is hosted by the South African Astronomical Observatory and we are grateful for their ongoing support and assistance. K.P. acknowledges support from NASA grant NNX13AQ62G. Work by B.S.G. and D.J.S. was partially supported by NSF CAREER Grant AST-1056524. Work by K.G.S. was supported by NSF PAARE grant AST-1358862. D.W. and C.G.T.'s role in this research has been supported by ARC LIEF grant LE0989347, ARC Super Science Fellowship FS100100046, and ARC Discovery grant DP130102695.; This publication makes use of data products from the Wide field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.; This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope. NR 67 TC 4 Z9 4 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 DI 10.3847/0004-6256/151/6/138 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300005 ER PT J AU Thirouin, A Sheppard, SS Noll, KS Moskovitz, NA Ortiz, JL Doressoundiram, A AF Thirouin, Audrey Sheppard, Scott S. Noll, Keith S. Moskovitz, Nicholas A. Ortiz, Jose Luis Doressoundiram, Alain TI ROTATIONAL PROPERTIES OF THE HAUMEA FAMILY MEMBERS AND CANDIDATES: SHORT-TERM VARIABILITY SO ASTRONOMICAL JOURNAL LA English DT Article DE Kuiper belt: general; Kuiper belt objects: individual (Haumea); techniques: photometric ID KUIPER-BELT OBJECTS; EL61 COLLISIONAL FAMILY; TRANS-NEPTUNIAN OBJECTS; DWARF PLANET HAUMEA; OUTER SOLAR-SYSTEM; LIGHT CURVES; TRANSNEPTUNIAN OBJECTS; NUMERICAL SIMULATIONS; STELLAR OCCULTATION; ABSOLUTE MAGNITUDES AB Haumea is one of the most interesting and intriguing trans-Neptunian objects (TNOs). It is a large, bright, fast rotator, and its spectrum indicates nearly pure water ice on the surface. It has at least two satellites and a dynamically related family of more than 10 TNOs with very similar proper orbital parameters and similar surface properties. The Haumean family is the only one currently known in the trans-Neptunian belt. Various models have been proposed, but the formation of the family remains poorly understood. In this work, we have investigated the rotational properties of the family members and unconfirmed family candidates with short-term variability studies, and report the most complete review to date. We present results based on five years of observations and report the short-term variability of five family members and seven candidates. The mean rotational periods, from Maxwellian fits to the frequency distributions, are 6.27 +/- 1.19 hr for the confirmed family members, 6.44 +/- 1.16 hr for the candidates, and 7.65 +/- 0.54 hr for other TNOs (without relation to the family). According to our study, there is a possibility that Haumea family members rotate faster than other TNOs; however, the sample of family members is still too limited for a secure conclusion. We also highlight the fast rotation of 2002 GH(32). This object has a 0.36 +/- 0.02 mag amplitude lightcurve and a rotational period of about 3.98 hr. Assuming 2002 GH(32) is a triaxial object in hydrostatic equilibrium, we derive a lower limit to the density of 2.56 g cm(-3). This density is similar to Haumea's and much more dense than other small TNO densities. C1 [Thirouin, Audrey; Moskovitz, Nicholas A.] Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA. [Sheppard, Scott S.] Carnegie Inst Sci, DTM, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. [Noll, Keith S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ortiz, Jose Luis] CSIC, IAA, Apt 3004, E-18080 Granada, Spain. [Doressoundiram, Alain] Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. RP Thirouin, A (reprint author), Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA. EM thirouin@lowell.edu OI Sheppard, Scott/0000-0003-3145-8682 FU Discovery Communications; National Science Foundation [AST-1005313]; NASA NEOO grant [NNX14AN82G]; Lowell Observatory; Spanish MICINN/MEC project [AYA2014-56637-C2-1-p]; Proyecto de Excelencia de la Junta de Andalucia [J.A. 2012-FQM1776]; FEDER funds; [AYA2008-06202-C03-01] FX We thank the anonymous referee for her/his careful reading of the paper and for useful comments. We thank Will Grundy for very useful discussions. This research was based on data obtained at the Observatorio de Sierra Nevada, which is operated by the Instituto de Astrofisica de Andalucia, CSIC. Other results were obtained at the Telescopio Nazionale Galileo. The Telescopio Nazionale Galileo (TNG) is operated by the Fundacion Galileo Galilei of the Italian Istituto Nazionale di Astrofisica (INAF) on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Other results were obtained at the Isaac Newton Telescope (INT). The Isaac Newton Telescope is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias (IAC). This research is also based on observations collected at the Centro Astronomico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut fur Astronomie and the Instituto de Astrofisica de Andalucia (IAA-CSIC). These results made use of Lowell Observatory's Discovery Channel Telescope (DCT). Lowell operates the DCT in partnership with Boston University, Northern Arizona University, the University of Maryland, and the University of Toledo. Partial support of the DCT was provided by Discovery Communications. LMI was built by Lowell Observatory using funds from the National Science Foundation (AST-1005313). We acknowledge the DCT operators H. Larson, T. Pugh, and J. Sanborn, and the OSN operators F. Aceituno, V. Casanova, and A. Sota. Special thanks to Heidi Larson who managed to fix all the technical problems we had during our DCT observing runs. We thank S. Levine, B. De Groff, L. Wasserman, P. Massey, D. Hunter, and D. Trilling for extra observing time at DCT. A. Thirouin was/is supported by AYA2008-06202-C03-01, NASA NEOO grant number NNX14AN82G, awarded to the Mission Accessible Near-Earth Object Survey (MANOS), and Lowell Observatory funding. J. L. Ortiz is supported by AYA2014-56637-C2-1-p, which is a Spanish MICINN/MEC project, by the Proyecto de Excelencia de la Junta de Andalucia, J.A. 2012-FQM1776, and by FEDER funds. NR 98 TC 1 Z9 1 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2016 VL 151 IS 6 AR 148 DI 10.3847/0004-6256/151/6/148 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO7VE UT WOS:000377990300015 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Guberman, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanin, R AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. de Almeida, U. Barres Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. de Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Glawion, D. Eisenacher Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Guberman, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanin, R. TI MAGIC observations of the February 2014 flare of 1ES 1011+496 and ensuing constraint of the EBL density SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE BL Lacertae objects: general; intergalactic medium; cosmic background radiation ID EXTRAGALACTIC BACKGROUND LIGHT; TELESCOPE IMAGING SPECTROGRAPH; SPITZER-SPACE-TELESCOPE; MICRON SOURCE COUNTS; ENERGY GAMMA-RAYS; DIRBE MINUS 2MASS; 3.5 MU-M; NUMBER COUNTS; GALAXY COUNTS; TEV BLAZARS AB Context. During February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011 + 496 (z = 0.212) in flaring state at very-high energy (VHE, E > 100 GeV). The flux reached a level of more than ten times higher than any previously recorded flaring state of the source. Aims. To describe the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim to detect the imprint of the extragalactic background light (EBL) in the VHE spectrum of the source, to constrain its intensity in the optical band. Methods. We analyzed the gamma-ray data from the MAGIC telescopes using the standard MAGIC software for the production of the light curve and the spectra. To constrain the EBL, we implement the method developed by the H.E.S.S. collaboration, in which the intrinsic energy spectrum of the source is modeled with a simple function (<= 4 parameters), and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. Results. The collected data allowed us to describe the night-wise flux changes and also to produce differential energy spectra for all nights in the observed period. The estimated intrinsic spectra of all the nights could be fitted by power-law functions. Evaluating the changes in the fit parameters, we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1.07 (-0.20, + 0.24)(stat+sys), relative to the one in the tested EBL template, is preferred at the 4.6 sigma level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 mu m, 4.25 mu m], with a peak value at 1.4 mu m of lambda F-lambda = 12. 27(-2.29)(+2.75) nWm(-2) sr(-1), including systematics. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] ETH, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, Zagreb, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Zagreb, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Zagreb, Zagreb 41000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1-AF Bidhannagar,Salt Lake,Sector 1, Kolkata 700064, India. [Bangale, P.; de Almeida, U. Barres; Borracci, F.; Colin, P.; Dazzi, F.; Doro, M.; Fruck, C.; Hahn, A.; Hose, J.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Univ La Laguna, Dpt Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Garczarczyk, M.; Mallot, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Ward, J. E.] IFAE, Campus UAB, Bellaterra 08193, Spain. [Bretz, T.; Dorner, D.; Glawion, D. Eisenacher; Elsaesser, D.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambient & Tecnol, Madrid 28040, Spain. [De Angelis, A.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [De Angelis, A.; Mariotti, M.; Paiano, S.; Schultz, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [de Ona Wilhelmi, E.; Wu, M. H.] CSIC IEEC, Inst Space Sci, Barcelona 08193, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Unitat Fis Radiac, Dept Fis, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.; Teshima, M.] Univ Tokyo, Tokyo 1138654, Japan. [Hanabata, Y.; Hayashida, M.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.; Takami, H.; Teshima, M.] Tokai Univ, Kyoto Univ, Univ Tokushima, Hakubi Ctr,KEK, Hiratsuka, Kanagawa 25912, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Finnish MAGIC Consortium, SF-20500 Turku, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, Oulu 90014, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] INFN, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Torres, D. F.] Inst Space Sci CSIC IEEC, Barcelona 08193, Spain. [Treves, A.] Univ Insubria, I-22100 Como, Italy. [Treves, A.] INFN Milano Bicocca, I-22100 Como, Italy. [de Almeida, U. Barres] Ctr Brasileiro Pesquisas Fis CBPF MCTI, 150 Urca, BR-22290180 Rio De Janeiro, RJ, Brazil. [Becerra Gonzalez, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardini, E.] Humboldt Univ, Ist Phys Newtonstr 15, D-12489 Berlin, Germany. [Bretz, T.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Doro, M.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Lopez-Oramas, A.] CEA, DSM IRFU, Lab AIM, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Nilsson, K.] Finnish Ctr Astron ESO FINCA, Turku 20014, Finland. [Persic, M.] INAF, Trieste, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, Versoix 1290, Geneva, Switzerland. [Gonzalez Munoz, A.] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20364, Mexico City 01000, DF, Mexico. RP Bangale, P (reprint author), Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.; Munoz, AG; Moralejo, A (reprint author), IFAE, Campus UAB, Bellaterra 08193, Spain.; Munoz, AG (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20364, Mexico City 01000, DF, Mexico. EM priya@mpp.mpg.de; adiv.gonzalez@fisica.unam.mx; moralejo@ifae.es RI GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; Lopez Moya, Marcos/L-2304-2014; Barrio, Juan/L-3227-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Nievas Rosillo, Mireia/K-9738-2014; Font, Lluis/L-4197-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Miranda, Jose Miguel/F-2913-2013; Delgado, Carlos/K-7587-2014 OI GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Doro, Michele/0000-0001-9104-3214; Poutanen, Juri/0000-0002-0983-0049; Torres, Diego F./0000-0002-1522-9065; Bonnoli, Giacomo/0000-0003-2464-9077; Prandini, Elisa/0000-0003-4502-9053; Becerra Gonzalez, Josefa/0000-0002-6729-9022; Lopez Moya, Marcos/0000-0002-8791-7908; Barrio, Juan/0000-0002-0965-0259; Temnikov, Petar/0000-0002-9559-3384; Nievas Rosillo, Mireia/0000-0002-8321-9168; Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Miranda, Jose Miguel/0000-0002-1472-9690; Delgado, Carlos/0000-0002-7014-4101 FU German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under Spanish MINECO; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; CPAN project of the Spanish Consolider-Ingenio programme [CSD2007-00042]; MultiDark project of the Spanish Consolider-Ingenio programme [CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW grant [745/N-HESS-MAGIC/2010/0] FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO, and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. We thank the anonymous referee for a thorough review and a very constructive list of remarks that helped to improve the quality and clarity of this manuscript. NR 65 TC 2 Z9 2 U1 6 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A24 DI 10.1051/0004-6361/201527256 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800030 ER PT J AU Bock, M Kadler, M Muller, C Tosti, G Ojha, R Wilms, J Bastieri, D Burnett, T Carpenter, B Cavazzuti, E Dutka, M Blanchard, J Edwards, PG Hase, H Horiuchi, S Jauncey, DL Krauss, F Lister, ML Lovell, JEJ Lott, B Murphy, DW Phillips, C Plotz, C Pursimo, T Quick, J Ros, E Taylor, G Thompson, DJ Tingay, SJ Tzioumis, A Zensus, JA AF Boeck, M. Kadler, M. Mueller, C. Tosti, G. Ojha, R. Wilms, J. Bastieri, D. Burnett, T. Carpenter, B. Cavazzuti, E. Dutka, M. Blanchard, J. Edwards, P. G. Hase, H. Horiuchi, S. Jauncey, D. L. Krauss, F. Lister, M. L. Lovell, J. E. J. Lott, B. Murphy, D. W. Phillips, C. Ploetz, C. Pursimo, T. Quick, J. Ros, E. Taylor, G. Thompson, D. J. Tingay, S. J. Tzioumis, A. Zensus, J. A. TI Radio and gamma-ray properties of extragalactic jets from the TANAMI sample SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: nuclei; galaxies: jets; gamma rays: galaxies; radio continuum: galaxies ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BL LACERTAE OBJECTS; PARSEC-SCALE STRUCTURE; FERMI BLAZARS; VLBI OBSERVATIONS; SOURCE CATALOG; EGRET BLAZARS; SPECTROSCOPY; CONNECTION AB The TANAMI program has been observing parsec-scale radio jets of southern (declination south of -30 degrees) gamma-ray bright AGN, simultaneously with Fermi/LAT monitoring of their gamma-ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. We present the radio and gamma-ray properties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction ( 72%) of the TANAMI sample can be associated with bright gamma-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected by the LAT. Upper limits were established on the gamma-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The gamma-ray and radio luminosities are related by L-gamma proportional to L-r(0.89 +/- 0.04) The brightness temperatures of the radio cores increase with the average gamma-ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower gamma/radio luminosity ratios and lower contemporaneous brightness temperatures. Unless the Fermi/LAT-undetected blazars are much gamma-ray-fainter than the Fermi/LAT-detected sources, their gamma-ray luminosity should not be significantly lower than the upper limits calculated here. C1 [Boeck, M.; Ros, E.; Zensus, J. A.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Boeck, M.; Mueller, C.; Wilms, J.; Krauss, F.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte, Astron Inst, Sternwartstr 7, D-96049 Bamberg, Germany. [Boeck, M.; Mueller, C.; Wilms, J.; Krauss, F.] Erlangen Ctr Astroparticle Phys, Sternwartstr 7, D-96049 Bamberg, Germany. [Boeck, M.; Kadler, M.; Mueller, C.; Krauss, F.] Univ Wurzburg, Lehrstuhl Astron, Emil Fischer Str 31, D-97074 Wurzburg, Germany. [Mueller, C.] Radboud Univ Nijmegen, Dept Astrophys, Inst Math Astrophys & Particle Phys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Tosti, G.] Univ Perugia, Ist Nazl Fis Nucl, I-06123 Perugia, Italy. [Ojha, R.; Dutka, M.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Ojha, R.; Carpenter, B.; Dutka, M.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Ojha, R.] Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Bastieri, D.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burnett, T.] Univ Washington, Seattle, WA 98195 USA. [Cavazzuti, E.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Blanchard, J.; Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Private Bag 37, Hobart, Tas 7001, Australia. [Edwards, P. G.; Phillips, C.; Tzioumis, A.] CSIRO Astron & Space Sci, ATNF, POB 76, Epping, NSW 1710, Australia. [Hase, H.; Ploetz, C.] Bundesamt Kartog & Geodasie, D-93444 Bad Kotzting, Germany. [Horiuchi, S.; Jauncey, D. L.] CSIRO Astron & Space Sci, Canberra Deep Space Commun Complex,POB 1035, Tuggeranong, ACT 2901, Australia. [Quick, J.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa. [Lister, M. L.] Purdue Univ, Dept Phys, 525 Nortwestern Ave, W Lafayette, IN 47907 USA. [Lott, B.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, BP120, F-33175 Gradignan, France. [Murphy, D. W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Pursimo, T.] Nord Opt Telescope, Apartado 474, Santa Cruz De La Palma 38700, Santa Cruz De T, Spain. [Ros, E.] Univ Valencia, Astron Observ, Parc Cient,C Catedratico Jose Beltran 2, Valencia 46980, Spain. [Ros, E.] Univ Valencia, Dept Astron & Astrophys, C Dr Moliner 50, E-46100 Valencia, Spain. [Taylor, G.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Taylor, G.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Tingay, S. J.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia. RP Bock, M (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.; Bock, M (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte, Astron Inst, Sternwartstr 7, D-96049 Bamberg, Germany.; Bock, M (reprint author), Erlangen Ctr Astroparticle Phys, Sternwartstr 7, D-96049 Bamberg, Germany.; Bock, M (reprint author), Univ Wurzburg, Lehrstuhl Astron, Emil Fischer Str 31, D-97074 Wurzburg, Germany. EM boeck.moritz@gmail.com; matthias.kadler@astro.uni-wuerzburg.de; roopesh.ojha@nasa.gov RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Krauss, Felicia/0000-0001-6191-1244; Kadler, Matthias/0000-0001-5606-6154 FU Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt [50OR0808]; Commonwealth of Australia; Spanish MINECO grants [AYA2009-13036-C02-C02, AYA2012-38491-C02-01]; Generalitat Valenciana grant [Prometeo 2009/104]; COST action MP0905 "Black Holes in a Violent Universe"; NASA [NNH09ZDA001N, 31263, NNH10ZDA001N, 41213] FX This research has been partially funded by the Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt grant number 50OR0808. The Long Baseline Array is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. E.R. acknowledges partial support by the Spanish MINECO grants AYA2009-13036-C02-C02 and AYA2012-38491-C02-01, by the Generalitat Valenciana grant Prometeo 2009/104, and by the COST action MP0905 "Black Holes in a Violent Universe". This research was funded in part by NASA through Fermi Guest Investigator grant NNH09ZDA001N (proposal number 31263) and grant NNH10ZDA001N (proposal number 41213). This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The Fermi/LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. This research has made use of NASA's Astrophysics Data System Bibliographic Services. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank John E. Davis for the development of the SLxfig module used to prepare the figures in this paper. This research has made use of ISIS functions provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). We thank Davide Donato and Seth Digel for their very helpful comments. NR 73 TC 2 Z9 2 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A40 DI 10.1051/0004-6361/201424773 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800005 ER PT J AU Bouvier, J Lanzafame, AC Venuti, L Klutsch, A Jeffries, R Frasca, A Moraux, E Biazzo, K Messina, S Micela, G Randich, S Stauffer, J Cody, AM Flaccomio, E Gilmore, G Bayo, A Bensby, T Bragaglia, A Carraro, G Casey, A Costado, MT Damiani, F Mena, ED Donati, P Franciosini, E Hourihane, A Koposov, S Lardo, C Lewis, J Magrini, L Monaco, L Morbidelli, L Prisinzano, L Sacco, G Sbordone, L Sousa, SG Vallenari, A Worley, CC Zaggia, S Zwitter, T AF Bouvier, J. Lanzafame, A. C. Venuti, L. Klutsch, A. Jeffries, R. Frasca, A. Moraux, E. Biazzo, K. Messina, S. Micela, G. Randich, S. Stauffer, J. Cody, A. M. Flaccomio, E. Gilmore, G. Bayo, A. Bensby, T. Bragaglia, A. Carraro, G. Casey, A. Costado, M. T. Damiani, F. Delgado Mena, E. Donati, P. Franciosini, E. Hourihane, A. Koposov, S. Lardo, C. Lewis, J. Magrini, L. Monaco, L. Morbidelli, L. Prisinzano, L. Sacco, G. Sbordone, L. Sousa, S. G. Vallenari, A. Worley, C. C. Zaggia, S. Zwitter, T. TI The Gaia-ESO Survey: A lithium-rotation connection at 5 Myr? SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: abundances; stars: pre-main sequence; stars: rotation; open clusters and associations: individual: NGC 2264 ID PRE-MAIN-SEQUENCE; LOW-MASS STARS; SOLAR-TYPE STARS; EXOPLANET-HOST STARS; T-TAURI STARS; NGC 2264; EVOLUTIONARY MODELS; STELLAR SPECTRA; MAGNETIC-FIELDS; TIME-SCALES AB Context. The evolution of lithium abundance in cool dwarfs provides a unique probe of nonstandard processes in stellar evolution. Aims. We investigate the lithium content of young low-mass stars in the 5 Myr old, star forming region NGC 2264 and its relationship with rotation. Methods. We combine lithium equivalent width measurements (EW(Li)) from the Gaia-ESO Survey with the determination of rotational periods from the CSI 2264 survey. We only consider bona fide nonaccreting cluster members to minimize the uncertainties on EW(Li). Results. We report the existence of a relationship between lithium content and rotation in NGC 2264 at an age of 5 Myr. The Li-rotation connection is seen over a restricted temperature range (T-eff = 3800-4400 K), where fast rotators are Li-rich compared to slow rotators. This correlation is similar to, albeit of lower amplitude than, the Li-rotation connection previously reported for K dwarfs in the 125 Myr old Pleiades cluster. We investigate whether the nonstandard pre-main-sequence models developed so far to explain the Pleiades results, which are based on episodic accretion, pre-main-sequence, core-envelope decoupling, and/or radius inflation due to enhanced magnetic activity, can account for early development of the Li-rotation connection. While radius inflation appears to be the most promising possibility, each of these models has issues. We therefore also discuss external causes that might operate during the first few Myr of pre-main-sequence evolution, such as planet engulfment and/or steady disk accretion, as possible candidates for the common origin for Li excess and fast rotation in young low-mass pre-main-sequence stars. Conclusions. The emergence of a connection between lithium content and rotation rate at such an early age as 5 Myr suggests a complex link between accretion processes, early angular momentum evolution, and possibly planet formation, which likely impacts early stellar evolution and has yet to be fully deciphered. C1 [Bouvier, J.; Venuti, L.; Moraux, E.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bouvier, J.; Venuti, L.; Moraux, E.] CNRS, IPAG, F-38000 Grenoble, France. [Lanzafame, A. C.] Univ Catania, Dipartimento Fis & Astron, Sez Astrofis, Via S Sofia 78, I-95123 Catania, Italy. [Lanzafame, A. C.; Klutsch, A.; Frasca, A.; Biazzo, K.; Messina, S.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy. [Venuti, L.; Micela, G.; Flaccomio, E.; Damiani, F.; Prisinzano, L.] INAF Osservatorio Astron Palermo GS Vaiana, Piazza Parlamento 1, I-90134 Palermo, Italy. [Jeffries, R.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Randich, S.; Flaccomio, E.; Magrini, L.; Morbidelli, L.; Sacco, G.] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy. [Stauffer, J.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Cody, A. M.] NASA, Ames Res Ctr, Kepler Sci Off, Moffett Field, CA 94035 USA. [Gilmore, G.; Casey, A.; Hourihane, A.; Koposov, S.; Lewis, J.; Worley, C. C.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Bayo, A.] Univ Valparaiso, Inst Fis & Astron, Valparaiso, Chile. [Bensby, T.] Lund Observ, Dept Astron & Theoret Phys, Box 43, S-22100 Lund, Sweden. [Bragaglia, A.; Donati, P.] INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Carraro, G.] European So Observ, Alonso de Cordova 3107, Santiago, Chile. [Costado, M. T.] CSIC, Inst Astrofis Andalucia, Apdo 3004, E-18008 Granada, Spain. [Delgado Mena, E.; Sousa, S. G.] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, P-4150762 Oporto, Portugal. [Lardo, C.] Liverpool John Moores Univ, Astrophys Res Inst, 146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Monaco, L.] Univ Andres Bello, Fac Ciencias Exactas, Dept Ciencias Fis, Fernandez Concha 700, Santiago, Chile. [Sbordone, L.] Pontificia Univ Catolica Chile, Millennium Inst Astrophys, Vicuna Mackenna 4860, Santiago, Chile. [Zaggia, S.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Zwitter, T.] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia. RP Bouvier, J (reprint author), Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.; Bouvier, J (reprint author), CNRS, IPAG, F-38000 Grenoble, France. EM Jerome.Bouvier@obs.ujf-grenoble.fr; Alessandro.Lanzafame@oact.inaf.it RI Koposov, Sergey/F-2754-2012; OI Koposov, Sergey/0000-0003-2644-135X; Casey, Andrew/0000-0003-0174-0564; Damiani, Francesco/0000-0002-7065-3061 FU Agence Nationale pour la Recherche program ANR [2010 JCJC 0501 1, SIMI 5-6 020 01]; Proyecto Fondecyt Iniciacion [11140572]; ESO Telescopes at the La Silla Paranal Observatory under program [188.B-3002]; UK Science and Technology Facilities Council; European Union FP7 program through ERC grant [320360]; Leverhulme Trust [RPG-2012-541]; INAF; Ministero dell' Istruzione, dell' Universita' e della Ricerca (MIUR) [2010LY5N2T]; ESF (European Science Foundation) through the GREAT Research Network Programme FX We would like to dedicate this paper to our friend and colleague Francesco Palla, a pioneer in the investigation of lithium in young stars. We thank Patrick Eggenberger for running additional models of PMS lithium depletion, and Silvano Desidera and Elvira Covino for sharing results on lithium rotational variability in advance of publication. J. Bouvier and E. Moraux thank the staff of the Osservatorio Astrofisico di Catania for their kind hospitality in the autumn of 2015. They acknowledge the Agence Nationale pour la Recherche program ANR 2010 JCJC 0501 1 "DESC (Dynamical Evolution of Stellar Clusters)" for the funding of their stay at OACT during which this study was performed. This study was also supported by the Agence Nationale pour la Recherche program ANR 2011 Blanc SIMI 5-6 020 01 "Toupies (Towards understanding the spin evolution of stars)". A. Bayo acknowledges financial support from the Proyecto Fondecyt Iniciacion 11140572. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council. This work was partly supported by the European Union FP7 program through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell' Istruzione, dell' Universita' e della Ricerca (MIUR) in the form of the grant "Premiale VLT 2012" and "The Chemical and Dynamical Evolution of the Milky Way and the Local Group Galaxies" (prot. 2010LY5N2T). The results presented here benefit from discussions held during the Gaia-ESO workshops and conferences supported by the ESF (European Science Foundation) through the GREAT Research Network Programme. NR 66 TC 6 Z9 6 U1 3 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A78 DI 10.1051/0004-6361/201628336 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800126 ER PT J AU Dauser, T Garcia, J Walton, DJ Eikmann, W Kallman, T McClintock, J Wilms, J AF Dauser, T. Garcia, J. Walton, D. J. Eikmann, W. Kallman, T. McClintock, J. Wilms, J. TI Normalizing a relativistic model of X-ray reflection Definition of the reflection fraction and its implementation in relxill SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion; accretion disks; line: profiles; galaxies: active; X-rays: galaxies ID BLACK-HOLE SPIN; K-ALPHA LINE; ACTIVE GALACTIC NUCLEI; INNER ACCRETION DISK; CYGNUS X-1; GX 339-4; SUZAKU OBSERVATIONS; SEYFERT-GALAXIES; COLD MATTER; HARD STATE AB Aims. The only relativistic reflection model that implements a parameter relating the intensity incident on an accretion disk to the observed intensity is relxill. The parameter used in earlier versions of this model, referred to as the reflection strength, is unsatisfactory; it has been superseded by a parameter that provides insight into the accretion geometry, namely the reflection fraction. The reflection fraction is defined as the ratio of the coronal intensity illuminating the disk to the coronal intensity that reaches the observer. Methods. The relxill model combines a general relativistic ray-tracing code and a photoionization code to compute the component of radiation reflected from an accretion that is illuminated by an external source. The reflection fraction is a particularly important parameter for relativistic models with well-defined geometry, such as the lamp post model, which is a focus of this paper. Results. Relativistic spectra are compared for three inclinations and for four values of the key parameter of the lamp post model, namely the height above the black hole of the illuminating, on-axis point source. In all cases, the strongest reflection is produced for low source heights and high spin. A low-spin black hole is shown to be incapable of producing enhanced relativistic reflection. Results for the relxill model are compared to those obtained with other models and a Monte Carlo simulation. Conclusions. Fitting data by using the relxill model and the recently implemented reflection fraction, the geometry of a system can be constrained. The reflection fraction is independent of system parameters such as inclination and black hole spin. The reflection-fraction parameter was implemented with the name refl_frac in all flavours of the relxill model, and the non-relativistic reflection model xillver, in v0.4a (18 January 2016). C1 [Dauser, T.; Eikmann, W.; Wilms, J.] Univ Erlangen Nurnberg, Remeis Observ, Sternwartstr 7, D-96049 Bamberg, Germany. [Dauser, T.; Eikmann, W.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Garcia, J.; McClintock, J.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Kallman, T.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Dauser, T (reprint author), Univ Erlangen Nurnberg, Remeis Observ, Sternwartstr 7, D-96049 Bamberg, Germany.; Dauser, T (reprint author), Univ Erlangen Nurnberg, ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. EM thomas.dauser@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 NR 38 TC 5 Z9 5 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A76 DI 10.1051/0004-6361/201628135 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800100 ER PT J AU Japelj, J Vergani, SD Salvaterra, R D'Avanzo, P Mannucci, F Fernandez-Soto, A Boissier, S Hunt, LK Atek, H Rodriguez-Munoz, L Scodeggio, M Cristiani, S Le Floc'h, E Flores, H Gallego, J Ghirlanda, G Gomboc, A Hammer, F Perley, DA Pescalli, A Petitjean, P Puech, M Rafelski, M Tagliaferri, G AF Japelj, J. Vergani, S. D. Salvaterra, R. D'Avanzo, P. Mannucci, F. Fernandez-Soto, A. Boissier, S. Hunt, L. K. Atek, H. Rodriguez-Munoz, L. Scodeggio, M. Cristiani, S. Le Floc'h, E. Flores, H. Gallego, J. Ghirlanda, G. Gomboc, A. Hammer, F. Perley, D. A. Pescalli, A. Petitjean, P. Puech, M. Rafelski, M. Tagliaferri, G. TI Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs II. Star formation rates and metallicities at z < 1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: general; galaxies: star formation ID CORE-COLLAPSE SUPERNOVAE; HIGH-REDSHIFT GALAXIES; HUBBLE-SPACE-TELESCOPE; DIGITAL SKY SURVEY; LESS-THAN 2.5; MASS-METALLICITY; FORMING GALAXIES; LUMINOSITY FUNCTION; STELLAR MASS; X-SHOOTER AB Aims. Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (z < 1.5) LGRBs seem to prefer particular types of environment. Our aim is to study the host galaxies of a complete sample of bright LGRBs to investigate the effect of the environment on GRB formation. Methods. We studied host galaxy spectra of the Swift/BAT6 complete sample of 14 z < 1 bright LGRBs. We used the detected nebular emission lines to measure the dust extinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M-star. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M-star relations) are compared to samples of field star-forming galaxies. Results. We find that LGRB hosts at z < 1 have on average lower SFRs than if they were direct star formation tracers. By directly comparing metallicity distributions of LGRB hosts and star-forming galaxies, we find a good match between the two populations up to 12 + log (O/H) similar to 8.4-8.5, after which the paucity of metal-rich LGRB hosts becomes apparent. The LGRB host galaxies of our complete sample are consistent with the mass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 z < 1 sample with respect to that of a field star-forming population. Given that the SFRs are low on average, the latter is ascribed to low stellar masses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies. C1 [Japelj, J.; Cristiani, S.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Japelj, J.; Gomboc, A.] Univ Ljubljana, Fac Math & Phys, Jadranska Ulica 19, Ljubljana 1000, Slovenia. [Vergani, S. D.; Flores, H.; Hammer, F.; Puech, M.] GEPI Observ Paris Meudon, 5 Pl Jules Jannsen, F-92195 Meudon, France. [Vergani, S. D.; D'Avanzo, P.; Ghirlanda, G.; Pescalli, A.; Tagliaferri, G.] INAF Osservatorio Astron Brera, Via E Bianchi 46, I-23807 Merate, Italy. [Vergani, S. D.; Petitjean, P.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Salvaterra, R.; Scodeggio, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Mannucci, F.; Hunt, L. K.] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy. [Fernandez-Soto, A.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Fernandez-Soto, A.] Univ Valencia, Unidad Asociada Observ Astron, IFCA, Valencia, Spain. [Boissier, S.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Atek, H.] Ecole Polytech Fed Lausanne, Astrophys Lab, Observ Sauverny, CH-1290 Versoix, Switzerland. [Atek, H.] Yale Univ, Dept Astron, 260 Whitney Ave, New Haven, CT 06511 USA. [Rodriguez-Munoz, L.] Univ Complutense Madrid, Dept Astrofis & Ciencias Atmosfera, E-28040 Madrid, Spain. [Rodriguez-Munoz, L.] Univ Padua, Dipartimento Fis & Astron G Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Le Floc'h, E.] Univ Paris Diderot, CNRS, CEA DSM, CEA Saclay,Lab AIM,IRFU Serv Astrophys, Bat 709, F-91191 Gif Sur Yvette, France. [Gomboc, A.] Univ Nova Gorica, Fac Sci, Vipavska Cesta 11c, Ajdovscina 5270, Slovenia. [Perley, D. A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Rafelski, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Japelj, J (reprint author), INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy.; Japelj, J (reprint author), Univ Ljubljana, Fac Math & Phys, Jadranska Ulica 19, Ljubljana 1000, Slovenia. EM japelj@oats.inaf.it RI Fernandez-Soto, Alberto/A-2443-2009 OI Fernandez-Soto, Alberto/0000-0002-5732-3121 FU PRIN MIUR [2012 201278X4FL 002]; UnivEarthS Labex programme at Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; Spanish Ministerio de Economia y Competitividad [AYA2013-48623-C2-2]; PrometeoII from the Generalitat Valenciana [2014/060] FX We thank the referee for the helpful comments that improved the paper. S.D.V. thanks C. Belczynski, C.Georgy, J. Groh, O. Le Fevre, L. Kewley and L. Tasca for fruitful discussions. J.J. and S.C. acknowledge financial contribution from the grant PRIN MIUR 2012 201278X4FL 002 The Intergalactic Medium as a probe of the growth of cosmic structures. S.D.V. and E.L.F. acknowledge the UnivEarthS Labex programme at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). A.F.S. acknowledges support from grants AYA2013-48623-C2-2 from the Spanish Ministerio de Economia y Competitividad, and PrometeoII 2014/060 from the Generalitat Valenciana. This research uses data from the VIMOS VLT Deep Survey, obtained from the VVDS database operated by Cesam, Laboratoire d'Astrophysique de Marseille, France. This work is partly based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias in the island of La Palma. NR 110 TC 6 Z9 6 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A129 DI 10.1051/0004-6361/201628314 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800121 ER PT J AU Lacour, S Biller, B Cheetham, A Greenbaum, A Pearce, T Marino, S Tuthill, P Pueyo, L Mamajek, EE Girard, JH Sivaramakrishnan, A Bonnefoy, M Baraffe, I Chauvin, G Olofsson, J Juhasz, A Benisty, M Pott, JU Sicilia-Aguilar, A Henning, T Cardwell, A Goodsell, S Graham, JR Hibon, P Ingraham, P Konopacky, Q Macintosh, B Oppenheimer, R Perrin, M Rantakyro, F Sadakuni, N Thomas, S AF Lacour, S. Biller, B. Cheetham, A. Greenbaum, A. Pearce, T. Marino, S. Tuthill, P. Pueyo, L. Mamajek, E. E. Girard, J. H. Sivaramakrishnan, A. Bonnefoy, M. Baraffe, I. Chauvin, G. Olofsson, J. Juhasz, A. Benisty, M. Pott, J. -U. Sicilia-Aguilar, A. Henning, T. Cardwell, A. Goodsell, S. Graham, J. R. Hibon, P. Ingraham, P. Konopacky, Q. Macintosh, B. Oppenheimer, R. Perrin, M. Rantakyro, F. Sadakuni, N. Thomas, S. TI An M-dwarf star in the transition disk of Herbig HD142527 Physical parameters and orbital elements SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE protoplanetary disks; planet-disk interactions; binaries: visual; stars: Herbig ID LOW-MASS STARS; OBSERVED LUMINOSITY SPREAD; PRE-MAIN-SEQUENCE; HD 142527; PROTOPLANETARY DISK; BROWN DWARFS; COMPANION; DUST; ULTRAVIOLET; EXTINCTION AB Aims. HD 142527A is one of the most studied Herbig Ae/Be stars with a transitional disk, as it has the largest imaged gap in any protoplanetary disk: the gas is cleared from 30 to 90 AU. The HD 142527 system is also unique in that it has a stellar companion with a small mass compared to the mass of the primary star. This factor of approximate to 20 in mass ratio between the two objects makes this binary system different from any other YSO. The HD142527 system could therefore provide a valuable test bed for understanding the impact of a lower mass companion on disk structure. This low-mass stellar object may be responsible for both the gap and dust trapping observed by ALMA at longer distances. Methods. We observed this system with the NACO and GPI instruments using the aperture masking technique. Aperture masking is ideal for providing high dynamic range even at very small angular separations. We present the spectral energy distribution (SED) for HD 142527A and B. Brightness of the companion is now known from the R band up to the M' band. We also followed the orbital motion of HD 142527B over a period of more than two years. Results. The SED of the companion is compatible with a T = 3000 +/- 100 K object in addition to a 1700 K blackbody environment (likely a circum-secondary disk). From evolution models, we find that it is compatible with an object of mass 0.13 +/- 0.03 M-circle dot, radius 0.90 +/- 0.15 R-circle dot, and age 1.0(-0.75)(+1.0) Myr. This age is significantly younger than the age previously estimated for HD142527A. Computations to constrain the orbital parameters found a semimajor axis of 140(-70)(+120) mas, an eccentricity of 0.5 +/- 0.2, an inclination of 125 +/- 15 degrees, and a position angle of the right ascending node of -5 +/- 40 degrees. Inclination and position angle of the ascending node are in agreement with an orbit coplanar with the inner disk, not coplanar with the outer disk. Despite its high eccentricity, it is unlikely that HD142527B is responsible for truncating the inner edge of the outer disk. C1 [Lacour, S.] Univ Paris Diderot, CNRS, LESIA Observ Paris, PSL,UPMC, 5 Pl Jules Janssen, F-92195 Meudon, France. [Lacour, S.] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Biller, B.] Univ Edinburgh, Inst Astron, Blackford Hill View, Edinburgh EH9 3HJ, Midlothian, Scotland. [Cheetham, A.] Univ Geneva, Observ Geneva, 51 Chemin Maillettes, CH-1290 Versoix, Switzerland. [Greenbaum, A.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Pearce, T.; Marino, S.; Juhasz, A.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Tuthill, P.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Pueyo, L.; Sivaramakrishnan, A.; Perrin, M.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Mamajek, E. E.; Baraffe, I.] Univ Exeter, Sch Phys, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Girard, J. H.; Hibon, P.] European So Observ, Alonso Cordova 3107, Santiago 19001, Chile. [Bonnefoy, M.; Chauvin, G.; Benisty, M.] Univ Grenoble Alpes, CNRS, IPAG UMR 5274, F-38000 Grenoble, France. [Baraffe, I.] Univ Lyon 1, Ecole Normale Super Lyon, CRAL UMR CNRS 5574, F-69007 Lyon, France. [Olofsson, J.; Pott, J. -U.; Henning, T.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Olofsson, J.] Univ Valparaiso, Inst Fis & Astron, Av Gran Bretana 1111, Valparaiso, Chile. [Olofsson, J.] Univ Valparaiso, ICM Nucleus Protoplanetary Disks, Av Gran Bretana 1111, Valparaiso, Chile. [Sicilia-Aguilar, A.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 6SS, Fife, Scotland. [Cardwell, A.; Hibon, P.; Rantakyro, F.] Gemini Observ, Casilla 603, La Serena, Chile. [Goodsell, S.] Gemini Observ, 670 North Aohoku Pl, Hilo, HI 96720 USA. [Goodsell, S.] Univ Durham, Stockton Rd, Durham DH1 3LE, England. [Graham, J. R.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Ingraham, P.; Thomas, S.] Large Synopt Survey Telescope, 950N Cherry Av, Tucson, AZ 85719 USA. [Konopacky, Q.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Macintosh, B.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Oppenheimer, R.] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Sadakuni, N.] NASA, Armstrong Flight Res Ctr, 2825 East Ave P, Palmdale, CA 93550 USA. RP Lacour, S (reprint author), Univ Paris Diderot, CNRS, LESIA Observ Paris, PSL,UPMC, 5 Pl Jules Janssen, F-92195 Meudon, France.; Lacour, S (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. OI Marino, Sebastian/0000-0002-5352-2924 FU French National Agency for Research [ANR-13-JS05-0005]; European Research Council [ERC-STG-639248]; NSF [DGE-1232825]; NASA [NNX11AF74G]; Millennium Nucleus [RC130007]; European Research Council through grant ERC-AdG [320478-TOFU]; Gemini Observatory [GS-2014A-SV-406, GS-ENG-GPI-COM] FX SL acknowledges fruitful discussions with S. Casassus about the existence of HD142527B and the inner disk of HD142527A. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). This work was supported by the French National Agency for Research (ANR-13-JS05-0005) and the European Research Council (ERC-STG-639248). AG and AS acknowledge support from NSF Graduate Research Fellowship grant no. DGE-1232825 and NASA grant NNX11AF74G. JO acknowledges support from the Millennium Nucleus RC130007 (Chilean Ministry of Economy). IB acknowledges the European Research Council through grant ERC-AdG No. 320478-TOFU. Based on observations collected at the European Southern Observatory (ESO) during runs 088.C-0691(A), 090.C-0649(A), 091.C-0572(A), and 094.C-0608( A). Also based on observations obtained at the Gemini Observatory (programs GS-2014A-SV-406 and GS-ENG-GPI-COM), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao(Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). NR 42 TC 6 Z9 6 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 DI 10.1051/0004-6361/201527863 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800066 ER PT J AU Langer, WD Goldsmith, PF Pineda, JL AF Langer, W. D. Goldsmith, P. F. Pineda, J. L. TI [C II] and [N II] from dense ionized regions in the Galaxy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; HII regions; photon-dominated region ID GALACTIC PLANE SURVEY; INTERSTELLAR-MEDIUM; EMISSION; CLOUDS; GAS; ABSORPTION; LINES; COBE; HIFI AB Context. The interstellar medium (ISM) consists of highly ionized and neutral atomic, as well as molecular, components. Knowledge of their distribution is important for tracing the structure and lifecycle of the ISM. Aims. To determine the properties of the highly ionized gas and neutral weakly ionized gas in the Galaxy traced by the fine-structure lines of ionized nitrogen, [N II], and ionized carbon, [C II]. Methods. We utilize observations of the [C II] 158 mu m and [N II] 205 mu m fine-structure lines taken with the high spectral resolution Heterodyne Instrument in the Far-Infrared ( HIFI) on the Herschel Space Observatory along ten lines of sight towards the inner Galaxy to analyze the ionized ISM. The [ N II] emission can be used to estimate the contribution of the highly ionized gas to the [C II] emission and separate the contributions from highly ionized and weakly ionized neutral gas. Results. We find that [N II] has strong emission in distinct spectral features along all lines of sight associated with strong [C II] emission. The [N II] arises from moderate density extended H II regions or ionized boundary layers of clouds. Comparison of the [N II] and [C II] spectra in 31 separate kinematic features shows that many of the [C II] spectra are affected by absorption from low excitation gas associated with molecular clouds, sometimes strongly so. The apparent fraction of the [C II] associated with the [N II] gas is unrealistically large in many cases, most likely due to the reduction of [C II] by absorption. In a few cases the foreground absorption can be modeled to determine the true source intensity. In these sources we find that the foreground absorbing gas layer has C+ column densities of order 10(18) cm(-2). Conclusions. [C II] emission arising from strong sources of [N II] emission is frequently absorbed by low excitation foreground gas complicating the interpretation of the properties of the ionized and neutral gas components that give rise to [C II] emission. C1 [Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Langer, WD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM William.Langer@jpl.nasa.gov NR 23 TC 1 Z9 1 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A43 DI 10.1051/0004-6361/201628151 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800101 ER PT J AU Lanzuisi, G Perna, M Comastri, A Cappi, M Dadina, M Marinucci, A Masini, A Matt, G Vagnetti, F Vignali, C Ballantyne, DR Bauer, FE Boggs, SE Brandt, WN Brusa, M Christensen, FE Craig, WW Fabian, AC Farrah, D Hailey, CJ Harrison, FA Luo, B Piconcelli, E Puccetti, S Ricci, C Saez, C Stern, D Walton, DJ Zhang, WW AF Lanzuisi, G. Perna, M. Comastri, A. Cappi, M. Dadina, M. Marinucci, A. Masini, A. Matt, G. Vagnetti, F. Vignali, C. Ballantyne, D. R. Bauer, F. E. Boggs, S. E. Brandt, W. N. Brusa, M. Christensen, F. E. Craig, W. W. Fabian, A. C. Farrah, D. Hailey, C. J. Harrison, F. A. Luo, B. Piconcelli, E. Puccetti, S. Ricci, C. Saez, C. Stern, D. Walton, D. J. Zhang, W. W. TI NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: nuclei; quasars: individual: PG 1247+267; accretion, accretion disks ID ACTIVE GALACTIC NUCLEI; SEYFERT 1 GALAXIES; DIGITAL SKY SURVEY; VELOCITY IONIZED OUTFLOW; X-RAY REVERBERATION; XMM-COSMOS SURVEY; BROAD-LINE AGNS; EMISSION-LINE; DATA RELEASE; BEPPOSAX OBSERVATIONS AB PG1247+267 is one of the most luminous known quasars at z similar to 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (Gamma = 2.3 +/- 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of similar to 100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities. C1 [Lanzuisi, G.; Perna, M.; Masini, A.; Vignali, C.; Brusa, M.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lanzuisi, G.; Perna, M.; Comastri, A.; Masini, A.; Vignali, C.; Brusa, M.] INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Cappi, M.; Dadina, M.] INAF Ist Astrofis Spaziale & Fis Cosm, Via Piero Gobetti 101, I-40129 Bologna, Italy. [Marinucci, A.; Matt, G.] Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. [Vagnetti, F.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, 837 State St, Atlanta, GA 30332 USA. [Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Bauer, F. E.] Millennium Inst Astrophys, Vicuna Mackenna 4860, Santiago 7820436, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Davey Lab 104, Dept Phys, University Pk, PA 16802 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabian, A. C.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Luo, B.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Luo, B.] Nanjing Univ, Minist Educ, Key Lab Modern Astron & Astrophys, Nanjing 210093, Jiangsu, Peoples R China. [Piconcelli, E.; Puccetti, S.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy. [Puccetti, S.] ASDC ASI, Via Politecn, I-00133 Rome, Italy. [Saez, C.] Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 305348, South Korea. [Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lanzuisi, G (reprint author), Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.; Lanzuisi, G (reprint author), INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. EM giorgio.lanzuisi2@unibo.it RI Boggs, Steven/E-4170-2015; Vagnetti, Fausto/F-7130-2014; OI Boggs, Steven/0000-0001-9567-4224; Vagnetti, Fausto/0000-0002-6689-9317; Lanzuisi, Giorgio/0000-0001-9094-0984 FU CIG grant "eEASY" [321913]; ERC [340442]; CONICYT-Chile (Basal-CATA) [PFB-06/2007]; CONICYT-Chile (FONDECYT Regular) [1141218]; CONICYT-Chile ("EMBIGGEN" Anillo) [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; Caltech NuSTAR [44A-1092750]; NASA; [ASI-INAF 2014-045-R.0]; [ASI/INAF I/037/12/0-011/13] FX We thank the anonymous referee for constructive comments that have helped us to improve the quality of the paper. G.L. thanks F. Gastaldello for useful insights on NuSTAR background issues, E. Dalessandro for advice about HST data, and O. Shemmer for help with the Swift data. G.L. acknowledges financial support from the CIG grant "eEASY" No. 321913 and from ASI-INAF 2014-045-R.0 and ASI/INAF I/037/12/0-011/13 grants. A.C.F. acknowledges support from ERC grant 340442. FEB acknowledges support from CONICYT-Chile (Basal-CATA PFB-06/2007, FONDECYT Regular 1141218, "EMBIGGEN" Anillo ACT1101), the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. W.N.B. and B.L. acknowledges support from Caltech NuSTAR subcontract 44A-1092750. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. This research also made use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 86 TC 1 Z9 1 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A77 DI 10.1051/0004-6361/201628325 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800123 ER PT J AU Micelotta, ER Dwek, E Slavin, JD AF Micelotta, Elisabetta R. Dwek, Eli Slavin, Jonathan D. TI Dust destruction by the reverse shock in the Cassiopeia A supernova remnant SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: supernova remnants; shock waves; supernovae: general; supernovae: individual: Cassiopeia A ID EARLY UNIVERSE; SPACE-TELESCOPE; HIGH-REDSHIFT; A SUPERNOVA; ASTROPHYSICAL PLASMAS; NUMERICAL SIMULATIONS; INTERSTELLAR GRAINS; MAGELLANIC CLOUDS; CARBON-MONOXIDE; II SUPERNOVAE AB Context. Core collapse supernovae (CCSNe) are important sources of interstellar dust, which are potentially capable of producing 1 M-circle dot of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift Universe. Aims. We identify the dust destruction mechanisms in the ejecta and derive the net amount of dust that survives the passage of the reverse shock. Methods. We use analytical models for the evolution of a supernova blast wave and of the reverse shock with special application to the clumpy ejecta of the remnant of Cassiopeia A (Cas A). We assume that the dust resides in cool oxygen-rich clumps, which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta), and that the dust consists of silicates (MgSiO3) and amorphous carbon grains. The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. Results. We find that 11.8 and 15.9 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the centre of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will therefore differ for different types of supernovae. C1 [Micelotta, Elisabetta R.] Univ Paris 11, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Micelotta, Elisabetta R.; Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Slavin, Jonathan D.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Micelotta, Elisabetta R.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. RP Micelotta, ER (reprint author), Univ Paris 11, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France.; Micelotta, ER (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.; Micelotta, ER (reprint author), Univ Helsinki, Dept Phys, Helsinki 00014, Finland. EM elisabetta.micelotta@helsinki.fi OI Micelotta, Elisabetta/0000-0002-6555-5109; Slavin, Jonathan/0000-0002-7597-6935 FU Marie Curie Intra-European Fellowship within 7th European Community Framework Programme NANOCOSMOS [PIEF-GA-2012-328902]; NASA's [13-ADAP13-0094] FX We are grateful to our anonymous referee for the careful reading and valuable suggestions and we would like to thank Martin Laming, Richard Arendt, Mordecai-Mark Mac Low, and Alex Hill for useful and stimulating discussions. E.R.M. wishes to acknowledge the support from a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme under project number PIEF-GA-2012-328902 NANOCOSMOS. E.D. acknowledges the support of NASA's 13-ADAP13-0094. NR 96 TC 4 Z9 4 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A65 DI 10.1051/0004-6361/201527350 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800034 ER PT J AU Miskovicova, I Hell, N Hanke, M Nowak, MA Pottschmidt, K Schulz, NS Grinberg, V Duro, R Madej, OK Lohfink, AM Rodriguez, J Bel, MC Bodaghee, A Tomsick, JA Lee, JC Brown, GV Wilms, J AF Miskovicova, Ivica Hell, Natalie Hanke, Manfred Nowak, Michael A. Pottschmidt, Katja Schulz, Norbert S. Grinberg, Victoria Duro, Refiz Madej, Oliwia K. Lohfink, Anne M. Rodriguez, Jerome Bel, Marion Cadolle Bodaghee, Arash Tomsick, John A. Lee, Julia C. Brown, Gregory V. Wilms, Joern TI Chandra X-ray spectroscopy of focused wind in the Cygnus X-1 system II. The non-dip spectrum in the low/hard state - modulations with orbital phase SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; stars: individual: Cyg X-1; stars: individual: HDE 226868; X-rays: binaries; stars: winds, outflows ID LONG-TERM VARIABILITY; PROPORTIONAL COUNTER ARRAY; RADIATION-DRIVEN WINDS; ION LINE-INTENSITIES; ALL-SKY MONITOR; BLACK-HOLE; STELLAR WIND; TIMING-EXPLORER; TRANSIENT DIPS; WARM ABSORBER AB Accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line-driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1, as determined using data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This work concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al, and highly ionized Fe (Fe XVII-Fe XXIV). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase-dependence of these parameters. We show that the absorber is located close to the black hole. Doppler shifted lines point at a complex wind structure in this region, while emission lines seen in some observations are from a denser medium than the absorber. The observed line profiles are phase-dependent. Their shapes vary from pure, symmetric absorption at the superior conjunction to P Cygni profiles at the inferior conjunction of the black hole. C1 [Miskovicova, Ivica; Hell, Natalie; Hanke, Manfred; Grinberg, Victoria; Duro, Refiz; Wilms, Joern] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany. [Miskovicova, Ivica; Hell, Natalie; Hanke, Manfred; Grinberg, Victoria; Duro, Refiz; Wilms, Joern] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Sternwartstr 7, D-96049 Bamberg, Germany. [Hell, Natalie; Brown, Gregory V.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Nowak, Michael A.; Schulz, Norbert S.; Grinberg, Victoria] MIT Kavli Inst Astrophys & Space Res, NE80,77 Mass Ave, Cambridge, MA 02139 USA. [Pottschmidt, Katja] Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Duro, Refiz] AIT Austrian Inst Technol GmbH, Donau City Str 1, A-1220 Vienna, Austria. [Madej, Oliwia K.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Madej, Oliwia K.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Lohfink, Anne M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Rodriguez, Jerome] Univ Paris Diderot, CEA DSM, CNRS, Lab AIM,UMR 7158,IRFU SAp, F-91191 Gif Sur Yvette, France. [Bel, Marion Cadolle] Max Planck Comp & Data Facil, Giessenbachstr 2, D-85748 Garching, Germany. [Bodaghee, Arash] Georgia Coll & State Univ, Dept Chem Phys & Astron, Milledgeville, GA 31061 USA. [Tomsick, John A.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Lee, Julia C.] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 60 Garden St MS-6, Cambridge, MA 02138 USA. [Lee, Julia C.] Harvard Smithsonian Ctr Astrophys, 60 Garden St MS-6, Cambridge, MA 02138 USA. RP Wilms, J (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany.; Wilms, J (reprint author), Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Sternwartstr 7, D-96049 Bamberg, Germany. EM joern.wilms@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU European Community [ITN 215212]; Bundesministerium fur Wirtschaft und Technologie [DLR 50OR0701, 50OR1113]; Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; NASA; NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060]; DFG Cluster of Excellence "Origin and Structure of the Universe"; Computational Center for Particles and Astrophysics (C2PAP) FX The research leading to these results was funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215212 "Black Hole Universe" and by the Bundesministerium fur Wirtschaft und Technologie under grant numbers DLR 50OR0701 and 50OR1113. This work was partially completed by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344, and is supported by NASA grants to LLNL. Support for this work was also provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for Support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. We acknowledge the support by the DFG Cluster of Excellence "Origin and Structure of the Universe" and are grateful for the support by MCB through the Computational Center for Particles and Astrophysics (C2PAP). We are thankful to John E. Davis for the SLXfig package that was used to create the figures throughout this paper, to David Huenemoerder for the AGLC routines that handled the grating lightcurves and routines related to plasma diagnostics, and to Thomas Dauser for parallel computing routines. This research has made use of the MAXI data provided by RIKEN, JAXA, and the MAXI team. NR 88 TC 1 Z9 1 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A114 DI 10.1051/0004-6361/201322490 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800001 ER PT J AU Rauch, T Quinet, P Hoyer, D Werner, K Richter, P Kruk, JW Demleitner, M AF Rauch, T. Quinet, P. Hoyer, D. Werner, K. Richter, P. Kruk, J. W. Demleitner, M. TI VII. New Kr IV - VII oscillator strengths and an improved spectral analysis of the hot, hydrogen-deficient DO-type white dwarf RE 0503-289 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE atomic data; line: identification; stars: abundances; stars: individual: RE 0503-289; virtual observatory tools; stars: individual: RE 0457-281 ID LOCAL INTERSTELLAR-MEDIUM; ALL-SKY SURVEY; TO-OXYGEN RATIO; STELLAR LABORATORIES; ENERGY-LEVELS; ISOELECTRONIC-SEQUENCES; ELEMENTAL COMPOSITION; SPECTROSCOPIC SURVEY; EXTENDED ANALYSIS; LYMAN CONTINUUM AB Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Kr IV-VII oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTE model-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Kr IV-VII oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high S/N ultraviolet (UV) observations of the hot white dwarf RE 0503-289. Results. We reanalyzed the effective temperature and surface gravity and determined T-eff = 70 000 +/- 2000 K and log (g/cm s(-2)) = 7.5 +/- 0.1. We newly identified ten Kr V lines and one Kr vi line in the spectrum of RE 0503-289. We measured a Kr abundance of 3.3 +/- 0.3 (logarithmic mass fraction). We discovered that the interstellar absorption toward RE 0503-289 has a multi-velocity structure within a radial-velocity interval of -40 km s(-1) < upsilon(rad) < +18 km s(-1). Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for state-of-the-art NLTE stellar-atmosphere modeling. Observed Kr V-VII line profiles in the UV spectrum of the white dwarf RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. C1 [Rauch, T.; Hoyer, D.; Werner, K.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr Astro & Particle Phys, Sand 1, D-72076 Tubingen, Germany. [Quinet, P.] Univ Mons, Phys Atom & Astrophys, UMONS, B-7000 Mons, Belgium. [Quinet, P.] Univ Liege, IPNAS, B-4000 Liege, Belgium. [Richter, P.] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Golm, Germany. [Richter, P.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Kruk, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Demleitner, M.] Heidelberg Univ, Ctr Astron, Astron Rech Inst, Monchhofstr 12-14, D-69120 Heidelberg, Germany. RP Rauch, T (reprint author), Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr Astro & Particle Phys, Sand 1, D-72076 Tubingen, Germany. EM rauch@astro.uni-tuebingen.de FU German Aerospace Center (DLR) [05 OR 1507, 50 OR 1501]; Federal Ministry of Education and Research (BMBF) at Tubingen [05 AC 6 VTB, 05 AC 11 VTB]; Federal Ministry of Education and Research at Heidelberg [05AC 11 VH3]; Belgian FRS-FNRS; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX T.R. and D.H. are supported by the German Aerospace Center (DLR, grants 05 OR 1507 and 50 OR 1501, respectively). The GAVO project had been supported by the Federal Ministry of Education and Research (BMBF) at Tubingen (05 AC 6 VTB, 05 AC 11 VTB) and is funded at Heidelberg (05AC 11 VH3). Financial support from the Belgian FRS-FNRS is also acknowledged. PQ is research director of this organization. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes ( MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. We thank Ralf Napiwotzki for putting the reduced ESO/VLT spectra at our disposal, Monica Raineri who sent us the electronic versions of the Kr IV (Bredice et al. 2000) and Kr V (Raineri et al. 2012) log gf data, and Liang Liang who provided the Kr VII data (Liang et al. 2013). This work used the profile-fitting procedure, OWENS, that was developed by M. Lemoine and the FUSE French Team. This research has made use of NASA's Astrophysics Data System and the SIMBAD database, operated at CDS, Strasbourg, France. The TheoSSA service (http : //dc. g- vo.org/theossa)used to retrieve theoretical spectra for this paper and the TOSS service (http : //dc.g-vo.org/TOSS) that provides weighted oscillator strengths and transition probabilities were constructed as part of the activities of the German Astrophysical Virtual Observatory. NR 73 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A128 DI 10.1051/0004-6361/201628131 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800099 ER PT J AU Ruge, JP Flock, M Wolf, S Dzyurkevich, N Fromang, S Henning, T Klahr, H Meheut, H AF Ruge, J. P. Flock, M. Wolf, S. Dzyurkevich, N. Fromang, S. Henning, Th. Klahr, H. Meheut, H. TI Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE submillimeter: planetary systems; magnetohydrodynamics (MHD); turbulence; planets and satellites: formation; accretion, accretion disks ID ROSSBY-WAVE INSTABILITY; GRAVITATING CIRCUMSTELLAR DISCS; HL TAU DISK; PLANET FORMATION; ACCRETION DISKS; TRANSITIONAL DISKS; DEAD ZONES; MAGNETOROTATIONAL INSTABILITY; RADIATIVE-TRANSFER; ALMA OBSERVATIONS AB Aims. Dust grains with sizes around (sub) mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of these grains on the (sub) mm appearance of magnetized protoplanetary disks. Methods. We perform non-ideal global 3D magneto-hydrodynamic (MHD) stratified disk simulations, including particles of different sizes (50 mu m to 1 cm), using a Lagrangian particle solver. Subsequently, we calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA). Results. Depending on the level of turbulence, the radial pressure gradient of the gas, and the grain size, particles settle to the midplane and/or drift radially inward. The pressure bump close to the outer edge of the dead-zone leads to particle-trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an inhomogeneous distribution of solid material in the azimuthal direction. The large-scale disk perturbations are preserved in the (sub) mm re-emission maps. The observable structures are very similar to those expected from planet-disk interaction. Additionally, the larger dust particles increase the brightness contrast between the gap and ring structures. We find that rings, gaps, and the dust accumulation in the vortex could be traced with ALMA down to a scale of a few astronomical units in circumstellar disks located in nearby star-forming regions. Finally, we present a brief comparison of these structures with those recently found with ALMA in the young circumstellar disks of HL Tau and Oph IRS 48. C1 [Ruge, J. P.; Wolf, S.] Univ Kiel, Inst Theoret Phys & Astrophys, Leibnitzstr 15, D-24098 Kiel, Germany. [Flock, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Flock, M.; Fromang, S.; Meheut, H.] Univ Paris Diderot, CNRS, CEA, CEA UMR AIM Irfu,SAP,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Dzyurkevich, N.] Ecole Normale Super, CNRS, UMR 8112, Lab Radioastron, 24 Rue Lhomond, F-75231 Paris 05, France. [Dzyurkevich, N.] Observ Paris, 24 Rue Lhomond, F-75231 Paris 05, France. [Henning, Th.; Klahr, H.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Meheut, H.] Univ Cote dAzur, Lab Lagrange, Observ Cote Azur, CNRS, Bd Observ,CS 34229, F-06304 Nice 4, France. RP Ruge, JP (reprint author), Univ Kiel, Inst Theoret Phys & Astrophys, Leibnitzstr 15, D-24098 Kiel, Germany. EM ruge@astrophysik.uni-kiel.de; mflock@caltech.edu FU German Research Foundation [WO 857/10-1, KL 14699-1]; European Research Council under the European Union's Seventh Framework Programme (FP7) / ERC [258729]; NASA [14XRP14_20153] FX We thank the anonymous referee for providing extensive and constructive comments, which significantly improved the paper. We acknowledge financial support from the German Research Foundation (J.P. Ruge: WO 857/10-1; H.H. Klahr: KL 14699-1). Mario Flock, Sebastien Fromang, and Heloise Meheut are supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement nr. 258729. Parallel computations were performed on the IRFU COAST cluster located at CEA IRFU. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and with the support of the NASA Exoplanet Research program via grant 14XRP14_20153. Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. NR 73 TC 10 Z9 10 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2016 VL 590 AR A17 DI 10.1051/0004-6361/201526616 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO9LB UT WOS:000378106800016 ER PT J AU Edwards, CS Ehlmann, BL AF Edwards, Christopher S. Ehlmann, Bethany L. TI Carbon sequestration on Mars SO GEOLOGY LA English DT Editorial Material ID NAKHLITES C1 [Edwards, Christopher S.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Ehlmann, Bethany L.] CALTECH, 1200 E Calif Blvd,MC 150-21, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Edwards, CS (reprint author), US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. NR 19 TC 0 Z9 0 U1 3 U2 8 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD JUN PY 2016 VL 44 IS 6 BP E389 EP E389 DI 10.1130/G37984Y.1 PG 1 WC Geology SC Geology GA DP0TW UT WOS:000378203600002 ER PT J AU Fernandez-Gonzalo, R Tesch, PA Linnehan, RM Kreider, RB Di Salvo, V Suarez-Arrones, L Alomar, X Mendez-Villanueva, A Rodas, G AF Fernandez-Gonzalo, R. Tesch, P. A. Linnehan, R. M. Kreider, R. B. Di Salvo, V. Suarez-Arrones, L. Alomar, X. Mendez-Villanueva, A. Rodas, G. TI Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI SO INTERNATIONAL JOURNAL OF SPORTS MEDICINE LA English DT Article DE eccentric overload; football; gracilis; functional magnetic resonance imaging; iso-inertial exercise ID RANDOMIZED CONTROLLED-TRIAL; ECCENTRIC-OVERLOAD; ELITE SOCCER; PROFESSIONAL FOOTBALL; THIGH MUSCLES; INJURIES; PREVENTION; INTENSITY; PROGRAM; IMAGES AB This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T-2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curlincreased (P < 0.001) T-2 of GR (95 %), ST (65 %), BFSh (51 %) and BFLh (14 %). After the Nordic hamstring, GR (39 %), ST (16 %) and BFSh (14 %) showed increased T-2 (P < 0.001). Russian belt and conic-pulley exercise produced subtle (P < 0.02) T2 increases of ST (9 and 6 %, respectively) and BFLh (7 and 6 %, respectively). Russian belt increased T-2 of SM (7 %). Among exercises examined, flywheel leg curl showed the most substantial hamstring and GR muscle use. However, no single exercise executed was able to increase T-2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. C1 [Fernandez-Gonzalo, R.; Tesch, P. A.] Karolinska Inst, Dept Physiol & Pharmacol, Von Eulers Vag 4a, S-17177 Stockholm, Sweden. [Linnehan, R. M.] Johnson Space Ctr, Natl Aeronaut & Space Adm, Houston, TX USA. [Kreider, R. B.] Texas A&M Univ, Dept Hlth & Kinesiol, Exercise & Sport Nutr Lab, College Stn, TX USA. [Di Salvo, V.; Suarez-Arrones, L.; Mendez-Villanueva, A.] ASPIRE Acad, Dept Football Performance & Sci, Doha, Qatar. [Alomar, X.] Ctr Med Creu Blanca, Dept Radiol, Barcelona, Spain. [Rodas, G.] Med Serv FC Barcelona, FC Barcelona, Barcelona, Spain. RP Fernandez-Gonzalo, R (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, Von Eulers Vag 4a, S-17177 Stockholm, Sweden. EM rodrigo.gonzalo@ki.se FU NPRP from the Qatar National Research Fund (a member of Qatar Foundation) [6-1526-3-363] FX We thank Ms. Elena Ferre Gimenez for technical support. This study was made possible by NPRP grant #6-1526-3-363 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The authors declare that they have no competing interests. NR 35 TC 1 Z9 1 U1 8 U2 11 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0172-4622 EI 1439-3964 J9 INT J SPORTS MED JI Int. J. Sports Med. PD JUN PY 2016 VL 37 IS 7 BP 559 EP 564 DI 10.1055/s-0042-100290 PG 6 WC Sport Sciences SC Sport Sciences GA DO9DD UT WOS:000378083600008 PM 27116347 ER PT J AU Quick, LC Glaze, LS Baloga, SM Stofan, ER AF Quick, Lynnae C. Glaze, Lori S. Baloga, Stephen M. Stofan, Ellen R. TI New approaches to inferences for steep-sided domes on Venus SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Venus; Volcanism; Volcanic domes; Lava composition; Similarity solutions ID LAVA FLOWS; GRAVITY CURRENTS; RHYOLITE LAVAS; EMPLACEMENT; EQUATION; EXTRUSION; VISCOSITY; VOLCANISM; ERUPTIONS; DYNAMICS AB New mathematical approaches for the relaxation and emplacement of viscous lava domes are presented and applied to steep-sided domes on Venus. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry for two distinct scenarios. In the first scenario, dome relaxation is explored assuming a constant volume of fluid (i.e. lava) has been rapidly emplaced onto the surface. Cooling of lava is represented by a time-variable viscosity and singularities inherent in previous models for dome relaxation have been eliminated. At the onset of relaxation, bulk dynamic viscosities lie in the range between 10(10)-10(16) Pa s, consistent with basaltic-andesite to rhyolitic compositions. Plausible relaxation times range from 5 to 5000 years, depending on initial lava viscosity. The first scenario, however, is only valid during the final stages of dome relaxation and does not consider the time taken for lava to be extruded onto the surface. In the second scenario, emplacement and growth of a steep-sided dome is considered when the volume of lava on the surface increases over time (i.e. time-variable volume approach). The volumetric flowrate may depend on an arbitrary power of the dome thickness, thus embracing Newtonian as well as other rheologies for describing terrestrial and planetary mass flows. The approach can be used to distinguish between basic flowrate models for fluid emplacement. The formalism results in radial expansion of a dome proportional to t(1/2), consistent with the diffusive nature of the governing equation. The flow at the front is shown to thicken as the front advances for a constant rate of lava supply. Emplacement times are intimately correlated with the bulk rheology. Comparison of the theoretical profiles with the shape of a typical dome on Venus indicates that a Newtonian bulk rheology is most appropriate, consistent with prior studies. However, results here suggest a bulk dynamic viscosity of 10(12)-10(13) Pa s and emplacement times of approximately 2-16 years. Both scenarios investigated give emplacement times significantly less than prior estimates and compositions consistent with basaltic andesite. (C) 2016 Elsevier B.V. All rights reserved. C1 [Quick, Lynnae C.; Glaze, Lori S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Baloga, Stephen M.] Proxemy Res, 20528 Farcroft Lane, Gaithersburg, MD 20882 USA. [Stofan, Ellen R.] POB W, The Plains, VA 20198 USA. RP Quick, LC (reprint author), Planetary Sci Inst, 1700 East Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. EM lquick@psi.edu RI Glaze, Lori/D-1314-2012 FU NASA Postdoctoral Program (NPP); NASA Planetary Geology and Geophysics program [NNX09AE10G, WBS 811073.02.01.04.44] FX L C. Quick was supported on this work by an appointment to the NASA Postdoctoral Program (NPP), administered by Oak Ridge Associated Universities (ORAU). This work was supported in part by the NASA Planetary Geology and Geophysics program (ERS grant NNX09AE10G, LSG WBS 811073.02.01.04.44). The authors would like to thank A. Gleason for a copy of her MS thesis and for the stereo derived DEMs she generated while working with L. Glaze at NASA GSFC in 2008. We also wish to thank Lionel Wilson and Prokop Zavada for very insightful reviews of the manuscript. NR 57 TC 2 Z9 2 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD JUN 1 PY 2016 VL 319 BP 93 EP 105 DI 10.1016/j.jvolgeores.2016.02.028 PG 13 WC Geosciences, Multidisciplinary SC Geology GA DP4FR UT WOS:000378452200007 ER PT J AU Ohayon, MM Milesi, C AF Ohayon, Maurice M. Milesi, Cristina TI Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population SO SLEEP LA English DT Article DE circadian rhythms; outdoor lights; sleep duration; sleepiness; sleep-wake schedule ID HUMAN-SETTLEMENTS; HUMAN MELATONIN; EVAL SYSTEM; DSM-IV; DISORDERS; CONSEQUENCES; SENSITIVITY; SUPPRESSION; RELEVANCE; DIAGNOSIS AB Study Objectives: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. Methods: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10th Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19: 30 and 22: 30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. Results: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). Conclusions: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL. C1 [Ohayon, Maurice M.] Stanford Univ, Palo Alto, CA 94304 USA. [Milesi, Cristina] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ohayon, MM (reprint author), Stanford Univ, Sch Med, Stanford Sleep Epidemiol Res Ctr, Div Publ Mental Hlth & Populat Sci, 3430 W Bayshore Rd, Palo Alto, CA 94303 USA. EM mohayon@stanford.edu FU Arrillaga Foundation; Philip Stein Foundation FX This was not an industry supported study. This study was supported by the Arrillaga Foundation and by the Philip Stein Foundation (MMO). The authors have no other financial relationships or commercial interests with the sponsors. The sponsors had no role in the design and conduct of the study, nor the collection, management, analysis and interpretation of the data. There was no editorial direction or censorship from the sponsors. The sponsors have not seen the manuscript and had no role in the decision to submit the paper for publication. No writing assistance was provided. The authors had access to all data from the study, both what is reported and what is unreported, and they also had complete freedom to direct the analysis and the reporting, without influence from the sponsors. Dr. Ohayon has received research support from Jazz Pharmaceuticals. Dr. Milesi has indicated no financial conflicts of interest. NR 35 TC 3 Z9 3 U1 15 U2 22 PU AMER ACAD SLEEP MEDICINE PI WESTCHESTER PA ONE WESTBROOK CORPORATE CTR, STE 920, WESTCHESTER, IL 60154 USA SN 0161-8105 EI 1550-9109 J9 SLEEP JI Sleep PD JUN 1 PY 2016 VL 39 IS 6 BP 1311 EP 1320 AR PII sp-00313-15 DI 10.5665/sleep.5860 PG 10 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA DP7JO UT WOS:000378675200020 PM 27091523 ER PT J AU Taylor, S Messenger, S Folco, L AF Taylor, Susan Messenger, Scott Folco, Luigi TI Cosmic Dust: Finding a Needle in a Haystack SO ELEMENTS LA English DT Article DE micrometeorites; interplanetary dust particles (IDP); polar collections; stratospheric collections ID TRANSANTARCTIC MOUNTAINS; ACCRETION RATE; BLUE ICE; MICROMETEORITES; SPHERULES; ANTARCTICA; COLLECTION; DEBRIS; EARTH AB Collecting cosmic dust is a tricky business! Despite Earth's surface being showered by thousands of tons of comic dust every year, such dust is quickly lost in a sea of terrestrial particles. Finding the tiny cosmic treasures requires collecting dust from the cleanest environments where the terrestrial particle background is low. The stratosphere can be sampled via high-flying aircraft, whereas sampling cosmic dust from polar regions and the deep sea requires techniques that concentrate the particles. Collection efforts are worth it. Cosmic dust derives from every dust-producing object in the Solar System, including ancient Solar System materials, possibly even interstellar materials, of a type not found in meteorites. C1 [Taylor, Susan] US Army, Cold Reg Res & Engn Lab, 72 Lyme Rd, Hanover, NH 03755 USA. [Messenger, Scott] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Folco, Luigi] Univ Pisa, Dept Sci Terra, Pisa, Italy. RP Taylor, S (reprint author), US Army, Cold Reg Res & Engn Lab, 72 Lyme Rd, Hanover, NH 03755 USA. EM Susan.Taylor@erdc.dren.mil; scott.messenger@nasa.gov; luigi.folco@unipi.it NR 30 TC 4 Z9 4 U1 3 U2 3 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD JUN PY 2016 VL 12 IS 3 BP 171 EP 176 DI 10.2113/gselements.12.3.171 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DO5UC UT WOS:000377847300003 ER PT J AU Sandford, SA Engrand, C Rotundi, A AF Sandford, Scott A. Engrand, Cecile Rotundi, Alessandra TI Organic Matter in Cosmic Dust SO ELEMENTS LA English DT Article DE cosmic dust; organics; carbonaceous matter; hydrocarbons; microanalysis ID INTERPLANETARY DUST; ANTARCTIC MICROMETEORITES; AROMATIC-HYDROCARBONS; SOLAR-SYSTEM; C-H; PARTICLES; STARDUST; MOLECULES; ORIGIN; SNOW AB Organics are a significant component of most cosmic dust, as revealed from actual samples of extraterrestrial dust in the Earth's stratosphere, in Antarctic ice and snow, in near-Earth orbit, and in asteroids and comets. Cosmic dust contains a diverse population of organic materials that owe their origins to a variety of chemical processes occurring in many different environments. The presence of isotopic enrichments of D and N-15 suggests that many of these organic materials have an interstellar or protosolar heritage. The study of these samples is of considerable importance because they are the best preserved materials of the early Solar System available. C1 [Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Engrand, Cecile] CSNSM, Bat 104,91405 Orsay Campus, Orsay, France. [Rotundi, Alessandra] Univ Naples Parthenope, Naples, Italy. [Rotundi, Alessandra] INAF Ist Astrofis & Planetol Spaziali, Rome, Italy. RP Sandford, SA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Scott.A.Sandford@nasa.gov; Cecile.Engrand@csnsm.in2p3.fr; rotundi@uniparthenope.it FU NASA Astrobiology Institute; Italian Space Agency; Italian Programma Nazionale delle Ricerche in Antartide (PNRA); ANR OGRESSE; Centre National d'Etudes Spatiales (CNES); CNRS/IN2P3 FX Sandford acknowledges funding support from the NASA Astrobiology Institute. Rotundi thanks the Italian Space Agency and the Italian Programma Nazionale delle Ricerche in Antartide (PNRA) for funding. Engrand acknowledges support from CNRS/IN2P3, ANR OGRESSE and Centre National d'Etudes Spatiales (CNES). This article benefitted greatly from reviews by F. von Blanckenburg, S. Taylor, G. Flynn, and D. Brownlee. NR 30 TC 3 Z9 3 U1 8 U2 11 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD JUN PY 2016 VL 12 IS 3 BP 185 EP 189 DI 10.2113/gselements.12.3.185 PG 5 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DO5UC UT WOS:000377847300005 ER PT J AU Liu, WT Tang, WQ AF Liu, W. Timothy Tang, Wenqing TI Relating Wind and Stress under Tropical Cyclones with Scatterometer SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID SURFACE STRESS; MOMENTUM FLUX; HURRICANE INTENSITY; DRAG COEFFICIENTS; FORCE WINDS; KU-BAND; OCEAN; MODEL; EXCHANGE; SPEEDS AB Ocean surface stress, the turbulent transport of momentum, is largely derived from wind through a drag coefficient. In tropical cyclones (TCs), scatterometers have difficulty measuring strong wind and there is large uncertainty in the drag coefficient. This study postulates that the microwave backscatter from ocean surface roughness, which is in equilibrium with local stress, does not distinguish between weather systems. The reduced sensitivity of scatterometer wind retrieval algorithms under the strong wind is an air-sea interaction problem that is caused by a change in the behavior of the drag coefficient rather than a sensor problem. Under this assumption, a stress retrieval algorithm developed over a moderate wind range is applied to retrieve stress under the strong winds of TCs. Over a moderate wind range, the abundant wind measurements and the more established drag coefficient value allow for sufficient stress data to be computed from wind to develop a stress retrieval algorithm for the scatterometer. Using 0.9 million coincident stress and wind pairs, the study shows that the drag coefficient decreases with wind speed at a much steeper rate than previously revealed, for wind speeds over 25 m s(-1). The result implies that the ocean applies less drag to inhibit TC intensification, and that TCs cause less ocean mixing and surface cooling than previous studies indicated. C1 [Liu, W. Timothy; Tang, Wenqing] CALTECH, Jet Prop Lab, M-S 300-323,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Liu, WT (reprint author), CALTECH, Jet Prop Lab, M-S 300-323,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM w.t.liu@jpl.nasa.gov FU NASA; Remote Sensing Systems, Inc. Government sponsorship FX This study was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). It was supported by the Physical Oceanography and Cyclone Global Navigation Satellite System programs of NASA. We are deeply grateful to Kun-Hsuan Chou for providing the dropsonde data and for the advice of I.-I. Lin on typhoon studies. Xiaosu Xie kindly helped us with the data analysis. WindSat data were obtained from Remote Sensing Systems, Inc. Government sponsorship is acknowledged. NR 38 TC 0 Z9 1 U1 3 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUN PY 2016 VL 33 IS 6 BP 1151 EP 1158 DI 10.1175/JTECH-D-16-0047.1 PG 8 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DO7DP UT WOS:000377942700005 ER PT J AU Kahn, RA Sayer, AM Ahmad, Z Franz, BA AF Kahn, Ralph A. Sayer, Andrew M. Ahmad, Ziauddin Franz, Bryan A. TI The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID SKY RADIANCE MEASUREMENTS; WATER-LEAVING RADIANCE; OPTICAL-PROPERTIES; ATMOSPHERIC CORRECTION; VICARIOUS CALIBRATION; ABSORBING AEROSOLS; ANGSTROM EXPONENT; COASTAL REGIONS; AERONET; MODIS AB As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm atmospheric correction with similar to 13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD(440)) is overestimated for AOD below similar to 0.1-0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value + replacement in clays. We thank S. Mikhail, D. Sahagian and B. Marty for helpful reviews. NR 30 TC 5 Z9 5 U1 8 U2 14 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUN PY 2016 VL 9 IS 6 BP 448 EP + DI 10.1038/NGEO2713 PG 5 WC Geosciences, Multidisciplinary SC Geology GA DO0TQ UT WOS:000377491600013 ER PT J AU Airapetian, VS Glocer, A Gronoff, G Hebrard, E Danchi, W AF Airapetian, V. S. Glocer, A. Gronoff, G. Hebrard, E. Danchi, W. TI Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun SO NATURE GEOSCIENCE LA English DT Article ID SOLAR-TYPE STARS; NITROGEN-FIXATION; CORONA DISCHARGE; TREE-RINGS; EVENTS; SUPERFLARES; MODEL; STORM; NO AB Nitrogen is a critical ingredient of complex biological molecules(1). Molecular nitrogen, however, which was outgassed into the Earth's early atmosphere(2), is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation(3,4). Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun-so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N-2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth. C1 [Airapetian, V. S.; Glocer, A.; Hebrard, E.; Danchi, W.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Gronoff, G.] Sci Syst & Applicat Inc, Hampton, VA 23681 USA. [Gronoff, G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Hebrard, E.] NASA, Postdoctoral Program, Univ Space Res Assoc, Columbia, MD 21046 USA. RP Airapetian, VS (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Vladimir.Airapetian@nasa.gov RI HEBRARD, Eric/E-9257-2014 OI HEBRARD, Eric/0000-0003-0770-7271 FU NASA GSFC Science Task Group funds; NASA Astrobiology Institute grant [NNX15AE05G]; NASA HIDEE Program FX This work was supported by NASA GSFC Science Task Group funds. V.S.A. performed the part of this work while staying at ELSI/Tokyo Tech. G.G. was supported by NASA Astrobiology Institute grant NNX15AE05G and by the NASA HIDEE Program, E.H. was supported by an appointment to the NASA Postdoctoral Program at NASA Goddard Space Flight Center, administered by Universities Space Research Association through a contract with NASA. NR 33 TC 6 Z9 6 U1 8 U2 18 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUN PY 2016 VL 9 IS 6 BP 452 EP + DI 10.1038/NGEO2719 PG 5 WC Geosciences, Multidisciplinary SC Geology GA DO0TQ UT WOS:000377491600014 ER PT J AU Bamba, A Sawada, M Nakano, Y Terada, Y Hewitt, J Petre, R Angelini, L AF Bamba, Aya Sawada, Makoto Nakano, Yuto Terada, Yukikatsu Hewitt, John Petre, Robert Angelini, Lorella TI New identification of the mixed-morphology supernova remnant G298.6-0.0 with possible gamma-ray association SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE gamma-rays: ISM; ISM: individual (G298.6-0.0, 3FGL J1214.0-6236); ISM: supernova remnants; X-rays: ISM ID LARGE-AREA TELESCOPE; ALL-SKY SURVEY; X-RAY; IC 443; IMAGING SPECTROMETER; SUZAKU; ACCELERATION; ABSORPTION; ABUNDANCES; CATALOG AB We present an X-ray analysis on the Galactic supernova remnant (SNR) G298.6-0.0 observed with Suzaku. The X-ray image shows a center-filled structure inside a radio shell, implying that this SNR can be categorized as a mixed-morphology (MM) SNR. The spectrum is well reproduced by a single-temperature plasma model in ionization equilibrium, with a temperature of 0.78 (0.70-0.87) keV. The total plasma mass of 30 M-circle dot indicates that the plasma has an interstellar medium origin. The association with a GeV gamma-ray source, 3FGL J1214.0-6236, on the shell of the SNR is discussed, in comparison with other MM SNRs with GeV gamma-ray associations. It is found that the flux ratio between absorption-corrected thermal X-rays and GeV gamma-rays decreases as the physical size of MM SNRs becomes larger. The absorption-corrected thermal X-ray flux of G298.6-0.0 and the GeV gamma-ray flux of 3FGL J1214.0-6236 closely follow this trend, implying that 3FGL J1214.0-6236 is likely to be a GeV counterpart of G298.6-0.0. C1 [Bamba, Aya; Sawada, Makoto; Nakano, Yuto] Aoyama Gakuin Univ, Dept Phys & Math, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. [Terada, Yukikatsu] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Hewitt, John; Petre, Robert; Angelini, Lorella] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hewitt, John] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. RP Bamba, A (reprint author), Aoyama Gakuin Univ, Dept Phys & Math, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. EM bamba@phys.aoyama.ac.jp FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [22684012, 15K05107, 15K17657] FX We thank the anonymous referee for fruitful comments. This research made use of the SIMBAD database, operated at CDS, Strasbourg, France. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Nos. 22684012 and 15K05107 (A.B.) and No. 15K17657 (M.S.). NR 43 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD JUN PY 2016 VL 68 SU 1 SI SI AR S5 DI 10.1093/pasj/psv096 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN9UR UT WOS:000377426700005 ER PT J AU Mori, H Maeda, Y Ueda, Y AF Mori, Hideyuki Maeda, Yoshitomo Ueda, Yoshihiro TI XMM-Newton and Suzaku spectroscopic studies of unidentified X-ray sources towards the Galactic bulge: 1RXS J180556.1-343818 and 1RXS J173905.2-392615 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE X-rays: individual (1RXS J173905.2-392615, 1RXS J180556.1-343818); X-rays: stars ID PHOTON IMAGING CAMERA; A-TYPE STAR; BOARD SUZAKU; HR 1099; MU-M; SOLAR; EMISSION; SPECTROMETER; ABUNDANCES; CATALOG AB With XMM-Newton and Suzaku observations, for the first time, we acquired broad-band spectra of two unidentified X-ray sources towards the Galactic bulge: 1RXS J180556.1-343818 and 1RXS J173905.2-392615. The 1RXS J180556.1-343818 spectrum in the 0.3-7 keV band was explained by X-ray emission that originated from an optically-thin thermal plasma with temperatures of 0.5 and 1.8 keV. The estimated absorption column density of N-H similar to 4 x 10(20) cm(-2) was significantly smaller than the Galactic HI column density towards the source. A candidate for its optical counterpart, HD321269, was found within 4 ''. In terms of the X-ray properties and the positional coincidence, it is quite conceivable that 1RXS J180556.1-343818 is an active G giant. We also found a dim X-ray source that was positionally consistent with 1RXS J173905.2-392615. Assuming that the X-ray spectrum can be reproduced with an absorbed, optically-thin thermal plasma model with kT = 1.6 keV, the X-ray flux in the 0.5-8 keV band was 8.7 x 10(-14) erg s(-1) cm(-2), fainter by a factor of similar to 7 than that of 1RXSJ173905.2-392615 during the ROSAT observation. The follow-up observations we conducted revealed that these two sources would belong to the Galactic disk, rather than the Galactic bulge. C1 [Mori, Hideyuki] NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mori, Hideyuki] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mori, Hideyuki] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Maeda, Yoshitomo] Japan Aerosp Explorat Agcy JAXA, ISAS, Dept Space Astron & Astrophys, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Ueda, Yoshihiro] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. RP Mori, H (reprint author), NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Mori, H (reprint author), NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Mori, H (reprint author), Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM hideyuki.mori@nasa.gov FU ESA Member States; USA (NASA); National Aeronautics and Space Administration; National Science Foundation FX We thank Dr. Kenji Hamaguchi and another anonymous referee for their useful and careful comments to improve our manuscript. We would like to thank all the Suzaku team members for their support of the observation and useful information on the XIS and HXD analyses. This work is also based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). Furthermore, this publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 50 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD JUN PY 2016 VL 68 SU 1 SI SI AR S22 DI 10.1093/pasj/psv142 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN9UR UT WOS:000377426700022 ER PT J AU Saji, S Mori, H Matsumoto, H Dotani, T Iwai, M Maeda, Y Mitsuishi, I Ozaki, M Tawara, Y AF Saji, Shigetaka Mori, Hideyuki Matsumoto, Hironori Dotani, Tadayasu Iwai, Masachika Maeda, Yoshitomo Mitsuishi, Ikuyuki Ozaki, Masanobu Tawara, Yuzuru TI Peculiar lapse of periodic eclipsing event at low-mass X-ray binary GRS 1747-312 during Suzaku observation in 2009 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE binaries: eclipsing; stars: neutron; X-rays: binaries; X-rays: individuals (GRS 1747-312) ID PHOTON IMAGING CAMERA; XMM-NEWTON; GLOBULAR-CLUSTERS; GALACTIC-CENTER; BOARD SUZAKU; IN-FLIGHT; SPECTROMETER; PERFORMANCE; BURSTS; EXO-0748-676 AB GRS1747-312 is a neutron star low-mass X-ray binary in the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. During its outbursts, periodic eclipses were known to occur. Observations for the outbursts were performed with Chandra in 2004 and Swift in 2013. XMM-Newton observed its quiescent state in 2004. In addition, when Suzaku observed it in 2009 as a part of Galactic center mapping observations, GRS1747-312 was found to be in a low-luminosity state with L-x similar to 1.2 x 10(35) erg s(-1). All of the observations except for XMM-Newton included the time of the eclipses predicted. We analyzed archival data of these observations. During the Chandra and Swift observations, we found clear flux decreases at the expected time of the eclipses. During the Suzaku observation, however, there were no clear signs for the predicted eclipses. The lapse of the predicted eclipses during the Suzaku observation can be explained by a contaminant source quite close to GRS1747-312. When GRS1747-312 is in the quiescent state, we observe X-rays from the contaminant source rather than from GRS1747-312. However, we have no clear evidence for the contaminant source in our data. The lapse might also be explained by thick material (N-H > 10(24) cm(-2)) between the neutron star and the companion star, though the origin of the thick material is not clear. C1 [Saji, Shigetaka; Mitsuishi, Ikuyuki; Tawara, Yuzuru] Nagoya Univ, Grad Sch Sci, Div Particle & Astrophys Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. [Mori, Hideyuki] NASA, CRESST, Goddard Space Flight Ctr, Code 602, Greenbelt, MD 20771 USA. [Mori, Hideyuki] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 602, Greenbelt, MD 20771 USA. [Mori, Hideyuki] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Matsumoto, Hironori] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. [Dotani, Tadayasu; Iwai, Masachika; Maeda, Yoshitomo; Ozaki, Masanobu] Japan Aerosp Explorat Agcy JAXA, ISAS, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Dotani, Tadayasu; Iwai, Masachika] Tokyo Inst Technol, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528550, Japan. [Dotani, Tadayasu; Maeda, Yoshitomo] SOKENDAI Grad Univ Adv Studies, Dept Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. RP Saji, S (reprint author), Nagoya Univ, Grad Sch Sci, Div Particle & Astrophys Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. EM s_saji@u.phys.nagoya-u.ac.jp FU MEXT [15K13464, 24340039, 15H02070] FX We thank all the Suzaku team members for their support. HM is supported by a Grants-in-Aid for Scientific Research from the MEXT, Nos. 15K13464, 24340039, and 15H02070. NR 51 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD JUN PY 2016 VL 68 SU 1 SI SI AR S15 DI 10.1093/pasj/psw011 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN9UR UT WOS:000377426700015 ER PT J AU Sakamoto, T Oda, R Mihara, T Yoshida, A Arimoto, M Barthelmy, SD Kawai, N Krimm, HA Nakahira, S Serino, M AF Sakamoto, Takanori Oda, Ryoma Mihara, Tatehiro Yoshida, Atsumasa Arimoto, Makoto Barthelmy, Scott D. Kawai, Nobuyuki Krimm, Hans A. Nakahira, Satoshi Serino, Motoko TI Swift/BAT and MAXI/GSC broadband transient monitor SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE binaries: general; methods: data analysis; stars: activity; stars: black holes; stars: jets ID SLIT CAMERA GSC; X-RAY SURVEY; LOW/HARD STATE; GX 339-4; SKY; ACCRETION; MISSION; ISS; BAT; OUTBURST AB We present a newly developed broadband transient monitor using the Swift Burst Alert Telescope (BAT) and the MAXI Gas Slit Camera (GSC) data. Our broadband transient monitor keeps vigil for high-energy transient sources from 2 keV to 200 keV in seven energy bands by combining the BAT (15-200 keV) and the GSC (2-20 keV) data. Currently, daily and 90-minute (one orbit) averaged light curves are available for 106 high-energy transient sources. This transient monitor is available to the public through our web server, http://yoshidalab.mydns.jp/bat_gsc_trans_mon/, for wider use by the community. We discuss a daily sensitivity of our monitor and possible future improvements on our pipeline. C1 [Sakamoto, Takanori; Oda, Ryoma; Yoshida, Atsumasa] Aoyama Gakuin Univ, Dept Math & Phys, Coll Sci & Engn, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. [Mihara, Tatehiro; Serino, Motoko] RIKEN, MAXI Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Arimoto, Makoto; Kawai, Nobuyuki] Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528851, Japan. [Barthelmy, Scott D.; Krimm, Hans A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, Hans A.] NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, Hans A.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Nakahira, Satoshi] Japan Aerosp Explorat Agcy, JEM Mission Operat & Integrat Ctr, Human Spaceflight Technol Directorate, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. RP Sakamoto, T (reprint author), Aoyama Gakuin Univ, Dept Math & Phys, Coll Sci & Engn, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. EM tsakamoto@phys.aoyama.ac.jp RI Mihara, Tatehiro/C-5536-2017; Serino, Motoko/D-3890-2017 OI Mihara, Tatehiro/0000-0002-6337-7943; FU JSPS [25400234] FX We would like to thank the anonymous referee for comments and suggestions that materially improved the paper. This work was supported by JSPS Grant-in-Aid for Scientific Research (C) Grant Number 25400234. NR 20 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD JUN PY 2016 VL 68 SU 1 SI SI AR S2 DI 10.1093/pasj/psv130 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN9UR UT WOS:000377426700002 ER PT J AU Takeuchi, Y Yamaguchi, H Tamagawa, T AF Takeuchi, Yoko Yamaguchi, Hiroya Tamagawa, Toru TI A systematic study of evolved supernova remnants in the large and small Magellanic Clouds with Suzaku SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE ISM: abundances; ISM: supernova remnants; Magellanic Clouds; X-rays: ISM ID X-RAY SPECTROSCOPY; IA SUPERNOVA; RICH EJECTA; ASCA; ABUNDANCES; EVOLUTION; SN-1006; MODELS; REGION; RADIO AB Identifying the origin type (i.e., Type Ia or core-collapse) of supernova remnants (SNRs) is crucial to determining the rates of supernova (SN) explosions in a galaxy, which is a key to understanding its recent chemical evolution. However, evolved SNRs in the so-called Sedov phase are dominated by the swept-up interstellar medium (ISM), making it difficult to determine their ejecta composition and thus SN type. Here we present a systematic X-ray study of nine evolved SNRs in the Magellanic Clouds, DEM L238, DEM L249, 0534-69.9, 0548-70.4, B0532-71.0, B0532-67.5, 0103-72.6, 0049-73.6, and 0104-72.3, using archival data of the Suzaku satellite. Although Suzaku does not spatially resolve the SN ejecta from the swept-up ISM due to the limited angular resolution, its excellent energy resolution has enabled clear separation of emission lines in the soft X-ray band. This leads to the finding that the "spatially integrated" spectra of the evolved (similar to 10(4) yr) SNRs are still significantly contributed by emission from the ejecta at energies around 1 keV. The Fe/Ne mass ratios, determinedmainly from the well-resolved Fe L-shell and Ne K-shell lines, clearly divide the observed SNRs into the Type Ia and core-collapse groups, confirming some previous typing made by Chandra observations that had utilized its extremely high angular resolution. This demonstrates that spatially integrated X-ray spectra of old SNRs can also be used to discriminate their progenitor type, which would be helpful for future systematic studies of extragalactic SNRs with ASTRO-H and beyond. C1 [Takeuchi, Yoko] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, 3-1 Kagurazaka, Tokyo 1628601, Japan. [Takeuchi, Yoko; Tamagawa, Toru] RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Yamaguchi, Hiroya] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Yamaguchi, Hiroya] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Takeuchi, Y (reprint author), Tokyo Univ Sci, Dept Phys, Shinjuku Ku, 3-1 Kagurazaka, Tokyo 1628601, Japan.; Takeuchi, Y (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM takeuchi@crab.riken.jp FU [25.5448] FX We thank all the members of the Suzaku operation team for their continuous effort to develop and maintain the satellite. Y.T. was supported by Grant-in-Aid for the Promotion of Science (JSPS) Fellows (No. 25.5448). NR 38 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD JUN PY 2016 VL 68 SU 1 SI SI AR S9 DI 10.1093/pasj/psv127 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN9UR UT WOS:000377426700009 ER PT J AU Shields, AL Barnes, R Agol, E Charnay, B Bitz, C Meadows, VS AF Shields, Aomawa L. Barnes, Rory Agol, Eric Charnay, Benjamin Bitz, Cecilia Meadows, Victoria S. TI The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f SO ASTROBIOLOGY LA English DT Article DE Extrasolar planets; Habitability; Planetary environments ID MAIN-SEQUENCE STARS; SOLAR-SYSTEM; PLANETARY SYSTEMS; OBLIQUITY VARIATIONS; TERRESTRIAL PLANETS; TIDAL DISSIPATION; EARTHS OBLIQUITY; ALBEDO FEEDBACK; SUPER-EARTHS; EARLY MARS AB As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 <= e <= 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Meteorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60 degrees and 90 degrees). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. C1 [Shields, Aomawa L.] Univ Calif Los Angeles, Dept Phys & Astron, Box 951547, Los Angeles, CA 90095 USA. [Shields, Aomawa L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Barnes, Rory; Agol, Eric; Charnay, Benjamin; Meadows, Victoria S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Barnes, Rory; Agol, Eric; Charnay, Benjamin; Meadows, Victoria S.] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. [Bitz, Cecilia] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Shields, Aomawa L.; Barnes, Rory; Agol, Eric; Charnay, Benjamin; Bitz, Cecilia; Meadows, Victoria S.] NASA, Astrobiol Inst, Virtual Planetary Lab, Los Angeles, CA USA. RP Shields, AL (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Box 951547, Los Angeles, CA 90095 USA. EM ashields@astro.ucla.edu RI Bitz, Cecilia/S-8423-2016 OI Bitz, Cecilia/0000-0002-9477-7499 FU National Science Foundation [1401554, DGE-0718124, DGE-1256082]; University of California; National Science Foundation; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH12ZDA002C, NNA13AA93A]; NSF [AST-1108882] FX This material is based upon work supported by the National Science Foundation under Award No. 1401554, and Grant Nos. DGE-0718124 and DGE-1256082, and by a University of California President's Postdoctoral Fellowship. This work was facilitated through the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. We would also like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. This work was performed as part of the NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team, supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A. The authors wish to thank Dorian Abbot and an anonymous referee for their comments and suggestions, which improved the paper. B.C. acknowledges support from an appointment to the NASA Postdoctoral Program at NAI Virtual Planetary Laboratory, administered by Oak Ridge Affiliated Universities. R.B. acknowledges support from NSF grant AST-1108882. A.S. thanks Brad Hansen, Jonathan Mitchell, John Johnson, Russell Deitrick, and Tom Quinn for helpful discussions regarding this work. NR 115 TC 2 Z9 2 U1 18 U2 22 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2016 VL 16 IS 6 BP 443 EP + DI 10.1089/ast.2015.1353 PG 23 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DN6TW UT WOS:000377210200006 PM 27176715 ER PT J AU Kashlinsky, A AF Kashlinsky, A. TI LIGO GRAVITATIONAL WAVE DETECTION, PRIMORDIAL BLACK HOLES, AND THE NEAR-IR COSMIC INFRARED BACKGROUND ANISOTROPIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dark matter; diffuse radiation; early universe; gravitational waves ID POPULATION-III STARS; DIRECT COLLAPSE; EARLY UNIVERSE; DARK-MATTER; FLUCTUATIONS; GALAXIES; REIONIZATION; ACCRETION; ORIGIN; SIGNATURES AB LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z greater than or similar to 10, where first luminous sources formed. We quantify the resultant increase in high-z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increased abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2-5 mu m can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs. C1 [Kashlinsky, A.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Kashlinsky, A.] SSAI, Lanham, MD 20770 USA. RP Kashlinsky, A (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.; Kashlinsky, A (reprint author), SSAI, Lanham, MD 20770 USA. EM Alexander.Kashlinsky@nasa.gov FU NASA [12-EUCLID11-0003] FX This work was supported by NASA/12-EUCLID11-0003 "LIBRAE: Looking at Infrared Background Radiation Anisotropies with Euclid" project (http://librae.ssaihq.com). I thank my LIBRAE colleagues for comments on the draft of this paper. NR 50 TC 5 Z9 5 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L25 DI 10.3847/2041-8205/823/2/L25 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4JL UT WOS:000377031700004 ER PT J AU Schneider, AC Cushing, MC Kirkpatrick, JD Gelino, CR AF Schneider, Adam C. Cushing, Michael C. Kirkpatrick, J. Davy Gelino, Christopher R. TI THE COLLAPSE OF THE WIEN TAIL IN THE COLDEST BROWN DWARF? HUBBLE SPACE TELESCOPE NEAR-INFRARED PHOTOMETRY OF WISE J085510.83-071442.5 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs ID SURVEY-EXPLORER WISE; DIGITAL SKY SURVEY; T-DWARFS; Y DWARFS; PROPER MOTIONS; T/Y TRANSITION; MASS FUNCTION; WATER CLOUDS; DISCOVERY; SPECTRA AB We present Hubble Space Telescope (HST) near-infrared photometry of the coldest known brown dwarf, WISE J085510.83-071442.5 (WISE 0855-0714). WISE 0855-0714 was observed with the Wide Field Camera 3 (WFC3) on board HST using the F105W, F125W, and F160W filters, which approximate the Y, J, and H near-infrared bands. WISE 0855-0714 is undetected at F105W with a corresponding 2 sigma magnitude limit of similar to 26.9. We marginally detect WISE 0855-0714 in the F125W images (S/N similar to 4), with a measured magnitude of 26.41 +/- 0.27, more than a magnitude fainter than the J-band magnitude reported by Faherty et al. WISE J0855-0714 is clearly detected in the F160W band, with a magnitude of 23.86 +/- 0.03, the first secure detection of WISE 0855 -0714 in the near-infrared. Based on these data, we find that WISE 0855-0714 has extremely red F105W -F125W and F125W -F160W colors relative to other known Y dwarfs. We find that when compared to the models of Saumon et al. and Morley et al., the F105W -F125W and F125W -F160W colors of WISE 0855-0714 cannot be accounted for simultaneously. These colors likely indicate that we are seeing the collapse of flux on the Wien tail for this extremely cold object. C1 [Schneider, Adam C.; Cushing, Michael C.] Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. [Kirkpatrick, J. Davy; Gelino, Christopher R.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Gelino, Christopher R.] CALTECH, NASA, Exoplanet Sci Inst, Mail Code 100-22,770 South Wilson Ave, Pasadena, CA 91125 USA. RP Schneider, AC (reprint author), Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. EM Adam.Schneider@Utoledo.edu OI Cushing, Michael/0000-0001-7780-3352 FU NASA [NAS 5-26555]; NASA through Space Telescope Science Institute [14233] FX We thank the anonymous referee whose comments improved the clarity of this paper. We thank Mark Marley, Didier Saumon, and Caroline Morley for fruitful discussions and for graciously making their models publicly available online. This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #14233. Support for program #14233 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology. This research has benefitted from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser at http://pono.ucsd.edu/similar to adam/browndwarfs/spexprism. NR 52 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L35 DI 10.3847/2041-8205/823/2/L35 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4JL UT WOS:000377031700014 ER PT J AU Williams, BJ Chomiuk, L Hewitt, JW Blondin, JM Borkowski, KJ Ghavamian, P Petre, R Reynolds, SP AF Williams, Brian J. Chomiuk, Laura Hewitt, John W. Blondin, John M. Borkowski, Kazimierz J. Ghavamian, Parviz Petre, Robert Reynolds, Stephen P. TI AN X-RAY AND RADIO STUDY OF THE VARYING EXPANSION VELOCITIES IN TYCHO'S SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dust, extinction; ISM: individual objects (Tycho's SNR); ISM: supernova remnants ID BRAHES 1572 SUPERNOVA; EX-COMPANION STARS; SN 1006; SHOCK; IA; PROGENITOR; EMISSION; RIMS; NOVA; WAVE AB We present newly obtained X-ray and radio observations of Tycho's supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 years in the X-rays and 30 years in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. Consistent with earlier measurements, we find a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is similar to 23 '' toward the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants. C1 [Williams, Brian J.] NASA, GSFC, CRESST USRA, 8800 Greenbelt Rd,Code 662, Greenbelt, MD USA. [Williams, Brian J.] NASA, GSFC, Xray Astrophys Lab, 8800 Greenbelt Rd,Code 662, Greenbelt, MD USA. [Chomiuk, Laura] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Hewitt, John W.] Univ N Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Blondin, John M.; Borkowski, Kazimierz J.; Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Ghavamian, Parviz] Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. [Petre, Robert] NASA, GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Williams, BJ (reprint author), NASA, GSFC, CRESST USRA, 8800 Greenbelt Rd,Code 662, Greenbelt, MD USA.; Williams, BJ (reprint author), NASA, GSFC, Xray Astrophys Lab, 8800 Greenbelt Rd,Code 662, Greenbelt, MD USA. EM brian.j.williams@nasa.gov OI Williams, Brian/0000-0003-2063-381X; Blondin, John/0000-0001-9691-6803 FU Chandra X-ray Observatory Center [GO4-15074Z]; NASA [NAS8-03060] FX Support for this work was provided through Chandra Award GO4-15074Z, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. L.C. acknowledges NSF AST-1412980. NR 27 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L32 DI 10.3847/2041-8205/823/2/L32 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4JL UT WOS:000377031700011 ER PT J AU Zirnstein, EJ McComas, DJ Elliott, HA Weidner, S Valek, PW Bagenal, F Stern, SA Ennico, K Olkin, CB Weaver, HA Young, LA AF Zirnstein, E. J. McComas, D. J. Elliott, H. A. Weidner, S. Valek, P. W. Bagenal, F. Stern, S. A. Ennico, K. Olkin, C. B. Weaver, H. A. Young, L. A. TI INTERPLANETARY MAGNETIC FIELD SECTOR FROM SOLAR WIND AROUND PLUTO (SWAP) MEASUREMENTS OF HEAVY ION PICKUP NEAR PLUTO SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; solar wind; Sun: heliosphere ID CARBON FOILS; NEW-HORIZONS AB On 2015 July 14, the New Horizons spacecraft flew by the Pluto system. The Solar Wind Around Pluto (SWAP) instrument on board New Horizons, which detects ions in the energy per charge range similar to 0.035 to 7.5 keV/q, measured the unique interaction between the solar wind and Pluto's atmosphere. Immediately after the closest approach, SWAP detected a burst of heavy ion counts when the instrument's field of view (FOV) was aligned north and south of the Sun-Pluto line and approximately normal to the solar wind flow direction, suggesting their origin as heavy neutral atoms from Pluto that were ionized and being picked up by the solar wind. The trajectories of heavy pickup ions depend on the interplanetary magnetic field (IMF). New Horizons is not equipped with a magnetometer, and we cannot directly measure the IMF. However, we can utilize SWAP's measurements and instrument FOV during this brief period of time to determine the most likely sector of the IMF that could reproduce SWAP's observations of heavy ion pickup. We find that the IMF was most likely in an outward sector, or retrograde to the planets' motion, during the Pluto encounter, and that the heavy ions detected by SWAP are more likely CH4+ than N-2(+). This supports the existence of a methane exosphere at Pluto. C1 [Zirnstein, E. J.; McComas, D. J.; Elliott, H. A.; Weidner, S.; Valek, P. W.] SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. [McComas, D. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [McComas, D. J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Valek, P. W.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Bagenal, F.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80600 USA. [Stern, S. A.; Olkin, C. B.; Young, L. A.] Southwest Res Inst, Boulder, CO 80302 USA. [Ennico, K.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Zirnstein, EJ (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM ezirnstein@swri.edu OI Valek, Philip/0000-0002-2318-8750; Bagenal, Fran/0000-0002-3963-1614 FU NASA New Horizons mission FX We gratefully acknowledge the entire New Horizons mission and SWAP teams, who made these observations possible. This work was supported by the NASA New Horizons mission. NR 18 TC 1 Z9 1 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2016 VL 823 IS 2 AR L30 DI 10.3847/2041-8205/823/2/L30 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4JL UT WOS:000377031700009 ER PT J AU Zhang, Y Lu, T Wong, M Wang, XY Stodieck, L Karouia, F Story, M Wu, HL AF Zhang, Ye Lu, Tao Wong, Michael Wang, Xiaoyu Stodieck, Louis Karouia, Fathi Story, Michael Wu, Honglu TI Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight SO FASEB JOURNAL LA English DT Article DE microgravity; omics; cell growth condition ID NF-KAPPA-B; HEPATOCYTE GROWTH-FACTOR; SIMULATED MICROGRAVITY; MODELED MICROGRAVITY; SIGNALING PATHWAY; SPACE-FLIGHT; STEM-CELLS; PROLIFERATION; ACTIVATION; CANCER AB Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-B and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for -tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight. C1 [Zhang, Ye; Lu, Tao; Wong, Michael; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Zhang, Ye] Wyle Labs, Houston, TX USA. [Zhang, Ye] NASA, Kennedy Space Ctr, Cape Canaveral, FL USA. [Lu, Tao] Univ Houston Clear Lake, Houston, TX USA. [Wang, Xiaoyu; Story, Michael] Univ Texas SW Med Ctr Dallas, Dallas, TX 75390 USA. [Stodieck, Louis] BioServe Space Technol, Boulder, CO USA. [Karouia, Fathi] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Karouia, Fathi] Univ Calif San Francisco, San Francisco, CA 94143 USA. RP Wu, HL (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM honglu.wu-1@nasa.gov FU NASA Fundamental Space Biology Program FX The authors thank Stefanie Countryman, Jon Beno, Mark Rupert, and Shankini Doraisingam (BioServe Space Technologies), with whom this work was done in collaboration. The authors thank Ashleigh Ruggles and Satyanand Narayan [Kennedy Space Center, National Aeronautics and Space Administration (NASA)], and Kevin Sato (NASA Ames Research Center) for support during various phases of the project. The authors also thank Astronaut Thomas Mashburn for performing experiments onboard the ISS. This work was supported by the NASA Fundamental Space Biology Program. NR 68 TC 2 Z9 2 U1 2 U2 3 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 EI 1530-6860 J9 FASEB J JI Faseb J. PD JUN PY 2016 VL 30 IS 6 BP 2211 EP 2224 DI 10.1096/fj.201500121 PG 14 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA DN2FA UT WOS:000376878300014 PM 26917741 ER PT J AU Bodas-Salcedo, A Hill, PG Furtado, K Williams, KD Field, PR Manners, JC Hyder, P Kato, S AF Bodas-Salcedo, A. Hill, P. G. Furtado, K. Williams, K. D. Field, P. R. Manners, J. C. Hyder, P. Kato, S. TI Large Contribution of Supercooled Liquid Clouds to the Solar Radiation Budget of the Southern Ocean SO JOURNAL OF CLIMATE LA English DT Article ID MIXED-PHASE CLOUDS; CARBON-DIOXIDE; A-TRAIN; MODEL; ATMOSPHERE; CLIMATE; PARAMETERIZATION; PRECIPITATION; BIASES; RETRIEVALS AB The Southern Ocean is a critical region for global climate, yet large cloud and solar radiation biases over the Southern Ocean are a long-standing problem in climate models and are poorly understood, leading to biases in simulated sea surface temperatures. This study shows that supercooled liquid clouds are central to understanding and simulating the Southern Ocean environment. A combination of satellite observational data and detailed radiative transfer calculations is used to quantify the impact of cloud phase and cloud vertical structure on the reflected solar radiation in the Southern Hemisphere summer. It is found that clouds with supercooled liquid tops dominate the population of liquid clouds. The observations show that clouds with supercooled liquid tops contribute between 27% and 38% to the total reflected solar radiation between 40 degrees and 70 degrees S, and climate models are found to poorly simulate these clouds. The results quantify the importance of supercooled liquid clouds in the Southern Ocean environment and highlight the need to improve understanding of the physical processes that control these clouds in order to improve their simulation in numerical models. This is not only important for improving the simulation of present-day climate and climate variability, but also relevant for increasing confidence in climate feedback processes and future climate projections. C1 [Bodas-Salcedo, A.; Hill, P. G.; Furtado, K.; Williams, K. D.; Field, P. R.; Manners, J. C.; Hyder, P.] Met Off, Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England. [Kato, S.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Bodas-Salcedo, A (reprint author), Met Off, Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England. EM alejandro.bodas@metoffice.gov.uk RI Hill, Peter/H-5115-2011; Field, Paul/B-1692-2009 OI Hill, Peter/0000-0002-9745-2120; Field, Paul/0000-0001-8528-0088 FU Joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101] FX This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. CCCM data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov). CERES-EBAF data were downloaded from the CERES data ordering webpage (http://ceres.larc.nasa.gov/order_data.php). We thank M. A. Ringer, T. Andrews, A. Karmalkar, and M. Webb for their comments. NR 41 TC 6 Z9 6 U1 3 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN PY 2016 VL 29 IS 11 BP 4213 EP 4228 DI 10.1175/JCLI-D-15-0564.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DN5NN UT WOS:000377116500003 ER PT J AU Levitt, NP Romanek, CS AF Levitt, Nicholas Paul Romanek, Christopher S. TI An "On-Line" Method for Oxygen Isotope Exchange Between Gas-Phase CO2 and Water SO AQUATIC GEOCHEMISTRY LA English DT Article DE Carbon dioxide; Oxygen isotopes; Isotope equilibrium; Isotope kinetics; Dissolved inorganic carbon ID CLUMPED ISOTOPE; CARBON-DIOXIDE; FRACTIONATION; BICARBONATE; TEMPERATURE; EQUILIBRIUM; THERMOMETRY; RATIO; ACID AB An "on-line" mixing system has been developed and evaluated for continuous oxygen isotope exchange between gas-phase CO2 and liquid water. The system is composed of three basic parts: equipment and materials used to introduce water and gas into a mixing reservoir, the mixing and exchange reservoir, and a vessel used to separate gas and water phases exiting the system. A series of experiments were performed to monitor the isotope exchange process over a range of temperatures (5-40 A degrees C) and CO2 partial pressures (202-15,200 Pa). Isotopic exchange was evaluated using CO2 having delta O-18 values of 30.4 and 37.8 aEuro degrees and waters of two distinct oxygen isotope compositions (-6.5 to -5 and 6 to 7.5 aEuro degrees). Isotope ratios were determined by isotope ratio mass spectrometry and cavity ring-down spectroscopy. CO2 did not reach oxygen isotope equilibrium under the conditions described here. However, oxygen isotope exchange rate constants were determined at different temperatures and regressed to yield the expression k (h(-1)) = 0.020 x T (A degrees C) + 0.28. Using this expression, the residence time required to reach oxygen isotope equilibrium may be estimated for a given set of environmental conditions (e.g., delta O-18 value of water, temperature). System parameters can be modified to achieve a specific delta O-18 value for CO2. Consequently, the exchange system described here has the ability to deliver a constant flow of CO2 at a desired oxygen isotope composition. This ability is attractive for a variety of applications such as experiments that utilize flow-through reactors and environmental chambers or require static chemical conditions. C1 [Levitt, Nicholas Paul] NASA, Astrobiol Inst, Lexington, KY 40506 USA. [Levitt, Nicholas Paul] Univ Kentucky, Dept Earth & Environm Sci, Lexington, KY 40506 USA. [Romanek, Christopher S.] NASA, Astrobiol Inst, Greenville, SC 29613 USA. [Romanek, Christopher S.] Furman Univ, Dept Earth & Environm Sci, Greenville, SC 29613 USA. [Levitt, Nicholas Paul] NASA, Astrobiol Inst, 1215 Dayton St, Madison, WI 53706 USA. [Levitt, Nicholas Paul] Univ Wisconsin, Dept Geosci, 1215 Dayton St, Madison, WI 53706 USA. RP Levitt, NP (reprint author), NASA, Astrobiol Inst, Lexington, KY 40506 USA.; Levitt, NP (reprint author), Univ Kentucky, Dept Earth & Environm Sci, Lexington, KY 40506 USA.; Levitt, NP (reprint author), NASA, Astrobiol Inst, 1215 Dayton St, Madison, WI 53706 USA.; Levitt, NP (reprint author), Univ Wisconsin, Dept Geosci, 1215 Dayton St, Madison, WI 53706 USA. EM nlevitt@wisc.edu FU NASA Headquarters under the NASA Earth and Space Fellowship Program [NNX12AN84H]; NASA Astrobiology Institute FX Suvankar Chakraborty is recognized for instrument assistance and insightful discussions. The authors wish to thank Clark Johnson and three anonymous reviewers for their helpful comments on earlier versions of this manuscript. Gratitude is also offered to Rolf Arvidson for his editorial handling of this publication. This work was supported by NASA Headquarters under the NASA Earth and Space Fellowship Program-Grant NNX12AN84H as well as the NASA Astrobiology Institute. NR 26 TC 0 Z9 0 U1 7 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1380-6165 EI 1573-1421 J9 AQUAT GEOCHEM JI Aquat. Geochem. PD JUN PY 2016 VL 22 IS 3 BP 253 EP 269 DI 10.1007/s10498-016-9291-5 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DM7ZE UT WOS:000376579000005 ER PT J AU Mattmann, CA Cinquini, L Zimdars, P Joyce, M Khudikyan, S AF Mattmann, Chris A. Cinquini, Luca Zimdars, Paul Joyce, Michael Khudikyan, Shakeh TI A topical evaluation and discussion of data movement technologies for data-intensive scientific applications SO EARTH SCIENCE INFORMATICS LA English DT Article DE Data movement; Globus online; Amazon; Cloud computing ID MANAGEMENT; SERVICES; CLOUD AB Transferring large volumes of information from one location to potentially many others that are geographically distributed and across varying networks is still prevalent in modern scientific data systems. This is despite the movement to push computation to the data and to reduce data movement needed to compute answers to challenging scientific problems, to disseminate information to the scientific community, and to acquire data for curation and enrichment. Because of this, it is imperative that decisions made regarding data movement systems and architectures be backed by both analytical rigor, and also by empirical evidence and measurement. The purpose of this study is to expand on the work performed by our research team over the last decade and to take a fresh look at the evaluation of multiple topical data transfer technologies in use cases derived from data-intensive scientific systems and applications in the areas of Earth science. We report on the evaluation of a set of data movement technologies against a set of empirically derived comparison dimensions. Based on this evaluation, we make recommendations towards the selection of appropriate data movement technologies in scientific applications and scenarios. C1 [Mattmann, Chris A.; Cinquini, Luca; Zimdars, Paul; Joyce, Michael; Khudikyan, Shakeh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mattmann, Chris A.] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. RP Mattmann, CA (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.; Mattmann, CA (reprint author), Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. EM chris.a.mattmann@nasa.gov FU NASA Earth Sciences Division; NASA NCA [11-NCA11-0028]; NASA's Advanced Information Systems Technology (AIST) program [AIST-QRS-12-0002]; NASA Computational Modeling and Cyberinfrastructure (CMAC) program [11-CMAC11-0011]; National Science Foundation ExArch program, a component of the G8 initiative [1125798] FX Support provided by NASA Earth Sciences Division, NASA NCA (ID: 11-NCA11-0028) and NASA's Advanced Information Systems Technology (AIST) program (ID: AIST-QRS-12-0002) and through the NASA Computational Modeling and Cyberinfrastructure (CMAC) program (11-CMAC11-0011). In addition, funding is provided by the National Science Foundation ExArch program (ID: 1125798), a component of the G8 initiative. Valuable contributions to the RCMES activity by way of collaboration comes from the World Climate Research Program (WCRP) Coordinated Regional Climate Downscaling Experiment (CORDEX), the North American Regional Climate Change Assessment Program (NARCCAP), the Climate & Development Knowledge Network (CDKN) and the University of Cape Town, and PCMDI through support of the obs4MIPs activity. NR 22 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 EI 1865-0481 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2016 VL 9 IS 2 BP 247 EP 262 DI 10.1007/s12145-015-0243-1 PG 16 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA DM6IT UT WOS:000376455900009 ER PT J AU Martens, HR Simons, M Owen, S Rivera, L AF Martens, Hilary R. Simons, Mark Owen, Susan Rivera, Luis TI Observations of ocean tidal load response in South America from subdaily GPS positions SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time-series analysis; Satellite geodesy; Tides and planetary waves; South America ID EARTH MODELS; DISPLACEMENTS; TIDES; EUROPE; GEOCENTER; GRAVITY; COMPUTATIONS; CONSTRAINTS; EFFICIENT; ACCURACY AB We explore Earth's elastic deformation response to ocean tidal loading (OTL) using kinematic Global Positioning System (GPS) observations and forward-modelled predictions across South America. Harmonic coefficients are extracted from up to 14 yr of GPS-inferred receiver locations, which we estimate at 5 min intervals using precise point positioning. We compare the observed OTL-induced surface displacements against predictions derived from spherically symmetric, non-rotating, elastic and isotropic (SNREI) Earth models. We also compare sets of modelled predictions directly for various ocean-tide and Earth-model combinations. The vector differences between predicted displacements computed using separate ocean-tide models reveal uniform-displacement components common to all stations in the South America network. Removal of the network-mean OTL-induced displacements from each site substantially reduces the vector differences between observed and predicted displacements. We focus on the dominant astronomical tidal harmonics from three distinct frequency bands: semidiurnal (M-2), diurnal (O-1) and fortnightly (M-f). In each band, the observed OTL-induced surface displacements strongly resemble the modelled displacement-response patterns, and the residuals agree to about 0.3 mm or better. Even with the submillimetre correspondence between observations and predictions, we detect regional-scale spatial coherency in the final set of residuals, most notably for the M-2 harmonic. The spatial coherency appears relatively insensitive to the specific choice of ocean-tide or SNREI-Earth model. Varying the load model or 1-D elastic structure yields predicted OTL-induced displacement differences of order 0.1 mm or less for the network. Furthermore, estimates of the observational uncertainty place the noise level below the magnitude of the residual displacements for most stations, supporting our interpretation that random errors cannot account for the entire misfit. Therefore, the spatially coherent residuals may reveal deficiencies in the a priori SNREI Earth models. In particular, the residuals may indicate sensitivity to regional deviations from standard globally averaged Earth structure due to the presence of the South American craton. C1 [Martens, Hilary R.; Simons, Mark] CALTECH, Seismol Lab, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Owen, Susan] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rivera, Luis] Univ Strasbourg, CNRS, Inst Phys Globe Strasbourg, UMR7516, Strasbourg, France. RP Martens, HR (reprint author), CALTECH, Seismol Lab, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM hmartens@caltech.edu FU National Science Foundation [EAR-1417245]; NASA [NNX14AO04H]; National Aeronautics and Space Administration FX We are indebted to Duncan Agnew, Richard Ray, Matt King and an anonymous reviewer for insightful ideas and valuable critiques that greatly improved our manuscript. We also sincerely thank Shailen Desai for helpful discussions on OTL analysis and tidal geocentre variations as well as Angelyn Moore and Willy Bertiger for providing ongoing GIPSY support. Dan Bower graciously supplied scripts to extract and plot the seismic tomography data shown in Supporting Infirmation Fig. S5. The GPS data used in our study was made available by the governments of Brazil (Instituto Brasileiro de Geografia e Estatistica), Argentina (Instituto Geografico Nacional), and Uruguay (Servicio Geographico Militar). We used geographic information from the Scientific Committee on Antarctic Research (SCAR) Antarctic Digital Database (ADD) to develop a land-sea mask around Antarctica. We gratefully acknowledge support from the National Science Foundation Geophysics Program funding under Grant No. EAR-1417245. This manuscript is based upon work supported by the NASA Earth and Space Science Fellowship to HRM under Grant No. NNX14AO04H. Some figures were generated using Generic Mapping Tools (Wessel et al. 2013). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 82 TC 2 Z9 2 U1 2 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2016 VL 205 IS 3 BP 1637 EP 1664 DI 10.1093/gji/ggw087 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DM5HX UT WOS:000376380000021 ER PT J AU Brehm, C Housman, JA Kiris, CC AF Brehm, Christoph Housman, Jeffrey A. Kiris, Cetin C. TI Noise generation mechanisms for a supersonic jet impinging on an inclined plate SO JOURNAL OF FLUID MECHANICS LA English DT Article DE aeroacoustics; jet noise; shock waves ID HIGH-SPEED JETS; IMMERSED BOUNDARY METHOD; TURBULENT MIXING NOISE; LARGE-EDDY SIMULATION; MULTIPOLE SOURCES; FLUID DILATATION; SOURCE COHERENCE; FREQUENCY SOUND; FLAT-PLATE; FLOWS AB Noise generation mechanisms for a perfectly expanded supersonic Mach number M=1.8 turbulent jet impinging on a 45 inclined plate are investigated for a Reynolds number of 1.6 x 10(6) employing a large-eddy simulation. Excellent comparisons with experimental acoustic far-field measurements and pressure measurements on the impingement plate are obtained. Two local maxima are identified in the far-field overall sound pressure levels in the 75 degrees and 120 degrees observer directions, which arc associated with different noise generation mechanisms. The peak frequencies in the spectra with Strouhal numbers of St = 0.2 for 75 degrees and St = 0.5 for 120 degrees match the experimental measurements. The jet-impingement region generates pressure waves that propagate predominantly in the 120 degrees observer direction, The noise generation in this region is attributed to vortex stretching and tearing during shear-layer impingement, and shock oscillations that are induced by the motion of downstream convected vortical flow structures. The second peak in the overall sound pressure distribution at 75 degrees is associated with noise sources located in the wall jet. The noise generation in the wall jet is associated with supersonically convecting large-scale coherent flow structures that also interact with tail shocks in the wall jet causing large localized pressure fluctuations. Strongly coherent flow structures are identified by applying proper orthogonal decomposition (POD) to the unsteady flow field. The frequency characteristics of the most energetic POD modes are distinctly different based on which energy norm is chosen. The most energetic entropy-based POD modes contain a peak frequency of approximately St = 0.4-0.6, while the most energetic turbulent kinetic-energy-based POD modes appear to be dominated by lower-frequency content. The causality method, based on Lighthill's acoustic analogy, is used to link the acoustic noise signature to the relevant physical mechanisms in the source region. A differentiation is made between the application of normalized and non-normalized cross-correlation functions for noise source identification and characterization. C1 [Brehm, Christoph] Sci & Technol Corp, Moffett Field, CA 94035 USA. [Housman, Jeffrey A.; Kiris, Cetin C.] NASA, Ames Res Ctr, NAS Div, Appl Modeling & Simulat Branch, Moffett Field, CA 94035 USA. RP Brehm, C (reprint author), Sci & Technol Corp, Moffett Field, CA 94035 USA. EM christoph.brehm@nasa.gov NR 90 TC 1 Z9 1 U1 6 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD JUN PY 2016 VL 797 BP 802 EP 850 DI 10.1017/jfm.2016.244 PG 49 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DM8GX UT WOS:000376600800033 ER PT J AU Olson, C Russell, RP Bhaskaran, S AF Olson, Corwin Russell, Ryan P. Bhaskaran, Shyam TI Spin State Estimation of Tumbling Small Bodies SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article DE Spin state estimation; Small bodies; Tumbling; SLAM; Optical navigation ID EXPLORATION; POLYHEDRON; MISSION AB It is expected that a non-trivial percentage of small bodies that future missions may visit are in non-principal axis rotation (i.e. "tumbling"). The primary contribution of this paper is the application of the Extended Kalman Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to estimate the small body spin state, mass, and moments of inertia; the spacecraft position and velocity; and the surface landmark locations. The method uses optical landmark measurements, and an example scenario based on the Rosetta mission is used. The SLAM method proves effective, with order of magnitude decreases in the spacecraft and small body spin state errors after less than a quarter of the comet characterization phase. The SLAM method converges nicely for initial small body angular velocity errors several times larger than the true rates (effectively having no a priori knowledge of the angular velocity). Surface landmark generation and identification are not treated in this work, but significant errors in the initial body-fixed landmark positions are effectively estimated. The algorithm remains effective for a range of different truth spin states, masses, and center of mass offsets that correspond to expected tumbling small bodies throughout the solar system. C1 [Olson, Corwin; Russell, Ryan P.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, 1 Univ Stn,C0600, Austin, TX 78712 USA. [Bhaskaran, Shyam] CALTECH, Jet Prop Lab, Mission Design & Nav Sect, Outer Planet Nav Grp, MS 264-820,4800 Oak Grove Dr, Pasadena, CA 91191 USA. RP Olson, C (reprint author), Univ Texas Austin, Dept Aerosp Engn & Engn Mech, 1 Univ Stn,C0600, Austin, TX 78712 USA. EM corwinolson@gmail.com FU NASA's Chief Technology Office through a NASA Space Technology Research Fellowship FX The work described in this paper was funded by NASA's Chief Technology Office through a NASA Space Technology Research Fellowship. NR 41 TC 0 Z9 0 U1 3 U2 4 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUN PY 2016 VL 63 IS 2 BP 124 EP 157 DI 10.1007/s40295-015-0080-y PG 34 WC Engineering, Aerospace SC Engineering GA DM6SK UT WOS:000376482500003 ER PT J AU Kirschbaum, D Stanley, T Yatheendradas, S AF Kirschbaum, Dalia Stanley, Thomas Yatheendradas, Soni TI Modeling landslide susceptibility over large regions with fuzzy overlay SO LANDSLIDES LA English DT Article DE Landslide susceptibility; Fuzzy overlay; GIS; Central America; Caribbean ID LOGISTIC-REGRESSION; GLOBAL LANDSLIDE; RISK-ASSESSMENT; TOOL; SCALE; GIS AB Landslide susceptibility mapping is most effective if detailed surface and subsurface information can be combined with authoritative landslide catalogs or a deep understanding of local conditions. However, these types of homogeneous input data and catalogs are frequently not available over large areas. In this study, we model landslide susceptibility in Central America and the Caribbean islands by combining three globally available datasets and one regional dataset with fuzzy overlay. This primarily heuristic model provides the flexibility to test a range of different contributing variables and the capability to compare landslide inventories within the model framework that vary greatly in their size, spatiotemporal scope, and collection methods. We create a regional susceptibility map and evaluate its performance using receiver operating characteristics for both continuous and binned susceptibility values. This susceptibility map forms the basis for a near-real-time landslide hazard assessment system that couples susceptibility with rainfall and soil moisture triggers to estimate potential landslide activity at a regional scale. The application of this susceptibility model at the regional scale provides a foundation for transferring the methodology to other geographic areas. C1 [Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Stanley, Thomas] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Yatheendradas, Soni] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Kirschbaum, D (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. EM dalia.b.kirschbaum@nasa.gov OI Stanley, Thomas/0000-0003-2288-0363 FU NASA SERVIR program [NNH11ZDA001N-SERVIR] FX This work gratefully acknowledges Jose Cepeda's (Norwegian Geotechnical Institute) guidance on the expert survey and review of this manuscript. Many thanks go to our insightful colleagues, including Carlos Aguilar (El Salvador Geological Survey), Rex Baum (USGS), Graziella Devoli (Norwegian Water Resources and Energy Directorate), Manuel Diaz (Medio Ambiente y Recursos Naturales, El Salvador), Bruce Harrison (New Mexico Tech), Pavel Havlicek (Czech Geological Survey), Eunjung Lim (University of Maryland), Shlomo Neuman (The University of Arizona), and Jonathan Resop (University of Maryland). The pioneering work of Sergio Mora and Wilhelm-Gunther Vahrson inspired this project. This work was funded by the NASA SERVIR program, NNH11ZDA001N-SERVIR. NR 51 TC 2 Z9 2 U1 14 U2 20 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1612-510X EI 1612-5118 J9 LANDSLIDES JI Landslides PD JUN PY 2016 VL 13 IS 3 BP 485 EP 496 DI 10.1007/s10346-015-0577-2 PG 12 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA DM8MR UT WOS:000376618300005 ER PT J AU Islam, T Srivastava, PK Kumar, D Petropoulos, GP Dai, Q Zhuo, L AF Islam, Tanvir Srivastava, Prashant K. Kumar, Dinesh Petropoulos, George P. Dai, Qiang Zhuo, Lu TI Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy forecasts SO NATURAL HAZARDS LA English DT Article DE Variational data assimilation; Numerical weather prediction (NWP); Cyclone forecast; Track propagation; WRF 3DVAR; Radiative transfer; ATOVS; AMSU-A; AMSU-B; MHS ID RADIATIVE-TRANSFER MODEL; AMSU-A RADIANCES; TROPICAL CYCLONES; WEATHER RESEARCH; PRECIPITATION; IMPACT; IMPLEMENTATION; SENSITIVITY; MM5 AB In this article, we present an assimilation impact study for forecasting hurricane Sandy using a threeaEurodimensional variational data assimilation system (3DVAR). In particular, we employ the 3DVAR component of the Weather Research and Forecasting Model and conduct analysis/forecast cycling experiments for "control" and "radiance" assimilation cases for the hurricane Sandy period. In "control" assimilation experiment, only conventional air and surface observations data are assimilated, while, in "radiance" assimilation experiment, along with the conventional air and surface observations data, the satellite radiance data from the Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) sensors are also assimilated. For the radiance assimilation, we employ the community radiative transfer model as the forward operator and perform quality control and bias correction procedure before the radiance data are assimilated. In order to assess the impact of the assimilation experiments, we produce 132-h deterministic forecast starting on 00 UTC October 25, 2012. The results reveal that, in particular, the assimilation of AMSU-A satellite radiances helps to improve the short- to medium-range forecast (up to similar to 60-h lead time). The forecast skill is degraded in the long-range forecast (beyond 60 h) with the AMSU-A assimilation. C1 [Islam, Tanvir] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Islam, Tanvir] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Srivastava, Prashant K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Kumar, Dinesh] Cent Univ Jammu, Jammu, India. [Petropoulos, George P.] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3FG, Dyfed, Wales. [Dai, Qiang] Nanjing Normal Univ, Sch Geog Sci, Nanjing, Jiangsu, Peoples R China. [Zhuo, Lu] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. RP Islam, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Islam, T (reprint author), NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA.; Islam, T (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. EM tanvir.islam@jpl.nasa.gov RI Petropoulos, George/F-2384-2013 OI Petropoulos, George/0000-0003-1442-1423 FU National Aeronautics and Space Administration (NASA) FX Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). The data for this study are from NOAA's National Operational Model Archive and Distribution System (NOMADS) which is maintained at NOAA's National Climatic Data Center (NCDC). The views expressed here are those of the authors solely and do not constitute a statement of policy, decision, or position on behalf of NOAA, NASA, or the authors' affiliated institutions. NR 26 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0921-030X EI 1573-0840 J9 NAT HAZARDS JI Nat. Hazards PD JUN PY 2016 VL 82 IS 2 BP 845 EP 855 DI 10.1007/s11069-016-2221-4 PG 11 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA DM4ID UT WOS:000376309900006 ER PT J AU Bergan, A Davila, C Leone, F Awerbuch, J Tan, TM AF Bergan, Andrew Davila, Carlos Leone, Frank Awerbuch, Jonathan Tan, Tein-Min TI A Mode I cohesive law characterization procedure for through-the-thickness crack propagation in composite laminates SO COMPOSITES PART B-ENGINEERING LA English DT Article DE Polymer-matrix composites (PMCs); Fracture toughness; Finite element analysis (FEA); Mechanical testing ID TRANSLAMINAR FRACTURE-TOUGHNESS; DIGITAL IMAGE CORRELATION; CEMENTITIOUS COMPOSITES; RESISTANCE CURVES; FIBER COMPOSITES; FAILURE; BEHAVIOR; TENSION; MECHANISMS; NOTCHES AB A method is proposed for the experimental characterization of through-the-thickness damage propagation in multidirectional carbon fiber reinforced polymer laminates. The compact tension specimen configuration is used to propagate damage stably while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which a trilinear cohesive law is characterized. The proposed method provides a means to extrapolate to steady-state such that the cohesive law is characterized completely and accurately, even when the test specimens used for the characterization are too small to reach steady-state crack propagation. The characterized cohesive law is demonstrated through a prediction of the structural response and fracture of a geometrically-scaled test specimen. Published by Elsevier Ltd. C1 [Bergan, Andrew; Davila, Carlos; Leone, Frank] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Awerbuch, Jonathan; Tan, Tein-Min] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA. RP Bergan, A (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM andrew.c.bergan@nasa.gov; carlos.g.davila@nasa.gov; frank.a.leone@nasa.gov; awerbuch@coe.drexel.edu; tantm@coe.drexel.edu NR 58 TC 2 Z9 2 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-8368 EI 1879-1069 J9 COMPOS PART B-ENG JI Compos. Pt. B-Eng. PD JUN 1 PY 2016 VL 94 BP 338 EP 349 DI 10.1016/j.compositesb.2016.03.071 PG 12 WC Engineering, Multidisciplinary; Materials Science, Composites SC Engineering; Materials Science GA DM0RD UT WOS:000376052600034 ER PT J AU Riedl, C Zanibbi, R Hearst, MA Zhu, SY Menietti, M Crusan, J Metelsky, I Lakhani, KR AF Riedl, Christoph Zanibbi, Richard Hearst, Marti A. Zhu, Siyu Menietti, Michael Crusan, Jason Metelsky, Ivan Lakhani, Karim R. TI Detecting figures and part labels in patents: competition-based development of graphics recognition algorithms SO INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION LA English DT Article DE Graphics recognition; Text detection; Optical character recognition (OCR); Competitions; Crowdsourcing ID ROBUST READING COMPETITION; GRAMMATICAL INFERENCE; ENGINEERING DRAWINGS; INNOVATION CONTESTS; SCENE IMAGES; TEXT; SEPARATION; UNCERTAINTY; PERFORMANCE; SYSTEM AB Most United States Patent and Trademark Office (USPTO) patent documents contain drawing pages which describe inventions graphically. By convention and by rule, these drawings contain figures and parts that are annotated with numbered labels but not with text. As a result, readers must scan the document to find the description of a given part label. To make progress toward automatic creation of 'tool-tips' and hyperlinks from part labels to their associated descriptions, the USPTO hosted a monthlong online competition in which participants developed algorithms to detect figures and diagram part labels. The challenge drew 232 teams of two, of which 70 teams (30 %) submitted solutions. An unusual feature was that each patent was represented by a 300-dpi page scan along with an HTML file containing patent text, allowing integration of text processing and graphics recognition in participant algorithms. The design and performance of the top-5 systems are presented along with a system developed after the competition, illustrating that the winning teams produced near state-of-the-art results under strict time and computation constraints. The first place system used the provided HTML text, obtaining a harmonic mean of recall and precision (F-measure) of 88.57 % for figure region detection, 78.81 % for figure regions with correctly recognized figure titles, and 70.98 % for part label detection and recognition. Data and source code for the top-5 systems are available through the online UCI Machine Learning Repository to support follow-on work by others in the document recognition community. C1 [Riedl, Christoph] Northeastern Univ, DAmore McKim Sch Business, Boston, MA 02115 USA. [Riedl, Christoph] Northeastern Univ, Coll Comp & Informat Sci, Boston, MA 02115 USA. [Zanibbi, Richard] Rochester Inst Technol, Dept Comp Sci, Rochester, NY 14623 USA. [Hearst, Marti A.] Univ Calif Berkeley, Sch Informat, Berkeley, CA 94720 USA. [Zhu, Siyu] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Riedl, Christoph; Menietti, Michael] Harvard Univ, Inst Quantitat Social Sci, Cambridge, MA 02138 USA. [Crusan, Jason] NASA, Adv Explorat Syst Div, Washington, DC 20546 USA. [Metelsky, Ivan] TopCoder Inc, Glastonbury, CT 06033 USA. [Lakhani, Karim R.] Harvard Univ, Sch Business, Dept Technol & Operat Management, Boston, MA 02134 USA. RP Riedl, C (reprint author), Northeastern Univ, DAmore McKim Sch Business, Boston, MA 02115 USA.; Riedl, C (reprint author), Northeastern Univ, Coll Comp & Informat Sci, Boston, MA 02115 USA.; Riedl, C (reprint author), Harvard Univ, Inst Quantitat Social Sci, Cambridge, MA 02138 USA. EM c.riedl@neu.edu; rlaz@cs.rit.edu; hearst@berkeley.edu; sxz8564@rit.edu; mmenietti@fas.harvard.edu; jason.crusan@nasa.gov; imetelsky@topcoder.com; klakhani@hbs.edu FU NASA Tournament Laboratory; United States Patent and Trademark Office (USPTO) FX We are grateful for helpful comments provided by Ahmad Ahmad and the anonymous reviewers. This research was supported in part by the NASA Tournament Laboratory and the United States Patent and Trademark Office (USPTO). NR 67 TC 0 Z9 0 U1 5 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1433-2833 EI 1433-2825 J9 INT J DOC ANAL RECOG JI Int. J. Doc. Anal. Recognit. PD JUN PY 2016 VL 19 IS 2 BP 155 EP 172 DI 10.1007/s10032-016-0260-8 PG 18 WC Computer Science, Artificial Intelligence SC Computer Science GA DM4CP UT WOS:000376293500005 ER PT J AU Schubert, SD Stewart, RE Wang, HL Barlow, M Berbery, EH Cai, WJ Hoerling, MP Kanikicharla, KK Koster, RD Lyon, B Mariotti, A Mechoso, CR Muller, OV Rodriguez-Fonseca, B Seager, R Senevirante, SI Zhang, LX Zhou, TJ AF Schubert, Siegfried D. Stewart, Ronald E. Wang, Hailan Barlow, Mathew Berbery, Ernesto H. Cai, Wenju Hoerling, Martin P. Kanikicharla, Krishna K. Koster, Randal D. Lyon, Bradfield Mariotti, Annarita Mechoso, Carlos R. Mueller, Omar V. Rodriguez-Fonseca, Belen Seager, Richard Senevirante, Sonia I. Zhang, Lixia Zhou, Tianjun TI Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits SO JOURNAL OF CLIMATE LA English DT Article ID ASIAN SUMMER MONSOON; SEA-SURFACE TEMPERATURE; GENERAL-CIRCULATION MODELS; TROPICAL ATLANTIC VARIABILITY; NINO-SOUTHERN-OSCILLATION; INDIAN-OCEAN; EL-NINO; INTERANNUAL VARIABILITY; SOIL-MOISTURE; MEDITERRANEAN REGION AB Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s "climate shifts" in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land-atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought. C1 [Schubert, Siegfried D.; Wang, Hailan; Koster, Randal D.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Stewart, Ronald E.] Univ Manitoba, Dept Geog & Environm, Winnipeg, MB, Canada. [Wang, Hailan] Sci Syst & Applicat Inc, Lanham, MD USA. [Barlow, Mathew] Univ Massachusetts, Lowell, MA USA. [Berbery, Ernesto H.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Cooperat Inst Climate & Satellites, College Pk, MD 20742 USA. [Cai, Wenju] CSIRO Oceans & Atmosphere, Aspendale, Vic, Australia. [Hoerling, Martin P.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Kanikicharla, Krishna K.] Qatar Meteorol Dept, Doha, Qatar. [Lyon, Bradfield] Columbia Univ, Earth Inst, Int Res Inst Climate & Soc, Palisades, NY USA. [Mariotti, Annarita] NOAA, Off Ocean & Atmospher Res, Climate Program Off, Silver Spring, MD USA. [Mechoso, Carlos R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Mueller, Omar V.] Univ Nacl Litoral, Fac Ingn & Ciencias Hidricas 5, CEVARCAM, Santa Fe, Santa Fe, Argentina. [Mueller, Omar V.] Consejo Nacl Invest Cient & Tecn, Santa Fe, Santa Fe, Argentina. [Rodriguez-Fonseca, Belen] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Tierra Astron & Astrofis 1, E-28040 Madrid, Spain. [Rodriguez-Fonseca, Belen] CSIC, Inst Geociencias IGEO, Madrid, Spain. [Seager, Richard] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA. [Senevirante, Sonia I.] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Zhang, Lixia; Zhou, Tianjun] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China. [Zhang, Lixia] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Jiangsu, Peoples R China. RP Schubert, SD (reprint author), NASA, GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM siegfried.d.schubert@nasa.gov RI Cai, Wenju/C-2864-2012; Koster, Randal/F-5881-2012; Berbery, Ernesto/F-4560-2010; ZHOU, Tianjun/C-3195-2012 OI Koster, Randal/0000-0001-6418-6383; Berbery, Ernesto/0000-0003-2587-3345; ZHOU, Tianjun/0000-0002-5829-7279 FU World Climate Research Programme (WCRP: CLIVAR); World Climate Research Programme (WCRP: GEWEX); National Oceanic and Atmospheric Administration (NOAA); National Aeronautics and Space Administration (NASA); National Integrated Drought Information System (NIDIS); World Meteorological Organization (WMO); U.S. CLIVAR program; Group on Earth Observations (GEO); European Commission Joint Research Centre (JRC); National Science Foundation (NSF); European Space Agency (ESA)-European Space Research Institute (ESRIN); NASA's Modeling, Analysis and Prediction Program FX The various contributions to this paper were made possible by the support of the host organizations of the coauthors, as noted in the acknowledgments of the contributing Global Drought Information System (GDIS) special collection papers. The GDIS effort is sponsored and supported by the World Climate Research Programme (WCRP: CLIVAR and GEWEX) and various partner organizations including the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the National Integrated Drought Information System (NIDIS), the World Meteorological Organization (WMO), the U.S. CLIVAR program, the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the National Science Foundation (NSF), and the European Space Agency (ESA)-European Space Research Institute (ESRIN). Support for the overall development of this synthesis article was provided by NASA's Modeling, Analysis and Prediction Program. The GLDAS-2 data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). NR 150 TC 2 Z9 2 U1 15 U2 41 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN PY 2016 VL 29 IS 11 BP 3989 EP 4019 DI 10.1175/JCLI-D-15-0452.1 PG 31 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DM2SP UT WOS:000376197900004 ER PT J AU Goldstein, ME Sescu, A Duck, PW Choudhari, M AF Goldstein, M. E. Sescu, Adrian Duck, Peter W. Choudhari, Meelan TI Nonlinear wakes behind a row of elongated roughness elements SO JOURNAL OF FLUID MECHANICS LA English DT Article DE boundary layers; boundary layer control; boundary layer receptivity ID BOUNDARY-LAYER; FLAT-PLATE; OPTIMAL DISTURBANCES; STREAMWISE VORTICES; STEADY STREAKS; FLOW; SURFACE; INSTABILITY; STABILITY; GROWTH AB This paper is concerned with the high Reynolds number flow over a spanwise-periodic array of roughness elements with interelement spacing of the order of the local boundary-layer thickness. While earlier work by Goldstein et al. (J. Fluid Mech., vol. 644, 2010, pp. 123-163) and Goldstein et al. (J. Fluid Mech., vol. 668, 2011, pp. 236-266) was mainly concerned with smaller roughness heights that produced relatively weak distortions of the downstream flow, the focus here is on extending the analysis to larger roughness heights and streamwise elongated planform shapes that together produce a qualitatively different, nonlinear behaviour of the downstream wakes. The roughness scale flow now has a novel triple-deck structure that is somewhat different from related studies that have previously appeared in the literature. The resulting flow is formally nonlinear in the intermediate wake region, where the streamwise distance is large compared to the roughness dimensions but small compared to the downstream distance from the leading edge, as well as in the far wake region where the streamwise length scale is of the order of the downstream distance from the leading edge. In contrast, the flow perturbations in both of these wake regions were strictly linear in the earlier work by Goldstein et al. (2010, 2011). This is an important difference because the nonlinear wake flow in the present case provides an appropriate basic state for studying the secondary instability and eventual breakdown into turbulence. C1 [Goldstein, M. E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Sescu, Adrian] Mississippi State Univ, Dept Aerosp Engn, Mississippi State, MS 39762 USA. [Duck, Peter W.] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England. [Choudhari, Meelan] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Goldstein, ME (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM Marvin.E.Goldstein@nasa.gov RI Choudhari, Meelan/F-6080-2017 OI Choudhari, Meelan/0000-0001-9120-7362 NR 35 TC 0 Z9 0 U1 2 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD JUN PY 2016 VL 796 DI 10.1017/jfm.2016.269 PG 42 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DM2TL UT WOS:000376200300020 ER PT J AU Maccarone, TJ Yukita, M Hornschemeier, A Lehmer, BD Antoniou, V Ptak, A Wik, DR Zezas, A Boyd, P Kennea, J Page, KL Eracleous, M Williams, BF Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Stern, D Zhang, WW AF Maccarone, Thomas J. Yukita, Mihoko Hornschemeier, Ann Lehmer, Bret D. Antoniou, Vallia Ptak, Andrew Wik, Daniel R. Zezas, Andreas Boyd, Padi Kennea, Jamie Page, Kim L. Eracleous, Mike Williams, Benjamin F. Boggs, Steven E. Christensen, Finn E. Craig, William W. Hailey, Charles J. Harrison, Fiona A. Stern, Daniel Zhang, William W. TI Demonstrating the likely neutron star nature of five M31 globular cluster sources with Swift-NuSTAR spectroscopy SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE globular clusters: general; galaxies: individual: M 31; X-rays: binaries ID X-RAY BINARY; MASS BLACK-HOLES; HUBBLE-SPACE-TELESCOPE; ACCRETION DISC WINDS; MICROQUASAR GRS 1915+105; STELLAR-MASS; CATACLYSMIC VARIABLES; OMEGA-CENTAURI; CYGNUS X-1; DYNAMICAL MODELS AB We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient. C1 [Maccarone, Thomas J.] Texas Tech Univ, Dept Phys, Box 41051,Sci Bldg, Lubbock, TX 79409 USA. [Yukita, Mihoko; Lehmer, Bret D.] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. [Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Ptak, Andrew; Wik, Daniel R.; Boyd, Padi; Zhang, William W.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Antoniou, Vallia] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Zezas, Andreas] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Zezas, Andreas] Univ Crete, Inst Theoret & Computat Phys, Iraklion 71003, Greece. [Zezas, Andreas] Fdn Res & Technol Hellas, EL-71110 Iraklion, Crete, Greece. [Kennea, Jamie; Eracleous, Mike] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Page, Kim L.] Univ Leicester, Dept Phys & Astron, Leicester LE2 2LL, Leics, England. [Williams, Benjamin F.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Hailey, Charles J.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Harrison, Fiona A.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Maccarone, TJ (reprint author), Texas Tech Univ, Dept Phys, Box 41051,Sci Bldg, Lubbock, TX 79409 USA. EM thomas.maccarone@ttu.edu RI Boggs, Steven/E-4170-2015; Yukita, Mihoko/E-4135-2017; Zezas, Andreas/C-7543-2011 OI Boggs, Steven/0000-0001-9567-4224; Zezas, Andreas/0000-0001-8952-676X FU European Research Council under European Union/ERC [617001] FX TJM thanks Christian Knigge for an illuminating talk at 'The Physics of Cataclysmic and Compact Binaries', and Helena Uthas, Joe Patterson, Christian Knigge and Jeno Sokoloski for having organized the meeting. He also thanks Joey Neilsen, Chris Done, and Maria Diaz Trigo for useful discussions about disc winds. AZ acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2103)/ERC Grant Agreement no. 617001. NR 126 TC 1 Z9 1 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 1 PY 2016 VL 458 IS 4 BP 3633 EP 3643 DI 10.1093/mnras/stw530 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL7DG UT WOS:000375799500021 ER PT J AU LaMassa, SM Urry, CM Cappelluti, N Civano, F Ranalli, P Glikman, E Treister, E Richards, G Ballantyne, D Stern, D Comastri, A Cardamone, C Schawinski, K Bohringer, H Chon, GY Murray, SS Green, P Nandra, K AF LaMassa, Stephanie M. Urry, C. Megan Cappelluti, Nico Civano, Francesca Ranalli, Piero Glikman, Eilat Treister, Ezequiel Richards, Gordon Ballantyne, David Stern, Daniel Comastri, Andrea Cardamone, Carie Schawinski, Kevin Boehringer, Hans Chon, Gayoung Murray, Stephen S. Green, Paul Nandra, Kirpal TI Finding rare AGN: XMM-Newton and Chandra observations of SDSS Stripe 82 (vol 436, pg 3581, 2013) SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Correction DE errata, addenda; catalogues; surveys; galaxies: active; quasars: general; X-rays: galaxies C1 [LaMassa, Stephanie M.; Urry, C. Megan; Glikman, Eilat] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, POB 208120, New Haven, CT 06520 USA. [Cappelluti, Nico; Comastri, Andrea] Osservatorio Astron Bologna, INAF, Via Ranzani 1, I-40127 Bologna, Italy. [Cappelluti, Nico] Univ Maryland, Baltimore Coll, Ctr Space Sci & Technol, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Civano, Francesca; Murray, Stephen S.; Green, Paul] Dartmouth Coll, Wilder Lab, Dept Phys & Astron, Hanover, NH 03755 USA. [Civano, Francesca] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Ranalli, Piero] Natl Observ Athens, Inst Astron, Astrophys, GR-15236 Athens, Greece. [Treister, Ezequiel] Univ Concepcion, Casilla 160-c, Concepcion 4030000, Chile. [Richards, Gordon] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Ballantyne, David] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. [Cardamone, Carie] Brown Univ, Harriet W Sheridan Ctr Teaching & Learning, Box 1912,96 Waterman St, Providence, RI 02912 USA. [Schawinski, Kevin] ETH, Inst Astron, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Boehringer, Hans; Chon, Gayoung; Nandra, Kirpal] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Murray, Stephen S.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RP LaMassa, SM (reprint author), Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, POB 208120, New Haven, CT 06520 USA. EM stephanie.m.lamassa@nasa.gov RI Ranalli, Piero/K-6363-2013 OI Ranalli, Piero/0000-0003-3956-755X NR 2 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 1 PY 2016 VL 458 IS 4 BP 3820 EP 3820 DI 10.1093/mnras/stw617 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL7DG UT WOS:000375799500037 ER PT J AU Ukwatta, TN Wozniak, PR Gehrels, N AF Ukwatta, T. N. Wozniak, P. R. Gehrels, N. TI Machine-z: rapid machine-learned redshift indicator for Swift gamma-ray bursts SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-ray burst: general ID PROMPT EMISSION PROPERTIES; HIGH-Z GRBS; RANDOM FORESTS; AFTERGLOW; UNIVERSE; CLASSIFICATION; REIONIZATION; EXPLOSION; SPECTRUM AB Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce 'machine-z' a redshift prediction algorithm and a 'high-z' classifier for Swift GRBs based on machine learning. Our method relies exclusively on canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve 100 per cent recall. The most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor. C1 [Ukwatta, T. N.; Wozniak, P. R.] Los Alamos Natl Lab, Space & Remote Sensing ISR 2, Los Alamos, NM 87544 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Div, Greenbelt, MD 20771 USA. RP Ukwatta, TN (reprint author), Los Alamos Natl Lab, Space & Remote Sensing ISR 2, Los Alamos, NM 87544 USA. EM tilan@lanl.gov OI Wozniak, Przemyslaw/0000-0002-9919-3310 FU US Department of Energy; Laboratory Directed Research and Development programme at Los Alamos National Laboratory FX This work was funded by the US Department of Energy. We acknowledge support from the Laboratory Directed Research and Development programme at Los Alamos National Laboratory. We also thank the anonymous referee for comments that significantly improved the paper. NR 31 TC 0 Z9 0 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 1 PY 2016 VL 458 IS 4 BP 3821 EP 3829 DI 10.1093/mnras/stw559 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL7DG UT WOS:000375799500038 ER PT J AU Arneson, H Dousse, N Langbort, C AF Arneson, Heather Dousse, Nicolas Langbort, Cedric TI A linear programming approach to routing control in networks of constrained nonlinear positive systems with concave flow rates SO AUTOMATICA LA English DT Article DE Linear programming; Control of networks; Positive systems; Controller constraints and structure ID NATIONAL AIRSPACE SYSTEM; FEEDBACK-CONTROL; MODEL AB We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment. We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Published by Elsevier Ltd. C1 [Arneson, Heather] NASA, Ames Res Ctr, Aviat Syst Div, POB 1,MS 210-6, Moffett Field, CA 94035 USA. [Dousse, Nicolas] Ecole Polytech Fed Lausanne, Lab Intelligent Syst, EPFL STI IMT LIS, Stn 11, CH-1015 Lausanne, Switzerland. [Langbort, Cedric] Univ Illinois, Dept Aerosp Engn, 306 Talbot Lab,MC 236,104 S Wright St, Urbana, IL 61801 USA. RP Arneson, H (reprint author), NASA, Ames Res Ctr, Aviat Syst Div, POB 1,MS 210-6, Moffett Field, CA 94035 USA.; Dousse, N (reprint author), Ecole Polytech Fed Lausanne, Lab Intelligent Syst, EPFL STI IMT LIS, Stn 11, CH-1015 Lausanne, Switzerland.; Langbort, C (reprint author), Univ Illinois, Dept Aerosp Engn, 306 Talbot Lab,MC 236,104 S Wright St, Urbana, IL 61801 USA. EM heather.arneson@nasa.gov; nicolas.dousse@epfl.ch; langbort@illinois.edu FU NASA Illinois Space Grant Consortium seed grant; NSF grant [0826469]; University of Illinois College of Engineering SURGE Fellowship; NASA Aeronautics Scholarship Program Fellowship FX This work was funded in part by a NASA Illinois Space Grant Consortium seed grant and NSF grant #0826469 to C. Langbort, and University of Illinois College of Engineering SURGE Fellowship, and NASA Aeronautics Scholarship Program Fellowship to H. Arneson. The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Graziano Chesi under the direction of Editor Richard Middleton. NR 15 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0005-1098 EI 1873-2836 J9 AUTOMATICA JI Automatica PD JUN PY 2016 VL 68 BP 357 EP 368 DI 10.1016/j.automatica.2016.01.067 PG 12 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA DL3AW UT WOS:000375507600041 ER PT J AU Jackson, A Davila, AF Bohlke, JK Sturchio, NC Sevanthi, R Estrada, N Brundrett, M Lacelle, D McKay, CP Poghosyan, A Pollard, W Zacny, K AF Jackson, Andrew Davila, Alfonso F. Bohlke, John Karl Sturchio, Neil C. Sevanthi, Ritesh Estrada, Nubia Brundrett, Maeghan Lacelle, Denis McKay, Christopher P. Poghosyan, Armen Pollard, Wayne Zacny, Kris TI Deposition, accumulation, and alteration of Cl-, NO3-, ClO4- and ClO3- salts in a hyper-arid polar environment: Mass balance and isotopic constraints SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MCMURDO DRY VALLEYS; SOUTHERN-VICTORIA-LAND; MIOCENE GLACIER ICE; TAYLOR VALLEY; ATMOSPHERIC NITRATE; UNIVERSITY VALLEY; EAST ANTARCTICA; BEACON-VALLEY; FRESH-WATER; GROUND ICE AB The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl-, NO3-, ClO4- and ClO3- in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl- and NO3- isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4-/NO3- ratios and NO3- isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3-/ClO4- in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3-, possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from similar to 10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively young age of the salts and relatively low and homogeneous anion concentrations in the ice-cemented sediments point to either a mechanism of recent salt removal, or to relatively modern permafrost soils (<1 million years). Together, our results show that near surface salts in University Valley serve as an end-member of stratospheric sources not subject to biological processes or extensive remobilization. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Jackson, Andrew; Sevanthi, Ritesh; Estrada, Nubia; Brundrett, Maeghan] Texas Tech Univ, Lubbock, TX 79409 USA. [Davila, Alfonso F.] SETI Inst, Carl Sagan Ctr, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Bohlke, John Karl] US Geol Survey, 431 Natl Ctr, Reston, VA 20192 USA. [Sturchio, Neil C.] Univ Delaware, Dept Geol Sci, Newark, DE 19716 USA. [Lacelle, Denis] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. [McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Poghosyan, Armen] Skolkovo Inst Sci & Technol, Moscow, Russia. [Pollard, Wayne] McGill Univ, Dept Geog, Montreal, PQ, Canada. [Zacny, Kris] Honeybee Robot, 398 W Washington Blvd,Suite 200, Pasadena 91103, CA, Russia. RP Jackson, A (reprint author), Texas Tech Univ, Lubbock, TX 79409 USA. OI Lacelle, Denis/0000-0002-6691-8717 FU Strategic Environmental Research and Development Program (SERDP) of the U.S. Department of Defense [ER-1435]; U.S. Geological Survey Toxic Substances Hydrology Program; National Research Program; Groundwater Resources Program; National Water Quality Assessment Program FX This work was supported by the Strategic Environmental Research and Development Program (SERDP Project ER-1435) of the U.S. Department of Defense; the U.S. Geological Survey Toxic Substances Hydrology Program, National Research Program, Groundwater Resources Program, and National Water Quality Assessment Program; Antarctic fieldwork was supported by the NASA ASTEP program, in collaboration with the Antarctic Program within the NSF Office of Polar Programs. Hillary Dugan and Kyle Cronin (UIC) collected the Taylor Valley aerosol samples. Janet Hannon (USGS) performed the nitrate isotope analyses. Baohua Gu (ORNL), Linnea Heraty (UIC), and Stanley Mroczkowski (USGS) assisted with preparation and analysis of the perchlorate isotope sample. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Mark Claire, Balaji Rao, and two anonymous reviewers provided helpful comments on the manuscript. NR 65 TC 2 Z9 2 U1 8 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 1 PY 2016 VL 182 BP 197 EP 215 DI 10.1016/j.gca.2016.03.012 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DJ8ZQ UT WOS:000374503900012 ER PT J AU Feather, MS Wilf, JM Priest, J AF Feather, Martin S. Wilf, Joel M. Priest, Joseph TI Metrics for V&V of cyber defenses SO INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING LA English DT Article DE Cybersecurity; Verification and validation (V&V); Metrics; Testbed; Fidelity; Visualization AB There is a need for a disciplined approach for evaluating a cyber defense prior to its introduction into an operational environment. This is necessary to assess whether the benefits of the defense will be worth its costs and risks. A traditional V&V workflow is adapted for this purpose. The considerations it must take into account are described, as is the collection and presentation of pertinent metrics. An example of this workflow is given for a cyber defense against a "reconnaissance attack" that threatens information integrity and confidentiality. C1 [Feather, Martin S.; Wilf, Joel M.; Priest, Joseph] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Feather, MS; Wilf, JM; Priest, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM martin.s.feather@jpl.nasa.gov; Joel.M.Wilf@jpl.nasa.gov; jjpriest25@gmail.com NR 10 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 1614-5046 EI 1614-5054 J9 INNOV SYST SOFTW ENG JI Innov. Syst. Softw. Eng. PD JUN PY 2016 VL 12 IS 2 BP 81 EP 94 DI 10.1007/s11334-015-0261-7 PG 14 WC Computer Science, Software Engineering SC Computer Science GA DL9AB UT WOS:000375932500001 ER PT J AU Bull, P Akrami, Y Adamek, J Baker, T Bellini, E Jimenez, JB Bentivegna, E Camera, S Clesse, S Davis, JH Di Dio, E Enander, J Heavens, A Heisenberg, L Hu, B Llinares, C Maartens, R Mortsell, E Nadathur, S Noller, J Pasechnik, R Pawlowski, MS Pereira, TS Quartin, M Ricciardone, A Riemer-Sorensen, S Rinaldi, M Sakstein, J Saltas, ID Salzano, V Sawicki, I Solomon, AR Spolyar, D Starkman, GD Steer, D Tereno, I Verde, L Villaescusa-Navarro, F von Strauss, M Winther, HA AF Bull, Philip Akrami, Yashar Adamek, Julian Baker, Tessa Bellini, Emilio Jimenez, Jose Beltran Bentivegna, Eloisa Camera, Stefano Clesse, Sebastien Davis, Jonathan H. Di Dio, Enea Enander, Jonas Heavens, Alan Heisenberg, Lavinia Hu, Bin Llinares, Claudio Maartens, Roy Mortsell, Edvard Nadathur, Seshadri Noller, Johannes Pasechnik, Roman Pawlowski, Marcel S. Pereira, Thiago S. Quartin, Miguel Ricciardone, Angelo Riemer-Sorensen, Signe Rinaldi, Massimiliano Sakstein, Jeremy Saltas, Ippocratis D. Salzano, Vincenzo Sawicki, Ignacy Solomon, Adam R. Spolyar, Douglas Starkman, Glenn D. Steer, Daniele Tereno, Ismael Verde, Licia Villaescusa-Navarro, Francisco von Strauss, Mikael Winther, Hans A. TI Beyond Lambda CDM: Problems, solutions, and the road ahead SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Cosmology; Dark energy; Cosmological constant problem; Modified gravity; Dark matter; Early universe ID COLD DARK-MATTER; MICROWAVE-ANISOTROPY-PROBE; FINDER COMPARISON PROJECT; INVERSE-SQUARE LAW; COSMOLOGICAL PARAMETER-ESTIMATION; SMOOTHED PARTICLE HYDRODYNAMICS; BARYON ACOUSTIC-OSCILLATIONS; FINE-STRUCTURE CONSTANT; SCALAR-TENSOR GRAVITY; GALAXY FORMATION AB Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, Lambda CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of Lambda CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled. (C) 2016 Elsevier B.V. All rights reserved. C1 [Bull, Philip] CALTECH, Pasadena, CA 91125 USA. [Bull, Philip] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Bull, Philip; Akrami, Yashar; Llinares, Claudio; Riemer-Sorensen, Signe; Verde, Licia] Univ Oslo, Inst Theoret Astrophys, POB 1029 Blindern, N-0315 Oslo, Norway. [Akrami, Yashar; Solomon, Adam R.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Adamek, Julian; Sawicki, Ignacy] Univ Geneva, Dept Theoret Phys, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Adamek, Julian; Sawicki, Ignacy] Univ Geneva, Ctr Astroparticle Phys, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Baker, Tessa; Noller, Johannes; Winther, Hans A.] Univ Oxford, Dept Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. [Bellini, Emilio; Verde, Licia] Univ Barcelona, ICCUB, IEEC, Marti & Franques 1, E-08028 Barcelona, Spain. [Jimenez, Jose Beltran] Aix Marseille Univ, CPT, UMR 7332, F-13288 Marseille, France. [Bentivegna, Eloisa] Univ Catania, Dipartimento Fis & Astron, Via S Sofia 64, I-95123 Catania, Italy. [Bentivegna, Eloisa] Ist Nazl Fis Nucl, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy. [Camera, Stefano] Univ Manchester, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Clesse, Sebastien] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany. [Davis, Jonathan H.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Di Dio, Enea; Villaescusa-Navarro, Francisco] Univ Trieste, Osservatorio Astron Trieste, Via Tiepolo 11, I-34143 Trieste, Italy. [Di Dio, Enea; Villaescusa-Navarro, Francisco] Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy. [Enander, Jonas; Mortsell, Edvard; Spolyar, Douglas] Stockholm Univ, Albanova Univ Ctr, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Enander, Jonas; Mortsell, Edvard; Spolyar, Douglas] Stockholm Univ, Albanova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden. [Heavens, Alan] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, Imperial Ctr Inference & Cosmol, Prince Consort Rd, London SW7 2AZ, England. [Heisenberg, Lavinia] ETH, Inst Theoret Studies, Clausiusstr 47, CH-8092 Zurich, Switzerland. [Hu, Bin] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands. [Llinares, Claudio] Univ Durham, Dept Phys, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. [Maartens, Roy] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. [Maartens, Roy; Nadathur, Seshadri; Sakstein, Jeremy] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Pasechnik, Roman] Lund Univ, Dept Astron & Theoret Phys, SE-22362 Lund, Sweden. [Pawlowski, Marcel S.] Case Western Reserve Univ, Dept Astron, 10900 Euclid Ave, Cleveland, OH 44106 USA. [Pereira, Thiago S.] Univ Estadual Londrina, Dept Fis, Rodovia Celso Garcia Cid,Km 380, BR-86051990 Londrina, PR, Brazil. [Quartin, Miguel] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil. [Ricciardone, Angelo] Univ Stavanger, Fac Sci & Technol, N-4036 Stavanger, Norway. [Rinaldi, Massimiliano] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy. [Rinaldi, Massimiliano] INFN, TIFPA, Via Sommar 14, I-38123 Trento, Italy. [Saltas, Ippocratis D.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, Campo Grande, P-1749016 Lisbon, Portugal. [Salzano, Vincenzo] Univ Szczecin, Inst Phys, Wielkopolska 15, PL-70451 Szczecin, Poland. [Solomon, Adam R.] Univ Cambridge, DAMTP, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England. [Solomon, Adam R.] Univ Penn, Ctr Particle Cosmol, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Starkman, Glenn D.] Case Western Reserve Univ, CERCA, Dept Phys, ISO, Cleveland, OH 44106 USA. [Steer, Daniele] Univ Paris 07, APC, Bat Condorcet, F-75205 Paris 13, France. [Tereno, Ismael] Inst Astrofis & Ciencias Espaco, P-1349018 Lisbon, Portugal. [Tereno, Ismael] Univ Lisbon, Fac Sci, Dept Phys, Campo Grande, P-1749016 Lisbon, Portugal. [Verde, Licia] ICREA, Barcelona, Spain. [Verde, Licia] Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. [von Strauss, Mikael] Inst Astrophys Paris, GReCO, UMR7095, UPMC CNRS, 98Bis Blvd Arago, F-75014 Paris, France. RP Bull, P (reprint author), CALTECH, Jet Prop Lab, M-S 169-237,4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Akrami, Y (reprint author), Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. EM Philip.J.Bull@jpl.nasa.gov; Yashar.Akrami@thphys.uni-heidelberg.de RI Rinaldi, Massimiliano/C-9865-2012; Bentivegna, Eloisa/I-6577-2016; Quartin, Miguel/C-2629-2013; Tereno, Ismael/Q-2220-2015; OI Rinaldi, Massimiliano/0000-0003-0325-3911; Bentivegna, Eloisa/0000-0003-1229-1653; Quartin, Miguel/0000-0001-5853-6164; Tereno, Ismael/0000-0002-4537-6218; Akrami, Yashar/0000-0002-2407-7956; Sakstein, Jeremy/0000-0002-9780-0922; Bull, Philip/0000-0001-5668-3101 FU European Research Council [StG2010-257080]; DFG [TRR33]; All Souls College, Oxford; project "Digitizing the universe: precision modeling for precision cosmology'' - Italian Ministry of Education, University and Research (MIUR); Return Grant program of the Belgian Science Policy (BELSPO); Research Council of Norway [216756]; STFC [ST/L00075X/1]; Swedish Research Council [621-2013-428]; John Templeton Foundation; Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/95204/2013, UID/FIS/04434/2013]; FCT [UID/FIS/04434/2013, IF/01518/2014]; ERC Starting Grant "cosmoIGM''; INFN IS PD51 "INDARK''; ERC under the European Community's Seventh Framework Programme (FP7) [307934] FX PB is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. PB also acknowledges support from European Research Council grant StG2010-257080. YA acknowledges support from DFG through the project TRR33 "The Dark Universe''. TB is supported by All Souls College, Oxford. EB (Bentivegna) is supported by the project "Digitizing the universe: precision modeling for precision cosmology'', funded by the Italian Ministry of Education, University and Research (MIUR). The work of SC (Clesse) is supported by the Return Grant program of the Belgian Science Policy (BELSPO). FF would like to thank the Kavli Institute for Theoretical Physics China in Beijing, where this contribution was partially written, for hospitality. CL acknowledges support from the Research Council of Norway through grant 216756, and from STFC consolidated grant ST/L00075X/1. RP is supported by the Swedish Research Council, contract number 621-2013-428. The contribution of MSP to this publication was made possible through the support of a grant from the John Templeton Foundation. IDS has been supported by the Fundacao para a Ciencia e Tecnologia (FCT) through the Investigador research grant SFRH/BPD/95204/2013, as well as UID/FIS/04434/2013. IT acknowledges support from the FCT through the Investigador contract No. IF/01518/2014 and strategic project UID/FIS/04434/2013. FVN is supported by the ERC Starting Grant "cosmoIGM'' and partially supported by INFN IS PD51 "INDARK''. The research of MvS leading to these results has received funding from the ERC under the European Community's Seventh Framework Programme (FP7/2007-2013 Grant no. 307934). Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 543 TC 29 Z9 29 U1 6 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD JUN PY 2016 VL 12 BP 56 EP 99 DI 10.1016/j.dark.2016.02.001 PG 44 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DK0VZ UT WOS:000374631600006 ER PT J AU Leser, WP Newman, JA Hochhalter, JD Gupta, VK Yuan, FG AF Leser, W. P. Newman, J. A. Hochhalter, J. D. Gupta, V. K. Yuan, F. G. TI Embedded Ni-Ti particles for the detection of fatigue crack growth in AA7050 SO FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES LA English DT Article DE acoustic emission; aluminium 7050; digital image correlation; fatigue; multi-functional; shape memory alloy ID SHAPE-MEMORY ALLOYS; LOW-VELOCITY IMPACT; DAMAGE BEHAVIOR; STRAIN SENSORS; COMPOSITES; SMA; PROPAGATION; EVOLUTION AB A multi-functional aluminium alloy 7050 (AA7050) containing embedded Ni-Ti shape memory alloy particles to detect fatigue crack growth is proposed. The regions of intense strain near the tip of a growing fatigue crack cause nearby Ni-Ti particles to undergo a solid-state phase transformation from austenite to martensite, releasing a detectable acoustic emission signal that can be used to locate the crack in the monitored component. The AA7050/Ni-Ti composite was made by vacuum hot pressing Ni-Ti powder between rolled AA7050 plates. The effect of hot pressing temperature and subsequent heat treatments (solutionizing and peak ageing) on the Ni-Ti particles was studied. A successful proof-of-concept was demonstrated for AA7050 with embedded particles that emit a measureable and repeatable acoustic emission signal in the presence of a fatigue crack, allowing for quick diagnosis of fatigue crack damage in this material. C1 [Leser, W. P.; Newman, J. A.; Hochhalter, J. D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Gupta, V. K.; Yuan, F. G.] Natl Inst Aerosp, Hampton, VA USA. [Yuan, F. G.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Leser, WP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM william.leser@nasa.gov NR 25 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 8756-758X EI 1460-2695 J9 FATIGUE FRACT ENG M JI Fatigue Fract. Eng. Mater. Struct. PD JUN PY 2016 VL 39 IS 6 SI SI BP 686 EP 695 DI 10.1111/ffe.12413 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DK6PJ UT WOS:000375046100004 ER PT J AU Spear, AD Hochhalter, JD Cerrone, AR Li, SF Lind, JF Suter, RM Ingraffea, AR AF Spear, A. D. Hochhalter, J. D. Cerrone, A. R. Li, S. F. Lind, J. F. Suter, R. M. Ingraffea, A. R. TI A method to generate conformal finite-element meshes from 3D measurements of microstructurally small fatigue-crack propagation SO FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES LA English DT Article DE aluminium; multiscale modelling; numerical simulation; short crack propagation; X-ray diffraction ID X-RAY-DIFFRACTION; ZN-MG-CU; POLYCRYSTAL; GROWTH; DEFORMATION; TOMOGRAPHY; NUCLEATION; MICROSCOPY; INITIATION; SPECIMENS AB In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulations for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation. C1 [Spear, A. D.] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA. [Hochhalter, J. D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Cerrone, A. R.] GE Global Res Ctr, Niskayuna, NY USA. [Li, S. F.; Lind, J. F.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Suter, R. M.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Ingraffea, A. R.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Spear, AD (reprint author), Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA. EM ashley.spear@utah.edu RI Suter, Robert/P-2541-2014 OI Suter, Robert/0000-0002-0651-0437 FU Air Force Office of Scientific Research [FA9550-15-1-0172]; National Science Foundation [DGE-0707428]; U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE/BES [DESC0002001] FX Gratitude is expressed to Dr. Michael Veilleux of Sandia National Laboratory, who contributed to parts of the code described in this work. The authors also wish to thank Dr. Somnath Ghosh for providing valuable insight that influenced parts of the commentary in this manuscript. This material is based on research sponsored by the Air Force Office of Scientific Research Young Investigator Program, under agreement number FA9550-15-1-0172. Portions of this work were supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-0707428; under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344; and by DOE/BES grant DESC0002001 at Carnegie Mellon University. Data were collected at the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated by Argonne National Laboratory. The authors also wish to acknowledge the Durability, Damage Tolerance, and Reliability Branch of NASA Langley Research Center for supporting the mechanical testing on which this modelling effort is based. NR 36 TC 0 Z9 0 U1 4 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 8756-758X EI 1460-2695 J9 FATIGUE FRACT ENG M JI Fatigue Fract. Eng. Mater. Struct. PD JUN PY 2016 VL 39 IS 6 SI SI BP 737 EP 751 DI 10.1111/ffe.12449 PG 15 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DK6PJ UT WOS:000375046100008 ER PT J AU Kundan, A Nguyen, TTT Plawsky, JL Wayner, PC Chao, DF Sicker, RJ AF Kundan, Akshay Nguyen, Thao T. T. Plawsky, Joel L. Wayner, Peter C., Jr. Chao, David F. Sicker, Ronald J. TI Arresting the phenomenon of heater flooding in a wickless heat pipe in microgravity SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Marangoni flow; Capillary pressure gradient; Heat pipe; Performance limitation; Dry-out, flooding ID VAPOR BUBBLE EXPERIMENT; SURFACE-TENSION; INTERFACIAL TURBULENCE; FINGERING INSTABILITY; SPREADING FILMS; CONSTANT-AREA; ADIABATIC TIP; DRIVEN; MODEL; CAPILLARY AB The Constrained Vapor Bubble (CVB) is a transparent, wickless heat pipe experiment carried out in the US Labs of the International Space Station (ISS). Experiments were carried out using the 40 mm CVB, 3 mm x 3 mm in cross-section, pentane as the working fluid, with the power inputs of up to 3 W. Due to the low Bond number (Bo) in microgravity and materials of construction, the CVB system was ideally suited to determine the contribution of the Marangoni forces toward the limiting heat pipe performance, and the transparent quartz shows exactly how that limitation occurs. Previous literature models and experimental temperature and pressure measurements suggested that at high enough temperature gradients, the working fluid should be subjected to enough Marangoni force to force it away from the heater and ultimately, dry out the hot end. The CVB experiment shows that high temperature gradients lead to a totally opposite behavior, i.e., 'flooding' of the heated end. Flooding of the heater end is attributed to a competition between Marangoni-induced flow due to high temperature gradients at the heater end and capillary return flow from the cooler. This creates a thick liquid layer in the corner of the cuvette at the heater end. At the point of flow balance, a thick layer of liquid is observed on the flat surface of the quartz cuvette. This is defined as the central drop. The region from the top of the heater end to the central drop is referred to as the interfacial flow region. The interfacial flow region develops at a power input of around 0.7W, and increases in length to the power input of 2 W. At 2 W, the strength of the Marangoni forces saturate. As a result, the forces in the flooded interfacial region are not able to push the liquid further into the capillary region and a further penetration of liquid down the axis of the heat pipe is arrested. As the power input is increased to nearly 3W, an increase in the vapor space is observed near the heater end at 3 W. This behavior suggests that the flooding might just be an intermediate stage in reaching the dry-out limitation. The flat quartz surface at the hot end is covered by a wavy thin liquid film due to the interfacial forces. The hot end region closest to the heater is a superheated vapor region that leads to the condensation. This additional observation is discussed in Appendix. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kundan, Akshay; Nguyen, Thao T. T.; Plawsky, Joel L.; Wayner, Peter C., Jr.] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. [Chao, David F.; Sicker, Ronald J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Plawsky, JL (reprint author), Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. EM akshaykundan@gmail.com; nguyen.thaoche@gmail.com; plawsky@rpi.edu; wayner@rpi.edu; David.F.Chao@grc.nasa.gov; Ronald.J.Sicker@nasa.gov OI Chao, David/0000-0001-7040-6522 FU National Aeronautics and Space Administration (NASA) [NNX13AQ78G] FX This material is based on the work supported by the National Aeronautics and Space Administration (NASA) under grant number NNX13AQ78G. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of NASA. NR 55 TC 1 Z9 1 U1 3 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 EI 1879-3533 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD JUN PY 2016 VL 82 BP 65 EP 73 DI 10.1016/j.ijmultiphaseflow.2016.02.001 PG 9 WC Mechanics SC Mechanics GA DL0ZY UT WOS:000375362900006 ER PT J AU Misa, WFXE Richards, BL DiNardo, GT Kelley, CD Moriwake, VN Drazen, JC AF Misa, William F. X. E. Richards, Benjamin L. DiNardo, Gerard T. Kelley, Christopher D. Moriwake, Virginia N. Drazen, Jeffrey C. TI Evaluating the effect of soak time on bottomfish abundance and length data from stereo-video surveys SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Stereo-video; Soak time; Fish abundance; Fish measurement; Bottomfish; Fisheries management ID BAITED UNDERWATER VIDEO; NORTHWESTERN HAWAIIAN-ISLANDS; SNAPPER PAGRUS-AURATUS; MARINE PROTECTED AREAS; FISH ASSEMBLAGES; DEMERSAL FISH; REEF-FISH; RELATIVE DENSITY; CAMERA SYSTEM; NORTH PACIFIC AB Baited stereo-camera surveys of fish assemblages provide conservative estimates of abundance and length frequency distributions. While underwater camera systems have numerous advantages over traditional fishing and diver surveys, limitations in sampling capacity, data processing time, and resultant data still exist. Previous studies have shown that shorter camera soak times can increase sampling efficiency and reduce per-sample data processing time without affecting overall data quality. Using data from stereo-video surveys of bottomfish in the main Hawaiian Islands, this study evaluates the effect of camera soak time on relative abundance metrics, fish length data, sampling efficiency, and power to detect differences in relative abundance and fish lengths. A soak time of 15 min was found to be the shortest duration able to capture bottomfish abundance and length metrics while 30 min generated data that did not significantly differ from the standard 40-min soak time. These shorter soak times allow for better survey efficiency and improved cost-benefit through increased levels of field sampling and reductions in video-processing time, while maintaining the power to detect differences in bottomfish relative abundance and lengths. The main drawback to shortening soak time was the concurrent reduction in the number of length measurements collected per species. An increased sample yield can alleviate this effect but only for bottomfish with a higher frequency of occurrence. Species-specific patterns in abundance were apparent in this study suggesting a strong influence of fish behavior on stereo-video abundance metrics. While a soak time of 15 to 30 min was found to be sufficient for effectively sampling bottomfish, the cost-benefit of employing a given soak time in future stereo-video surveys should be assessed based on the target species and survey goals. (C) 2016 Elsevier B.V. All rights reserved. C1 [Misa, William F. X. E.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Joint Inst Marine & Atmospher Res, 1000 Pope Rd,Marine Sci Bldg 312, Honolulu, HI 96822 USA. [Richards, Benjamin L.; DiNardo, Gerard T.] NOAA, Fisheries Res & Monitoring Div, Pacific Islands Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA. [Kelley, Christopher D.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Undersea Res Lab, 1000 Pope Rd,Marine Sci Bldg 303, Honolulu, HI 96822 USA. [Moriwake, Virginia N.; Drazen, Jeffrey C.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Dept Oceanog, 1000 Pope Rd,Marine Sci Bldg 205, Honolulu, HI 96822 USA. RP Misa, WFXE (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Joint Inst Marine & Atmospher Res, 1000 Pope Rd,Marine Sci Bldg 312, Honolulu, HI 96822 USA. EM william.misa@noaa.gov FU State of Hawaii DLNR-DAR via the Federal Aid in Sport Fish Restoration program [F17R35-study IX]; NOAA from the Pacific Islands Fisheries Science Center, Fisheries Advanced Sampling Technology Working Group; Fisheries Office of Science and Technology FX The authors would like to thank A. Rollo and C. Demarke (NOAA-PIFSC), J. Friedman, M. Waterhouse, B. Alexander, J. Yeh, A. Fleury, D. Sackett, and C. Moore (University of Hawaii Department of Oceanography) for their efforts in video processing, cruise planning, and field work; D. Kobayashi, M. Parke, J. Brodziak, and B. Schumacher (NOAA-PIFSC), J. Ault and S. Smith (University of Miami Rosenstiel School of Marine and Atmospheric Science) for their roles in the design and implementation of the State of Hawaii DLNR-DAR bottomfish project and the NOAA Hawaii bottomfish advanced sampling methods project; D. Merritt and K. Wong (NOAA-PIFSC) for providing access to BotCam units used in these projects; J. Anderson, J. Asher, N. Shoji, A. Rivero, and M. Seki (NOAA-PIFSC) for their internal manuscript reviews; G. Jones, R. Wagner, and A. Armstrong (Sea Engineering), and R. Cates (Cates International) for providing ship support and expert seamanship during field operations. Project funding was received from the State of Hawaii DLNR-DAR via the Federal Aid in Sport Fish Restoration program (F17R35-study IX) as well as NOAA internal funding allocations from the Pacific Islands Fisheries Science Center, Fisheries Advanced Sampling Technology Working Group, and Fisheries Office of Science and Technology. [RH] NR 57 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 EI 1879-1697 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD JUN PY 2016 VL 479 BP 20 EP 34 DI 10.1016/j.jembe.2016.03.001 PG 15 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA DL1BC UT WOS:000375365900003 ER PT J AU Doss, JR Shanahan, MH Wohl, CJ Connell, JW AF Doss, Jereme R. Shanahan, Michelle H. Wohl, Christopher J. Connell, John W. TI Synthesis, characterization and evaluation of urethane co-oligomers containing pendant fluoroalkyl ether groups SO PROGRESS IN ORGANIC COATINGS LA English DT Article DE Surface modifying agent; Urethane; Adhesion; Coating ID SURFACE-MODIFYING MACROMOLECULES; FILMS; DEGRADATION; DEPOSITION; ADSORPTION AB Coatings with the ability to minimize adhesion of insect residue and other debris are of great interest for future aircraft. These aircraft will exhibit increased fuel efficiency by maintaining natural laminar flow over greater wing chord distances. Successful coatings will mitigate the adhesion of debris on laminar flow surfaces that could cause a premature transition to turbulent flow. The use of surface modifying agents (SMA) that thermodynamically orient towards the air side of a coating can provide specific surface chemistry that may lead to a reduction of contaminate adhesion. Aluminum surfaces coated with urethane co-oligomers containing various amounts of pendant fluoroalkyl ether groups were prepared, characterized and tested for their abhesive properties. The coated surfaces were subjected to controlled impacts with wingless fruit flies (drosophila melanogaster) using both a benchtop wind tunnel and a larger-scale wind tunnel test facility. Insect impacts were recorded and analyzed using high-speed digital photography and the remaining residues characterized using optical surface profilometry and compared to that of an aluminum control. It was determined that using fluorinated oligomers to chemically modify coating surfaces altered the adhesion properties relative to the adhesion of insect residues to the surface. (C) 2016 Published by Elsevier B.V. C1 [Doss, Jereme R.; Shanahan, Michelle H.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Wohl, Christopher J.; Connell, John W.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. RP Doss, JR (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA. EM jereme.doss@nianet.org NR 27 TC 1 Z9 1 U1 3 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0300-9440 J9 PROG ORG COAT JI Prog. Org. Coat. PD JUN PY 2016 VL 95 BP 72 EP 78 DI 10.1016/j.porgcoat.2016.02.003 PG 7 WC Chemistry, Applied; Materials Science, Coatings & Films SC Chemistry; Materials Science GA DL0QR UT WOS:000375338100009 ER PT J AU Golding, J Steer, CD Gregory, S Lowery, T Hibbeln, JR Taylor, CM AF Golding, Jean Steer, Colin D. Gregory, Steven Lowery, Tony Hibbeln, Joseph R. Taylor, Caroline M. TI Dental associations with blood mercury in pregnant women SO COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY LA English DT Article DE ALSPAC; blood mercury; dental amalgam; pregnancy; seafood ID SEYCHELLES CHILD-DEVELOPMENT; NEURODEVELOPMENTAL OUTCOMES; DEVELOPMENT NUTRITION; INORGANIC MERCURY; PRENATAL EXPOSURE; AMALGAM FILLINGS; UNITED-STATES; POPULATION; RESTORATIONS; METHYLMERCURY AB ObjectivesThere is curiosity concerning the source of mercury that is absorbed into the mother's blood and which may affect the developing fetus. This study therefore sets out to determine the extent to which dental amalgam (DA) may contribute to total blood mercury (TBHg) levels of pregnant women in the UK. MethodsWhole blood samples and information on diet and socio-demographic factors were collected from pregnant women (n=4484) enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). The whole blood samples were assayed for total mercury levels using inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS), and the women were retrospectively asked about features of their dental care during the pregnancy. Linear regression was used to estimate the relative contributions of DA to TBHg levels (log-transformed) based on R-2 values, compared to the results from dietary and socio-demographic variables. ResultsThe contribution to the variance of the mothers' TBHg levels by dental variables was 6.47%, a figure comparable to the 8.75% shown for seafood consumption in this population. Dietary and dental variables explained 20.16% of the variance, with socio-demographic variables contributing only a further 3.40%. The number of amalgams in the mouth at the start of pregnancy accounted for most of the variance in dental variables. ConclusionsDental amalgam contributes a comparable amount of variance in TBHg to seafood consumption in this population. However, because the measures of DA exposure were imprecise, these findings are likely to be an underestimate. There is no evidence to date in the literature that fetal exposures to mercury from maternal DAs have adverse effects on the developing child, but long-term studies are warranted. C1 [Golding, Jean; Steer, Colin D.; Gregory, Steven; Taylor, Caroline M.] Univ Bristol, Sch Social & Community Med, Ctr Child & Adolescent Hlth, Oakfield House,Oakfield Rd, Bristol BS8 2BN, Avon, England. [Lowery, Tony] NOAA, Natl Seafood Inspect Lab, Natl Marine Fisheries Serv, Pascagoula, MS USA. [Hibbeln, Joseph R.] NIAAA, NIH, Bethesda, MD USA. RP Golding, J (reprint author), Univ Bristol, Sch Social & Community Med, Ctr Child & Adolescent Hlth, Oakfield House,Oakfield Rd, Bristol BS8 2BN, Avon, England. EM jean.golding@bristol.ac.uk OI Golding, Jean/0000-0003-2826-3307 FU Wellcome Trust [102215/2/13/2, 104077/Z/14/Z]; NOAA FX We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. The UK Medical Research Council (MRC), the Wellcome Trust (Grant ref: 102215/2/13/2), and the University of Bristol currently provide core support for ALSPAC. CMT was supported by a Wellcome Trust Career Re-entry Fellowship (Grant ref: 104077/Z/14/Z). The assays of the maternal blood samples were carried out at the Centers for Disease Control and Prevention with funding from NOAA, and the statistical analyses were carried out in Bristol with funding from NOAA and support from the Intramural Research Program of NIAAA, NIH. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the CDC, NOAA or the NIH. NR 30 TC 2 Z9 2 U1 1 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0301-5661 EI 1600-0528 J9 COMMUNITY DENT ORAL JI Community Dentist. Oral Epidemiol. PD JUN PY 2016 VL 44 IS 3 BP 216 EP 222 DI 10.1111/cdoe.12208 PG 7 WC Dentistry, Oral Surgery & Medicine; Public, Environmental & Occupational Health SC Dentistry, Oral Surgery & Medicine; Public, Environmental & Occupational Health GA DJ6LG UT WOS:000374323900004 PM 26688340 ER PT J AU Telesman, J Gabb, TP Ghosn, LJ Gayda, J AF Telesman, J. Gabb, T. P. Ghosn, L. J. Gayda, J. TI Effect of notches on creep-fatigue behavior of a P/M nickel-based superalloy SO INTERNATIONAL JOURNAL OF FATIGUE LA English DT Article DE Superalloys; Dwell notch low cycle fatigue; Hydrostatic stress; Creep-fatigue; Environmental degradation ID DUCTILE FAILURE; STRESS-STATE AB A study was performed to determine and model the effect of high temperature dwells on notch low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (P/M) nickel-based superalloy. It was shown that a 90 second (s) dwell applied at the minimum stress ("min dwell") was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress ("max dwell"). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening, The triaxial Bridgman effective stress parameter was able to account, with some limitations, for the notch strengthening by collapsing the notch and uniform gage geometry test data into a singular grouping. Published by Elsevier Ltd. C1 [Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Gayda, J.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Telesman, J (reprint author), NASA, Glenn Res Ctr, Cleveland, OH USA. EM jack.telesman@grc.nasa.gov FU NASA's Aviation Safety program FX The authors wish to acknowledge the work of Andrew Ring in conducting mechanical testing and Joy Buehler in performing the metallography. The work was funded by NASA's Aviation Safety program. NR 13 TC 2 Z9 2 U1 5 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-1123 EI 1879-3452 J9 INT J FATIGUE JI Int. J. Fatigue PD JUN PY 2016 VL 87 BP 311 EP 325 DI 10.1016/j.ijfatigue.2016.01.024 PG 15 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DK0PY UT WOS:000374615900033 ER PT J AU Shean, DE Alexandrov, O Moratto, ZM Smith, BE Joughin, IR Porter, C Morin, P AF Shean, David E. Alexandrov, Oleg Moratto, Zachary M. Smith, Benjamin E. Joughin, Ian R. Porter, Claire Morin, Paul TI An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING LA English DT Article DE World view; Photogrammetry; Stereo reconstruction; Topography; Cryosphere; Ice sheet ID ACCURACY ASSESSMENT; ICE-SHEET; DATA SETS; GREENLAND; GEOEYE-1; FLOW; LAKE AB We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for similar to 0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at 2 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5 m where appropriate ground-control data are available, with observed standard deviation of similar to 0.1-0.5 m for overlapping, co-registered DEMs (n = 14,17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. C1 [Shean, David E.; Smith, Benjamin E.; Joughin, Ian R.] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Box 355640,1013 NE 40th St, Seattle, WA 98105 USA. [Alexandrov, Oleg; Moratto, Zachary M.] NASA, Ames Res Ctr, Intelligent Robot Grp, M-S 269-3, Moffett Field, CA 94035 USA. [Porter, Claire; Morin, Paul] Univ Minnesota, Polar Geospatial Ctr, Learning & Environm Sci R280, 1954 Buford Ave, St Paul, MN 55108 USA. RP Shean, DE (reprint author), Univ Washington, Appl Phys Lab, Polar Sci Ctr, Box 355640,1013 NE 40th St, Seattle, WA 98105 USA. EM dshean@uw.edu OI Shean, David/0000-0003-3840-3860 FU NASA Cryosphere program for ASP development; NASA NESSF fellowship [NNX12AN36H, NNX09AE47G, NNX08AL98A]; NASA; National Science Foundation [ANT-1043681] FX We gratefully acknowledge funding from the NASA Cryosphere program for ASP development. D. Shean was supported by a NASA NESSF fellowship (NNX12AN36H). B. Smith (NNX09AE47G) and I. Joughin (NNX08AL98A) acknowledge support from NASA. Support for the Polar Geospatial Center was provided by the National Science Foundation (ANT-1043681). We would like to thank Milan Karspeck and Chris Comp at DigitalGlobe for initial guidance on L1B corrections. Comments from two anonymous reviewers helped improve the manuscript. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 53 TC 13 Z9 13 U1 7 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2716 EI 1872-8235 J9 ISPRS J PHOTOGRAMM JI ISPRS-J. Photogramm. Remote Sens. PD JUN PY 2016 VL 116 BP 101 EP 117 DI 10.1016/j.isprsjprs.2016.03.012 PG 17 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA DK0TH UT WOS:000374624600008 ER PT J AU Ortega, I Berg, LK Ferrare, RA Hair, JW Hostetler, CA Volkamer, R AF Ortega, Ivan Berg, Larry K. Ferrare, Richard A. Hair, Johnathan W. Hostetler, Chris A. Volkamer, Rainer TI Elevated aerosol layers modify the O-2-O-2 absorption measured by ground-based MAX-DOAS SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE DOAS; Oxygen collisional complex (O-4); O-4 correction factor (CFO4); Aerosol extinction profiles; Elevated aerosol layers ID SPECTRAL-RESOLUTION LIDAR; RADIATIVE-TRANSFER; OPTICAL-PROPERTIES; FREE TROPOSPHERE; CROSS-SECTIONS; ATMOSPHERIC AEROSOLS; DERIVE INFORMATION; BOUNDARY-LAYER; IN-SITU; NM AB The oxygen collisional complex (O-2-O-2, or O-4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O-4 correction factor (CFO4) when comparing simulated and measured O-4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O-4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA's multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD similar to 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O-4 dSCDs agreed within 6.4 +/- 0.4% (360 nm) and 4.7 +/- 0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53 < CFO4 < 0.75, similar to previously reported CFO4. Our results suggest that elevated aerosol layers, unless accounted for, can cause negative bias in the simulated O-4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O-4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these elevated layers are also discussed. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Ortega, Ivan; Volkamer, Rainer] Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA. [Ortega, Ivan; Volkamer, Rainer] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Berg, Larry K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.] NASA Langley Res Ctr, Hampton, VA USA. RP Volkamer, R (reprint author), Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA. EM rainer.volkamer@colorado.edu RI Volkamer, Rainer/B-8925-2016 OI Volkamer, Rainer/0000-0002-0899-1369 FU NSF-CAREER award [ATM-0847793]; US Department of Energy (DoE) [DE-SC0006080]; NASA FX The 2-D-MAX-DOAS instrument was developed with support from the NSF-CAREER award ATM-0847793, and US Department of Energy (DoE) award DE-SC0006080 supported the TCAP deployment. Ivan Ortega is recipient of a NASA Earth Science graduate fellowship. The authors are grateful to Tim Deutschmann for providing support with the McArtim RTM. The authors thank the entire TCAP team for their support during the campaign. We further thank Rick Wagener and Laurie Gregory for providing the AERONET data, Gary Hodges and Kathy Lantz for providing the NOAA MFRSR data, Caroline Fayt and Michel van Roozendael for providing the WinDOAS software, and Thomas Wagner for helpful discussions. NR 50 TC 3 Z9 3 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2016 VL 176 BP 34 EP 49 DI 10.1016/j.jqsrt.2016.02.021 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DJ6WN UT WOS:000374354000005 ER PT J AU Del Genio, AD Barbara, JM AF Del Genio, Anthony D. Barbara, John M. TI An objective classification of Saturn cloud features from Cassini ISS images SO ICARUS LA English DT Article DE Saturn; Saturn, atmosphere; Atmospheres, dynamics; Image processing ID JUPITERS ATMOSPHERE; MOIST CONVECTION; GENERAL-CIRCULATION; LIGHTNING STORMS; IMAGING SCIENCE; WEATHER STATES; GREAT STORM; DYNAMICS; AMMONIA; REGIMES AB A k-means clustering algorithm is applied to Cassini Imaging Science Subsystem continuum and methane band images of Saturn's northern hemisphere to objectively classify regional albedo features and aid in their dynamical interpretation. The procedure is based on a technique applied previously to visible infrared images of Earth. It provides a new perspective on giant planet cloud morphology and its relationship to the dynamics and a meteorological context for the analysis of other types of simultaneous Saturn observations. The method identifies 6 clusters that exhibit distinct morphology, vertical structure, and preferred latitudes of occurrence. These correspond to areas dominated by deep convective cells; low contrast areas, some including thinner and thicker clouds possibly associated with baroclinic instability; regions with possible isolated thin cirrus clouds; darker areas due to thinner low level clouds or clearer skies due to downwelling, or due to absorbing particles; and fields of relatively shallow cumulus clouds. The spatial associations among these cloud types suggest that dynamically, there are three distinct types of latitude bands on Saturn: deep convectively disturbed latitudes in cyclonic shear regions poleward of the eastward jets; convectively suppressed regions near and surrounding the westward jets; and baroclinically unstable latitudes near eastward jet cores and in the anti-cyclonic regions equatorward of them. These are roughly analogous to some of the features of Earth's tropics, subtropics, and midlatitudes, respectively. This classification may be more useful for dynamics purposes than the traditional belt-zone partitioning. Temporal variations of feature contrast and cluster occurrence suggest that the upper tropospheric haze in the northern hemisphere may have thickened by 2014. The results suggest that routine use of clustering may be a worthwhile complement to many different types of planetary atmospheric data analysis. Published by Elsevier Inc. C1 [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Barbara, John M.] Trinnovim LLC, Inst Space Studies, New York, NY 10025 USA. RP Del Genio, AD (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM anthony.d.delgenio@nasa.gov FU Cassini Project funding of the Imaging Science Subsystem team FX This research was supported by Cassini Project funding of the Imaging Science Subsystem team. We thank Robert West for helpful suggestions about interpretations of the clusters. We also thank two reviewers for constructive comments. The clusters obtained from the research described in this paper are available from data.giss.nasa.gov/cassini/clusters. The k-means clustering software is available from isccp.giss.nasa.gov/tcluster.html. NR 59 TC 0 Z9 0 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN 1 PY 2016 VL 271 BP 222 EP 236 DI 10.1016/j.icarus.2016.02.011 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI7AP UT WOS:000373651800017 ER PT J AU Loeffler, MJ Hudson, RL Chanover, NJ Simon, AA AF Loeffler, Mark J. Hudson, Reggie L. Chanover, Nancy J. Simon, Amy A. TI The spectrum of Jupiter's Great Red Spot: The case for ammonium hydrosulfide (NH4SH) SO ICARUS LA English DT Article DE Jupiter atmosphere; Ices, UV spectroscopy; Geophysics; Atmospheres, chemistry; Experimental techniques ID SPECTROPHOTOMETRIC DETERMINATION; JOVIAN ATMOSPHERE; SULFUR; CLOUDS; CHEMISTRY AB Here we present new ultraviolet-visible spectra of irradiated ammonium hydrosulfide (NH4SH), a reported jovian atmospheric cloud component, for a range of temperatures and radiation doses and make assignments to the spectral features. We show that the combination of radiolysis and thermal annealing of NH4SH causes the originally featureless ultraviolet-visible reflectance spectrum to evolve into one that absorbs in the ultraviolet-visible region. Furthermore, we find that our laboratory spectra resemble HST spectra below 500 nm, suggesting that the more stable reaction products of NH4SH radiolysis are likely an important component of the Great Red Spot. Published by Elsevier Inc. C1 [Loeffler, Mark J.; Hudson, Reggie L.; Simon, Amy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chanover, Nancy J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. RP Loeffler, MJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM mark.loeffler@nasa.gov RI Simon, Amy/C-8020-2012; Loeffler, Mark/C-9477-2012 OI Simon, Amy/0000-0003-4641-6186; FU NASA [NAS 5-26555] FX The support of NASA's Planetary Atmospheres and Outer Planets Research programs is gratefully acknowledged. Steve Brown, Tom Ward, and Eugene Gerashchenko, members of the NASA Goddard Radiation Effects Facility, operated and maintained the Van de Graaff accelerator. This work used NASA/ESA Hubble Space Telescope observations retrieved from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The observations are associated with programs GO5313, GO11498, and GO13937, and using these program numbers all data can be retrieved from http://archive.stsci.edu/hst/search.php at the Hubble archive. NR 34 TC 2 Z9 2 U1 5 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN 1 PY 2016 VL 271 BP 265 EP 268 DI 10.1016/j.icarus.2016.02.010 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI7AP UT WOS:000373651800019 ER PT J AU Filacchione, G D'Aversa, E Capaccioni, F Clark, RN Cruikshank, DP Ciarniello, M Cerroni, P Bellucci, G Brown, RH Buratti, BJ Nicholson, PD Jaumann, R McCord, TB Sotin, C Stephan, K Ore, CMD AF Filacchione, Gianrico D'Aversa, Emiliano Capaccioni, Fabrizio Clark, Roger N. Cruikshank, Dale P. Ciarniello, Mauro Cerroni, Priscilla Bellucci, Giancarlo Brown, Robert H. Buratti, Bonnie J. Nicholson, Phillip D. Jaumann, Ralf McCord, Thomas B. Sotin, Christophe Stephan, Katrin Ore, Cristina M. Dalle TI Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps SO ICARUS LA English DT Article DE Saturn; Satellites; surfaces; Spectroscopy; Ices ID INFRARED MAPPING SPECTROMETER; OPTICAL-CONSTANTS; MU-M; SURFACE-COMPOSITION; SOLAR-SYSTEM; SOUTH-POLE; IRREGULAR SATELLITES; CRYSTALLINE H2O-ICE; SPECTRAL PROPERTIES; ENCELADUS SURFACE AB The spectral position of the 3.6 mu m continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 mu m peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 mu m at T=123 K to about 3.55 mu m at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione, G., Ciarniello, M., Capaccioni, F., et al., 2014. Icarus, 241, 45-65). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types: (a) a sample of 240 disk-integrated I/F observations of Saturn's regular satellites collected by VIMS during years 2004-2011 with solar phase in the 20 degrees-40 degrees range, corresponding to late morning-early afternoon local times. This dataset is suitable to exploit the temperature variations at hemispherical scale, resulting in average temperature T <88 K for Mimas, T << 88 K for Enceladus, T <88 K for Tethys, T=98-118 K for Dione, T=108-128 K for Rhea, T=118-128 K for Hyperion, T=128-148 and T > 168 K for Iapetus' trailing and leading hemispheres, respectively. A typical +/- 5 K uncertainty is associated to the temperature retrieval. On Tethys and Dione, for which observations on both leading and trailing hemispheres are available, in average daytime temperatures higher of about 10 K on the trailing than on the leading hemisphere are inferred. (b) Satellites disk-resolved observations taken at 20-40 km pixel(-1) resolution are suitable to map daytime temperature variations across surfaces' features, such as Enceladus' tiger stripes and Tethys' equatorial dark lens. These datasets allow to disentangle solar illumination conditions from temperature distribution when observing surface's features with strong thermal contrast. (c) Daytime average maps covering large regions of the surfaces are used to compare the inferred temperature with geomorphological features (impact craters, chasmatae, equatorial radiation lenses and active areas) and albedo variations. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by selecting pixels with max 150 km pixel(-1) resolution. VIMS-derived temperature maps allow to identify thermal anomalies across the equatorial lens of Mimas and Tethys. A temperature T > 115K is measured above Enceladus' Damascus and Alexandria sulci in the south pole region. VIMS has the sensitivity to follow seasonal temperature changes: on Tethys, Dione and Rhea higher temperature are measured above the south hemisphere during pre-equinox and above the north hemisphere during post-equinox epochs. The measured temperature distribution appears correlated with surface albedo features: in fact temperature increases on low albedo units located on Tethys, Dione and Rhea trailing hemispheres. The thermal anomaly region on Rhea's Inktomi crater detected by CIRS (Howett, C. J. A., Spencer, J. R., Hurford, T., et al., 2014. Icarus, 241, 239-247) is confirmed by VIMS: this area appears colder with respect to surrounding terrains when observed at the same local solar time. (C) 2016 Elsevier Inc. All rights reserved. C1 [Filacchione, Gianrico; D'Aversa, Emiliano; Capaccioni, Fabrizio; Ciarniello, Mauro; Cerroni, Priscilla; Bellucci, Giancarlo] INAF IAPS, Area Ric Tor Vergata, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. [Clark, Roger N.] PSI Planetary Sci Inst, Tucson, AZ 85719 USA. [Cruikshank, Dale P.; Ore, Cristina M. Dalle] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab & Steward Observ, Tucson, AZ 85721 USA. [Buratti, Bonnie J.; Sotin, Christophe] CALTECH, Jet Prop Lab, 4800 Oak Groove Dr, Pasadena, CA 91109 USA. [Nicholson, Phillip D.] Cornell Univ, Dept Astron, 418 Space Sci Bldg, Ithaca, NY 14853 USA. [Jaumann, Ralf; Stephan, Katrin] DLR, Inst Planetary Explorat, Rutherfordstasse 2, D-12489 Berlin, Germany. [Sotin, Christophe] Bear Fight Inst, Winthrop, WA 98862 USA. RP Filacchione, G (reprint author), INAF IAPS, Area Ric Tor Vergata, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. EM gianrico.filacchione@iaps.inaf.it FU INAF-IAPS; ASI-Italian Space Agency; NASA FX The authors acknowledge the financial support from INAF-IAPS, ASI-Italian Space Agency and NASA through the Cassini project. We gratefully thank the Cassini Icy Satellites Working group, VIMS technical team at Lunar and Planetary Lab (University of Arizona, Tucson, AZ) and the Cassini-Huygens Project at JPL (Pasadena, CA) for observations planning, sequencing and data archiving. Without all them this study would be impossible. This research has made use of NASA's Astrophysics Data System. NR 78 TC 1 Z9 1 U1 4 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN 1 PY 2016 VL 271 BP 292 EP 313 DI 10.1016/j.icarus.2016.02.019 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI7AP UT WOS:000373651800023 ER PT J AU Hofgartner, JD Hayes, AG Lunine, JI Zebker, H Lorenz, RD Malaska, MJ Mastrogiuseppe, M Notarnicola, C Soderblom, JM AF Hofgartner, Jason D. Hayes, Alexander G. Lunine, Jonathan I. Zebker, Howard Lorenz, Ralph D. Malaska, Michael J. Mastrogiuseppe, Marco Notarnicola, Claudia Soderblom, Jason M. TI Titan's "Magic Islands": Transient features in a hydrocarbon sea SO ICARUS LA English DT Article DE Titan; Titan, hydrology; Geological processes; Radar observations ID SURFACE; WAVES; RADAR; LAKES; ICE AB The region of Titan's hydrocarbon sea, Ligeia Mare, where transient bright features were previously discovered, was anomalously bright in the first of two more recent Cassini RADAR observations but not the second. Another transient bright feature in a different region of Ligeia Mare was also discovered in the first of the new observations. Here we present all the high-resolution observations of the regions containing these transient features and the quantitative constraints that we derived from them. We argue that these features are unlikely to be SAR image artifacts or permanent geophysical structures and thus their appearance is the result of ephemeral phenomena on Titan. We find that the transient features are more consistent with floating and/or suspended solids, bubbles, and waves than tides, sea level change, or seafloor change and based on the frequency of these phenomena in terrestrial settings, we consider waves to be the most probable hypothesis. These transient features are the first instance of active processes in Titan's lakes and seas to be confirmed by multiple detections and demonstrate that Titan's seas are not stagnant but rather dynamic environments. (C) 2016 Elsevier Inc. All rights reserved. C1 [Hofgartner, Jason D.; Hayes, Alexander G.; Lunine, Jonathan I.; Mastrogiuseppe, Marco] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Zebker, Howard] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Lorenz, Ralph D.] JHU Appl Phys Lab, Laurel, MD USA. [Malaska, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Notarnicola, Claudia] Inst Appl Remote Sensing, EURAC, Bolzano, Italy. [Soderblom, Jason M.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. RP Hofgartner, JD (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM jhofgart@jpl.nasa.gov OI Malaska, Michael/0000-0003-0064-5258 FU Natural Sciences and Engineering Research Council of Canada; Post Graduate Scholarship program; Cassini Project; NASA [NNX14AJ57G, NNX13AG03G] FX J.D.H. gratefully acknowledges the Cassini RADAR and VIMS Teams for the data and the opportunity to lead the analysis and the Natural Sciences and Engineering Research Council of Canada, Post Graduate Scholarship program and Cassini Project for financial support. J.I.L. thanks the Cassini Project for support. A.G.H. and M.M. acknowledge support from NASA grants NNX14AJ57G and NNX13AG03G. We sincerely thank all attendees of the Lakefest and Titan Surface Workshops at Cornell University for very helpful discussions that improved this work. The authors also thank Tom Farr and Jani Radebaugh for helpful reviews that improved this manuscript. NR 35 TC 1 Z9 1 U1 6 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN 1 PY 2016 VL 271 BP 338 EP 349 DI 10.1016/j.icarus.2016.02.022 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI7AP UT WOS:000373651800026 ER PT J AU Stofan, ER Smrekar, SE Mueller, N Helbert, J AF Stofan, Ellen R. Smrekar, Suzanne E. Mueller, Nils Helbert, Joern TI Themis Regio, Venus: Evidence for recent (?) volcanism from VIRTIS data SO ICARUS LA English DT Article DE Venus, surface; Venus, interior; Volcanism, Terrestrial planets ID NEAR-INFRARED OBSERVATIONS; STEEP-SIDED DOMES; RESURFACING HISTORY; GLOBAL DISTRIBUTION; THERMAL-CONVECTION; TOPOGRAPHIC RISES; MANTLE CONVECTION; CORONA FORMATION; MAGELLAN DATA; EVOLUTION AB Themis Regio is interpreted to be a hotspot rise underlain by one or more mantle plumes. Many volcanic features in the Themis region have high emissivity anomalies in Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data. Other high emissivity anomalies have been found to correspond to volcanic flows interpreted to be relatively recent (Smrekar et al. [2010a] Science 328, 605-608). Similarly, at Themis the majority of the high emissivity anomalies closely correspond to flows associated with coronae and volcanic edifices, consistent with the interpretation that they represent recent volcanism. These volcanic features also have negative Bouguer gravity anomalies indicating low density at depth, consistent with hot mantle upwellings leading to pressure release melting. In addition, several volcanic features at Themis have low emissivity anomalies, suggestive of more evolved compositions. Combining geologic mapping data with gravity and emissivity data provide support that Themis is an active hotspot swell, with associated long-lived, volcanoes and coronae that are likely associated with small-scale upwellings. Published by Elsevier Inc. C1 [Stofan, Ellen R.] POB W, The Plains, VA 20198 USA. [Smrekar, Suzanne E.; Mueller, Nils] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mueller, Nils; Helbert, Joern] German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. RP Stofan, ER (reprint author), POB W, The Plains, VA 20198 USA. EM ellenstofannasa@gmail.com; ssmrekar@jpl.nasa.gov; Nils.Mueller@dlr.de; Joern.Helbert@dlr.de OI Mueller, Nils/0000-0001-9229-8921 FU NASA [NNX09AE10G]; co-I on Robert Carlson's Venus Express Participating Scientist Program, NASA [102199 81107302140102] FX This work was supported by NASA Grant NNX09AE10G to ERS while she was at Proxemy Research. SES was supported as co-I on Robert Carlson's Venus Express Participating Scientist Program, NASA Grant 102199 81107302140102. NR 87 TC 0 Z9 0 U1 4 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN 1 PY 2016 VL 271 BP 375 EP 386 DI 10.1016/j.icarus.2016.01.034 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI7AP UT WOS:000373651800029 ER PT J AU Irwin, PGJ Fletcher, LN Tice, D Owen, SJ Orton, GS Teanby, NA Davis, GR AF Irwin, P. G. J. Fletcher, L. N. Tice, D. Owen, S. J. Orton, G. S. Teanby, N. A. Davis, G. R. TI Time variability of Neptune's horizontal and vertical cloud structure revealed by VLT/SINFONI and Gemini/NIFS from 2009 to 2013 SO ICARUS LA English DT Article DE Neptune, atmosphere; Atmospheres, structure; Atmospheres, dynamics ID INFRARED-ABSORPTION SPECTRA; RADIATIVE-TRANSFER; OUTER PLANETS; TEMPERATURES; METHANE; PAIRS; URANUS; ATMOSPHERE; SCATTERING; REANALYSIS AB New observations of Neptune's clouds in the near infrared were acquired in October 2013 with SINFONI on ESO's Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning a 64 x 64 pixel image with 2048 wavelengths. Image cubes in the J-band (1.09-1.41 mu m) and H-band (1.43-1.87 mu m) were obtained at spatial resolutions of 0.1" and 0.025"per pixel, while SINFONI's adaptive optics provided an effective resolution of approximately 0.1". Image cubes were obtained at the start and end of three successive nights to monitor the temporal development of discrete clouds both at short timescales (i.e. during a single night) as well as over the longer period of the three-day observing run. These observations were compared with similar H-band observations obtained in September 2009 with the NIFS Integral Field Unit spectrometer on the Gemini-North telescope in Hawaii, previously reported by Irwin et al. (2011) [Icarus, 216, 141-158], and previously unreported Gemini/NIFS observations at lower spatial resolution made in 2011. We find both similarities and differences between these observations, spaced over four years. The same overall cloud structure is seen with high, bright clouds visible at mid-latitudes (30-40 degrees N,S), with slightly lower clouds observed at lower latitudes, together with small discrete clouds seen circling the pole at a latitude of approximately 60 S. However, while discrete clouds were visible at this latitude at both the main cloud deck level (at 2-3 bar) and in the upper troposphere (100-500 mb) in 2009, no distinct deep (2-3 bar), discrete circumpolar clouds were visible in 2013, although some deep clouds were seen at the southern edge of the main cloud belt at 30-40 S, which have not been observed before. The nature of the deep sub-polar discrete clouds observed in 2009 is intriguing. While it is possible that in 2013 these deeper clouds were masked by faster moving, overlying features, we consider that it is unlikely that this should have happened in 2013, but not in 2009 when the upper-cloud activity was generally similar. Meanwhile, the deep clouds seen at the southern edge of the main cloud belt at 30-40 S in 2013, should also have been detectable in 2009, but were not seen. Hence, these observations may have detected a real temporal variation in the occurrence of Neptune's deep clouds, pointing to underlying variability in the convective activity at the pressure of the main cloud deck at 2-3 bar near Neptune's south pole and also in the main observable cloud belt at 30-40 S. (C) 2016 Elsevier Inc. All rights reserved. C1 [Irwin, P. G. J.; Fletcher, L. N.; Tice, D.; Owen, S. J.] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England. [Orton, G. S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Teanby, N. A.] Univ Bristol, Sch Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England. [Davis, G. R.] Jodrell Bank Observ, Sq Kilometre Array Org, Lower Withington Maccles SK11 9DL, Cheshire, England. [Fletcher, L. N.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. RP Irwin, PGJ (reprint author), Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England. EM irwin@atm.ox.ac.uk OI Teanby, Nicholas/0000-0003-3108-5775; Irwin, Patrick/0000-0002-6772-384X FU UK Space Agency [ST/K00106X/1]; UK Science and Technology Facilities Council [ST/M007715/1]; Royal Society Research Fellowship at the University of Oxford; NASA FX We are grateful to our Gemini support astronomers: Richard McDermid and Chad Trujillo and also to Ilona Soechting and Andrew Gosling in the UK Gemini Office. Patrick Irwin and Nicholas Teanby acknowledge the support of the UK Space Agency and the UK Science and Technology Facilities Council (grant numbers ST/K00106X/1 and ST/M007715/1, respectively). Leigh Fletcher was supported by a Royal Society Research Fellowship at the University of Oxford. Glenn Orton was supported by a grant from NASA to the Jet Propulsion Laboratory, California Institute of Technology. The VLT/SINFONI observations were performed at the European Southern Observatory (ESO), Proposal 092.C-0187. The Gemini/NIFS observation programmes were GN-2009B-Q-85 and GN-2011B-Q-94. NR 36 TC 1 Z9 1 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN 1 PY 2016 VL 271 BP 418 EP 437 DI 10.1016/j.icarus.2016.01.015 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI7AP UT WOS:000373651800032 ER PT J AU Sung, K Toon, GC Crawford, TJ AF Sung, Keeyoon Toon, Geoffrey C. Crawford, Timothy J. TI N-2- and (H-2+He)-broadened cross sections of benzene (C6H6) in the 7-15 mu m region for the Titan and jovian atmospheres SO ICARUS LA English DT Article DE Benzene (C6H6) cross section; Titan atmosphere; FT-IR measurements; Pseudolines ID DIODE-LASER SPECTROSCOPY; GAS-PHASE; INFRARED INTENSITIES; MASS-SPECTROMETER; BAND INTENSITIES; POLAR ATMOSPHERE; NU(14) BAND; JUPITER; NU-14; PHOTOCHEMISTRY AB In support of atmospheric remote sensing of Titan and jovian planets, we measured absorption cross sections of benzene (C6H6) in the 7-15 mu m region at temperatures between 235 K and 297 K. For this, high-resolution laboratory spectra of C6H6 were obtained using two cold cells (80 cm and 2.07 cm path length) configured to a high resolution Fourier-transform infrared (FT-IR) spectrometer, Bruker IFS-125HR, at the Jet Propulsion Laboratory (JPL). The spectrum sets include 15 pure and 15 N-2-broadened benzene spectra in the 630-1534 cm(-1) region, along with four additional spectra broadened by an H-2(85%) and He(15%) gas mixture for the 630-740 cm(-1) region. From these spectra, temperature dependent benzene cross sections were obtained for gas phase benzene in the presence of N-2 and (H-2+He) at ambient pressures and temperatures down to 235 K. In addition, we generated two independent sets of pseudolines: one of N2-broadened benzene for Titan and the other of (H-2+He)-broadened benzene for jovian planets. It is shown that the benzene pseudolines can reproduce the observed features to similar to 5% in transmittance, including the continuum-like absorption formed by numerous overlapping weak and hot band transitions. Based on the pseudoline parameters, the integrated band intensities at 296 K for the three strongest bands in the region were measured to be 177.0(73), 14.0(10), 27.2(9)x10(-17) cm(-1) /(molecule.cm(-2)) in the region of nu(4) at 674 cm(-1), nu(14) at 1038.267, and nu(13) at 1483.985 cm(-1), respectively, from the combined set of pure and N-2-broadened benzene spectra. For the (H-2+He) mixture-broadened benzene spectra, the integrated band intensity for nu(4) band in the 630-735 cm(-1) region was measured to be 168.8(17)x 10(-17) cm(-1) Amolecule.cm(-2)) at 296 K, which is in agreement with the intensity derived from the N-2-broadened benzene spectra within the combined measurement uncertainties. The results from this work show an excellent agreement (2%) with one of the latest experimental studies by Rinsland et al. (2008). Furthermore, additional characteristics carried by the pseudolines approach are discussed. Finally, we provide the two sets of pseudo line list (PLL) as electronic supplements. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sung, Keeyoon; Toon, Geoffrey C.; Crawford, Timothy J.] CALTECH, Jet Prop Lab, 4800 Oak Grove, Pasadena, CA 91109 USA. RP Sung, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove, Pasadena, CA 91109 USA. EM ksung@jpl.nasa.gov RI Sung, Keeyoon/I-6533-2015; OI Sung, Keeyoon/0000-0002-8030-7410 NR 66 TC 1 Z9 1 U1 2 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN 1 PY 2016 VL 271 BP 438 EP 452 DI 10.1016/j.icarus.2016.01.012 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI7AP UT WOS:000373651800033 ER PT J AU Aurisicchio, M Bracewell, R Hooey, BL AF Aurisicchio, Marco Bracewell, Rob Hooey, Becky L. TI Rationale mapping and functional modelling enhanced root cause analysis SO SAFETY SCIENCE LA English DT Article DE Root Cause Analysis (RCA); Argument-based rationale; Issue Based Information System (IBIS); Functional modelling; Function Analysis Diagram (FAD); Space Shuttle Challenger disaster ID ACCIDENT ANALYSIS; DESIGN; SYSTEMS; CAUSATION; FAILURES; CULTURE; STAMP AB Objective: The process of understanding the causes of adverse events associated with complex engineered systems can be time consuming and expensive. It often requires substantial human and physical resources ranging from a few engineers up to multiple teams of domain specialists from collaborating organisations. The research presented in this article aims to provide more effective support to the analysts involved in root cause analysis (RCA) by exploring the combined application of the Issue Based Information System (IBIS) and the Function Analysis Diagram (FAD) methods. The first method (IBIS) introduces the concept of argument-based rationale for explicit justification of the nodes of a cause effect chain as well as of redesign decisions, while the second method (FAD) introduces the notion of structure-dependent functional modelling of complex systems in normal and failure states. Method: Causation data from publicly available technical reports of the Space Shuttle Challenger disaster was reverse-engineered using a root cause analysis approach based on the IBIS and FAD notations. IBIS and FAD were implemented using a free and open source software tool known as designVUE. The approach was evaluated by comparing it to a method for root cause analysis widely used in industry and assessing how it satisfies generic requirements for root cause analysis. Results: The results show that the proposed IBIS-FAD approach provides a rich description of the causes for an accident presented in a manner that facilitates information access and understanding. The IBIS notation allowed for explicit modelling of the reasons supporting or refuting failure hypotheses along with evidence. The FAD notation provided a clear and concise method to visualise the complex set of non-linear interactions leading to the failure of a system by annotating graphical schematics of the design with the functions exchanged between its components. Finally, the results show that the approach supports the capture and justification of redesign decisions and ties them to initiating problems in a way that promotes the prevention of accident re-occurrence. Conclusions: Argument-based rationale with IBIS and FAD-style functional modelling are powerful concepts to extend the tool set available to support the root cause analysis process. The approach proposed in this article provides a unique tool that would be of value to academics, practitioners, and regulators concerned with root cause analysis and opportunities to improve the process of understanding adverse events. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [Aurisicchio, Marco] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, Design Engn Grp, Exhibit Rd,South Kensington Campus, London SW7 2AZ, England. [Bracewell, Rob] Rolls Royce, Derby, England. [Hooey, Becky L.] San Jose State Univ, NASA, Ames Res Ctr, Moffett Field, CA USA. RP Aurisicchio, M (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, Exhibit Rd,South Kensington Campus, London SW7 2AZ, England. EM m.aurisicchio@imperial.ac.uk; rob.bracewell2@rolls-royce.com; becky.l.hooey@nasa.gov FU United Kingdom Engineering and Physical Sciences Research Council (EPSRC) through the Impact Acceleration, Pathways to Impact Award [EP/K503733/1]; National Aeronautics and Space Administration (NASA) Aviation Safety Program (System-wide Safety Assurance: Human Systems Solutions project element) FX The authors acknowledge the support of the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) through the Impact Acceleration, Pathways to Impact Award (EP/K503733/1), and the National Aeronautics and Space Administration (NASA) Aviation Safety Program (System-wide Safety Assurance: Human Systems Solutions project element). The data underlying this research are publicly available and can be accessed as indicated in Table 1, section 4.2. NR 55 TC 0 Z9 0 U1 9 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-7535 EI 1879-1042 J9 SAFETY SCI JI Saf. Sci. PD JUN PY 2016 VL 85 BP 241 EP 257 DI 10.1016/j.ssci.2015.12.022 PG 17 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DI5OO UT WOS:000373548700024 ER PT J AU Djorgovski, SG Graham, MJ Donalek, C Mahabal, AA Drake, AJ Turmon, M Fuchs, T AF Djorgovski, S. G. Graham, M. J. Donalek, C. Mahabal, A. A. Drake, A. J. Turmon, M. Fuchs, T. TI Real-time data mining of massive data streams from synoptic sky surveys SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Article DE Sky surveys; Massive data streams; Machine learning; Bayesian methods; Automated decision making ID TRANSIENT SURVEY; VARIABLE-STARS; ASTRONOMICAL TRANSIENTS; SPACED DATA; CLASSIFICATION; SERIES; PERIODICITY; DISCOVERY; NETWORKS; DOMAIN AB The nature of scientific and technological data collection is evolving rapidly: data volumes and rates grow exponentially, with increasing complexity and information content, and there has been a transition from static data sets to data streams that must be analyzed in real time. Interesting or anomalous phenomena must be quickly characterized and followed up with additional measurements via optimal deployment of limited assets. Modern astronomy presents a variety of such phenomena in the form of transient events in digital synoptic sky surveys, including cosmic explosions (supernovae, gamma ray bursts), relativistic phenomena (black hole formation, jets), potentially hazardous asteroids, etc. We have been developing a set of machine learning tools to detect, classify and plan a response to transient events for astronomy applications, using the Catalina Real-time Transient Survey (CRTS) as a scientific and methodological testbed. The ability to respond rapidly to the potentially most interesting events is a key bottleneck that limits the scientific returns from the current and anticipated synoptic sky surveys. Similar challenge arises in other contexts, from environmental monitoring using sensor networks to autonomous spacecraft systems. Given the exponential growth of data rates, and the time-critical response, we need a fully automated and robust approach. We describe the results obtained to date, and the possible future developments. (C) 2016 Elsevier B.V. All rights reserved. C1 [Djorgovski, S. G.; Graham, M. J.; Donalek, C.; Mahabal, A. A.; Drake, A. J.] CALTECH, Pasadena, CA 91125 USA. [Turmon, M.; Fuchs, T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Djorgovski, SG (reprint author), CALTECH, Pasadena, CA 91125 USA. EM george@cd3.caltech.edu; mjg@cd3.caltech.edu; donalek@cd3.caltech.edu; aam@cd3.caltech.edu; ajd@cd3.caltech.edu; turmon@jpl.nasa.gov; thomas.fuchs@jpl.nasa.gov FU NASA [08-AISR08-0085]; NSF [AST-0909182, IIS-1118041, AST-1313422, AST-0834235]; W. M. Keck Institute for Space Studies at Caltech (KISS); US Virtual Astronomical Observatory; Caltech SURF program FX This work was supported in part by the NASA grant 08-AISR08-0085, the NSF grants AST-0909182, IIS-1118041, and AST-1313422, by the W. M. Keck Institute for Space Studies at Caltech (KISS), and by the US Virtual Astronomical Observatory, itself supported by the NSF grant AST-0834235. Some of this work was assisted by the Caltech students Nihar Sharma, Yutong Chen, Alex Ball, Victor Duan, Allison Maker, and others, supported by the Caltech SURF program. We thank numerous collaborators and colleagues, especially within the CRTS survey team, and the worldwide Virtual Observatory and astroinformatics community, for stimulating discussions. NR 44 TC 1 Z9 1 U1 5 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD JUN PY 2016 VL 59 BP 95 EP 104 DI 10.1016/j.future.2015.10.013 PG 10 WC Computer Science, Theory & Methods SC Computer Science GA DH3NE UT WOS:000372692900007 ER PT J AU McNally, A Shukla, S Arsenault, KR Wang, SG Peters-Lidard, CD Verdin, JP AF McNally, Amy Shukla, Shraddhanand Arsenault, Kristi R. Wang, Shugong Peters-Lidard, Christa D. Verdin, James P. TI Evaluating ESA CCI soil moisture in East Africa SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE Remotely sensed soil moisture; Agricultural drought monitoring; Food security; East Africa ID DROUGHT MONITOR; WATER; DATASET; SYSTEM; MODELS; FOOD; RETRIEVALS; ECOSYSTEM; PRODUCTS; RAINFALL AB To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA), Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP); however, these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM) over East Africa. Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we find substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies are well correlated (R > 0.5) with modeled soil moisture, and in some regions, NDVI. We use pixel-wise correlation analysis and qualitative comparisons of seasonal maps and time series to show that remotely sensed soil moisture can inform remote drought monitoring that has traditionally relied on rainfall and NDVI in moderately vegetated regions. Published by Elsevier B.V. C1 [McNally, Amy] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Greenbelt, MD 20771 USA. [McNally, Amy] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Shukla, Shraddhanand] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Arsenault, Kristi R.; Wang, Shugong] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, SAIC Inc, Greenbelt, MD 20771 USA. [Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Verdin, James P.] US Geol Survey, Ctr Earth Resources Observat Sci, Sioux Falls, SD 57198 USA. RP McNally, A (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Greenbelt, MD 20771 USA.; McNally, A (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. EM amy.l.mcnally@nasa.gov; shrad@geog.ucsb.edu; kristi.r.arsenault@nasa.gov; shugong.wang@nasa.gov; christa.d.peters-lidard@nasa.gov; verdin@usgs.gov RI Peters-Lidard, Christa/E-1429-2012 OI Peters-Lidard, Christa/0000-0003-1255-2876 FU NASA Applied Sciences Program [G09AC000001, NN10AN261]; USAID-NASA Participating Agency Program Agreement; United States Geological Survey (USGS) [G14AC00042] FX We acknowledge the Global Modeling and Assimilation Office (GMAO) and the GES DISC for the dissemination of MERRA. This work was supported USGS Cooperative Agreement G09AC000001 "Monitoring and Forecasting Climate, Water and Land Use for Food Production in the Developing World," with funding from the NASA Applied Sciences Program, AwardNN10AN261 for "A Land Data Assimilation System for Famine Early Warning", and a USAID-NASA Participating Agency Program Agreement. Dr. Shukla was supported by the United States Geological Survey (USGS) award number G14AC00042. We also thank two anonymous reviewers for comments, and Gideaon Galu and Tamuka Magadzire for information on FEWS NET crop masks. NR 63 TC 4 Z9 4 U1 12 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD JUN PY 2016 VL 48 BP 96 EP 109 DI 10.1016/j.jag.2016.01.001 PG 14 WC Remote Sensing SC Remote Sensing GA DH3JC UT WOS:000372682300010 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Birnholtz, O Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Healy, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Johnson-McDaniel, NK Jones, DI Jones, R Jonker, RJG Ju, L Haris, MK Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL London, LT Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lousto, CO Lovelace, G Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Pfeiffer, HP Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Typai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M Van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, D Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J Boyle, M Campanelli, M Hemberger, DA Kidder, LE Ossokine, S Scheel, MA Szilagyi, B Teukolsky, S Zlochower, Y AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Birnholtz, O. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Abhirup Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Healy, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Johnson-McDaniel, N. K. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, M. K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. London, L. T. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lousto, C. O. Lovelace, G. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Pfeiffer, H. P. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Typai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toeyrae, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. Van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, D. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. Boyle, M. Campanelli, M. Hemberger, D. A. Kidder, L. E. Ossokine, S. Scheel, M. A. Szilagyi, B. Teukolsky, S. Zlochower, Y. CA LIGO Sci Collaboration Virgo Collaboration TI Tests of General Relativity with GW150914 SO PHYSICAL REVIEW LETTERS LA English DT Article ID GRAVITATIONAL-WAVE OBSERVATIONS; INSPIRALLING COMPACT BINARIES; SCHWARZSCHILD BLACK-HOLE; GRAVITY; RADIATION; PULSAR; STARS; MASS; SYSTEMS; TAILS AB The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte St Angelo, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Yvert, M.] Univ Savoie Mt Blanc, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Ain, A.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Birnholtz, O.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; Van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.; Wade, L. E.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Abhirup; Ghosh, Archisman; Iyer, B. R.; Johnson-McDaniel, N. K.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Lovelace, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS, IN2P3, LAL,Univ Paris Saclay, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Pfeiffer, H. P.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.; Ossokine, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, CNRS,IN2P3,APC,CEA,Irfu, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Williams, D.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Was, M.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] Wigner RCP, RMKI, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toeyrae, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, IMAPP, Dept Astrophysics, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, Artemis, CNRS, Observ Cote Azur, CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Boyle, M.; Kidder, L. E.; Teukolsky, S.] Cornell Univ, Ithaca, NY 14853 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.] ENS PSL Res Univ, Sorbonne Univ, Univ Paris 06, Lab Kastler Brossel,Coll France, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, Inst Lumiere Matiere, CNRS, UMR 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, IN2P3, CNRS, LMA, F-69622 Villeurbanne, Lyon, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3, IEEC, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte St Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.; Pfeiffer, H. P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.; Vallisneri, M.; Hemberger, D. A.; Scheel, M. A.; Szilagyi, B.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; London, L. T.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Ind Technol Inst, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Typai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Healy, J.; Lange, J.; Lousto, C. O.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.; Campanelli, M.; Zlochower, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, M. K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP, South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Szilagyi, B.] Caltech JPL, Pasadena, CA 91109 USA. [Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Costa, Cesar/G-7588-2012; Rocchi, Alessio/O-9499-2015; Strain, Kenneth/D-5236-2011; prodi, giovanni/B-4398-2010; Zhu, Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Gemme, Gianluca/C-7233-2008; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016; Strigin, Sergey/I-8337-2012; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Bondu, Francois/A-2071-2012; Iyer, Bala R./E-2894-2012; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Jung, David/Q-4068-2016; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Pinto, Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni, Fabio/A-1920-2008 OI Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; O'Shaughnessy, Richard/0000-0001-5832-8517; Dolique, Vincent/0000-0001-5644-9905; Boschi, Valerio/0000-0001-8665-2293; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Talukder, Dipongkar/0000-0002-9178-8870; Williams, Daniel/0000-0003-3772-198X; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Berry, Christopher/0000-0003-3870-7215; Kanner, Jonah/0000-0001-8115-0577; Nelemans, Gijs/0000-0002-0752-2974; Rocchi, Alessio/0000-0002-1382-9016; Strain, Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X; Zhu, Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Gemme, Gianluca/0000-0002-1127-7406; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Bondu, Francois/0000-0001-6487-5197; Iyer, Bala R./0000-0002-4141-5179; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Jung, David/0000-0001-8631-610X; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Conti, Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Marchesoni, Fabio/0000-0001-9240-6793 FU U.S. National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Australian Research Council; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science and Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS FX The authors gratefully acknowledge the support of the U.S. National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science and Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, the Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for the provision of computational resources. NR 108 TC 70 Z9 70 U1 29 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 31 PY 2016 VL 116 IS 22 AR 221101 DI 10.1103/PhysRevLett.116.221101 PG 19 WC Physics, Multidisciplinary SC Physics GA DN2XV UT WOS:000376927200001 PM 27314708 ER PT J AU Kechedzhi, K Smelyanskiy, VN AF Kechedzhi, Kostyantyn Smelyanskiy, Vadim N. TI Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy SO PHYSICAL REVIEW X LA English DT Article ID BODY APPROXIMATION METHODS; SOLVABLE MODEL; OPTIMIZATION PROBLEMS; SPIN-GLASS; VALIDITY; TRANSITION AB Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p-spin model that allows for a mean-field quasiclassical solution and, at the same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are particularly important for the dynamics in the presence of the exponential degeneracy of metastable states. We determine the optimal regime of the open-system quantum annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most efficient transition rate corresponds to zero temperature. This model calculation is the first analytically tractable example where open-system quantum annealing algorithm outperforms simulated annealing, which can, in principle, be realized using an analog quantum computer. C1 [Kechedzhi, Kostyantyn] NASA, QuAIL, Ames Res Ctr, Mail Stop 269-3, Moffett Field, CA 94035 USA. [Kechedzhi, Kostyantyn] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Smelyanskiy, Vadim N.] Google, 150 Main St, Venice Beach, CA 90291 USA. RP Kechedzhi, K (reprint author), NASA, QuAIL, Ames Res Ctr, Mail Stop 269-3, Moffett Field, CA 94035 USA.; Kechedzhi, K (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. FU NASA [NNX12AK33A]; Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) [IAA 145483]; AFRL Information Directorate [F4HBKC4162G001] FX This work is supported by NASA under Grant No. NNX12AK33A and in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IAA 145483, and by the AFRL Information Directorate under Grant No. F4HBKC4162G001. NR 45 TC 3 Z9 3 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD MAY 31 PY 2016 VL 6 IS 2 AR 021028 DI 10.1103/PhysRevX.6.021028 PG 13 WC Physics, Multidisciplinary SC Physics GA DN2XP UT WOS:000376926600001 ER PT J AU Fassnacht, SR Sexstone, GA Kashipazha, AH Lopez-Moreno, JI Jasinski, MF Kampf, SK Von Thaden, BC AF Fassnacht, Steven R. Sexstone, Graham A. Kashipazha, Amir H. Ignacio Lopez-Moreno, Juan Jasinski, Michael F. Kampf, Stephanie K. Von Thaden, Benjamin C. TI Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data SO HYDROLOGICAL PROCESSES LA English DT Article DE snow depletion curves; snowmelt; SCA; SWE; SNOTEL; MODIS ID WATER EQUIVALENT; NORTHERN COLORADO; SNOTEL DATA; VARIABILITY; MODIS; PRODUCTS; MODEL; BASIN; INTERPOLATION; RANGE AB During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectroradiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80 000 km(2) domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A station's peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Fassnacht, Steven R.; Kashipazha, Amir H.; Kampf, Stephanie K.; Von Thaden, Benjamin C.] Colorado State Univ, ESS Watershed Sci, Ft Collins, CO 80523 USA. [Fassnacht, Steven R.] Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Fassnacht, Steven R.] Colorado State Univ, Geospatial Centroid, Ft Collins, CO 80523 USA. [Sexstone, Graham A.] Colorado State Univ, EASC Watershed Sci, Ft Collins, CO 80523 USA. [Ignacio Lopez-Moreno, Juan] CSIC, Inst Pirenaico Ecol, Campus Aula Dei,POB 202, E-50080 Zaragoza, Spain. [Jasinski, Michael F.] NASA, Goddard Space Flight Ctr, Mail Code 617, Greenbelt, MD 20771 USA. RP Fassnacht, SR (reprint author), Colorado State Univ, ESS Watershed Sci, Ft Collins, CO 80523 USA. EM steven.fassnacht@colostate.edu RI Sexstone, Graham/L-2346-2016; Kampf, Stephanie/F-4608-2011 OI Sexstone, Graham/0000-0001-8913-0546; Kampf, Stephanie/0000-0001-8991-2679 FU NASA Terrestrial Hydrology Program [NNX11AQ66G]; US Geological Survey Water Resources Division FX This work was partially funded by the NASA Terrestrial Hydrology Program (award NNX11AQ66G 'Improved Characterization of Snow Depth in Complex Terrain Using Satellite Lidar Altimetry' PI Michael F. Jasinski NASA GSFC) and the US Geological Survey Water Resources Division (via Dr Lauren Hall) through a student opportunity programme administered by the Colorado Water Institute at Colorado State University (CSU). Thanks are also due to Michael Lefsky of the Department of Ecosystem Science and Sustainability at CSU who provided the MODIS image processing code. The Natural Resources Conservation Service Colorado Snow Survey office provided the GPS coordinates for the SNOTEL stations. NR 42 TC 0 Z9 0 U1 7 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD MAY 30 PY 2016 VL 30 IS 11 BP 1708 EP 1717 DI 10.1002/hyp.10730 PG 10 WC Water Resources SC Water Resources GA DQ4SD UT WOS:000379192700005 ER PT J AU Trattner, KJ Burch, JL Ergun, R Fuselier, SA Gomez, RG Grimes, EW Lewis, WS Mauk, B Petrinec, SM Pollock, CJ Phan, TD Vines, SK Wilder, FD Young, DT AF Trattner, K. J. Burch, J. L. Ergun, R. Fuselier, S. A. Gomez, R. G. Grimes, E. W. Lewis, W. S. Mauk, B. Petrinec, S. M. Pollock, C. J. Phan, T. D. Vines, S. K. Wilder, F. D. Young, D. T. TI The response time of the magnetopause reconnection location to changes in the solar wind: MMS case study SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; DAYSIDE MAGNETOPAUSE; EARTHS MAGNETOPAUSE; BOUNDARY-LAYER; MOTION; MODEL; MAGNETOSHEATH; SITES; FLOW AB Reconnection at the Earth's magnetopause is the mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy, mass, and momentum to flow into the magnetosphere. It is the primary science goal of the recently launched MMS mission to unlock the mechanism of magnetic reconnection with a novel suite of plasma and field instruments. This study investigates several magnetopause crossings in the vicinity of the X-line on 19 September 2015 and compares the observed X-line location with predictions from the Maximum Magnetic Shear model. Rotations of the interplanetary magnetic field (IMF) during the magnetopause crossings together with the close proximity of the four MMS satellites are used to determine the response time of the reconnection X-line location to changes in the IMF. The reconnection location exhibits a continuous motion during slow changes in the IMF but a delayed response to sudden changes in the IMF. C1 [Trattner, K. J.; Ergun, R.; Wilder, F. D.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Burch, J. L.; Fuselier, S. A.; Gomez, R. G.; Lewis, W. S.; Vines, S. K.; Young, D. T.] SW Res Inst, San Antonio, TX USA. [Fuselier, S. A.; Vines, S. K.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. [Grimes, E. W.] Univ Calif Los Angeles, Dept Earth & Space Sci, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Mauk, B.] Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA. [Petrinec, S. M.] Lockheed Martin ATC, Palo Alto, CA USA. [Pollock, C. J.] NASA, GSFC, Greenbelt, MD USA. [Phan, T. D.] Univ Calif Berkeley, Space Phys Res Grp, Berkeley, CA 94720 USA. RP Trattner, KJ (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM karlheinz.trattner@lasp.colorado.edu RI NASA MMS, Science Team/J-5393-2013; Mauk, Barry/E-8420-2017 OI NASA MMS, Science Team/0000-0002-9504-5214; Mauk, Barry/0000-0001-9789-3797 FU NASA [NNX11AJ09G, NNX14AF71G]; NSF [1102572] FX The MMS mission is a culmination of years of effort from a large number of women and men. Collectively, they share in the scientific successes of the mission. Solar wind data from the Wind spacecraft are available at CDAWeb (http://cdaweb.gsfc.nasa.gov/istp_public/). All data from the first 6 months of the mission will be available to the general public through the MMS website in March 2016. The research at LASP is also supported by NASA grants NNX11AJ09G and NNX14AF71G and by the NSF under grant 1102572. The authors thank the International Space Science Institute in Bern, Switzerland; its staff; and directors for supporting the ISSI team "From Cluster to MMS," from which this work was partly developed. NR 40 TC 4 Z9 4 U1 2 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4673 EP 4682 DI 10.1002/2016GL068554 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500002 ER PT J AU Graham, DB Khotyaintsev, YV Norgren, C Vaivads, A Andre, M Lindqvist, PA Marklund, GT Ergun, RE Paterson, WR Gershman, DJ Giles, BL Pollock, CJ Dorelli, JC Avanov, LA Lavraud, B Saito, Y Magnes, W Russell, CT Strangeway, RJ Torbert, RB Burch, JL AF Graham, D. B. Khotyaintsev, Yu. V. Norgren, C. Vaivads, A. Andre, M. Lindqvist, P. -A. Marklund, G. T. Ergun, R. E. Paterson, W. R. Gershman, D. J. Giles, B. L. Pollock, C. J. Dorelli, J. C. Avanov, L. A. Lavraud, B. Saito, Y. Magnes, W. Russell, C. T. Strangeway, R. J. Torbert, R. B. Burch, J. L. TI Electron currents and heating in the ion diffusion region of asymmetric reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HYBRID-DRIFT INSTABILITY; MAGNETIC RECONNECTION; MAGNETOPAUSE AB In this letter the structure of the ion diffusion region of magnetic reconnection at Earth's magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration. C1 [Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.] Swedish Inst Space Phys, Uppsala, Sweden. [Norgren, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Lindqvist, P. -A.; Marklund, G. T.] KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden. [Ergun, R. E.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Paterson, W. R.; Gershman, D. J.; Giles, B. L.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gershman, D. J.; Avanov, L. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lavraud, B.] Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, Toulouse, France. [Saito, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Magnes, W.; Russell, C. T.; Strangeway, R. J.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Burch, J. L.] SW Res Inst, San Antonio, TX USA. RP Graham, DB (reprint author), Swedish Inst Space Phys, Uppsala, Sweden. EM dgraham@irfu.se RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU Swedish National Space Board [175/15, 139/12]; CNES; CNRS FX We thank the entire MMS team and instrument PIs for data access and support. We thank O. Le Contel and the SCM team for the high-quality magnetic field data. This work was supported by the Swedish National Space Board, grants 175/15 and 139/12. The IRAP contribution to MMS was supported by CNES and CNRS. MMS data are available at https://lasp.colorado.edu/mms/sdc/public. NR 27 TC 6 Z9 6 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4691 EP 4700 DI 10.1002/2016GL068613 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500004 ER PT J AU Eastwood, JP Phan, TD Cassak, PA Gershman, DJ Haggerty, C Malakit, K Shay, MA Mistry, R Oieroset, M Russell, CT Slavin, JA Argall, MR Avanov, LA Burch, JL Chen, LJ Dorelli, JC Ergun, RE Giles, BL Khotyaintsev, Y Lavraud, B Lindqvist, PA Moore, TE Nakamura, R Paterson, W Pollock, C Strangeway, RJ Torbert, RB Wang, S AF Eastwood, J. P. Phan, T. D. Cassak, P. A. Gershman, D. J. Haggerty, C. Malakit, K. Shay, M. A. Mistry, R. Oieroset, M. Russell, C. T. Slavin, J. A. Argall, M. R. Avanov, L. A. Burch, J. L. Chen, L. J. Dorelli, J. C. Ergun, R. E. Giles, B. L. Khotyaintsev, Y. Lavraud, B. Lindqvist, P. A. Moore, T. E. Nakamura, R. Paterson, W. Pollock, C. Strangeway, R. J. Torbert, R. B. Wang, S. TI Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TRANSFER EVENTS; MAGNETIC RECONNECTION; ISLANDS; FIELD AB New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection. C1 [Eastwood, J. P.; Mistry, R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [Phan, T. D.; Oieroset, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Cassak, P. A.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Gershman, D. J.; Avanov, L. A.; Chen, L. J.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Paterson, W.; Wang, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gershman, D. J.; Avanov, L. A.; Chen, L. J.; Wang, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Haggerty, C.; Shay, M. A.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Malakit, K.] Mahidol Univ, Dept Phys, Bangkok 10700, Thailand. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Slavin, J. A.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Argall, M. R.; Torbert, R. B.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Burch, J. L.; Torbert, R. B.] SW Res Inst, San Antonio, TX USA. [Ergun, R. E.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Khotyaintsev, Y.] Swedish Inst Space Phys, Uppsala, Sweden. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, Toulouse, France. [Lindqvist, P. A.] Royal Inst Technol, Sch Elect Engn, Stockholm, Sweden. [Nakamura, R.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Pollock, C.] Denali Sci, Healy, AK USA. RP Eastwood, JP (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. EM jonathan.eastwood@imperial.ac.uk RI Nakamura, Rumi/I-7712-2013; NASA MMS, Science Team/J-5393-2013; Slavin, James/H-3170-2012; OI Nakamura, Rumi/0000-0002-2620-9211; NASA MMS, Science Team/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X; Mistry, Rishi/0000-0001-5262-4403 FU STFC (UK) [ST/G00725X/1]; NASA [NNX08AO83G, NNX13AD72G, NNX16AF75G]; NSF [AGS-1219382] FX Simulations and analysis were performed at NCAR-CISL and at NERSC. For MMS data visit https://lasp.colorado.edu/mms/sdc/public/. The simulation data used to produce the results of this paper are available from the authors. This work was supported by STFC (UK) (ST/G00725X/1), NASA (NNX08AO83G, NNX13AD72G, and NNX16AF75G), and NSF (AGS-1219382). IRAP contribution to MMS was supported by CNES. NR 34 TC 8 Z9 8 U1 5 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4716 EP 4724 DI 10.1002/2016GL068747 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500007 ER PT J AU Hasegawa, H Kitamura, N Saito, Y Nagai, T Shinohara, I Yokota, S Pollock, CJ Giles, BL Dorelli, JC Gershman, DJ Avanov, LA Kreisler, S Paterson, WR Chandler, MO Coffey, V Burch, JL Torbert, RB Moore, TE Russell, CT Strangeway, RJ Le, G Oka, M Phan, TD Lavraud, B Zenitani, S Hesse, M AF Hasegawa, H. Kitamura, N. Saito, Y. Nagai, T. Shinohara, I. Yokota, S. Pollock, C. J. Giles, B. L. Dorelli, J. C. Gershman, D. J. Avanov, L. A. Kreisler, S. Paterson, W. R. Chandler, M. O. Coffey, V. Burch, J. L. Torbert, R. B. Moore, T. E. Russell, C. T. Strangeway, R. J. Le, G. Oka, M. Phan, T. D. Lavraud, B. Zenitani, S. Hesse, M. TI Decay of mesoscale flux transfer events during quasi-continuous spatially extended reconnection at the magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; EARTHS MAGNETOPAUSE; REGION; ROPES AB We present observations on 2 October 2015 when the Geotail spacecraft, near the Earth's equatorial plane, and the Magnetospheric Multiscale (MMS) spacecraft, at midsouthern latitudes, simultaneously encountered southward jets from dayside magnetopause reconnection under southward interplanetary magnetic field conditions. The observations show that the equatorial reconnection site under modest solar wind Alfven Mach number conditions remained active almost continuously for hours and, at the same time, extended over a wide range of local times (>= 4 h). The reconnection jets expanded toward the magnetosphere with distance from the reconnection site. Geotail, closer to the reconnection site, occasionally encountered large-amplitude mesoscale flux transfer events (FTEs) with durations about or less than 1min. However, MMS subsequently detected no or only smaller-amplitude corresponding FTE signatures. It is suggested that during quasi-continuous spatially extended reconnection, mesoscale FTEs decay as the jet spatially evolves over distances between the two spacecraft of >= 350 ion inertial lengths. C1 [Hasegawa, H.; Kitamura, N.; Saito, Y.; Shinohara, I.; Yokota, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. [Nagai, T.] Tokyo Inst Technol, Tokyo 152, Japan. [Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Gershman, D. J.; Avanov, L. A.; Kreisler, S.; Paterson, W. R.; Moore, T. E.; Le, G.; Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Pollock, C. J.] Denali Sci, Healy, AK USA. [Gershman, D. J.] Oak Ridge Associated Univ, Washington, DC USA. [Chandler, M. O.; Coffey, V.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Burch, J. L.] SW Res Inst, San Antonio, TX USA. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Oka, M.; Phan, T. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, Toulouse, France. [Zenitani, S.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo, Japan. RP Hasegawa, H (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM hase@stp.isas.jaxa.jp RI Hasegawa, Hiroshi/A-1192-2007; Le, Guan/C-9524-2012; NASA MMS, Science Team/J-5393-2013; Zenitani, Seiji/D-7988-2013 OI Hasegawa, Hiroshi/0000-0002-1172-021X; Le, Guan/0000-0002-9504-5214; NASA MMS, Science Team/0000-0002-9504-5214; Zenitani, Seiji/0000-0002-0945-1815 FU JSPS [15K05306] FX The Geotail data are available from DARTS: https://darts.isas.jaxa.jp/stp/geotail/, Wind data are from CDAWeb, and MMS data are available from the MMS Science Data Center: https://lasp.colorado.edu/mms/sdc/. We used the FPI data v2.1.0 and FGM data v4.18.0. IRAP contribution to MMS was supported by CNES. The work by H.H. was supported by JSPS Grant-in-Aid for Scientific Research KAKENHI 15K05306. NR 37 TC 4 Z9 4 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4755 EP 4762 DI 10.1002/2016GL069225 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500011 ER PT J AU Ruhunusiri, S Halekas, JS McFadden, JP Connerney, JEP Espley, JR Harada, Y Livi, R Seki, K Mazelle, C Brain, D Hara, T DiBraccio, GA Larson, DE Mitchell, DL Jakosky, BM Hasegawa, H AF Ruhunusiri, Suranga Halekas, J. S. McFadden, J. P. Connerney, J. E. P. Espley, J. R. Harada, Y. Livi, R. Seki, K. Mazelle, C. Brain, D. Hara, T. DiBraccio, G. A. Larson, D. E. Mitchell, D. L. Jakosky, B. M. Hasegawa, H. TI MAVEN observations of partially developed Kelvin-Helmholtz vortices at Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND; MARTIAN MAGNETOSPHERE; MAGNETIC RECONNECTION; EARTHS MAGNETOPAUSE; PLASMA CLOUDS; ION OUTFLOW; MACH NUMBER; INSTABILITY; BOUNDARY; OSCILLATIONS AB We present preliminary results and interpretations for Mars Atmospheric and Volatile EvolutioN (MAVEN) observations of magnetosheath-ionospheric boundary oscillations at Mars. Using centrifugal force arguments, we first predict that a signature of fully rolled up Kelvin-Helmholtz vortices at Mars is sheath ions that have a bulk motion toward the Sun. The sheath ions adjacent to a vortex should also accelerate to speeds higher than the mean sheath velocity. We also predict that while the ionospheric ions that are in the vortex accelerate antisunward, they never attain speeds exceeding that of the sheath ions, in stark contrast to KH vortices that arise at the Earth's magnetopause. We observe accelerated sheath and ionospheric ions, but we do not observe sheath ions that have a bulk motion toward the Sun. Thus, we interpret these observations as KH vortices that have not fully rolled up. C1 [Ruhunusiri, Suranga; Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [McFadden, J. P.; Harada, Y.; Livi, R.; Hara, T.; Larson, D. E.; Mitchell, D. L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Seki, K.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France. [Brain, D.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Hasegawa, H.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. RP Ruhunusiri, S (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM suranga-ruhunusiri@uiowa.edu RI Hasegawa, Hiroshi/A-1192-2007 OI Hasegawa, Hiroshi/0000-0002-1172-021X FU NASA; CNES FX This work was supported by NASA and was partially supported by the CNES. G. A. DiBraccio was supported by a NASA Postdoctoral Program appointment at the NASA Goddard Space Flight Center, administered by Universities Space Research Association through a contract with NASA. We thank Paul Song for useful discussions. MAVEN data are publicly available through the Planetary Data System. NR 64 TC 2 Z9 2 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4763 EP 4773 DI 10.1002/2016GL068926 PG 11 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500013 ER PT J AU Narita, Y Plaschke, F Nakamura, R Baumjohann, W Magnes, W Fischer, D Voros, Z Torbert, RB Russell, CT Strangeway, RJ Leinweber, HK Bromund, KR Anderson, BJ Le, G Chutter, M Slavin, JA Kepko, EL Burch, JL Motschmann, U Richter, I Glassmeier, KH AF Narita, Y. Plaschke, F. Nakamura, R. Baumjohann, W. Magnes, W. Fischer, D. Voeroes, Z. Torbert, R. B. Russell, C. T. Strangeway, R. J. Leinweber, H. K. Bromund, K. R. Anderson, B. J. Le, G. Chutter, M. Slavin, J. A. Kepko, E. L. Burch, J. L. Motschmann, U. Richter, I. Glassmeier, K. -H. TI Wave telescope technique for MMS magnetometer SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TERRESTRIAL BOW SHOCK; LION ROARS; MULTIPOINT MEASUREMENTS; NUMBER; SPACE; MAGNETOSHEATH; CLUSTER AB Multipoint measurements are a powerful method in studying wavefields in space plasmas. The wave telescope technique is tested against magnetic field fluctuations in the terrestrial magnetosheath measured by the four Magnetospheric Multiscale (MMS) spacecraft on a spatial scale of about 20 km. The dispersion relation diagram and the wave vector distribution are determined for the first time in the ion-kinetic range. Moreover, the dispersion relation diagram is determined in a proxy plasma rest frame by regarding the low-frequency dispersion relation as a Doppler relation and compensating for the apparent phase velocity. Fluctuations are highly compressible, and the wave vectors have an angle of about 60 degrees from the mean magnetic field. We interpret that the measured fluctuations represent a kinetic-drift mirror mode in the magnetosheath which is dispersive and in a turbulent state accompanied by a sideband formation. C1 [Narita, Y.; Plaschke, F.; Nakamura, R.; Baumjohann, W.; Magnes, W.; Fischer, D.; Voeroes, Z.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Torbert, R. B.; Chutter, M.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Bromund, K. R.; Le, G.; Kepko, E. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Anderson, B. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Slavin, J. A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Burch, J. L.] SW Res Inst, San Antonio, TX USA. [Motschmann, U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, Braunschweig, Germany. [Motschmann, U.] Deutsch Zentrum Luft & Raumfahrt, Inst Planetenforsch, Berlin, Germany. [Richter, I.; Glassmeier, K. -H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Glassmeier, K. -H.] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany. RP Narita, Y (reprint author), Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. EM yasuhito.narita@oeaw.ac.at RI Nakamura, Rumi/I-7712-2013; Baumjohann, Wolfgang/A-1012-2010; Le, Guan/C-9524-2012; NASA MMS, Science Team/J-5393-2013; Slavin, James/H-3170-2012; OI Nakamura, Rumi/0000-0002-2620-9211; Baumjohann, Wolfgang/0000-0001-6271-0110; Le, Guan/0000-0002-9504-5214; NASA MMS, Science Team/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X; Voros, Zoltan/0000-0001-7597-238X FU NASA [NNG04EB99C]; Austrian Academy of Sciences; Austrian Space Applications Programme [FFG/ASAP-844377]; Deutsches Zentrum fur Luft- und Raumfahrt; German Bundesministerium fur Wiurtschaft und Energie [50OC1402] FX The dedication and expertise of the Magnetospheric Multiscale (MMS) development and operations teams are greatly appreciated. Work at JHU/APL, UCLA, UNH, and SwRI was supported by NASA contract NNG04EB99C. We acknowledge the use of L2 survey fluxgate magnetometer (FGM) data of the MMS spacecraft that are stored at the MMS Science Data Center https://lasp.colorado.edu/mms/sdc/ and are available upon request. The Austrian part of the development, operation, and calibration of the DFG was financially supported by rolling grant of the Austrian Academy of Sciences and the Austrian Space Applications Programme with the contract FFG/ASAP-844377. K.-H.G. is financially supported by the Deutsches Zentrum fur Luft- und Raumfahrt and the German Bundesministerium fur Wiurtschaft und Energie under contract 50OC1402. NR 26 TC 0 Z9 0 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4774 EP 4780 DI 10.1002/2016GL069035 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500014 ER PT J AU Zhou, M Ashour-Abdalla, M Berchem, J Walker, RJ Liang, H El-Alaoui, M Goldstein, ML Lindqvist, PA Marklund, G Khotyaintsev, YV Ergun, RE Wilder, FD Russell, CT Strangeway, RJ Zhao, C Paterson, WR Giles, BL Pollock, CJ Torbert, RB Burch, JL Dorelli, JC Gershman, DJ Avanov, LA Lavraud, B Chandler, MO AF Zhou, M. Ashour-Abdalla, M. Berchem, J. Walker, R. J. Liang, H. El-Alaoui, M. Goldstein, M. L. Lindqvist, P. -A. Marklund, G. Khotyaintsev, Y. V. Ergun, R. E. Wilder, F. D. Russell, C. T. Strangeway, R. J. Zhao, C. Paterson, W. R. Giles, B. L. Pollock, C. J. Torbert, R. B. Burch, J. L. Dorelli, J. C. Gershman, D. J. Avanov, L. A. Lavraud, B. Chandler, M. O. TI Observation of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region by the spacecraft of the Magnetospheric Multiscale (MMS) mission SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAGNETIC RECONNECTION; INSTABILITIES AB We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves. C1 [Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Liang, H.; El-Alaoui, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Walker, R. J.; Russell, C. T.; Strangeway, R. J.; Zhao, C.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Goldstein, M. L.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Dorelli, J. C.; Gershman, D. J.; Avanov, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lindqvist, P. -A.; Marklund, G.] Royal Inst Technol, Stockholm, Sweden. [Khotyaintsev, Y. V.] Swedish Inst Space Phys, Uppsala, Sweden. [Ergun, R. E.; Wilder, F. D.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Torbert, R. B.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Burch, J. L.] SW Res Inst, San Antonio, TX USA. [Lavraud, B.] Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, Toulouse, France. [Chandler, M. O.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Zhou, M (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM mzhou@physics.ucla.edu RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA Magnetospheric Multiscale Mission Interdisciplinary Scientist grant [NNX08AO48G]; NASA Heliospheric Grand Challenge grant [NNX14AI16G]; NSF [AGS-1450864] FX This research was supported by NASA Magnetospheric Multiscale Mission Interdisciplinary Scientist grant NNX08AO48G, NASA Heliospheric Grand Challenge grant NNX14AI16G, and NSF grant AGS-1450864. IRAP contribution to MMS was supported by CNES and CNRS. We thank the entire MMS team and instrument leads for data access and support. M.Z. appreciates D. Schriver and H.Y. Wei for their valuable discussions. The data presented in this paper are the L2 data of MMS and can be accessed from MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/public/). NR 23 TC 0 Z9 0 U1 3 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4808 EP 4815 DI 10.1002/2016GL069010 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500018 ER PT J AU Hara, T Luhmann, JG Halekas, JS Espley, JR Seki, K Brain, DA Hasegawa, H McFadden, JP Mitchell, DL Mazelle, C Harada, Y Livi, R DiBraccio, GA Connerney, JEP Andersson, L Jakosky, BM AF Hara, Takuya Luhmann, Janet G. Halekas, Jasper S. Espley, Jared R. Seki, Kanako Brain, David A. Hasegawa, Hiroshi McFadden, James P. Mitchell, David L. Mazelle, Christian Harada, Yuki Livi, Roberto DiBraccio, Gina A. Connerney, John E. P. Andersson, Lailla Jakosky, Bruce M. TI MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND; SPATIAL STRUCTURE; ION ESCAPE; PLASMA; RECONSTRUCTION; MAGNETOPAUSE; IONOSPHERE; ATMOSPHERE; EXPRESS; CLUSTER AB We present initial results of strong field amplitude flux ropes observed by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission around Mars during the interplanetary coronal mass ejection (ICME) passage on 8 March 2015. The observed durations were shorter than 5 s and the magnetic field magnitudes peaked above 80 nT, which is a few times stronger than those usually seen in the magnetosheath barrier. These are the first unique observations that MAVEN detected such flux ropes with a strong field at high altitudes (> 5000 km). Across these structures, MAVEN coincidentally measured planetary heavy ions with energies higher than a few keV. The spatial properties inferred from the Grad-Shafranov equation suggest that the speed of the structure can be estimated at least an order of magnitude faster than those previously reported quiet-time counterparts. Hence, the space weather event like the ICME passage can be responsible for generating the observed strong field, fast-traveling flux ropes. C1 [Hara, Takuya; Luhmann, Janet G.; McFadden, James P.; Mitchell, David L.; Harada, Yuki; Livi, Roberto] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, Jasper S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Espley, Jared R.; DiBraccio, Gina A.; Connerney, John E. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Seki, Kanako] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Tokyo 113, Japan. [Brain, David A.; Andersson, Lailla; Jakosky, Bruce M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Hasegawa, Hiroshi] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. [Mazelle, Christian] CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Mazelle, Christian] Univ Toulouse 3, IRAP, F-31062 Toulouse, France. RP Hara, T (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM hara@ssl.berkeley.edu RI Hasegawa, Hiroshi/A-1192-2007 OI Hasegawa, Hiroshi/0000-0002-1172-021X FU CNES; NASA FX The MAVEN data used in this paper are publicly available in NASA's Planetary Data System (http://ppi.pds.nasa.gov/mission/MAVEN). Analysis of SWEA data was partially supported by CNES. This work was carried out by the joint research programs of the Solar-Terrestrial Environment Laboratory (currently, Institute for Space-Earth Environmental Research), Nagoya University. T. Hara thanks C. O. Lee for helpful discussions with respect to the ICME events observed by MAVEN. G. A. DiBraccio was supported by a NASA Postdoctoral Program appointment at the NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 51 TC 2 Z9 2 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4816 EP 4824 DI 10.1002/2016GL068960 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500019 ER PT J AU Nakamura, R Sergeev, VA Baumjohann, W Plaschke, F Magnes, W Fischer, D Varsani, A Schmid, D Nakamura, TKM Russell, CT Strangeway, RJ Leinweber, HK Le, G Bromund, KR Pollock, CJ Giles, BL Dorelli, JC Gershman, DJ Paterson, W Avanov, LA Fuselier, SA Genestreti, K Burch, JL Torbert, RB Chutter, M Argall, MR Anderson, BJ Lindqvist, PA Marklund, GT Khotyaintsev, YV Mauk, BH Cohen, IJ Baker, DN Jaynes, AN Ergun, RE Singer, HJ Slavin, JA Kepko, EL Moore, TE Lavraud, B Coffey, V Saito, Y AF Nakamura, R. Sergeev, V. A. Baumjohann, W. Plaschke, F. Magnes, W. Fischer, D. Varsani, A. Schmid, D. Nakamura, T. K. M. Russell, C. T. Strangeway, R. J. Leinweber, H. K. Le, G. Bromund, K. R. Pollock, C. J. Giles, B. L. Dorelli, J. C. Gershman, D. J. Paterson, W. Avanov, L. A. Fuselier, S. A. Genestreti, K. Burch, J. L. Torbert, R. B. Chutter, M. Argall, M. R. Anderson, B. J. Lindqvist, P. -A. Marklund, G. T. Khotyaintsev, Y. V. Mauk, B. H. Cohen, I. J. Baker, D. N. Jaynes, A. N. Ergun, R. E. Singer, H. J. Slavin, J. A. Kepko, E. L. Moore, T. E. Lavraud, B. Coffey, V. Saito, Y. TI Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID IONS AB We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection. C1 [Nakamura, R.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Sergeev, V. A.] St Petersburg State Univ, Earth Phys Dept, St Petersburg 199034, Russia. [Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Le, G.; Bromund, K. R.; Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Gershman, D. J.; Paterson, W.; Avanov, L. A.; Kepko, E. L.; Moore, T. E.] NASA, Goddard Space Flight Ctr, College Pk, MD USA. [Pollock, C. J.] Denali Sci, Healy, AK USA. [Fuselier, S. A.; Genestreti, K.; Burch, J. L.; Torbert, R. B.] SW Res Inst, San Antonio, TX USA. [Fuselier, S. A.] Univ Texas San Antonio, San Antonio, TX USA. [Torbert, R. B.; Chutter, M.; Argall, M. R.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Anderson, B. J.; Mauk, B. H.; Cohen, I. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Lindqvist, P. -A.; Marklund, G. T.] Royal Inst Technol, Space & Plasma Phys, Stockholm, Sweden. [Khotyaintsev, Y. V.] Swedish Inst Space Phys, Uppsala, Sweden. [Baker, D. N.; Jaynes, A. N.; Ergun, R. E.] Univ Colorado, Boulder, CO 80309 USA. [Singer, H. J.] NOAA, Space Weather Predict Ctr, Boulder, CO USA. [Slavin, J. A.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Lavraud, B.] CNRS, Toulouse, France. [Coffey, V.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Saito, Y.] JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. RP Nakamura, R (reprint author), Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. EM rumi.nakamura@oeaw.ac.at RI Nakamura, Rumi/I-7712-2013; Baumjohann, Wolfgang/A-1012-2010; Le, Guan/C-9524-2012; Cohen, Ian/K-3038-2015; NASA MMS, Science Team/J-5393-2013; Sergeev, Victor/H-1173-2013; Slavin, James/H-3170-2012; Mauk, Barry/E-8420-2017 OI Nakamura, Rumi/0000-0002-2620-9211; Baumjohann, Wolfgang/0000-0001-6271-0110; Le, Guan/0000-0002-9504-5214; Cohen, Ian/0000-0002-9163-6009; NASA MMS, Science Team/0000-0002-9504-5214; Sergeev, Victor/0000-0002-4569-9631; Slavin, James/0000-0002-9206-724X; Mauk, Barry/0000-0001-9789-3797 FU NSF [ATM-0739864, ATM-1420184]; Austrian Science Fund (FWF) [I2016-N20] FX MMS and GOES data are available from https://lasp.colorado.edu/mms/sdc/ and http://satdat.ngdc.noaa.gov respectively. AMPERE development, data acquisition, and science processing were supported by NSF awards ATM-0739864 and ATM-1420184 to JHU/APL, and these data are available via the AMPERE Science Data Center website: http://ampere.jhuapl.edu. The authors thank I.R. Mann, D.K. Milling, the CARISMA team (http://www.carisma.ca/), GIMA team (http://magnet.asf.alaska.edu/), M. Connors and the AUTUMN/AUTUMNX team, and S. Mende. The Space Physics Environment Data Analysis Software (SPEDAS, spedas.org) was used for the data processing. We thank the SPEDAS team, T. Phan, M. Oka, S. Wang, L.-J. Chen, and N. Kitamura for their help in using SPEDAS. We thank O. Le Contel, the SCM team, H. Vaith, Y. Narita, T. Nagai, E. Panov, Z. Voros, M. Andriopoulou, J. Birn, C. Kletzing, P. Reiff, S. Y. Sazykin, and A. G. Daou for their helpful comments and fruitful discussions. This work was supported by the Austrian Science Fund (FWF):I2016-N20. IRAP contribution to MMS was supported by CNES and CNRS. NR 24 TC 2 Z9 2 U1 3 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4841 EP 4849 DI 10.1002/2016GL068768 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500022 PM 27867235 ER PT J AU Wang, S Chen, LJ Hesse, M Gershman, DJ Dorelli, J Giles, B Torbert, RB Pollock, CJ Lavraud, B Strangeway, R Ergun, RE Burch, J Avanov, L Moore, TE Saito, Y AF Wang, Shan Chen, Li-Jen Hesse, Michael Gershman, Daniel J. Dorelli, John Giles, Barbara Torbert, Roy B. Pollock, Craig J. Lavraud, Benoit Strangeway, Robert Ergun, Robert E. Burch, Jim Avanov, Levon Moore, Thomas E. Saito, Yoshifumi TI Ion demagnetization in the magnetopause current layer observed by MMS SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ELECTRON-DIFFUSION REGION; MAGNETIC RECONNECTION; MAGNETOTAIL RECONNECTION; FIELD AB We report ion velocity distribution functions (VDFs) observed by Magnetospheric Multiscale Mission (MMS) and present evidence for demagnetized ion Speiser motion during magnetopause reconnection. The demagnetization is observed in the vicinity of the X line, as well as near the current sheet midplane about tens of ion skin depths (d(i)) away from the X line. Close to the X line before the outflow is built up, the VDFs are elongated, and the elongated part of VDFs rotates from the out-of-plane current direction toward the outflow directions downstream from the X line. Farther downstream, demagnetized ions exhibit a characteristic half-ring structure in the VDFs, as a result of the mixture of ions that have experienced different amounts of cyclotron turning around the magnetic field normal to the current sheet. Signatures of acceleration by electric fields are more pronounced in the VDFs near the X line than downstream. C1 [Wang, Shan; Chen, Li-Jen; Hesse, Michael; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Pollock, Craig J.; Avanov, Levon; Moore, Thomas E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, Shan; Chen, Li-Jen] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Torbert, Roy B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Lavraud, Benoit] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, Benoit] CNRS, UMR 5277, Toulouse, France. [Strangeway, Robert] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Ergun, Robert E.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Burch, Jim] SW Res Inst, San Antonio, TX USA. [Saito, Yoshifumi] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. RP Wang, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Wang, S (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM swang90@umd.edu RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NSF [AGS-1543598, AGS-1202537, AGS-1552142]; NASA; FPI at GSFC FX The research is supported in part by NSF grants AGS-1543598, AGS-1202537, and AGS-1552142 and NASA grants to the MMS Theory and Modeling and FPI at GSFC. IRAP contribution to MMS was supported by CNES and CNRS. MMS data are available at MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/). NR 23 TC 3 Z9 3 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4850 EP 4857 DI 10.1002/2016GL069406 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500023 ER PT J AU Andriopoulou, M Nakamura, R Torkar, K Baumjohann, W Torbert, RB Lindqvist, PA Khotyaintsev, YV Dorelli, J Burch, JL Russell, CT AF Andriopoulou, M. Nakamura, R. Torkar, K. Baumjohann, W. Torbert, R. B. Lindqvist, P. -A. Khotyaintsev, Y. V. Dorelli, J. Burch, J. L. Russell, C. T. TI Study of the spacecraft potential under active control and plasma density estimates during the MMS commissioning phase SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLUSTER AB Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied. C1 [Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Torbert, R. B.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Lindqvist, P. -A.] KTH Royal Inst Technol, Stockholm, Sweden. [Khotyaintsev, Y. V.] IRF Swedish Inst Space Phys, Uppsala, Sweden. [Dorelli, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Burch, J. L.] SW Res Inst, San Antonio, TX USA. [Russell, C. T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. RP Andriopoulou, M (reprint author), Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. EM maria.andriopoulou@oeaw.ac.at RI Nakamura, Rumi/I-7712-2013; Baumjohann, Wolfgang/A-1012-2010; NASA MMS, Science Team/J-5393-2013 OI Nakamura, Rumi/0000-0002-2620-9211; Baumjohann, Wolfgang/0000-0001-6271-0110; NASA MMS, Science Team/0000-0002-9504-5214 FU Austrian Space Applications Programme [FFG 847969]; Austrian Science Funds FWF [I2016-N20]; NASA [NNG04EB99C] FX The data used for this study can be found in https://lasp.colorado.edu/mms/sdc/public/. This study was supported by the Austrian Space Applications Programme with the contract FFG 847969 and Austrian Science Funds FWF I2016-N20. The dedication and expertise of the Magnetopheric MultiScale (MMS) development and operations teams are greatly appreciated. Work at JHU/APL, UCLA, UNH, and SwRI was supported by NASA contract NNG04EB99C. NR 11 TC 1 Z9 1 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4858 EP 4864 DI 10.1002/2016GL068529 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500024 ER PT J AU Vance, SD Hand, KP Pappalardo, RT AF Vance, S. D. Hand, K. P. Pappalardo, R. T. TI Geophysical controls of chemical disequilibria in Europa SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HYDROTHERMAL SYSTEMS; GALILEAN SATELLITES; ORBITAL EVOLUTION; SUBSURFACE OCEANS; LIFE; SERPENTINIZATION; ENCELADUS; BIOSPHERE; FLUID; WATER AB The ocean in Jupiter's moon Europa may have redox balance similar to Earth's. On Earth, low-temperature hydration of crustal olivine produces substantial hydrogen, comparable to any potential flux from volcanic activity. Here we compare hydrogen and oxygen production rates of the Earth system with fluxes to Europa's ocean. Even without volcanic hydrothermal activity, water-rock alteration in Europa causes hydrogen fluxes 10 times smaller than Earth's. Europa's ocean may have become reducing for a brief epoch, for example, after a thermal-orbital resonance similar to 2 Gyr after accretion. Estimated oxidant flux to Europa's ocean is comparable to estimated hydrogen fluxes. Europa's ice delivers oxidants to its ocean at the upper end of these estimates if its ice is geologically active, as evidence of geologic activity and subduction implies. C1 [Vance, S. D.; Hand, K. P.; Pappalardo, R. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Vance, SD (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM svance@jpl.nasa.gov FU NASA Outer Planets Research grants [NNH12ZDA001N]; Icy Worlds node of NASA's Astrobiology Institute [08-NAI5-0021, 13-13NAI7_2-0024]; Europa Project; National Aeronautics and Space Administration FX S.D.V. conceived of the work, performed the analysis, and wrote the manuscript. K.P.H. helped with development of the initial concept, writing of the initial manuscript, and subsequent refinement. R.T.P. helped with finalizing the work. This work benefitted immensely from discussions with Bruce Bills, J. Michael Brown, Mark Claire, Chris Glein, Matthew Pasek, Michael Russell, Christophe Sotin, and Kevin Zahnle. We thank the editor and two anonymous reviewers for thorough and helpful comments. This work was partially supported by NASA Outer Planets Research grants NNH12ZDA001N, by the Icy Worlds node of NASA's Astrobiology Institute (08-NAI5-0021 and 13-13NAI7_2-0024), and by the Europa Project. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. All data for this paper are properly cited and referred to in the reference list. Matlab files for the calculations are available by request to S.D.V. NR 75 TC 3 Z9 3 U1 8 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 4871 EP 4879 DI 10.1002/2016GL068547 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500026 ER PT J AU Shaw, JB Ayoub, F Jones, CE Lamb, MP Holt, B Wagner, RW Coffey, TS Chadwick, JA Mohrig, D AF Shaw, John B. Ayoub, Francois Jones, Cathleen E. Lamb, Michael P. Holt, Benjamin Wagner, R. Wayne Coffey, Thomas S. Chadwick, J. Austin Mohrig, David TI Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID UNDERWATER BOTTOM TOPOGRAPHY; OCEAN SURFACE; RIVER DELTA; WETLANDS; IMAGERY; WAVES; FILMS; MODEL AB Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including similar to 700m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network. C1 [Shaw, John B.; Coffey, Thomas S.] Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA. [Ayoub, Francois; Lamb, Michael P.; Chadwick, J. Austin] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Jones, Cathleen E.; Holt, Benjamin] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Wagner, R. Wayne; Mohrig, David] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. RP Shaw, JB (reprint author), Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA. EM shaw84@uark.edu OI Wagner, Wayne/0000-0002-3978-2025 FU NASA; Jet Propulsion Laboratory and the California Institute of Technology; NSF FESD Delta Dynamics Collaboratory [EAR-1135427]; NSF Post-doctoral Fellowship [EAR-1250045] FX We thank the GRL editor, Liviu Giosan, and two other anonymous reviewers who helped improve this manuscript. This research was supported by NASA under contract with Jet Propulsion Laboratory and the California Institute of Technology (grant to C.J., B.H., and M.L.), a NSF FESD Delta Dynamics Collaboratory to D.M. (EAR-1135427), and a NSF Post-doctoral Fellowship to J.S. (EAR-1250045). UAVSAR data are courtesy NASA-Jet Propulsion Laboratory/California Institute of Technology. UAVSAR images are available for download at https://www.asfalaska.edu/. Bathymetric DEMs from July 2010, February 2011, August 2011, and February 2012 are available in the data repository of Shaw [2013]. The February 2015 DEM is available in the supporting information. NR 29 TC 1 Z9 1 U1 3 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 5035 EP 5042 DI 10.1002/2016GL068770 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500047 ER PT J AU Castle, SL Reager, JT Thomas, BF Purdy, AJ Lo, MH Famiglietti, JS Tang, QH AF Castle, Stephanie L. Reager, John T. Thomas, Brian F. Purdy, Adam J. Lo, Min-Hui Famiglietti, James S. Tang, Qiuhong TI Remote detection of water management impacts on evapotranspiration in the Colorado River Basin SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ENERGY-BALANCE; SATELLITE-OBSERVATIONS; GRACE MEASUREMENTS; CLIMATE MODELS; SURFACE; GRAVITY; SYSTEM; PRECIPITATION; VARIABILITY; IRRIGATION AB The complexity involved in accurate estimation and numerical simulation of regional evapotranspiration (ET) can lead to inconsistency among techniques, usually attributed to methodological deficiencies. Here we hypothesize instead that discrepancies in ET estimates should be expected in some cases and can be applied to measure the effect of anthropogenic influences in developed river basins. We compare an ensemble of corrected ET estimates from land surface models with Gravity Recovery and Climate Experiment and Moderate Resolution Imaging Spectroradiometer satellite-based estimates in the intensively managed Colorado River Basin to contrast the roles of natural variability and human impacts. Satellite-based approaches yield larger annual amplitudes in ET estimates than land surface model simulations, primarily during the growing season. We find a total satellite-based ET flux of 142 +/- 7MAF yr(-1) (175 +/- 8.63 km(3) yr(-1)), with 38% due to anthropogenic influences during summer months. We evaluate our estimates by comparison with reservoir storage and usage allotment components of the basin water management budget. C1 [Castle, Stephanie L.; Reager, John T.; Thomas, Brian F.; Lo, Min-Hui; Famiglietti, James S.] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA 92697 USA. [Castle, Stephanie L.; Purdy, Adam J.; Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Reager, John T.; Thomas, Brian F.; Famiglietti, James S.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. [Lo, Min-Hui] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10764, Taiwan. [Tang, Qiuhong] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China. RP Famiglietti, JS (reprint author), Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA 92697 USA.; Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.; Famiglietti, JS (reprint author), CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. EM james.famiglietti@jpl.nasa.gov FU NASA GRACE Science Team; University of California Office of the President, Multicampus Research Programs and Initiatives; National Aeronautics and Space Administration FX This research was funded by grants from the NASA GRACE Science Team and from the University of California Office of the President, Multicampus Research Programs and Initiatives. A portion of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 60 TC 1 Z9 1 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 5089 EP 5097 DI 10.1002/2016GL068675 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500053 ER PT J AU Mlynczak, MG Daniels, TS Kratz, DP Feldman, DR Collins, WD Mlawer, EJ Alvarado, MJ Lawler, JE Anderson, LW Fahey, DW Hunt, LA Mast, JC AF Mlynczak, Martin G. Daniels, Taumi S. Kratz, David P. Feldman, Daniel R. Collins, William D. Mlawer, Eli J. Alvarado, Matthew J. Lawler, James E. Anderson, L. W. Fahey, David W. Hunt, Linda A. Mast, Jeffrey C. TI The spectroscopic foundation of radiative forcing of climate by carbon dioxide SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LINE-SHAPE; TRANSFER MODEL; CO2; DATABASE; SPECTRA; BANDS; TEMPERATURE; PARAMETERS; SOFTWARE; 15-MU-M AB The radiative forcing (RF) of carbon dioxide (CO2) is the leading contribution to climate change from anthropogenic activities. Calculating CO2 RF requires detailed knowledge of spectral line parameters for thousands of infrared absorption lines. A reliable spectroscopic characterization of CO2 forcing is critical to scientific and policy assessments of present climate and climate change. Our results show that CO2 RF in a variety of atmospheres is remarkably insensitive to known uncertainties in the three main CO2 spectroscopic parameters: the line shapes, line strengths, and half widths. We specifically examine uncertainty in RF due to line mixing as this process is critical in determining line shapes in the far wings of CO2 absorption lines. RF computed with a Voigt line shape is also examined. Overall, the spectroscopic uncertainty in present-day CO2 RF is less than 1%, indicating a robust foundation in our understanding of how rising CO2 warms the climate system. C1 [Mlynczak, Martin G.; Daniels, Taumi S.; Kratz, David P.] NASA Langley Res Ctr, Hampton, VA 23666 USA. [Feldman, Daniel R.; Collins, William D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mlawer, Eli J.; Alvarado, Matthew J.] Atmospher & Environm Res Inc, Lexington, MA USA. [Lawler, James E.; Anderson, L. W.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Fahey, David W.] NOAA Environm Syst Res Lab, Boulder, CO USA. [Hunt, Linda A.; Mast, Jeffrey C.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Mlynczak, MG (reprint author), NASA Langley Res Ctr, Hampton, VA 23666 USA. EM m.g.mlynczak@nasa.gov RI Fahey, David/G-4499-2013; Richards, Amber/K-8203-2015; Collins, William/J-3147-2014; Feldman, Daniel/N-8703-2013; Manager, CSD Publications/B-2789-2015 OI Fahey, David/0000-0003-1720-0634; Collins, William/0000-0002-4463-9848; Feldman, Daniel/0000-0003-3365-5233; FU National Aeronautics and Space Administration Climate Absolute Radiance and Refractivity Observatory (CLARREO) project at Langley Research Center FX This work was supported with funding from the National Aeronautics and Space Administration Climate Absolute Radiance and Refractivity Observatory (CLARREO) project at Langley Research Center. This article has been contributed to by US Government employees and their work is in the public domain in the USA. I. Gordon and L. Rothman of Smithsonian Astrophysical Observatory provided helpful discussions on spectral line uncertainties. The LBLRTM model can be obtained online at http://rtweb.aer.com and the atmospheric profile data used to perform the calculations contained in this paper are available NR 27 TC 1 Z9 1 U1 8 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 5318 EP 5325 DI 10.1002/2016GL068837 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500080 ER PT J AU Bauer, SE Tsigaridis, K Miller, R AF Bauer, Susanne E. Tsigaridis, Kostas Miller, Ron TI Significant atmospheric aerosol pollution caused by world food cultivation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PARTICULATE MATTER; NITROGEN-CYCLE; AIR-POLLUTION; AMMONIA; EMISSIONS; AGRICULTURE; MORTALITY; QUALITY; GASES; MODEL AB Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased. C1 [Bauer, Susanne E.; Tsigaridis, Kostas] Columbia Univ, Earth Inst, Ctr Climate Syst Res, New York, NY USA. [Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Miller, Ron] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Miller, Ron] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA. RP Bauer, SE (reprint author), Columbia Univ, Earth Inst, Ctr Climate Syst Res, New York, NY USA.; Bauer, SE (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM susanne.bauer@columbia.edu FU NASA's Atmospheric Composition Modeling and Analysis Program (ACMAP) [NNX15AE36G] FX The authors acknowledge funding from NASA's Atmospheric Composition Modeling and Analysis Program (ACMAP), contract NNX15AE36G. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. The model data are archived at NASA GISS and can be accessed via ftp after requesting them from the corresponding author. NR 28 TC 1 Z9 1 U1 9 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 5394 EP 5400 DI 10.1002/2016GL068354 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500088 ER PT J AU Klaus, D Dethloff, K Dorn, W Rinke, A Wu, DL AF Klaus, D. Dethloff, K. Dorn, W. Rinke, A. Wu, D. L. TI New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GENERAL-CIRCULATION MODEL; PREDICTION MODELS; BOUNDARY-LAYER; ANNUAL CYCLE; SEA-ICE; SHEBA; RADIATION; VARIABILITY; PERFORMANCE; SURFACE AB Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (C-tot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of C-tot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the C-tot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate. C1 [Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Potsdam, Germany. [Wu, D. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Klaus, D (reprint author), Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Potsdam, Germany. EM Daniel.Klaus@awi.de OI Rinke, Annette/0000-0002-6685-9219 FU Helmholtz Climate Initiative REKLIM FX This work was financially supported by the Helmholtz Climate Initiative REKLIM. We thank Jennifer Kay for providing the CPR/CALIOP data set, the ECMWF for the availability of the ERA-Interim product, and Ines Hebestadt for technical support. A more detailed description of data sources can be found in the supporting information. NR 39 TC 1 Z9 1 U1 5 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2016 VL 43 IS 10 BP 5450 EP 5459 DI 10.1002/2015GL067530 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DP2UC UT WOS:000378347500096 ER PT J AU Mioduszewski, JR Rennermalm, AK Hammann, A Tedesco, M Noble, EU Stroeve, JC Mote, TL AF Mioduszewski, J. R. Rennermalm, A. K. Hammann, A. Tedesco, M. Noble, E. U. Stroeve, J. C. Mote, T. L. TI Atmospheric drivers of Greenland surface melt revealed by self-organizing maps SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID REGIONAL CLIMATE MODEL; ICE-SHEET; ARCTIC AMPLIFICATION; MASS-BALANCE; MIDTROPOSPHERIC CIRCULATION; WEST GREENLAND; ENERGY-BALANCE; TRENDS; SIMULATION; VARIABILITY AB Recent acceleration in surface melt on the Greenland ice sheet (GrIS) has occurred concurrently with a rapidly warming Arctic and has been connected to persistent, anomalous atmospheric circulation patterns over Greenland. To identify synoptic setups favoring enhanced GrIS surface melt and their decadal changes, we develop a summer Arctic synoptic climatology by employing self-organizing maps. These are applied to daily 500 hPa geopotential height fields obtained from the Modern Era Retrospective Analysis for Research and Applications reanalysis, 1979-2014. Particular circulation regimes are related to meteorological conditions and GrIS surface melt estimated with outputs from the Modele Atmospherique Regional. Our results demonstrate that the largest positive melt anomalies occur in concert with positive height anomalies near Greenland associated with wind, temperature, and humidity patterns indicative of strong meridional transport of heat and moisture. We find an increased frequency in a 500 hPa ridge over Greenland coinciding with a 63% increase in GrIS melt between the 1979-1988 and 2005-2014 periods, with 75.0% of surface melt changes attributed to thermodynamics, 17% to dynamics, and 8.0% to a combination. We also confirm that the 2007-2012 time period has the largest dynamic forcing relative of any period but also demonstrate that increased surface energy fluxes, temperature, and moisture separate from dynamic changes contributed more to melt even during this period. This implies that GrIS surface melt is likely to continue to increase in response to an ever warmer future Arctic, regardless of future atmospheric circulation patterns. C1 [Mioduszewski, J. R.] Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA. [Mioduszewski, J. R.; Rennermalm, A. K.; Hammann, A.] Rutgers State Univ, Dept Geog, New Brunswick, NJ 08901 USA. [Tedesco, M.; Noble, E. U.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Tedesco, M.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Stroeve, J. C.] Natl Snow & Ice Data Ctr, Boulder, CO USA. [Stroeve, J. C.] UCL, Ctr Polar Observat & Modelling Pearson Bldg, London, England. [Mote, T. L.] Univ Georgia, Dept Geog, Athens, GA 30602 USA. RP Mioduszewski, JR (reprint author), Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA.; Mioduszewski, JR (reprint author), Rutgers State Univ, Dept Geog, New Brunswick, NJ 08901 USA. EM jmioduszewsk@wisc.edu FU NSF [PLR-1304805, PLR-1304807]; NASA [NNX14AD98G] FX J.R. Mioduszewski and A.K. Rennermalm were funded by NSF PLR-1304805. M. Tedesco and E.U. Noble were funded by NSF PLR-1304807 and NASA NNX14AD98G. We thank three anonymous reviewers for their constructive comments and insights to strengthen this paper. All data used in this study were obtained from free and open data repositories. Detailed information is provided in the methods section. NR 73 TC 1 Z9 1 U1 4 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 27 PY 2016 VL 121 IS 10 BP 5095 EP 5114 DI 10.1002/2015JD024550 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YB UT WOS:000381629900001 ER PT J AU Lauvaux, T Miles, NL Deng, AJ Richardson, SJ Cambaliza, MO Davis, KJ Gaudet, B Gurney, KR Huang, JH O'Keefe, D Song, Y Karion, A Oda, T Patarasuk, R Razlivanov, I Sarmiento, D Shepson, P Sweeney, C Turnbull, J Wu, K AF Lauvaux, Thomas Miles, Natasha L. Deng, Aijun Richardson, Scott J. Cambaliza, Maria O. Davis, Kenneth J. Gaudet, Brian Gurney, Kevin R. Huang, Jianhua O'Keefe, Darragh Song, Yang Karion, Anna Oda, Tomohiro Patarasuk, Risa Razlivanov, Igor Sarmiento, Daniel Shepson, Paul Sweeney, Colm Turnbull, Jocelyn Wu, Kai TI High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GREENHOUSE-GAS EMISSIONS; CARBON-DIOXIDE EMISSIONS; FOSSIL-FUEL COMBUSTION; DATA ASSIMILATION; MODEL; REGION; AREA; QUANTIFICATION; UNCERTAINTIES; PERSPECTIVE AB Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC +/- 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution. C1 [Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Davis, Kenneth J.; Gaudet, Brian; Sarmiento, Daniel; Wu, Kai] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. [Lauvaux, Thomas] NASA, Jet Prop Lab, Pasadena, CA USA. [Cambaliza, Maria O.] Ateneo Manila Univ, Dept Phys, Quezon City, Philippines. [Cambaliza, Maria O.] Ateneo de Manila Campus, Manila Observ, Quezon City, Philippines. [Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; Song, Yang; Patarasuk, Risa; Razlivanov, Igor] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Karion, Anna; Sweeney, Colm] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Oda, Tomohiro] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. [Oda, Tomohiro] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Shepson, Paul; Turnbull, Jocelyn] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Turnbull, Jocelyn] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Turnbull, Jocelyn] GNS Sci, Natl Isotope Ctr, Lower Hutt, New Zealand. RP Lauvaux, T (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA.; Lauvaux, T (reprint author), NASA, Jet Prop Lab, Pasadena, CA USA. EM tul5@psu.edu FU National Institute for Standards and Technology [70NANB10H245]; National Oceanic and Atmospheric Administration [NA13OAR4310076] FX This work has been funded by the National Institute for Standards and Technology (project 70NANB10H245) and the National Oceanic and Atmospheric Administration (grant NA13OAR4310076). The data used in this study are available at http://sites.psu.edu/influx/data/. We also want to acknowledge the NOAA Earth System Research Laboratory Chemical Sciences Division for providing HALO lidar data. T. Lauvaux performed the inversions; A. Deng performed the WRF-FDDA model simulations; B. Gaudet provided support for the WRF model evaluation; N. Miles and S. Richardson provided the calibrated tower greenhouse gas measurements; C. Sweeney, J. Turnbull, and A. Karion provided flask data for calibration and provided comments about the study; M. Cambaliza provided comments about the study; K. Gurney, J. Huang, I. Razlivanov, R. Patarasuk developed and prepared the Hestia emission product; D. Sarmiento contributed to model developments and improvement of the WRF model simulations; K. Wu contributed to the development of the inversion system; T. Oda provided the ODIAC emission product; and K. Davis and P. Shepson provided comments and discussed the results of the study. NR 59 TC 5 Z9 5 U1 10 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 27 PY 2016 VL 121 IS 10 BP 5213 EP 5236 DI 10.1002/2015JD024473 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YB UT WOS:000381629900007 ER PT J AU Cesana, G Chepfer, H Winker, D Getzewich, B Cai, X Jourdan, O Mioche, G Okamoto, H Hagihara, Y Noel, V Reverdy, M AF Cesana, G. Chepfer, H. Winker, D. Getzewich, B. Cai, X. Jourdan, O. Mioche, G. Okamoto, H. Hagihara, Y. Noel, V. Reverdy, M. TI Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MICROPHYSICAL PROPERTIES; CONVECTIVE CLOUDS; SPACE; WATER; CLASSIFICATION; PRECIPITATION; INFORMATION; LIMITATIONS; REANALYSIS; AEROSOL AB We compare the cloud detection and cloud phase determination of three independent climatologies based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) to airborne in situ measurements. Our analysis of the cloud detection shows that the differences between the satellite and in situ measurements mainly arise from three factors. First, averaging CALIPSO Level I data along track before cloud detection increases the estimate of high-and low-level cloud fractions. Second, the vertical averaging of Level 1 data before cloud detection tends to artificially increase the cloud vertical extent. Third, the differences in classification of fully attenuated pixels among the CALIPSO climatologies lead to differences in the low-level Arctic cloud fractions. In another section, we compare the cloudy pixels detected by colocated in situ and satellite observations to study the cloud phase determination. At midlatitudes, retrievals of homogeneous high ice clouds by CALIPSO data sets are very robust (more than 94.6% of agreement with in situ). In the Arctic, where the cloud phase vertical variability is larger within a 480 m pixel, all climatologies show disagreements with the in situ measurements and CALIPSO-General Circulation Models-Oriented Cloud Product (GOCCP) report significant undefined-phase clouds, which likely correspond to mixed-phase clouds. In all CALIPSO products, the phase determination is dominated by the cloud top phase. Finally, we use global statistics to demonstrate that main differences between the CALIPSO cloud phase products stem from the cloud detection (horizontal averaging, fully attenuated pixels) rather than the cloud phase determination procedures. C1 [Cesana, G.; Chepfer, H.] Univ Paris 06, Inst Pierre Simon Laplace, Lab Meteorol Dynam, Paris, France. [Cesana, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Winker, D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Getzewich, B.; Cai, X.] SSAI, Hampton, VA USA. [Jourdan, O.; Mioche, G.] Univ Clermont Ferrand, Lab Meteorol Phys, Clermont Ferrand, France. [Okamoto, H.; Hagihara, Y.] Kyushu Univ, Appl Mech Res Inst, Fukuoka, Japan. [Noel, V.] CNRS, Lab Aerol, Toulouse, France. [Reverdy, M.] CNRS, Inst Pierre Simon Laplace, Lab Meteorol Dynam, Palaiseau, France. RP Cesana, G (reprint author), Univ Paris 06, Inst Pierre Simon Laplace, Lab Meteorol Dynam, Paris, France. EM Gregory.v.cesana@jpl.nasa.gov RI Kyushu, RIAM/F-4018-2015; Okamoto, Hajime/E-6510-2010 OI Okamoto, Hajime/0000-0002-4540-1698 FU National Aeronautics and Space Administration; Ministry of Education, Culture, Sports, Science and Technology of Japan [25247078]; Japan Aerospace Exploration Agency for EarthCARE Research Announcement FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. H. Okamoto and Y. Hagihara were supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan through a Grant-in-Aid for Scientific Research, Kiban A (25247078) and by the Japan Aerospace Exploration Agency for EarthCARE Research Announcement. CALIPSO-GOCCP observations (orbit and statistics files) were downloaded from the CFMIP-Obs website (http://climservipsl.polytechnique.fr/cfmip-obs/Calipso_goccp.html). CALIPSO-ST and CALIPSO-KU orbit files were provided by the Science Team and Kyushu University Team, respectively, and the statistics files were processed on the CLIMSERV/IPSL computing facility. We would like to thank Bryan Baum, the two anonymous reviewers, and the Editor for their useful comments that improved our manuscript. In particular, we thank the anonymous reviewer who took the time to list and fix grammar and spelling problems in the original manuscript. NR 80 TC 3 Z9 3 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 27 PY 2016 VL 121 IS 10 BP 5788 EP 5808 DI 10.1002/2015JD024334 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YB UT WOS:000381629900040 ER PT J AU Wang, R Balkanski, Y Boucher, O Ciais, P Schuster, GL Chevallier, F Samset, BH Liu, JF Piao, SL Valari, M Tao, S AF Wang, Rong Balkanski, Yves Boucher, Olivier Ciais, Philippe Schuster, Gregory L. Chevallier, Frederic Samset, Bjorn H. Liu, Junfeng Piao, Shilong Valari, Myrto Tao, Shu TI Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODELS; BIOMASS BURNING EMISSIONS; OPTICAL-PROPERTIES; VERTICAL PROFILES; MIXING STATE; AIRCRAFT OBSERVATIONS; AEROSOL MICROPHYSICS; SULFATE AEROSOLS; LIGHT-ABSORPTION; CLIMATE MODELS AB Black carbon (BC) contributes to global warming by absorbing sunlight. However, the size of this contribution, namely, the direct radiative forcing (RF), ranges from +0.1 to +1.0 W m(-2), largely due to differences between bottom-up and observation-based estimates. Current global models systematically underestimate BC radiation absorption relative to observations, which is often attributed to the underestimation of BC emissions. Several studies that adjusted emissions to correct biases of global aerosol models resulted in a revised upward estimate of the BC RF. However, the BC RF was never optimized against observations in a rigorous mathematical manner. Here we simulated the absorption of solar radiation by BC from all sources at the 10 km resolution by combining a highly disaggregated emission inventory with a nested aerosol climate model and a downscaling method. As a result, the normalized mean bias in BC radiation absorption was reduced from -56% to -5% in Asia and from -71% to -46% elsewhere. We applied a Bayesian method that makes the best account of all model, representativeness, and observational uncertainties to estimate the BC RF and its uncertainty. Using the new emission inventory and high-resolution model reduces uncertainty in BC RF from -109%/+172% to -77%/+78% over Asia and from -83%/+114% to -64%/+70% over other continental regions. Finally, we derived an observationally constrained BC RF of 0.53 Wm(-2) (0.14 to 1.19 as 90% confidence) as our best estimate, less than previous estimates. Our estimate implies that reduction in BC emissions would contribute to slow down global warming, but the contribution could be less than previously thought. C1 [Wang, Rong; Liu, Junfeng; Piao, Shilong; Tao, Shu] Peking Univ, Coll Urban & Environm Sci, Lab Earth Surface Proc, Beijing, Peoples R China. [Wang, Rong; Balkanski, Yves; Ciais, Philippe; Chevallier, Frederic] CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Wang, Rong; Balkanski, Yves; Ciais, Philippe; Piao, Shilong; Tao, Shu] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing, Peoples R China. [Boucher, Olivier] Univ Paris 06, IPSL CNRS, Lab Meteorol Dynam, Paris, France. [Schuster, Gregory L.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Samset, Bjorn H.] CICERO Ctr Int Climate & Environm Res, Oslo, Norway. [Valari, Myrto] Ecole Polytech, IPSL CNRS, Lab Meteorol Dynam, Palaiseau, France. RP Tao, S (reprint author), Peking Univ, Coll Urban & Environm Sci, Lab Earth Surface Proc, Beijing, Peoples R China. EM taos@pku.edu.cn RI Boucher, Olivier/K-7483-2012; OI Wang, Rong/0000-0003-1962-0165; Boucher, Olivier/0000-0003-2328-5769; Tao, Shu/0000-0002-7374-7063 FU National Natural Science Foundation of China [41390240, 41130754]; 111 program [B14001]; Agence Nationale de la Recherche' [ANR-09-CEP-005-03/PAPRIKA]; National Aeronautics and Space Administration [09-GLORY09-0028]; GENCI-TGCC [2013-t2013012201] FX The authors thank the AERONET investigators for establishing and maintaining the 617 sites used in this study (http://aeronet.gsfc.nasa.gov/) and Ether/ECCAD for distribution of emission data used in this study (http://eccad.pole-ether.fr/eccad_extract_interface/JSF/page_login.jsf). The PKU-BC2007 inventory is available at http://inventory.pku.edu.cn/home.html. We thank D. Hauglustaine, Y. Yin, and L. Wu for useful comments and discussions and J. Gash for editing the English. This study was supported by the National Natural Science Foundation of China (41390240 and 41130754), the 111 program (B14001), the Agence Nationale de la Recherche' (project: ANR-09-CEP-005-03/PAPRIKA), and the National Aeronautics and Space Administration under grant 09-GLORY09-0028 issued through the Science Mission Directorate. Some of the computations were performed using HPC resources from GENCI-TGCC (grant 2013-t2013012201). R.W., O.B., Y.B., and S.T. designed the research. R.W. performed the analysis and calculation. R.W., O.B., and F.C. designed and performed the data assimilation analysis. G.L.S. performed the AERONET data analysis. M.V. carried out the CHIMERE simulation. B.H. S. performed the sensitivity test of vertical profiles. All authors contributed to the interpretation of the results and writing of the paper. NR 93 TC 2 Z9 2 U1 14 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 27 PY 2016 VL 121 IS 10 BP 5948 EP 5971 DI 10.1002/2015JD024326 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YB UT WOS:000381629900050 ER PT J AU Kumar, P Chu, T Fong, H Pfeiffer, HP Boyle, M Hemberger, DA Kidder, LE Scheel, MA Szilagyi, B AF Kumar, Prayush Chu, Tony Fong, Heather Pfeiffer, Harald P. Boyle, Michael Hemberger, Daniel A. Kidder, Lawrence E. Scheel, Mark A. Szilagyi, Bela TI Accuracy of binary black hole waveform models for aligned-spin binaries SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-WAVE; ELECTROMAGNETIC COUNTERPARTS; EINSTEIN EQUATIONS; CYGNUS X-1; MASS GAP; EXTREME; SEARCH; REFLECTION; TRANSIENTS; INSPIRALS AB Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 <= q <= 3), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass greater than or similar to 50M(circle dot)). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio rho, except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GWevents up to roughly rho less than or similar to 15. PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for rho less than or similar to 20. Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin. C1 [Kumar, Prayush; Fong, Heather; Pfeiffer, Harald P.] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. [Chu, Tony] Princeton Univ, Dept Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Fong, Heather] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 3H8, Canada. [Pfeiffer, Harald P.] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam, Germany. [Pfeiffer, Harald P.] Canadian Inst Adv Res, 180 Dundas St West, Toronto, ON M5G 1Z8, Canada. [Boyle, Michael; Kidder, Lawrence E.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Hemberger, Daniel A.; Scheel, Mark A.; Szilagyi, Bela] CALTECH, Theoret Astrophys 350 17, Pasadena, CA 91125 USA. [Szilagyi, Bela] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Kumar, P (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. FU NSERC of Canada; Ontario Early Researcher Awards Program; Canada Research Chairs Program; Canadian Institute for Advanced Research; Sherman Fairchild Foundation; NSF [PHY-1404569, AST-1333520, PHY-1306125, AST-1333129, PHY-1305682, PHY-0960291]; Simons Foundation; Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; University of Toronto; Canada Foundation for Innovation (CFI); Ministere de l'Economie; de l'Innovation et des Exportations du Quebec (MEIE); RMGA; Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT); NSF XSEDE network [TG-PHY990007N]; NSF/NCSA Blue Waters at the University of Illinois [ACI-1440083] FX We thank Kipp Cannon, Adam Lewis, Eric Poisson and Aaron Zimmerman for helpful discussions. We are grateful to Ofek Birnholtz, Sebastian Khan, Lionel London, Frank Ohme and Michael Purrer, for providing access to the IMRPhenomD code. Simulations used in this work were performed with SpEC [44]. We gratefully acknowledge support for this research at CITA from NSERC of Canada, the Ontario Early Researcher Awards Program, the Canada Research Chairs Program, and the Canadian Institute for Advanced Research; at Caltech from the Sherman Fairchild Foundation and NSF Grants No. PHY-1404569 and No. AST-1333520; at Cornell from the Sherman Fairchild Foundation and NSF Grants No. PHY-1306125 and No. AST-1333129; and at Princeton from NSF Grant No. PHY-1305682 and the Simons Foundation. Calculations were performed at the GPC supercomputer at the SciNet HPC Consortium [113]; SciNet is funded by the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; and the University of Toronto. Further calculations were performed on the Briaree cluster at Sherbrooke University, managed by Calcul Quebec and Compute Canada and with operation funded by the Canada Foundation for Innovation (CFI), Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE), RMGA and the Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT); on the Zwicky cluster at Caltech, which is supported by the Sherman Fairchild Foundation and by NSF Grant No. PHY-0960291; on the NSF XSEDE network under Grant No. TG-PHY990007N; on the NSF/NCSA Blue Waters at the University of Illinois with allocation jr6 under NSF PRAC Grant No. ACI-1440083. H. P. and P. K. thank the Albert-Einstein Institute, Potsdam, for hospitality during part of the time where this research was completed. NR 106 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY 25 PY 2016 VL 93 IS 10 AR 104050 DI 10.1103/PhysRevD.93.104050 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DM8VZ UT WOS:000376643900011 ER PT J AU Seinfeld, JH Bretherton, C Carslaw, KS Coe, H DeMott, PJ Dunlea, EJ Feingold, G Ghan, S Guenther, AB Kahn, R Kraucunas, I Kreidenweis, SM Molina, MJ Nenes, A Penner, JE Prather, KA Ramanathan, V Ramaswamy, V Rasch, PJ Ravishankara, AR Rosenfeld, D Stephens, G Wood, R AF Seinfeld, John H. Bretherton, Christopher Carslaw, Kenneth S. Coe, Hugh DeMott, Paul J. Dunlea, Edward J. Feingold, Graham Ghan, Steven Guenther, Alex B. Kahn, Ralph Kraucunas, Ian Kreidenweis, Sonia M. Molina, Mario J. Nenes, Athanasios Penner, Joyce E. Prather, Kimberly A. Ramanathan, V. Ramaswamy, Venkatachalam Rasch, Philip J. Ravishankara, A. R. Rosenfeld, Daniel Stephens, Graeme Wood, Robert TI Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE climate; aerosol-cloud effects; general circulation models; radiative forcing; satellite observations ID HETEROGENEOUS ICE NUCLEATION; COMMUNITY ATMOSPHERE MODEL; ANTHROPOGENIC AEROSOLS; CONDENSATION NUCLEI; CONVECTIVE CLOUDS; BOUNDARY-LAYER; MIXING STATE; CCN ACTIVITY; VOCALS-REX; SATELLITE AB The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. C1 [Seinfeld, John H.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Seinfeld, John H.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Bretherton, Christopher; Wood, Robert] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Carslaw, Kenneth S.] Univ Leeds, Sch Earth & Environm, Leeds L32 9JT, W Yorkshire, England. [Coe, Hugh] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [DeMott, Paul J.; Kreidenweis, Sonia M.; Ravishankara, A. R.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Dunlea, Edward J.] Natl Acad Sci Engn & Med, Board Atmospher Sci & Climate, Washington, DC 20001 USA. [Feingold, Graham] NOAA, Earth Syst Res Lab, Boulder, CO 80523 USA. [Ghan, Steven; Kraucunas, Ian; Rasch, Philip J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Guenther, Alex B.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Kahn, Ralph] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Molina, Mario J.; Prather, Kimberly A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Molina, Mario J.; Prather, Kimberly A.; Ramanathan, V.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Nenes, Athanasios] Georgia Inst Technol, Dept Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Nenes, Athanasios] Georgia Inst Technol, Dept Chem & Biol Engn, Atlanta, GA 30332 USA. [Nenes, Athanasios] Fdn Res & Technol Hellas, Inst Chem Engn Sci, GR-26504 Patras, Greece. [Nenes, Athanasios] Natl Observ Athens, Inst Environm Res & Sustainable Dev, GR-15236 Palea Pendeli, Greece. [Penner, Joyce E.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Ramaswamy, Venkatachalam] Princeton Univ, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Ramaswamy, Venkatachalam] NOAA, Princeton, NJ 08540 USA. [Rosenfeld, Daniel] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Stephens, Graeme] NASA, Jet Prop Lab, Ctr Climate Sci, Pasadena, CA 91109 USA. RP Seinfeld, JH (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA.; Seinfeld, JH (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. EM seinfeld@caltech.edu RI Ghan, Steven/H-4301-2011; DeMott, Paul/C-4389-2011; Rosenfeld, Daniel/F-6077-2016; Carslaw, Ken/C-8514-2009; Feingold, Graham/B-6152-2009; Wood, Robert/A-2989-2008; Kreidenweis, Sonia/E-5993-2011; Prather, Kimberly/A-3892-2008; Manager, CSD Publications/B-2789-2015; OI Ghan, Steven/0000-0001-8355-8699; DeMott, Paul/0000-0002-3719-1889; Rosenfeld, Daniel/0000-0002-0784-7656; Carslaw, Ken/0000-0002-6800-154X; Wood, Robert/0000-0002-1401-3828; Kreidenweis, Sonia/0000-0002-2561-2914; Prather, Kimberly/0000-0003-3048-9890; Coe, Hugh/0000-0002-3264-1713 FU US Department of Energy (DOE) [DE-AC06-76RLO 1830]; US DOE Decadal and Regional Climate Prediction; US DOE Earth System Modeling program FX The authors acknowledge Dr. Kristina Pistone for taking meticulous notes during the Colloquium. The Pacific Northwest National Laboratory (PNNL) is operated for the US Department of Energy (DOE) by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Work at PNNL was supported by the US DOE Decadal and Regional Climate Prediction using Earth System Models program and by the US DOE Earth System Modeling program. NR 84 TC 10 Z9 10 U1 34 U2 81 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 24 PY 2016 VL 113 IS 21 BP 5781 EP 5790 DI 10.1073/pnas.1514043113 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN0UD UT WOS:000376779900033 PM 27222566 ER PT J AU Sullivan, SC Lee, D Oreopoulos, L Nenes, A AF Sullivan, Sylvia C. Lee, Dongmin Oreopoulos, Lazaros Nenes, Athanasios TI Role of updraft velocity in temporal variability of global cloud hydrometeor number SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE global models; clouds; vertical velocity; sensitivity; attribution ID HETEROGENEOUS ICE NUCLEATION; COMMUNITY ATMOSPHERE MODEL; EMPIRICAL PARAMETERIZATION; CRYSTAL NUMBER; CLIMATE MODELS; AEROSOL; MICROPHYSICS; SENSITIVITY; CIRCULATION; ALTOCUMULUS AB Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap. C1 [Sullivan, Sylvia C.; Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Lee, Dongmin] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21251 USA. [Oreopoulos, Lazaros] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA. [Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Nenes, Athanasios] Natl Observ Athens, Inst Environm Res & Sustainable Dev, Palea Penteli 15236, Greece. [Nenes, Athanasios] Fdn Res & Technol Hellas, Patras 26504, Greece. RP Nenes, A (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.; Nenes, A (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.; Nenes, A (reprint author), Natl Observ Athens, Inst Environm Res & Sustainable Dev, Palea Penteli 15236, Greece.; Nenes, A (reprint author), Fdn Res & Technol Hellas, Patras 26504, Greece. EM athanasios.nenes@gatech.edu RI Oreopoulos, Lazaros/E-5868-2012 OI Oreopoulos, Lazaros/0000-0001-6061-6905 FU NASA Earth and Space Science Fellowship; NASA Modeling Analysis and Prediction program; DOE EaSM grant; Georgia-Power Faculty Scholar chair FX We thank two anonymous reviewers for their insightful suggestions, which have greatly improved the manuscript. We thank Prof. Ricardo Morales-Betancourt for providing the CAM5.1 inputs that were used to run the DEF-C and DEF-Cyr simulations. S.C.S. acknowledges Dr. Donifan Barahona, for instruction in using the GEOS-5 framework, and support from a NASA Earth and Space Science Fellowship. A.N., D.L., and L.O. acknowledge financial support from the NASA Modeling Analysis and Prediction program. A.N. acknowledges support from a DOE EaSM grant and a Georgia-Power Faculty Scholar chair. NR 35 TC 2 Z9 2 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 24 PY 2016 VL 113 IS 21 BP 5791 EP 5796 DI 10.1073/pnas.1514039113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN0UD UT WOS:000376779900034 PM 27185952 ER PT J AU Wolf, S Keenan, TF Fisher, JB Baldocchi, DD Desai, AR Richardson, AD Scott, RL Law, BE Litvak, ME Brunsell, NA Peters, W van der Laan-Luijkx, IT AF Wolf, Sebastian Keenan, Trevor F. Fisher, Joshua B. Baldocchi, Dennis D. Desai, Ankur R. Richardson, Andrew D. Scott, Russell L. Law, Beverly E. Litvak, Marcy E. Brunsell, Nathaniel A. Peters, Wouter van der Laan-Luijkx, Ingrid T. TI Warm spring reduced carbon cycle impact of the 2012 US summer drought SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE seasonal climate anomalies; carbon uptake; ecosystem fluxes; biosphere; atmosphere feedbacks; eddy covariance ID EDDY-COVARIANCE; SOIL-MOISTURE; CLIMATE; FOREST; REDUCTION; EXCHANGE; DIOXIDE; HEAT; PREDICTABILITY; FEEDBACKS AB The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soilwater resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks. C1 [Wolf, Sebastian; Baldocchi, Dennis D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Wolf, Sebastian] ETH, Dept Environm Syst Sci, CH-8092 Zurich, Switzerland. [Keenan, Trevor F.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. [Fisher, Joshua B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Desai, Ankur R.] Univ Wisconsin, Atmospher & Ocean Sci, Madison, WI 53706 USA. [Richardson, Andrew D.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Scott, Russell L.] USDA ARS, Southwest Watershed Res Ctr, Tucson, AZ 85719 USA. [Law, Beverly E.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Litvak, Marcy E.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Brunsell, Nathaniel A.] Univ Kansas, Dept Geog, Lawrence, KS 66045 USA. [Peters, Wouter; van der Laan-Luijkx, Ingrid T.] Wageningen Univ, Dept Meteorol & Air Qual, NL-6708 PB Wageningen, Netherlands. [Peters, Wouter] Univ Groningen, Ctr Isotope Res, NL-9747 AG Groningen, Netherlands. [Keenan, Trevor F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA. RP Wolf, S (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.; Wolf, S (reprint author), ETH, Dept Environm Syst Sci, CH-8092 Zurich, Switzerland. EM sewolf@ethz.ch RI van der Laan-Luijkx, Ingrid/G-9169-2011; Wolf, Sebastian/B-4580-2010; Keenan, Trevor/B-2744-2010; Baldocchi, Dennis/A-1625-2009; Law, Beverly/G-3882-2010; OI van der Laan-Luijkx, Ingrid/0000-0002-3990-6737; Wolf, Sebastian/0000-0001-7717-6993; Keenan, Trevor/0000-0002-3347-0258; Baldocchi, Dennis/0000-0003-3496-4919; Law, Beverly/0000-0002-1605-1203; Desai, Ankur/0000-0002-5226-6041; Fisher, Joshua/0000-0003-4734-9085 FU Carbon Dioxide Information Analysis Center at the Oak Ridge National Laboratory; European Commission [300083]; US Department of Energy's Office of Science [DE-AC02-05CH11231]; Macquarie University Research Fellowship; National Aeronautics and Space Administration; NASA's Terrestrial Hydrology Program; National Science Foundation (NSF), through the Macrosystems Biology program [EF-1065029]; LTER program [DEB-1114804]; NASA ROSES [0486V-874F]; NSF EPSCoR program [EPS-0553722, EPS-0919443]; LTER program at the Konza Prairie Biological Station [DEB-0823341]; NWO [SH-060-13]; OCW/NWO for ICOS-NL FX We acknowledge support from the Carbon Dioxide Information Analysis Center at the Oak Ridge National Laboratory, particularly B. Yang. We thank D. M. Ricciuto for assistance with the gap-filling of climate data and M. Sikka for remote-sensing data processing. We thank all data contributors for this synthesis study, particularly P. Blanken, G. Bohrer, D. Bowling, S. Burns, K. L. Clark, D. Hollinger, S. Ma, Q. Mu, K. A. Novick, S. A. Papuga, F. Rahman, and M. Zhao. We thank K. A. Novick, G. Bohrer, E. van Gorsel, and E. Paul-Limoges for helpful comments on the manuscript. We also appreciate the constructive comments of the reviewers and the editor. This research was supported by the European Commission's FP7 Marie Curie International Outgoing Fellowship Grant 300083 (to S.W.). Funding for the AmeriFlux Management Project was provided by the US Department of Energy's Office of Science (Contract DE-AC02-05CH11231). T.F.K. acknowledges support from a Macquarie University Research Fellowship. J.B.F. carried out the research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and acknowledges support from NASA's Terrestrial Hydrology Program. A.D.R. acknowledges support from the National Science Foundation (NSF), through the Macrosystems Biology program (Award EF-1065029) and the LTER program (DEB-1114804). M. E. L. acknowledges support from NASA ROSES (Award 0486V-874F). N.A.B. acknowledges support from the NSF EPSCoR program (EPS-0553722 and EPS-0919443) and the LTER program at the Konza Prairie Biological Station (DEB-0823341). W. P. and I.T.v.d.L.-L. acknowledge funding from NWO (SH-060-13) for computing time. I.T.v.d.L.-L. received financial support from OCW/NWO for ICOS-NL. NR 39 TC 9 Z9 9 U1 18 U2 50 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 24 PY 2016 VL 113 IS 21 BP 5880 EP 5885 DI 10.1073/pnas.1519620113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN0UD UT WOS:000376779900048 PM 27114518 ER PT J AU Shiokawa, K Fok, MC Fujimoto, M AF Shiokawa, Kazuo Fok, Mei-Ching Fujimoto, Masaki TI Special issue "The 12th International Conference on Substorms" SO EARTH PLANETS AND SPACE LA English DT Editorial Material ID IRREGULARITIES C1 [Shiokawa, Kazuo] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Fok, Mei-Ching] NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA. [Fujimoto, Masaki] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. RP Shiokawa, K (reprint author), Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. EM shiokawa@nagoya-u.jp NR 18 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1880-5981 J9 EARTH PLANETS SPACE JI Earth Planets Space PD MAY 24 PY 2016 VL 68 AR 87 DI 10.1186/s40623-016-0471-8 PG 2 WC Geosciences, Multidisciplinary SC Geology GA DM9DN UT WOS:000376665000001 ER PT J AU Nofrarias, M Karnesis, N Gibert, F Armano, M Audley, H Danzmann, K Diepholz, I Dolesi, R Ferraioli, L Ferroni, V Hewitson, M Hueller, M Inchauspe, H Jennrich, O Korsakova, N McNamara, PW Plagnol, E Thorpe, JI Vetrugno, D Vitale, S Wass, P Weber, WJ AF Nofrarias, Miquel Karnesis, Nikolaos Gibert, Ferran Armano, Michele Audley, Heather Danzmann, Karsten Diepholz, Ingo Dolesi, Rita Ferraioli, Luigi Ferroni, Valerio Hewitson, Martin Hueller, Mauro Inchauspe, Henri Jennrich, Oliver Korsakova, Natalia McNamara, Paul W. Plagnol, Eric Thorpe, James I. Vetrugno, Daniele Vitale, Stefano Wass, Peter Weber, William J. TI Optimal design of calibration signals in space-borne gravitational wave detectors SO PHYSICAL REVIEW D LA English DT Article ID SEQUENTIAL DESIGN; LISA PATHFINDER; IDENTIFICATION; INFERENCE; MISSION AB Future space-borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space-borne gravitational wave observatories. Here we propose a framework to derive the optimal signals-in terms of minimum parameter uncertainty-to be injected into these instruments during the calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case. C1 [Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran] Inst Ciencies Espai IEEC CSIC, Campus UAB,Carrer Can Magrans S-N, Cerdanyola Del Valles 08193, Spain. [Armano, Michele] European Space Agcy, Urbanizac Villafranca Castillo, SRE OD ESAC, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Hewitson, Martin; Korsakova, Natalia] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Callinstr 38, D-30167 Hannover, Germany. [Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Hewitson, Martin; Korsakova, Natalia] Leibniz Univ Hannover, Callinstr 38, D-30167 Hannover, Germany. [Dolesi, Rita; Ferroni, Valerio; Hueller, Mauro; Vetrugno, Daniele; Vitale, Stefano; Weber, William J.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Dolesi, Rita; Ferroni, Valerio; Hueller, Mauro; Vetrugno, Daniele; Vitale, Stefano; Weber, William J.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38123 Povo, Trento, Italy. [Ferraioli, Luigi] ETH, Inst Geophys, Sonneggstr 5, CH-8092 Zurich, Switzerland. [Inchauspe, Henri; Plagnol, Eric] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Ifru, 10 Rue A Domon & L Duquet, F-75205 Paris 13, France. [Jennrich, Oliver; McNamara, Paul W.] European Space Technol Ctr, European Space Agcy, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. [Thorpe, James I.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Wass, Peter] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, Prince Consort Rd, London SW7 2AZ, England. RP Nofrarias, M (reprint author), Inst Ciencies Espai IEEC CSIC, Campus UAB,Carrer Can Magrans S-N, Cerdanyola Del Valles 08193, Spain. EM nofrarias@ice.cat RI Nofrarias, Miquel/N-6249-2015; Wass, Peter/C-5767-2017; Vitale, Stefano/C-2312-2012 OI Nofrarias, Miquel/0000-0003-1518-2196; Wass, Peter/0000-0002-2945-399X; Vitale, Stefano/0000-0002-2427-8918 FU Ministerio de Economia y Competitividad [ESP2013-47637-P]; Fundacion General CSIC (Programa ComFuturo); Swiss National Science Foundation; Swiss Space Office (SSO); CNES [CNES 1316634/CNRS 103747]; CNRS; Observatoire de Paris; Universite Paris-Diderot; UnivEarthS Labex program at Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02] FX The Spanish contribution has been supported by Contract No. ESP2013-47637-P from Ministerio de Economia y Competitividad. M. Nofrarias acknowledges support from Fundacion General CSIC (Programa ComFuturo). L. Ferraioli acknowledges the support of the Swiss National Science Foundation and the Swiss Space Office (SSO). The French contribution has been supported by the CNES (Accord Specific de projet CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris and the Universite Paris-Diderot. E. Plagnol and H. Inchauspe would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). NR 33 TC 0 Z9 0 U1 3 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY 23 PY 2016 VL 93 IS 10 AR 102004 DI 10.1103/PhysRevD.93.102004 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DM8VR UT WOS:000376643100002 ER PT J AU Russell, CMP Corcoran, MF Hamaguchi, K Madura, TI Owocki, SP Hillier, DJ AF Russell, Christopher M. P. Corcoran, Michael F. Hamaguchi, Kenji Madura, Thomas I. Owocki, Stanley P. Hillier, D. John TI Modelling the Central Constant Emission X-ray component of eta Carinae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE hydrodynamics; radiative transfer; stars: individual: eta Carinae; stars: winds, outflows; X-rays: individual: eta Carinae ID RADIATIVE-TRANSFER SIMULATIONS; INNER COLLIDING WINDS; BINARY-SYSTEMS; LIGHT-CURVE; STAR WINDS; IONIZATION STRUCTURE; MASS-LOSS; ABSORPTION; HELIUM; ORIENTATION AB The X-ray emission of eta arinae shows multiple features at various spatial and temporal scales. The central constant emission (CCE) component is centred on the binary and arises from spatial scales much smaller than the bipolar Homunculus nebula, but likely larger than the central wind-wind collision region between the stars as it does not vary over the similar to 2-3 month X-ray minimum when it can be observed. Using large-scale 3D smoothed particle hydrodynamics (SPH) simulations, we model both the colliding-wind region between the stars, and the region where the secondary wind collides with primary wind ejected from the previous periastron passage. The simulations extend out to one hundred semimajor axes and make two limiting assumptions (strong coupling and no coupling) about the influence of the primary radiation field on the secondary wind. We perform 3D radiative transfer calculations on the SPH output to synthesize the X-ray emission, with the aim of reproducing the CCE spectrum. For the preferred primary mass-loss rate. M-A approximate to 8.5 x 10(-4)M circle dot yr(-1), the model spectra well reproduce the observation as the strong- and no-coupling spectra bound the CCE observation for longitude of periastron omega 252 degrees., and bound/converge on the observation for omega approximate to 90 degrees. This suggests that eta Carinae has moderate coupling between the primary radiation and secondary wind, that both the region between the stars and the comoving collision on the backside of the secondary generate the CCE, and that the CCE cannot place constraints on the binary's line of sight. We also discuss comparisons with common X-ray fitting parameters. C1 [Russell, Christopher M. P.; Corcoran, Michael F.; Hamaguchi, Kenji] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Corcoran, Michael F.; Hamaguchi, Kenji; Madura, Thomas I.] NASA, Goddard Space Flight Ctr, CRESST, Code 667, Greenbelt, MD 20771 USA. [Corcoran, Michael F.; Madura, Thomas I.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21044 USA. [Hamaguchi, Kenji] Univ Maryland, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Madura, Thomas I.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 667, Greenbelt, MD 20771 USA. [Owocki, Stanley P.] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA. [Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Russell, CMP (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. EM crussell@udel.edu FU Chandra grant [GO4-15019A]; XMM-Newton grant [NNX15AK62G]; ADAP grant [NNX15AM96G]; NASA Astrophysics Theory Program [NNX11AC40G] FX CMPR is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. KH is supported by the Chandra grant GO4-15019A, the XMM-Newton grant NNX15AK62G, and the ADAP grant NNX15AM96G. SPO acknowledges partial support of NASA Astrophysics Theory Program grant NNX11AC40G, awarded to the University of Delaware. Resources supporting this work were provided by the NASA HighEnd Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 47 TC 1 Z9 1 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2016 VL 458 IS 3 BP 2275 EP 2287 DI 10.1093/mnras/stw339 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL7DC UT WOS:000375799000001 ER PT J AU Hemphill, PB Rothschild, RE Furst, F Grinberg, V Klochkov, D Kretschmar, P Pottschmidt, K Staubert, R Wilms, J AF Hemphill, Paul B. Rothschild, Richard E. Furst, Felix Grinberg, Victoria Klochkov, Dmitry Kretschmar, Peter Pottschmidt, Katja Staubert, Ruediger Wilms, Joern TI Evidence for an evolving cyclotron line energy in 4U 1538-522 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; stars: magnetic field; pulsars: individual: 4U 1538-522; X-rays: binaries; X-rays: stars ID RAY-TIMING-EXPLORER; PHASE-RESOLVED SPECTROSCOPY; ACCRETING NEUTRON-STAR; OPTICAL SPECTROSCOPY; POSITIVE CORRELATION; PULSAR 4U-1538-52; MAGNETIC-FIELDS; VELA X-1; OUTBURST; HERCULES-X-1 AB We have performed a full time and luminosity-resolved spectral analysis of the high-mass X-ray binary 4U1538-522 using the available RXTE, INTEGRAL, and Suzaku data, examining both phase-averaged and pulse-phase-constrained data sets and focusing on the behaviour of the cyclotron resonance scattering feature (CRSF). No statistically significant trend between the energy of the CRSF and luminosity is observed in the combined data set. However, the CRSF energy appears to have increased by similar to 1.5 keV in the similar to 8.5 yr between the RXTE and Suzaku measurements, with Monte Carlo simulations finding the Suzaku measurement 4.6s above the RXTE points. Interestingly, the increased Suzaku CRSF energy is much more significant and robust in the pulse-phase-constrained spectra from the peak of the main pulse, suggesting a change that is limited to a single magnetic pole. The seven years of RXTE measurements do not show any strongly significant evolution with time on their own. We discuss the significance of the CRSF's behaviour with respect to luminosity and time in the context of historical observations of this source as well as recent observational and theoretical work concerning the neutron star accretion column, and suggest some mechanisms by which the observed change over time could occur. C1 [Hemphill, Paul B.; Rothschild, Richard E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Furst, Felix] CALTECH, Cahill Ctr Astron & Astrophys, MC 290-17,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Grinberg, Victoria] MIT, Kavli Inst Astrophys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Klochkov, Dmitry; Staubert, Ruediger] Univ Tubingen IAAT, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. [Kretschmar, Peter] European Space Astron Ctr ESA ESAC, Sci Operat Deparment, E-28691 Madrid, Spain. [Pottschmidt, Katja] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Pottschmidt, Katja] CRESST, Code 661, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Wilms, Joern] Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany. RP Hemphill, PB (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM pbhemphill@physics.ucsd.edu RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Kretschmar, Peter/0000-0001-9840-2048; Hemphill, Paul/0000-0002-1676-6954 FU NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060] FX This research has made use of data and/or software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. Our analysis makes heavy use of a collection of ISIS scripts provided by ECAP/Remeis Observatory and MIT, which can be found at http://www.sternwarte.uni-erlangen.de/isis/. Support for VG was provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for Support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO on behalf of NASA under contract NAS8-03060. NR 73 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2016 VL 458 IS 3 BP 2745 EP 2761 DI 10.1093/mnras/stw470 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL7DC UT WOS:000375799000035 ER PT J AU Prentice, SJ Mazzali, PA Pian, E Gal-Yam, A Kulkarni, SR Rubin, A Corsi, A Fremling, C Sollerman, J Yaron, O Arcavi, I Zheng, W Kasliwal, MM Filippenko, AV Cenko, SB Cao, Y Nugent, PE AF Prentice, S. J. Mazzali, P. A. Pian, E. Gal-Yam, A. Kulkarni, S. R. Rubin, A. Corsi, A. Fremling, C. Sollerman, J. Yaron, O. Arcavi, I. Zheng, W. Kasliwal, M. M. Filippenko, A. V. Cenko, S. B. Cao, Y. Nugent, P. E. TI The bolometric light curves and physical parameters of stripped-envelope supernovae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general ID GAMMA-RAY BURST; CORE-COLLAPSE SUPERNOVAE; 25 APRIL 1998; IIB SUPERNOVA; IC SUPERNOVA; IB/C SUPERNOVAE; X-RAY; SUPERGIANT PROGENITOR; COMPACT PROGENITOR; OPTICAL PHOTOMETRY AB The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity L-p, enabling the construction of a luminosity function. Subsequently, the mass of Ni-56 synthesized in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median L-p, in erg s(-1), of log(L-p)= 43.00 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median M-Ni = 0.34, 0.16, 0.14, and 0.11 M-circle dot, respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from L-p/2 to L-p more quickly than SNe Ib/IIb; consequently, their light curves are not as broad. C1 [Prentice, S. J.; Mazzali, P. A.] Liverpool John Moores Univ, IC2, Astrophys Res Inst, Liverpool Sci Pk,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Mazzali, P. A.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Pian, E.] Inst Space Astrophys & Cosm Phys, Via P Gobetti 101, I-40129 Bologna, Italy. [Pian, E.] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. [Gal-Yam, A.; Rubin, A.; Yaron, O.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Kulkarni, S. R.; Kasliwal, M. M.; Cao, Y.] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Corsi, A.] Texas Tech Univ, Dept Phys, Box 41051, Lubbock, TX 79409 USA. [Fremling, C.; Sollerman, J.] Univ Stockholm, Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Arcavi, I.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA. [Arcavi, I.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Zheng, W.; Filippenko, A. V.; Nugent, P. E.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kasliwal, M. M.] Carnegie Inst Sci, The Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Cenko, S. B.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Prentice, SJ (reprint author), Liverpool John Moores Univ, IC2, Astrophys Res Inst, Liverpool Sci Pk,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. EM S.J.Prentice@2014.ljmu.ac.uk OI Sollerman, Jesper/0000-0003-1546-6615 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; NSF [AST-1211916]; TABASGO Foundation; Christopher R. Redlich Fund; EU/FP7 via ERC [307260]; "The Quantum Universe" I-Core program by the Israeli Committee for planning and budgeting; ISF; Minerva; Weizmann-UK "making connections" program; Kimmel award; YeS award FX This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. AVF's research was funded by NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund. A.G.Y. is supported by the EU/FP7 via ERC grant no. 307260, "The Quantum Universe" I-Core program by the Israeli Committee for planning and budgeting and the ISF; by Minerva and ISF grants; by the Weizmann-UK "making connections" program; and by Kimmel and YeS awards. NR 102 TC 4 Z9 4 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2016 VL 458 IS 3 BP 2973 EP 3002 DI 10.1093/mnras/stw299 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL7DC UT WOS:000375799000052 ER PT J AU Desvignes, G Caballero, RN Lentati, L Verbiest, JPW Champion, DJ Stappers, BW Janssen, GH Lazarus, P Oslowski, S Babak, S Bassa, CG Brem, P Burgay, M Cognard, I Gair, JR Graikou, E Guillemot, L Hessels, JWT Jessner, A Jordan, C Karuppusamy, R Kramer, M Lassus, A Lazaridis, K Lee, KJ Liu, K Lyne, AG McKee, J Mingarelli, CMF Perrodin, D Petiteau, A Possenti, A Purver, MB Rosado, PA Sanidas, S Sesana, A Shaifullah, G Smits, R Taylor, SR Theureau, G Tiburzi, C van Haasteren, R Vecchio, A AF Desvignes, G. Caballero, R. N. Lentati, L. Verbiest, J. P. W. Champion, D. J. Stappers, B. W. Janssen, G. H. Lazarus, P. Oslowski, S. Babak, S. Bassa, C. G. Brem, P. Burgay, M. Cognard, I. Gair, J. R. Graikou, E. Guillemot, L. Hessels, J. W. T. Jessner, A. Jordan, C. Karuppusamy, R. Kramer, M. Lassus, A. Lazaridis, K. Lee, K. J. Liu, K. Lyne, A. G. McKee, J. Mingarelli, C. M. F. Perrodin, D. Petiteau, A. Possenti, A. Purver, M. B. Rosado, P. A. Sanidas, S. Sesana, A. Shaifullah, G. Smits, R. Taylor, S. R. Theureau, G. Tiburzi, C. van Haasteren, R. Vecchio, A. TI High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE proper motions; stars: distances; pulsars: general ID LARGE-AREA TELESCOPE; RELATIVISTIC CELESTIAL MECHANICS; NANCAY RADIO TELESCOPE; WHITE-DWARF COMPANION; ORBIT BINARY PULSARS; SHAPIRO DELAY; GRAVITATIONAL-WAVES; GENERAL-RELATIVITY; PSR J0218+4232; PROPER MOTION AB We report on the high-precision timing of 42 radiomillisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TEMPONEST yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binaryMSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600-3053 and J1918-0642, implying pulsar and companion masses m(p) = 1.22(-0.35)(+0.5) M-circle dot, m(c) = 0.21(-0.04)(+0.06) M-circle dot and m(p) = 1.25(-0.4)(+0.6)M(circle dot), m(c) = 0.23(-0.05)(+0.07) M-circle dot, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909-3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600-3053 and J1909-3744. C1 [Desvignes, G.; Caballero, R. N.; Verbiest, J. P. W.; Champion, D. J.; Lazarus, P.; Oslowski, S.; Graikou, E.; Jessner, A.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Mingarelli, C. M. F.; Shaifullah, G.; Tiburzi, C.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Lentati, L.] Univ Cambridge, Inst Astron, Battcock Ctr Astrophys, Madingley Rd, Cambridge CB3 0HA, England. [Verbiest, J. P. W.; Oslowski, S.] Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany. [Stappers, B. W.; Janssen, G. H.; Bassa, C. G.; Jordan, C.; Kramer, M.; Lyne, A. G.; McKee, J.; Purver, M. B.; Sanidas, S.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Janssen, G. H.; Bassa, C. G.; Hessels, J. W. T.; Smits, R.] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. [Babak, S.; Brem, P.; Sesana, A.] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Golm, Germany. [Burgay, M.; Perrodin, D.; Possenti, A.] INAF ORA Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, CA, Italy. [Cognard, I.; Guillemot, L.; Theureau, G.] Univ Orleans, LPC2E, CNRS, F-45071 Orleans, France. [Cognard, I.; Guillemot, L.; Theureau, G.] CNRS INSU, Stn Radioastron Nancay, Observ Paris, F-18330 Nancay, France. [Gair, J. R.; Taylor, S. R.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Hessels, J. W. T.] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Lee, K. J.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Mingarelli, C. M. F.; van Haasteren, R.] CALTECH, TAPIR Theoret Astrophys, Pasadena, CA 91125 USA. [Mingarelli, C. M. F.; Sesana, A.; Vecchio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Petiteau, A.] Univ Paris 07, APC, UFR Phys, Batiment Condorcet, F-75205 Paris 13, France. [Rosado, P. A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia. [Rosado, P. A.] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Callinstr 38, D-30167 Hannover, Germany. [Taylor, S. R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Theureau, G.] Univ Paris Diderot, Lab Univers & Theories, Observ Paris, CNRS INSU, 5 Pl Jules Janssen, F-92190 Meudon, France. RP Desvignes, G; Caballero, RN; Verbiest, JPW (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.; Verbiest, JPW (reprint author), Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany. EM gdesvignes@mpifr-bonn.mpg.de; caball@mpifr-bonnmpg.de; joris.verbiest@gmail.com RI Perrodin, Delphine/L-1916-2016; Vecchio, Alberto/F-8310-2015; OI Perrodin, Delphine/0000-0002-1806-2483; Vecchio, Alberto/0000-0002-6254-1617; Taylor, Stephen/0000-0003-0264-1453; McKee, James/0000-0002-2885-8485; Oslowski, Stefan/0000-0003-0289-0732 FU STFC in the UK; 'Programme National de Cosmologie et Galaxies' (PNCG) of CNRS/INSU, France; Netherlands Foundation for Scientific Research (NWO); 'LEAP' ERC Advanced Grant [337062]; International Max Planck Research School Bonn/Cologne; Bonn-Cologne Graduate School; Royal Society; NWO; ERC [337062]; National Natural Science Foundation of China [11373011]; European Community; Alexander von Humboldt Foundation; NASA; NASA [PF3-140116] FX Part of this work is based on observations with the 100-m telescope of the Max-Planck-Institut fur Radioastronomie (MPIfR) at Effelsberg in Germany. Pulsar research at the Jodrell Bank Centre for Astrophysics and the observations using the Lovell Telescope are supported by a consolidated grant from the STFC in the UK. The Nancay radio observatory is operated by the Paris Observatory, associated with the French Centre National de la Recherche Scientifique (CNRS). We acknowledge financial support from 'Programme National de Cosmologie et Galaxies' (PNCG) of CNRS/INSU, France. The WSRT is operated by the Netherlands Institute for Radio Astronomy (ASTRON) with support from the Netherlands Foundation for Scientific Research (NWO).; CGB, GHJ, RK, KL, KJL, DP acknowledge the support from the 'LEAP' ERC Advanced Grant (337062). RNC acknowledges the support of the International Max Planck Research School Bonn/Cologne and the Bonn-Cologne Graduate School. JG and AS are supported by the Royal Society. JWTH acknowledges funding from an NWO Vidi fellowship and CGB, JWTH acknowledge the support from the ERC Starting Grant 'DRAGNET' (337062). KJL is supported by the National Natural Science Foundation of China (Grant No.11373011). PL acknowledges the support of the International Max Planck Research School Bonn/Cologne. CMFM was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. SO is supported by the Alexander von Humboldt Foundation. This research was in part supported by ST's appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. RvH is supported by NASA Einstein Fellowship grant PF3-140116. NR 155 TC 16 Z9 16 U1 3 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2016 VL 458 IS 3 BP 3341 EP 3380 DI 10.1093/mnras/stw483 PG 40 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL7DC UT WOS:000375799000076 ER PT J AU Adrian-Martinez, S Albert, A Andre, M Anton, G Ardid, M Aubert, JJ Baret, B Barrios-Marti, J Basa, S Bertin, V Biagi, S Bormuth, R Bouwhuis, MC Bruijn, R Brunner, J Busto, J Capone, A Caramete, L Carr, J Chiarusi, T Circella, M Coniglione, R Costantini, H Coyle, P Creusot, A Dekeyser, I Deschamps, A De Bonis, G Distefano, C Donzaud, C Dornic, D Drouhin, D Dumas, A Eberl, T Elsasser, D Enzenhofer, A Fehn, K Felis, I Fermani, P Folger, F Fusco, LA Galata, S Gay, P Geisselsoder, S Geyer, K Giordano, V Gleixner, A Gracia-Ruiz, R Graf, K Hallmann, S van Haren, H Heijboer, AJ Hello, Y Hernandez-Rey, JJ Hossl, J Hofestadt, J Hugon, C James, CW de Jong, M Kadler, M Kalekin, O Katz, U Kiessling, D Kooijman, P Kouchner, A Kreter, M Kreykenbohm, I Kulikovskiy, V Lahmann, R Lefevre, D Leonora, E Loucatos, S Marcelin, M Margiotta, A Marinelli, A Martinez-Mora, JA Mathieu, A Michael, T Migliozzi, P Moussa, A Mueller, C Nezri, E Pavalas, GE Pellegrino, C Perrina, C Piattelli, P Popa, V Pradier, T Racca, C Riccobene, G Richter, R Roensch, K Saldana, M Samtleben, DFE Sanchez-Losa, A Sanguineti, M Sapienza, P Schmid, J Schnabel, J Schussler, F Seitz, T Sieger, C Spurio, M Steijger, JJM Stolarczyk, T Taiuti, M Tamburini, C Trovato, A Tselengidou, M Tonnis, C Vallage, B Vallee, C Van Elewyck, V Visser, E Vivolo, D Wagner, S Wilms, J Zornoza, JD Zuniga, J Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Ansseau, I Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M De Young, T Diaz-Velez, JC di Lorenzo, V Dumm, JP Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Fosig, CC Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glagla, M Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jurkovic, M Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kruckl, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mandelartz, M Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Scheriau, F Schimp, M Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schulte, L Schumacher, L Seckel, D Seunarine, S Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Wiebe, K Wiebusch, CH Wille, L Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M AF Adrian-Martinez, S. Albert, A. Andre, M. Anton, G. Ardid, M. Aubert, J. -J. Baret, B. Barrios-Marti, J. Basa, S. Bertin, V. Biagi, S. Bormuth, R. Bouwhuis, M. C. Bruijn, R. Brunner, J. Busto, J. Capone, A. Caramete, L. Carr, J. Chiarusi, T. Circella, M. Coniglione, R. Costantini, H. Coyle, P. Creusot, A. Dekeyser, I. Deschamps, A. De Bonis, G. Distefano, C. Donzaud, C. Dornic, D. Drouhin, D. Dumas, A. Eberl, T. Elsaesser, D. Enzenhoefer, A. Fehn, K. Felis, I. Fermani, P. Folger, F. Fusco, L. A. Galata, S. Gay, P. Geisselsoeder, S. Geyer, K. Giordano, V. Gleixner, A. Gracia-Ruiz, R. Graf, K. Hallmann, S. van Haren, H. Heijboer, A. J. Hello, Y. Hernandez-Rey, J. J. Hoessl, J. Hofestaedt, J. Hugon, C. James, C. W. de Jong, M. Kadler, M. Kalekin, O. Katz, U. Kiessling, D. Kooijman, P. Kouchner, A. Kreter, M. Kreykenbohm, I. Kulikovskiy, V. Lahmann, R. Lefevre, D. Leonora, E. Loucatos, S. Marcelin, M. Margiotta, A. Marinelli, A. Martinez-Mora, J. A. Mathieu, A. Michael, T. Migliozzi, P. Moussa, A. Mueller, C. Nezri, E. Pavalas, G. E. Pellegrino, C. Perrina, C. Piattelli, P. Popa, V. Pradier, T. Racca, C. Riccobene, G. Richter, R. Roensch, K. Saldana, M. Samtleben, D. F. E. Sanchez-Losa, A. Sanguineti, M. Sapienza, P. Schmid, J. Schnabel, J. Schussler, F. Seitz, T. Sieger, C. Spurio, M. Steijger, J. J. M. Stolarczyk, Th. Taiuti, M. Tamburini, C. Trovato, A. Tselengidou, M. Tonnis, C. Vallage, B. Vallee, C. Van Elewyck, V. Visser, E. Vivolo, D. Wagner, S. Wilms, J. Zornoza, J. D. Zuniga, J. Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Ansseau, I. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Rosendo, E. del Pino Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. De Young, T. Diaz-Velez, J. C. di Lorenzo, V. Dumm, J. P. Dunkman, M. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Foesig, C. -C. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Krueckl, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Lunemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mandelartz, M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Puetz, J. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Scheriau, F. Schimp, M. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schulte, L. Schumacher, L. Seckel, D. Seunarine, S. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. CA ANTARES Collaboration IceCube Collaboration TI THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; neutrinos ID HIGH-ENERGY NEUTRINOS; SUPERNOVA-REMNANTS; FLUX PREDICTIONS; ASTRONOMY; TEV; ASTROPHYSICS; MICROQUASARS; PERFORMANCE; EMISSION; DETECTOR AB We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs. C1 [Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, E-46730 Gandia, Spain. [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP, F-50568 Colmar, France. [Andre, M.] Tech Univ Catalonia, Lab Appl Bioacoust, E-08800 Barcelona, Spain. [Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C. W.; Kalekin, O.; Katz, U.; Kiessling, D.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany. [Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C.] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Baret, B.; Creusot, A.; Donzaud, C.; Galata, S.; Gracia-Ruiz, R.; Kouchner, A.; Van Elewyck, V.] Univ Paris Diderot, CNRS, IN2P3, Observ Paris,Sorbonne Paris Cite,CEA IRFU,APC, F-75205 Paris, France. [Barrios-Marti, J.; Hernandez-Rey, J. J.; Sanchez-Losa, A.; Tonnis, C.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, CSIC, IFIC Inst Fis Corpuscular, Edificios Invest Paterna, Apdo Correos 22085, E-46071 Valencia, Spain. [Basa, S.; Marcelin, M.; Nezri, E.] LAM Lab Astrophys Marseille, Pole Etoile Site Chateau Gombert, Rue Frederic Joliot Curie 38, F-13388 Marseille, France. [Biagi, S.; Coniglione, R.; Distefano, C.; Kulikovskiy, V.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.] Ist Nazl Fis Nucl, Lab Nazl Sud, Via S Sofia 62, I-95123 Catania, Italy. [Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Heijboer, A. J.; de Jong, M.; Kooijman, P.; Michael, T.; Samtleben, D. F. E.; Steijger, J. J. M.; Visser, E.] Nikhef, Sci Pk, Amsterdam, Netherlands. [Bormuth, R.; de Jong, M.; Samtleben, D. F. E.] Leiden Univ, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Bruijn, R.; Kooijman, P.] Univ Amsterdam, Inst Hoge Energie Fys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Ist Nazl Fis Nucl, Sez Roma, Ple Aldo Moro 2, I-00185 Rome, Italy. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Univ Roma La Sapienza, Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy. [Caramete, L.; Pavalas, G. E.; Popa, V.] Inst Space Sci, RO-077125 Bucharest, Magurele, Romania. [Chiarusi, T.; Fusco, L. A.; Margiotta, A.; Pellegrino, C.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Circella, M.] Ist Nazl Fis Nucl, Sez Bari, Via E Orabona 4, I-70126 Bari, Italy. [Dekeyser, I.; Lefevre, D.; Tamburini, C.] Aix Marseille Univ, Mediterranean Inst Oceanog, F-13288 Marseille 9, France. [Dekeyser, I.; Lefevre, D.; Tamburini, C.] Univ Sud Toulon Var, CNRS INSU IRD 110, F-83957 La Garde, France. [Deschamps, A.; Hello, Y.] Univ Nice Sophia Antipolis, Geoazur, CNRS, Observ Cote Azur,IRD, Sophia Antipolis, France. [Donzaud, C.] Univ Paris 11, F-91405 Orsay, France. [Dumas, A.; Gay, P.] Univ Clermont Ferrand, Univ Blaise Pascal, CNRS, Phys Corpusculaire Lab,IN2P3, BP 10448, F-63000 Clermont Ferrand, France. [Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Fischer Str 31, D-97074 Wrzburg, Germany. [Fusco, L. A.; Margiotta, A.; Pellegrino, C.; Spurio, M.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Giordano, V.; Leonora, E.] Ist Nazl Fis Nucl, Sez Catania, Viale Andrea Doria 6, I-95125 Catania, Italy. [van Haren, H.] Royal Netherlands Inst Sea Res NIOZ, Landsdiep 4, NL-1797 SZ Texel, Netherlands. [Hugon, C.; Sanguineti, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Hugon, C.; Sanguineti, M.; Taiuti, M.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. [Kooijman, P.] Univ Utrecht, Fac Betawetenschappen, Princetonplein 5, NL-3584 CC Utrecht, Netherlands. [Kreykenbohm, I.; Wilms, J.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany. [Kreykenbohm, I.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Kulikovskiy, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Leonora, E.] Univ Catania, Dipartimento Fis & Astron, Viale Andrea Doria 6, I-95125 Catania, Italy. [Loucatos, S.; Schussler, F.; Stolarczyk, Th.; Vallage, B.] CEA Saclay, Serv Phys Particules, Inst Rech Fondament Univers, Direct Sci Matiere, F-91191 Gif Sur Yvette, France. [Marinelli, A.] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy. [Marinelli, A.] Univ Pisa, Dipartimento Fis, Largo B Pontecorvo 3, I-56127 Pisa, Italy. [Migliozzi, P.; Vivolo, D.] Ist Nazl Fis Nucl, Sez Napoli, Via Cintia, I-80126 Naples, Italy. [Moussa, A.] Univ Mohammed 1, Lab Phys Matter & Radiat, BP 717, Oujda 6000, Morocco. [Pradier, T.] Univ Strasbourg, IPHC, 23 Rue Loess, F-67037 Strasbourg, France. [Pradier, T.] CNRS, UMR7178, F-67037 Strasbourg, France. [Vivolo, D.] Univ Naples Federico II, Dipartimento Fis, Via Cintia, I-80126 Naples, Italy. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Abraham, K.; Bernardini, E.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch, New Zealand. [Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Tselengidou, M.; Altmann, D.; Classen, L.; Kappes, A.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C. -C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H. -G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Tatar, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Tatar, J.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Sutherland, M.] Ohio State Univ, Dept Astron, 174 W 18th Ave, Columbus, OH 43210 USA. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.; Tatar, J.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. [Boerner, M.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Scheriau, F.; Schmitz, M.] Tech Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. [Bose, D.; In, S.; Jeong, M.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Lunemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Goldschmidt, A.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Clark, K.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [de Andre, J. P. A. M.; De Young, T.; Hignight, J.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Kurahashi, N.; Richman, M.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.; Toale, P. A.; Williams, D. R.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Palczewski, T.; Pepper, J. A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Adrian-Martinez, S (reprint author), Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, E-46730 Gandia, Spain. RI Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; James, Clancy/G-9178-2015; Migliozzi, Pasquale/I-6427-2015; Zuniga, Juan/P-4385-2014; Wilms, Joern/C-8116-2013; Eberl, Thomas/J-4826-2016; Katz, Uli/E-1925-2013; Wiebusch, Christopher/G-6490-2012; Tjus, Julia/G-8145-2012; Hernandez-Rey, Juan Jose/N-5955-2014; Capone, Antonio/F-1098-2010; Maruyama, Reina/A-1064-2013; Anton, Gisela/C-4840-2013; Beatty, James/D-9310-2011; Schussler, Fabian/G-5313-2013; Caramete, Laurentiu/C-2328-2011 OI Kadler, Matthias/0000-0001-5606-6154; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; James, Clancy/0000-0002-6437-6176; Migliozzi, Pasquale/0000-0001-5497-3594; Zuniga, Juan/0000-0002-1041-6451; Sanguineti, Matteo/0000-0002-7206-2097; Sanchez Losa, Agustin/0000-0001-9596-7078; Fusco, Luigi Antonio/0000-0001-8254-3372; Perez de los Heros, Carlos/0000-0002-2084-5866; Wilms, Joern/0000-0003-2065-5410; Eberl, Thomas/0000-0002-5301-9106; Katz, Uli/0000-0002-7063-4418; Wiebusch, Christopher/0000-0002-6418-3008; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Maruyama, Reina/0000-0003-2794-512X; Anton, Gisela/0000-0003-2039-4724; Beatty, James/0000-0003-0481-4952; Schussler, Fabian/0000-0003-1500-6571; FU Centre National de la Recherche Scientifique (CNRS), France; Commissariat a l'energie atomique et aux energies alternatives (CEA), France; Commission Europeenne, France; Region Ile-de-France (DIM-ACAV) Region Alsace, France; Region Provence-Alpes-Cote d'Azur, France; Departement du Var, France; Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO), Spain; Prometeo and Grisolia programs of Generalitat Valenciana, Spain; MultiDark, Spain; Agence de l'Oriental, Morocco; CNRST, Morocco; U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid; Compute/Calcul Canada, Sweden; Swedish Research Council, Sweden; Swedish Polar Research Secretariat, Sweden; Swedish National Infrastructure for Computing (SNIC), Sweden; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX The authors of the ANTARES collaboration acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Region Ile-de-France (DIM-ACAV) Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO), Prometeo and Grisolia programs of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.; The authors of the IceCube collaboration acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). NR 74 TC 5 Z9 5 U1 6 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2016 VL 823 IS 1 AR 65 DI 10.3847/0004-637X/823/1/65 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6WD UT WOS:000377216300065 ER PT J AU Meng, HYA Plavchan, P Rieke, GH Cody, AM Guth, T Stauffer, J Covey, K Carey, S Ciardi, D Duran-Rojas, MC Gutermuth, RA Morales-Calderon, M Rebull, LM Watson, AM AF Meng, Huan Y. A. Plavchan, Peter Rieke, George H. Cody, Ann Marie Guth, Tina Stauffer, John Covey, Kevin Carey, Sean Ciardi, David Duran-Rojas, Maria C. Gutermuth, Robert A. Morales-Calderon, Maria Rebull, Luisa M. Watson, Alan M. TI PHOTO-REVERBERATION MAPPING OF A PROTOPLANETARY ACCRETION DISK AROUND A T TAURI STAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; circumstellar matter; protoplanetary disks; stars: individual (YLW 16B); stars: variables: T Tauri, Herbig Ae/Be ID YOUNG STELLAR OBJECTS; HERBIG AE/BE STARS; SPITZER-SPACE-TELESCOPE; INFRARED ARRAY CAMERA; OPHIUCHI DARK CLOUD; MAIN-SEQUENCE STARS; LIGHT CURVES; CSI 2264; CLASS-I; MIDINFRARED VARIABILITY AB Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall" at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the rho Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 mu m) and K (2.2 mu m) bands were synchronized while the 4.5 mu m emission lagged by 74.5 +/- 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at similar to 1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk. C1 [Meng, Huan Y. A.; Plavchan, Peter; Ciardi, David] CALTECH, Ctr Infrared Proc & Anal, MC 100-22,770 S Wilson Ave, Pasadena, CA 91125 USA. [Meng, Huan Y. A.; Rieke, George H.] Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Meng, Huan Y. A.; Rieke, George H.] Univ Arizona, Dept Planetary Sci, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Meng, Huan Y. A.; Rieke, George H.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Meng, Huan Y. A.; Rieke, George H.] Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Plavchan, Peter] Missouri State Univ, Dept Phys Astron & Mat Sci, 901 S Natl Ave, Springfield, MO 65897 USA. [Cody, Ann Marie] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guth, Tina] New Mexico Inst Min & Technol, Dept Phys, 801 Leroy Pl, Socorro, NM 87801 USA. [Stauffer, John; Carey, Sean; Rebull, Luisa M.] CALTECH, Infrared Sci Arch & Spitzer Sci Ctr, Ctr Infrared Proc & Anal, MC 314-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Covey, Kevin] Western Washington Univ, Dept Phys & Astron, MS-9164,516 High St, Bellingham, WA 98225 USA. [Duran-Rojas, Maria C.] Univ Nacl Autonoma Mexico, Inst Astron, Apartado Postal 106, Ensenada 22800, Baja California, Mexico. [Gutermuth, Robert A.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Morales-Calderon, Maria] INTA CSIC, Dept Astrofis, Ctr Astrobiol, POB 78,ESAC Campus, E-28691 Madrid, Spain. [Watson, Alan M.] Univ Nacl Autonoma Mexico, Inst Astron, Apartado Postal 70-264, Mexico City 04510, DF, Mexico. RP Meng, HYA (reprint author), CALTECH, Ctr Infrared Proc & Anal, MC 100-22,770 S Wilson Ave, Pasadena, CA 91125 USA.; Meng, HYA (reprint author), Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA.; Meng, HYA (reprint author), Univ Arizona, Dept Planetary Sci, 1629 E Univ Blvd, Tucson, AZ 85721 USA.; Meng, HYA (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA.; Meng, HYA (reprint author), Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM hyameng@lpl.arizona.edu RI Morales-Calderon, Maria/C-8384-2017; OI Morales-Calderon, Maria/0000-0001-9526-9499; Plavchan, Peter/0000-0002-8864-1667; Ciardi, David/0000-0002-5741-3047; Covey, Kevin/0000-0001-6914-7797; Meng, Huan/0000-0003-0006-7937 FU IPAC Visiting Graduate Research Fellowship program; NSF [AST-1449476]; NASA by JPL/Caltech FX The authors thank Rachel Akeson, John Carpenter, Kevin Flaherty, Lynne Hillenbrand, Heather Knutson, Patrick Ogle, Inseok Song, Karl Stapelfeldt, and Barbara Whitney for their contributions to the YSOVAR project and valuable discussions on this work. H.Y.A.M. acknowledges support from the IPAC Visiting Graduate Research Fellowship program. P.P. acknowledges the work of Nancy Silbermann, William Mahoney, and the Spitzer scheduling team in scheduling the data volume-intensive observations, and thanks Greg Doppmann for providing the Keck/NIRSPEC spectrum. K.C. acknowledges support provided by the NSF through grant AST-1449476. A.M.W. thanks the staff of the Observatorio Astronomico Nacional in Sierra San Pedro Martir. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 74 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2016 VL 823 IS 1 AR 58 DI 10.3847/0004-637X/823/1/58 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6WD UT WOS:000377216300058 ER PT J AU Nieves-Chinchilla, T Linton, MG Hidalgo, MA Vourlidas, A Savani, NP Szabo, A Farrugia, C Yu, W AF Nieves-Chinchilla, T. Linton, M. G. Hidalgo, M. A. Vourlidas, A. Savani, N. P. Szabo, A. Farrugia, C. Yu, W. TI A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE plasmas; Sun: coronal mass ejections (CMEs); Sun: heliosphere ID CORONAL MASS EJECTIONS; SOLAR-WIND; 1 AU; TOPOLOGY; RECONSTRUCTION; PARAMETERS; EXPANSION; PLASMA; FIELDS AB We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication. C1 [Nieves-Chinchilla, T.] Catholic Univ Amer, Washington, DC 20064 USA. [Nieves-Chinchilla, T.; Savani, N. P.; Szabo, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Linton, M. G.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Hidalgo, M. A.] UAH, Dept Fis, Madrid, Spain. [Vourlidas, A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Savani, N. P.] Univ Maryland, Goddard Planetary Heliophys Inst, College Pk, MD USA. [Farrugia, C.; Yu, W.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Farrugia, C.; Yu, W.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Nieves-Chinchilla, T (reprint author), Catholic Univ Amer, Washington, DC 20064 USA.; Nieves-Chinchilla, T (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM Teresa.Nieves@nasa.gov RI Vourlidas, Angelos/C-8231-2009; Hidalgo, Miguel/L-5826-2014 OI Vourlidas, Angelos/0000-0002-8164-5948; Hidalgo, Miguel/0000-0003-1617-2037 FU NASA; MFI/Wind NASA mission; SECCHI/STEREO NASA mission; JHU/APL internal funds; [MNX13AP39G] FX T.N.-C., M.G.L., and A.V. are supported by NASA through the LWS program. T.N.-C. is supported by MFI/Wind and SECCHI/STEREO NASA missions. A.V. is supported by JHU/APL internal funds. C.F. and W.Y. are supported by MNX13AP39G. NR 31 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2016 VL 823 IS 1 AR 27 DI 10.3847/0004-637X/823/1/27 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6WD UT WOS:000377216300027 ER PT J AU Poleski, R Zhu, W Christie, GW Udalski, A Gould, A Bachelet, E Skottfelt, J Novati, SC Szymanski, MK Soszynski, I Pietrzynski, G Wyrzykowski, L Ulaczyk, K Pietrukowicz, P Kozlowski, S Skowron, J Mroz, P Pawlak, M Beichman, C Bryden, G Carey, S Fausnaugh, M Gaudi, BS Henderson, CB Pogge, RW Shvartzvald, Y Wibking, B Yee, JC Beatty, TG Eastman, JD Drummond, J Friedmann, M Henderson, M Johnson, JA Kaspi, S Maoz, D McCormick, J McCrady, N Natusch, T Ngan, H Porritt, I Relles, HM Sliski, DH Tan, TG Wittenmyer, RA Wright, JT Street, RA Tsapras, Y Bramich, DM Horne, K Snodgrass, C Steele, IA Menzies, J Jaimes, RF Wambsganss, J Schmidt, R Cassan, A Ranc, C Mao, S Bozza, V Dominik, M Hundertmark, MPG Jorgensen, UG Andersen, MI Burgdorf, MJ Ciceri, S D'Ago, G Evans, DF Gu, SH Hinse, TC Kains, N Kerins, E Korhonen, H Kuffmeier, M Mancini, L Popovas, A Rabus, M Rahvar, S Rasmussen, RT Scarpetta, G Southworth, J Surdej, J Unda-Sanzana, E Verma, P von Essen, C Wang, YB Wertz, O AF Poleski, Radoslaw Zhu, Wei Christie, Grant W. Udalski, Andrzej Gould, Andrew Bachelet, Etienne Skottfelt, Jesper Novati, Sebastiano Calchi Szymanski, M. K. Soszynski, I. Pietrzynski, G. Wyrzykowski, L. Ulaczyk, K. Pietrukowicz, P. Kozlowski, Szymon Skowron, J. Mroz, P. Pawlak, M. Beichman, C. Bryden, G. Carey, S. Fausnaugh, M. Gaudi, B. S. Henderson, C. B. Pogge, R. W. Shvartzvald, Y. Wibking, B. Yee, J. C. Beatty, T. G. Eastman, J. D. Drummond, J. Friedmann, M. Henderson, M. Johnson, J. A. Kaspi, S. Maoz, D. McCormick, J. McCrady, N. Natusch, T. Ngan, H. Porritt, I. Relles, H. M. Sliski, D. H. Tan, T. -G. Wittenmyer, R. A. Wright, J. T. Street, R. A. Tsapras, Y. Bramich, D. M. Horne, K. Snodgrass, C. Steele, I. A. Menzies, J. Jaimes, R. Figuera Wambsganss, J. Schmidt, R. Cassan, A. Ranc, C. Mao, S. Bozza, V. Dominik, M. Hundertmark, M. P. G. Jorgensen, U. G. Andersen, M. I. Burgdorf, M. J. Ciceri, S. D'Ago, G. Evans, D. F. Gu, S. -H. Hinse, T. C. Kains, N. Kerins, E. Korhonen, H. Kuffmeier, M. Mancini, L. Popovas, A. Rabus, M. Rahvar, S. Rasmussen, R. T. Scarpetta, G. Southworth, J. Surdej, J. Unda-Sanzana, E. Verma, P. von Essen, C. Wang, Y. -B. Wertz, O. CA OGLE Grp Spitzer Team FUN Grp RoboNet Project MiNDSTEp Grp TI THE SPITZER MICROLENSING PROGRAM AS A PROBE FOR GLOBULAR CLUSTER PLANETS: ANALYSIS OF OGLE-2015-BLG-0448 SO ASTROPHYSICAL JOURNAL LA English DT Article DE globular clusters: individual (NGC6558); gravitational lensing: micro; planets and satellites: detection; proper motions ID GRAVITATIONAL LENSING EXPERIMENT; DIFFERENCE IMAGE-ANALYSIS; MILKY-WAY BULGE; RR LYRAE STARS; GALACTIC BULGE; OGLE-III; RED CLUMP; PHOTOMETRY; SYSTEMS; CATALOG AB The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 (mu(cl) (N, E) = (+0.36 +/- 0.10, +1.42 +/- 0.10) mas yr(-1)) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer. C1 [Poleski, Radoslaw; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.] Ohio State Univ, Dept Astron, 174 West 18th Ave, Columbus, OH 43210 USA. [Poleski, Radoslaw; Udalski, Andrzej; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Wyrzykowski, L.; Ulaczyk, K.; Pietrukowicz, P.; Kozlowski, Szymon; Skowron, J.; Mroz, P.; Pawlak, M.] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. [Christie, Grant W.; Natusch, T.; Ngan, H.] Auckland Observ, Auckland, New Zealand. [Gould, Andrew] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Gould, Andrew] Korea Astron & Space Sci Inst, Daejon 305348, South Korea. [Bachelet, Etienne; Street, R. A.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Skottfelt, Jesper] Open Univ, Dept Phys Sci, Ctr Elect Imaging, Milton Keynes MK7 6AA, Bucks, England. [Skottfelt, Jesper; Kaspi, S.; Hundertmark, M. P. G.; Jorgensen, U. G.; Kuffmeier, M.; Popovas, A.] Univ Copenhagen, Niels Bohr Inst, Oster Voldgade 5, DK-1350 Copenhagen K, Denmark. [Skottfelt, Jesper; Kaspi, S.; Hundertmark, M. P. G.; Jorgensen, U. G.; Kuffmeier, M.; Popovas, A.] Univ Copenhagen, Ctr Star & Planet Format, Oster Voldgade 5, DK-1350 Copenhagen K, Denmark. [Novati, Sebastiano Calchi; Beichman, C.] CALTECH, NASA Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA. [Novati, Sebastiano Calchi; Bozza, V.; D'Ago, G.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo 2 132, I-84084 Fisciano, Italy. [Novati, Sebastiano Calchi; D'Ago, G.; Scarpetta, G.; Verma, P.] Ist Int Alti Studi Sci, Via G Pellegrino 19, I-84019 Vietri Sul Mare, SA, Italy. [Pietrukowicz, P.] Univ Concepcion, Dept Astron, Casilla 160C, Concepcion, Chile. [Ulaczyk, K.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Bryden, G.; Carey, S.; Henderson, C. B.; Shvartzvald, Y.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Yee, J. C.; Eastman, J. D.; Johnson, J. A.; Relles, H. M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Beatty, T. G.; Wright, J. T.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Beatty, T. G.; Wright, J. T.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Friedmann, M.; Maoz, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Henderson, M.; McCrady, N.] Univ Montana, Dept Phys & Astron, 32 Campus Dr,1080, Missoula, MT 59812 USA. [McCormick, J.] Farm Cove Observ, Ctr Backyard Astrophys, Auckland, New Zealand. [Natusch, T.] AUT Univ, Auckland, New Zealand. [Porritt, I.] Turitea Observ, Palmerston North, New Zealand. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Tan, T. -G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia. [Wittenmyer, R. A.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Wittenmyer, R. A.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Wittenmyer, R. A.] Univ So Queensland, Computat Engn & Sci Res Ctr, Toowoomba, Qld 4350, Australia. [Tsapras, Y.; Wambsganss, J.; Schmidt, R.] Univ Heidelberg ZAH, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Bramich, D. M.] Qatar Fdn, HBKU, Qatar Environm & Energy Res Inst, Doha, Qatar. [Horne, K.; Jaimes, R. Figuera; Dominik, M.] Univ St Andrews, Dept Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Snodgrass, C.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Menzies, J.] S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. [Jaimes, R. Figuera] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Cassan, A.; Ranc, C.] Univ Paris 06, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France. [Cassan, A.; Ranc, C.] CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Bd Arago, F-75014 Paris, France. [Mao, S.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Bozza, V.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Andersen, M. I.] Univ Copenhagen, Niels Bohr Inst, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. [Burgdorf, M. J.] Univ Hamburg, Inst Meteorol, Bundesstr 55, D-20146 Hamburg, Germany. [Ciceri, S.; Mancini, L.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Evans, D. F.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Gu, S. -H.; Wang, Y. -B.] Chinese Acad Sci, Yunnan Observ, Kunming 650011, Peoples R China. [Hinse, T. C.] Korea Astron & Space Sci Inst, 776 Daedukdae Ro, Daejeon 305348, South Korea. [Kains, N.; Kerins, E.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Korhonen, H.] Finnish Ctr Astron ESO FINCA, Vaisalantie 20, FI-21500 Piikkio, Finland. [Rabus, M.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Av Vicuna Mackenna 4860, Santiago 7820436, Chile. [Rahvar, S.] Sharif Univ Technol, Dept Phys, POB 11155-9161, Tehran, Iran. [Rasmussen, R. T.; von Essen, C.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Surdej, J.; Wertz, O.] Inst Astrophys & Geophys, Allee 6 Aout 17,Sart Tilman,Bat B5c, B-4000 Liege, Belgium. [Unda-Sanzana, E.] Univ Antofagasta, Unidad Astron, Fac Ciencias Basicas, Avda U Antofagasta 02800, Antofagasta, Chile. RP Poleski, R (reprint author), Ohio State Univ, Dept Astron, 174 West 18th Ave, Columbus, OH 43210 USA.; Poleski, R (reprint author), Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. EM poleski.1@osu.edu RI Hundertmark, Markus/C-6190-2015; Korhonen, Heidi/E-3065-2016; D'Ago, Giuseppe/N-8318-2016; Skowron, Jan/M-5186-2014; OI Hundertmark, Markus/0000-0003-0961-5231; Korhonen, Heidi/0000-0003-0529-1161; D'Ago, Giuseppe/0000-0001-9697-7331; Skowron, Jan/0000-0002-2335-1730; Wang, Yi-Bo/0000-0002-5172-8558; Wright, Jason/0000-0001-6160-5888; ZHU, WEI/0000-0003-4027-4711 FU National Science Centre, Poland [MAESTRO 2014/14/A/ST9/00121]; NSF [AST 1516842]; JPL [1500811]; NASA through the Sagan Fellowship Program by the NASA Exoplanet Science Institute; NPRP from the Qatar National Research Fund (a member of Qatar Foundation) [X-019-1-006]; Chinese Academy of Sciences [XDB09000000]; National Natural Science Foundation of China (NSFC) [11333003, 11390372]; Villum Foundation; Danish Council for Independent Research, Natural Sciences; Centre for Star and Planet Formation FX The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to A. U. Work by W. Z. and A. G. was supported by NSF AST 1516842. Work by Y. S. and C. B. H. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Work by J. C. Y., A. G., and S. C. was supported by JPL grant 1500811. Work by J. C. Y. was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. This publication was made possible by NPRP grant # X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). Work by S. M. has been supported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences Grant No. XDB09000000, and by the National Natural Science Foundation of China (NSFC) under grant numbers 11333003 and 11390372. M. P. G. H. acknowledges support from the Villum Foundation. This work makes use of observations from the LCOGT network, which includes three SUPAscopes owned by the University of St Andrews. The RoboNet programme is an LCOGT Key Project using time allocations from the University of St Andrews, LCOGT and the University of Heidelberg together with time on the Liverpool Telescope through the Science and Technology Facilities Council (STFC), UK. This research has made use of the LCOGT Archive, which is operated by the California Institute of Technology, under contract with the Las Cumbres Observatory. Operation of the Danish 1.54 m telescope at ESOs La Silla observatory was supported by The Danish Council for Independent Research, Natural Sciences, and by Centre for Star and Planet Formation. NR 50 TC 0 Z9 0 U1 3 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2016 VL 823 IS 1 AR 63 DI 10.3847/0004-637X/823/1/63 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6WD UT WOS:000377216300063 ER PT J AU Sekanina, Z Kracht, R AF Sekanina, Zdenek Kracht, Rainer TI PAIRS AND GROUPS OF GENETICALLY RELATED LONG-PERIOD COMETS AND PROPOSED IDENTITY OF THE MYSTERIOUS LICK OBJECT OF 1921 SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; methods: data analysis ID TABUR C/1996 Q1; NONGRAVITATIONAL FORCES; PHOTOMETRY; REALITY; VENUS; TAIL AB We present the history of investigation of the dynamical properties of pairs and groups of genetically related long-period comets (other than the Kreutz sungrazing system). Members of a comet pair or group move in nearly identical orbits, and their origin as fragments of a common parent comet is unquestionable. The only variable is the time of perihelion passage, which differs considerably. from member to member. owing. primarily to an orbital-momentum increment acquired during breakup. Meter-per-second separation velocities account for gaps of years or tens of years, thanks to the orbital periods of many millennia. The physical properties of individual members may not at all be alike, as illustrated by the trio of C/1988 A1, C/1996 Q1, and C/2015 F3. We exploit orbital similarity to examine whether the enigmatic and as-yet-unidentified object. discovered from the Lick Observatory near the Sun at sunset on 1921 August 7 happened to be a member of such a pair and to track down the long-period comet to which it might be genetically related. Our search shows that the Lick object, which could not be a Kreutz sungrazer, was likely a companion to comet C/1847 C1 (Hind), whose perihelion distance was similar to 9 R-circle dot and true orbital period was approximately 8300 yr. The gap of 74.4 yr between their perihelion times is consistent with a separation velocity of similar to 1 m s(-1) which sets. the fragments apart following the parent's breakup in a general proximity of perihelion during the previous return to the Sun in the seventh millennium BCE. C1 [Sekanina, Zdenek] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kracht, Rainer] Ostlandring 53, D-25335 Elmshorn, Schleswig Holst, Germany. RP Sekanina, Z (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Zdenek.Sekanina@jpl.nasa.gov; R.Kracht@t-online.de NR 109 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2016 VL 823 IS 1 AR 2 DI 10.3847/0004-637X/823/1/2 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6WD UT WOS:000377216300002 ER PT J AU Refaat, TF Singh, UN Yu, JR Petros, M Remus, R Ismail, S AF Refaat, Tamer F. Singh, Upendra N. Yu, Jirong Petros, Mulugeta Remus, Ruben Ismail, Syed TI Double-pulse 2-mu m integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement SO APPLIED OPTICS LA English DT Article ID CO2; LASER; CALIBRATION; NETWORK; SYSTEMS AB Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-mu m integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054 +/- 0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22 +/- 4.15 ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental systematic errors correlates the additional bias to water vapor. IPDA ranging resulted in a measurement uncertainty of < 3 m. (C) 2016 Optical Society of America C1 [Refaat, Tamer F.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Singh, Upendra N.] NASA, Langley Res Ctr, Engn & Safety Ctr, Hampton, VA 23681 USA. [Ismail, Syed] Analyt Serv & Mat Inc, Hampton, VA 23666 USA. RP Refaat, TF (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM tamer.f.refaat@nasa.gov FU NASA Earth Science Technology Office (ESTO); Science Mission Directorate, Earth Science Division FX NASA Earth Science Technology Office (ESTO); Science Mission Directorate, Earth Science Division. NR 33 TC 2 Z9 2 U1 7 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2016 VL 55 IS 15 BP 4232 EP 4246 DI 10.1364/AO.55.004232 PG 15 WC Optics SC Optics GA DM5IS UT WOS:000376382300047 PM 27411155 ER PT J AU Ackermann, M Ajello, M Albert, A Anderson, B Arimoto, M Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Gonzalez, JB Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bregeon, J Britto, RJ Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Caraveo, PA Casandjian, JM Cavazzuti, E Charles, E Chekhtman, A Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Cominsky, LR Condon, B Costanza, F Cuoco, A Cutini, S D'Ammando, F de Palma, F Desiante, R Digel, SW Di Lalla, N Di Mauro, M Di Venere, L Dominguez, A Drell, PS Dubois, R Dumora, D Favuzzi, C Fegan, SJ Ferrara, EC Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Giglietto, N Giomi, M Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Granot, J Green, D Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Harding, AK Hays, E Hewitt, JW Hill, AB Horan, D Jogler, T Johannesson, G Kamae, T Kensei, S Kocevski, D Kuss, M La Mura, G Larsson, S Latronico, L Lemoine-Goumard, M Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Madejski, GM Magill, J Maldera, S Manfreda, A Marelli, M Mayer, M Mazziotta, MN McEnery, JE Meyer, M Michelson, PF Mirabal, N Mizuno, T Moiseev, AA Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Negro, M Nuss, E Ohsugi, T Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Racusin, JL Raino, S Rando, R Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Romani, RW Parkinson, PMS Sgro, C Simone, D Siskind, EJ Smith, DA Spada, F Spandre, G Spinelli, P Suson, DJ Tajima, H Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Troja, E Uchiyama, Y Venters, TM Vianello, G Wood, KS Wood, M Zaharijas, G Zhu, S Zimmer, S AF Ackermann, M. Ajello, M. Albert, A. Anderson, B. Arimoto, M. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Gonzalez, J. Becerra Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Britto, R. J. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Charles, E. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Cominsky, L. R. Condon, B. Costanza, F. Cuoco, A. Cutini, S. D'Ammando, F. de Palma, F. Desiante, R. Digel, S. W. Di Lalla, N. Di Mauro, M. Di Venere, L. Dominguez, A. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Giglietto, N. Giomi, M. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Granot, J. Green, D. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Harding, A. K. Hays, E. Hewitt, J. W. Hill, A. B. Horan, D. Jogler, T. Johannesson, G. Kamae, T. Kensei, S. Kocevski, D. Kuss, M. La Mura, G. Larsson, S. Latronico, L. Lemoine-Goumard, M. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Madejski, G. M. Magill, J. Maldera, S. Manfreda, A. Marelli, M. Mayer, M. Mazziotta, M. N. McEnery, J. E. Meyer, M. Michelson, P. F. Mirabal, N. Mizuno, T. Moiseev, A. A. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Negro, M. Nuss, E. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Racusin, J. L. Raino, S. Rando, R. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Romani, R. W. Parkinson, P. M. Saz Sgro, C. Simone, D. Siskind, E. J. Smith, D. A. Spada, F. Spandre, G. Spinelli, P. Suson, D. J. Tajima, H. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Troja, E. Uchiyama, Y. Venters, T. M. Vianello, G. Wood, K. S. Wood, M. Zaharijas, G. Zhu, S. Zimmer, S. TI FERMI-LAT OBSERVATIONS OF THE LIGO EVENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: general; gamma-rays: general; gravitational waves; methods: observational ID GAMMA-RAY BURST; NEUTRON-STAR MERGERS; LARGE-AREA TELESCOPE; ELECTROMAGNETIC COUNTERPART; GRAVITATIONAL-WAVES; LIKELIHOOD RATIO; GEV EMISSION; GRB 090510; AFTERGLOW; SIMULATION AB The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering similar to 1/5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-mass black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within similar to 70 minutes of the trigger and thus enabled a comprehensive search for a.-ray counterpart to GW150914. The study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region. C1 [Ackermann, M.; Buehler, R.; Giomi, M.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Dominguez, A.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chekhtman, A.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Thayer, J. G.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chekhtman, A.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Thayer, J. G.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Meyer, M.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Anderson, B.; Larsson, S.; Meyer, M.; Torres, D. F.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Arimoto, M.; Uchiyama, Y.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Axelsson, M.] Tokyo Metropolitan Univ, Dept Phys, Minami Osawa 1-1, Hachioji, Tokyo 1920397, Japan. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CEA,IRFU,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, MS 108,POB 1892, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Chiaro, G.; La Mura, G.; Rando, R.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [Albert, A.; Gonzalez, J. Becerra; Brandt, T. J.; Buson, S.; Chekhtman, A.; Ferrara, E. C.; Gehrels, N.; Green, D.; Guiriec, S.; Harding, A. K.; Hays, E.; Kocevski, D.; McEnery, J. E.; Mirabal, N.; Perkins, J. S.; Racusin, J. L.; Thompson, D. J.; Troja, E.; Venters, T. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gonzalez, J. Becerra; Green, D.; Magill, J.; McEnery, J. E.; Moiseev, A. A.; Troja, E.; Zhu, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, J. Becerra; Green, D.; Magill, J.; McEnery, J. E.; Moiseev, A. A.; Troja, E.; Zhu, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bellazzini, R.; Di Lalla, N.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; Costanza, F.; de Palma, F.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Simone, D.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Cuoco, A.; Desiante, R.; Latronico, L.; Maldera, S.; Negro, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.; Cuoco, A.; Negro, M.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, Lab Univers & Particules Montpellier, CNRS IN2P3, F-34059 Montpellier, France. [Britto, R. J.; Razzaque, S.] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, Lab Leprince Ringuet, CNRS IN2P3, Palaiseau, France. [Burnett, T. H.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Buson, S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Buson, S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Buson, S.; Moiseev, A. A.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Buson, S.; Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Condon, B.; Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, CNRS, BP120, F-33175 Gradignan, France. [Cutini, S.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Kensei, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Inst Astrofis, Fac Fis, Casilla 306, Santiago 22, Chile. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Granot, J.] Open Univ Israel, Dept Nat Sci, 1 Univ Rd,POB 808, IL-43537 Raanana, Israel. [Grove, J. E.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Guillemot, L.] Univ Orleans, Lab Phys & Chim Environm & Espace, F-45071 Orleans 02, France. [Guillemot, L.] CNRS INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Hadasch, D.; La Mura, G.; Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Hadasch, D.; La Mura, G.; Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Hewitt, J. W.] Univ N Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Li, J.] Inst Space Sci IEEC CSIC, Campus UAB, E-08193 Barcelona, Spain. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moretti, E.; Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Li, L.; Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tibaldo, L.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats ICREA, Barcelona, Spain. Dept Phys, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan. [Zaharijas, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Zaharijas, G.] Univ Trieste, I-34127 Trieste, Italy. [Zaharijas, G.] Univ Nova Gorica, Lab Astroparticle Phys, Vipavska 13, SI-5000 Nova Gorica, Slovenia. RP Omodei, N (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.; Omodei, N (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.; Buson, S; McEnery, JE; Racusin, JL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Buson, S; McEnery, JE; Racusin, JL (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA.; Buson, S; McEnery, JE; Racusin, JL (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM sara.buson@gmail.com; Julie.E.McEnery@nasa.gov; nicola.omodei@stanford.edu; judith.racusin@nasa.gov RI Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Meyer, Manuel/E-2697-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Di Venere, Leonardo/C-7619-2017; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Meyer, Manuel/0000-0002-0738-7581; Funk, Stefan/0000-0002-2012-0080; Di Venere, Leonardo/0000-0003-0703-824X; Hill, Adam/0000-0003-3470-4834; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Axelsson, Magnus/0000-0003-4378-8785; DI MAURO, MATTIA/0000-0003-2759-5625; Mazziotta, Mario Nicola/0000-0001-9325-4672; Torres, Diego F./0000-0002-1522-9065; Ajello, Marco/0000-0002-6584-1703; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 43 TC 11 Z9 11 U1 8 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2016 VL 823 IS 1 AR L2 DI 10.3847/2041-8205/823/1/L2 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5LY UT WOS:000376391700002 ER PT J AU Gopalswamy, N Yashiro, S Akiyama, S AF Gopalswamy, Nat Yashiro, Seiji Akiyama, Sachiko TI UNUSUAL POLAR CONDITIONS IN SOLAR CYCLE 24 AND THEIR IMPLICATIONS FOR CYCLE 25 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: filaments, prominences; Sun: magnetic fields; Sun: radio radiation ID MAGNETIC-FIELD REVERSAL; CORONAL MASS EJECTION; NOBEYAMA RADIOHELIOGRAPH; MICROWAVE OBSERVATIONS; PROMINENCE ERUPTIONS; HOLES; SUN; RADIO; ENHANCEMENT; VARIABILITY AB We report on the prolonged solar-maximum conditions until late 2015 at the north-polar region of the Sun indicated by the occurrence of high-latitude prominence eruptions (PEs) and microwave brightness temperature close to the quiet-Sun level. These two aspects of solar activity indicate that the polarity reversal was completed by mid-2014 in the south and late 2015 in the north. The microwave brightness in the south-polar region has increased to a level exceeding the level of the Cycle 23/24 minimum, but just started to increase in the north. The north-south asymmetry in the polarity reversal has switched from that in Cycle 23. These observations lead us to the hypothesis that the onset of Cycle 25 in the northern hemisphere is likely to be delayed with respect to that in the southern hemisphere. We find that the unusual condition in the north is a direct consequence of the arrival of poleward surges of opposite polarity from the active region belt. We also find that multiple rush-to-the-pole episodes were indicated by the PE locations that lined up at the boundary between opposite-polarity surges. The high-latitude PEs occurred in the boundary between the incumbent polar flux and the insurgent flux of opposite polarity. C1 [Gopalswamy, Nat; Yashiro, Seiji; Akiyama, Sachiko] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Yashiro, Seiji; Akiyama, Sachiko] Catholic Univ Amer, Washington, DC 20064 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. FU NASA's LWS TRT program FX NoRH is currently operated by the Nagoya University in cooperation with the International Consortium for the Continued Operation of the Nobeyama Radioheliograph (ICCON). This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. This work benefited from NASA's open data policy in using SDO data. Work was supported by NASA's LWS TR&T program. We thank the anonymous referee for helpful comments. NR 44 TC 0 Z9 0 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2016 VL 823 IS 1 AR L15 DI 10.3847/2041-8205/823/1/L15 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5LY UT WOS:000376391700015 ER PT J AU Huang, KH Lemaux, BC Schmidt, KB Hoag, A Bradac, M Treu, T Dijkstra, M Fontana, A Henry, A Malkan, M Mason, C Morishita, T Pentericci, L Ryan, RE Trenti, M Wang, X AF Huang, Kuang-Han Lemaux, Brian C. Schmidt, Kasper B. Hoag, Austin Bradac, Marusa Treu, Tommaso Dijkstra, Mark Fontana, Adriano Henry, Alaina Malkan, Matthew Mason, Charlotte Morishita, Takahiro Pentericci, Laura Ryan, Russell E., Jr. Trenti, Michele Wang, Xin TI DETECTION OF LYMAN-ALPHA EMISSION FROM A TRIPLY IMAGED z=6.85 GALAXY BEHIND MACS J2129.4-0741 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: evolution; galaxies: high-redshift; gravitational lensing: strong; methods: data analysis ID STAR-FORMING GALAXIES; HUBBLE-SPACE-TELESCOPE; SIMILAR-TO 10; LENS-AMPLIFIED SURVEY; SPECTROSCOPIC CONFIRMATION; COSMIC REIONIZATION; HST SPECTROSCOPY; LUMINOUS GALAXY; FAINT GALAXIES; CLUSTER AB We report the detection of Ly alpha emission at similar to 9538 angstrom in the Keck/DEIMOS and Hubble Space Telescope WFC3 G102 grism data from a triply imaged galaxy at z = 6.846 +/- 0.001 behind galaxy cluster MACS J2129.4-0741. Combining the emission line wavelength with broadband photometry, line ratio upper limits, and lens modeling, we rule out the scenario that this emission line is [O II] at z = 1.57. After accounting for magnification, we calculate the weighted average of the intrinsic Ly alpha luminosity to be similar to 1.3 x 10(42) erg s(-1) and Ly alpha equivalent width to be 74 +/- 15 angstrom. Its intrinsic UV absolute magnitude at 1600 angstrom is -18.6 +/- 0.2 mag and stellar mass (1.5 +/- 0.3) x 10(7) M-circle dot, making it one of the faintest (intrinsic L-UV similar to 0.14 L-UV*) galaxies with Ly alpha detection at z similar to 7 to date. Its stellar mass is in the typical range for the galaxies thought to dominate the reionization photon budget at z greater than or similar to 7; the inferred Ly alpha escape fraction is high (greater than or similar to 10%), which could be common for sub-L* z greater than or similar to 7 galaxies with Ly alpha emission. This galaxy offers a glimpse of the galaxy population that is thought to drive reionization, and it shows that gravitational lensing is an important avenue for probing the sub-L* galaxy population. C1 [Huang, Kuang-Han; Lemaux, Brian C.; Hoag, Austin; Bradac, Marusa] Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. [Schmidt, Kasper B.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Treu, Tommaso; Malkan, Matthew; Mason, Charlotte; Morishita, Takahiro; Wang, Xin] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Dijkstra, Mark] Univ Oslo, Inst Theoret Astrophys, POB 1029, NO-0315 Oslo, Norway. [Fontana, Adriano; Pentericci, Laura] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, RM, Italy. [Henry, Alaina] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 665, Greenbelt, MD 20771 USA. [Morishita, Takahiro] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Ryan, Russell E., Jr.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Trenti, Michele] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. RP Huang, KH (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. EM khhuang@ucdavis.edu OI Hoag, Austin/0000-0001-8989-2567; Trenti, Michele/0000-0001-9391-305X; Huang, Kuang-Han/0000-0001-7826-6448; Bradac, Marusa/0000-0001-5984-0395 FU NASA [NAS5-26555, NNX08AD79G, HST-AR-13235, HST-GO-13459, HST-GO-13177]; NASA Headquarters under the NASA Earth and Space Science Fellowship [ASTRO14F-0007] FX We thank the referee for constructive feedback of this work. We also thank Piero Rosati and Anna Monna for providing spectroscopic redshifts from the CLASH-VLT program. This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555 and NNX08AD79G and ESO-VLT telescopes. Observations were carried out using Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work is provided by NASA through a Spitzer award issued by JPL/Caltech, HST-AR-13235, HST-GO-13459, and HST-GO-13177. A.H. acknowledges support by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Grant ASTRO14F-0007. NR 42 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2016 VL 823 IS 1 AR L14 DI 10.3847/2041-8205/823/1/L14 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5LY UT WOS:000376391700014 ER PT J AU Tian, H Young, PR Reeves, KK Wang, TJ Antolin, P Chen, B He, JS AF Tian, Hui Young, Peter R. Reeves, Katharine K. Wang, Tongjiang Antolin, Patrick Chen, Bin He, Jiansen TI GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE line: profiles; magnetic reconnection; Sun: corona; Sun: flares; Sun: oscillations ID QUASI-PERIODIC PULSATIONS; DOPPLER-SHIFT OSCILLATIONS; X-RAY PULSATIONS; CORONAL LOOP; MAGNETIC RECONNECTION; WAVES; MODES; ACCELERATION; HINODE/EIS; DYNAMICS AB An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe XXI 1354.08 angstrom show clear oscillations with a period of similar to 25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites (GOES). With an estimated phase speed of similar to 2420 km s(-1) and a derived electron density of at least 5.4 x 10(10) cm(-3), the observed short-period oscillation is most likely the global fast sausage mode of a hot flare loop. We find a phase shift of similar to pi/2 (1/4 period) between the Doppler shift oscillation and the intensity/GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor >= 42. The estimated phase speed of the global mode provides a lower limit of the Alfven speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time. C1 [Tian, Hui; He, Jiansen] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Young, Peter R.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Young, Peter R.; Wang, Tongjiang] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [Reeves, Katharine K.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Wang, Tongjiang] Catholic Univ Amer, Washington, DC 20064 USA. [Antolin, Patrick] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Chen, Bin] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. RP Tian, H (reprint author), Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. EM huitian@pku.edu.cn RI He, Jiansen/B-1808-2012; OI Reeves, Katharine/0000-0002-6903-6832 FU ESA; Norwegian Space Centre; Recruitment Program of Global Experts of China, NSFC [41574166]; LMSAL [8100002705]; NASA [NNG11PL10A, NNX11AB61G, NNX13AE06G, NNX15AF48G, NNX15AJ93G] FX IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research center and major contributions to downlink communications funded by ESA and the Norwegian Space Centre. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC ( Norway). This work is supported by the Recruitment Program of Global Experts of China, NSFC under grant 41574166, contract 8100002705 from LMSAL to SAO, NASA Cooperative Agreement NNG11PL10A to CUA, NASA grants NNX11AB61G, NNX13AE06G, NNX15AF48G, and NNX15AJ93G. NR 46 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2016 VL 823 IS 1 AR L16 DI 10.3847/2041-8205/823/1/L16 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM5LY UT WOS:000376391700016 ER PT J AU Rodriguez, JAP Fairen, AG Tanaka, KL Zarroca, M Linares, R Platz, T Komatsu, G Miyamoto, H Kargel, JS Yan, JG Gulick, V Higuchi, K Baker, VR Glines, N AF Rodriguez, J. Alexis P. Fairen, Alberto G. Tanaka, Kenneth L. Zarroca, Mario Linares, Rogelio Platz, Thomas Komatsu, Goro Miyamoto, Hideaki Kargel, Jeffrey S. Yan, Jianguo Gulick, Virginia Higuchi, Kana Baker, Victor R. Glines, Natalie TI Tsunami waves extensively resurfaced the shorelines of an early Martian ocean SO SCIENTIFIC REPORTS LA English DT Article ID NORTHERN PLAINS; MARS; MORPHOLOGY; INDONESIA; LOWLANDS; BOUNDARY; DEPOSITS; SURFACE; WATER; FATE AB It has been proposed that similar to 3.4 billion years ago an ocean fed by enormous catastrophic floods covered most of the Martian northern lowlands. However, a persistent problem with this hypothesis is the lack of definitive paleoshoreline features. Here, based on geomorphic and thermal image mapping in the circum-Chryse and northwestern Arabia Terra regions of the northern plains, in combination with numerical analyses, we show evidence for two enormous tsunami events possibly triggered by bolide impacts, resulting in craters similar to 30 km in diameter and occurring perhaps a few million years apart. The tsunamis produced widespread littoral landforms, including run-up water-ice-rich and bouldery lobes, which extended tens to hundreds of kilometers over gently sloping plains and boundary cratered highlands, as well as backwash channels where wave retreat occurred on highland-boundary surfaces. The ice-rich lobes formed in association with the younger tsunami, showing that their emplacement took place following a transition into a colder global climatic regime that occurred after the older tsunami event. We conclude that, on early Mars, tsunamis played a major role in generating and resurfacing coastal terrains. C1 [Rodriguez, J. Alexis P.; Platz, Thomas] Planetary Sci Inst, 1700 East Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. [Rodriguez, J. Alexis P.; Gulick, Virginia; Glines, Natalie] NASA, Ames Res Ctr, Mail Stop 239-20, Moffett Field, CA 94035 USA. [Fairen, Alberto G.; Higuchi, Kana] INTA, CSIC, Ctr Astrobiol, Dept Planetol & Habitabil, Madrid 28850, Spain. [Fairen, Alberto G.] Cornell Univ, Dept Astron, Ithaca, NY 14850 USA. [Tanaka, Kenneth L.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Zarroca, Mario; Linares, Rogelio] Autonomous Univ Barcelona, Dept Geol, External Geodynam & Hydrogeol Grp, E-08193 Barcelona, Spain. [Platz, Thomas] Free Univ Berlin, Inst Geol Sci, Planetary Sci & Remote Sensing, D-12249 Berlin, Germany. [Komatsu, Goro] Univ G DAnnunzio, Int Res Sch Planetary Sci, Viale Pindaro 42, I-65127 Pescara, Italy. [Miyamoto, Hideaki] Univ Tokyo, Univ Museum, Tokyo 1130033, Japan. [Kargel, Jeffrey S.; Baker, Victor R.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Yan, Jianguo] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430070, Peoples R China. [Gulick, Virginia; Glines, Natalie] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Platz, Thomas] Max Planck Inst Solar Syst Res, Dept Planets & Comets, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. RP Rodriguez, JAP (reprint author), Planetary Sci Inst, 1700 East Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA.; Rodriguez, JAP (reprint author), NASA, Ames Res Ctr, Mail Stop 239-20, Moffett Field, CA 94035 USA. EM alexis@psi.edu RI Komatsu, Goro/I-7822-2012; Platz, Thomas/F-7539-2013; OI Komatsu, Goro/0000-0003-4155-108X; Platz, Thomas/0000-0002-1253-2034; Zarroca, Mario/0000-0001-6907-1892 FU NASA's Planetary Geologic and Geophysics Program; NASA NPP; KAKENHI [25120006]; Project "icyMARS" - European Research Council [307496]; DFG [PL613/2-1]; MRO HiRISE Co-Investigator funds FX Funding for JAPR was provided by NASA's Planetary Geologic and Geophysics Program, NASA NPP and KAKENHI 25120006. KLT was also funded by NASA's Planetary Geologic and Geophysics Program. AGF was supported by the Project "icyMARS", funded by the European Research Council, Starting Grant No. 307496. TP was supported by a DFG Grant (PL613/2-1). VCG was funded by MRO HiRISE Co-Investigator funds. HM was funded by KAKENHI 25120006. Publications costs were covered by the Project "icyMARS", funded by the European Research Council, Starting Grant No. 307496. We are thankful to Alexander Cox for his valuable editing. NR 29 TC 1 Z9 2 U1 8 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAY 19 PY 2016 VL 6 AR 25106 DI 10.1038/srep25106 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DM1UK UT WOS:000376131900001 PM 27196957 ER PT J AU Gilman, E Chaloupka, M Peschon, J Ellgen, S AF Gilman, Eric Chaloupka, Milani Peschon, John Ellgen, Sarah TI Risk Factors for Seabird Bycatch in a Pelagic Longline Tuna Fishery SO PLOS ONE LA English DT Article ID BLACK-FOOTED ALBATROSS; CIRCLE HOOKS; CATCH RATES; TROPICAL PACIFIC; SHARK CATCH; BY-CATCH; MODELS; HAWAII; PERFORMANCE; MORTALITY AB Capture in global pelagic longline fisheries threatens the viability of some seabird populations. The Hawaii longline tuna fishery annually catches hundreds of seabirds, primarily Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. Since seabird regulations were introduced in 2001, the seabird catch rate has declined 74%. However, over the past decade, seabird catch levels significantly increased due to significant increasing trends in both effort and nominal seabird catch rates. We modelled observer data using a spatio-temporal generalized additive mixed model with zero-inflated Poisson likelihood to determine the significance of the effect of various risk factors on the seabird catch rate. The seabird catch rate significantly increased as annual mean multivariate ENSO index values increased, suggesting that decreasing ocean productivity observed in recent years in the central north Pacific may have contributed to the increasing trend in nominal seabird catch rate. A significant increasing trend in number of albatrosses attending vessels, possibly linked to declining regional ocean productivity and increasing absolute abundance of black-footed albatrosses, may also have contributed to the increasing nominal seabird catch rate. Largest opportunities for reductions are through augmented efficacy of seabird bycatch mitigation north of 23 degrees N where mitigation methods are required and during setting instead of during hauling. Both side vs. stern setting, and blue-dyed vs. untreated bait significantly reduced the seabird catch rate. Of two options for meeting regulatory requirements, side setting had a significantly lower seabird catch rate than blue-dyed bait. There was significant spatio-temporal and seasonal variation in the risk of seabird capture with highest catch rates in April and May and to the northwest of the main Hawaiian Islands. C1 [Gilman, Eric] Pelag Fisheries Res Grp, Honolulu, HI USA. [Chaloupka, Milani] Ecol Modeling Serv, St Lucia, Qld, Australia. [Chaloupka, Milani] Univ Queensland, St Lucia, Qld, Australia. [Peschon, John; Ellgen, Sarah] Natl Marine Fisheries Serv, Pacific Isl Reg Off, Honolulu, HI USA. RP Gilman, E (reprint author), Pelag Fisheries Res Grp, Honolulu, HI USA. EM FisheriesResearchGroup@gmail.com FU National Fish and Wildlife Foundation [0101.15.046582] FX This work received funding from the National Fish and Wildlife Foundation, grant number 0101.15.046582 (http://www.nfwf.org) to EG and MC and to The Safina Center. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 108 TC 0 Z9 0 U1 14 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAY 18 PY 2016 VL 11 IS 5 AR e0155477 DI 10.1371/journal.pone.0155477 PG 24 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DM3ZU UT WOS:000376286100053 PM 27192492 ER PT J AU Liao, YL Cao, W Connell, JW Chen, ZF Lin, Y AF Liao, Yunlong Cao, Wei Connell, John W. Chen, Zhongfang Lin, Yi TI Evolution of Moire Profiles from van der Waals Superstructures of Boron Nitride Nanosheets SO SCIENTIFIC REPORTS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; CHEMICAL-VAPOR-DEPOSITION; GRAPHENE SUPERLATTICES; LAYER-GRAPHENE; 2-DIMENSIONAL MATERIALS; EPITAXIAL-GROWTH; DIRAC FERMIONS; PATTERN; HETEROSTRUCTURES; TRANSITION AB Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moire patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moire patterns with unusually large micrometer-sized lateral areas (up to similar to 1 mu m(2)) and periodicities (up to similar to 50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moire fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moire images. C1 [Liao, Yunlong; Lin, Yi] Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. [Liao, Yunlong; Chen, Zhongfang] Univ Puerto Rico, Inst Funct Nanomat, Dept Chem, Rio Piedras Campus, San Juan, PR 00931 USA. [Cao, Wei] Old Dominion Univ, Appl Res Ctr, 12050 Jefferson Ave, Newport News, VA 23606 USA. [Connell, John W.] NASA Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Lin, Yi] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA. RP Lin, Y (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA.; Chen, ZF (reprint author), Univ Puerto Rico, Inst Funct Nanomat, Dept Chem, Rio Piedras Campus, San Juan, PR 00931 USA.; Lin, Y (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA. EM zhongfangchen@gmail.com; yi.lin@nianet.org RI Chen, Zhongfang/A-3397-2008 FU National Institute of Aerospace; Department of Defense [W911NF-12-1-0083]; NASA [NNX10AM80H, NNX13AB22A]; Institute for Functional Nanomaterials (IFN) at the University of Puerto Rico FX Y. Lin acknowledges the support by the National Institute of Aerospace. Z. C. acknowledges the support by the Department of Defense (Grant W911NF-12-1-0083) and NASA (Grant Nos NNX10AM80H and NNX13AB22A). Y. Liao is partially supported by the fellowship awarded via the Institute for Functional Nanomaterials (IFN) at the University of Puerto Rico. NR 59 TC 0 Z9 0 U1 18 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAY 18 PY 2016 VL 6 AR 26084 DI 10.1038/srep26084 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL9UZ UT WOS:000375989900002 PM 27188697 ER PT J AU Dodson, JB Taylor, PC AF Dodson, J. Brant Taylor, Patrick C. TI Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OUTGOING LONGWAVE RADIATION; UPPER-TROPOSPHERIC HUMIDITY; SEA-SURFACE TEMPERATURE; DEEP CONVECTION; TROPICAL CONVECTION; BOUNDARY-LAYER; UNITED-STATES; WATER-VAPOR; CLOUD; PRECIPITATION AB Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation. C1 [Dodson, J. Brant; Taylor, Patrick C.] NASA Langley Res Ctr, Hampton, VA 23665 USA. RP Dodson, JB (reprint author), NASA Langley Res Ctr, Hampton, VA 23665 USA. EM jason.b.dodson@nasa.gov RI Taylor, Patrick/D-8696-2015 OI Taylor, Patrick/0000-0002-8098-8447 FU NASA [NNH13ZDA001N-TERAQ]; NASA Postdoctoral Program FX This work has been supported by NASA grant NNH13ZDA001N-TERAQ, "The Science of Terra and Aqua," and by the NASA Postdoctoral Program. The NNR data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and are available at http://www.esrl.noaa.gov/psd/. ERA-Interim data used in this study are stored at the ECMWF data server (http://data-portal.ecmwf.int/data/d/interim_mnth/). The MERRA can be obtained from the Goddard Earth Sciences Data and Information Services Center, Greenbelt, Maryland, from their website at http://disc.sci.gsfc.nasa.gov/mdisc. The CERES data used in this study are stored at the Atmospheric Science Data Center at NASA Langley (https://eosweb.larc.nasa.gov). NR 56 TC 2 Z9 2 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2016 VL 121 IS 9 BP 4404 EP 4428 DI 10.1002/2015JD024567 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR2DS UT WOS:000379715800002 PM 27840782 ER PT J AU Behrangi, A Christensen, M Richardson, M Lebsock, M Stephens, G Huffman, GJ Bolvin, D Adler, RF Gardner, A Lambrigtsen, B Fetzer, E AF Behrangi, Ali Christensen, Matthew Richardson, Mark Lebsock, Matthew Stephens, Graeme Huffman, George J. Bolvin, David Adler, Robert F. Gardner, Alex Lambrigtsen, Bjorn Fetzer, Eric TI Status of high-latitude precipitation estimates from observations and reanalyses SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATOLOGY PROJECT GPCP; DATA ASSIMILATION SYSTEM; GLOBAL PRECIPITATION; GAUGE OBSERVATIONS; ERA-INTERIM; ICE-SHEET; LAND; ENERGY; VARIABILITY; PERFORMANCE AB An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular, the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally based Global Precipitation Climatology Project (GPCP), Global Precipitation Climatology Centre, and Climate Prediction Center Merged Analysis of Precipitation (CMAP) products and the ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction-Department of Energy Reanalysis 2 (NCEP-DOE R2) reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55 degrees latitude are considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow, or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment. The intercomparison is performed for the 2007-2010 period when CloudSat was fully operational. It is found that ERA-Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over Northern Hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models. C1 [Behrangi, Ali; Richardson, Mark; Lebsock, Matthew; Stephens, Graeme; Gardner, Alex; Lambrigtsen, Bjorn; Fetzer, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Christensen, Matthew] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot, Oxon, England. [Christensen, Matthew] Univ Oxford, Atmospher Ocean & Planetary Phys, Oxford, England. [Huffman, George J.; Bolvin, David] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Adler, Robert F.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Behrangi, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Ali.Behrangi@jpl.nasa.gov OI Gardner, Alex/0000-0002-8394-8889 FU NASA New Investigator Program [NNH13ZDA001N-NIP]; NASA Energy and Water Cycle Study [NNH13ZDA001N-NEWS]; NASA GRACE award; NASA GRACE-FO award [NNH15ZDA001N-GRACE] FX Data sets were obtained from various sources: the latest version of monthly GPCP (v2.2) from Goddard Earth Sciences Data and Information Services Center (GES DISC), CMAP from NOAA Earth System Laboratory http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html, GPCC Full Data Reanalysis version 7.0 at 2.5 degrees x 2.5 degrees resolution from ftp://ftp.dwd.de/pub/data/gpcc/html/download_gate.html, GRACE total water storage from http://gracetellus.jpl.nasa.gov/, Era-Interim daily precipitation from http://apps.ecmwf.int/data-sets/, MERRA precipitation (v5.2) from GES DISC, NCEP precipitation from NOAA-ESRL at http://www.esrl.noaa.gov/psd/, and all CloudSat products from http://www.cloudsat.cira.colos-tate.edu. Some of the data sets used in this manuscript are also available through the Arctic Observation and Reanalysis Integrated System [Christensen et al., 2011]. Evapotranspiration and runoff are obtained from GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degrees version 2.0 (GLDAS_NOAH025_M) product available from GES DISC. We thank Norm Wood and Tristan L'Ecuyer at University of Wisconsin-Madison for the discussion about the CloudSat snow product. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Financial support is also made available from NASA New Investigator Program (NNH13ZDA001N-NIP), NASA Energy and Water Cycle Study (NNH13ZDA001N-NEWS), and NASA GRACE and GRACE-FO (NNH15ZDA001N-GRACE) awards. Government sponsorship is acknowledged. NR 66 TC 3 Z9 3 U1 14 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2016 VL 121 IS 9 BP 4468 EP 4486 DI 10.1002/2015JD024546 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR2DS UT WOS:000379715800005 ER PT J AU Chang, TJ Xiong, XX Angal, A Mu, QZ AF Chang, Tiejun Xiong, Xiaoxiong (Jack) Angal, Amit Mu, Qiaozhen TI Assessment of MODIS RSB detector uniformity using deep convective clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID REFLECTIVE SOLAR BANDS; CALIBRATION; STABILITY; VIIRS AB For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery. C1 [Chang, Tiejun; Angal, Amit; Mu, Qiaozhen] Sci Syst & Applicat Inc, Lanham, MD USA. [Xiong, Xiaoxiong (Jack)] NASA, Sci & Explorat Directorate, GSFC, Greenbelt, MD USA. RP Chang, TJ (reprint author), Sci Syst & Applicat Inc, Lanham, MD USA. EM tiejun.chang@ssaihq.com NR 23 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2016 VL 121 IS 9 BP 4783 EP 4796 DI 10.1002/2015JD024652 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR2DS UT WOS:000379715800023 ER PT J AU Sayer, AM Hsu, NC Bettenhausen, C Lee, J Redemann, J Schmid, B Shinozuka, Y AF Sayer, A. M. Hsu, N. C. Bettenhausen, C. Lee, J. Redemann, J. Schmid, B. Shinozuka, Y. TI Extending "Deep Blue" aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BIOMASS BURNING PARTICLES; GROUND-BASED MEASUREMENTS; OPTICAL-DEPTH; ACE-ASIA; SOUTHEAST-ASIA; SOURCE REGIONS; WATER-VAPOR; MODIS; SATELLITE; OCEAN AB Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty similar to 25-50% (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty similar to 10-20%, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations. C1 [Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sayer, A. M.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Bettenhausen, C.] Sci Syst & Applicat Inc, Lanham, MD USA. [Lee, J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Redemann, J.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schmid, B.] Pacific Northwest Natl Lab, Richland, WA USA. [Shinozuka, Y.] Bay Area Environm Res Inst, Petaluma, CA USA. RP Sayer, AM (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM andrew.sayer@nasa.gov RI Sayer, Andrew/H-2314-2012; OI Sayer, Andrew/0000-0001-9149-1789; Lee, Jaehwa/0000-0002-5029-476X FU NASA ROSES program FX Further information about Deep Blue is available at http://deepblue.gsfc.nasa.gov. The NASA Ames Sunphotometer-Satellite Team page is https://earthscience.arc.nasa.gov/sunsat. This research was funded under the NASA ROSES program. AERONET data are available from http://aeronet.gsfc.nasa.gov/; the AERONET team and PIs, led by B. Holben, are thanked for the creation and stewardship of these data records. CPL data are available from http://cpl.gsfc.nasa.gov/. R. Frey and K. Meyer are thanked for their useful discussions about the MODIS cloud data products. Z. Zhang and two anonymous reviewers are thanked for their insightful reviews. NR 91 TC 3 Z9 3 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2016 VL 121 IS 9 BP 4830 EP 4854 DI 10.1002/2015JD024729 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR2DS UT WOS:000379715800026 ER PT J AU Pani, SK Wang, SH Lin, NH Tsay, SC Lolli, S Chuang, MT Lee, CT Chantara, S Yu, JY AF Pani, Shantanu Kumar Wang, Sheng-Hsiang Lin, Neng-Huei Tsay, Si-Chee Lolli, Simone Chuang, Ming-Tung Lee, Chung-Te Chantara, Somporn Yu, Jin-Yi TI Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INDIAN-OCEAN EXPERIMENT; ANTHROPOGENIC AEROSOLS; CARBONACEOUS AEROSOLS; VERTICAL PROFILES; SMOKE TRANSPORT; BOUNDARY-LAYER; ASIAN DUST; CLIMATE; SURFACE; CLOUDS AB The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approximate to 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approximate to 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m(-2) per AOD, respectively. Such enhancement could potentiallymodify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS. C1 [Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei] Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan. [Lin, Neng-Huei; Chantara, Somporn] Chiang Mai Univ, Dept Chem, Chiang Mai, Thailand. [Lin, Neng-Huei; Chantara, Somporn] Chiang Mai Univ, Environm Sci Program, Chiang Mai, Thailand. [Tsay, Si-Chee; Lolli, Simone] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Lolli, Simone] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA. [Chuang, Ming-Tung; Lee, Chung-Te] Natl Cent Univ, Grad Inst Environm Engn, Taoyuan, Taiwan. [Yu, Jin-Yi] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. RP Lin, NH (reprint author), Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan.; Lin, NH (reprint author), Chiang Mai Univ, Dept Chem, Chiang Mai, Thailand.; Lin, NH (reprint author), Chiang Mai Univ, Environm Sci Program, Chiang Mai, Thailand. EM nhlin@cc.ncu.edu.tw FU Ministry of Science and Technology of Taiwan [103-2111-M-008-001, 104-2111-M-008-002]; Taiwan Environmental Protection Administration [EPA-104-U1L1-02-101]; NASA Earth Observing System and Radiation Sciences Program FX This work was supported by the Ministry of Science and Technology of Taiwan (103-2111-M-008-001 and 104-2111-M-008-002) and by the Taiwan Environmental Protection Administration (EPA-104-U1L1-02-101). The 7-SEAS, MPLNET, and AERONET projects were supported by the NASA Earth Observing System and Radiation Sciences Program. The authors gratefully acknowledge the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.ready.noaa.gov) used in this publication. AERONET data used in this study are available at http://aeronet.gsfc.nasa.gov/, and MODIS fire count data are available at https://firms.modaps.eosdis.nasa.gov/fire-map/. Other data used to produce the results of this paper can be obtained from Neng-Huei Lin (nhlin@cc.ncu.edu.tw) upon request. The authors also would like to thank the Editor and three anonymous reviewers for their insightful comments and suggestions which considerably improved this manuscript. NR 59 TC 5 Z9 5 U1 4 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2016 VL 121 IS 9 BP 4894 EP 4906 DI 10.1002/2015JD024601 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR2DS UT WOS:000379715800029 ER PT J AU Minnis, P Hong, G Sun-Mack, S Smith, WL Chen, Y Miller, SD AF Minnis, Patrick Hong, Gang Sun-Mack, Szedung Smith, William L., Jr. Chen, Yan Miller, Steven D. TI Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CIRRUS CLOUDS; WATER PATH; A-TRAIN; PART II; TEMPERATURE; RETRIEVAL; ASSIMILATION; IMAGERY; RADAR; THICKNESS AB Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 mu m have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth t is limited to nonopaque cirrus with tau < 8. The Ice Cloud Optical Depth from Infrared using a Neural network ( ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer ( MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 similar to m against CloudSat-estimated tau during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud tau up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, tau for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are similar to 100 and similar to 72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are similar to 62%. The 3.7 mu m channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloudwater path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle. C1 [Minnis, Patrick; Smith, William L., Jr.] NASA Langley Res Ctr, Hampton, VA 23665 USA. [Hong, Gang; Sun-Mack, Szedung; Chen, Yan] Sci Syst & Applicat Inc, Hampton, VA USA. [Miller, Steven D.] Cooperat Inst Res Atmosphere, Ft Collins, CO USA. RP Minnis, P (reprint author), NASA Langley Res Ctr, Hampton, VA 23665 USA. EM p.minnis@nasa.gov FU NASA Modeling, Analysis, and Prediction Program; NASA CERES Project FX This research is supported by the NASA Modeling, Analysis, and Prediction Program and the NASA CERES Project. Thanks to the three anonymous reviewers who helped make this a better manuscript. The data used in this study can be accessed at NASA Langley Research Center upon request. NR 53 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2016 VL 121 IS 9 BP 4907 EP 4932 DI 10.1002/2015JD024456 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR2DS UT WOS:000379715800030 ER PT J AU Toon, OB Maring, H Dibb, J Ferrare, R Jacob, DJ Jensen, EJ Luo, ZJ Mace, GG Pan, LL Pfister, L Rosenlof, KH Redemann, J Reid, JS Singh, HB Thompson, AM Yokelson, R Minnis, P Chen, G Jucks, KW Pszenny, A AF Toon, Owen B. Maring, Hal Dibb, Jack Ferrare, Richard Jacob, Daniel J. Jensen, Eric J. Luo, Z. Johnny Mace, Gerald G. Pan, Laura L. Pfister, Lenny Rosenlof, Karen H. Redemann, Jens Reid, Jeffrey S. Singh, Hanwant B. Thompson, Anne M. Yokelson, Robert Minnis, Patrick Chen, Gao Jucks, Kenneth W. Pszenny, Alex TI Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(4)RS) field mission SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHEASTERN UNITED-STATES; STRATOSPHERIC WATER-VAPOR; TROPOPAUSE AEROSOL LAYER; FOREST-FIRE SMOKE; SATELLITE-OBSERVATIONS; ISOPRENE EMISSIONS; LOWERMOST STRATOSPHERE; AIRBORNE MEASUREMENTS; UPPER TROPOSPHERE; NORTH-AMERICA AB The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(4)RS) fieldmission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights fromthe surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC(4)RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and lowNO(x) conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds. C1 [Toon, Owen B.] Univ Colorado Boulder, Dept Atmospher & Ocean Sci, Boulder, CO USA. [Toon, Owen B.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. [Maring, Hal; Jucks, Kenneth W.; Pszenny, Alex] NASA Headquarters, Washington, DC USA. [Dibb, Jack] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Dibb, Jack] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Ferrare, Richard; Minnis, Patrick; Chen, Gao] NASA Langley Res Ctr, Hampton, VA USA. [Jacob, Daniel J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA USA. [Jensen, Eric J.; Pfister, Lenny; Redemann, Jens; Singh, Hanwant B.] NASA Ames Res Ctr, Moffett Field, CA USA. [Luo, Z. Johnny] CUNY City Coll, Dept Earth & Atmospher Sci, New York, NY USA. [Luo, Z. Johnny] CUNY City Coll, Cooperat Remote Sensing Sci & Technol Ctr, New York, NY USA. [Mace, Gerald G.] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT USA. [Pan, Laura L.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Rosenlof, Karen H.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Reid, Jeffrey S.] Naval Res Lab, Monterey, CA USA. [Thompson, Anne M.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Yokelson, Robert] Univ Montana, Dept Chem, Missoula, MT 59812 USA. RP Toon, OB (reprint author), Univ Colorado Boulder, Dept Atmospher & Ocean Sci, Boulder, CO USA.; Toon, OB (reprint author), Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. EM toon@lasp.colorado.edu RI Rosenlof, Karen/B-5652-2008; Yokelson, Robert/C-9971-2011; Reid, Jeffrey/B-7633-2014; Manager, CSD Publications/B-2789-2015; Thompson, Anne /C-3649-2014 OI Rosenlof, Karen/0000-0002-0903-8270; Yokelson, Robert/0000-0002-8415-6808; Reid, Jeffrey/0000-0002-5147-7955; Thompson, Anne /0000-0002-7829-0920 FU NASA Earth Science Program; Naval Research Laboratory; NASA [NNX12AC64G, NNX14AR56G] FX SEAC4RS was organized and funded by the NASA Earth Science Program and the Naval Research Laboratory. We thank the aircraft managers, engineers, and ground crews of all the aircraft that participated in SEAC4RS. We particularly thank the pilots of the ER-2 Tim Williams, Denis Steele, Dan Neely, and Stuart Broce; mobile pilot Jan Nystrom; and the DC-8 pilots Frank Batteas, Wayne Ringelberg, Manny Puerta, Denis Steele, Troy Asher, Nils Larson, and Bill Brockett. The DC-8 navigators, Carl Magnusson, Alan Rabb, Keith Schilawski, Ben Williams, Jeff Wilson, and Jeff Texcellwere essential to flight planning and to helping adjust flight patterns in real time. NASA's Armstrong Flight Research Center Airborne Science Directorate provided excellent support for the aircraft. We thank Bruce Tagg, the Airborne Science Program manager; ER-2 aircraft mission managers, Tim Moes and Chris Miller; the DC-8 mission manager, Frank Cutler, as well as Rick Shetter. The NASA Ames Earth Science Project Office made tremendous contributions to the operations and overall success of SEAC4RS. Our special thanks go to Kent Shiffer, Jhony Zavaleta, Mike Craig, David Jordan, Sue Tolley, Quincy Allison, Dan Chirica, Erin Czech, Erin Justice, and Katja Drdla. We are grateful for the support of the NASA Langley Clouds Group, especially Rabi Palikonda, Louis Nguyen, Kris Bedka, Bill Smith, Jr., Kirk Ayers, Chris Yost, Doug Spangenberg, Michele Nordeen, Dave Duda, Robyn Boeke, Thad Chee, and Ben Scarino. We appreciated Kathy Thompson for her dedication and effort throughout the planning and postmission analysis of SEAC4RS. The airport personnel at NASA's Johnson spaceflight center and Ellington Field were very helpful to the mission. We especially thank Dick Clark, Chief of the Aircraft Operations Division; Gary Ash, Chief of Aircraft Maintenance; Arne Aamodt and Kevin Lasenski from the Aircraft Operations Division; Noreen McLeroy for IT support; Lisa Buswell, Administrative Officer; Rose Garder, International Visits Coordinator; and, Frank Newman for laboratory and building support in Building 994. Jim Crawford, at NASA's Langley Research Center, played a key role in planning the SEAC4RS field mission. The SEAC4RS data are now in the public domain and can be accessed at http://www-air. larc. nasa. gov/cgi-bin/ArcView/seac4rs. Alternatively one can locate the data at www. doi. org using doi: 10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud. O. B. Toon was supported by NASA awards NNX12AC64G and NNX14AR56G. NR 72 TC 17 Z9 17 U1 16 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2016 VL 121 IS 9 BP 4967 EP 5009 DI 10.1002/2015JD024297 PG 43 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DR2DS UT WOS:000379715800033 ER PT J AU Kepko, L Viall, NM Antiochos, SK Lepri, ST Kasper, JC Weberg, M AF Kepko, L. Viall, N. M. Antiochos, S. K. Lepri, S. T. Kasper, J. C. Weberg, M. TI Implications of L1 observations for slow solar wind formation by solar reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HELIOSPHERIC PLASMA SHEETS; CORONAL HOLES; HELIUM ABUNDANCE; RIGID ROTATION; MAGNETIC-FLUX; SPEED; CYCLE; SPACECRAFT; ORIGIN; PSEUDOSTREAMERS AB While the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasiperiodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slow wind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near-constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition-velocity correlations do not hold on short, approximately hourlong, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun's atmosphere. C1 [Kepko, L.; Viall, N. M.; Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lepri, S. T.; Kasper, J. C.; Weberg, M.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. RP Kepko, L (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM larry.kepko@nasa.gov FU NASA FX L.K. acknowledges the support of the NASA Guest Investigator Program, and S.K.A. acknowledges the support of the NASA Living With a Star Program. ACE and Wind plasma and magnetic field data were obtained from CDAWeb (http://cdaweb.gsfc.nasa.gov). The 12 min ACE SWICS composition data are available for the interval presented here by contacting the authors. NR 54 TC 3 Z9 3 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4089 EP 4097 DI 10.1002/2016GL068607 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200002 ER PT J AU Gershman, DJ Dorelli, JC Vinas, AF Avanov, LA Gliese, U Barrie, AC Coffey, V Chandler, M Dickson, C MacDonald, EA Salo, C Holland, M Saito, Y Sauvaud, JA Lavraud, B Paterson, WR Torbert, R Chen, LJ Goodrich, K Russell, CT Strangeway, RJ Giles, BL Pollock, CJ Moore, TE Burch, JL AF Gershman, Daniel J. Dorelli, John C. Vinas, Adolfo F. Avanov, Levon A. Gliese, Ulrik Barrie, Alexander C. Coffey, Victoria Chandler, Michael Dickson, Charles MacDonald, Elizabeth A. Salo, Chad Holland, Matthew Saito, Yoshifumi Sauvaud, Jean-Andre Lavraud, Benoit Paterson, William R. Torbert, Roy Chen, Li-Jen Goodrich, Katherine Russell, Christopher T. Strangeway, Robert J. Giles, Barbara L. Pollock, Craig J. Moore, Thomas E. Burch, James L. TI Electron dynamics in a subproton-gyroscale magnetic hole SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MIRROR-MODE STRUCTURES; SOLAR-WIND; PLASMA SHEET; MAGNETOSPHERE; INSTABILITY; CLUSTER; WAVES AB Magnetic holes are ubiquitous in space plasmas, occurring in the solar wind, downstream of planetary bow shocks, and inside the magnetosphere. Recently, kinetic-scale magnetic holes have been observed near Earth's central plasma sheet. The Fast Plasma Investigation on NASA's Magnetospheric Multiscale (MMS) mission enables measurement of both ions and electrons with 2 orders of magnitude increased temporal resolution over previous magnetospheric instruments. Here we present data from MMS taken in Earth's nightside plasma sheet and use high-resolution particle and magnetometer data to characterize the structure of a subproton-scale magnetic hole. Electrons with gyroradii above the thermal gyroradius but below the current layer thickness carry a current sufficient to account for a similar to 10-20% depression in magnetic field magnitude. These observations suggest that the size and magnetic depth of kinetic-scale magnetic holes is strongly dependent on the background plasma conditions. C1 [Gershman, Daniel J.; Avanov, Levon A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gershman, Daniel J.; Dorelli, John C.; Vinas, Adolfo F.; Avanov, Levon A.; Gliese, Ulrik; Barrie, Alexander C.; Dickson, Charles; MacDonald, Elizabeth A.; Salo, Chad; Holland, Matthew; Paterson, William R.; Chen, Li-Jen; Giles, Barbara L.; Pollock, Craig J.; Moore, Thomas E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gliese, Ulrik] SGT Inc, Greenbelt, MD USA. [Barrie, Alexander C.] Millenium Engn & Integrat Co, Arlington, VA USA. [Coffey, Victoria; Chandler, Michael] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Saito, Yoshifumi] JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Sauvaud, Jean-Andre; Lavraud, Benoit] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Sauvaud, Jean-Andre; Lavraud, Benoit] CNRS, UMR 5277, Toulouse, France. [Torbert, Roy] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Torbert, Roy] SW Res Inst, Durham, NH USA. [Goodrich, Katherine] Univ Colorado, Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Russell, Christopher T.; Strangeway, Robert J.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Burch, James L.] SW Res Inst, San Antonio, TX USA. RP Gershman, DJ (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Gershman, DJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM daniel.j.gershman@nasa.gov RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU Magnetospheric Multiscale Mission [WBS 943396.05.03.02.10.01]; CNES; CNRS FX The authors wish to thank the members of the FPI ground operations and science team for their feedback and support. This work was supported by the Magnetospheric Multiscale Mission under WBS 943396.05.03.02.10.01. IRAP contributions to MMS were funded by CNES and CNRS. Data used for this study are available from the MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/). NR 24 TC 4 Z9 4 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4112 EP 4118 DI 10.1002/2016GL068545 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200005 ER PT J AU Love, JJ Coisson, P Pulkkinen, A AF Love, Jeffrey J. Coisson, Pierdavide Pulkkinen, Antti TI Global statisticalmaps of extreme-event magnetic observatory 1 min first differences in horizontal intensity SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GEOMAGNETICALLY INDUCED CURRENTS; SPACE WEATHER; TIME DERIVATIVES; OCTOBER 2003; FIELD; EARTH; STORM AB Analysis is made of the long-term statistics of three different measures of ground level, storm time geomagnetic activity: instantaneous 1 min first differences in horizontal intensity Delta B-h, the root-mean-square of 10 consecutive 1 min differences S, and the ramp change R over 10 min. Geomagnetic latitude maps of the cumulative exceedances of these three quantities are constructed, giving the threshold (nT/min) for which activity within a 24 h period can be expected to occur once per year, decade, and century. Specifically, at geomagnetic 55 degrees, we estimate once-per-century Delta B-h, S, and R exceedances and a site-to-site, proportional, 1 standard deviation range [1 sigma, lower and upper] to be, respectively, 1000, [690, 1450]; 500, [350, 720]; and 200, [140, 280] nT/min. At 40 degrees, we estimate once-per-century Delta B-h, S, and R exceedances and 1 sigma. values to be 200, [140, 290]; 100, [70, 140]; and 40, [30, 60] nT/min. C1 [Love, Jeffrey J.] US Geol Survey, Geomagnetism Program, Box 25046, Denver, CO 80225 USA. [Coisson, Pierdavide] Univ Paris Diderot, CNRS, Sorbonne Paris Cite, Inst Phys Globe Paris, Paris, France. [Pulkkinen, Antti] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Love, JJ (reprint author), US Geol Survey, Geomagnetism Program, Box 25046, Denver, CO 80225 USA. EM jlove@usgs.gov RI Coisson, Pierdavide/C-5942-2012 OI Coisson, Pierdavide/0000-0003-4155-2111 NR 40 TC 4 Z9 4 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4126 EP 4135 DI 10.1002/2016GL068664 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200007 ER PT J AU Deca, J Divin, A Wang, X Lembege, B Markidis, S Horanyi, M Lapenta, G AF Deca, Jan Divin, Andrey Wang, Xu Lembege, Bertrand Markidis, Stefano Horanyi, Mihaly Lapenta, Giovanni TI Three-dimensional full-kinetic simulation of the solar wind interaction with a vertical dipolar lunarmagnetic anomaly SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LUNAR MAGNETIC-ANOMALIES; HALL MHD SIMULATION; ELECTRIC POTENTIALS; PLASMA ENVIRONMENT; FIELDS; SURFACE; PROSPECTOR; MOON AB A detailed understanding of the solar wind interaction with lunar magnetic anomalies (LMAs) is essential to identify its implications for lunar exploration and to enhance our physical understanding of the particle dynamics in a magnetized plasma. We present the first three-dimensional full-kinetic electromagnetic simulation case study of the solar wind interaction with a vertical dipole, resembling a medium-size LMA. In contrast to a horizontal dipole, we show that a vertical dipole twists its field lines and cannot form a minimagnetosphere. Instead, it creates a ring-shaped weathering pattern and reflects up to 21% (four times more as compared to the horizontal case) of the incoming solar wind ions electrostatically through the normal electric field formed above the electron shielding region surrounding the cusp. This work delivers a vital piece to fully comprehend and interpret lunar observations, as we find the amount of reflected ions to be a tracer for the underlying field structure. C1 [Deca, Jan; Wang, Xu; Horanyi, Mihaly] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Deca, Jan; Wang, Xu; Horanyi, Mihaly] NASA, Inst Modeling Plasma Atmospheres & Cosm Dust, SSERVI, Boulder, CO 80305 USA. [Deca, Jan; Lembege, Bertrand] Univ Versailles St Quentin, Observat Spatiales, Lab Atmospheres, Milieux, Guyancourt, France. [Divin, Andrey] St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia. [Divin, Andrey] Swedish Inst Space Phys IRF, Uppsala, Sweden. [Markidis, Stefano] KTH Royal Inst Technol, High Performance Comp & Visualizat, Stockholm, Sweden. [Lapenta, Giovanni] Katholieke Univ Leuven, Dept Math, Ctr Math Plasma Astrophys, Leuven, Belgium. RP Deca, J (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.; Deca, J (reprint author), NASA, Inst Modeling Plasma Atmospheres & Cosm Dust, SSERVI, Boulder, CO 80305 USA.; Deca, J (reprint author), Univ Versailles St Quentin, Observat Spatiales, Lab Atmospheres, Milieux, Guyancourt, France. EM jandeca@gmail.com RI Divin, Andrey/E-4501-2015; OI Divin, Andrey/0000-0002-5579-3066; Lapenta, Giovanni/0000-0002-3123-4024 FU NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT); NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; National Science Foundation [CNS-0821794]; University of Colorado Boulder; European Commission under EHEROES [284461]; PRACE [2013091928] FX This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. This work also utilized the Janus supercomputer, which is supported by the National Science Foundation (award CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver, and the National Center for Atmospheric Research. This research has received funding from the European Commission's FP7 Program under the grant agreement EHEROES (project 284461, www.eheroes.eu). Test simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2013091928 (SuperMUC supercomputer). Part of this work was inspired by discussions within International Team 336: "Plasma Surface Interactions with Airless Bodies in Space and the Laboratory" at the International Space Science Institute, Bern, Switzerland. Access to the raw data may be provided upon motivated request to J.D. NR 41 TC 1 Z9 1 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4136 EP 4144 DI 10.1002/2016GL068535 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200008 ER PT J AU Bierson, CJ Phillips, RJ Smith, IB Wood, SE Putzig, NE Nunes, D Byrne, S AF Bierson, C. J. Phillips, R. J. Smith, I. B. Wood, S. E. Putzig, N. E. Nunes, D. Byrne, S. TI Stratigraphy and evolution of the buried CO2 deposit in the Martian south polar cap SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CARBON-DIOXIDE; ATMOSPHERIC-PRESSURE; CLIMATIC VARIATIONS; ASTRONOMICAL THEORY; THERMAL-EXPANSION; LAYERED DEPOSITS; LOW OBLIQUITY; RESIDUAL CAP; MASS-BALANCE; MARS AB Observations by the Shallow Radar instrument on Mars Reconnaissance Orbiter reveal several deposits of buried CO2 ice within the south polar layered deposits. Here we present mapping that demonstrates this unit is 18% larger than previously estimated, containing enough mass to double the atmospheric pressure on Mars if sublimated. We find three distinct subunits of CO2 ice, each capped by a thin (10-60 m) bounding layer (BL). Multiple lines of evidence suggest that each BL is dominated by water ice. We model the history of CO2 accumulation at the poles based on obliquity and insolation variability during the last 1 Myr assuming a total mass budget consisting of the current atmosphere and the sequestered ice. Our model predicts that CO2 ice has accumulated over large areas several times during that period, in agreement with the radar findings of multiple periods of accumulation. C1 [Bierson, C. J.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Phillips, R. J.] Southwest Res Inst, Planetary Sci Directorate, Boulder, CO USA. [Phillips, R. J.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO USA. [Phillips, R. J.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Smith, I. B.; Putzig, N. E.] Southwest Res Inst, Dept Space Studies, Boulder, CO USA. [Wood, S. E.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Nunes, D.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Byrne, S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Bierson, CJ (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM cthomas1@ucsc.edu RI Wood, Stephen/R-5592-2016; OI Wood, Stephen/0000-0002-9330-434X; Bierson, Carver/0000-0002-6840-7187 NR 42 TC 1 Z9 1 U1 3 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4172 EP 4179 DI 10.1002/2016GL068457 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200012 ER PT J AU van Diedenhoven, B Fridlind, AM Cairns, B Ackerman, AS Yorks, JE AF van Diedenhoven, Bastiaan Fridlind, Ann M. Cairns, Brian Ackerman, Andrew S. Yorks, John E. TI Vertical variation of ice particle size in convective cloud tops SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RESEARCH SCANNING POLARIMETER; MULTIDIRECTIONAL POLARIZATION MEASUREMENTS; CIRRUS CLOUDS; MICROPHYSICAL PROPERTIES; SCATTERING PROPERTIES; OPTICAL-PROPERTIES; EFFECTIVE RADIUS; CRYSTAL SIZE; PARAMETERIZATION; RETRIEVAL AB A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dre/dz) from airborne shortwave reflectance measurements and lidar. Values of dre/dz are about -6 mu m/km for cloud tops below the homogeneous freezing level, increasing to near 0 mu m/km above the estimated level of neutral buoyancy. Retrieved dre/dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation. C1 [van Diedenhoven, Bastiaan] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [van Diedenhoven, Bastiaan; Fridlind, Ann M.; Cairns, Brian; Ackerman, Andrew S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Yorks, John E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP van Diedenhoven, B (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY USA.; van Diedenhoven, B (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM bastiaan.vandiedenhoven@nasa.gov OI Cairns, Brian/0000-0002-1980-1022 FU NASA ROSES [NNX15AD44G] FX This material is based upon work supported by the NASA ROSES program under grant NNX15AD44G. SEAC4RS RSP and sonde data are available at http://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs.CPL data are available at http://cpl.gsfc.nasa.gov. Retrievals from combined RSP and CPL data presented in this paper are available from the lead author upon request. We thank two anonymous reviewers for their contributions. NR 43 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4586 EP 4593 DI 10.1002/2016GL068548 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200061 ER PT J AU Tselioudis, G Lipat, BR Konsta, D Grise, KM Polvani, LM AF Tselioudis, George Lipat, Bernard R. Konsta, Dimitra Grise, Kevin M. Polvani, Lorenzo M. TI Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EDDY-DRIVEN JET; SOUTHERN-HEMISPHERE; POLEWARD SHIFT; TROPICAL BELT; CLIMATE; REANALYSIS; CMIP5 AB We investigate the interannual relationship among clouds, their radiative effects, and two key indices of the atmospheric circulation: the latitudinal positions of the Hadley cell edge and the midlatitude jet. From reanalysis data and satellite observations, we find a clear and consistent relationship between the width of the Hadley cell and the high cloud field, statistically significant in nearly all regions and seasons. In contrast, shifts of the midlatitude jet correlate significantly with high cloud shifts only in the North Atlantic region during the winter season. While in that region and season poleward high cloud shifts are associated with shortwave radiative warming, over the Southern Oceans during all seasons they are associated with shortwave radiative cooling. Finally, a trend analysis reveals that poleward high cloud shifts observed over the 1983-2009 period are more likely related to Hadley cell expansion, rather than poleward shifts of the midlatitude jets. C1 [Tselioudis, George] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Tselioudis, George; Lipat, Bernard R.; Polvani, Lorenzo M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Konsta, Dimitra] Natl Observ Athens, Athens, Greece. [Grise, Kevin M.] Univ Virginia, Dept Environm Sci, Clark Hall, Charlottesville, VA 22903 USA. [Polvani, Lorenzo M.] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA. [Polvani, Lorenzo M.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. RP Tselioudis, G (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.; Tselioudis, G (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. EM george.tselioudis@nasa.gov RI Konsta, Dimitra/O-5205-2015; Grise, Kevin/B-6939-2013 OI Grise, Kevin/0000-0003-0934-8129 FU NASA Modeling, Analysis, and Prediction (MAP) program; U.S. National Science Foundation FX The lead author (G.T.) would like to acknowledge support by the NASA Modeling, Analysis, and Prediction (MAP) program. The work of L.M.P. is supported by a grant from the U.S. National Science Foundation to Columbia University. The ISCCP D1 cloud data used in the analysis can be accessed at: https://eosweb.larc.nasa.gov/project/isccp/isccp_table, the ISCCP FD radiative flux data can be accessed at: http://isccp.giss.nasa.gov/outgoing/FLUX/, and the ERA-Interim reanalysis data can be accessed at: http://apps.ecmwf.int/archive-catalogue/?class=ei NR 22 TC 4 Z9 4 U1 3 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4594 EP 4601 DI 10.1002/2016GL068242 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200062 ER PT J AU Kort, EA Smith, ML Murray, LT Gvakharia, A Brandt, AR Peischl, J Ryerson, TB Sweeney, C Travis, K AF Kort, E. A. Smith, M. L. Murray, L. T. Gvakharia, A. Brandt, A. R. Peischl, J. Ryerson, T. B. Sweeney, C. Travis, K. TI Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID METHANE EMISSIONS; NONMETHANE HYDROCARBONS; AIRCRAFT; MODELS; OZONE; AIR; US; QUANTIFICATION; CONSTRAINTS; REGION AB Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2s) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels. C1 [Kort, E. A.; Smith, M. L.; Gvakharia, A.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Murray, L. T.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Murray, L. T.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Brandt, A. R.] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. [Peischl, J.; Ryerson, T. B.; Sweeney, C.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Peischl, J.; Sweeney, C.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Travis, K.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. RP Kort, EA (reprint author), Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM eakort@umich.edu RI Peischl, Jeff/E-7454-2010; Kort, Eric/F-9942-2012; Murray, Lee/F-2296-2014; Manager, CSD Publications/B-2789-2015 OI Peischl, Jeff/0000-0002-9320-7101; Kort, Eric/0000-0003-4940-7541; Murray, Lee/0000-0002-3447-3952; FU NOAA AC4 program [NA14OAR0110139]; NASA [NNX14AI87G]; NOAA Climate Program Office; NOAA Atmospheric Chemistry, Carbon Cycle, and Climate Program FX Data from the aircraft campaign reported in the manuscript are archived and available at http://www.esrl.noaa.gov/csd/groups/csd7/measurements/2014topdown/. This project was supported by the NOAA AC4 program under grant NA14OAR0110139 and NASA grant NNX14AI87G. J. Peischl and T. Ryerson were supported in part by the NOAA Climate Program Office and in part by the NOAA Atmospheric Chemistry, Carbon Cycle, and Climate Program. We thank Arlene Fiore (Columbia) for computational resources. We thank Anna Karion for assistance with fieldwork and manuscript comments, Michael Trainer for scientific direction and manuscript comments, and NOAA Aircraft Operations Center staff and flight crew for their efforts in helping collect these data. NR 47 TC 7 Z9 7 U1 9 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4617 EP 4623 DI 10.1002/2016GL068703 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200065 ER PT J AU Yorks, JE McGill, MJ Palm, SP Hlavka, DL Selmer, PA Nowottnick, EP Vaughan, MA Rodier, SD Hart, WD AF Yorks, J. E. McGill, M. J. Palm, S. P. Hlavka, D. L. Selmer, P. A. Nowottnick, E. P. Vaughan, M. A. Rodier, S. D. Hart, W. D. TI An overview of the CATS level 1 processing algorithms and data products SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLOUDS; LIDAR; AEROSOLS; INSTRUMENT; SCATTERING; SYSTEM AB The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that was launched on 10 January 2015 to the International Space Station (ISS). CATS provides both space-based technology demonstrations for future Earth Science missions and operational science measurements. This paper outlines the CATS Level 1 data products and processing algorithms. Initial results and validation data demonstrate the ability to accurately detect optically thin atmospheric layers with 1064nm nighttime backscatter as low as 5.0E-5 km(-1) sr(-1). This sensitivity, along with the orbital characteristics of the ISS, enables the use of CATS data for cloud and aerosol climate studies. The near-real-time downlinking and processing of CATS data are unprecedented capabilities and provide data that have applications such as forecasting of volcanic plume transport for aviation safety and aerosol vertical structure that will improve air quality health alerts globally. C1 [Yorks, J. E.; McGill, M. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Palm, S. P.; Hlavka, D. L.; Selmer, P. A.; Rodier, S. D.; Hart, W. D.] Sci Syst & Applicat Inc, Lanham, MD USA. [Nowottnick, E. P.] Univ Space Res Assoc, GESTAR, Columbia, MD USA. [Vaughan, M. A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Yorks, JE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM john.e.yorks@nasa.gov RI Nowottnick, Edward/B-1990-2015 FU NASA Science Mission Directorate (SMD); ISS NASA Research Office (NRO) FX The ISS NASA Research Office (NRO) funded the CATS instrument. The CATS data products (and processing algorithms) are funded by NASA Science Mission Directorate (SMD) and are archived through the Atmospheric Science Data Center (ASDC). CATS browse images and data products are freely distributed via the CATS web site at http://cats.gsfc.nasa.gov/data/. NR 35 TC 1 Z9 1 U1 3 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2016 VL 43 IS 9 BP 4632 EP 4639 DI 10.1002/2016GL068006 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DP2RS UT WOS:000378339200067 ER PT J AU Mishchenko, MI Dlugach, JM Yurkin, MA Bi, L Cairns, B Liu, L Panetta, RL Travis, LD Yang, P Zakharova, NT AF Mishchenko, Michael I. Dlugach, Janna M. Yurkin, Maxim A. Bi, Lei Cairns, Brian Liu, Li Panetta, R. Lee Travis, Larry D. Yang, Ping Zakharova, Nadezhda T. TI First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review DE Discrete random media; Electromagnetic scattering; Statistical electromagnetics; Radiative transfer; Weak localization; Effective-medium approximation ID MONTE-CARLO SIMULATIONS; RANDOM PARTICULATE MEDIA; T-MATRIX METHOD; EFFECTIVE-MEDIUM APPROXIMATION; MACROSCOPIC MAXWELL EQUATIONS; CIRCULAR-POLARIZATION RATIOS; LIGHT-SCATTERING; MULTIPLE-SCATTERING; COHERENT BACKSCATTERING; RADIATIVE-TRANSFER AB A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies. Published by Elsevier B.V. C1 [Mishchenko, Michael I.; Cairns, Brian; Liu, Li; Travis, Larry D.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Dlugach, Janna M.] Natl Acad Sci Ukraine, Main Astron Observ, 27 Zabolotny Str, UA-03680 Kiev, Ukraine. [Yurkin, Maxim A.] RAS, SB, Voevodslcy Inst Chem Kinet & Combust, Inst Skaya Str 3, Novosibirsk 630090, Russia. [Yurkin, Maxim A.] Novosibirsk State Univ, Pirogova 2, Novosibirsk 630090, Russia. [Bi, Lei; Panetta, R. Lee; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Liu, Li] Columbia Univ, 2880 Broadway, New York, NY 10025 USA. [Zakharova, Nadezhda T.] Trinnovim LLC, 2880 Broadway, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov RI Yang, Ping/B-4590-2011; Yurkin, Maxim/A-7583-2008; Bi, Lei/B-9242-2011; OI Yurkin, Maxim/0000-0002-3524-0093; Cairns, Brian/0000-0002-1980-1022 FU NASA Remote Sensing Theory Project; National Academy of Sciences of Ukraine under the Main Astronomical Observatory GRAPE/GPU/GRID Computing Cluster Project; Russian Science Foundation [14-15-00155] FX We thank an anonymous reviewer for providing helpful comments on the initial version of this Report. We appreciate numerous insightful discussions with Yuri Barabanenkov, Matthew Berg, Anatoli Borovoi, Oleg Bugaenko, Petr Chylek, Helmut Domke, Joop Hovenier, Vsevolod Ivanov, Michael Kahnert, George Kattawar, Nikolai Khlebtsov, Nikolai Kiselev, Thomas Kulp, Andrew Lacis, K.-N. Liou, Pavel Litvinov, James Lock, Daniel Mackowski, M. Pinar Menguc, Karri Muinonen, Antti Penttila, Thomas Reichardt, Vera Rosenbush, Yuri Shkuratov, Viktor Tishkovets, Cornelis van der Mee, Gorden Videen, and Edgard Yanovitskij. We thank Alexandra Ivanova for providing Fig. 14a, Antti Penttila for providing Figs. 19a and 30a, and Guanglin Tang and Jianing Zhang for help with FDTDM and PSTDM computations displayed in Figs. 17 and 18. M.I.M., L.L., B.C., and P.Y. acknowledge continued support from the NASA Remote Sensing Theory Project managed by Lucia Tsaoussi, the NASA Radiation Sciences Program managed by Hal Maring, and the NASA ACE Project. Some of the numerical results reported in this paper were obtained with the "Discover" supercomputer at the NASA Center for Climate Simulation. J.M.D. was supported by the National Academy of Sciences of Ukraine under the Main Astronomical Observatory GRAPE/GPU/GRID Computing Cluster Project. M.A.Yu. was supported by the Russian Science Foundation Grant No. 14-15-00155. NR 390 TC 13 Z9 13 U1 15 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD MAY 16 PY 2016 VL 632 BP 1 EP 75 DI 10.1016/j.physrep.2016.04.002 PG 75 WC Physics, Multidisciplinary SC Physics GA DO5PX UT WOS:000377836400001 ER PT J AU Globus, RK Morey-Holton, E AF Globus, Ruth K. Morey-Holton, Emily TI Hindlimb unloading: rodent analog for microgravity SO JOURNAL OF APPLIED PHYSIOLOGY LA English DT Review DE spaceflight; hindlimb unloading; gravity; physiology; adaptation ID LISTERIA-MONOCYTOGENES INFECTION; IMMUNE-SYSTEM DYSREGULATION; INTERNATIONAL-SPACE-STATION; LONG-DURATION SPACEFLIGHT; SIMULATED MICROGRAVITY; SKELETAL-MUSCLE; OXIDATIVE STRESS; BLOOD-PRESSURE; NITRIC-OXIDE; ANTIORTHOSTATIC SUSPENSION AB The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development. C1 [Globus, Ruth K.; Morey-Holton, Emily] NASA, Space Biosci Div, Ames Res Ctr, MS 236-7 Bldg 236,Rm 221, Moffett Field, CA 94035 USA. RP Globus, RK (reprint author), NASA, Bone & Signaling Lab, Space Biosci Res Branch, Ames Res Ctr, MS 236-7 Bldg 236,Rm 221, Moffett Field, CA 94035 USA. EM ruth.k.globus@nasa.gov FU National Space Biomedical Research Institute [NCC 9-58]; NASA's Human Research and Space Biology programs FX Support for this study was provided by the National Space Biomedical Research Institute through Cooperative Agreement NCC 9-58 and NASA's Human Research and Space Biology programs. NR 139 TC 2 Z9 2 U1 2 U2 6 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 8750-7587 EI 1522-1601 J9 J APPL PHYSIOL JI J. Appl. Physiol. PD MAY 15 PY 2016 VL 120 IS 10 BP 1196 EP 1206 DI 10.1152/japplphysiol.00997.2015 PG 11 WC Physiology; Sport Sciences SC Physiology; Sport Sciences GA DM9NA UT WOS:000376691800011 PM 26869711 ER PT J AU Jiang, NB Halls, BR Stauffer, HU Danehy, PM Gord, JR Roy, S AF Jiang, Naibo Halls, Benjamin R. Stauffer, Hans U. Danehy, Paul M. Gord, James R. Roy, Sukesh TI Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry SO OPTICS LETTERS LA English DT Article ID PARTICLE-IMAGE VELOCIMETRY; VELOCITY-MEASUREMENTS; FLOWS; AIR AB Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET), a nonseeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and nonreactive flows. STARFLEET is pumped via a two-photon resonance in N-2 using 202.25 nm 100 fs light. STARFLEET greatly reduces the per-pulse energy required (30 mu J/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and nonreactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N-2 and in a premixed flame show good agreement with theoretical velocities, and further demonstrate the significantly less intrusive nature of STARFLEET. (C) 2016 Optical Society of America C1 [Jiang, Naibo; Stauffer, Hans U.; Roy, Sukesh] Spectral Energies LLC, 5100 Springfield St, Dayton, OH 45431 USA. [Halls, Benjamin R.; Gord, James R.] Air Force Res Lab, Aerosp Syst Directorate, Wright Patterson AFB, OH 45433 USA. [Danehy, Paul M.] NASA, Langley Res Ctr, Adv Measurements & Data Syst Branch, Hampton, VA 23681 USA. RP Jiang, NB (reprint author), Spectral Energies LLC, 5100 Springfield St, Dayton, OH 45431 USA. EM naiboj@yahoo.com FU National Aeronautics and Space Administration (NASA) [NNX14CL74P, NNX15CL24C]; Air Force Office of Scientific Research (AFOSR) [14RQ06COR, 15RQCOR202] FX National Aeronautics and Space Administration (NASA) (NNX14CL74P, NNX15CL24C); Air Force Office of Scientific Research (AFOSR) (14RQ06COR, 15RQCOR202). NR 22 TC 1 Z9 1 U1 5 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD MAY 15 PY 2016 VL 41 IS 10 BP 2225 EP 2228 DI 10.1364/OL.41.002225 PG 4 WC Optics SC Optics GA DL6KH UT WOS:000375747600024 PM 27176968 ER PT J AU Grudinin, IS Mansour, K Yu, N AF Grudinin, Ivan S. Mansour, Kamjou Yu, Nan TI Properties of fluoride microresonators for mid-IR applications SO OPTICS LETTERS LA English DT Article ID MULTIPHONON INFRARED-ABSORPTION; FREQUENCY COMB GENERATION; GALLERY MODE RESONATORS; MAGNESIUM FLUORIDE; MICROSPHERES; SCATTERING; SURFACES; WATER; CAF2 AB We study crystalline fluoride microresonators for mid-infrared (mid-IR) applications. Whispering gallery mode resonators were fabricated with BaF2, CaF2, and MgF2 crystals. The quality factors were measured at wavelengths of 1.56 and 4.58 mu m. The impacts of post-fabrication processing, impurities, and surface water are highlighted. The mid-IR optical losses due to multiphoton absorption are measured. It is found that MgF2 resonators have a room temperature Q-factor of 8.3 x 10(6) at a wavelength of 4.58 mu m, limited by multiphoton absorption. (C) 2016 Optical Society of America C1 [Grudinin, Ivan S.; Mansour, Kamjou; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Grudinin, IS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM grudinin@jpl.nasa.gov NR 30 TC 4 Z9 4 U1 4 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD MAY 15 PY 2016 VL 41 IS 10 BP 2378 EP 2381 DI 10.1364/OL.41.002378 PG 4 WC Optics SC Optics GA DL6KH UT WOS:000375747600063 PM 27177007 ER PT J AU Lorenz, RD Le Gall, A Janssen, MA AF Lorenz, Ralph D. Le Gall, Alice Janssen, Michael A. TI Detecting volcanism on Titan and Venus with microwave radiometry SO ICARUS LA English DT Article DE Titan; Venus; Radio observations; Volcanism; Radiative transfer ID CASSINI RADAR; HEAT-FLOW; SURFACE; EMISSION; TEMPERATURES; SPECTRUM; BASALT; WATER; LAVA AB The detection by spaceborne instrumentation of infrared thermal emission from volcanic eruptions is well-established on Earth, but is challenged on Venus and Titan by their optically-thick atmospheres. Microwave radiometry in principle offers the ability to detect emission from surface thermal anomalies on these worlds due to greater atmospheric transparency: microwaves also offer the prospect of sensing the shallow subsurface and thus may detect warmth from lava flows for longer than surface infrared emission. However, satellite microwave instruments typically have low spatial resolution (105 of km) so volcanic heat is diluted in the wide instrument footprint. We examine the prospects for the detection of volcanic deposits by microwave, given likely planetary eruption rates and lava flow deposit geometries, using Mt Etna as a template. Nondetection of prominent hotspots in Cassini data may imply that the resurfacing rate is lower than similar to 2 km(3)/yr, five times smaller than the expression of an Earth-like fraction of geothermal heat flow as latent heat in extrusive volcanism. (C) 2015 Elsevier Inc. All rights reserved. C1 [Lorenz, Ralph D.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Le Gall, Alice] UVSQ, Lab Atmospheres, Milieux, Observat Spatiales LATMOS, Paris, France. [Janssen, Michael A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Lorenz, RD (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM ralph.lorenz@jhuapl.edu OI Lorenz, Ralph/0000-0001-8528-4644 FU JHU Applied Physics Laboratory; NASA Grant [NNX13AH14G] FX This work was supported by the JHU Applied Physics Laboratory and in part by NASA Grant "Cassini Radar Science Support" NNX13AH14G. We thank two anonymous referees for useful comments. NR 41 TC 0 Z9 0 U1 3 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 30 EP 36 DI 10.1016/j.icarus.2015.07.023 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000004 ER PT J AU Michaelides, RJ Hayes, AG Mastrogiuseppe, M Zebker, HA Farr, TG Malaska, MJ Poggiali, V Mullen, JP AF Michaelides, R. J. Hayes, A. G. Mastrogiuseppe, M. Zebker, H. A. Farr, T. G. Malaska, M. J. Poggiali, V. Mullen, J. P. TI Constraining the physical properties of Titan's empty lake basins using nadir and off-nadir Cassini RADAR backscatter SO ICARUS LA English DT Article DE Titan; Titan, surface; Titan, hydrology; Radar observations ID ALTIMETER; SURFACE; SATELLITES; DUNES AB We use repeat synthetic aperture radar (SAR) observations and complementary altimetry passes acquired by the Cassini spacecraft to study the scattering properties of Titan's empty lake basins. The best-fit coefficients from fitting SAR data to a quasi-specular plus diffuse backscatter model suggest that the bright basin floors have a higher dielectric constant, but similar facet-scale rms surface facet slopes, to surrounding terrain. Waveform analysis of altimetry returns reveals that nadir backscatter returns from basin floors are greater than nadir backscatter returns from basin surroundings and have narrower pulse widths. This suggests that floor deposits are structurally distinct from their surroundings, consistent with the interpretation that some of these basins may be filled with evaporitic and/or sedimentary deposits. Basin floor deposits also express a larger diffuse component to their backscatter, which is likely due to variations in subsurface structure or an increase in roughness at the wavelength scale (Hayes, A.G. et al. [2008]. Geophys. Res. Lett. 35, 9). We generate a high-resolution altimetry radargram of the T30 altimetry pass over an empty lake basin, with which we place geometric constraints on the basin's slopes, rim heights, and depth. Finally, the importance of these backscatter observations and geometric measurements for basin formation mechanisms is briefly discussed. (C) 2015 Elsevier Inc. All rights reserved. C1 [Michaelides, R. J.; Hayes, A. G.; Mastrogiuseppe, M.; Mullen, J. P.] Cornell Univ, Dept Astron, Ithaca, NY 14850 USA. [Zebker, H. A.] Stanford Univ, Dept Geophys & Elect Engn, Stanford, CA 94305 USA. [Farr, T. G.; Malaska, M. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Poggiali, V.] Univ Roma La Sapienza, Dipartimento Ingn Inforrnaz Elettron & Telecomuni, Rome, Italy. RP Michaelides, RJ (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14850 USA. EM rjm342@cornell.edu; hayes@astro.cornell.edu; marco.mastrogiuseppe@uniroma1.it; zebker@stanford.edu; thomas.g.farr@jpl.nasa.gov; michael.j.malaska@jpl.nasa.gov; valerio.poggiali@uniroma1.it; jpm398@cornell.edu OI Malaska, Michael/0000-0003-0064-5258; Farr, Thomas/0000-0001-5406-2096 FU National Science Foundation Research Experience for Undergraduates program in Astronomy and Astrophysics at Cornell University [NSF/AST-1156780] FX The authors would like to thank Cornell University, the Jet Propulsion Laboratory, the Cassini Radar Data Team and the Cassini Engineering Team. We also thank Ralph Lorenz and one anonymous reviewer for their insightful comments during the review process. JM's effort was supported by the National Science Foundation Research Experience for Undergraduates program in Astronomy and Astrophysics at Cornell University under Grant No. NSF/AST-1156780. NR 26 TC 3 Z9 3 U1 4 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 57 EP 66 DI 10.1016/j.icarus.2015.09.043 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000007 ER PT J AU Solomonidou, A Coustenis, A Hirtzig, M Rodriguez, S Stephan, K Lopes, RMC Drossart, P Sotin, C Le Mouelic, S Lawrence, K Bratsolis, E Jaumann, R Brown, RH AF Solomonidou, Anezina Coustenis, A. Hirtzig, M. Rodriguez, S. Stephan, K. Lopes, R. M. C. Drossart, P. Sotin, C. Le Mouelic, S. Lawrence, K. Bratsolis, E. Jaumann, R. Brown, R. H. TI Temporal variations of Titan's surface with Cassini/VIMS SO ICARUS LA English DT Article DE Titan, surface; Radiative transfer; Spectroscopy; Satellites, surfaces ID HUYGENS LANDING SITE; POSSIBLE ORIGIN; RADAR MAPPER; VIMS; METHANE; CRYOVOLCANISM; ATMOSPHERE; SPECTRA; MODEL; TOPOGRAPHY AB We analyze Cassini VIMS data of several areas on Titan's surface looking for variations with time. Three of these locations are near the equator (10-30 degrees S), namely Hotei Regio, Tui Regio and Sotra Patera; in some cases changes in brightness and/or in appearance were reported therein. We also investigate a portion of the undifferentiated plains, areas relatively homogeneous and dark in radar observations, located near 20-25 degrees N. This is a follow-up on a previous paper in which we had inferred surface albedos for some distinct regions of interest (Rols) identified within the Hotei, Tui and Sotra areas through a Principal Component Analysis (PCA) and radiative transfer (RT) modeling (Solomonidou [2014]. J. Geophys. Res. 119, 1729-1747). We apply the same methods here to a larger dataset looking for variations of the surface albedo with time and using the Huygens landing site as the 'ground truth' for calibration purposes. As expected, the undifferentiated plains remain unchanged from January 2010 to June 2012. Our analysis of Hotei Regio data from March 2005 to March 2009 also does not show any significant surface albedo variations within uncertainties. We note however that our RT retrievals are not optimal in this case because of the use of a plane-parallel code and the unfavorable geometry of the associated datasets. Conversely, Tui Regio and Sotra Patera show surface albedo fluctuations with time with pronounced trends for darkening and for brightening respectively. The Tui Regio spectrum exhibits a surface albedo decrease from March 2005 to February 2009, at 0.94, 1.08, 2.03, and 5 mu m wavelengths, while the spectrum shape remains the same over that time. On the contrary, the Sotra Patera area became at least two times brighter within a year (April 2005-February 2006), at 1.58 mu m, 2.03 mu m, and 5 mu m. We also retrieved surface albedo spectra for three reference regions surrounding Hotei, Tui and Sotra and for three additional regions we use as 'test cases' that correspond to dune fields. During the time periods explored here we find that, as expected and contrary to Tui Regio and Sotra Patera, the test cases did not show any significant changes in surface albedo. We therefore suggest that temporal variations of surface albedo exist for some areas on Titan, but that their origin may differ from one region to the other. They could be due to diverse, past and/or ongoing formation processes (endogenic and/or exogenic, possibly cryovolcanic), as discussed here. (C) 2015 Elsevier Inc. All rights reserved. C1 [Solomonidou, Anezina; Lopes, R. M. C.; Sotin, C.; Lawrence, K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Solomonidou, Anezina; Coustenis, A.; Hirtzig, M.; Drossart, P.] Univ Paris Diderot, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92190 Meudon, France. [Hirtzig, M.] Fdn Main Pate, F-75006 Montrouge, France. [Rodriguez, S.] Univ Paris Diderot, Lab AIM, Paris CNRS CEA Saclay 7, DSM IRFU SAp, F-91191 Gif Sur Yvette, France. [Stephan, K.; Jaumann, R.] DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Le Mouelic, S.] Univ Nantes, Lab Planetol & Geodynam, F-44322 Nantes, France. [Bratsolis, E.] Univ Athens, Dept Phys, Athens 15783, Greece. [Brown, R. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Solomonidou, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Lopes, Rosaly/D-1608-2016; Rodriguez, Sebastien/H-5902-2016 OI Lopes, Rosaly/0000-0002-7928-3167; Rodriguez, Sebastien/0000-0003-1219-0641 FU French "Agence Nationale de la Recherche" (ANR Project: CH4@Titan), France; French "Agence Nationale de la Recherche" (ANR project "APOSTIC"), France [11BS56002]; European Union (European Social Fund - ESF]; Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund FX This research is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. AC, SLM, SR, CS, PD and MH acknowledge financial support from the French "Agence Nationale de la Recherche" (ANR Project: CH4@Titan and ANR project "APOSTIC" #11BS56002), France. The research has also been co-financed by the European Union (European Social Fund - ESF] and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund]. Part of the research was carried out by AS at the National and Kapodistrian University of Athens, Department of Geology and Geoenvironment. NR 89 TC 4 Z9 4 U1 3 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 85 EP 99 DI 10.1016/j.icarus.2015.05.003 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000009 ER PT J AU Howard, AD Breton, S Moore, JM AF Howard, Alan D. Breton, Sylvain Moore, Jeffrey M. TI Formation of gravel pavements during fluvial erosion as an explanation for persistence of ancient cratered terrain on Titan and Mars SO ICARUS LA English DT Article DE Titan, hydrology; Mars, surface; Geological processes ID HUYGENS LANDING SITE; RIVER INCISION; SIZE DISTRIBUTION; CLIMATE HISTORY; COLORADO-RIVER; ALLUVIAL FANS; GRAIN-SIZE; MODEL; SURFACE; ABRASION AB In many terrestrial channels the gravel bed is only transported during rare floods (threshold channels), and rates of erosion are very slow. In this paper we explore how coarse debris delivered to channels on Mars and Titan from erosion may inhibit further erosion once a coarse gravel channel bed develops. Portions of the equatorial region of Titan are fluvially eroded into banded (crenulated) terrain, some of which contains numerous circular structures that are likely highly degraded large impact craters surviving from the late heavy bombardment. No mechanism that can chemically or physically break down ice (likely the most important component of Titans crust) has been unambiguously identified. This paper examines a scenario in which fluvial erosion on Titan has largely involved erosion into an impact-generated megaregolith that contains a modest component of gravel-sized debris. As the megaregolith is eroded, coarse gravel gradually accumulates as a lag pavement on channel beds, limiting further erosion and creating a dissected, but largely inactive, or senescent, landscape. Similar development of gravel pavements occur in ancient mountain belts on Earth, and partially explain the persistence of appreciable relief after hundreds of millions of years. Likewise, coarse gravel beds may have limited the degree to which erosion could modify the heavily cratered terrains on Mars, particularly if weathering were largely due to physical, rather than chemical weathering processes in a relatively cold and/or arid environment. (C) 2015 Elsevier Inc. All rights reserved. C1 [Howard, Alan D.] Univ Virginia, Dept Environm Sci, POB 400123, Charlottesville, VA 22904 USA. [Breton, Sylvain] Residence Debourg, 9 Rue Vercours, F-69007 Lyon, France. [Moore, Jeffrey M.] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. RP Howard, AD (reprint author), Univ Virginia, Dept Environm Sci, POB 400123, Charlottesville, VA 22904 USA. EM ah6p@virginia.edu; sylvain.breton.6@gmail.com; jeff.moore@nasa.gov FU NASA - United States Cassini Data Analysis Program grant "Titan: Landscape Response to Climate Change"; NASA Mars Data Analysis Program grant "Fresh Shallow Valleys and the Post Noachian Fluvial and Climatic History of Mars" FX This study was funded by a NASA - United States Cassini Data Analysis Program grant "Titan: Landscape Response to Climate Change" to Jeffrey Moore at NASA Ames and by a NASA Mars Data Analysis Program grant "Fresh Shallow Valleys and the Post Noachian Fluvial and Climatic History of Mars" to Jeffrey Moore. Reviewer comments resulted in substantial improvements of the paper. NR 116 TC 3 Z9 3 U1 6 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 100 EP 113 DI 10.1016/j.icarus.2015.05.034 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000010 ER PT J AU Malaska, MJ Lopes, RMC Williams, DA Neish, CD Solomonidou, A Soderblom, JM Schoenfeld, AM Birch, SPD Hayes, AG Le Gall, A Janssen, MA Farr, TG Lorenz, RD Radebaugh, J Turtle, EP AF Malaska, Michael J. Lopes, Rosaly M. C. Williams, David A. Neish, Catherine D. Solomonidou, Anezina Soderblom, Jason M. Schoenfeld, Ashley M. Birch, Sam P. D. Hayes, Alex G. Le Gall, Alice Janssen, Michael A. Farr, Thomas G. Lorenz, Ralph D. Radebaugh, Jani Turtle, Elizabeth P. TI Geomorphological map of the Afekan Crater region, Titan: Terrain relationships in the equatorial and mid-latitude regions SO ICARUS LA English DT Article DE Titan; Geological processes; Titan, surface ID CASSINI RADAR OBSERVATIONS; SURFACE-COMPOSITION; SPECTRAL PROPERTIES; ONTARIO LACUS; DUNE FIELDS; VIMS; ATMOSPHERE; MODEL; SAR; FEATURES AB We carried out geomorphological mapping in a mid-latitude area surrounding the Afekan Crater region on Titan. We used Cassini RADAR (Synthetic Aperture Radar mode) data as the basemap, supplemented by Cassini RADAR microwave emissivity, Imaging Science Subsystem (ISS) infrared data, Visual and Infrared Mapping Spectrometer (VIMS) spectral images, and topography derived from Synthetic Aperture Radar (SAR). Mapping was done at a spatial scale of 300 m/pixel, which corresponds to a map scale of 1:800,000. We describe multiple terrain units and their spatial relations. We describe five broad classes of units that are in agreement with previous mapping efforts: crater, labyrinth, hummocky/mountainous, plains, and dune terrain classes. We subdivide these into seven crater units, four hummocky/mountainous units, six plains units, and three dunes units. Our results show that plains are the dominant class of terrain unit in Titan's mid latitudes. Of the plains units, the undifferentiated plains are the largest by total areal extent in the mapped region, accounting for over 45% of the mapped area. We developed a stratigraphic sequence that has the hummocky/mountainous and labyrinth terrains as the oldest units. The observed properties of the hummocky/mountainous terrain are consistent with fractured water ice materials, while the labyrinth terrains are consistent with organic materials. The youngest units are the dune units and streak-like plains units, with the undifferentiated plains units being of intermediate age. The microwave emissivity of the undifferentiated plains and dune units are consistent with organic materials. Given their properties and stratigraphic placement, we conclude that the hummocky/mountainous terrains are most consistent with the presumed crustal materials of Titan. The plains materials are consistent with deposits resulting from the transport and emplacement of organic-rich materials predominantly by aeolian mechanisms. Our geomorphological mapping results are consistent with the equatorial and mid-latitudes of Titan being dominated by organic materials that have been deposited and emplaced by aeolian activity. (C) 2016 Elsevier Inc. All rights reserved. C1 [Malaska, Michael J.; Lopes, Rosaly M. C.; Solomonidou, Anezina; Janssen, Michael A.; Farr, Thomas G.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Williams, David A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA. [Neish, Catherine D.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Soderblom, Jason M.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Schoenfeld, Ashley M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Birch, Sam P. D.; Hayes, Alex G.] Cornell Univ, Dept Astron, Ithaca, NY 14850 USA. [Le Gall, Alice] UVSQ CNRS Paris VI, UMR 8190, Atmospheres Lab, Observat Spatiales LATMOS, F-78280 Guyancourt, France. [Lorenz, Ralph D.; Turtle, Elizabeth P.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Radebaugh, Jani] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. RP Malaska, MJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Michael.J.Malaska@jpl.nasa.gov RI Turtle, Elizabeth/K-8673-2012; Lopes, Rosaly/D-1608-2016; OI Turtle, Elizabeth/0000-0003-1423-5751; Lopes, Rosaly/0000-0002-7928-3167; Malaska, Michael/0000-0003-0064-5258; Birch, Samuel/0000-0002-4578-1694; Farr, Thomas/0000-0001-5406-2096 FU NASA's Outer Planets Research Program [NNX14AR29G] FX We wish to thank the entire Cassini RADAR Team and the Cassini mission scientists and engineers for their hard work that made this exploration possible. MJM was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. DAW is supported by grant number NNX14AR29G from NASA's Outer Planets Research Program. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2015, California Institute of Technology. Government sponsorship is acknowledged. NR 98 TC 4 Z9 4 U1 4 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 130 EP 161 DI 10.1016/j.icarus.2016.02.021 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000012 ER PT J AU Lopes, RMC Malaska, MJ Solomonidou, A Le Gall, A Janssen, MA Neish, CD Turtle, EP Birch, SPD Hayes, AG Radebaugh, J Coustenis, A Schoenfeld, A Stiles, BW Kirk, RL Mitchell, KL Stofan, ER Lawrence, KJ AF Lopes, Rosaly M. C. Malaska, M. J. Solomonidou, A. Le Gall, A. Janssen, M. A. Neish, C. D. Turtle, E. P. Birch, S. P. D. Hayes, A. G. Radebaugh, J. Coustenis, A. Schoenfeld, A. Stiles, B. W. Kirk, R. L. Mitchell, K. L. Stofan, E. R. Lawrence, K. J. CA Cassini RADAR Team TI Nature, distribution, and origin of Titan's Undifferentiated Plains SO ICARUS LA English DT Article DE Satellites, surface; Titan, surface; Titan; Radar observations; Infrared observations ID CASSINI RADAR OBSERVATIONS; CHEMICAL-COMPOSITION; DUNE FIELDS; SURFACE; ATMOSPHERE; VIMS; THOLINS; SPECTRA; IMAGES; MODEL AB The Undifferentiated Plains on Titan, first mapped by Lopes et al. (Lopes, R.M.C. et al., 2010. Icarus, 205, 540-588), are vast expanses of terrains that appear radar-dark and fairly uniform in Cassini Synthetic Aperture Radar (SAR) images. As a result, these terrains are often referred to as "blandlands". While the interpretation of several other geologic units on Titan - such as dunes, lakes, and well-preserved impact craters - has been relatively straightforward, the origin of the Undifferentiated Plains has remained elusive. SAR images show that these "blandlands" are mostly found at mid-latitudes and appear relatively featureless at radar wavelengths, with no major topographic features. Their gradational boundaries and paucity of recognizable features in SAR data make geologic interpretation particularly challenging. We have mapped the distribution of these terrains using SAR swaths up to flyby T92 (July 2013), which cover >50% of Titan's surface. We compared SAR images with other data sets where available, including topography derived from the SARTopo method and stereo DEMs, the response from RADAR radiometry, hyperspectral imaging data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS), and near infrared imaging from the Imaging Science Subsystem (ISS). We examined and evaluated different formation mechanisms, including (i) cryovolcanic origin, consisting of overlapping flows of low relief or (ii) sedimentary origins, resulting from fluvial/lacustrine or aeolian deposition, or accumulation of photolysis products created in the atmosphere. Our analysis indicates that the Undifferentiated Plains unit is consistent with a composition predominantly containing organic rather than icy materials and formed by depositional and/or sedimentary processes. We conclude that aeolian processes played a major part in the formation of the Undifferentiated Plains; however, other processes (fluvial, deposition of photolysis products) are likely to have contributed, possibly in differing proportions depending on location. (C) 2015 Elsevier Inc. All rights reserved. C1 [Lopes, Rosaly M. C.; Malaska, M. J.; Solomonidou, A.; Janssen, M. A.; Schoenfeld, A.; Stiles, B. W.; Mitchell, K. L.; Lawrence, K. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Solomonidou, A.; Coustenis, A.] Univ Paris Diderot, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Le Gall, A.] UVSQ, Lab Atmospheres, Milieux, Observat Spatiales LATMOS, Guyancourt, France. [Neish, C. D.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Turtle, E. P.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Birch, S. P. D.; Hayes, A. G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Radebaugh, J.] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. [Kirk, R. L.] US Geol Survey, Branch Astrogeol, Flagstaff, AZ 86001 USA. [Stofan, E. R.] UCL, Dept Earth & Planetary Sci, Mortimer St, London WC1E 6BT, England. RP Lopes, RMC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Turtle, Elizabeth/K-8673-2012; Lopes, Rosaly/D-1608-2016; OI Turtle, Elizabeth/0000-0003-1423-5751; Lopes, Rosaly/0000-0002-7928-3167; Malaska, Michael/0000-0003-0064-5258; Birch, Samuel/0000-0002-4578-1694 NR 97 TC 9 Z9 9 U1 6 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 162 EP 182 DI 10.1016/j.icarus.2015.11.034 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000013 ER PT J AU Malaska, MJ Lopes, RM Hayes, AG Radebaugh, J Lorenz, RD Turtle, EP AF Malaska, Michael J. Lopes, Rosaly M. Hayes, Alex G. Radebaugh, Jani Lorenz, Ralph D. Turtle, Elizabeth P. TI Material transport map of Titan: The fate of dunes SO ICARUS LA English DT Article DE Titan; Geological processes; Titan, surface ID CASSINI RADAR; SURFACE-COMPOSITION; VIMS; SAR; LAKES; ORIENTATION; RADIOMETRY; FEATURES; EROSION; FIELDS AB Using SAR data from Cassini's RADAR instrument, we examined the orientations of three terrain units on Titan, bright lineated plains, streak-like plains, and linear dunes. From the overall integrated pattern of their orientation, we were able to determine Titan's global material transport vectors. The analysis indicates that, in both the northern and southern hemispheres, materials from 0 to 35 deg latitude are transported poleward to a belt centred at roughly 35 deg. Materials from 60 to 35 deg latitude are transported equatorward to the belt at roughly 35 deg. Comparison with the global topographical gradient (Lorenz, R. D. et al. [2013]. Icarus 225, 367-377) suggests that fluvial transport is not the dominant process for material transport on Titan, or that it is at least overprinted with another transport mechanism. Our results are consistent with aeolian transport being the dominant mechanism in the equatorial and mid-latitude zones. The zone at 35 deg is thus the ultimate sink for materials from the equator to low polar latitudes; materials making up the equatorial dunes will be transported to the latitude 35-deg belts. Only plains units are observed at latitudes of similar to 35 deg; dunes and materials with the spectral characteristics of dunes are not observed at these latitudes. This observation suggests that either dune materials are converted or modified into plains units or that the margins of dunes are transport limited. (C) 2015 Elsevier Inc. All rights reserved. C1 [Malaska, Michael J.; Lopes, Rosaly M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hayes, Alex G.] Cornell Univ, Ithaca, NY 14853 USA. [Radebaugh, Jani] Brigham Young Univ, Provo, UT 84602 USA. [Lorenz, Ralph D.; Turtle, Elizabeth P.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RP Malaska, MJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Michael.J.Malaska@jpl.nasa.gov RI Turtle, Elizabeth/K-8673-2012; Lopes, Rosaly/D-1608-2016; OI Turtle, Elizabeth/0000-0003-1423-5751; Lopes, Rosaly/0000-0002-7928-3167; Lorenz, Ralph/0000-0001-8528-4644; Malaska, Michael/0000-0003-0064-5258 NR 65 TC 5 Z9 5 U1 6 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 183 EP 196 DI 10.1016/j.icarus.2015.09.029 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000014 ER PT J AU Paillou, P Seignovert, B Radebaugh, J Wall, S AF Paillou, Philippe Seignovert, Benoit Radebaugh, Jani Wall, Stephen TI Radar scattering of linear dunes and mega-yardangs: Application to Titan SO ICARUS LA English DT Article DE Titan; Radar observations; Aeolian processes ID CASSINI RADAR; SAND DUNES; SURFACE; SCATTEROMETRY; MAPPER; LUT; SAR AB The Ku-band (13.8 GHz - 2.2 cm) RADAR instrument onboard the Cassini-Huygens spacecraft has revealed the richness of the surface of Titan, as numerous seas, lakes, rivers, cryo-volcanic flows and vast dune fields have been discovered. Linear dunes are a major geomorphological feature present on Titan, covering up to 17% of its surface, mainly in equatorial regions. However, the resolution of the RADAR instrument is not good enough to allow a detailed study of the morphology of these features. In addition, other linear wind-related landforms, such as mega-yardangs (linear wind-abraded ridges formed in cohesive rocks), are likely to present a comparable radar signature that could be confused with the one of dunes. We conducted a comparative study of the radar radiometry of both linear dunes and mega-yardangs, based on representative terrestrial analogues: the linear dunes located in the Great Sand Sea in western Egypt and in the Namib Desert in Namibia, and the mega-yardangs observed in the Lut Desert in eastern Iran and in the Borkou Desert in northern Chad. We analysed the radar scattering of both terrestrial linear dunes and mega-yardangs, using high-resolution radar images acquired by the X-band (9.6 GHz - 3.1 cm) sensor of the TerraSAR-X satellite. Variations seen in the radar response of dunes are the result of a contrast between the dune and interdune scattering, while for mega-yardangs these variations are the result of a contrast between ridges and erosion valleys. We tested a simple surface scattering model, with parameters derived from the local topography and surface roughness estimates, to accurately reproduce the radar signal variations for both landforms. It appears that we can discriminate between two types of dunes - bare interdunes as in Egypt and sand-covered interdunes as in Namibia, and between two types of mega-yardangs - young yardangs as in Iran and older ones as in Chad. We applied our understanding of the radar scattering to the analysis of Cassini RADAR T8 acquisitions over the Belet Sand Sea on Titan, and show that the linear dunes encountered there are likely to be of both Egyptian and Namibian type. We also show that the radar-bright linear features observed in Cassini RADAR T64 and T83 acquisitions are very likely to be mega-yardangs, possible remnants of ancient lake basins at mid-latitude, formed when Titan's climate was different. (C) 2015 Elsevier Inc. All rights reserved. C1 [Paillou, Philippe] Univ Bordeaux, UMR LAB 5804, F-33270 Floirac, France. [Seignovert, Benoit] Univ Reims, UMR GSMA 7331, F-51687 Reims, France. [Radebaugh, Jani] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. [Wall, Stephen] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Paillou, P (reprint author), Univ Bordeaux, UMR LAB 5804, F-33270 Floirac, France. EM philippe.paillou@obs.u-bordeaux1.fr RI Seignovert, Benoit/N-9805-2016 OI Seignovert, Benoit/0000-0001-6533-275X FU French space agency CNES FX The authors would like to acknowledge the French space agency CNES for providing financial support to Ph. Paillou and B. Seignovert for this study, and the German space agency DLR for providing TerraSAR-X scenes (proposal GEO1970). They also thank Tom Farr and Ralph Lorenz for their advices and careful review of this paper. NR 38 TC 1 Z9 1 U1 5 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 211 EP 221 DI 10.1016/j.icarus.2015.07.038 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000016 ER PT J AU Bonnefoy, LE Hayes, AG Hayne, PO Malaska, MJ Le Gall, A Solomonidou, A Lucas, A AF Bonnefoy, Lea E. Hayes, Alexander G. Hayne, Paul O. Malaska, Michael J. Le Gall, Alice Solomonidou, Anezina Lucas, Antoine TI Compositional and spatial variations in Titan dune and interdune regions from Cassini VIMS and RADAR SO ICARUS LA English DT Article DE Titan, Surface; Radar observations; Infrared observations ID SURFACE-COMPOSITION; FIELDS; SAR; MORPHOMETRY; RADIOMETRY; HISTORY AB Dunes cover about 15% of Titan's visible surface, and represent one of the largest reservoirs of hydrocarbon solids on Titan (Rodriguez, S. et al. [2014]. Icarus 230, 168-179; Lopes, R.M.C. et al. [2016]. Icarus 270, 162-182.). Herein, we use data from the Cassini spacecraft to derive constraints on the compositional and regional variability of Titan's dune and interdune regions by combining spectral information from the Visual and Infrared Mapping Spectrometer (VIMS) and spatial information from Synthetic Aperture RADAR (SAR) data. Using the combined datasets, we extract pure infrared spectra of dune and interdune regions by extrapolating linear correlations between VIMS reflectance and dune area fraction calculated in each VIMS footprint from SAR images. We applied the same method using the Cassini RADAR Radiometer dataset to extract the microwave surface emissivity of the dune and interdune regions. Globally the dune spectra show little variation, but we find that the interdune spectra exhibit several different behaviors. Similarly, we extract from passive radiometry a mean dune emissivity of 0.98 +/- 0.01, while interdune emissivity varies from 0.86 to 0.98. We find that the interdune regions are often spectrally similar to other Titan terrain units, namely Caladan Planitia, the Adiri Mountains, and Sinlap crater, while the dunes are spectrally distinct from all terrain units. Around Sinlap crater, the interdune regions correspond to the dark blue VIMS unit: the dunes could be forming on top of the ejecta, or the material corresponding to the blue unit could be depositing preferentially in the interdunes areas. There was one region in the Belet sand sea where we were unable to extract the dune and interdune spectra and emissivities in spite of high-quality data, which we interpret to result from a thick sand cover in the interdune regions, implying inactive or saturated dune fields. However, the fact that we were able to extract distinct dune and interdune spectra and emissivities in most of Titan's dune fields makes a strong case for sand free interdune areas of varying composition in these regions, on depths from micrometers to decimeters. This would imply that the sand dunes have been active recently on geologic timescales. (C) 2015 Elsevier Inc. All rights reserved. C1 [Bonnefoy, Lea E.; Hayes, Alexander G.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Hayne, Paul O.; Malaska, Michael J.; Solomonidou, Anezina] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Le Gall, Alice] UVSQ, Lab Atmospheres, Milieux, Observat Spatiales LATMOS, 11 Bd Alembert, F-78280 Guyancourt, France. [Lucas, Antoine] Univ Paris 07, CEA SACLAY, CNRS, Lab Astrophys Instrumentat & Modlisat,UMR 7158, Gif Sur Yvette, France. RP Bonnefoy, LE (reprint author), Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. RI Lucas, Antoine/A-9752-2009; OI Lucas, Antoine/0000-0003-2192-4416; Malaska, Michael/0000-0003-0064-5258 FU JPL Strategic University Research Partnerships (SURP) program; NASA [NNX14AD52G] FX Most of this work was conducted at Cornell University. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work was supported by the JPL Strategic University Research Partnerships (SURP) program and NASA grant NNX14AD52G. We wish to thank Rosaly Lopes and Marco Mastroguiseppe for their very helpful comments and encouragements, as well as Jani Radebaugh and Stephane Le Mouelic for their detailed reviews. NR 48 TC 4 Z9 4 U1 6 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 222 EP 237 DI 10.1016/j.icarus.2015.09.014 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000017 ER PT J AU Birch, SPD Hayes, AG Howard, AD Moore, JM Radebaugh, J AF Birch, S. P. D. Hayes, A. G. Howard, A. D. Moore, J. M. Radebaugh, J. TI Alluvial Fan Morphology, distribution and formation on Titan SO ICARUS LA English DT Article DE Titan, surface; Titan, hydrology; Geological processes ID METHANE CYCLE; LANDING SITE; SURFACE; GEOMORPHOLOGY; RIVERS; SEDIMENTARY; LANDSCAPES; TOPOGRAPHY; TRANSPORT; BEDROCK AB Titan is a hydrologically active world, with dozens of alluvial fans that are evidence of sediment transport from high to low elevations. However, the distribution and requirements for the formation of fans on Titan are not well understood. We performed the first global survey of alluvial fans on Titan using Cassini Synthetic Aperture Radar (SAR) data, which cover 61% of Titan's surface. We identified 82 fans with areas ranging from 28 km(2) to 27,000 km(2). A significant fraction (similar to 60%) of the fans are restricted to latitudes of +/- 50-80 degrees, suggesting that fluvial sediment transport may have been concentrated in the near-polar terrains in the geologically recent past. The density of fans is also found to be correlated with the latitudes predicted to have the highest precipitation rates by Titan Global Circulation Models. In equatorial regions, observable fans are not generally found in proximity to dune fields. Such observations suggest that sediment transport in these areas is dominated by aeolian transport mechanisms, though with some degree of recent equatorial fluvial activity. The fan area-drainage area relationship on Titan is more similar to that on Earth than on Mars, suggesting that the fans on Titan are smaller than what may be expected, and that the transport of bedload sediment is limited. We hypothesize that this has led to the development of a coarse gravel-lag deposit over much of Titan's surface. Such a model explains both the morphology of the fans and their latitudinal concentration, yielding insight into the sediment transport regimes that operate across Titan today. (C) 2016 Elsevier Inc. All rights reserved. C1 [Birch, S. P. D.; Hayes, A. G.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Hayes, A. G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Howard, A. D.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Moore, J. M.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Radebaugh, J.] Brigham Young Univ, Provo, UT 84602 USA. RP Birch, SPD (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. OI Birch, Samuel/0000-0002-4578-1694 FU NASA Cassini Data Analysis Program [NNX13AG03G]; NASA Earth and Space Science Fellowship Program [5-PLANET15F-0011]; Cassini-Huygens mission FX This work was funded in part by a NASA Cassini Data Analysis Program: Grant NNX13AG03G, and by the NASA Earth and Space Science Fellowship Program: Grant 5-PLANET15F-0011. This research was also supported by the Cassini-Huygens mission, a cooperative endeavor of NASA, ESA, and ASI managed by JPL/Caltech under a contract with NASA. Finally, we would also like to acknowledge the entire Cassini engineering team for the acquisition data, and Marisa Palucis, Rossman Irwin, and an anonymous reviewer for providing helpful comments. NR 72 TC 3 Z9 3 U1 7 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 238 EP 247 DI 10.1016/j.icarus.2016.02.013 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000018 ER PT J AU Rannou, P Toledo, D Lavvas, P D'Aversa, E Moriconi, ML Adriani, A Le Mouelic, S Sotin, C Brown, R AF Rannou, P. Toledo, D. Lavvas, P. D'Aversa, E. Moriconi, M. L. Adriani, A. Le Mouelic, S. Sotin, C. Brown, R. TI Titan's surface spectra at the Huygens landing site and Shangri-La SO ICARUS LA English DT Article DE Titan, surface; Photometry ID REFLECTANCE; SCATTERING; IMAGES; RADAR; MODEL; ATMOSPHERE; RADIOMETER; VOLATILES; DESCENT; SPHERES AB Titan is an icy satellite of Saturn with a dense atmosphere and covered by a global photochemical organic haze. Ground based observations and the Huygens descent probe allowed to retrieve the main spectral signature of the water ice (Griffith, C.A. et al. [2003]. Science 300(5619), 628-630; Coustenis, A. et al. [2005]. Icarus 177, 89-105) at the surface, possibly covered by a layer of sedimented organic material (Tomasko, M.G. et al. [2005]. Nature 438(7069), 765-778). However, the spectrum of the surface is not yet understood. In this study, we find that the surface reflectivity at the Huygens Landing Site (HLS) is well modeled by a layer of water ice grains overlaid by a moist layer of weakly compacted photochemical aggregated aerosols. Moist soils have spectra shifted toward short wavelengths relatively to spectra of dry soils. Cassini observations of Shangri-La region from orbit also show a very dark surface with a reflectivity peak shifted toward short wavelengths in respect to the reflectivity peak of bright surfaces, revealing a dichotomy between terrains based to their spectra in visible. (C) 2015 Elsevier Inc. All rights reserved. C1 [Rannou, P.; Toledo, D.; Lavvas, P.] Univ Reims, CNRS, UMR 7331, Grp Spectrometrie Mol & Atmospher, Campus Sci Exactes & Nat,BP 1039, F-51687 Reims, France. [D'Aversa, E.; Adriani, A.] Inst Astrofis & Planetol Spaziali, INAF, Rome, Italy. [Moriconi, M. L.] CNR, Inst Atmospher & Climat Sci, Rome, Italy. [Le Mouelic, S.] Univ Nantes, CNRS, UMR 6112, LPGNantes, Nantes, France. [Sotin, C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Brown, R.] Univ Arizona, LPL, Tucson, AZ 85721 USA. RP Rannou, P (reprint author), Grp Spectrometrie Mol & Atmospher, Campus Sci Exactes & Nat,BP 1039, F-51687 Reims, France. EM pascal.rannou@univ-reims.fr OI moriconi, maria luisa/0000-0003-2609-2620 FU Agence Nationale de la Recherche (ANR Project "APOSTIC", France) [11BS56002]; Centre National d'Etudes Spatiales (CNES, France); NASA/CDAP program (United-States) FX We thank the Agence Nationale de la Recherche (ANR Project "APOSTIC" No. 11BS56002, France) and the Centre National d'Etudes Spatiales (CNES, France) for their financial support. CS acknowledges support by NASA/CDAP program (United-States). NR 43 TC 1 Z9 1 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 291 EP 306 DI 10.1016/j.icarus.2015.09.016 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000022 ER PT J AU Doose, LR Karkoschka, E Tomasko, MG Anderson, CM AF Doose, Lyn R. Karkoschka, Erich Tomasko, Martin G. Anderson, Carrie M. TI Vertical structure and optical properties of Titan's aerosols from radiance measurements made inside and outside the atmosphere SO ICARUS LA English DT Article DE Titan, atmosphere; Atmospheres, structure; Radiative transfer ID HUYGENS LANDING SITE; DESCENT; SURFACE; CONDENSATION; PROBE; HAZE; METHANE; ALBEDO; MODEL; SIZE AB Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (<1 km) in the DISR image data sets is seen beyond the three previously reported layers at 21 km, 11 km, and 7 km by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M.G. [2009]. Icarus 199, 442-448). On the other hand, there is evidence of a thicker layer centered at about 55 km. A rise in radiance gradients in the Downward-Looking Visible Spectrometer (DLVS) data below 55 km indicates an increase in the volume extinction coefficient near this altitude. To fit the geometric albedo measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke-like model is used for the ground reflectivity, and the variation of the Hapke single scattering albedo with wavelength is given. Fits to the visible spectrometers looking upward and downward are achieved except in the methane bands longward of 720 nm. This is possibly due to uncertainties in extrapolation of laboratory measurements from 1 km-am paths to much longer paths at lower pressures. It could also be due to changes in the single scattering phase functions at low altitudes, which strongly affect the path length through methane that the photons travel. We demonstrate the effects on the model fits by varying each model parameter individually in order to illustrate the sensitivity of our determination of each model parameter. (C) 2015 Elsevier Inc. All rights reserved. C1 [Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Anderson, Carrie M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Doose, LR (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM ldoose@gmail.com FU NASA [NNX12AE82G, NNX10AF09G] FX The authors thank Chuck See and Bob Samuelson for many helpful discussions of this work. We also thank Bruno Bezard and an anonymous second reviewer for making this study better. Part of the work of Anderson, Doose and Tomasko was funded by NASA grant NNX12AE82G. Part of the work of Karkoschka was funded by NASA grant NNX10AF09G. NR 39 TC 2 Z9 2 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 355 EP 375 DI 10.1016/j.icarus.2015.09.039 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000026 ER PT J AU Adamkovics, M Mitchell, JL Hayes, AG Rojo, PM Collies, P Barnes, JW Ivanov, VD Brown, RH Baines, KH Buratti, BJ Clark, RN Nicholson, PD Sotin, C AF Adamkovics, Mate Mitchell, Jonathan L. Hayes, Alexander G. Rojo, Patricio M. Collies, Paul Barnes, Jason W. Ivanov, Valentin D. Brown, Robert H. Baines, Kevin H. Buratti, Bonnie J. Clark, Roger N. Nicholson, Philip D. Sotin, Christophe TI Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT SO ICARUS LA English DT Article DE Titan, atmosphere; Adaptive optics; Atmospheres, evolution; Atmospheres, structure ID MU-M; MULTIPLE-SCATTERING; MIDLATITUDE CLOUDS; HYDROCARBON LAKES; CASSINI RADAR; DUNE FIELDS; ATMOSPHERE; SURFACE; MODEL; CYCLE AB The spatial distribution of the tropospheric methane on Titan was measured using near-infrared spectroscopy. Ground-based observations at 1.5 mu m (H-band) were performed during the same night using instruments with adaptive optics at both the W.M. Keck Observatory and at the Paranal Observatory on 17 July 2014 UT. The integral field observations with SINFONI on the VLT covered the entire H-band at moderate resolving power, R = lambda/Delta lambda approximate to 1500, while the Keck observations were performed with NIRSPAO near 1.5525 mu m at higher resolution, R approximate to 25, 000. The moderate resolution observations are used for flux calibration and for the determination of model parameters that can be degenerate in the interpretation of high resolution spectra. Line-by-line calculations of CH4 and CH3D correlated k distributions from the HITRAN 2012 database were used, which incorporate revised line assignments near 1.5 mu m. We fit the surface albedo and aerosol distributions in the VLT SINFONI observations that cover the entire H-band window and used these quantities to constrain the models of the high-resolution Keck NIRSPAO spectra when retrieving the methane abundances. Cassini VIMS images of the polar regions, acquired on 20 July 2014 UT, are used to validate the assumption that the opacity of tropospheric aerosol is relatively uniform below 10 km. We retrieved methane abundances at latitudes between 42 degrees S and 80 degrees N. The tropospheric methane in the Southern mid-latitudes was enhanced by a factor of similar to 10-40% over the nominal profile that was measured using the GCMS on Huygens. The northern hemisphere had similar to 90% of the nominal methane abundance up to polar latitudes (80 degrees N). These measurements suggest that a source of saturated polar air is equilibrating with dryer conditions at lower latitudes. (C) 2015 Elsevier Inc. All rights reserved. C1 [Adamkovics, Mate] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Mitchell, Jonathan L.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Mitchell, Jonathan L.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Hayes, Alexander G.; Collies, Paul] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Rojo, Patricio M.] Univ Chile, Camino Observ 1515,Casilla 36-D, Santiago, Chile. [Barnes, Jason W.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Ivanov, Valentin D.] European So Observ, Ave Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Baines, Kevin H.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA. [Buratti, Bonnie J.; Sotin, Christophe] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Clark, Roger N.] US Geol Survey, Denver, CO 80225 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Adamkovics, M (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM mate@berkeley.edu RI Barnes, Jason/B-1284-2009; Rojo, Patricio/I-5765-2016; OI Barnes, Jason/0000-0002-7755-3530; Ivanov, Valentin/0000-0002-5963-1283 FU NASA PAAST Grants [NNX14AG82G, NNX12AM81G]; NSF [AST-1008788]; FONDECYT [1120299]; W.M. Keck Foundation FX This work was supported by NASA PAAST Grants NNX14AG82G and NNX12AM81G. MA was supported in part by NSF AST-1008788. PMR was supported by FONDECYT Grant #1120299. We wish to acknowledge Jonathan I. Lunine and Elizabeth P. Turtle, who are members of the VLT SINFONI cloud observing campaign that provided the SINFONI observations presented here. Some of the data presented were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize the significant cultural role that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are fortunate to have the opportunity to conduct observations from this mountain. NR 70 TC 3 Z9 3 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 376 EP 388 DI 10.1016/j.icarus.2015.05.023 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000027 ER PT J AU West, RA Del Genio, AD Barbara, JM Toledo, D Lavvas, P Rannou, P Turtle, EP Perry, J AF West, R. A. Del Genio, A. D. Barbara, J. M. Toledo, D. Lavvas, P. Rannou, P. Turtle, E. P. Perry, J. TI Cassini Imaging Science Subsystem observations of Titan's south polar cloud SO ICARUS LA English DT Article DE Titan; Titan, atmosphere; Titan, clouds ID UPPER-ATMOSPHERE; CIRCULATION; DYNAMICS; AEROSOLS; IMAGES; SATURN; MODEL AB In May of 2012 images of Titan obtained by the Cassini Imaging Science Subsystem (ISS) showed a newly formed cloud patch near the southern pole. The cloud has unusual morphology and texture suggesting that it is formed by condensation at an altitude much higher than expected for any of the known organics in Titan's atmosphere. We measured the altitude to be 300 10 km from images when the feature was on the limb. Limb images suggest that the initial stages of the formation began in late 2011. It was just visible in images obtained in 2014 but is not expected to be visible in the future due to enveloping darkness as the season progresses. The feature has a slightly different color than the surrounding haze. Its optical thickness is near 2 at 889 nm wavelength and the particle imaginary refractive index must be less than 5 x 10(-4) at that wavelength. Wind vectors derived from a time series show that it is rotating about a center offset by 4.5 degrees from Titan's solid-body spin axis, consistent with that found from the temperature field by Achterberg et al. (Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [20084 Icarus 197, 549-555) and subsequent measurements. The feature rotates at an angular velocity near the rate expected for transport of angular momentum from the low latitudes to the pole. The clumpy texture of the feature resembles that of terrestrial cloud fields undergoing open cell convection, an unusual configuration initiated by downwelling. (C) 2014 Elsevier Inc. All rights reserved. C1 [West, R. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Del Genio, A. D.; Barbara, J. M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Toledo, D.; Lavvas, P.; Rannou, P.] Univ Reims, CNRS, UMR 7331, GSMA, F-51687 Reims, France. [Turtle, E. P.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Perry, J.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP West, RA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.A.West@jpl.nasa.gov RI Turtle, Elizabeth/K-8673-2012 OI Turtle, Elizabeth/0000-0003-1423-5751 FU NASA Cassini project; Centre National d'Etudes Spatiales; Programme National de Planetologie (INSU); Agence Nationale de la Recherche [ANR2011 Blanc SIMI 5-6 002-01"APOSTIC'] FX Part of this work was performed by the Jet Propulsion Laboratory, California Institute of Technology. Authors West, Del Genio, Barbara, Turtle and Perry were funded by the NASA Cassini project. Toledo, Lavvas and Rannou were funded by the Centre National d'Etudes Spatiales, the Programme National de Planetologie (INSU), the Agence Nationale de la Recherche (ANR2011 Blanc SIMI 5-6 002-01"APOSTIC'). NR 21 TC 3 Z9 3 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 399 EP 408 DI 10.1016/j.icarus.2014.11.038 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000029 ER PT J AU Coustenis, A Jennings, DE Achterberg, RK Bampasidis, G Lavvas, P Nixon, CA Teanby, NA Anderson, CM Cottini, V Flasar, FM AF Coustenis, Athena Jennings, Donald E. Achterberg, Richard K. Bampasidis, Georgios Lavvas, Panayiotis Nixon, Conor A. Teanby, Nicholas A. Anderson, Carrie M. Cottini, Valeria Flasar, F. Michael TI Titan's temporal evolution in stratospheric trace gases near the poles SO ICARUS LA English DT Article DE Titan, atmosphere; Atmospheres, structure; Atmospheres, composition; Atmospheres, evolution; Satellites, composition ID CASSINI/CIRS OBSERVATIONS; ATMOSPHERE; CLOUD; PHOTOCHEMISTRY; DISTRIBUTIONS; CHEMISTRY; NITRILES; DYNAMICS; AEROSOLS; SPECTRA AB We analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titan's Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titan's south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50 degrees S and 50 degrees N from 2010 (after the Southern Autumnal Equinox) until 2014. For some of the most abundant and longest-lived hydrocarbons (C2H2, C2H6 and C3H8) and CO2, the evolution in the past 4 years at a given latitude is not very significant within error bars especially until mid-2013. In more recent dates, these molecules show a trend for increase in the south. This trend is dramatically more pronounced for the other trace species, especially in 2013-2014, and at 70 degrees S relative to 50 degrees S. These two regions then demonstrate that they are subject to different dynamical processes in and out of the polar vortex region. For most species, we find higher abundances at 50 degrees N compared to 50 degrees S, with the exception of C3H8, CO2, C6H6 and HC3N, which arrive at similar mixing ratios after mid-2013. While the 70 degrees N data show generally no change with a trend rather to a small decrease for most species within 2014, the 70 degrees S results indicate a strong enhancement in trace stratospheric gases after 2012. The 663 cm(-1) HC3N and the C6H6 674 cm(-1) emission bands appeared in late 2011/early 2012 in the south polar regions and have since then exhibited a dramatic increase in their abundances. At 70 degrees S HC3N, HCN and C6H6 have increased by 3 orders of magnitude over the past 3-4 years while other molecules, including C2H4, C3H4 and C4H2, have increased less sharply (by 1-2 orders of magnitude). This is a strong indication of the rapid and sudden buildup of the gaseous inventory in the southern stratosphere during 2013-2014, as expected as the pole moves deeper into winter shadow. Subsidence gases that accumulate in the absence of ultraviolet sunlight, evidently increased quickly since 2012 and some of them may be responsible also for the reported haze decrease in the north and its appearance in the south at the same time. (C) 2015 Elsevier Inc. All rights reserved. C1 [Coustenis, Athena; Bampasidis, Georgios] Univ Paris Diderot, Sorbonne Univ, Univ Paris 06, LESIA,Observ Paris,PSL Res Univ,CNRS,Sorbonne Par, 5 Pl Jules Janssen, F-92195 Meudon, France. [Jennings, Donald E.; Achterberg, Richard K.; Nixon, Conor A.; Anderson, Carrie M.; Cottini, Valeria; Flasar, F. Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Achterberg, Richard K.; Cottini, Valeria] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bampasidis, Georgios] Univ Athens, Fac Phys, Athens 15783, Greece. [Lavvas, Panayiotis] Univ Reims, GSMA, F-51100 Reims, France. [Teanby, Nicholas A.] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England. RP Coustenis, A (reprint author), Observ Meudon, LESIA, Bat 18, F-92195 Meudon, France. EM athena.coustenis@obspm.fr RI Flasar, F Michael/C-8509-2012; Nixon, Conor/A-8531-2009; OI Nixon, Conor/0000-0001-9540-9121; Teanby, Nicholas/0000-0003-3108-5775 FU NASA Cassini mission; French "Agence Nationale de la Recherche" (ANR Project: "APOSTIC"), France [11BS56002]; NASA Cassini Data Analysis Program; NASA Planetary Astronomy Program FX We acknowledge support from NASA's Cassini mission, Cassini Data Analysis Program and Planetary Astronomy Program. AC acknowledges financial support from the French "Agence Nationale de la Recherche" (ANR Project: "APOSTIC" #11BS56002), France. We are grateful to Bruno Bezard for valuable discussions and for code testing and thermal profiles verification. We also thank the data processing team in Meudon and especially Florence Henry, and the planning and processing team at Goddard, in particular Nicolas Gorius and Marcia Segura. NR 32 TC 2 Z9 2 U1 2 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 409 EP 420 DI 10.1016/j.icarus.2015.08.027 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000030 ER PT J AU Sebree, JA Stern, JC Mandt, KE Domagal-Goldman, SD Trainer, MG AF Sebree, Joshua A. Stern, Jennifer C. Mandt, Kathleen E. Domagal-Goldman, Shawn D. Trainer, Melissa G. TI C-13 and N-15 fractionation of CH4/N-2 mixtures during photochemical aerosol formation: Relevance to Titan SO ICARUS LA English DT Article DE Titan, atmosphere; Atmospheres, chemistry; Atmospheres, composition ID ISOTOPIC FRACTIONATION; HAZE FORMATION; NITROGEN; METHANE; ATMOSPHERE; EVOLUTION; RATIO; CASSINI/CIRS; PHOTOLYSIS; THOLINS AB The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including C-12/C-13 and N-14/N-15, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N-2) mixtures. Analysis of the delta C-13 and delta N-15 isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in C-13 and N-14, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation. (C) 2015 Elsevier Inc. All rights reserved. C1 [Sebree, Joshua A.] Univ No Iowa, Dept Chem & Biochem, Cedar Falls, IA 50614 USA. [Sebree, Joshua A.; Stern, Jennifer C.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Mandt, Kathleen E.] SW Res Inst, Space Sci & Engn Div, 6220 Culebra Rd, San Antonio, TX 78228 USA. RP Sebree, JA (reprint author), Univ No Iowa, Dept Chem & Biochem, Cedar Falls, IA 50614 USA. EM joshua.sebree@uni.edu RI Trainer, Melissa/E-1477-2012; OI Mandt, Kathleen/0000-0001-8397-3315; Stern, Jennifer/0000-0002-0162-8807 FU National Aeronautics and Space Administration [10-PATM10-0027]; NASA [NNX13AQ99G]; NASA Strategic Science Fund; NASA Astrobiology Institute's Virtual Planetary Laboratory [NNH05ZDA001C] FX Thanks to C.A. Nixon for helpful discussions. We thank C. McKay and an anonymous reviewer for their insightful comments and general improvement of this manuscript. This work was supported by the National Aeronautics and Space Administration under grant 10-PATM10-0027 issued through the Planetary Atmospheres Program. J.A.S. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. K.E.M. was supported by NASA grant NNX13AQ99G issued through the Outer Planets Research program. S.D.D.G. acknowledges support from the the NASA Strategic Science Fund and from the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported under solicitation No. NNH05ZDA001C. NR 36 TC 0 Z9 0 U1 6 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 421 EP 428 DI 10.1016/j.icarus.2015.04.016 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000031 ER PT J AU Janssen, MA Le Gall, A Lopes, RM Lorenz, RD Malaska, MJ Hayes, AG Neish, CD Solomonidou, A Mitchell, KL Radebaugh, J Keihm, SJ Choukroun, M Leyrat, C Encrenaz, PJ Mastrogiuseppe, M AF Janssen, M. A. Le Gall, A. Lopes, R. M. Lorenz, R. D. Malaska, M. J. Hayes, A. G. Neish, C. D. Solomonidou, A. Mitchell, K. L. Radebaugh, J. Keihm, S. J. Choukroun, M. Leyrat, C. Encrenaz, P. J. Mastrogiuseppe, M. TI Titan's surface at 2.18-cm wavelength imaged by the Cassini RADAR radiometer: Results and interpretations through the first ten years of observation SO ICARUS LA English DT Article DE Radio observations; Titan, surface; Satellites, surfaces; Satellites, composition ID SPECTRAL PROPERTIES; 2.2-CM WAVELENGTH; TRANSMISSION; TEMPERATURES AB A comprehensive calibration and mapping of the thermal microwave emission from Titan's surface is reported based on radiometric data obtained at 2.18-cm wavelength by the passive radiometer included in the Cassini RADAR instrument. Compared to previous work, the present results incorporate the much larger data set obtained in the approximately ten years following Saturn Orbit Insertion. Brightness temperature data including polarization were accumulated by segments in Titan passes from Ta (October 2004) through T98 (February 2014). The observational segments were analyzed to produce a mosaic of effective dielectric constant based on the measurement of thermal polarization covering 76% of the surface, and brightness temperature at normal incidence covering Titan's entire surface. As part of the mosaicking process we also solved for the seasonal variation of physical temperature with latitude, which we found to be smaller by a factor of 0.87 +/- 0.05 in relative amplitude compared to that reported in the thermal infrared by Cassini's Composite Infrared Spectrometer (CIRS). We used the equatorial temperature obtained by the Huygens probe and the seasonal dependence with latitude from CIRS to convert the brightness mosaic to absolute emissivity, from which we could infer global thermophysical properties of the surface in combination with the dielectric mosaic. We see strong evidence for subsurface (volume) scattering as a dominant cause of the radar reflectivity in bright regions, and elsewhere a surface composition consistent with the slow deposition and processing of organic compounds from the atmosphere. The presence of water ice in the near subsurface is strongly indicated by the high degree of volume scattering observed in radar-bright regions (e.g., Hummocky/mountainous terrains) constituting similar to 10% of Titan's surface. A thermal analysis allowed us to infer a mean 2.18-cm emission depth in the range 40-100 cm for the dominant radar-dark terrains (the remainder of Titan's surface) at all latitudes of Titan, consistent with the deposition and possible processing and redistribution of tholin-like atmospheric photochemical products. (C) 2015 Elsevier Inc. All rights reserved. C1 [Janssen, M. A.; Lopes, R. M.; Malaska, M. J.; Solomonidou, A.; Mitchell, K. L.; Keihm, S. J.; Choukroun, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Le Gall, A.] UVSQ, Lab Atmospheres, Milieux, Observat Spatiales LATMOS, Paris, France. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Space Dept, Johns Hopkins Rd, Laurel, MD 20723 USA. [Hayes, A. G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Neish, C. D.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Radebaugh, J.] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. [Leyrat, C.] Observ Paris, LESIA, Paris, France. [Encrenaz, P. J.] Univ Paris 06, Observ Paris, Paris, France. [Mastrogiuseppe, M.] Univ Roma La Sapienza, Dipartimento Ingn Informaz Elettron & Telecomunic, Rome, Italy. RP Janssen, MA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Lopes, Rosaly/D-1608-2016; Choukroun, Mathieu/F-3146-2017; OI Lopes, Rosaly/0000-0002-7928-3167; Choukroun, Mathieu/0000-0001-7447-9139; Lorenz, Ralph/0000-0001-8528-4644; Malaska, Michael/0000-0003-0064-5258 NR 49 TC 9 Z9 9 U1 5 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 15 PY 2016 VL 270 BP 443 EP 459 DI 10.1016/j.icarus.2015.09.027 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI1IE UT WOS:000373249000034 ER PT J AU Haskins, JB Lawson, JW AF Haskins, Justin B. Lawson, John W. TI Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GLASSY-CARBON ELECTRODES; POLARIZABLE FORCE-FIELDS; DIFFERENTIAL CAPACITANCE; COMPUTER-SIMULATION; THERMAL AGITATION; EWALD SUMMATION; AB-INITIO; SUPERCAPACITORS; TEMPERATURE; SURFACES AB We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations. Published by AIP Publishing. C1 [Haskins, Justin B.] NASA, AMA Inc, Thermal Protect Mat Branch, Ames Res Ctr, MS N234-1, Moffett Field, CA 94035 USA. [Lawson, John W.] NASA, Thermal Protect Mat Branch, Ames Res Ctr, MS N234-1, Moffett Field, CA 94035 USA. RP Haskins, JB (reprint author), NASA, AMA Inc, Thermal Protect Mat Branch, Ames Res Ctr, MS N234-1, Moffett Field, CA 94035 USA. EM justin.b.haskins@nasa.gov FU NASA Aeronautics Research Institute (NARI) Seedling program; Aeronautics Research Mission Directorate's Convergent Aeronautics Solutions (CAS) program FX This work was supported by funding from the NASA Aeronautics Research Institute (NARI) Seedling program and the Aeronautics Research Mission Directorate's Convergent Aeronautics Solutions (CAS) program. NR 58 TC 2 Z9 2 U1 19 U2 31 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2016 VL 144 IS 18 AR 184707 DI 10.1063/1.4948938 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DO3WB UT WOS:000377711900037 PM 27179500 ER PT J AU Hosoda, T Fradet, M Frez, C Shterengas, L Sander, S Forouhar, S Belenky, G AF Hosoda, T. Fradet, M. Frez, C. Shterengas, L. Sander, S. Forouhar, S. Belenky, G. TI Laterally coupled distributed feedback cascade diode lasers emitting near 2.9 mu m SO ELECTRONICS LETTERS LA English DT Article DE distributed feedback lasers; semiconductor lasers; semiconductor quantum wells; electron beam lithography; ridge waveguides; antireflection coatings; Bragg gratings; wide band gap semiconductors; III-V semiconductors; optical waveguides; laterally coupled lasers; distributed feedback lasers; cascade diode lasers; cascade type-I quantum well; second order index grating; e-beam lithography; shallow ridge waveguide; antineutral reflection coating; solder-mounted epitaxial; frequency operation; Bragg wavelength temperature; size 4 mum; size 2 mm; power 13 mW; temperature 20 degC; wavelength 2; 9 mum; size 825 nm; GaSb ID ROOM-TEMPERATURE; OUTPUT POWER AB Cascade type-I quantum well GaSb-based laterally coupled distributed feedback diode lasers emitting near 2.9 mu m were designed and fabricated. Second order index grating with period of 825 nm was defined by e-beam lithography and etched on both sides of 4-mu m-wide shallow ridge waveguide. Anti-/neutral reflection coated 2-mm-long devices that were solder-mounted epitaxial side-up demonstrated stable single frequency operation in a wide temperature range with output power of 13 mW at 20 degrees C. Bragg wavelength temperature tuning rate was approximate to 0.32 nm/K. C1 [Hosoda, T.; Shterengas, L.; Belenky, G.] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY USA. [Fradet, M.; Frez, C.; Sander, S.; Forouhar, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Shterengas, L (reprint author), SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY USA. EM leon.shterengas@stonybrook.edu FU US National Science Foundation [ECCS-1408126]; US Army Research Office [W911NF1110109]; National Aeronautics and Space Administration FX The research was carried out at SUNY, supported by US National Science Foundation, grant ECCS-1408126 and US Army Research Office, grant W911NF1110109, and at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 11 TC 0 Z9 0 U1 9 U2 11 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 EI 1350-911X J9 ELECTRON LETT JI Electron. Lett. PD MAY 12 PY 2016 VL 52 IS 10 DI 10.1049/el.2016.0115 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA DM1VW UT WOS:000376136000044 ER PT J AU Zahnle, K Buick, R AF Zahnle, Kevin Buick, Roger TI Ancient air caught by shooting stars SO NATURE LA English DT Editorial Material ID MASS-INDEPENDENT FRACTIONATION; SULFUR C1 [Zahnle, Kevin] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Buick, Roger] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Buick, Roger] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. RP Zahnle, K (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA.; Buick, R (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.; Buick, R (reprint author), Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. EM kevin.j.zahnle@nasa.gov; buick@ess.washington.edu NR 14 TC 1 Z9 1 U1 3 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD MAY 12 PY 2016 VL 533 IS 7602 BP 184 EP 186 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DM0BJ UT WOS:000376007200035 PM 27172041 ER PT J AU Gillon, M Jehin, E Lederer, SM Delrez, L de Wit, J Burdanov, A Van Grootel, V Burgasser, AJ Triaud, AHMJ Opitom, C Demory, BO Sahu, DK Gagliuffi, DB Magain, P Queloz, D AF Gillon, Michael Jehin, Emmanuel Lederer, Susan M. Delrez, Laetitia de Wit, Julien Burdanov, Artem Van Grootel, Valerie Burgasser, Adam J. Triaud, Amaury H. M. J. Opitom, Cyrielle Demory, Brice-Olivier Sahu, Devendra K. Gagliuffi, Daniella Bardalez Magain, Pierre Queloz, Didier TI Temperate Earth-sized planets transiting a nearby ultracool dwarf star SO NATURE LA English DT Article ID HUBBLE-SPACE-TELESCOPE; ADAPTIVE OPTICS SURVEY; VOLUME-LIMITED SAMPLE; MAIN-SEQUENCE STARS; LOW-MASS STARS; SOLAR NEIGHBORHOOD; HABITABLE ZONES; M6.0-M7.5 STARS; BROWN DWARFS; SUPER-EARTHS AB Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'(1). This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun(2). Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks(3,4), there should be a large but hitherto undetected population of terrestrial planets orbiting them(5)-ranging from metal-rich Mercury-sized planets(6) to more hospitable volatile-rich Earth-sized planets(7). Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star(8). Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system. C1 [Gillon, Michael; Jehin, Emmanuel; Delrez, Laetitia; Burdanov, Artem; Van Grootel, Valerie; Opitom, Cyrielle; Magain, Pierre] Univ Liege, Inst Astrophys & Geophys, Allee 6 Aout 19C, B-4000 Liege, Belgium. [Lederer, Susan M.] NASA Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. [de Wit, Julien] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Burgasser, Adam J.; Gagliuffi, Daniella Bardalez] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Triaud, Amaury H. M. J.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Demory, Brice-Olivier; Queloz, Didier] Univ Cambridge, Cavendish Lab, Astrophys Grp, 19 JJ Thomson Ave, Cambridge CB3 0HE, England. [Sahu, Devendra K.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. RP Gillon, M (reprint author), Univ Liege, Inst Astrophys & Geophys, Allee 6 Aout 19C, B-4000 Liege, Belgium. EM michael.gillon@ulg.ac.be OI Demory, Brice-Olivier/0000-0002-9355-5165 FU Belgian Fund for Scientific Research (FRS-FNRS) [FRFC 2.5.594.09.F]; Swiss Fund for Scientific Research; European Research Council (ERC) [336480]; Action de Recherche Concertee (ARC) grant - Wallonia-Brussels Federation; NASA [NNX15AI75G] FX TRAPPIST is funded by the Belgian Fund for Scientific Research (FRS-FNRS) under grant FRFC 2.5.594.09.F, with the participation of the Swiss Fund for Scientific Research. The research leading to our results was funded in part by the European Research Council (ERC) under the FP/2007-2013 ERC grant 336480, and through an Action de Recherche Concertee (ARC) grant financed by the Wallonia-Brussels Federation. Our work was also supported in part by NASA under contract NNX15AI75G. UKIRT is supported by NASA and operated under an agreement among the University of Hawaii, the University of Arizona, and Lockheed Martin Advanced Technology Center; operations are enabled through the cooperation of the East Asian Observatory. The facilities at the Indian Astronomical Observatory (IAO) and the Consortium for Research Excellence, Support and Training (CREST) are operated by the Indian Institute of Astrophysics, Bangalore. M.G., E.J. and V.V.G. are FRS-FNRS research associates. L.D. and C.O. are FRS-FNRS PhD students. We thank V. Megevand, the ASTELCO telescope team, S. Sohy, V. Chantry, and A. Fumel for their contributions to the TRAPPIST project; the Infrared Telescope Facility (IRTF) operators B. Cabreira and D. Griep for assistance with the SpeX observations; UKIRT staff scientists W. Varricatt & T. Kerr, telescope operators S. Benigni, E. Moore and T. Carroll, and Cambridge Astronomy Survey Unit (CASU) scientists G. Madsen and M. Irwin for assistance with UKIRT observations; the European Southern Observatory (ESO) astronomers A. Smette and G. Hau for providing us with the best possible VLT data; and the staff of IAO (in Hanle) and CREST (in Hosakote) for making observations with the HCT possible. Ad.B. and D. B. G. are visiting astronomers at the IRTF, which is operated by the University of Hawaii under Cooperative Agreement NNX-08AE38A with NASA's Science Mission Directorate, Planetary Astronomy Program. NR 78 TC 29 Z9 29 U1 10 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD MAY 12 PY 2016 VL 533 IS 7602 BP 221 EP + DI 10.1038/nature17448 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DM0BJ UT WOS:000376007200044 PM 27135924 ER PT J AU Verbiest, JPW Lentati, L Hobbs, G van Haasteren, R Demorest, PB Janssen, GH Wang, JB Desvignes, G Caballero, RN Keith, MJ Champion, DJ Arzoumanian, Z Babak, S Bassa, CG Bhat, NDR Brazier, A Brem, P Burgay, M Burke-Spolaor, S Chamberlin, SJ Chatterjee, S Christy, B Cognard, I Cordes, JM Dai, S Dolch, T Ellis, JA Ferdman, RD Fonseca, E Gair, JR Garver-Daniels, NE Gentile, P Gonzalez, ME Graikou, E Guillemot, L Hessels, JWT Jones, G Karuppusamy, R Kerr, M Kramer, M Lam, MT Lasky, PD Lassus, A Lazarus, P Lazio, TJW Lee, KJ Levin, L Liu, K Lynch, RS Lyne, AG Mckee, J McLaughlin, MA McWilliams, ST Madison, DR Manchester, RN Mingarelli, CMF Nice, DJ Oslowski, S Palliyaguru, NT Pennucci, TT Perera, BBP Perrodin, D Possenti, A Petiteau, A Ransom, SM Reardon, D Rosado, PA Sanidas, SA Sesana, A Shaifullah, G Shannon, RM Siemens, X Simon, J Smits, R Spiewak, R Stairs, IH Stappers, BW Stinebring, DR Stovall, K Swiggum, JK Taylor, SR Theureau, G Tiburzi, C Toomey, L Vallisneri, M van Straten, W Vecchio, A Wang, Y Wen, L You, XP Zhu, WW Zhu, XJ AF Verbiest, J. P. W. Lentati, L. Hobbs, G. van Haasteren, R. Demorest, P. B. Janssen, G. H. Wang, J. -B. Desvignes, G. Caballero, R. N. Keith, M. J. Champion, D. J. Arzoumanian, Z. Babak, S. Bassa, C. G. Bhat, N. D. R. Brazier, A. Brem, P. Burgay, M. Burke-Spolaor, S. Chamberlin, S. J. Chatterjee, S. Christy, B. Cognard, I. Cordes, J. M. Dai, S. Dolch, T. Ellis, J. A. Ferdman, R. D. Fonseca, E. Gair, J. R. Garver-Daniels, N. E. Gentile, P. Gonzalez, M. E. Graikou, E. Guillemot, L. Hessels, J. W. T. Jones, G. Karuppusamy, R. Kerr, M. Kramer, M. Lam, M. T. Lasky, P. D. Lassus, A. Lazarus, P. Lazio, T. J. W. Lee, K. J. Levin, L. Liu, K. Lynch, R. S. Lyne, A. G. Mckee, J. McLaughlin, M. A. McWilliams, S. T. Madison, D. R. Manchester, R. N. Mingarelli, C. M. F. Nice, D. J. Oslowski, S. Palliyaguru, N. T. Pennucci, T. T. Perera, B. B. P. Perrodin, D. Possenti, A. Petiteau, A. Ransom, S. M. Reardon, D. Rosado, P. A. Sanidas, S. A. Sesana, A. Shaifullah, G. Shannon, R. M. Siemens, X. Simon, J. Smits, R. Spiewak, R. Stairs, I. H. Stappers, B. W. Stinebring, D. R. Stovall, K. Swiggum, J. K. Taylor, S. R. Theureau, G. Tiburzi, C. Toomey, L. Vallisneri, M. van Straten, W. Vecchio, A. Wang, Y. Wen, L. You, X. P. Zhu, W. W. Zhu, X. -J. TI The International Pulsar Timing Array: First data release SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; pulsars: general AB The highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available online) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limits placed by individual PTAs by a factor of similar to 2 and provides a 2 sigma limit on the dimensionless amplitude of a stochastic gravitational-wave background of 1.7 x 10(-15) at a frequency of 1 yr(-1). This is 1.7 times less constraining than the limit placed by Shannon et al., due mostly to the more recent, high-quality data they used. C1 [Verbiest, J. P. W.; Oslowski, S.; Shaifullah, G.; Tiburzi, C.] Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany. [Verbiest, J. P. W.; Desvignes, G.; Caballero, R. N.; Champion, D. J.; Graikou, E.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Mingarelli, C. M. F.; Oslowski, S.; Shaifullah, G.; Tiburzi, C.; Zhu, W. W.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Lentati, L.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Hobbs, G.; Dai, S.; Kerr, M.; Manchester, R. N.; Reardon, D.; Shannon, R. M.; Toomey, L.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia. [van Haasteren, R.; Ellis, J. A.; Lazio, T. J. W.; Taylor, S. R.; Vallisneri, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 67-201, Pasadena, CA 91109 USA. [Demorest, P. B.; Burke-Spolaor, S.] Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. [Janssen, G. H.; Bassa, C. G.; Hessels, J. W. T.; Smits, R.] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. [Wang, J. -B.] Chinese Acad Sci, Xinjiang Astron Observ, 150 Sci 1-St, Urumqi 830011, Xinjiang, Peoples R China. [Keith, M. J.; Kramer, M.; Levin, L.; Lyne, A. G.; Mckee, J.; Perera, B. B. P.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Arzoumanian, Z.] NASA, Goddard Space Flight Ctr, USRA, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA. [Arzoumanian, Z.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Babak, S.; Brem, P.] MPI Gravitat Phys Albert Einstein Inst, D-14476 Golm, Germany. [Bhat, N. D. R.; Shannon, R. M.] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia. [Brazier, A.] Cornell Univ, Cornell Ctr Adv Comp, Ithaca, NY 14853 USA. [Brazier, A.; Chatterjee, S.; Dolch, T.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Burgay, M.; Perrodin, D.; Possenti, A.] INAF Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, CA, Italy. [Chamberlin, S. J.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Chatterjee, S.; Cordes, J. M.; Dolch, T.; Lam, M. T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Christy, B.] Notre Dame Maryland Univ, 4701 N Charles St, Baltimore, MD 21210 USA. [Cognard, I.; Guillemot, L.; Theureau, G.] Univ Orleans, CNRS, Lab Phys & Chim Environm & Espace LPC2E, F-45071 Orleans, France. [Cognard, I.; Guillemot, L.; Theureau, G.] CNRS INSU, Observ Paris, Stn Radioastron Nancy, F-18330 Nancy, France. [Dai, S.] Peking Univ, Sch Phys, Dept Astron, Beijing 100871, Peoples R China. [Dolch, T.] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA. [Ferdman, R. D.] McGill Univ, Dept Phys, Rutherford Phys Bldg,3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Fonseca, E.; Stairs, I. H.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Gair, J. R.] Univ Edinburgh, Sch Math, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland. [Garver-Daniels, N. E.; Gentile, P.; Levin, L.; McLaughlin, M. A.; McWilliams, S. T.; Swiggum, J. K.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Gonzalez, M. E.] Vancouver Coastal Hlth, Dept Nucl Med, 899 W 12th Ae, Vancouver, BC V5Z 1M9, Canada. [Hessels, J. W. T.; Sanidas, S. A.] Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Jones, G.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Lasky, P. D.; Reardon, D.] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys MoCA, Clayton, Vic 3800, Australia. [Lee, K. J.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Lynch, R. S.] Natl Radio Astron Observ, POB 2, Green Bank, WV 24944 USA. [Madison, D. R.; Ransom, S. M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Mingarelli, C. M. F.] CALTECH, TAPIR, MC 350-17, Pasadena, CA 91125 USA. [Nice, D. J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Palliyaguru, N. T.] Texas Tech Univ, Dept Phys, Box 41051, Lubbock, TX 79409 USA. [Pennucci, T. T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Petiteau, A.] Univ Paris Diderot Paris7, APC, UFR Phys, Batiment Condorcet, Paris 13, France. [Rosado, P. A.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia. [Sesana, A.; Vecchio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Siemens, X.; Simon, J.; Spiewak, R.] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA. [Stinebring, D. R.] Oberlin Coll, Phys & Astron Dept, Oberlin, OH 44074 USA. [Stovall, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Theureau, G.] Univ Paris Diderot, CNRS INSU, Observ Paris, Lab Univ & Theories LUTh, 5 Pl Jules Janssen, F-92190 Meudon, France. [Wang, Y.] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hunan, Peoples R China. [Wen, L.; Zhu, X. -J.] Univ Western Australia, Sch Phys, 35 Stirling Hwy, Nedlands, WA 6009, Australia. [You, X. P.] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China. RP Verbiest, JPW (reprint author), Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany.; Verbiest, JPW (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM verbiest@physik.uni-bielefeld.de RI Zhu, Xingjiang/E-1501-2016; Perrodin, Delphine/L-1916-2016; Vecchio, Alberto/F-8310-2015; OI Zhu, Xingjiang/0000-0001-7049-6468; Perrodin, Delphine/0000-0002-1806-2483; Vecchio, Alberto/0000-0002-6254-1617; Fonseca, Emmanuel/0000-0001-8384-5049; Shannon, Ryan/0000-0002-7285-6348; Taylor, Stephen/0000-0003-0264-1453; McKee, James/0000-0002-2885-8485; van Straten, Willem/0000-0003-2519-7375; Oslowski, Stefan/0000-0003-0289-0732 FU NSF [AST-1100968]; Commonwealth Government; STFC; CNRS/INSU, France; Region Centre; NWO; ERC [227947]; National Science Foundation (NSF) PIRE program [0968296]; NSF Physics Frontier Center [1430284]; NASA Einstein Fellowship [PF3-140116]; National Aeronautics and Space Administration; NSFC [11403086, 11373011]; West Light Foundation CAS [XBBS201322]; International Max Planck Research School Bonn/Cologne; Bonn-Cologne Graduate School; Curtin Research Fellowship; NSF PIRE programme [0968296]; NASA through Einstein Fellowship [PF4-150120]; Royal Society; NSERC PDF; NWO Vidi fellowship; ERC Starting Grant 'DRAGNET' [337062]; Australian Research Council [DP140102578]; IMPRS Bonn/Cologne; National Basic Research Program of China, 973 Program [2015CB857101]; European Research Council [610058]; Marie-Curie International Outgoing Fellowship within the European Union Seventh Framework Programme; Alexander von Humboldt Foundation; University Research Fellowship of the Royal Society; Wisconsin Space Grant Consortium; NSERC; Canadian Institute for Advanced Research; JPL RTD programme; National Science Foundation of China (NSFC) [11503007]; Australian Research Council; NNSF of China [U1231120]; FRFCU [XDJK2015B 012] FX The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The AO is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. The Parkes telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. Part of this work is based on observations with the 100-m telescope of the Max-Planck-Institut fur Radioastronomie (MPIfR) at Effelsberg. Access to the Lovell Telescope and pulsar research at the Jodrell Bank Centre for Astrophysics is supported through an STFC consolidated grant. The Nancay radio telescope is operated by the Paris Observatory, associated with the Centre National de la Recherche Scientifique (CNRS) and acknowledges financial support from the 'Programme National de Cosmologie et Galaxies (PNCG)' and 'Gravitation, References, Astronomic, Metrologie (GRAM)' programmes of CNRS/INSU, France. We gratefully acknowledge the financial support provided by the Region Centre. The Westerbork Synthesis Radio Telescope is operated by the Netherlands Foundation for Research in Astronomy (ASTRON) with support from the NWO. Some of the work reported in this paper was supported by the ERC Advanced Grant 'LEAP', Grant Agreement Number 227947 (PI Kramer). This work was partially supported through the National Science Foundation (NSF) PIRE program award number 0968296 and the NSF Physics Frontier Center award number 1430284. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Several plots in this paper were prepared based on data gathered from the ATNF pulsar catalogue, available online at: http://www.atnf.csiro.au/research/pulsar/psrcat/. The authors acknowledge careful reading of and useful comments on the draft by Bill Coles and an anonymous referee. RvH is supported by NASA Einstein Fellowship grant PF3-140116. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J-BW is supported by NSFC project no. 11403086 and the West Light Foundation CAS XBBS201322. RNC acknowledges the support of the International Max Planck Research School Bonn/Cologne and the Bonn-Cologne Graduate School. NDRB is supported by a Curtin Research Fellowship. TD was partially supported through the NSF PIRE programme award number 0968296. JAE acknowledges support by NASA through Einstein Fellowship grant PF4-150120. JRG's work is supported by the Royal Society. MEG was partly funded by an NSERC PDF award. JWTH and SAS acknowledge funding from an NWO Vidi fellowship. JWTH and CGB acknowledge funding from ERC Starting Grant 'DRAGNET' (337062; PI Hessels). PDL and PR are supported by the Australian Research Council Discovery Project DP140102578. PL acknowledges the support of IMPRS Bonn/Cologne. KJL gratefully acknowledges support from the National Basic Research Program of China, 973 Program, 2015CB857101 and NSFC 11373011. KL acknowledges the financial support by the European Research Council for the ERC Synergy Grant BlackHoleCam under contract no. 610058.; CMFM was supported by a Marie-Curie International Outgoing Fellowship within the European Union Seventh Framework Programme SO is supported by the Alexander von Humboldt Foundation. AS is supported by a University Research Fellowship of the Royal Society. JS was partly supported through the Wisconsin Space Grant Consortium. Pulsar research at UBC is supported by an NSERC Discovery Grant and Discovery Accelerator Supplement and by the Canadian Institute for Advanced Research. SRT is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by the Oak Ridge Associated Universities through a contract with NASA. MV acknowledges support from the JPL RTD programme YW was supported by the National Science Foundation of China (NSFC) award number 11503007. LW and XJZ acknowledge funding support from the Australian Research Council and computing support from the Pawsey Supercomputing Centre at WA. XPY acknowledges support by NNSF of China (U1231120) and FRFCU (XDJK2015B 012). NR 0 TC 21 Z9 21 U1 7 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 1267 EP 1288 DI 10.1093/mnras/stw347 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600010 ER PT J AU Matzeu, GA Reeves, JN Nardini, E Braito, V Costa, MT Tombesi, F Gofford, J AF Matzeu, G. A. Reeves, J. N. Nardini, E. Braito, V. Costa, M. T. Tombesi, F. Gofford, J. TI Short-term X-ray spectral variability of the quasar PDS 456 observed in a low-flux state SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: nuclei; quasars: individual: PDS 456; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS; ACCRETION DISK WINDS; ULTRA-FAST OUTFLOWS; BLACK-HOLE; ABSORPTION-LINES; LUMINOUS QUASAR; XMM-NEWTON; SIGMA RELATION; HOST GALAXIES AB We present a detailed analysis of a recent, 2013 Suzaku campaign on the nearby (z = 0.184) luminous (L-bol similar to 10(47) erg s(-1)) quasar PDS 456. This consisted of three observations, covering a total duration of similar to 1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was unusually low, suppressed by a factor of > 10 in the soft X-ray band when compared to previous observations. We investigated the broad-band continuum by constructing a spectral energy distribution (SED), making use of the optical/UV photometry and hard X-ray spectra from the later simultaneous XMM-Newton and NuSTAR campaign in 2014. The high-energy part of this low-flux SED cannot be accounted for by physically self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray continuum. At least two layers of absorbing gas are required, of column density log (N-H,N-low/cm(-2)) = 22.3 +/- A 0.1 and log (N-H,N-high/cm(-2)) = 23.2 +/- A 0.1, with average line-of-sight covering factors of similar to 80 per cent (with typical similar to 5 per cent variations) and 60 per cent (+/- 10-15 per cent), respectively. During these observations PDS 456 displays significant short-term X-ray spectral variability, on time-scales of similar to 100 ks, which can be accounted for by variable covering of the absorbing gas along the line of sight. The partial covering absorber prefers an outflow velocity of at the > 99.9 per cent confidence level over the case where v(pc) = 0. This is consistent with the velocity of the highly ionized outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally estimates are placed upon the size-scale of the X-ray emission region from the source variability. The radial extent of the X-ray emitter is found to be of the order similar to 15-20R(g), although the hard X-ray (> 2 keV) emission may originate from a more compact or patchy corona of hot electrons, which is typically similar to 6-8R(g) in size. C1 [Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Costa, M. T.; Gofford, J.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Reeves, J. N.; Braito, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Braito, V.] INAF Osservatorio Astron Brera, Via Bianchi 46, I-23807 Merate, LC, Italy. [Tombesi, F.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.] Univ Maryland, CRESST, College Pk, MD 20742 USA. RP Matzeu, GA (reprint author), Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. EM g.matzeu@keele.ac.uk FU STFC; ASI-INAF [NuSTAR I/037/12/0] FX We thank the anonymous referee for their careful report, which helped us improving the clarity of the paper. This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). GM, JR, EN, MC and JG all acknowledge the financial support of STFC. VB acknowledges the support from the grant ASI-INAF NuSTAR I/037/12/0. NR 64 TC 3 Z9 3 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 1311 EP 1329 DI 10.1093/mnras/stw354 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600015 ER PT J AU Crichton, D Gralla, MB Hall, K Marriage, TA Zakamska, NL Battaglia, N Bond, JR Devlin, MJ Hill, JC Hilton, M Hincks, AD Huffenberger, KM Hughes, JP Kosowsky, A Moodley, K Niemack, MD Page, LA Partridge, B Sievers, JL Sifon, C Staggs, ST Viero, MP Wollack, EJ AF Crichton, Devin Gralla, Megan B. Hall, Kirsten Marriage, Tobias A. Zakamska, Nadia L. Battaglia, Nick Bond, J. Richard Devlin, Mark J. Hill, J. Colin Hilton, Matt Hincks, Adam D. Huffenberger, Kevin M. Hughes, John P. Kosowsky, Arthur Moodley, Kavilan Niemack, Michael D. Page, Lyman A. Partridge, Bruce Sievers, Jonathan L. Sifon, Cristobal Staggs, Suzanne T. Viero, Marco P. Wollack, Edward J. TI Evidence for the thermal Sunyaev-Zel'dovich effect associated with quasar feedback SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; intergalactic medium; quasars: general ID ACTIVE GALACTIC NUCLEI; ATACAMA COSMOLOGY TELESCOPE; DIGITAL-SKY-SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; SUPERMASSIVE BLACK-HOLES; LUMINOUS OBSCURED QUASARS; RADIO-QUIET QUASARS; SIMILAR-TO 1.5; ABSORPTION-LINE QUASARS; EXTREME GAS KINEMATICS AB Using a radio-quiet subsample of the Sloan Digital Sky Survey spectroscopic quasar catalogue, spanning redshifts 0.5-3.5, we derive the mean millimetre and far-infrared quasar spectral energy distributions (SEDs) via a stacking analysis of Atacama Cosmology Telescope and Herschel-Spectral and Photometric Imaging REceiver data. We constrain the form of the far-infrared emission and find 3 sigma-4 sigma evidence for the thermal Sunyaev-Zel'dovich (SZ) effect, characteristic of a hot ionized gas component with thermal energy (6.2 +/- 1.7) x 10(60) erg. This amount of thermal energy is greater than expected assuming only hot gas in virial equilibrium with the dark matter haloes of (1-5) x 10(12) h(-1) M-circle dot that these systems are expected to occupy, though the highest quasar mass estimates found in the literature could explain a large fraction of this energy. Our measurements are consistent with quasars depositing up to (14.5 +/- 3.3) per cent of their radiative energy into their circumgalactic environment if their typical period of quasar activity is tau(8) x 10(8) yr. For high quasar host masses, similar to 10(13) h(-1) M-circle dot this percentage will be reduced. Furthermore, the uncertainty on this percentage is only statistical and additional systematic uncertainties enter at the 40 per cent level. The SEDs are dust dominated in all bands and we consider various models for dust emission. While sufficiently complex dust models can obviate the SZ effect, the SZ interpretation remains favoured at the 3 sigma-4 sigma level for most models. C1 [Crichton, Devin; Gralla, Megan B.; Hall, Kirsten; Marriage, Tobias A.; Zakamska, Nadia L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gralla, Megan B.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Battaglia, Nick] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bond, J. Richard] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Devlin, Mark J.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Hill, J. Colin] Columbia Univ, Dept Astron, Pupin Hall, New York, NY 10027 USA. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4041 Durban, South Africa. [Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Huffenberger, Kevin M.] Florida State Univ, Dept Phys, POB 3064350, Tallahassee, FL 32306 USA. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sievers, Jonathan L.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Chem & Phys, ZA-4041 Durban, South Africa. [Sifon, Cristobal] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Viero, Marco P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Crichton, D (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM dcrichton@jhu.edu RI Wollack, Edward/D-4467-2012; OI Sifon, Cristobal/0000-0002-8149-1352; Wollack, Edward/0000-0002-7567-4451; Huffenberger, Kevin/0000-0001-7109-0099 FU US National Science Foundation [AST-0408698, AST-0965625, PHY-0855887, PHY-1214379]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); CFI under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund - Research Excellence; University of Toronto FX We thank the anonymous referee for their useful comments and suggestions. This work was supported by the US National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, as well as awards PHY-0855887 and PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund - Research Excellence; and the University of Toronto. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. This research made use of Astropy, a community-developed core PYTHON package for Astronomy (Astropy Collaboration et al. 2013) and the affine invariant MCMC ensemble sampler implementation provided by the EMCEE PYTHON package (Foreman-Mackey et al. 2013). NR 153 TC 1 Z9 1 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 1478 EP 1492 DI 10.1093/mnras/stw344 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600027 ER PT J AU Shaw, AW Gandhi, P Altamirano, D Uttley, P Tomsick, JA Charles, PA Furst, F Rahoui, F Walton, DJ AF Shaw, A. W. Gandhi, P. Altamirano, D. Uttley, P. Tomsick, J. A. Charles, P. A. Furst, F. Rahoui, F. Walton, D. J. TI A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; black hole physics; X-rays: binaries; X-rays: individual: Swift J1753; 5-0127 ID ACTIVE GALACTIC NUCLEI; LOW/HARD STATE; ACCRETION DISKS; HARD STATE; INNER DISK; XMM-NEWTON; MULTIWAVELENGTH OBSERVATIONS; REFLECTION MODELS; SPECTRAL STATE; COLD MATTER AB We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multitemperature disc with an inner disc temperature kT(in) = 0.252 +/- 0.003 keV scattered into a steep power-law with photon index Gamma =6.39 boolean AND{+0.08}_{-0.02}$ and an additional hard power-law tail (I" = 1.79 +/- 0.02). We report on the emergence of a strong disc-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its similar to 10 yr prolonged outburst. Using reasonable estimates for the distance to the source (3 kpc) and black hole mass (5 M-aS (TM)), we find the unabsorbed luminosity (0.1-100 keV) to be a parts per thousand 0.60 per cent of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disc extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be R-in =28.0(-0.4)(+0.7) Rg or similar to or similar to 12R dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f = 1.7 and a binary inclination i = 55 degrees. C1 [Shaw, A. W.; Gandhi, P.; Altamirano, D.; Charles, P. A.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Uttley, P.] Univ Amsterdam, Anton Pannekoek Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Furst, F.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Rahoui, F.] European Southern Observ, K Schwarzschild Str 2, D-85748 Garching, Germany. [Rahoui, F.] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. [Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Walton, D. J.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. RP Shaw, AW (reprint author), Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. EM A.Shaw@soton.ac.uk OI Shaw, Aarran/0000-0002-8808-520X FU Royal Society; STFC [ST/J003697/2]; NASA [NNG08FD60C]; National Aeronautics and Space Administration; ESA Member States; NASA FX The authors thank the referee, Aya Kubota, for helpful suggestions and comments which helped to improve the manuscript. We would like to thank Norbert Schartel and the XMM-Newton team for scheduling the ToO observations. The authors are also grateful to the NuSTAR team, in particular Fiona Harrison for quickly scheduling contemporaneous ToO observations. The authors would like to thank Daniel Stern for useful discussions. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. D. A. acknowledges support from the Royal Society. P. G. thanks STFC for support (grant reference ST/J003697/2). This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). Based on observations obtained with XMM-Newton, an ESA sciencemission with instruments and contributions directly funded by ESA Member States and NASA. NR 66 TC 3 Z9 3 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 1636 EP 1644 DI 10.1093/mnras/stw417 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600039 ER PT J AU Bordoloi, R Rigby, JR Tumlinson, J Bayliss, MB Sharon, K Gladders, MG Wuyts, E AF Bordoloi, Rongmon Rigby, Jane R. Tumlinson, Jason Bayliss, Matthew B. Sharon, Keren Gladders, Michael G. Wuyts, Eva TI Spatially resolved galactic wind in lensed galaxy RCSGA 032727-132609 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high-redshift; intergalactic medium; ultraviolet: ISM ID STAR-FORMING GALAXIES; SIMILAR-TO 1; ABSORPTION-LINE PROBES; LYMAN BREAK GALAXIES; SINS/ZC-SINF SURVEY; MG II ABSORBERS; LESS-THAN 2; PHYSICAL CONDITIONS; ULTRAVIOLET-SPECTRA; STARBURST GALAXIES AB We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg ii and Fe ii emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km s(-1). The velocities of Mg ii emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the Fe ii fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg ii and Fe ii emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (a parts per thousand(3)30-50 M-aS (TM) yr(- 1)), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is 'locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe. C1 [Bordoloi, Rongmon; Tumlinson, Jason] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Bordoloi, Rongmon] MIT, Kavli Ctr Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Rigby, Jane R.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Bayliss, Matthew B.] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. [Bayliss, Matthew B.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Sharon, Keren] Univ Michigan, Dept Astron & Astrophys, 500 Church St, Ann Arbor, MI 48109 USA. [Gladders, Michael G.] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Gladders, Michael G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Wuyts, Eva] Max Planck Inst Extraterr Phys, Postfach 1312,Giessenbachstr, D-85741 Garching, Germany. RP Bordoloi, R (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.; Bordoloi, R (reprint author), MIT, Kavli Ctr Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM rongmon.bordoloi@gmail.com FU NSF [1066293]; NASA through Hubble Fellowship - Space Telescope Science Institute [51354]; NASA [NAS 5-26555] FX RB would like to thank the Aspen Center for Physics (supported by NSF grant 1066293) for hospitality and productive atmosphere and organizers of the workshop 'Physics of Accretion and Feedback in the Circum-Galactic Medium' in 2015 June, for opportunities to discuss results presented here during completion of this paper. RB would like to thank Timothy Heckman for stimulating discussions on this work. RB would also like to thank Peter Behroozi for providing mock catalogues to estimate halo mass of the host galaxy. Partial support for this work was provided by NASA through Hubble Fellowship grant #51354 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Magellan observing time for this programme was granted by the telescope allocation committees of the Carnegie Observatories, the University of Chicago, the University of Michigan, and Harvard University. NR 74 TC 2 Z9 2 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 1891 EP 1908 DI 10.1093/mnras/stw449 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600058 ER PT J AU Tkachenko, A Matthews, JM Aerts, C Pavlovski, K Papics, PI Zwintz, K Cameron, C Walker, GAH Kuschnig, R Degroote, P Debosscher, J Moravveji, E Kolbas, V Guenther, DB Moffat, AFJ Rowe, JF Rucinski, SM Sasselov, D Weiss, WW AF Tkachenko, A. Matthews, J. M. Aerts, C. Pavlovski, K. Papics, P. I. Zwintz, K. Cameron, C. Walker, G. A. H. Kuschnig, R. Degroote, P. Debosscher, J. Moravveji, E. Kolbas, V. Guenther, D. B. Moffat, A. F. J. Rowe, J. F. Rucinski, S. M. Sasselov, D. Weiss, W. W. TI Stellar modelling of Spica, a high-mass spectroscopic binary with a beta Cep variable primary component SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: spectroscopic; stars: fundamental parameters; stars: individual: alpha Virginis; stars: oscillations; stars: variables: general ID B-TYPE STARS; ECLIPSING BINARY; ALPHA-VIRGINIS; NONRADIAL OSCILLATIONS; CHEMICAL-COMPOSITION; ASTROPHYSICS MESA; APSIDAL CONSTANT; ORBITAL ELEMENTS; CLOSE BINARIES; SIGMA-SCORPII AB Binary stars provide a valuable test of stellar structure and evolution, because the masses of the individual stellar components can be derived with high accuracy and in a model-independent way. In this work, we study Spica, an eccentric double-lined spectroscopic binary system with a beta Cep type variable primary component. We use state-of-the-art modelling tools to determine accurate orbital elements of the binary system and atmospheric parameters of both stellar components. We interpret the short-period variability intrinsic to the primary component, detected on top of the orbital motion both in the photometric and spectroscopic data. The non-local thermodynamic equilibrium based spectrum analysis reveals two stars of similar atmospheric chemical composition consistent with the present-day cosmic abundance standard. The masses and radii of the stars are found to be 11.43 +/- A 1.15 M-aS (TM) and 7.21 +/- A 0.75 M-aS (TM), and 7.47 +/- A 0.54 R-aS (TM) and 3.74 +/- A 0.53 R-aS (TM) for the primary and secondary, respectively. We find the primary component to pulsate in three independent modes, of which one is identified as a radial mode, while the two others are found to be non-radial, low degree l modes. The frequency of one of these modes is an exact multiple of the orbital frequency, and the l = m = 2 mode identification suggests a tidal nature for this particular mode. We find a very good agreement between the derived dynamical and evolutionary masses for the Spica system to within the observational errors of the measured masses. The age of the system is estimated to be 12.5 +/- A 1 Myr. C1 [Tkachenko, A.; Aerts, C.; Papics, P. I.; Degroote, P.; Debosscher, J.; Moravveji, E.] Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Leuven, Belgium. [Matthews, J. M.; Cameron, C.; Walker, G. A. H.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Aerts, C.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Pavlovski, K.; Kolbas, V.] Univ Zagreb, Dept Phys, Bijenicka Cesta 32, Zagreb 10000, Croatia. [Zwintz, K.] Univ Innsbruck, Inst Astro & Particle Phys, Technikerstrasse 25-8, A-6020 Innsbruck, Austria. [Cameron, C.] Cape Breton Univ, Dept Math Phys & Geol, 1250 Grand Lake Rd, Sydney, NS B1P 6L2, Canada. [Kuschnig, R.] Univ Vienna, Inst Astron, Turkenschanzstrasse 17, AT-1180 Vienna, Austria. [Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Moffat, A. F. J.] Univ Montreal, Dept Phys, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Rowe, J. F.] NASA, Ames Res Pk, MS-244-30, Moffett Field, CA 94035 USA. [Rucinski, S. M.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Sasselov, D.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Tkachenko, A.; Papics, P. I.] Res Fdn Flanders, Brussels, Belgium. RP Tkachenko, A (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Leuven, Belgium.; Tkachenko, A (reprint author), Res Fdn Flanders, Brussels, Belgium. EM andrew@ster.kuleuven.be FU European Research Council (ERC) under the European Union's Horizon research and innovation programme [670519]; European Community [FP7-SPACE-2011-1, 312844]; Fund for Scientific Research of Flanders (FWO), Belgium [G.0B69.13]; European Union [623303]; Croatian Science Foundation [2014-09-8656]; Austrian Fonds zur Foerderung der wissenschaftlichen Forschung (FWF) [V431-NBL] FX The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 670519: MAMSIE), from the European Community's Seventh Framework Programme FP7-SPACE-2011-1, project number 312844 (SPACEINN), and from the Fund for Scientific Research of Flanders (FWO), Belgium, under grant agreement G.0B69.13.EM has received funding from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. 623303 for the project ASAMBA. KP was (partially) supported by the Croatian Science Foundation under the grant 2014-09-8656. KZ acknowledges support by the Austrian Fonds zur Foerderung der wissenschaftlichen Forschung (FWF, project V431-NBL). Mode identification results with the software package FAMIAS developed in the framework of the FP6 European Coordination Action HELAS (http://www.helas-eu.org/). AT dedicates this work to his grandfather, A. Solomchenko, who passed away in 2016 January. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna. NR 64 TC 2 Z9 2 U1 3 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 1964 EP 1976 DI 10.1093/mnras/stw255 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600064 ER PT J AU Fulton, T Naylor, DA Polehampton, ET Valtchanov, I Hopwood, R Lu, N Baluteau, JP Mainetti, G Pearson, C Papageorgiou, A Guest, S Zhang, L Imhof, P Swinyard, BM Griffin, MJ Lim, TL AF Fulton, T. Naylor, D. A. Polehampton, E. T. Valtchanov, I. Hopwood, R. Lu, N. Baluteau, J. -P. Mainetti, G. Pearson, C. Papageorgiou, A. Guest, S. Zhang, L. Imhof, P. Swinyard, B. M. Griffin, M. J. Lim, T. L. TI The data processing pipeline for the Herschel SPIRE Fourier Transform Spectrometer SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; space vehicles: instruments; techniques: spectroscopic ID CALIBRATION; REPRESENTATIONS; INSTRUMENT; FITS; SPECTROSCOPY; PERFORMANCE; ARRAYS; DESIGN AB We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SPIRE observations and produces calibrated spectra for all resolution modes. The spectrometer pipeline shares some elements with the SPIRE photometer pipeline, including the conversion of telemetry packets into data timelines and calculation of bolometer voltages. We present the following fundamental processing steps unique to the spectrometer: temporal and spatial interpolation of the scan mechanism and detector data to create interferograms; Fourier transformation; apodization; and creation of a data cube. We also describe the corrections for various instrumental effects including first- and second-level glitch identification and removal, correction of the effects due to emission from the Herschel telescope and from within the spectrometer instrument, interferogram baseline correction, temporal and spatial phase correction, non-linear response of the bolometers, and variation of instrument performance across the focal plane arrays. Astronomical calibration is based on combinations of observations of standard astronomical sources and regions of space known to contain minimal emission. C1 [Fulton, T.; Naylor, D. A.; Polehampton, E. T.; Imhof, P.] Univ Lethbridge, Dept Phys & Astron, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Fulton, T.; Imhof, P.] Blue Sky Spect, 9,740 4 Ave S, Lethbridge, AB T1J 0N9, Canada. [Polehampton, E. T.; Pearson, C.; Guest, S.; Swinyard, B. M.; Lim, T. L.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Valtchanov, I.] ESA, Herschel Sci Ctr, European Space Astron Ctr, E-28691 Villanueva De La Canada, Spain. [Hopwood, R.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, South Kensington Campus, London SW7 2AZ, England. [Lu, N.] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China. [Lu, N.] Chinese Acad Sci, Camino El Observ, China Chile Joint Ctr Astron, Santiago 1515, Chile. [Lu, N.; Zhang, L.] NASA, Herschel Sci Ctr, IPAC, Pasadena, CA 91125 USA. [Baluteau, J. -P.] Univ Aix Marseille, LAM, 38 Rue F Jolit Curie, F-13388 Marseille 13, France. [Baluteau, J. -P.] CNRS, UMR7326, 38 Rue F Jolit Curie, F-13388 Marseille 13, France. [Mainetti, G.] CEA Saclay, CNRS, Lab AIM, CEA DSM,Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Papageorgiou, A.; Griffin, M. J.] Cardiff Univ, Cardiff CF24 3YB, S Glam, Wales. [Swinyard, B. M.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. RP Fulton, T (reprint author), Univ Lethbridge, Dept Phys & Astron, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada.; Fulton, T (reprint author), Blue Sky Spect, 9,740 4 Ave S, Lethbridge, AB T1J 0N9, Canada.; Valtchanov, I (reprint author), ESA, Herschel Sci Ctr, European Space Astron Ctr, E-28691 Villanueva De La Canada, Spain.; Hopwood, R (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, South Kensington Campus, London SW7 2AZ, England. EM trevor.fulton@uleth.ca; ivan.valtchanov@sciops.esa.int; r.hopwood@imperial.ac.uk FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); Canadian Space Agency; NSERC FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). The authors wish to acknowledge Andres Rebolledo, Peter Kennedy, Zhaohan Weng, Yan He, Karim Ali, Yu Wai Wong, Alim Harji, Yufei Ren, David Sharpe, and Jeremy Zaretski for their contributions to the development of the SPIRE spectrometer data processing modules. The authors would also like to thank Christophe Ordenovic and Dominique Benielli for their contributions to the first level deglitching and Telescope/SCAL corrections. The authors thank Locke Spencer and Gibion Makiwa for their contributions to the development of the data processing pipeline. The funding for the Canadian contribution to SPIRE was provided by the Canadian Space Agency and NSERC. NR 35 TC 3 Z9 3 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 1977 EP 1989 DI 10.1093/mnras/stw343 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600065 ER PT J AU Remazeilles, M Dickinson, C Eriksen, HKK Wehus, IK AF Remazeilles, M. Dickinson, C. Eriksen, H. K. K. Wehus, I. K. TI Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE polarization; methods: analytical; cosmic background radiation; diffuse radiation; early Universe; inflation ID POWER SPECTRUM ESTIMATION; PROBE WMAP OBSERVATIONS; COMPONENT SEPARATION; MAGNETIC NANOPARTICLES; EMISSION; MAPS; RADIATION; GHZ; SUBMILLIMETER; IMPACT AB The measurement of the large-scale B-mode polarization in the cosmic microwave background (CMB) is a fundamental goal of future CMB experiments. However, because of unprecedented sensitivity, future CMB experiments will be much more sensitive to any imperfect modelling of the Galactic foreground polarization in the reconstruction of the primordial B-mode signal. We compare the sensitivity to B-modes of different concepts of CMB satellite missions (LiteBIRD, COrE, COrE+, PRISM, EPIC, PIXIE) in the presence of Galactic foregrounds. In particular, we quantify the impact on the tensor-to-scalar parameter of incorrect foreground modelling in the component separation process. Using Bayesian fitting and Gibbs sampling, we perform the separation of the CMB and Galactic foreground B-modes. The recovered CMB B-mode power spectrum is used to compute the likelihood distribution of the tensor-to-scalar ratio. We focus the analysis to the very large angular scales that can be probed only by CMB space missions, i.e. the reionization bump, where primordial B-modes dominate over spurious B-modes induced by gravitational lensing. We find that fitting a single modified blackbody component for thermal dust where the 'real' sky consists of two dust components strongly bias the estimation of the tensor-to-scalar ratio by more than 5 sigma for the most sensitive experiments. Neglecting in the parametric model the curvature of the synchrotron spectral index may bias the estimated tensor-to-scalar ratio by more than 1 sigma. For sensitive CMB experiments, omitting in the foreground modelling a 1 per cent polarized spinning dust component may induce a non-negligible bias in the estimated tensor-to-scalar ratio. C1 [Remazeilles, M.; Dickinson, C.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Eriksen, H. K. K.] Univ Oslo, Inst Theoret Astrophys, POB 1029, NO-0315 Oslo, Norway. [Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Remazeilles, M; Dickinson, C (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM mathieu.remazeilles@manchester.ac.uk; clive.dickinson@manchester.ac.uk RI Remazeilles, Mathieu/N-1793-2015 OI Remazeilles, Mathieu/0000-0001-9126-6266 FU European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC [307209]; STFC [ST/L000768/1]; ERC [StG2010-257080] FX The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 307209 (CD/MR). CD also acknowledges support from an STFC Consolidated Grant (no. ST/L000768/1). HKKE acknowledges support from the ERC Starting Grant StG2010-257080. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We have extensively used the HEALPiX package (Gorski et al. 2005). We acknowledge Dale Fixsen and Al Kogut for providing to us the instrumental characteristics of the PIXIE space mission. We would like to thank Jacques Delabrouille for useful comments on the draft. NR 58 TC 10 Z9 10 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 2032 EP 2050 DI 10.1093/mnras/stw441 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600070 ER PT J AU Lentati, L Shannon, RM Coles, WA Verbiest, JPW van Haasteren, R Ellis, JA Caballero, RN Manchester, RN Arzoumanian, Z Babak, S Bassa, CG Bhat, NDR Brem, P Burgay, M Burke-Spolaor, S Champion, D Chatterjee, S Cognard, I Cordes, JM Dai, S Demorest, P Desvignes, G Dolch, T Ferdman, RD Fonseca, E Gair, JR Gonzalez, ME Graikou, E Guillemot, L Hessels, JWT Hobbs, G Janssen, GH Jones, G Karuppusamy, R Keith, M Kerr, M Kramer, M Lam, MT Lasky, PD Lassus, A Lazarus, P Lazio, TJW Lee, KJ Levin, L Liu, K Lynch, RS Madison, DR McKee, J McLaughlin, M McWilliams, ST Mingarelli, CMF Nice, DJ Oslowski, S Pennucci, TT Perera, BBP Perrodin, D Petiteau, A Possenti, A Ransom, SM Reardon, D Rosado, PA Sanidas, SA Sesana, A Shaifullah, G Siemens, X Smits, R Stairs, I Stappers, B Stinebring, DR Stovall, K Swiggum, J Taylor, SR Theureau, G Tiburzi, C Toomey, L Vallisneri, M van Straten, W Vecchio, A Wang, JB Wang, Y You, XP Zhu, WW Zhu, XJ AF Lentati, L. Shannon, R. M. Coles, W. A. Verbiest, J. P. W. van Haasteren, R. Ellis, J. A. Caballero, R. N. Manchester, R. N. Arzoumanian, Z. Babak, S. Bassa, C. G. Bhat, N. D. R. Brem, P. Burgay, M. Burke-Spolaor, S. Champion, D. Chatterjee, S. Cognard, I. Cordes, J. M. Dai, S. Demorest, P. Desvignes, G. Dolch, T. Ferdman, R. D. Fonseca, E. Gair, J. R. Gonzalez, M. E. Graikou, E. Guillemot, L. Hessels, J. W. T. Hobbs, G. Janssen, G. H. Jones, G. Karuppusamy, R. Keith, M. Kerr, M. Kramer, M. Lam, M. T. Lasky, P. D. Lassus, A. Lazarus, P. Lazio, T. J. W. Lee, K. J. Levin, L. Liu, K. Lynch, R. S. Madison, D. R. McKee, J. McLaughlin, M. McWilliams, S. T. Mingarelli, C. M. F. Nice, D. J. Oslowski, S. Pennucci, T. T. Perera, B. B. P. Perrodin, D. Petiteau, A. Possenti, A. Ransom, S. M. Reardon, D. Rosado, P. A. Sanidas, S. A. Sesana, A. Shaifullah, G. Siemens, X. Smits, R. Stairs, I. Stappers, B. Stinebring, D. R. Stovall, K. Swiggum, J. Taylor, S. R. Theureau, G. Tiburzi, C. Toomey, L. Vallisneri, M. van Straten, W. Vecchio, A. Wang, J. -B. Wang, Y. You, X. P. Zhu, W. W. Zhu, X. -J. TI From spin noise to systematics: stochastic processes in the first International Pulsar Timing Array data release SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; pulsars: general ID BLACK-HOLE BINARIES; FREQUENCY GRAVITATIONAL-RADIATION; MILLISECOND PULSARS; INTERSTELLAR PLASMA; PRECISION; WAVES; DISPERSION; LIMITS; SCATTERING; B1937+21 AB We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal description of the stochastic signals present in each pulsar. In addition to spin-noise and dispersion-measure (DM) variations, these models can include timing noise unique to a single observing system, or frequency band. We show the improved radio-frequency coverage and presence of overlapping data from different observing systems in the IPTA data set enables us to separate both system and band-dependent effects with much greater efficacy than in the individual pulsar timing array (PTA) data sets. For example, we show that PSR J1643-1224 has, in addition to DM variations, significant band-dependent noise that is coherent between PTAs which we interpret as coming from time-variable scattering or refraction in the ionized interstellar medium. Failing to model these different contributions appropriately can dramatically alter the astrophysical interpretation of the stochastic signals observed in the residuals. In some cases, the spectral exponent of the spin-noise signal can vary from 1.6 to 4 depending upon the model, which has direct implications for the long-term sensitivity of the pulsar to a stochastic gravitational-wave (GW) background. By using a more appropriate model, however, we can greatly improve a pulsar's sensitivity to GWs. For example, including system and band-dependent signals in the PSR J0437-4715 data set improves the upper limit on a fiducial GW background by similar to 60 per cent compared to a model that includes DM variations and spin-noise only. C1 [Lentati, L.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Shannon, R. M.; Manchester, R. N.; Dai, S.; Hobbs, G.; Kerr, M.; Reardon, D.; Toomey, L.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Box 76, Epping, NSW 1710, Australia. [Shannon, R. M.; Bhat, N. D. R.] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia. [Coles, W. A.] Univ Calif San Diego, ECE Dept, La Jolla, CA 92093 USA. [Verbiest, J. P. W.; Oslowski, S.; Shaifullah, G.; Tiburzi, C.] Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany. [Verbiest, J. P. W.; Caballero, R. N.; Champion, D.; Desvignes, G.; Graikou, E.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Mingarelli, C. M. F.; Oslowski, S.; Shaifullah, G.; Tiburzi, C.; Zhu, W. W.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [van Haasteren, R.; Ellis, J. A.; Lazio, T. J. W.; Taylor, S. R.; Vallisneri, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Arzoumanian, Z.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol USRA, Code 662, Greenbelt, MD 20771 USA. [Arzoumanian, Z.] NASA, Goddard Space Flight Ctr, X Ray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Babak, S.; Brem, P.] Albert Einstein Inst, MPI Gravitat Phys, D-14476 Golm, Germany. [Bassa, C. G.; Janssen, G. H.; Smits, R.] ASTRON, Postbus 2, NL-7900 AA Dwingeloo, Netherlands. [Burgay, M.; Perrodin, D.; Possenti, A.] INAF, Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, CA, Italy. [Burke-Spolaor, S.; Demorest, P.; Hessels, J. W. T.] Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. [Chatterjee, S.; Cordes, J. M.; Dolch, T.; Lam, M. T.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Cognard, I.; Guillemot, L.; Theureau, G.] Univ Orleans, CNRS, Lab Phys & Chim Environm & Espace LPC2E, F-45071 Orleans, France. [Cognard, I.; Guillemot, L.; Theureau, G.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, F-18330 Nancay, France. [Dai, S.] Peking Univ, Sch Phys, Dept Astron, Beijing 100871, Peoples R China. [Dolch, T.] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA. [Ferdman, R. D.] McGill Univ, Dept Phys, Rutherford Phys Bldg,3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Fonseca, E.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Gair, J. R.] Univ Edinburgh, Sch Math, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland. [Gonzalez, M. E.] Vancouver Coastal Hlth, Dept Nucl Med, 899 W 12th Ave, Vancouver, BC V5Z 1M9, Canada. [Hessels, J. W. T.; Sanidas, S. A.] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Jones, G.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Keith, M.; Levin, L.; McKee, J.; Perera, B. B. P.; Stappers, B.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Lasky, P. D.; Reardon, D.] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys MoCA, Clayton, Vic 3800, Australia. [Lee, K. J.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Levin, L.; McLaughlin, M.; McWilliams, S. T.; Swiggum, J.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Lynch, R. S.] Natl Radio Astron Observ, POB 2, Green Bank, WV 24944 USA. [Madison, D. R.; Ransom, S. M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Mingarelli, C. M. F.] CALTECH, TAPIR, MC 350-17, Pasadena, CA 91125 USA. [Nice, D. J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Pennucci, T. T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Petiteau, A.] Univ Paris Diderot Paris7, APC UFR Phys, Batiment Condorcet,10 Rue Alice Domont & Leonie D, F-75205 Paris 13, France. [Rosado, P. A.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomputing, POB 218, Hawthorn, Vic 3122, Australia. [Sesana, A.; Vecchio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Siemens, X.; Swiggum, J.] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA. [Stinebring, D. R.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA. [Stovall, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Theureau, G.] Univ Paris Diderot, CNRS, INSU, Lab Univ & Theories LUTh,Observ Paris, 5 Pl Jules Janssen, F-92190 Meudon, France. [Wang, J. -B.] Chinese Acad Sci, Xinjiang Astron Observ, 150 Sci 1 St, Urumqi 830011, Xinjiang, Peoples R China. [Wang, Y.] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei Province, Peoples R China. [You, X. P.] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China. [Zhu, X. -J.] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia. RP Lentati, L (reprint author), Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. EM ltl21@cam.ac.uk RI Zhu, Xingjiang/E-1501-2016; Perrodin, Delphine/L-1916-2016; Vecchio, Alberto/F-8310-2015 OI Fonseca, Emmanuel/0000-0001-8384-5049; Zhu, Xingjiang/0000-0001-7049-6468; Perrodin, Delphine/0000-0002-1806-2483; Shannon, Ryan/0000-0002-7285-6348; Taylor, Stephen/0000-0003-0264-1453; Nice, David/0000-0002-6709-2566; McKee, James/0000-0002-2885-8485; van Straten, Willem/0000-0003-2519-7375; Oslowski, Stefan/0000-0003-0289-0732; Vecchio, Alberto/0000-0002-6254-1617 FU National Science Foundation (NSF) PIRE program [0968296]; NSF Physics Frontier Center award [1430284]; SRI International under NSF [AST-1100968]; Ana G. Mendez-Universidad Metropolitana; Universities Space Research Association; Netherlands Foundation for Scientific Research NWO; ERC Advanced Grant 'LEAP' [227947]; STFC; Commonwealth of Australia; Junior Research Fellowship at Trinity Hall College, Cambridge University; European Research Council under the European Union's Seventh Framework Programme (FP) / ERC [337062]; Curtin Research Fellowship; International Max Planck Research School Bonn/Cologne; Bonn-Cologne Graduate School; Royal Society; NSERC; NASA [PF4-150120]; NWO; ERC [337062]; ARC; ERC Advanced Grant "LEAP [227947]; Australian Research Council Discovery Project [DP140102578]; IMPRS Bonn/Cologne; National Basic Research Program of China, 973 Program [2015CB857101]; NSFC [11373011, 11403086]; ERC Advanced Grant "LEAP" [227947]; European Research Council [610058]; Marie Curie International Outgoing Fellowship within the European Union Seventh Framework Programme; Alexander von Humboldt Foundation; Australian Research Council [DP140102578]; CSIRO; Canadian Institute for Advanced Research; JPL RTD programme; NASA through Einstein Fellowship grant [PF3-140116]; West Light Foundation of CAS [XBBS201322]; National Science Fundation of China (NSFC) [11503007]; NNSF of China [U1231120]; FRFCU [XDJK2015B012] FX The NANOGrav project receives support from National Science Foundation (NSF) PIRE program award number 0968296 and NSF Physics Frontier Center award number 1430284. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. The WSRT is operated by the Netherlands Institute for Radio Astronomy (ASTRON) with support from The Netherlands Foundation for Scientific Research NWO. The 100-m Effelsberg Radio Telescope is operated by the Max-Planck-Institut fur Radioastronomie at Effelsberg. Some of the work reported in this paper was supported by the ERC Advanced Grant 'LEAP', Grant Agreement Number 227947 (PI Kramer). Pulsar research at the Jodrell Bank Centre for Astrophysics is supported by a consolidated grant from STFC. The Parkes radio telescope is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by the Commonwealth Scientific and Industrial Research Organization. LL was supported by a Junior Research Fellowship at Trinity Hall College, Cambridge University. CGB acknowledges support from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 337062 (DRAGNET; PI Hessels) NDRB is supported by a Curtin Research Fellowship. RNC acknowledges the support of the International Max Planck Research School Bonn/Cologne and the Bonn-Cologne Graduate School. JG's work is supported by the Royal Society. MEG was partly funded by an NSERC PDF award. JAE acknowledges support by NASA through Einstein Fellowship grant PF4-150120. JWTH acknowledges funding from an NWO Vidi fellowship and ERC Starting Grant 'DRAGNET' (337062). GH is supported by an ARC Future Fellowship grant. RK acknowledges the support of the ERC Advanced Grant "LEAP (Number 227947, PI Kramer). PDL is supported by the Australian Research Council Discovery Project DP140102578. PL acknowledges the support of IMPRS Bonn/Cologne KJL gratefully acknowledges support from National Basic Research Program of China, 973 Program, 2015CB857101 and NSFC 11373011. KL acknowledges the support of the ERC Advanced Grant "LEAP" (Number 227947, PI Kramer). KL acknowledges the financial support by the European Research Council for the ERC Synergy Grant BlackHoleCam under contract no. 610058. CMFM was supported by a Marie Curie International Outgoing Fellowship within the European Union Seventh Framework Programme. SO is supported by the Alexander von Humboldt Foundation. PAR is supported by the Australian Research Council Discovery Project DP140102578. SAS acknowledges support from an NWO Vidi fellowship (PI: Hessels). AS is supported by a University Research Fellowship of the Royal Society. RMS acknowledges travel support through a John Philip early career research award from CSIRO. Pulsar research at UBC is supported by an NSERC Discovery Grant and Discovery Accelerator Supplement and by the Canadian Institute for Advanced Research. SRT is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.; MV acknowledges support from the JPL RTD programme Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. RvH acknowledges support by NASA through Einstein Fellowship grant PF3-140116. JBW is supported by West Light Foundation of CAS XBBS201322 and NSFC project no.11403086. YW was supported by the National Science Fundation of China (NSFC) award number 11503007. XPY acknowledges support by NNSF of China (U1231120) and FRFCU (XDJK2015B012). NR 64 TC 5 Z9 5 U1 4 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2016 VL 458 IS 2 BP 2161 EP 2187 DI 10.1093/mnras/stw395 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YO UT WOS:000374569600082 ER PT J AU Abe, K Fuke, H Haino, S Hams, T Hasegawa, M Horikoshi, A Itazaki, A Kim, KC Kumazawa, T Kusumoto, A Lee, MH Makida, Y Matsuda, S Matsukawa, Y Matsumoto, K Mitchell, JW Myers, Z Nishimura, J Nozaki, M Orito, R Ormes, JF Picot-Clemente, N Sakai, K Sasaki, M Seo, ES Shikaze, Y Shinoda, R Streitmatter, E Suzuki, J Takasugi, Y Takeuchi, K Tanaka, K Thakur, N Yamagami, T Yamamoto, A Yoshida, T Yoshimura, K AF Abe, K. Fuke, H. Haino, S. Hams, T. Hasegawa, M. Horikoshi, A. Itazaki, A. Kim, K. C. Kumazawa, T. Kusumoto, A. Lee, M. H. Makida, Y. Matsuda, S. Matsukawa, Y. Matsumoto, K. Mitchell, J. W. Myers, Z. Nishimura, J. Nozaki, M. Orito, R. Ormes, J. F. Picot-Clemente, N. Sakai, K. Sasaki, M. Seo, E. S. Shikaze, Y. Shinoda, R. Streitmatter, E. Suzuki, J. Takasugi, Y. Takeuchi, K. Tanaka, K. Thakur, N. Yamagami, T. Yamamoto, A. Yoshida, T. Yoshimura, K. TI MEASUREMENTS OF COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE BESS-POLAR LONG-DURATION BALLOON FLIGHTS OVER ANTARCTICA SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; cosmic rays ID COSMOLOGICAL ANTIMATTER; SPECTROMETER; PAMELA; SEARCH AB The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei in the range 0.15-80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02. C1 [Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R.; Shikaze, Y.; Takasugi, Y.; Takeuchi, K.] Kobe Univ, Kobe, Hyogo 6578501, Japan. [Fuke, H.; Yamagami, T.; Yoshida, T.] Japan Aerosp Explorat Agcy ISAS JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M.; Suzuki, J.; Tanaka, K.; Yamamoto, A.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hams, T.; Mitchell, J. W.; Sakai, K.; Sasaki, M.; Streitmatter, E.; Thakur, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kim, K. C.; Lee, M. H.; Myers, Z.; Picot-Clemente, N.; Seo, E. S.] Univ Maryland, IPST, College Pk, MD 20742 USA. [Nishimura, J.; Shinoda, R.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Ormes, J. F.] Univ Denver, Denver, CO 80208 USA. [Yoshimura, K.] Okayama Univ, Okayama, Okayama 7000082, Japan. [Abe, K.] Univ Tokyo, ICRR, Kamioka Observ, Gifu 5061205, Japan. [Haino, S.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Hams, T.; Sakai, K.] Univ Maryland, CRESST, Baltimore, MD 21250 USA. [Orito, R.] Univ Tokushima, Tokushima, Tokushima 7708502, Japan. [Sasaki, M.] Univ Maryland, CRESST, College Pk, MD 20742 USA. RP Abe, K (reprint author), Kobe Univ, Kobe, Hyogo 6578501, Japan. FU MEXT-JSPS; NASA; CSBF; NSF USAP FX The BESS-Polar program is a Japan-United States collaboration, supported in Japan by the Grant-in-Aid "KAKENHI" for Specially Promoted and Basic Researches, MEXT-JSPS, and in the United States by NASA. Balloon flight operations were carried out by the NASA Columbia Scientific Balloon (CSBF) Facility and the National Science Foundation United States Antarctic Program (USAP). We express our sincere thanks for the financial support and encouragement of both national agencies and the continuous and professional support of the technical and administrative staffs of the collaborating institutions and of CSBF and NSF USAP. NR 27 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 65 DI 10.3847/0004-637X/822/2/65 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900008 ER PT J AU Ackermann, M Ajello, M Anderson, B Atwood, WB Axelsson, M Baldini, L Barbiellini, G Bastieri, D Bellazzini, R Bhat, PN Bissaldi, E Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caragiulo, M Caraveo, PA Cecchi, C Charles, E Chekhtman, A Chiang, J Chiaro, G Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Di Venere, L Drell, PS Favuzzi, C Focke, WB Franckowiak, A Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Giglietto, N Giordano, F Giroletti, M Godfrey, G Grenier, IA Grove, JE Guiriec, S Hewitt, JW Hill, AB Horan, D Johannesson, G Kocevski, D Kouveliotou, C Kuss, M Larsson, S Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Mayer, M Mazziotta, MN McEnery, JE Michelson, PF Mizuno, T Monzani, ME Morselli, A Murgia, S Nemmen, R Nuss, E Ohno, M Ohsugi, T Omodei, N Orienti, M Orlando, E Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Racusin, JL Raino, S Rando, R Razzano, M Reimer, A Reimer, O Schaal, M Schulz, A Sgro, C Siskind, EJ Spada, F Spandre, G Spinelli, P Takahashi, H Thayer, JB Tibaldo, L Tinivella, M Torres, DF Tosti, G Troja, E Vianello, G von Kienlin, A Werner, M Wood, KS AF Ackermann, M. Ajello, M. Anderson, B. Atwood, W. B. Axelsson, M. Baldini, L. Barbiellini, G. Bastieri, D. Bellazzini, R. Bhat, P. N. Bissaldi, E. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caragiulo, M. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Di Venere, L. Drell, P. S. Favuzzi, C. Focke, W. B. Franckowiak, A. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Giglietto, N. Giordano, F. Giroletti, M. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hewitt, J. W. Hill, A. B. Horan, D. Johannesson, G. Kocevski, D. Kouveliotou, C. Kuss, M. Larsson, S. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Mayer, M. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mizuno, T. Monzani, M. E. Morselli, A. Murgia, S. Nemmen, R. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Racusin, J. L. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Schaal, M. Schulz, A. Sgro, C. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Takahashi, H. Thayer, J. B. Tibaldo, L. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Vianello, G. von Kienlin, A. Werner, M. Wood, K. S. TI FERMI LAT STACKING ANALYSIS OF SWIFT LOCALIZED GRBs SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma rays: general; methods: data analysis; X-rays: bursts ID LARGE-AREA TELESCOPE; GAMMA-RAY BURSTS; GEV EMISSION; AFTERGLOW; MISSION; CATALOG; 130427A AB We perform a comprehensive stacking analysis of data collected by the Fermi. Large Area Telescope (LAT) of gamma-ray bursts (GRBs) localized by the Swift. spacecraft, which were not detected by the LAT but which fell within the instrument's field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst's prompt gamma-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swift's X-ray Telescope at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the burst's afterglow brightness lend. further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing. to instrumental threshold effects. C1 [Ackermann, M.; Buehler, R.; Mayer, M.; Schulz, A.] DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Atwood, W. B.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Axelsson, M.] Tokyo Metropolitan Univ, Dept Phys, Minami Osawa 1-1, Tokyo 1920397, Japan. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Desiante, R.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Kuss, M.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bhat, P. N.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Godfrey, G.; Hill, A. B.; Michelson, P. F.; Monzani, M. E.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Tibaldo, L.; Vianello, G.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Godfrey, G.; Hill, A. B.; Michelson, P. F.; Monzani, M. E.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Tibaldo, L.; Vianello, G.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Brandt, T. J.; Gehrels, N.; Guiriec, S.; Kocevski, D.; McEnery, J. E.; Perkins, J. S.; Racusin, J. L.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS, IN2P3, Lab Univ & Particules Montpellier, F-34059 Montpellier, France. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy. [Caraveo, P. A.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.; Schaal, M.] Naval Res Lab, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Conrad, J.; Larsson, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Li, L.] Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, Box 50005, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Grenier, I. A.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Grove, J. E.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Hewitt, J. W.] Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Hewitt, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland. [Kouveliotou, C.] George Washington Univ, Dept Phys, 725 21st St NW, Washington, DC 20052 USA. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] Inst Space Sci IEEC CSIC, Campus UAB, E-08193 Barcelona, Spain. [McEnery, J. E.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Murgia, S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Nemmen, R.] Univ Sao Paulo, Inst Astron Geofis & Cincias Atmosfer, Rua Matao 1226, BR-05508090 Sao Paulo, SP, Brazil. [Ohno, M.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Schaal, M.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Ackermann, M (reprint author), DESY, D-15738 Zeuthen, Germany. EM jchiang@slac.stanford.edu; daniel.kocevski@nasa.gov; judith.racusin@nasa.gov RI Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X; Sgro', Carmelo/0000-0001-5676-6214; Pesce-Rollins, Melissa/0000-0003-1790-8018; Hill, Adam/0000-0003-3470-4834; orienti, monica/0000-0003-4470-7094; Axelsson, Magnus/0000-0003-4378-8785; Mazziotta, Mario Nicola/0000-0001-9325-4672 FU National Aeronautics and Space Administration in the United States; Department of Energy in the United States; Commissariat a l'Energie Atomique in France; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana in Italy; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan; high-energy Accelerator Research Organization (KEK) in Japan; Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation in Sweden; Swedish Research Council in Sweden; Swedish National Space Board in Sweden FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT, as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Coulture, Sports, Science and Technology (MEXT), high-energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K.A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. NR 24 TC 0 Z9 0 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 68 DI 10.3847/0004-637X/822/2/68 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900011 ER PT J AU Bryans, P Pesnell, WD AF Bryans, Paul Pesnell, W. Dean TI ON THE ABSENCE OF EUV EMISSION FROM COMET C/2012 S1 (ISON) SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; comets: individual (C/2012 S1, C/2011 W3); Sun: corona; Sun: general ID EXTREME-ULTRAVIOLET EMISSION; SUN-GRAZING COMET; SOLAR CORONA; PERIHELION; MISSION; SOHO; W3 AB When the sungrazing comet C/2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun's surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This "null result" is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. By comparing these properties with those of sungrazing comet C/2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C/2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C/2012 S1 (ISON) was at least a factor of four less than that of C/2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach. C1 [Bryans, Paul] NCAR, High Altitude Observ, Boulder, CO 80301 USA. [Bryans, Paul] NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Code 671, Greenbelt, MD 20771 USA. [Pesnell, W. Dean] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. RP Bryans, P (reprint author), NCAR, High Altitude Observ, Boulder, CO 80301 USA.; Bryans, P (reprint author), NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Code 671, Greenbelt, MD 20771 USA. RI Pesnell, William/D-1062-2012; OI Pesnell, William/0000-0002-8306-2500; Bryans, Paul/0000-0001-5681-9689 NR 36 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 77 DI 10.3847/0004-637X/822/2/77 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900020 ER PT J AU Burgess, JM Begue, D Ryde, F Omodei, N Pe'er, A Racusin, JL Cucchiara, A AF Burgess, J. Michael Begue, Damien Ryde, Felix Omodei, Nicola Pe'er, Asaf Racusin, J. L. Cucchiara, A. TI AN EXTERNAL SHOCK ORIGIN OF GRB 141028A SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (141028A); radiation mechanisms: non-thermal; radiation mechanisms: thermal ID GAMMA-RAY BURSTS; BLAST-WAVE MODEL; LIGHT CURVES; PHOTOSPHERIC EMISSION; LIKELIHOOD RATIO; MAGNETIC-FIELDS; INTERNAL SHOCKS; PEAK ENERGY; VARIABILITY; FERMI AB The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB. 141028A, is analyzed under the guise of an external shock model. First, we fit the gamma-ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron nu F-nu peak to an analytic model derived considering the emission of a relativistic blast. wave expanding into an external medium. The prediction of the model for the nu F-nu peak evolution matches well with the observations. We observe the blast. wave transitioning into the deceleration phase. Furthermore, we assume the expansion of the blast. wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the nu F-nu peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase. C1 [Burgess, J. Michael; Begue, Damien; Ryde, Felix] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Burgess, J. Michael; Begue, Damien; Ryde, Felix] AlbaNova Univ Ctr, KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Omodei, Nicola] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Omodei, Nicola] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Pe'er, Asaf] Natl Univ Ireland Univ Coll Cork, Dept Phys, Cork, Ireland. [Racusin, J. L.; Cucchiara, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Burgess, JM (reprint author), AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.; Burgess, JM (reprint author), AlbaNova Univ Ctr, KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. EM jamesb@kth.se; damienb@kth.se OI Omodei, Nicola/0000-0002-5448-7577; Ryde, Felix/0000-0002-9769-8016; Burgess, James/0000-0003-3345-9515 FU NASA through Chandra Award by the Chandra X-ray Observatory Center [GO4-15073Z, NAS8-03060]; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The authors are very grateful for insightful discussions with Chuck Dermer, Peter Meszaros, Gregory Vereshchagin, and Peter Veres, as well as the anonymous referee, who helped improve the manuscript. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester, data obtained from the Chandra Data Archive, and software provided by the Chandra X-ray Center (CXC). J.L.R. and A.C. acknowledge support for this work from NASA through Chandra Award Number GO4-15073Z issued by the Chandra X-ray Observatory Center under contract NAS8-03060.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 70 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 63 DI 10.3847/0004-637X/822/2/63 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900006 ER PT J AU Guo, YC Koo, DC Lu, Y Forbes, JC Rafelski, M Trump, JR Amorin, R Barro, G Dave, R Faber, SM Hathi, NP Yesuf, H Cooper, MC Dekel, A Guhathakurta, P Kirby, EN Koekemoer, AM Perez-Gonzalez, PG Lin, LW Newman, JA Primack, JR Rosario, DJ Willmer, CNA Yan, RB AF Guo, Yicheng Koo, David C. Lu, Yu Forbes, John C. Rafelski, Marc Trump, Jonathan R. Amorin, Ricardo Barro, Guillermo Dave, Romeel Faber, S. M. Hathi, Nimish P. Yesuf, Hassen Cooper, Michael C. Dekel, Avishai Guhathakurta, Puragra Kirby, Evan N. Koekemoer, Anton M. Perez-Gonzalez, Pablo G. Lin, Lihwai Newman, Jeffery A. Primack, Joel R. Rosario, David J. Willmer, Christopher N. A. Yan, Renbin TI STELLAR MASS-GAS-PHASE METALLICITY RELATION AT 0.5 <= z <= 0.7: A POWER LAW WITH INCREASING SCATTER TOWARD THE LOW-MASS REGIME SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: abundances; galaxies: dwarf; galaxies: evolution; galaxies: formation; galaxies: fundamental parameters; galaxies: ISM ID STAR-FORMING GALAXIES; ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; EXTRAGALACTIC LEGACY SURVEY; EMISSION-LINE GALAXIES; HIGH-REDSHIFT GALAXIES; DIGITAL SKY SURVEY; GOODS-SOUTH FIELD; ZCOSMOS GALAXIES; FORMATION RATES AB We present the stellar mass (M-*)-gas-phase metallicity relation (MZR) and its scatter at intermediate redshifts (0.5 <= z <= 0.7) for 1381 field galaxies collected from deep spectroscopic surveys. The star formation rate (SFR) and color at a given M-* of this magnitude-limited (R less than or similar to 24 AB) sample are representative of normal star-forming galaxies. For masses below 10(9) M-circle dot, our sample of 237 galaxies is similar to 10 times larger than those in previous studies beyond the local universe. This huge gain in sample size enables superior constraints on the MZR and its scatter in the low-mass regime. We find a power-law MZR at 10(8) M-circle dot < M-* < 10(11) M-circle dot: 12 + log (O/H) = (5.83 +/- 0.19)+(0.30 +/- 0.02) log (M-*/M-circle dot). At 10(9) M-circle dot < M-* < 10(10.5) M-circle dot, our MZR shows agreement with others measured at similar redshifts in the literature. Our power-law slope is, however, shallower than the extrapolation of the MZRs of others to masses below 10(9) M-circle dot. The SFR dependence of the MZR in our sample is weaker than that found for local galaxies (known as the fundamental metallicity relation). Compared to a variety of theoretical models, the slope of our MZR for low-mass galaxies agrees well with predictions incorporating supernova energy-driven winds. Being robust against currently uncertain metallicity calibrations, the scatter of the MZR serves as a powerful diagnostic of the stochastic history of gas accretion, gas recycling, and star formation of low-mass galaxies. Our major result is that the scatter of our MZR increases as M-* decreases. Our result implies that either the scatter of the baryonic accretion rate (sigma((M) over dot)) or the scatter of the M-*-M-halo relation (sigma(SHMR)) increases as M-* decreases. Moreover, our measure of scatter at z = 0.7 appears consistent with that found for local galaxies. This lack of redshift evolution constrains models of galaxy evolution to have both sigma((M) over dot) and sigma(SHMR) remain unchanged from z = 0.7 to z = 0. C1 [Guo, Yicheng; Koo, David C.; Forbes, John C.; Barro, Guillermo; Faber, S. M.; Yesuf, Hassen; Guhathakurta, Puragra] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Lu, Yu] Carnegie Inst Sci, Pasadena, CA USA. [Rafelski, Marc] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD USA. [Trump, Jonathan R.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Trump, Jonathan R.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Amorin, Ricardo] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Dave, Romeel] Univ Western Cape, Cape Town, South Africa. [Hathi, Nimish P.] Aix Marseille Univ, CNRS, LAM, UMR, F-7326 Marseille, France. [Cooper, Michael C.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA USA. [Dekel, Avishai] Hebrew Univ Jerusalem, Racah Inst Phys, Ctr Astrophys & Planetary Sci, Jerusalem, Israel. [Kirby, Evan N.] CALTECH, Pasadena, CA 91125 USA. [Koekemoer, Anton M.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Perez-Gonzalez, Pablo G.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain. [Lin, Lihwai] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Newman, Jeffery A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Primack, Joel R.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Rosario, David J.] Max Planck Inst Extraterr Phys MPE, Garching, Germany. [Willmer, Christopher N. A.] Univ Arizona, Steward Observ, Tucson, AZ USA. [Yan, Renbin] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Guo, YC (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. EM ycguo@ucolick.org RI Hathi, Nimish/J-7092-2014; OI Hathi, Nimish/0000-0001-6145-5090; Amorin, Ricardo O./0000-0001-5758-1000 FU NSF [AST-0808133, AST-1405962]; NASA through a grant from the Space Telescope Science Institute [HST-GO-12060, HST-AR-13891]; NASA [NAS 5-26555]; NASA through Hubble Fellowship - Space Telescope Science Institute [51330]; ISF [24/12]; I-CORE Program of the PBC ISF grant [1829/12]; Spanish MINECO [AYA2012-31277]; [HST-AR-13909] FX We thank the anonymous referee for constructive comments that improve this article. We thank Aldo Rodriguez-Puebla for useful discussions. Several authors from UCSC acknowledge support from NSF grant AST-0808133. Support for Program HST-GO-12060 and HST-AR-13891 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS 5-26555. M.R. also acknowledges support from an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center. J.F. is supported by HST-AR-13909. J.R.T. acknowledges support from NASA through Hubble Fellowship grant #51330 awarded by the Space Telescope Science Institute. A.D. is supported by ISF grant 24/12, by the I-CORE Program of the PBC ISF grant 1829/12, and by NSF grant AST-1405962. P.G. P.G. acknowledges support from Spanish MINECO grant AYA2012-31277. NR 95 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 103 DI 10.3847/0004-637X/822/2/103 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900046 ER PT J AU Kipping, DM Torres, G Henze, C Teachey, A Ciardi, D Isaacson, H Petigura, E Marcy, GW Buchhave, LA Chen, J Bryson, ST Sandford, E AF Kipping, D. M. Torres, G. Henze, C. Teachey, A. Ciardi, D. Isaacson, H. Petigura, E. Marcy, G. W. Buchhave, L. A. Chen, J. Bryson, S. T. Sandford, E. TI A TRANSITING JUPITER ANALOG (vol 820, 112, 2016) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Kipping, D. M.; Teachey, A.; Chen, J.; Sandford, E.] Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA. [Torres, G.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Henze, C.; Bryson, S. T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ciardi, D.] CALTECH, NASA, Exoplanet Sci Inst, M-C 100-22,770 South Wilson Ave, Pasadena, CA 91125 USA. [Isaacson, H.; Petigura, E.; Marcy, G. W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Buchhave, L. A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. RP Kipping, DM (reprint author), Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA. EM dkipping@astro.columbia.edu NR 1 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 118 DI 10.3847/0004-637X/822/2/118 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900061 ER PT J AU Morton, TD Bryson, ST Coughlin, JL Rowe, JF Ravichandran, G Petigura, EA Haas, MR Batalha, NM AF Morton, Timothy D. Bryson, Stephen T. Coughlin, Jeffrey L. Rowe, Jason F. Ravichandran, Ganesh Petigura, Erik A. Haas, Michael R. Batalha, Natalie M. TI FALSE POSITIVE PROBABILITIES FOR ALL KEPLER OBJECTS OF INTEREST: 1284 NEWLY VALIDATED PLANETS AND 428 LIKELY FALSE POSITIVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: statistical; planetary systems ID TRANSIT TIMING OBSERVATIONS; MULTIPLANET SYSTEMS; HABITABLE ZONE; CANDIDATES; STARS; STELLAR; CONFIRMATION; EXOPLANET; MODELS; IDENTIFICATION AB We present astrophysical false positive probability calculations for every Kepler Object of Interest (KOI)-the first large-scale demonstration of a fully automated transiting planet validation procedure. Out of 7056 KOIs, we determine that 1935 have probabilities <1% of being astrophysical false positives, and thus may be considered validated planets. Of these, 1284 have not yet been validated or confirmed by other methods. In addition, we identify 428 KOIs that are likely to be false positives, but have not yet been identified as such, though some of these may be a result of unidentified transit timing variations. A side product of these calculations is full stellar property posterior samplings for every host star, modeled as single, binary, and triple systems. These calculations use vespa, a publicly available Python package that is able to be easily applied to any transiting exoplanet candidate. C1 [Morton, Timothy D.] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA. [Bryson, Stephen T.; Coughlin, Jeffrey L.; Haas, Michael R.; Batalha, Natalie M.] NASA, Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. [Coughlin, Jeffrey L.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Rowe, Jason F.] McGill Univ, Dept Phys, Montreal, PQ H3T 1J4, Canada. [Ravichandran, Ganesh] Columbia Univ, Dept Comp Sci, 1214 Amsterdam Ave, New York, NY 10027 USA. [Petigura, Erik A.] CALTECH, Pasadena, CA 91125 USA. RP Morton, TD (reprint author), Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA. EM tdm@astro.princeton.edu FU Kepler Participating Scientist Program [NNX14AE11G]; NASA Science Mission directorate FX T.D.M. acknowledges support from the Kepler Participating Scientist Program (NNX14AE11G). We thank the anonymous referee, Daniel Huber, Jack Lissauer, Juna Kollmeier, and David Hogg for providing helpful suggestions that improved both the analysis and the presentation herein. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The authors acknowledge the efforts of the Kepler Mission team for obtaining the light curve products used in this publication, which were generated by the Kepler Mission science pipeline through the efforts of the Kepler Science Operations Center and Science Office. The Kepler Mission is led by the project office at NASA Ames Research Center. Ball Aerospace built the Kepler photometer and spacecraft, which is operated by the mission operations center at LASP. These data products are archived at the NASA Exoplanet Science Institute, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research has made use of NASA's Astrophysics Data System. NR 58 TC 29 Z9 29 U1 3 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 86 DI 10.3847/0004-637X/822/2/86 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900029 ER PT J AU Strandet, ML Weiss, A Vieira, JD de Breuck, C Aguirre, JE Aravena, M Ashby, MLN Bethermin, M Bradford, CM Carlstrom, JE Chapman, SC Crawford, TM Everett, W Fassnacht, CD Furstenau, RM Gonzalez, AH Greve, TR Gullberg, B Hezaveh, Y Kamenetzky, JR Litke, K Ma, J Malkan, M Marrone, DP Menten, KM Murphy, EJ Nadolski, A Rotermund, KM Spilker, JS Stark, AA Welikala, N AF Strandet, M. L. Weiss, A. Vieira, J. D. de Breuck, C. Aguirre, J. E. Aravena, M. Ashby, M. L. N. Bethermin, M. Bradford, C. M. Carlstrom, J. E. Chapman, S. C. Crawford, T. M. Everett, W. Fassnacht, C. D. Furstenau, R. M. Gonzalez, A. H. Greve, T. R. Gullberg, B. Hezaveh, Y. Kamenetzky, J. R. Litke, K. Ma, J. Malkan, M. Marrone, D. P. Menten, K. M. Murphy, E. J. Nadolski, A. Rotermund, K. M. Spilker, J. S. Stark, A. A. Welikala, N. TI THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; early universe; galaxies: evolution; galaxies: high-redshift; ISM: molecules ID DEEP-FIELD-SOUTH; SUBMILLIMETER GALAXIES; MOLECULAR GAS; FORMATION HISTORY; NUMBER COUNTS; POLE TELESCOPE; LABOCA SURVEY; ALMA SURVEY; BAND; EMISSION AB We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI], [NII], H2O and NH3. We further present Atacama Pathfinder Experiment [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 +/- 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 +/- 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution. C1 [Strandet, M. L.; Weiss, A.; Menten, K. M.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Vieira, J. D.; Furstenau, R. M.; Nadolski, A.] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [de Breuck, C.; Bethermin, M.; Gullberg, B.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [de Breuck, C.; Bethermin, M.; Gullberg, B.] Univ Illinois, Dept Phys, 1002 W Green St, Urbana, IL 61801 USA. [Aguirre, J. E.] Univ Penn, 209 South 33rd St, Philadelphia, PA 19104 USA. [Aravena, M.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Av Ejercito 441, Santiago, Chile. [Ashby, M. L. N.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Bradford, C. M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Carlstrom, J. E.; Crawford, T. M.] Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carlstrom, J. E.] Univ Chicago, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carlstrom, J. E.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Chapman, S. C.; Rotermund, K. M.] Dalhousie Univ, Halifax, NS, Canada. [Everett, W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Everett, W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Fassnacht, C. D.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Gonzalez, A. H.; Ma, J.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Greve, T. R.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Hezaveh, Y.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Kamenetzky, J. R.; Litke, K.; Marrone, D. P.; Spilker, J. S.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Malkan, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Murphy, E. J.] CALTECH, Infrared Proc & Anal Ctr, MC 220-6, Pasadena, CA 91125 USA. [Welikala, N.] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. RP Strandet, ML (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. OI De Breuck, Carlos/0000-0002-6637-3315; Aguirre, James/0000-0002-4810-666X; Stark, Antony/0000-0002-2718-9996 FU International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne; FONDECYT [1140099]; U.S. National Science Foundation [AST-1312950]; Herschel [OT1_jvieira_4, DDT_mstrande_1]; Commonwealth of Australia; VLT/X-Shooter under the ESO project [E-092.A-0503(A)]; National Science Foundation [PLR-1248097]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; [E-086. A-0793A-2010]; [M-085.F-0008-2010]; [M-087.F-0015-2011]; [M-091.F-0031-2013]; [E-094.A-0712A-2014]; [M-095.F-0028-2015]; [E-096.A-0939A-2015]; [PHY-1125897] FX M.L.S. was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. M.A. acknowledges partial support from FONDECYT through grant 1140099. J.D.V., K.C.L., D.P.M., and J.S.S. acknowledge support from the U.S. National Science Foundation under grant No. AST-1312950. This paper makes use of the following ALMA data: ADS/JAO. ALMA# 2012.1.00844.S, 2012.1.00994.S, 2011.0.00957.S, and 2011.0.00958.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work is based in part on observations made with Herschel under program IDs OT1_jvieira_4 and DDT_mstrande_1. Herschel is a European Space Agency Cornerstone Mission with significant participation by NASA. We also use data from the Atacama Pathfinder Experiment under program IDs E-086. A-0793A-2010, M-085.F-0008-2010, M-087.F-0015-2011, M-091.F-0031-2013, E-094.A-0712A-2014, M-095.F-0028-2015, E-096.A-0939A-2015. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. We have also used data from VLT/X-Shooter under the ESO project ID E-092.A-0503(A). The SPT is supported by the National Science Foundation through grant PLR-1248097, with partial support through PHY-1125897, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947. NR 65 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2016 VL 822 IS 2 AR 80 DI 10.3847/0004-637X/822/2/80 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6RZ UT WOS:000377204900023 ER PT J AU Panesar, NK Sterling, AC Moore, RL AF Panesar, Navdeep K. Sterling, Alphonse C. Moore, Ronald L. TI HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: coronal mass ejections (CMEs); Sun: flares ID X-RAY JETS; FLUX EMERGENCE; BLOWOUT JETS; FLARES; RECONNECTION; TELESCOPE; FILAMENT; STANDARD; ERUPTION; SERIES AB We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M-class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (similar to 200-300 km s(-1)) was slower-moving than most CMEs, with angular widths (20 degrees-50 degrees) comparable to that of the base of a coronal streamer straddling the AR and were of the "streamer-puff" variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamerbase loop was blown out by the loop's twist from the reconnection. C1 [Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.] Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, ZP13, Huntsville, AL 35812 USA. [Panesar, Navdeep K.; Moore, Ronald L.] UAH, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. RP Panesar, NK (reprint author), Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, ZP13, Huntsville, AL 35812 USA.; Panesar, NK (reprint author), UAH, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. EM navdeep.k.panesar@nasa.gov OI Panesar, Navdeep/0000-0001-7620-362X FU Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program; Hinode Project FX This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program, and by the Hinode Project. N.K.P. is supported by an appointment to the NASA Postdoctoral Program at the NASA MSFC, administered by USRA through a contract with NASA. NR 32 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 10 PY 2016 VL 822 IS 2 AR L23 DI 10.3847/2041-8205/822/2/L23 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DM2JQ UT WOS:000376173300003 ER PT J AU Suryan, RM Kuletz, KJ Parker-Stetter, SL Ressler, PH Renner, M Horne, JK Farley, EV Labunski, EA AF Suryan, Robert M. Kuletz, Kathy J. Parker-Stetter, Sandra L. Ressler, Patrick H. Renner, Martin Horne, John K. Farley, Edward V. Labunski, Elizabeth A. TI Temporal shifts in seabird populations and spatial coherence with prey in the southeastern Bering Sea SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Seabird; Forage fish; Krill; Spatial models; Seasonal patterns ID OSCILLATING CONTROL HYPOTHESIS; POLLOCK THERAGRA-CHALCOGRAMMA; SHORT-TAILED SHEARWATERS; CLIMATE-CHANGE; PRIBILOF ISLANDS; WALLEYE POLLOCK; MARINE-BIRD; CONTINENTAL-SHELF; SCHOOLING FISH; BEAUFORT SEAS AB The Bering Sea is a highly productive ecosystem with abundant prey populations in the summer that support some of the largest seabird colonies in the Northern Hemisphere. In the fall, the Bering Sea is used by large numbers of migrants and post-breeding seabirds. We used over 22 000 km of vessel-based surveys carried out during summer (June to July) and fall (late August to October) from 2008 to 2010 over the southeast Bering Sea to examine annual and seasonal changes in seabird communities and spatial relationships with concurrently sampled prey. Deep-diving murres Uria spp., shallow-diving shearwaters Ardenna spp., and surface-foraging northern fulmars Fulmarus glacialis and kittiwakes Rissa spp. dominated summer and fall seabird communities. Seabird densities in summer were generally less than half of fall densities and species richness was lower in summer than in fall. Summer seabird densities had high interannual variation (highest in 2009), whereas fall densities varied little among years. Seabirds were more spatially clustered around breeding colonies and the outer continental shelf in the summer and then dispersed throughout the middle and inner shelf in fall. In summer, the abundance of age-1 walleye pollock Gadus chalcogrammus along with spatial (latitude and longitude) and temporal (year) variables best explained broad-scale seabird distribution. In contrast, seabirds in fall had weaker associations with spatial and temporal variables and stronger associations with different prey species or groups. Our results demonstrate seasonal shifts in the distribution and foraging patterns of seabirds in the southeastern Bering Sea with a greater dependence on prey occurring over the middle and inner shelf in fall. C1 [Suryan, Robert M.] Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Newport, OR 97365 USA. [Kuletz, Kathy J.; Labunski, Elizabeth A.] US Fish & Wildlife Serv, 1011 E Tudor Rd, Anchorage, AK 99503 USA. [Parker-Stetter, Sandra L.; Horne, John K.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Ressler, Patrick H.] NOAA, Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Renner, Martin] Tern Again Consulting, 308 E Bayview Ave, Homer, AK 99603 USA. [Farley, Edward V.] NOAA, Natl Marine Fisheries Serv, Ted Stevens Marine Res Inst, Alaska Fisheries Sci Ctr, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. [Parker-Stetter, Sandra L.] NOAA, Natl Marine Fisheries Serv, Fishery Resources Anal & Monitoring Div, NW Fisheries Sci Ctr, 2725 Montlake Blvd East, Seattle, WA 98112 USA. RP Suryan, RM (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Newport, OR 97365 USA. EM rob.suryan@oregonstate.edu FU Alaska Fisheries Science Center; National Marine Fisheries Service; NOAA; US Fish and Wildlife Service; North Pacific Research Board; National Science Foundation as part of the BEST-BSIERP Bering Sea Project; BEST-BSIERP Bering Sea Project [178] FX We thank the many scientists who collected the seabird and fisheries data and the captains and crews of the research vessels used in these efforts. This work was supported in part by the Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, the US Fish and Wildlife Service, and the North Pacific Research Board and National Science Foundation as part of the BEST-BSIERP Bering Sea Project. Drafts of this manuscript benefited from comments by J. Zamon and 2 anonymous reviewers. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA, or the US Fish and Wildlife Service. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This paper is BEST-BSIERP Bering Sea Project publication #178 and NPRB publication number #581. NR 75 TC 1 Z9 1 U1 9 U2 10 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD MAY 10 PY 2016 VL 549 BP 199 EP 215 DI 10.3354/meps11653 PG 17 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA DM5GR UT WOS:000376376200016 ER PT J AU Redonnet, S Lockard, DP Khorrami, MR Choudhari, MM AF Redonnet, Stephane Lockard, David P. Khorrami, Mehdi R. Choudhari, Meelan. M. TI The non-reflective interface: an innovative forcing technique for computational acoustic hybrid methods SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE noise prediction; computational acoustics; hybrid method; weak coupling; non-reflective ID NONREFLECTING BOUNDARY-CONDITIONS AB The present article concerns a commonly used methodology for the numerical simulation of acoustic emission and propagation phenomena. We consider the so-called multi-stage hybrid acoustic approach, in which a given noise problem is simulated via a sequence of weakly coupled computations of noise generation and acoustic propagation stages, wherein the simulation of the propagation stage is based on advanced Computational AeroAcoustics (CAA) techniques. The paper introduces an original forcing technique, namely, the Non-Reflective Interface (NRI), to enable the transfer of an acoustic signal from an a priori noise generation stage into a CAA-based acoustic propagation phase. Unlike most existing forcing techniques, the NRI is non-reflective (or anechoic) in nature and, therefore, can properly handle the backscattering effects arising during the noise propagation stage. This attribute makes the NRI-based weak-coupling procedure and the associated CAA-based hybrid approach compatible with a larger variety of realistic noise problems (such as those involving installed configurations in wind tunnel experiments, for instance). The NRI technique is first validated via several test cases of increasing complexity and is then applied to two aerodynamic noise problems. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Redonnet, Stephane] Off Natl Etud & Rech Aerosp, Aeroacoust Dept, BP 72,29 Ave Div Leclerc, F-92322 Chatillon, France. [Lockard, David P.; Khorrami, Mehdi R.; Choudhari, Meelan. M.] NASA, Langley Res Ctr, Computat AeroSci Branch, MS 128, Hampton, VA 23681 USA. RP Redonnet, S (reprint author), Off Natl Etud & Rech Aerosp, French Aerosp Lab, BP 72,29 Ave Div Leclerc, F-92322 Chatillon, France. EM Stephane.Redonnet@Onera.fr RI Choudhari, Meelan/F-6080-2017 OI Choudhari, Meelan/0000-0001-9120-7362 FU NASA/LaRC; NASA FX A major part of the present work was performed as part of the International Agreement between NASA and ONERA on 'Understanding and Predicting the Source of Nose Landing Gear Noise.' In that regard, the first author acknowledges NASA/LaRC for welcoming him as a Visiting Researcher and providing the necessary support including computational resources and data. Some parts of the present work also benefited from data that were shared by various teams from different organizations (NASA/LaRC, ONERA, and JAXA). In that regard, the authors would like to thank Dr Tomoaki Ikeda (JAXA) for having provided them with the analytical solution of the academic test case given by the 3D sphere scattering problem (section 3.2), as a by-product of the international joint effort devoted to the Benchmark Problems for Airframe Noise Computations (BANC). NR 33 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD MAY 10 PY 2016 VL 81 IS 1 BP 22 EP 44 DI 10.1002/fld.4173 PG 23 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA DI8PH UT WOS:000373762500002 ER PT J AU Petkov, MP Jones, SM AF Petkov, M. P. Jones, S. M. TI Accurate bulk density determination of irregularly shaped translucent and opaque aerogels SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICA AEROGELS; PACKINGS; GEOMETRY; SPHERES AB We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 mu m-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes. Published by AIP Publishing. C1 [Petkov, M. P.; Jones, S. M.] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Petkov, MP (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Mihail.P.Petkov@jpl.nasa.gov FU National Aeronautics and Space Administration FX This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 19 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 9 PY 2016 VL 108 IS 19 AR 194104 DI 10.1063/1.4948653 PG 4 WC Physics, Applied SC Physics GA DN4HA UT WOS:000377023500062 ER PT J AU Binns, WR Israel, MH Christian, ER Cummings, AC de Nolfo, GA Lave, KA Leske, RA Mewaldt, RA Stone, EC von Rosenvinge, TT Wiedenbeck, ME AF Binns, W. R. Israel, M. H. Christian, E. R. Cummings, A. C. de Nolfo, G. A. Lave, K. A. Leske, R. A. Mewaldt, R. A. Stone, E. C. von Rosenvinge, T. T. Wiedenbeck, M. E. TI Observation of the Fe-60 nucleosynthesis-clock isotope in galactic cosmic rays SO SCIENCE LA English DT Article ID SOLAR METALLICITY; OB ASSOCIATIONS; EARTH; STARS AB Iron-60 (Fe-60) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 x 10(5) iron nuclei, with energies similar to 195 to similar to 500mega-electron volts per nucleon, of which we identify 15 Fe-60 nuclei. The Fe-60/Fe-56 source ratio is (7.5 +/- 2.9) x 10(-5). The detection of supernova-produced Fe-60 in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the Fe-60 half-life of 2.6 million years and that the Fe-60 source distance does not greatly exceed the distance cosmic rays can diffuse over this time, (less than or similar to) under bar1 kiloparsec. A natural place for Fe-60 origin is in nearby clusters of massive stars. C1 [Binns, W. R.; Israel, M. H.; Lave, K. A.] Washington Univ, St Louis, MO 63130 USA. [Christian, E. R.; de Nolfo, G. A.; von Rosenvinge, T. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cummings, A. C.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.] CALTECH, Pasadena, CA 91125 USA. [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Binns, WR; Israel, MH (reprint author), Washington Univ, St Louis, MO 63130 USA. EM wrb@wustl.edu; mhi@wustl.edu FU NASA [NNX08Al11G, NNX13AH66G]; Jet Propulsion Laboratory; Washington University in St. Louis FX This work was supported by NASA grants NNX08Al11G and NNX13AH66G for work performed at the California Institute of Technology, the Jet Propulsion Laboratory, and Washington University in St. Louis. Work done at Goddard Space Flight Center was funded by NASA through the ACE Project. We thank S. Woosley and J. Brown at the University of California Santa Cruz for providing modeling calculation data and for discussions about uncertainties in their calculations. We thank A. Chieffi at the Institute for Space Astrophysics and Planetology, Rome, Italy, for discussions on the uncertainties in the C&L calculations. Accelerator testing of the CRIS detectors was made possible by N. Anantaraman, R. Ronningen, and the staff at the National Superconducting Cyclotron Laboratory at Michigan State University, while H. Specht, D. Schardt, and the staff of the GSI heavy-ion accelerator in Darmstadt, Germany made possible the heavy-ion calibrations of the completed CRIS instrument. The data used are archived at NASA's Space Physics Data Facility (http://spdf.gsfc.nasa.gov) as data set ac_h2_cris and can be retrieved from this site by direct download or through the SPDF's CDAWeb data service. NR 21 TC 6 Z9 6 U1 2 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD MAY 6 PY 2016 VL 352 IS 6286 BP 677 EP 680 DI 10.1126/science.aad6004 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL1UC UT WOS:000375417100030 PM 27103666 ER PT J AU Lee, SH Mudawar, I Hasan, MM AF Lee, S. H. Mudawar, I. Hasan, Mohammad M. TI Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft SO APPLIED THERMAL ENGINEERING LA English DT Article DE Thermal control system; Heat pump; Reduced gravity; Space missions; Thermodynamic analysis ID REFRIGERATION COOLING APPLICATIONS; FLOW CONDENSATION; FLUX; PERFORMANCE; MICROGRAVITY; SINK AB An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both 'cold' and 'hot' environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids" to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lee, S. H.; Mudawar, I.] Purdue Univ, Sch Mech Engn, Boiling & Phase Flow Lab PU BTPFL 2, 585 Purdue Mall, W Lafayette, IN 47907 USA. [Hasan, Mohammad M.] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. RP Mudawar, I (reprint author), Purdue Univ, Sch Mech Engn, Boiling & Phase Flow Lab PU BTPFL 2, 585 Purdue Mall, W Lafayette, IN 47907 USA. EM mudawar@ecn.purdue.edu FU National Aeronautics and Space Administration (NASA) [NNX13AC83G] FX The authors are grateful for the support of the National Aeronautics and Space Administration (NASA) under grant no. NNX13AC83G. NR 40 TC 5 Z9 5 U1 14 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD MAY 5 PY 2016 VL 100 BP 190 EP 214 DI 10.1016/j.applthermaleng.2016.01.018 PG 25 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA DN7BX UT WOS:000377231400020 ER PT J AU Theriot, CA Westby, CM Morgan, JLL Zwart, SR Zanello, SB AF Theriot, Corey A. Westby, Christian M. Morgan, Jennifer L. L. Zwart, Sara R. Zanello, Susana B. TI High dietary iron increases oxidative stress and radiosensitivity in the rat retina and vasculature after exposure to fractionated gamma radiation SO NPJ MICROGRAVITY LA English DT Article ID INTERNATIONAL-SPACE-STATION; IONIZING-RADIATION; DOSE-RATE; FREE-RADICALS; ASTRONAUTS; NEOVASCULARIZATION; RESPONSES; QUALITY; FLIGHT; MICE AB Radiation exposure in combination with other space environmental factors including microgravity, nutritional status, and deconditioning is a concern for long-duration space exploration missions. Astronauts experience altered iron homeostasis due to adaptations to microgravity and an iron-rich food system. Iron intake reaches three to six times the recommended daily allowance due to the use of fortified foods on the International Space Station. Iron is associated with certain optic neuropathies and can potentiate oxidative stress. This study examined the response of eye and vascular tissue to gamma radiation exposure (3 Gy fractionated at 37.5 cGy per day every other day for 8 fractions) in rats fed an adequate-iron diet or a high-iron diet. Twelve-week-old Sprague-Dawley rats were assigned to one of four experimental groups: adequate-iron diet/no radiation (CON), high-iron diet/no radiation (IRON), adequate-iron diet/radiation (RAD), and high-iron diet/radiation (IRON+RAD). Animals were maintained on the corresponding iron diet for 2 weeks before radiation exposure. As previously published, the high-iron diet resulted in elevated blood and liver iron levels. Dietary iron overload altered the radiation response observed in serum analytes, as evidenced by a significant increase in catalase levels and smaller decrease in glutathione peroxidase and total antioxidant capacity levels. 8-OHdG immunostaining, showed increased intensity in the retina after radiation exposure. Gene expression profiles of retinal and aortic vascular samples suggested an interaction between the response to radiation and high dietary iron. This study suggests that the combination of gamma radiation and high dietary iron has deleterious effects on retinal and vascular health and physiology. C1 [Theriot, Corey A.] Univ Texas Med Branch, Dept Prevent Med & Community Hlth, Galveston, TX 77555 USA. [Westby, Christian M.; Zwart, Sara R.; Zanello, Susana B.] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Morgan, Jennifer L. L.] Oak Ridge Associated Univ, NASA Johnson Space Ctr, Houston, TX USA. RP Zanello, SB (reprint author), Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. EM susana.b.zanello@nasa.gov NR 50 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2373-8065 J9 NPJ MICROGRAVITY JI NPJ Microgravity PD MAY 5 PY 2016 VL 2 AR 16014 DI 10.1038/npjmgrav.2016.14 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN9HJ UT WOS:000377389800001 ER PT J AU Hinderer, T Taracchini, A Foucart, F Buonanno, A Steinhoff, J Duez, M Kidder, LE Pfeiffer, HP Scheel, MA Szilagyi, B Hotokezaka, K Kyutoku, K Shibata, M Carpenter, CW AF Hinderer, Tanja Taracchini, Andrea Foucart, Francois Buonanno, Alessandra Steinhoff, Jan Duez, Matthew Kidder, Lawrence E. Pfeiffer, Harald P. Scheel, Mark A. Szilagyi, Bela Hotokezaka, Kenta Kyutoku, Koutarou Shibata, Masaru Carpenter, Cory W. TI Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUATION-OF-STATE; COALESCING BINARIES AB Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency. C1 [Hinderer, Tanja] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Hinderer, Tanja; Taracchini, Andrea; Buonanno, Alessandra; Steinhoff, Jan] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam, Germany. [Foucart, Francois] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Steinhoff, Jan] Univ Lisbon, Inst Super Tecn, Ctr Multidisciplinar Astrofis, Dept Fis, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal. [Duez, Matthew; Carpenter, Cory W.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Kidder, Lawrence E.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Pfeiffer, Harald P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Scheel, Mark A.; Szilagyi, Bela] CALTECH, Theoret Astrophys 350 17, Pasadena, CA 91125 USA. [Szilagyi, Bela] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hotokezaka, Kenta] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Kyutoku, Koutarou] RIKEN, Res Grp, Interdisciplinary Theoret Sci iTHES, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Shibata, Masaru] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Hinderer, T (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA.; Hinderer, T (reprint author), Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam, Germany. FU NSF [PHY-1208881, PHY-1402916, PHY-1404569, AST-1333520, PHY-0960291, ACI-1053575]; NASA [NNX12AN10G, NAS8-03060]; NASA through Einstein Postdoctoral Fellowship - Chandra X-ray Center [PF4-150122]; Japanese MEXT [24244028]; NSERC Canada; NSF at Cornell [PHY-1306125, AST-1333129]; Sherman Fairchild Foundation; Canada Foundation for Innovation (CFI); NanoQuebec; RMGA; Fonds de recherche du Quebec-Nature et Technologie (FRQ-NT) FX We thank Kostas Kokkotas and Cole Miller for useful discussions. A. B. and T. H. acknowledge support from NSF Grant No. PHY-1208881. A. B. also acknowledges partial support from NASA Grant No. NNX12AN10G. T. H. thanks the Max Planck Institut fur Gravitationsphysik for hospitality. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship Grant No. PF4-150122 (F. F.) awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS8-03060. M. D. acknowledges support from NSF Grant No. PHY-1402916. M. S. was supported by Grant-in-Aid for Scientific Research 24244028 of the Japanese MEXT. H. P. gratefully acknowledge support from the NSERC Canada. L. K. acknowledges support from NSF Grants No. PHY-1306125 and No. AST-1333129 at Cornell, while the authors at Caltech acknowledge support from NSF Grants No. PHY-1404569 and No. AST-1333520. Authors at both Cornell and Caltech also thank the Sherman Fairchild Foundation for their support. Computations were performed on the supercomputer Briaree from the Universite de Montreal, managed by Calcul Quebec and Compute Canada. The operation of these supercomputers is funded by the Canada Foundation for Innovation (CFI), NanoQuebec, RMGA, and the Fonds de recherche du Quebec-Nature et Technologie (FRQ-NT). Computations were also performed on the Zwicky cluster at Caltech, supported by the Sherman Fairchild Foundation and by NSF Award No. PHY-0960291. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE) through allocation No. TGPHY990007N, supported by NSF Grant No. ACI-1053575. NR 58 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 5 PY 2016 VL 116 IS 18 AR 181101 DI 10.1103/PhysRevLett.116.181101 PG 6 WC Physics, Multidisciplinary SC Physics GA DL5HZ UT WOS:000375669300002 PM 27203312 ER PT J AU Di, Q Kloog, I Koutrakis, P Lyapustin, A Wang, YJ Schwartz, J AF Di, Qian Kloog, Itai Koutrakis, Petros Lyapustin, Alexei Wang, Yujie Schwartz, Joel TI Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LAND-USE REGRESSION; AEROSOL OPTICAL DEPTH; PARTICULATE AIR-POLLUTION; LONG-TERM EXPOSURE; ISOPRENE EMISSION; CARDIOVASCULAR-DISEASE; ULTRAFINE PARTICLES; HOSPITAL ADMISSIONS; FINE PARTICLES; MORTALITY AB A number of models have been developed to estimate PM2.5 exposure, including satellite-based aerosol optical depth (AOD) models, land-use regression, or chemical transport model simulation, all with both strengths and weaknesses. Variables like normalized difference vegetation index (NDVI), surface reflectance, absorbing aerosol index, and meteoroidal fields are also informative about PM2.5 concentrations. Our objective is to establish a hybrid model which incorporates multiple approaches and input variables to improve model performance. To account for complex atmospheric mechanisms, we used a neural network for its capacity to model nonlinearity and interactions. We used convolutional layers, which aggregate neighboring information, into a neural network to account for spatial and temporal autocorrelation. We trained the neural network for the continental United States from 2000 to 2012 and tested it with left out monitors. Ten-fold cross-validation revealed a good model performance with a total R-2 of 0.84 on the left out monitors. Regional R-2 could be even higher for the Eastern and Central United States. Model performance was still good at low PM2.5 concentrations. Then, we used the trained neural network to make daily predictions of PM2.5 at 1 km x 1 km grid cells. This model allows epidemiologists to access PM2.5 exposure in both the short-term and the long-term. C1 [Di, Qian; Kloog, Itai; Koutrakis, Petros; Schwartz, Joel] Harvard Univ, Dept Environm Hlth, TH Chan Sch Publ Heath, Boston, MA 02115 USA. [Lyapustin, Alexei] NASA, Goddard Space Flight Ctr, Code 613, Greenbelt, MD 20771 USA. [Wang, Yujie] Univ Maryland, Baltimore, MD 21250 USA. [Kloog, Itai] Ben Gurion Univ Negev, Dept Geog & Environm Dev, POB 653, IL-84105 Beer Sheva, Israel. RP Di, Q (reprint author), Harvard Univ, Dept Environm Hlth, TH Chan Sch Publ Heath, Boston, MA 02115 USA. EM qiandi@mail.harvard.edu FU USEPA grant [R01 ES024332-01A1, RD83479801]; NIEHS grant [ES000002] FX This publication was made possible by USEPA grant R01 ES024332-01A1, RD83479801, and NIEHS grant ES000002. Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication. NR 78 TC 3 Z9 3 U1 5 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 3 PY 2016 VL 50 IS 9 BP 4712 EP 4721 DI 10.1021/acs.est.5b06121 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DL3GE UT WOS:000375521400015 PM 27023334 ER PT J AU Yellin-Bergovoy, R Heifetz, E Umurhan, OM AF Yellin-Bergovoy, Ron Heifetz, Eyal Umurhan, Orkan M. TI On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs SO GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS LA English DT Article DE Rossby wave instability; self gravity; Protoplanetary accretion disc; vorticity waves ID SHEAR-FLOW; PLANET INTERACTIONS; GASEOUS DISCS; INSTABILITY; DISKS; VORTICES; DYNAMICS; DENSITY; VORTEX; MODES AB The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius [GRAPHICS] . The fluid in basic state is prescribed to rotate with a Keplerian profile [GRAPHICS] modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable. C1 [Yellin-Bergovoy, Ron; Heifetz, Eyal] Tel Aviv Univ, Dept Earth Sci, IL-69978 Tel Aviv, Israel. [Umurhan, Orkan M.] NASA, Ames Res Ctr, Div Space Sci, Planetary Syst Branch, Moffett Field, CA 94035 USA. RP Yellin-Bergovoy, R (reprint author), Tel Aviv Univ, Dept Earth Sci, IL-69978 Tel Aviv, Israel. EM yellinr@post.tau.ac.il NR 33 TC 1 Z9 1 U1 2 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0309-1929 EI 1029-0419 J9 GEOPHYS ASTRO FLUID JI Geophys. Astrophys. Fluid Dyn. PD MAY 3 PY 2016 VL 110 IS 3 BP 274 EP 294 DI 10.1080/03091929.2016.1158816 PG 21 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics SC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics GA DI3KK UT WOS:000373397300004 ER PT J AU Ting, DZ Soibel, A Gunapala, SD AF Ting, David Z. Soibel, Alexander Gunapala, Sarath D. TI Hole effective masses and subband splitting in type-II superlattice infrared detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID HGTE-CDTE SUPERLATTICES; CARRIER LIFETIMES; TRANSPORT; ELECTRON AB We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced intersubband scattering and increased relaxation time. Published by AIP Publishing. C1 [Ting, David Z.; Soibel, Alexander; Gunapala, Sarath D.] NASA, Ctr Infrared Photodetectors, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. RP Ting, DZ (reprint author), NASA, Ctr Infrared Photodetectors, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. EM David.Z.Ting@jpl.nasa.gov FU National Aeronautics and Space Administration FX The authors thank X. Cartoixa, J. N. Schulman, and D. L. Smith for helpful discussions. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 30 TC 3 Z9 3 U1 20 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 2 PY 2016 VL 108 IS 18 AR 183504 DI 10.1063/1.4948387 PG 5 WC Physics, Applied SC Physics GA DN4GY UT WOS:000377023300043 ER PT J AU Newman, K Conway, J Belikov, R Guyon, O AF Newman, K. Conway, J. Belikov, R. Guyon, O. TI Focal Plane Phase Masks for PIAA: Design and Manufacturing SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE planets and satellites: detection ID CORONAGRAPHY AB The Phase Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) is a coronagraph architecture for the direct detection of extrasolar planets, which can achieve close to the theoretical performance limit of any direct detection system. The primary components of a PIAACMC system are the Phase Induced Amplitude Apodization (PIAA) optics and the complex phase-shifting focal plane mask. PIAA optics have been produced and demonstrated with high coronagraph performance. In this paper, we describe the design process for the phase-shifting focal plane mask, and strategies for smoothing the mask profile. We describe the mask manufacturing process and show manufacturing results. Errors in the fabricated mask profile degrade the system performance, but we can recover performance by refining the manufacturing process and implementing wavefront control. C1 [Newman, K.; Guyon, O.] Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA. [Newman, K.; Belikov, R.] NASA, Ames Res Ctr, Bldg 245-144, Moffett Field, CA 94035 USA. [Conway, J.] Stanford Nanofabricat Facil, Paul G Allen Bldg,420 Via Palou Mall, Stanford, CA 94305 USA. [Guyon, O.] Natl Astron Observ Japan NAOJ, Subaru Telescope, 650 N AOhoku Pl, Hilo, HI 96720 USA. RP Newman, K (reprint author), Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA.; Newman, K (reprint author), NASA, Ames Res Ctr, Bldg 245-144, Moffett Field, CA 94035 USA. EM knewman@email.arizona.edu FU National Aeronautics and Space Administration's Ames Research Center; Space Technology Research Fellowship FX This work was supported in part by the National Aeronautics and Space Administration's Ames Research Center and also by a Space Technology Research Fellowship. It was carried out at the Ames Research Center and Stanford Nanofabrication Facility. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration. NR 12 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2016 VL 128 IS 963 AR 055003 DI 10.1088/1538-3873/128/963/055003 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1JX UT WOS:000387108400006 ER PT J AU Hoyt, D AF Hoyt, Diana TI Strategic Intelligence: Conceptual Tools for Leading Change SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Book Review C1 [Hoyt, Diana] NASA, Washington, DC 20546 USA. Congress Space Caucus, Washington, DC USA. RP Hoyt, D (reprint author), NASA, Washington, DC 20546 USA. EM diana.hoyt@nasa.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2300 CLARENDON BLVD, STE 400, ARLINGTON, VA 22201 USA SN 0895-6308 EI 1930-0166 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAY-JUN PY 2016 VL 59 IS 3 BP 70 EP 71 PG 2 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA DX6ZG UT WOS:000384534300014 ER PT J AU Wiese, DN Killett, B Watkins, MM Yuan, DN AF Wiese, D. N. Killett, B. Watkins, M. M. Yuan, D. -N. TI Antarctic tides from GRACE satellite accelerations SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID RUTFORD ICE STREAM; OCEAN TIDES; GRAVITY FIELDS; CLIMATE EXPERIMENT; WEST ANTARCTICA; SHELF; SEA; RECOVERY; ERRORS; FLOW AB The extended length of the GRACE data time series (now 13.5 years) provides the unique opportunity to estimate global mass variations due to ocean tides at large (similar to 300 km) spatial scales. State-of-the-art global tide models rely heavily on satellite altimetry data, which are sparse for latitudes higher than 66 degrees. Thus, the performance of the models is typically worse at higher latitudes. GRACE data, alternately, extend to polar latitudes and therefore provide information for both model validation and improvement at the higher latitudes. In this work, 11 years of GRACE inter-satellite range-acceleration measurements are inverted to solve for corrections to the amplitudes and phases of the major solar and lunar ocean tidal constituents (M-2, K-1, S-2, and O-1) from the GOT4.7 ocean tide model at latitudes south of 50 degrees S. Two independent inversion and regularization methods are employed and compared against one another. Uncertainty estimates are derived by subtracting two independent solutions, each spanning a unique 5.5 years of data. Features above the noise floor in the derived solutions likely represent errors in GOT4.7. We find the GOT4.7 amplitudes to be generally too small for M-2 and K1, and too large for S-2 and O-1, and to spatially correlate with geographic regions where GOT4.7 predicts the largest tidal amplitudes. In particular, we find GOT4.7 errors to be dominant over the Patagonia shelf (M-2), the Filchner-Ronne Ice Shelf (M-2 and S-2), the Ross Ice Shelf (S2), and the Weddell and Ross Seas (K-1 and O-1). C1 [Wiese, D. N.; Yuan, D. -N.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Watkins, M. M.] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. RP Wiese, DN (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM david.n.wiese@jpl.nasa.gov FU National Aeronautics and Space Administration FX We wish to thank Richard Ray for sharing the GOT 4.7 code and model and for constructive conversations related to this work. We also thank Sung Byun and Da Kuang for processing the GRACE acceleration data and Victor Zlotnicki for many enlightening conversations. We thank Laurence Padman and two anonymous reviewers for extremely constructive comments regarding this manuscript to bring it to its present form. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Source code for the Gravitational Accelerations Inverter and Analyzer (GAIA) is available at http://bryankillett.com, and the GRACE L1B data used to derive these results are available at http://podaac.jpl.nasa.gov/dataset/GRACE L1B GRAV JPL RL02. NR 50 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY PY 2016 VL 121 IS 5 BP 2874 EP 2886 DI 10.1002/2015JC011488 PG 13 WC Oceanography SC Oceanography GA DW2IQ UT WOS:000383466500003 ER PT J AU Petty, AA Hutchings, JK Richter-Menge, JA Tschudi, MA AF Petty, Alek A. Hutchings, Jennifer K. Richter-Menge, Jacqueline A. Tschudi, Mark A. TI Sea ice circulation around the Beaufort Gyre: The changing role of wind forcing and the sea ice state SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID ARCTIC-OCEAN; ERA-INTERIM; SNOW DEPTH; MODEL; IMPACT; DRAG; SIMULATIONS; VARIABILITY; CURRENTS; MOTION AB Sea ice drift estimates from feature tracking of satellite passive microwave data are used to investigate seasonal trends and variability in the ice circulation around the Beaufort Gyre, over the multidecadal period 1980-2013. Our results suggest an amplified response of the Beaufort Gyre ice circulation to wind forcing, especially during the late 2000s. We find increasing anticyclonic ice drift across all seasons, with the strongest trend in autumn, associated with increased ice export out of the southern Beaufort Sea (into the Chukchi Sea). A flux gate analysis highlights consistency across a suite of drift products. Despite these seasonal anticyclonic ice drift trends, a significant anticyclonic wind trend occurs in summer only, driven, in-part, by anomalously anticyclonic winds in 2007. Across all seasons, the ice drift curl is more anticyclonic than predicted from a linear relationship to the wind curl in the 2000s, compared to the 1980s/1990s. The strength of this anticyclonic ice drift curl amplification is strongest in autumn and appears to have increased since the 1980s (up to 2010). In spring and summer, the ice drift curl amplification occurs mainly between 2007 and 2010. These results suggest nonlinear ice interaction feedbacks (e.g., a weaker, more mobile sea ice pack), enhanced atmospheric drag, and/or an increased role of the ocean. The results also show a weakening of the anticyclonic wind and ice circulation since 2010. C1 [Petty, Alek A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Petty, Alek A.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. [Hutchings, Jennifer K.] Oregon State Univ, Coll Earth Ocean & Atmosphere, Corvallis, OR 97331 USA. [Richter-Menge, Jacqueline A.] Cold Reg Res & Engn Lab, Hanover, NH USA. [Tschudi, Mark A.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. RP Petty, AA (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.; Petty, AA (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. EM alek.a.petty@nasa.gov FU NASA [NNX13AK36G]; NOAA Ocean Remote Sensing Program FX This work is supported by NASA grant NNX13AK36G and the NOAA Ocean Remote Sensing Program. The NCEP-R2 data were provided by the NOAA/ESRL PSD (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html), the ERA-I data were provided by the ECMWF (http://apps.ecmwf.int/datasets/data/interim_full_daily/), and the JRA-55 data were provided by the NCEP Research Data Archive (RDA) (http://rda.ucar.edu/datasets/ds628.0). The Polar Pathfinder sea ice drift data were provided by the NSIDC (http://nsidc.org/data/nsidc-0116). All CERSAT/IFREMER data sets were obtained from the CERSAT website (ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift/). The passive microwave NASA Team and Bootstrap concentration data were provided by the NSIDC (http://nsidc.org/data/nsidc-0051 and http://nsidc.org/data/nsidc-0079, respectively). The ice draft mooring data were obtained from the Beaufort Gyre Exploration Project website (http://www.whoi.edu/page.do?pid=66559). PIOMAS ice thickness data were obtained from http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/da ta/. We thank the Editor (Andrey Proshutinsky), three anonymous reviewers, and Miles McPhee for instructive comments that greatly strengthened this manuscript. We would also like to thank the organizers and participants of the 2014 Forum for Arctic Ocean Modeling and Observational Synthesis (FAMOS) workshop for the useful and inspiring discussions regarding this work. We also thank Sinead Farrell for her assistance with earlier versions of this manuscript. All processed datasets used in this study have been archived at http://dx.doi.org/10.5281/zenodo.48464, while the data processing scripts used to create the data/figures are available at https://www.github.com/akpetty/bgdrift2016.git. The primary author may be contacted for any further data requests. NR 74 TC 2 Z9 2 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY PY 2016 VL 121 IS 5 BP 3278 EP 3296 DI 10.1002/2015JC010903 PG 19 WC Oceanography SC Oceanography GA DW2IQ UT WOS:000383466500027 ER PT J AU Stuart, RK Mayali, X Boaro, AA Zemla, A Everroad, RC Nilson, D Weber, PK Lipton, M Bebout, BM Pett-Ridge, J Thelen, MP AF Stuart, Rhona K. Mayali, Xavier Boaro, Amy A. Zemla, Adam Everroad, R. Craig Nilson, Daniel Weber, Peter K. Lipton, Mary Bebout, Brad M. Pett-Ridge, Jennifer Thelen, Michael P. TI Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm SO MBIO LA English DT Article ID SUBTROPICAL NORTH PACIFIC; MARINE SYNECHOCOCCUS; MICROBIAL MAT; ALKALINE-PHOSPHATASE; CARBON; BACTERIA; ACID; PROCHLOROCOCCUS; PROTEOME; ANABAENA AB Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of C-13-labeled and N-15-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM. IMPORTANCE Cyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter. C1 [Stuart, Rhona K.; Mayali, Xavier; Zemla, Adam; Nilson, Daniel; Weber, Peter K.; Pett-Ridge, Jennifer; Thelen, Michael P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boaro, Amy A.; Lipton, Mary] Pacific Northwest Natl Lab, Richland, WA USA. [Everroad, R. Craig; Bebout, Brad M.] NASA, Exobiol Branch, Ames Res Ctr, Moffett Field, CA USA. RP Thelen, MP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM mthelen@llnl.gov RI Thelen, Michael/G-2032-2014; Lipton, Mary/H-3913-2012; OI Thelen, Michael/0000-0002-2479-5480; Stuart, Rhona/0000-0001-5916-9693 FU U.S. Department of Energy (DOE); DOE Genomic Science Program [SCW1039]; DOE [DE-AC52-07NA27344] FX This work, including the efforts of Rhona K Stuart, Xavier Mayali, Amy Boaro, Adam Zemla, Craig Everroad, Daniel Nilson, Peter K Weber, Mary Lipton, Brad M Bebout, Jennifer Pett-Ridge, and Michael P. Thelen, was funded by U.S. Department of Energy (DOE).; Funding was provided by the DOE Genomic Science Program under contract SCW1039. Work at Lawrence Livermore National Laboratory was performed under the auspices of DOE contract DE-AC52-07NA27344. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. NR 70 TC 1 Z9 1 U1 13 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD MAY-JUN PY 2016 VL 7 IS 3 AR e00650-16 DI 10.1128/mBio.00650-16 PG 14 WC Microbiology SC Microbiology GA DW1YP UT WOS:000383440300045 ER PT J AU Holzmann, GJ AF Holzmann, Gerard J. TI Frequently Unanswered Questions SO IEEE SOFTWARE LA English DT Editorial Material C1 [Holzmann, Gerard J.] NASA JPL, Pasadena, CA 91109 USA. RP Holzmann, GJ (reprint author), NASA JPL, Pasadena, CA 91109 USA. EM gholzmann@acm.org NR 4 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0740-7459 EI 1937-4194 J9 IEEE SOFTWARE JI IEEE Softw. PD MAY-JUN PY 2016 VL 33 IS 3 BP 10 EP 12 PG 3 WC Computer Science, Software Engineering SC Computer Science GA DV7CB UT WOS:000383092600004 ER PT J AU David, CH Famiglietti, JS Yang, ZL Habets, F Maidment, DR AF David, Cedric H. Famiglietti, James S. Yang, Zong-Liang Habets, Florence Maidment, David R. TI A decade of RAPID-Reflections on the development of an open source geoscience code SO EARTH AND SPACE SCIENCE LA English DT Article ID SCALE RIVER FLOW; REGIONAL-SCALE; GENERAL-CIRCULATION; MUSKINGUM METHOD; WATER-BALANCE; OPEN SCIENCE; FRAMEWORK; CLIMATE; SPEEDUP; SURFACE AB Earth science increasingly relies on computer-based methods and many government agencies now require further sharing of the digital products they helped fund. Earth scientists, while often supportive of more transparency in the methods they develop, are concerned by this recent requirement and puzzled by its multiple implications. This paper therefore presents a reflection on the numerous aspects of sharing code and data in the general field of computer modeling of dynamic Earth processes. Our reflection is based on 10 years of development of an open source model called the Routing Application for Parallel Computation of Discharge (RAPID) that simulates the propagation of water flow waves in river networks. Three consecutive but distinct phases of the sharing process are highlighted here: opening, exposing, and consolidating. Each one of these phases is presented as an independent and tractable increment aligned with the various stages of code development and justified based on the size of the users community. Several aspects of digital scholarship are presented here including licenses, documentation, websites, citable code and data repositories, and testing. While the many existing services facilitate the sharing of digital research products, digital scholarship also raises community challenges related to technical training, self-perceived inadequacy, community contribution, acknowledgment and performance assessment, and sustainable sharing. C1 [David, Cedric H.; Famiglietti, James S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [David, Cedric H.; Famiglietti, James S.] Univ Calif Irvine, Ctr Hydrol Modeling, Irvine, CA USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Yang, Zong-Liang] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Habets, Florence] UPMC, CNRS, UMR 7619, METIS, Paris, France. [Maidment, David R.] Univ Texas Austin, Ctr Res Water Resources, Austin, TX 78712 USA. RP David, CH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.; David, CH (reprint author), Univ Calif Irvine, Ctr Hydrol Modeling, Irvine, CA USA. EM cedric.david@jpl.nasa.gov RI Yang, Zong-Liang/B-4916-2011 NR 67 TC 2 Z9 2 U1 3 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD MAY PY 2016 VL 3 IS 5 BP 226 EP 244 DI 10.1002/2015EA000142 PG 19 WC Geosciences, Multidisciplinary SC Geology GA DU9XO UT WOS:000382571700003 ER PT J AU Koutnik, MR Fudge, TJ Conway, H Waddington, ED Neumann, TA Cuffey, KM Buizert, C Taylor, KC AF Koutnik, Michelle R. Fudge, T. J. Conway, Howard Waddington, Edwin D. Neumann, Thomas A. Cuffey, Kurt M. Buizert, Christo Taylor, Kendrick C. TI Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID PINE ISLAND GLACIER; CHRONOLOGY AICC2012; THWAITES GLACIER; SIPLE-DOME; GREENLAND; SEA; VARIABILITY; THICKNESS; COLLAPSE; STREAMS AB The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history. C1 [Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Neumann, Thomas A.] NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Greenbelt, MD USA. [Cuffey, Kurt M.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Buizert, Christo] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Taylor, Kendrick C.] Nevada Syst Higher Educ, Desert Res Inst, Reno, NV USA. RP Koutnik, MR (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. EM mkoutnik@uw.edu RI Neumann, Thomas/D-5264-2012; Taylor, Kendrick/A-3469-2016 OI Taylor, Kendrick/0000-0001-8535-1261 FU National Science Foundation [OPP-0440666, ANT-0944197]; NASA IceBridge grant [NNX12AB74G]; NSF International Research Fellowship Program; NSF [1043518, 0539232, 0537661, 0230396, 0440817, 0944348, 0944266]; NASA Earth and Space Science Fellowship; Ice Drilling Program Office; Ice Drilling Design and Operations group FX This work would not have been possible without the collective effort of the WAIS Divide ice core community. National Science Foundation grants OPP-0440666 and ANT-0944197 and NASA IceBridge grant NNX12AB74G supported this work at the University of Washington, as well as an NSF International Research Fellowship Program award to M.R.K. C.B. was supported by NSF grant 1043518. K.M.C. was supported by NSF grants 0539232 and 0537661. This work was also supported by a NASA Earth and Space Science Fellowship to T.J.F. We acknowledge the WAIS Divide Science Coordination Office at the Desert Research Institute of Reno, Nevada, and University of New Hampshire for the collection and distribution of the WAIS Divide ice core and related tasks (NSF grants 0230396, 0440817, 0944348, and 0944266). The National Science Foundation Office of Polar Programs also funded the Ice Drilling Program Office and Ice Drilling Design and Operations group for coring activities, the National Ice Core Laboratory for curation of the core, Raytheon Polar Services for logistics support in Antarctica, and the 109th New York Air National Guard for airlift in Antarctica. We also thank UNAVCO, Raytheon Polar Services, Antarctic Support Contractor, and Kenn Borek Air for their logistical and field support. We thank K. Matsuoka for providing the layer-picking interface "RadarGUI." All data for this paper are properly cited and referred to in the reference list. We thank Neil Ross and two anonymous reviewers for comments that improved the manuscript and helped us to refine the implications of this work. We thank Scientific Editor Bryn Hubbard for additional comments. NR 70 TC 4 Z9 4 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD MAY PY 2016 VL 121 IS 5 BP 907 EP 924 DI 10.1002/2015JF003668 PG 18 WC Geosciences, Multidisciplinary SC Geology GA DV0AQ UT WOS:000382580100006 ER PT J AU Jones, CE An, K Blom, RG Kent, JD Ivins, ER Bekaert, D AF Jones, Cathleen E. An, Karen Blom, Ronald G. Kent, Joshua D. Ivins, Erik R. Bekaert, David TI Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SEA-LEVEL RISE; MISSISSIPPI DELTA REGION; RIVER DELTA; LAND SUBSIDENCE; WETLAND LOSS; GULF-COAST; RESTORATION; REANALYSIS; ELEVATION AB New measurements of ongoing subsidence of land proximal to the city of New Orleans, Louisiana, and including areas around the communities of Norco and Lutcher upriver along the Mississippi are reported. The rates of vertical motion are derived from interferometric synthetic aperture radar (InSAR) applied to Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data acquired on 16 June 2009 and 2 July 2012. The subsidence trends are similar to those reported for 2002-2004 in parts of New Orleans where observations overlap, in particular in Michoud, the 9th Ward, and Chalmette, but are measured at much higher spatial resolution (6 m). The spatial associations of cumulative surface movements suggest that the most likely drivers of subsidence are groundwater withdrawal and surficial drainage/dewatering activities. High subsidence rates are observed localized around some major industrial facilities and can affect nearby flood control infrastructure. Substantial subsidence is observed to occur rapidly from shallow compaction in highly localized areas, which is why it could be missed in subsidence surveys relying on point measurements at limited locations. C1 [Jones, Cathleen E.; Blom, Ronald G.; Ivins, Erik R.; Bekaert, David] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [An, Karen] Univ Calif Los Angeles, Dept Geog, Bunche Hall, Los Angeles, CA 90024 USA. [Kent, Joshua D.] Louisiana State Univ, Ctr GeoInformat, Baton Rouge, LA 70803 USA. [Kent, Joshua D.] Agr & Mech Coll, Baton Rouge, LA USA. RP Jones, CE (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM cathleen.e.jones@jpl.nasa.gov OI Bekaert, David/0000-0002-0408-0488 NR 72 TC 3 Z9 3 U1 9 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD MAY PY 2016 VL 121 IS 5 BP 3867 EP 3887 DI 10.1002/2015JB012636 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT6XA UT WOS:000381626900038 ER PT J AU Delbridge, BG Burgmann, R Fielding, E Hensley, S Schulz, WH AF Delbridge, Brent G. Burgmann, Roland Fielding, Eric Hensley, Scott Schulz, William H. TI Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID CONTINUOUSLY MOVING LANDSLIDE; RADAR INTERFEROMETRY; SEASONAL MOVEMENT; CLIMATE-CHANGE; TOPOGRAPHY; CALIFORNIA; EARTHFLOW; VELOCITY; COLORADO; EVOLUTION AB In order to provide surface geodetic measurements with "landslide-wide" spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to similar to 2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 +/- 0.08. C1 [Delbridge, Brent G.; Burgmann, Roland] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Fielding, Eric; Hensley, Scott] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Schulz, William H.] US Geol Survey, Box 25046, Denver, CO 80225 USA. RP Delbridge, BG (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM delbridge@berkeley.edu RI Fielding, Eric/A-1288-2007 OI Fielding, Eric/0000-0002-6648-8067 FU NASA Earth Surface and Interior Geodetic Imaging program; NASA/JPL subaward [1492856]; NSF GRFP Fellowship [923843294] FX Part of this research was sponsored by the NASA Earth Surface and Interior Geodetic Imaging program and performed at the Jet Propulsion Laboratory, California Institute of Technology. We thank Jeff Coe (USGS) for performing GPS surveys at the landslide and for helpful discussions. We also thank the UAVSAR flight and data processing teams for their help with acquiring and processing the data. All UAVSAR interferograms and metadata used in this study can be downloaded from the Alaska Satellite Facility (ASF, https://www.asf.alaska.edu). This work was generously supported by NASA/JPL subward1492856, and NSF GRFP Fellowship923843294. The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 79 TC 1 Z9 1 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD MAY PY 2016 VL 121 IS 5 BP 3951 EP 3977 DI 10.1002/2015JB012559 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT6XA UT WOS:000381626900042 ER PT J AU Cataldo, G Barrentine, EM Brown, AD Moseley, SH U-Yen, K Wollack, EJ AF Cataldo, Giuseppe Barrentine, Emily M. Brown, Ari D. Moseley, Samuel H. U-Yen, Kongpop Wollack, Edward J. TI Fabrication and Characterization of Superconducting Resonators SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Engineering; Issue 111; Superconducting resonators; microwave devices; MKIDs; cryogenic measurements; calibration; complex transmission; micro-fabrication; reactive sputtering; wafer-level bonding ID FANO RESONANCE AB Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. C1 [Cataldo, Giuseppe; Moseley, Samuel H.; Wollack, Edward J.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Washington, DC 20546 USA. [Barrentine, Emily M.; Brown, Ari D.; U-Yen, Kongpop] NASA, Instrument Syst & Technol Div, Goddard Space Flight Ctr, Washington, DC 20546 USA. RP Cataldo, G (reprint author), NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Washington, DC 20546 USA. EM giuseppe.cataldo@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU National Aeronautics and Space Administration (NASA)'s ROSES program; National Aeronautics and Space Administration (NASA)'s APRA program FX The authors acknowledge funding support from the National Aeronautics and Space Administration (NASA)'s ROSES and APRA programs. GC also acknowledges the Universities Space Research Association for administering his appointment at NASA. NR 25 TC 0 Z9 0 U1 4 U2 7 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD MAY PY 2016 IS 111 AR e53868 DI 10.3791/53868 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DS0BJ UT WOS:000380259900035 ER PT J AU Jiang, YY Li, Y Yang, CW Armstrong, EM Huang, T Moroni, D AF Jiang, Yongyao Li, Yun Yang, Chaowei Armstrong, Edward M. Huang, Thomas Moroni, David TI Reconstructing Sessions from Data Discovery and Access Logs to Build a Semantic Knowledge Base for Improving Data Discovery SO ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION LA English DT Article DE web usage mining; session identification and reconstruction; crawler detection; semantic search; data discovery ID DIGITAL EARTH AB Big geospatial data are archived and made available through online web discovery and access. However, finding the right data for scientific research and application development is still a challenge. This paper aims to improve the data discovery by mining the user knowledge from log files. Specifically, user web session reconstruction is focused upon in this paper as a critical step for extracting usage patterns. However, reconstructing user sessions from raw web logs has always been difficult, as a session identifier tends to be missing in most data portals. To address this problem, we propose two session identification methods, including time-clustering-based and time-referrer-based methods. We also present the workflow of session reconstruction and discuss the approach of selecting appropriate thresholds for relevant steps in the workflow. The proposed session identification methods and workflow are proven to be able to extract data access patterns for further pattern analyses of user behavior and improvement of data discovery for more relevancy data ranking, suggestion, and navigation. C1 [Jiang, Yongyao; Li, Yun; Yang, Chaowei] George Mason Univ, NSF Spatiotemporal Innovat Ctr, Fairfax, VA 22030 USA. [Armstrong, Edward M.; Huang, Thomas; Moroni, David] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. RP Yang, CW (reprint author), George Mason Univ, NSF Spatiotemporal Innovat Ctr, Fairfax, VA 22030 USA. EM yjiang8@gmu.edu; yli38@gmu.edu; cyang3@gmu.edu; Edward.M.Armstrong@jpl.nasa.gov; Thomas.Huang@jpl.nasa.gov; David.F.Moroni@jpl.nasa.gov RI Yang, Chaowei/A-9881-2017; OI li, yun/0000-0002-3205-8464; Jiang, Yongyao/0000-0002-4591-483X FU NASA AIST [NNX15AM85G]; NSF [IIP-1338925] FX This project is funded by NASA AIST (NNX15AM85G) and NSF (IIP-1338925). Kai Liu provided valuable information on semantic search. The research was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 29 TC 2 Z9 2 U1 4 U2 4 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2220-9964 J9 ISPRS INT J GEO-INF JI ISPRS Int. Geo-Inf. PD MAY PY 2016 VL 5 IS 5 DI 10.3390/ijgi5050054 PG 14 WC Geography, Physical; Remote Sensing SC Physical Geography; Remote Sensing GA DR4HI UT WOS:000379861800001 ER PT J AU Poppe, AR Curry, SM Fatemi, S AF Poppe, A. R. Curry, S. M. Fatemi, S. TI The Phobos neutral and ionized torus SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID SOLAR-WIND INTERACTION; PHOTON-STIMULATED DESORPTION; CARBON-DIOXIDE ATMOSPHERE; CHARGE-TRANSFER; OXYGEN ATMOSPHERE; LUNAR EXOSPHERE; SODIUM CLOUD; MARS; DEIMOS; ATOMS AB Charged particle sputtering, micrometeoroid impact vaporization, and photon-stimulated desorption are fundamental processes operating at airless surfaces throughout the solar system. At larger bodies, such as Earth's Moon and several of the outer planet moons, these processes generate tenuous surface-bound exospheres that have been observed by a variety of methods. Phobos and Deimos, in contrast, are too gravitationally weak to keep ejected neutrals bound and, thus, are suspected to generate neutral tori in orbit around Mars. While these tori have not yet been detected, the distribution and density of both the neutral and ionized components are of fundamental interest. We combine a neutral Monte Carlo model and a hybrid plasma model to investigate both the neutral and ionized components of the Phobos torus. We show that the spatial distribution of the neutral torus is highly dependent on each individual species (due to ionization rates that span nearly 4 orders of magnitude) and on the location of Phobos with respect to Mars. Additionally, we present the flux distribution of torus pickup ions throughout the Martian system and estimate typical pickup ion fluxes. We find that the predicted pickup ion fluxes are too low to perturb the ambient plasma, consistent with previous null detections by spacecraft around Mars. C1 [Poppe, A. R.; Curry, S. M.; Fatemi, S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Poppe, A. R.; Fatemi, S.] NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA. RP Poppe, AR (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.; Poppe, AR (reprint author), NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA. EM poppe@ssl.berkeley.edu FU NASA's Solar System Exploration Research Virtual Institute (SSERVI) [NNX14AG16A]; Mars Atmosphere and Volatile EvolutioN (MAVEN) mission FX A.R.P. and S.F. gratefully acknowledge support from NASA's Solar System Exploration Research Virtual Institute (SSERVI), grant NNX14AG16A. S.M.C. acknowledges support from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The authors thank J.G. Luhmann for constructive discussions. Data from the modeling results are available upon request to A.R.P. The authors thank three reviewers for constructive comments that greatly improved the paper. NR 86 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY PY 2016 VL 121 IS 5 BP 770 EP 783 DI 10.1002/2015JE004948 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5FB UT WOS:000379927600003 ER PT J AU Le Deit, L Mangold, N Forni, O Cousin, A Lasue, J Schroder, S Wiens, RC Sumner, D Fabre, C Stack, KM Anderson, RB Blaney, D Clegg, S Dromart, G Fisk, M Gasnault, O Grotzinger, JP Gupta, S Lanza, N Le Mouelic, S Maurice, S McLennan, SM Meslin, PY Nachon, M Newsom, H Payre, V Rapin, W Rice, M Sautter, V Treiman, AH AF Le Deit, L. Mangold, N. Forni, O. Cousin, A. Lasue, J. Schroder, S. Wiens, R. C. Sumner, D. Fabre, C. Stack, K. M. Anderson, R. B. Blaney, D. Clegg, S. Dromart, G. Fisk, M. Gasnault, O. Grotzinger, J. P. Gupta, S. Lanza, N. Le Mouelic, S. Maurice, S. McLennan, S. M. Meslin, P. -Y. Nachon, M. Newsom, H. Payre, V. Rapin, W. Rice, M. Sautter, V. Treiman, A. H. TI The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID IN-SITU; INSTRUMENT SUITE; K-FELDSPAR; ORIGIN; ROVER; SANDSTONE; EVOLUTION; ROCKNEST; OLIVINE; OUTCROP AB The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater. C1 [Le Deit, L.; Mangold, N.; Le Mouelic, S.; Nachon, M.] Univ Nantes, UMR CNRS 6112, LPG Nantes, Lab Planetol & Geodynam, Nantes, France. [Forni, O.; Cousin, A.; Lasue, J.; Schroder, S.; Gasnault, O.; Maurice, S.; Meslin, P. -Y.; Rapin, W.] Inst Rech Astrophys & Planetol, Toulouse, France. [Schroder, S.] German Aerosp Ctr DLR, Inst Opt Sensorsyst, Berlin, Germany. [Wiens, R. C.; Clegg, S.; Lanza, N.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sumner, D.] Univ Calif Davis, Earth & Planetary Sci, Davis, CA 95616 USA. [Fabre, C.; Payre, V.] Univ Lorraine, GeoRessources, Nancy, France. [Stack, K. M.; Blaney, D.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Anderson, R. B.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Dromart, G.] ENS Lyon, Lab Geol Lyon, Terre Planetes Environm, Lyon, France. [Fisk, M.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Grotzinger, J. P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Gupta, S.] Imperial Coll London, London, England. [McLennan, S. M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Newsom, H.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Rice, M.] Western Washington Univ, Geol Dept, Bellingham, WA 98225 USA. [Sautter, V.] Museum Hist Nat, LMCM, Paris, France. [Treiman, A. H.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. RP Le Deit, L (reprint author), Univ Nantes, UMR CNRS 6112, LPG Nantes, Lab Planetol & Geodynam, Nantes, France. EM Laetitia.Ledeit@univ-nantes.fr RI Gasnault, Olivier/F-4327-2010; OI Gasnault, Olivier/0000-0002-6979-9012; Clegg, Sam/0000-0002-0338-0948 FU Centre National d'Etudes Spatiales (CNES), France; NASA Mars Program Office FX This work is supported by the Centre National d'Etudes Spatiales (CNES), France, and by the NASA Mars Program Office. We gratefully thank the Curiosity rover operation team at Jet Propulsion Laboratory for the success of this mission. We also thank Jeff Taylor, our anonymous reviewer, and associate editor for their very thoughtful and thorough comments that greatly improved the manuscript. Imaging and chemical data presented here are available in the NASA Planetary Data System (PDS) http://pds-geosciences.wustl.edu/missions/msl. NR 59 TC 6 Z9 6 U1 10 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY PY 2016 VL 121 IS 5 BP 784 EP 804 DI 10.1002/2015JE004987 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5FB UT WOS:000379927600004 ER PT J AU Litvak, ML Mitrofanov, IG Hardgrove, C Stack, KM Sanin, AB Lisov, D Boynton, WV Fedosov, F Golovin, D Harshman, K Jun, I Kozyrev, AS Kuzmin, RO Malakhov, A Milliken, R Mischna, M Moersch, J Mokrousov, M Nikiforov, S Starr, R Tate, C Tret'yakov, VI Vostrukhin, A AF Litvak, M. L. Mitrofanov, I. G. Hardgrove, C. Stack, K. M. Sanin, A. B. Lisov, D. Boynton, W. V. Fedosov, F. Golovin, D. Harshman, K. Jun, I. Kozyrev, A. S. Kuzmin, R. O. Malakhov, A. Milliken, R. Mischna, M. Moersch, J. Mokrousov, M. Nikiforov, S. Starr, R. Tate, C. Tret'yakov, V. I. Vostrukhin, A. TI Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID X-RAY SPECTROMETER; DYNAMIC ALBEDO; EXPERIMENT ONBOARD; YELLOWKNIFE BAY; NEUTRONS; ODYSSEY; SURFACE AB The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron-absorbing elements, characterized as chlorine-equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the "Smooth Hummocky" unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine-equivalent concentrations of 1.5-2.5wt % and 0.6-2wt%, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine-equivalent concentrationmeasured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine-equivalent concentrations in the well-exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha-Particle X-ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of similar to 1.5 wt %, consistent with the concentration of low-temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine-equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments. C1 [Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Lisov, D.; Fedosov, F.; Golovin, D.; Kozyrev, A. S.; Kuzmin, R. O.; Malakhov, A.; Mokrousov, M.; Nikiforov, S.; Tret'yakov, V. I.; Vostrukhin, A.] RAS, Space Res Inst, Moscow, Russia. [Hardgrove, C.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Stack, K. M.; Jun, I.; Mischna, M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Boynton, W. V.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Kuzmin, R. O.] Vernadsky Inst Geochem & Analyt Chem, Moscow, Russia. [Milliken, R.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Moersch, J.; Tate, C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. [Starr, R.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Litvak, ML (reprint author), RAS, Space Res Inst, Moscow, Russia. EM litvak@mx.iki.rssi.ru FU Russian Science Foundation [14-22-00249]; NASA/JPL; National Aeronautics and Space Administration FX The numerical simulations of water distribution performed in this work are supported by grant 14-22-00249 from the Russian Science Foundation. U.S. DAN team members, coauthors of this paper, are supported by contracts from NASA/JPL. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Instrument data used here are publically available through the NASA Planetary Data System (https://pds.jpl.nasa.gov/tools/subscription_service/SS-Release.shtml, see, for details, Mars Science Laboratory Data Releases with APXS and DAN data). The DAN team is thankful to the highly professional MSL project team members who have maximized opportunities for DAN measurements on Mars. The DAN team very much appreciates the work of colleagues from the N.L. Dukhov Institute for Automatics for the development of the reliable pulse neutron generator for this experiment. Finally, the team thanks the Curiosity science team, which provided essential comments and advice to the DAN team during numerous discussions. NR 19 TC 1 Z9 1 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY PY 2016 VL 121 IS 5 BP 836 EP 845 DI 10.1002/2015JE004960 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5FB UT WOS:000379927600006 ER PT J AU Bagenal, F Wilson, RJ Siler, S Paterson, WR Kurth, WS AF Bagenal, Fran Wilson, Robert J. Siler, Scott Paterson, William R. Kurth, William S. TI Survey of Galileo plasma observations in Jupiter's plasma sheet SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID EXTREME-ULTRAVIOLET SPECTROSCOPE; CASSINI UVIS OBSERVATIONS; IO TORUS; JOVIAN MAGNETOSPHERE; WAVE OBSERVATIONS; RADIAL VARIATIONS; ELECTRON-BEAMS; THERMAL IONS; SPACECRAFT; VARIABILITY AB The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between similar to 5 and 30 Jupiter radii (R-J) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from similar to 2 to 3000 cm(-3) at 6 R-J to w similar to 0.05 cm(-3) at 30 R-J. The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti similar to 60-80 eV) at similar to 6 R-J to a few keV at 30 R-J. There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R-J. C1 [Bagenal, Fran; Wilson, Robert J.; Siler, Scott] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Paterson, William R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Kurth, William S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Bagenal, F (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM bagenal@lasp.colorado.edu RI Wilson, Rob/C-2689-2009 OI Wilson, Rob/0000-0001-9276-2368 FU NASA's Jupiter Data Analysis Program [NNX09AE03G] FX We acknowledge support from NASA's Jupiter Data Analysis Program (NNX09AE03G). The Galileo PLS instrument is described at this website: http://www-pi.physics.uiowa.edu/pls/ The University of Iowa subnode of PDS for Planetary Plasma Interactions is provided here: http://www-pw.physics.uiowa.edu/pds/home.html The Galileo PLS plasma data used in the forward model plasma parameters calculations came from volume GO-J-PLS-3-RDR-FULLRES-V1.0 in the Planetary Data System (PDS) at http://pds.nasa.gov/. Likewise, the plasma numerical moments from the Galileo PLS instrument are found in the GO-J-PLS-5-RTS-MOMENTS-V1.0 PDS volume. The data used in this analysis, the supporting information describing the analysis techniques, the plasma moments derived from different techniques, and the Paterson [2009] document are all presented at this website: http://lasp.colorado.edu/home/mop/missions/galileo-2/galileo-plasma-data -pls/. NR 64 TC 4 Z9 4 U1 4 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY PY 2016 VL 121 IS 5 BP 871 EP 894 DI 10.1002/2016JE005009 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5FB UT WOS:000379927600009 ER PT J AU Hull, AJ Chaston, CC Frey, HU Fillingim, MO Goldstein, ML Bonnell, JW Mozer, FS AF Hull, A. J. Chaston, C. C. Frey, H. U. Fillingim, M. O. Goldstein, M. L. Bonnell, J. W. Mozer, F. S. TI The "Alfvenic surge" at substorm onset/expansion and the formation of "Inverted Vs": Cluster and IMAGE observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE auroral acceleration region; Alfven waves; substorm onset; particle injection; field-aligned currents; plasma sheet ID AURORAL ACCELERATION REGION; SHEET BOUNDARY-LAYER; WAVE POYNTING FLUX; PLASMA SHEET; ELECTRIC-FIELDS; R-E; PARTICLE-ACCELERATION; TEMPORAL EVOLUTION; NIGHTTIME SECTOR; CURRENT WEDGE AB From multipoint, in situ observations and imaging, we reveal the injection-powered, Alfvenic nature of auroral acceleration during onset and expansion of a substorm. It is shown how Alfvenic variations over time dissipate to form large-scale, inverted-V structures characteristic of quasistatic aurora. This characterization is made possible through the fortuitous occurrence of a substorm onset and expansion phase on field lines traversed by Cluster in the high-altitude acceleration region. Substorm onset was preceded by the occurrence of multiple poleward boundary intensifications (PBIs) and subsequent development/progression of a streamer toward the growth phase arc indicating that this is of the PBI-/streamer-triggered class of substorms. Onset on Cluster is marked by the injection of hot, dense magnetospheric plasma in a region tied to one of the preexisting PBI current systems. This was accompanied by a surge of Alfvenic activity and enhanced inverted-V acceleration, as the PBI current system intensified and striated to dispersive scale Alfven waves. The growth of Alfven wave activity was significant (up to a factor of 300 increase in magnetic field power spectral density at frequencies 20mHz less than or similar to f less than or similar to few hertz) and coincided with moderate growth (factor 3-5) in the background PBI current. This sequence is indicative of a cascade process whereby small-scale/dispersive Alfven waves are generated from large-scale Alfven waves or current destabilization. It also demonstrates that the initial PBIs and their subsequent evolution are an intrinsic part of the global auroral substorm response to injection and accompanying wave energy input from the magnetotail. Alfvenic activity persisted poleward of the PBI currents composing a broad Alfven wave-dominated region extending to the polar cap edge. These waves have transverse scales ranging from a few tens of kilometers to below the ion gyroradius and are associated with large electric fields (up to 200mV/m) and Poynting fluxes (up to 200mW/m(2) mapped at ionospheric altitudes). The fluctuations show mixtures of traveling and/or reflected (including standing) wave signatures, depending on frequency and location. A transition from incoming traveling wave to standing wave signatures is also seen near onset. Depending on location, electron distributions show signatures of Alfven acceleration, inverted-V acceleration, or evidence of both. Poleward expansion of substorm emissions coincided with the poleward expansion of the hot energetic plasma, and the formation of a large-scale inverted-V current system with concurrent attenuation of Alfvenic fluctuations within the Alfven-dominated region. We suggest that the attenuation is due to a dissipative effect owing to changes in the dispersive properties of these waves via the injection process and/or due to a transient magnetotail source. These findings suggest that in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. C1 [Hull, A. J.; Chaston, C. C.; Frey, H. U.; Fillingim, M. O.; Bonnell, J. W.; Mozer, F. S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Hull, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM ahull@ssl.berkeley.edu OI Frey, Harald/0000-0001-8955-3282 FU NASA [NNX07AG41G]; NSF [S013865-U] FX Funding for this work was provided by NASA grant NNX07AG41G and NSF grant S013865-U. We thank Cluster instrument teams and the Cluster Science Archive for providing Cluster data (http://www.cosmoss.esa.int/web/csa/). IMAGE FUV data used in this paper are publicly available at the UC Berkeley Space Science Laboratory website (http://sprg.ssl.berkeley.edu/image/). Wavelet software was provided by C. Torrence and G. Compo and is available at http://paos.colorado.edu/research/wavelets/. NR 65 TC 0 Z9 0 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY PY 2016 VL 121 IS 5 BP 3978 EP 4004 DI 10.1002/2015JA022000 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR6QD UT WOS:000380025500008 ER PT J AU Kang, SB Fok, MC Glocer, A Min, KW Choi, CR Choi, E Hwang, J AF Kang, S. -B. Fok, M. -C. Glocer, A. Min, K. -W. Choi, C. -R. Choi, E. Hwang, J. TI Simulation of a rapid dropout event for highly relativistic electrons with the RBE model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE RBE model; relativistic electron; dropout; EMIC waves; pitch angle scattering ID VAN ALLEN PROBES; LINEAR DIFFUSION-COEFFICIENTS; ION-CYCLOTRON WAVES; RADIATION-BELT ELECTRONS; EMIC WAVES; GEOMAGNETIC STORMS; PITCH-ANGLE; INNER MAGNETOSPHERE; LOCAL ACCELERATION; RING CURRENT AB A flux dropout is a sudden and sizable decrease in the energetic electron population of the outer radiation belt on the time scale of a few hours. We simulated a flux dropout of highly relativistic >2.5MeV electrons using the Radiation Belt Environment model, incorporating the pitch angle diffusion coefficients caused by electromagnetic ion cyclotron (EMIC) waves for the geomagnetic storm event of 23-26 October 2002. This simulation showed a remarkable decrease in the >2.5MeV electron flux during main phase of the storm, compared to those without EMIC waves. This decrease was independent of magnetopause shadowing or drift loss to the magnetopause. We suggest that the flux decrease was likely to be primarily due to pitch angle scattering to the loss cone by EMIC waves. Furthermore, the >2.5MeV electron flux calculated with EMIC waves correspond very well with that observed from Solar Anomalous and Magnetospheric Particle EXplorer spacecraft. EMIC wave scattering is therefore likely one of the key mechanisms to understand flux dropouts. We modeled EMIC wave intensities by the Kp index. However, the calculated dropout is a several hours earlier than the observed one. We propose that Kp is not the best parameter to predict EMIC waves. C1 [Kang, S. -B.; Fok, M. -C.; Glocer, A.; Choi, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Min, K. -W.; Choi, C. -R.; Choi, E.] Korea Adv Inst Sci & Technol, Daejeon, South Korea. [Choi, C. -R.] Univ Space Res Assoc, Columbia, MD USA. [Choi, E.] Chungbuk Natl Univ, Cheongju, South Korea. [Hwang, J.] Korea Astron & Space Sci Inst, Daejeon, South Korea. RP Kang, SB (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM suk-bin.kang@nasa.gov RI Min, Kyoung Wook/C-1948-2011 FU NASA Heliophysics Living; Star Targeted Research and Technology program, under Work Breakdown Structure [936723.02.01.09.47]; National Research Foundation of Korea [NRF-2013M1A3A3A02041911, 2014M1A3A3A02034585] FX We thank ACE, WIND, OMNI, and SAMPEX teams for providing the solar wind and electron flux data through Space Physics Data Facility of NASA Goddard Space Flight Center (cdaweb.gsfc.nasa.gov). The Kp, Dst, and SYM-H indices were provided by Kyoto University World Data Center for Geomagnetism (http://wdc.kugi.kyotou.ac.jp). We gratefully acknowledge Jay Albert of Air Force Research Laboratory for providing the VLF wave diffusion coefficients. We also acknowledge Tobias Kersten, Richard B. Horne, and Sarah A. Glauert et al. for providing the available parameters of EMIC wave model through the paper of Kersten et al. [2008]. The work by S.-B. Kang was supported by an appointment of NASA Postdoctoral Program at Goddard Space Fight Center, administered by Universities Space Research Association through a contract with NASA. The work by M.-C. Fok and A. Glocer was supported by NASA Heliophysics Living with a Star Targeted Research and Technology program, under Work Breakdown Structure 936723.02.01.09.47. The work by K.-W. Min, C.-R. Choi, and E. Choi is supported by the National Research Foundation of Korea through grants NRF-2013M1A3A3A02041911 and 2014M1A3A3A02034585. NR 88 TC 1 Z9 1 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY PY 2016 VL 121 IS 5 BP 4092 EP 4102 DI 10.1002/2015JA021966 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR6QD UT WOS:000380025500015 ER PT J AU Halford, AJ McGregor, SL Hudson, MK Millan, RM Kress, BT AF Halford, A. J. McGregor, S. L. Hudson, M. K. Millan, R. M. Kress, B. T. TI BARREL observations of a solar energetic electron and solar energetic proton event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE solar energetic protons; solar energetic electrons; BARREL; electron precipitation; proton precipitation; solar storm ID COSMIC-RAYS; JANUARY 6; PARTICLE; MAGNETOSPHERE; IMPACT; EARTH; ACCELERATION; SPECTRA; STORM AB During the second Balloon Array for Radiation Belt Relativistic Electron Losses (BARREL) campaign two solar energetic proton (SEP) events were observed. Although BARREL was designed to observe X-rays created during electron precipitation events, it is sensitive to X-rays from other sources. The gamma lines produced when energetic protons hit the upper atmosphere are used in this paper to study SEP events. During the second SEP event starting on 7 January 2014 and lasting approximate to 3days, which also had a solar energetic electron (SEE) event occurring simultaneously, BARREL had six payloads afloat spanning all magnetic local time (MLT) sectors and L values. Three payloads were in a tight array (approximate to 2h in MLT and approximate to 2 L) inside the inner magnetosphere and at times conjugate in both L and MLT with the Van Allen Probes (approximately once per day). The other three payloads mapped to higher L values with one payload on open field lines for the entire event, while the other two appear to be crossing from open to closed field lines. Using the observations of the SEE and SEP events, we are able to map the open-closed boundary. Halford et al. (2015) demonstrated how BARREL can monitor electron precipitation following an interplanetary shock created by a coronal mass ejection (ICME-shock) arrival at Earth, while in this study we look at the SEP event precursor to the arrival of the ICME-Shock in our cradle-to-grave view: from flare, to SEE and SEP events, to radiation belt electron precipitation. C1 [Halford, A. J.; Hudson, M. K.; Millan, R. M.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Halford, A. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McGregor, S. L.] Keene State Coll, Dept Phys, Keene, NH USA. [Kress, B. T.] NOAA, Boulder, CO USA. RP Halford, AJ (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.; Halford, AJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Alexa.J.Halford@Dartmouth.edu FU NASA [NNX15AF54G, NNX08AM58G, NAS5-01072]; NSF [AGS-1455470]; BARREL team; National Science Foundation (NSF); National Environmental Research Council (NERC)/British Antarctic Survey; South African National Antarctic Program (SANAP); JHU/APL [967399] FX The authors acknowledge NASA grants NNX15AF54G and NNX08AM58G and NSF grant AGS-1455470 and the BARREL team for use of BARREL data. The BARREL team would also like to acknowledge the National Science Foundation (NSF), the National Environmental Research Council (NERC)/British Antarctic Survey, and the South African National Antarctic Program (SANAP) for their support of the BARREL campaign. The BARREL data can be found at http://barreldata.ucsc.edu/data_products/v05/. The authors would like to thank Jeremy Faden and all of the developers of Autoplot. The REPT data were supported by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA's Prime contract NAS5-01072. The authors would like to thank NOAA for the use of GOES data http://satdat.ngdc.noaa.gov/sem/goes/data/. We thank the ACE EPAM instrument team and the ACE Science Center for providing the ACE data. S. McGregor and A. Halford would like to give a special thanks to CISM for encouraging us to look at the larger "Sun to Mud" view and enabling us to form collaborations which led to this and other papers. We would like to thank BARREL team members and specifically Michael McCarthy and David Smith for their useful conversations. And last but not least, to Magritte's painting "Ceci n'est pas une pipe" for reminding us that "this" is not a subject pronoun. All other data used in this paper can be found on CDAweb. NR 37 TC 2 Z9 2 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY PY 2016 VL 121 IS 5 BP 4205 EP 4216 DI 10.1002/2016JA022462 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR6QD UT WOS:000380025500024 ER PT J AU McComas, DJ Elliott, HA Weidner, S Valek, P Zirnstein, EJ Bagenal, F Delamere, PA Ebert, RW Funsten, HO Horanyi, M McNutt, RL Moser, C Schwadron, NA Strobel, DF Young, LA Ennico, K Olkin, CB Stern, SA Weaver, HA AF McComas, D. J. Elliott, H. A. Weidner, S. Valek, P. Zirnstein, E. J. Bagenal, F. Delamere, P. A. Ebert, R. W. Funsten, H. O. Horanyi, M. McNutt, R. L. Moser, C. Schwadron, N. A. Strobel, D. F. Young, L. A. Ennico, K. Olkin, C. B. Stern, S. A. Weaver, H. A. TI Pluto's interaction with the solar wind SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Plutopause; Pluto; heavy ion tail; bow shock; solar wind interaction; pickup ions ID CARBON FOILS; KUIPER-BELT; ATMOSPHERE; IRRADIATION; MODELS; HORIZONS; SURFACE; ESCAPE; PLASMA; IONS AB This study provides the first observations of Plutogenic ions and their unique interaction with the solar wind. We find 20% solar wind slowing that maps to a point only 4.5 R-P upstream of Pluto and a bow shock most likely produced by comet-like mass loading. The Pluto obstacle is a region of dense heavy ions bounded by a Plutopause where the solar wind is largely excluded and which extends back >100 R-P into a heavy ion tail. The upstream standoff distance is at only 2.5 R-P. The heavy ion tail contains considerable structure, may still be partially threaded by the interplanetary magnetic field (IMF), and is surrounded by a light ion sheath. The heavy ions (presumably CH4+) have average speed, density, and temperature of 90kms(-1), 0.009cm(-3), and 7x10(5)K, with significant variability, slightly increasing speed/temperature with distance, and are N-S asymmetric. Density and temperature are roughly anticorrelated yielding a pressure 2x10(-2)pPa, roughly in balance with the interstellar pickup ions at 33AU. We set an upper bound of <30nT surface field at Pluto and argue that the obstacle is largely produced by atmospheric thermal pressure like Venus and Mars; we also show that the loss rate down the tail (5x10(23)s(-1)) is only 1% of the expected total CH4 loss rate from Pluto. Finally, we observe a burst of heavy ions upstream from the bow shock as they are becoming picked up and tentatively identify an IMF outward sector at the time of the NH flyby. C1 [McComas, D. J.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA. [McComas, D. J.; Elliott, H. A.; Weidner, S.; Valek, P.; Zirnstein, E. J.; Ebert, R. W.; Moser, C.] Southwest Res Inst, San Antonio, TX 78238 USA. [McComas, D. J.; Weidner, S.; Valek, P.; Moser, C.] Univ Texas San Antonio, Phys Astron, San Antonio, TX 78249 USA. [Bagenal, F.; Horanyi, M.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. [Delamere, P. A.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [McNutt, R. L.; Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Schwadron, N. A.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Strobel, D. F.] Johns Hopkins Univ, Earth & Planetary Sci, Baltimore, MD USA. [Young, L. A.; Olkin, C. B.; Stern, S. A.] Southwest Res Inst, Boulder, CO USA. [Ennico, K.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP McComas, DJ (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA.; McComas, DJ (reprint author), Southwest Res Inst, San Antonio, TX 78238 USA.; McComas, DJ (reprint author), Univ Texas San Antonio, Phys Astron, San Antonio, TX 78249 USA. EM dmccomas@princeton.edu OI Valek, Philip/0000-0002-2318-8750 NR 41 TC 6 Z9 6 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY PY 2016 VL 121 IS 5 BP 4232 EP 4246 DI 10.1002/2016JA022599 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR6QD UT WOS:000380025500026 ER PT J AU Ieda, A Nishimura, Y Miyashita, Y Angelopoulos, V Runov, A Nagai, T Frey, HU Fairfield, DH Slavin, JA Vanhamaki, H Uchino, H Fujii, R Miyoshi, Y Machida, S AF Ieda, A. Nishimura, Y. Miyashita, Y. Angelopoulos, V. Runov, A. Nagai, T. Frey, H. U. Fairfield, D. H. Slavin, J. A. Vanhamaki, H. Uchino, H. Fujii, R. Miyoshi, Y. Machida, S. TI Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE substorm; magnetotail; aurora; auroral breakup; magnetic reconnection; plasmoid ID MAGNETOTAIL CURRENT SHEET; MAGNETOSPHERIC SUBSTORMS; EARTHS MAGNETOTAIL; EXPANSION PHASE; GEOTAIL OBSERVATIONS; CURRENT WEDGE; NEUTRAL LINE; PLASMOID EJECTION; FLOW BURSTS; ONSET AB Auroral stepwise poleward expansions were clarified by investigating a multiple-onset substorm that occurred on 27 February 2009. Five successive auroral brightenings were identified in all-sky images, occurring at approximately 10 min intervals. The first brightening was a faint precursor. The second brightening had a wide longitude; thus, it represented the Akasofu substorm onset. Other brightenings expanded poleward; thus, they were interpreted to be auroral breakups. These breakups occurred stepwise; that is, later breakups were initiated at higher latitudes. Corresponding reconnection signatures were studied using Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations between 8 and 24R(E) down the magnetotail. The Akasofu substorm onset was not accompanied by a clear reconnection signature in the tail. In contrast, the three subsequent auroral breakups occurred simultaneously (within a few minutes) with three successive fast flows at 24R(E); thus, these were interpreted to be associated with impulsive reconnection episodes. These three fast flows consisted of a tailward flow and two subsequent earthward flows. The flow reversal at the second breakup indicated that a tailward retreat of the near-Earth reconnection site occurred during the substorm expansion phase. In addition, the earthward flow at the third breakup was consistent with the classic tailward retreat near the end of the expansion phase; therefore, the tailward retreat is likely to have occurred in a stepwise manner. We interpreted the stepwise characteristics of the tailward retreat and poleward expansion to be potentially associated by a stepwise magnetic flux pileup. C1 [Ieda, A.; Miyashita, Y.; Uchino, H.; Fujii, R.; Miyoshi, Y.; Machida, S.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan. [Nishimura, Y.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Angelopoulos, V.; Runov, A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Nagai, T.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Tokyo, Japan. [Frey, H. U.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fairfield, D. H.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD USA. [Slavin, J. A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Vanhamaki, H.] Univ Oulu, Dept Phys, Oulu, Finland. [Uchino, H.] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. RP Ieda, A (reprint author), Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan. EM ieda@nagoya-u.jp RI Slavin, James/H-3170-2012; Miyoshi, Yoshizumi/B-5834-2015; OI Slavin, James/0000-0002-9206-724X; Miyoshi, Yoshizumi/0000-0001-7998-1240; Vanhamaki, Heikki/0000-0002-3454-0350; Frey, Harald/0000-0001-8955-3282 FU NASA [NAS5-02099, NNX12AJ57G]; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302]; NSF [AGS-1004736, AGS-1004814]; CSA; JSPS KAKENHI [16K05568, 23540524, 26247082, 15H05815]; JSPS ASINACTR [G2602]; Magnus Ehrnrooth foundation; GEMSIS project of ISEE in Nagoya University FX A. I. wishes to thank A. T. Aikio, S.-I. Akasofu, O. Amm, D. N. Baker, H. Hayakawa, T. Hori, M. Hoshino, S. Imada, Y. Kamide, S. Kokubun, K. Liou, A. Nishida, N. Nishitani, M. Nose, M. Oka, I. Shinohara, K. Shiokawa, M. I. Sitnov, J. M. Weygand, and A. N. Willer for their valuable comments. We acknowledge NASA contract NAS5-02099 for use of data from the THEMIS Mission (http://themis.ssl.berkeley.edu/). Specifically, we thank C. W. Carlson and J. P. McFadden for use of ESA data; D. Larson and R. P. Lin for use of SST data; K.-H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302; S. Mende and E. Donovan for use of the ASI data, the CSA for logistical support in fielding and data retrieval from the GBO stations, and NSF for support of GIMNAST through grant AGS-1004736; S. Mende and C. T. Russell for use of the UCLA ground magnetometer (GMAG) data and NSF for support through grant AGS-1004814; Erik Steinmetz, Augsburg College for use of the MACCS GMAG data; Tromso Geophysical Observatory for use of the Greenland GMAG data; the Geological Survey of Canada for use of the CANMON GMAG data; USGS Geomagnetism Program for use of GMAG data; I. R. Mann, D. K. Milling, and the rest of the CARISMA team for use of GMAG data. CARISMA is operated by the University of Alberta, funded by the CSA. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. The AL, AU, and SYM-H indices were provided by the WDC for Geomagnetism, Kyoto. The wave index was obtained from the substorm swift search interface at http://s-cubed.info/. The code of the modified magnetic apex coordinates was received from the CEDAR database at NCAR, which is supported by NSF. This work was supported by JSPS KAKENHI grants 16K05568, 23540524, 26247082, and 15H05815. This work was also supported by JSPS ASINACTR grant G2602, by NASA grant NNX12AJ57G, by the Magnus Ehrnrooth foundation and by the GEMSIS project of ISEE in Nagoya University. NR 89 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY PY 2016 VL 121 IS 5 BP 4548 EP 4568 DI 10.1002/2015JA022244 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR6QD UT WOS:000380025500049 ER PT J AU Ergun, RE Andersson, LA Fowler, CM Woodson, AK Weber, TD Delory, GT Andrews, DJ Eriksson, AI McEnulty, T Morooka, MW Stewart, AIF Mahaffy, PR Jakosky, BM AF Ergun, R. E. Andersson, L. A. Fowler, C. M. Woodson, A. K. Weber, T. D. Delory, G. T. Andrews, D. J. Eriksson, A. I. McEnulty, T. Morooka, M. W. Stewart, A. I. F. Mahaffy, P. R. Jakosky, B. M. TI Enhanced O-2(+) loss at Mars due to an ambipolar electric field from electron heating SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ion escape; ambipolar electric field; Mars atmospheric loss; O-2(+) loss at Mars; Mars ionosphere ID CRUSTAL MAGNETIC-FIELDS; MARTIAN IONOSPHERE; GLOBAL SURVEYOR; SOLAR-WIND; ATMOSPHERIC EROSION; ION; TEMPERATURES; EVOLUTION; OUTFLOW; ESCAPE AB Recent results from the MAVEN Langmuir Probe and Waves instrument suggest higher than predicted electron temperatures (T-e) in Mars' dayside ionosphere above similar to 180km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer indicate significant abundances of O-2(+) up to similar to 500km in altitude, suggesting that O-2(+) may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T-e (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T-e may greatly increase O-2(+) loss at Mars. In particular, enhanced T-e in Mars' ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(B)T(e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron, and ion heating, direct O-2(+) loss could match or exceed loss via dissociative recombination of O-2(+). These results suggest that direct loss of O-2(+) may have played a significant role in the loss of oxygen at Mars over time. C1 [Ergun, R. E.; Fowler, C. M.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; McEnulty, T.; Morooka, M. W.; Stewart, A. I. F.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA. [Delory, G. T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Andrews, D. J.; Eriksson, A. I.] Swedish Inst Space Phys Uppsala, Uppsala, Sweden. [Mahaffy, P. R.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Code 699, Greenbelt, MD USA. RP Ergun, RE (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.; Ergun, RE (reprint author), Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA. EM ree@lasp.colorado.edu FU NASA through the Mars Exploration Program; Swedish National Space Board [DNR 162/14]; Vetenskapsadet [DNR 621-2014-5526] FX The MAVEN project is supported by NASA through the Mars Exploration Program. Work at IRF was supported by grants from the Swedish National Space Board (DNR 162/14) and Vetenskapsadet (DNR 621-2014-5526). Data are from MAVEN LPW, and NGIMS have been submitted to the NASA Planetary Data System. We thank Andy Nagy for his valuable help and insights. NR 48 TC 2 Z9 2 U1 3 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY PY 2016 VL 121 IS 5 BP 4668 EP 4678 DI 10.1002/2016JA022349 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR6QD UT WOS:000380025500057 ER PT J AU Burke, WJ Pfaff, RF Martinis, CR Gentile, LC AF Burke, W. J. Pfaff, R. F. Martinis, C. R. Gentile, L. C. TI C/NOFS remote sensing of ionospheric reflectance SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Alfvenic reflection coefficients; incident; reflected Poynting flux; MSTID electrodynamics ID NIGHTTIME MIDLATITUDE IONOSPHERE; ELECTRIC-FIELDS; ALFVEN WAVES; F-LAYER; ARECIBO; DISTURBANCES; CONDUCTANCES; INSTABILITY; CURRENTS; IMAGES AB Alfven waves play critical roles in the electrodynamic coupling of plasmas at magnetically conjugate regions in near-Earth space. Associated electric (E*) and magnetic (B*) field perturbations sampled by sensors on satellites in low-Earth orbits are generally superpositions of incident and reflected waves. However, lack of knowledge about ionospheric reflection coefficients () hinders understanding of generator outputs and load absorption of Alfven wave energies. Here we demonstrate a new method for estimating using satellite measurements of ambient E* and B* then apply it to a case in which the Communication/Navigation Outage Forecasting System (C/NOFS) satellite flew conjugate to the field of view of a 630.0nm all-sky imager at El Leoncito, Argentina, while medium-scale traveling ionosphere disturbances were detected in its field of view. In regions of relatively large amplitudes of E* and B*, calculated values ranged between 0.67 and 0.88. This implies that due to impedance mismatches, the generator ionosphere puts out significantly more electromagnetic energy than the load can absorb. Our analysis also uncovered caveats concerning the method's range of applicability in regions of low E* and B*. The method can be validated in future satellite-based auroral studies where energetic particle precipitation fluxes can be used to make independent estimates of . C1 [Burke, W. J.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02167 USA. [Pfaff, R. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Martinis, C. R.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Gentile, L. C.] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM USA. RP Burke, WJ (reprint author), Boston Coll, Inst Sci Res, Chestnut Hill, MA 02167 USA. FU Air Force Office of Scientific Research [FA9550-14-1-0222]; Boston College [FA9453-12-C-0205, FA8712-10-C-0001]; NSF Aeronomy grant [1123222]; Air Force Office of Scientific Research FX This work was supported in part by grant FA9550-14-1-0222 from the Air Force Office of Scientific Research. The authors wish to acknowledge the expert analysis and processing of the VEFI DC electric field and magnetic field data used in this study by Henry Freudenreich and Carmen Liebrecht at the NASA/Goddard Space Flight Center. VEFI data from the first 3 years of the C/NOFS mission are available on the CDA website with plans to make later VEFI data available. Observations from the Boston University all-sky imagers are available at http://sirius.bu.edu/. W.J.B. received support under contracts FA9453-12-C-0205 and FA8712-10-C-0001 with Boston College. C.R.M. acknowledges the support of NSF Aeronomy grant 1123222 and Air Force Office of Scientific Research grant for DURIP instrumentation. NR 39 TC 1 Z9 1 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY PY 2016 VL 121 IS 5 BP 4924 EP 4932 DI 10.1002/2016JA022345 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR6QD UT WOS:000380025500074 ER PT J AU Alfaro, MD Hernandez, FP Hernandez, IG Hartlep, T AF Diaz Alfaro, M. Perez Hernandez, F. Hernandez, I. Gonzalez Hartlep, T. TI Seismic Holography of the Solar Interior near the Maximum and Minimum of Solar Activity SO SOLAR PHYSICS LA English DT Article DE Helioseismology; Solar activity; Tachocline ID P-MODE FREQUENCIES; CONVECTION ZONE; FAR-SIDE; CYCLE VARIATIONS; HELIOSEISMIC CONSTRAINTS; TEMPORAL VARIATIONS; MAGNETIC-FIELDS; TRAVEL-TIME; SUN; TACHOCLINE AB The base of the convection zone and the tachocline play a major role in the study of the dynamics of the Sun, especially in the solar dynamo. Here, we present a phase sensitive helioseismic holography method to infer changes in the sound-speed profile of the solar interior. We test the technique using numerically simulated data by Zhao et al. (Astrophys. J. 702, 1150, 2009) with sound-speed perturbations at 0.7 R-circle dot. The technique adequately recovers the perturbed sound-speed profile and is seen to be capable of detecting changes in the sound speed as low as 0.05 %. We apply the method to two GONG solar time series of approximately one year, each comprising 13 Bartels rotations, BR2295-BR2307 and BR2387-BR2399, near the maximum and at a minimum of solar activity, respectively. We successfully recover a sound-speed variation with respect to a standard solar model, consistent with previous results. However, we fail to recover a realistic sound-speed variation between maximum and minimum. C1 [Diaz Alfaro, M.; Perez Hernandez, F.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Diaz Alfaro, M.; Perez Hernandez, F.] Univ La Laguna, Dept Astrofis, Tenerife 38305, Spain. [Hernandez, I. Gonzalez] Natl Solar Observ, Tucson, AZ 85719 USA. [Hartlep, T.] NASA Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. RP Alfaro, MD (reprint author), Inst Astrofis Canarias, Tenerife 38200, Spain.; Alfaro, MD (reprint author), Univ La Laguna, Dept Astrofis, Tenerife 38305, Spain. EM manuel@diazalfaro.com OI Diaz Alfaro, Manuel/0000-0002-4839-872X; Hartlep, Thomas/0000-0002-5062-9507 FU Spanish National Research Plan [AYA2010-17803] FX We thank C. Lindsey and D. Braun for making available a large part of the far-side code used here and adapted for use with foci well below the surface. Part of this research was supported by the Spanish National Research Plan under project AYA2010-17803. This work uses data obtained by the Global Oscillation Network Group (GONG) program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisica de Canarias, and Cerro Tololo Interamerican Observatory. We thankfully acknowledge the technical expertise and assistance provided by the Spanish Supercomputing Network (Red Espanola de Supercomputacion), as well as the computer resources used: the LaPalma Supercomputer, located at the Instituto de Astrofisica de Canarias, as well as the contribution of Teide High-Performance Computing facilities to the results of this research. TeideHPC facilities are provided by the Instituto Tecnologico y de Energias Renovables (ITER, SA). URL: http://teidehpc.iter.es. NR 43 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD MAY PY 2016 VL 291 IS 5 BP 1323 EP 1340 DI 10.1007/s11207-016-0912-3 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3UO UT WOS:000379828300002 ER PT J AU Hariharan, K Ramesh, R Kathiravan, C Wang, TJ AF Hariharan, K. Ramesh, R. Kathiravan, C. Wang, T. J. TI Simultaneous Near-Sun Observations of a Moving Type IV Radio Burst and the Associated White-Light Coronal Mass Ejection SO SOLAR PHYSICS LA English DT Article DE Coronal magnetic field; Coronal mass ejections; Sun: Radio bursts ID LOW-FREQUENCY OBSERVATIONS; OUTER SOLAR CORONA; MAGNETIC-FIELD; GAURIBIDANUR RADIOHELIOGRAPH; VLA OBSERVATIONS; PLASMA EMISSION; SOURCE REGION; QUIET SUN; ARRAY; WAVELENGTHS AB We present rare contemporaneous low-frequency (< 100 MHz) imaging, spectral, and polarimetric observations of a moving type IV radio burst that had close spatio-temporal association with a white-light coronal mass ejection (CME) near the Sun. We estimate the electron density near the burst region from white-light coronagraph polarized brightness (pB) images of the CME as well as the two-dimensional radio imaging observations of the thermal free-free emission at a typical radio frequency such as 80 MHz. We analyze the burst properties such as the degree of circular polarization, the spectral index, and fine structures using the radio polarimeter and the radio spectral observations. The obtained results suggest that second harmonic plasma emission from the enhanced electron density in the leading edge of the CME is the cause of the radio burst. We determine the strength of the coronal magnetic field (B) for the first time based on this interpretation. The estimated value (B approximate to 1 gauss) in the CME leading edge at a heliocentric distance of approximate to 2.2 R-circle dot agrees well with the similar B values reported earlier based on other types of observations. C1 [Hariharan, K.; Ramesh, R.; Kathiravan, C.] Indian Inst Astrophys, 2 Block, Koramangala 560034, Bengaluru, India. [Wang, T. J.] Catholic Univ Amer, Dept Phys, Code 671, Greenbelt, MD 20771 USA. [Wang, T. J.] NASA Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. RP Hariharan, K (reprint author), Indian Inst Astrophys, 2 Block, Koramangala 560034, Bengaluru, India. EM khariharan@iiap.res.in FU NASA [NNG11PL10A, NNX12AB34G] FX We thank the staff of the Gauribidanur Observatory for their help in observations and maintenance of the antenna and receiver systems there. The suggestions by the referee helped us to improve our results. We express our gratitude to Nathan Rich for his kind help in generating the SOHO/LASCO C2 pB images. The SOHO data are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut fuer Sonnensystemforschung (Germany), Laboratoire d'Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA. The SOHO/LASCO CME catalog is generated and maintained at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. The SDO/AIA data are courtesy of the NASA/SDO and the AIA science teams. The work of TJW was supported by NASA Cooperative Agreement NNG11PL10A to CUA and NASA grant NNX12AB34G. We thank the PROBA2-SWAP team for providing open access to the images. NR 80 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD MAY PY 2016 VL 291 IS 5 BP 1405 EP 1416 DI 10.1007/s11207-016-0918-x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3UO UT WOS:000379828300007 ER PT J AU Matsui, H Heien, E Aubert, J Aurnou, JM Avery, M Brown, B Buffett, BA Busse, F Christensen, UR Davies, CJ Featherstone, N Gastine, T Glatzmaier, GA Gubbins, D Guermond, JL Hayashi, YY Hollerbach, R Hwang, LJ Jackson, A Jones, CA Jiang, WY Kellogg, LH Kuang, WJ Landeau, M Marti, P Olson, P Ribeiro, A Sasaki, Y Schaeffer, N Simitev, RD Sheyko, A Silva, L Stanley, S Takahashi, F Takehiro, S Wicht, J Willis, AP AF Matsui, Hiroaki Heien, Eric Aubert, Julien Aurnou, Jonathan M. Avery, Margaret Brown, Ben Buffett, Bruce A. Busse, Friedrich Christensen, Ulrich R. Davies, Christopher J. Featherstone, Nicholas Gastine, Thomas Glatzmaier, Gary A. Gubbins, David Guermond, Jean-Luc Hayashi, Yoshi-Yuki Hollerbach, Rainer Hwang, Lorraine J. Jackson, Andrew Jones, Chris A. Jiang, Weiyuan Kellogg, Louise H. Kuang, Weijia Landeau, Maylis Marti, Philippe Olson, Peter Ribeiro, Adolfo Sasaki, Youhei Schaeffer, Nathanael Simitev, Radostin D. Sheyko, Andrey Silva, Luis Stanley, Sabine Takahashi, Futoshi Takehiro, Shin-ichi Wicht, Johannes Willis, Ashley P. TI Performance benchmarks for a next generation numerical dynamo model SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE geodynamo; magnetohydrodynamics; benchmark; high-performance computing ID FINITE-ELEMENT-METHOD; ROTATING SPHERICAL-SHELL; GEOFEM PLATFORM; MAGNETIC-FIELD; FLUID SHELLS; CONVECTION; SIMULATION; CORE; EQUATIONS; BOUNDARY AB Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(10(6)) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to approximate to 10(6) processor cores, paving the way for more realistic simulations in the next model generation. C1 [Matsui, Hiroaki; Heien, Eric; Aurnou, Jonathan M.; Brown, Ben; Buffett, Bruce A.; Featherstone, Nicholas; Glatzmaier, Gary A.; Hwang, Lorraine J.; Kellogg, Louise H.; Olson, Peter; Stanley, Sabine] Univ Calif Davis, Computat Infrastruct Geodynam Dynamo Working Grp, Davis, CA 95616 USA. [Matsui, Hiroaki; Heien, Eric; Hwang, Lorraine J.; Kellogg, Louise H.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Aubert, Julien] Univ Paris Diderot, CNRS, Inst Phys Globe Paris, Sorbonne Paris Cite, Paris, France. [Aurnou, Jonathan M.; Ribeiro, Adolfo] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Avery, Margaret; Davies, Christopher J.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Brown, Ben] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Buffett, Bruce A.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Busse, Friedrich] Univ Bayreuth, Inst Phys, Bayreuth, Germany. [Christensen, Ulrich R.; Gastine, Thomas; Wicht, Johannes] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany. [Featherstone, Nicholas; Marti, Philippe] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Glatzmaier, Gary A.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Gubbins, David] Univ Leeds, Sch Earth Environm, Leeds, W Yorkshire, England. [Guermond, Jean-Luc] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA. [Hayashi, Yoshi-Yuki] Kobe Univ, Dept Earth & Planetary Sci, Ctr Planetary Sci, Kobe, Hyogo 657, Japan. [Hollerbach, Rainer; Jones, Chris A.] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England. [Jackson, Andrew; Sheyko, Andrey] Swiss Fed Inst Technol, Inst Geophys, Zurich, Switzerland. [Jiang, Weiyuan; Kuang, Weijia] NASA Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD USA. [Landeau, Maylis; Olson, Peter] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Sasaki, Youhei] Kyoto Univ, Dept Math, Kyoto 606, Japan. [Schaeffer, Nathanael] Univ Grenoble Alpes, CNRS, ISTerre, Grenoble, France. [Simitev, Radostin D.; Silva, Luis] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland. [Stanley, Sabine] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Takahashi, Futoshi] Kyushu Univ, Dept Earth & Planetary Sci, Fukuoka, Japan. [Takehiro, Shin-ichi] Kyoto Univ, Math Sci Res Inst, Kyoto, Japan. [Willis, Ashley P.] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England. RP Matsui, H (reprint author), Univ Calif Davis, Computat Infrastruct Geodynam Dynamo Working Grp, Davis, CA 95616 USA.; Matsui, H (reprint author), Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. EM hrmatsui@ucdavis.edu RI Aubert, Julien/A-5616-2011; Schaeffer, Nathanael/F-4162-2012; OI Aubert, Julien/0000-0002-2756-0724; Schaeffer, Nathanael/0000-0001-5206-3394; Simitev, Radostin/0000-0002-2207-5789; MARTI, PHILIPPE/0000-0002-3936-1503 FU Computational Infrastructure for Geodynamics (CIG); National Science Foundation [NSF-0949446, ACI-1053575]; Leverhulme Trust in the UK [RPG-2012-600] FX This work was supported by the Computational Infrastructure for Geodynamics (CIG), which is supported by the National Science Foundation award NSF-0949446. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. The Calypso and Rayleigh codes have been developed and released as open source programs under a support from CIG. We thank all the participants at the 2012 Geodynamo Developer Meeting which drove this work and the follow-on 2015 Geodynamo Benchmark Workshop. R. D. Simitev and L. Silva acknowledge support of the Leverhulme Trust Research Project grant RPG-2012-600 in the UK. We also thank the reviewers for useful suggestions. NR 37 TC 3 Z9 3 U1 9 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD MAY PY 2016 VL 17 IS 5 BP 1586 EP 1607 DI 10.1002/2015GC006159 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DQ9JB UT WOS:000379525100002 ER PT J AU Maynard-Casely, HE Hodyss, R Cable, ML Vu, TH Rahm, M AF Maynard-Casely, Helen E. Hodyss, Robert Cable, Morgan L. Tuan Hoang Vu Rahm, Martin TI A co-crystal between benzene and ethane: a potential evaporite material for Saturn's moon Titan SO IUCRJ LA English DT Article DE co-crystals; molecular crystallography; synchrotron powder diffraction; Titan; evaporite ID AUGMENTED-WAVE METHOD; X-RAY-DIFFRACTION; POWDER DIFFRACTION; REFINEMENT; SYNCHROTRON; ACETYLENE; EFFICIENT; LAKES; CELL AB Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C-H center dot center dot center dot pi network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3: 1 benzene: ethane stoichiometry and is described in the space group R (3) over bar with a = 15.977 (1) angstrom and c = 5.581 (1) angstrom at 90 K, with a density of 1.067 g cm(-3). The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn's moon Titan's lakes, an evaporite material. C1 [Maynard-Casely, Helen E.] Australian Nucl Sci & Technol Org, Bragg Inst, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia. [Hodyss, Robert; Cable, Morgan L.; Tuan Hoang Vu] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rahm, Martin] Cornell Univ, Chem & Chem Biol, Baker Lab, Ithaca, NY 14853 USA. RP Maynard-Casely, HE (reprint author), Australian Nucl Sci & Technol Org, Bragg Inst, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia. EM helenmc@ansto.gov.au RI Vu, Tuan/F-5223-2017; OI Vu, Tuan/0000-0001-6839-9765; Maynard-Casely, Helen/0000-0001-6364-9665 FU NSF [ACI-1053575, CHE-1305872]; NASA Astrobiology Institute (Titan as a Prebiotic Chemical System); NASA's Outer Planets Research program FX We acknowledge the Australian Synchrotron for the award of beamtime EPN 3200 and Justin Kimpton for his assistance during the experiment. Calculations presented in this work used the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns et al., 2014), which is supported by NSF grant number ACI-1053575. NSF support from grant CHE-1305872 is gratefully acknowledged. Additionally, the authors acknowledge ideas and advice from participants of the 'Don't follow (Just) the water: does life occur in non-aqueous media?' workshop organized by the W.M. Keck Institute for Space Studies. RH acknowledges the support of the NASA Astrobiology Institute (Titan as a Prebiotic Chemical System) and NASA's Outer Planets Research program. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 36 TC 4 Z9 4 U1 5 U2 7 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD MAY PY 2016 VL 3 BP 192 EP 199 DI 10.1107/S2052252516002815 PN 3 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DR0KZ UT WOS:000379597700005 PM 27158505 ER PT J AU Lei, Y Siqueira, P Treuhaft, R AF Lei, Yang Siqueira, Paul Treuhaft, Robert TI A dense medium electromagnetic scattering model for the InSAR correlation of snow SO RADIO SCIENCE LA English DT Article DE electromagnetics; SAR; interferometry; snow; dense medium; scattering ID SIR-C/X-SAR; INTERFEROMETRIC RADAR; MULTIPLE-SCATTERING; WATER EQUIVALENT; KU-BAND; ICE; RETRIEVAL; DECORRELATION; POLARIZATION; SURFACES AB Snow characteristics, such as snow water equivalent (SWE) and snow grain size, are important characteristics for the monitoring of the global hydrological cycle and as indicators of climate change. This paper derives an interferometric synthetic aperture radar (InSAR) scattering model for dense media, such as snow, which takes into account multiple scattering effects through the Quasi-Crystalline Approximation. The result of this derivation is a simplified version of the InSAR correlation model derived for relating the InSAR correlation measurements to the snowpack characteristics of grain size, volume fraction, and layer depth as well as those aspects of the volume-ground interaction that affects the interferometric observation (i.e., the surface topography and the ratio of ground-to-volume scattering). Based on the model, the sensitivity of the InSAR correlation measurements to the snow characteristics is explored by simulation. Through this process, it is shown that Ka-band InSAR phase has a good sensitivity to snow grain size and volume fraction, while for lower frequency signals (Ku-band to L-band), the InSAR correlation magnitude and phase have a sensitivity to snow depth. Since the formulation depends, in part, on the pair distribution function, three functional forms of the pair distribution function are implemented and their effects on InSAR phase measurements compared. The InSAR scattering model described in this paper is intended to be an observational prototype for future Ka-band and L-band InSAR missions, such as NASA's Surface Water and Ocean Topography and NASA-ISRO Synthetic Aperture Radar missions, planned for launch in the 2020-2021 time frame. This formulation also enables further investigation of the InSAR-based snow retrieval approaches. C1 [Lei, Yang; Siqueira, Paul] Univ Massachusetts Amherst, Dept Elect & Comp Engn, Amherst, MA 01003 USA. [Treuhaft, Robert] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Siqueira, P (reprint author), Univ Massachusetts Amherst, Dept Elect & Comp Engn, Amherst, MA 01003 USA. EM siqueira@ecs.umass.edu FU NASA Headquarters under the NASA Earth and Space Science Fellowship (NESSF) Program; NASA [NNX12AO23G] FX This paper is theoretical; however, the simulated data along with the MATLAB code can be obtained upon request (by emailing the first author Yang Lei at ylei@umass.edu). This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship (NESSF) Program and NASA grant NNX12AO23G for supporting the DESDynI-R (now called NISAR) mission. NR 42 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD MAY PY 2016 VL 51 IS 5 BP 461 EP 480 DI 10.1002/2015RS005926 PG 20 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA DQ4AO UT WOS:000379145600010 ER PT J AU Benson, RF Fainberg, J Osherovich, VA Truhlik, V Wang, YL Bilitza, D Fung, SF AF Benson, Robert F. Fainberg, Joseph Osherovich, Vladimir A. Truhlik, Vladimir Wang, Yongli Bilitza, Dieter Fung, Shing F. TI High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms SO RADIO SCIENCE LA English DT Article DE topside ionosphere; magnetic storm; solar wind ID GEOMAGNETIC STORM; SCALE HEIGHT; SOLAR-WIND; PLASMA; SOUNDERS AB Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles N-e(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled N-e(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst<-100nT). Storms where N-e(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available N-e(h) profiles in the high-latitude Southern Hemisphere. Large N-e(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal N-e(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced N-e(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions. C1 [Benson, Robert F.; Fainberg, Joseph; Fung, Shing F.] NASA, Geospace Phys Lab, Heliophys Sci Div, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. [Osherovich, Vladimir A.] CUA, Geospace Phys Lab, Heliophys Sci Div, Goddard Space Flight Ctr, Code 673, Greenbelt, MD USA. [Truhlik, Vladimir] Acad Sci Czech Republic, Inst Atmospher Phys, Prague, Czech Republic. [Wang, Yongli] UMBC, Space Weather Lab, Heliophys Sci Div, GPHI,Goddard Space Flight Ctr, Code 674, Greenbelt, MD USA. [Bilitza, Dieter] GMU, Heliospher Phys Lab, Heliophys Sci Div, SWL,Goddard Space Flight Ctr, Code 672, Greenbelt, MD USA. RP Benson, RF (reprint author), NASA, Geospace Phys Lab, Heliophys Sci Div, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM Robert.F.Benson@nasa.gov RI Truhlik, Vladimir/H-6971-2014 OI Truhlik, Vladimir/0000-0002-6624-4388 FU NASA Geospace program; Grant Agency of the Czech Republic [1507281J] FX The NASA Geospace program supported this work. V.T. was supported, in part, by grant 1507281J of the Grant Agency of the Czech Republic. The Alouette/ISIS topside sounder data and the SW data were obtained from the NASA Space Physics Data Facility (SPDF), the SW data from their OMNI database. NR 32 TC 0 Z9 0 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD MAY PY 2016 VL 51 IS 5 BP 524 EP 537 DI 10.1002/2015RS005882 PG 14 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA DQ4AO UT WOS:000379145600015 ER PT J AU Schumann, GJP Frye, S Wells, G Adler, R Brakenridge, R Bolten, J Murray, J Slayback, D Policelli, F Kirschbaum, D Wu, H Cappelaere, P Howard, T Flamig, Z Clark, R Stough, T Chini, M Matgen, P Green, D Jones, B AF Schumann, G. J-P. Frye, S. Wells, G. Adler, R. Brakenridge, R. Bolten, J. Murray, J. Slayback, D. Policelli, F. Kirschbaum, D. Wu, H. Cappelaere, P. Howard, T. Flamig, Z. Clark, R. Stough, T. Chini, M. Matgen, P. Green, D. Jones, B. TI Unlocking the full potential of Earth observation during the 2015 Texas flood disaster SO WATER RESOURCES RESEARCH LA English DT Editorial Material DE earth observation; flooding; emergency response ID SYNTHETIC-APERTURE RADAR AB Intense rainfall during late April and early May 2015 in Texas and Oklahoma led to widespread and sustained flooding in several river basins. Texas state agencies relevant to emergency response were activated when severe weather then ensued for 6 weeks from 8 May until 19 June following Tropical Storm Bill. An international team of scientists and flood response experts assembled and collaborated with decision-making authorities for user-driven high-resolution satellite acquisitions over the most critical areas; while experimental automated flood mapping techniques provided daily ongoing monitoring. This allowed mapping of flood inundation from an unprecedented number of spaceborne and airborne images. In fact, a total of 27,174 images have been ingested to the USGS Hazards Data Distribution System (HDDS) Explorer, except for the SAR images used. Based on the Texas flood use case, we describe the success of this effort as well as the limitations in fulfilling the needs of the decision-makers, and reflect upon these. In order to unlock the full potential for Earth observation data in flood disaster response, we suggest in a call for action (i) stronger collaboration from the onset between agencies, product developers, and decision-makers; (ii) quantification of uncertainties when combining data from different sources in order to augment information content; (iii) include a default role for the end-user in satellite acquisition planning; and (iv) proactive assimilation of methodologies and tools into the mandated agencies. C1 [Schumann, G. J-P.] Remote Sensing Solut Inc, Monrovia, CA 91016 USA. [Schumann, G. J-P.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Frye, S.; Bolten, J.; Policelli, F.; Kirschbaum, D.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Wells, G.; Howard, T.] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Adler, R.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Brakenridge, R.] Univ Colorado, INSTAAR, CSDMS, Boulder, CO 80309 USA. [Murray, J.] NASA Langley Res Ctr, Hampton, VA USA. [Slayback, D.] Sci Syst & Applicat Inc, Lanham, MD USA. [Wu, H.] ESSIC, College Pk, MD USA. [Wu, H.] NASA GSFC, Greenbelt, MD USA. [Cappelaere, P.] Vightel Corp, Ellicott City, MD USA. [Flamig, Z.; Clark, R.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Stough, T.] NASA Jet Prop Lab, Pasadena, CA USA. [Chini, M.; Matgen, P.] Luxembourg Inst Sci & Technol, Esch Sur Alzette, Luxembourg. [Green, D.] NASA Headquarters, Washington, DC USA. [Jones, B.] USGS EROS, Sioux Falls, SD USA. RP Schumann, GJP (reprint author), Remote Sensing Solut Inc, Monrovia, CA 91016 USA.; Schumann, GJP (reprint author), Univ Bristol, Sch Geog Sci, Bristol, Avon, England. EM gjpschumann@gmail.com NR 10 TC 2 Z9 2 U1 9 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAY PY 2016 VL 52 IS 5 BP 3288 EP 3293 DI 10.1002/2015WR018428 PG 6 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DQ5QL UT WOS:000379259800001 ER PT J AU Girotto, M De Lannoy, GJM Reichle, RH Rodell, M AF Girotto, Manuela De Lannoy, Gabrielle J. M. Reichle, Rolf H. Rodell, Matthew TI Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model SO WATER RESOURCES RESEARCH LA English DT Article DE GRACE; data assimilation; GEOS-5; groundwater; soil moisture; CONUS ID ENSEMBLE KALMAN FILTER; TIME-VARIABLE GRAVITY; SOIL-MOISTURE; GROUNDWATER DEPLETION; SYSTEM; VARIABILITY; VALIDATION; ANTARCTICA; GREENLAND; EVOLUTION AB Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km(2) at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system. C1 [Girotto, Manuela; De Lannoy, Gabrielle J. M.; Reichle, Rolf H.; Rodell, Matthew] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Girotto, Manuela; De Lannoy, Gabrielle J. M.] Univ Space Res Assoc, Columbia, MD 21046 USA. RP Girotto, M (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Girotto, M (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA. EM manuela.girotto@nasa.gov RI Reichle, Rolf/E-1419-2012; Rodell, Matthew/E-4946-2012 OI Rodell, Matthew/0000-0003-0106-7437 FU NASA Terrestrial Hydrology program FX The authors thank Mike Cosh and Tom Jackson for providing the in situ data for the SMAP core validation watersheds, Qing Liu for her help with data quality control, Randy Koster for his help with CLSM, and Bailing Li and Rasmus Houborg for their help with the groundwater data. GRACE-TWS was received from "http://GRACE.jpl.nasa.gov,'' which used the "Physical Oceanography Distributed Active Archive Center." Computational resources were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center. This study was supported by the NASA Terrestrial Hydrology program. NR 59 TC 0 Z9 0 U1 11 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAY PY 2016 VL 52 IS 5 BP 4164 EP 4183 DI 10.1002/2015WR018417 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DQ5QL UT WOS:000379259800051 ER PT J AU Richey, AS Thomas, BF Lo, MH Reager, JT Famiglietti, JS Voss, K Swenson, S Rodell, M AF Richey, Alexandra S. Thomas, Brian F. Lo, Min-Hui Reager, John T. Famiglietti, James S. Voss, Katalyn Swenson, Sean Rodell, Matthew TI Reply to comment by Sahoo et al. on "Quantifying renewable groundwater stress with GRACE" SO WATER RESOURCES RESEARCH LA English DT Editorial Material DE GRACE; groundwater stress; groundwater trends C1 [Richey, Alexandra S.] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA. [Thomas, Brian F.; Reager, John T.; Famiglietti, James S.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. [Lo, Min-Hui] Natl Taiwan Univ, Dept Atmospher Sci, Taipei, Taiwan. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Voss, Katalyn] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Swenson, Sean] Natl Ctr Atmospher Res, Climate & Global Dynam Div, POB 3000, Boulder, CO 80307 USA. [Rodell, Matthew] NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA. RP Famiglietti, JS (reprint author), CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA.; Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM james.famiglietti@jpl.nasa.gov RI Rodell, Matthew/E-4946-2012 OI Rodell, Matthew/0000-0003-0106-7437 NR 16 TC 1 Z9 1 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAY PY 2016 VL 52 IS 5 BP 4188 EP 4192 DI 10.1002/2015WR018329 PG 5 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DQ5QL UT WOS:000379259800053 ER PT J AU Shao, J Zhou, XH Luo, YQ Zhang, GD Yan, W Li, JX Li, B Dan, L Fisher, JB Gao, ZQ He, Y Huntzinger, D Jain, AK Mao, JF Meng, JH Michalak, AM Parazoo, NC Peng, CH Poulter, B Schwalm, CR Shi, XY Sun, R Tao, FL Tian, HQ Wei, YX Zeng, N Zhu, Q Zhu, WQ AF Shao, Junjiong Zhou, Xuhui Luo, Yiqi Zhang, Guodong Yan, Wei Li, Jiaxuan Li, Bo Dan, Li Fisher, Joshua B. Gao, Zhiqiang He, Yong Huntzinger, Deborah Jain, Atul K. Mao, Jiafu Meng, Jihua Michalak, Anna M. Parazoo, Nicholas C. Peng, Changhui Poulter, Benjamin Schwalm, Christopher R. Shi, Xiaoying Sun, Rui Tao, Fulu Tian, Hanqin Wei, Yaxing Zeng, Ning Zhu, Qiuan Zhu, Wenquan TI Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005 SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE China; interannual variability; model structure; net primary productivity; net biome productivity; uncertainty ID MODEL INTERCOMPARISON PROJECT; PROGRAM MULTISCALE SYNTHESIS; CARBON-DIOXIDE; INTERANNUAL VARIABILITY; ECOSYSTEM EXCHANGE; LAND-USE; NITROGEN DEPOSITION; GLOBAL CHANGE; SOIL RESPIRATION; BIOSPHERE MODELS AB Despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.351.25 and 0.140.094PgCyr(-1), respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012PgCyr(-1) during 1981-2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models. C1 [Shao, Junjiong; Zhou, Xuhui] E China Normal Univ, Sch Ecol & Environm Sci, Tiantong Natl Field Observat Stn Forest Ecosyst, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China. [Shao, Junjiong; Zhang, Guodong; Li, Bo] Fudan Univ, Sch Life Sci, Minist Educ,Key Lab Biodivers Sci & Ecol Engn, Coastal Ecosyst Res Stn Yangtze River Estuary,Ins, Shanghai 200433, Peoples R China. [Zhou, Xuhui] E China Normal Univ, Ctr Global Change & Ecol Forecasting, Shanghai 200062, Peoples R China. [Luo, Yiqi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Yan, Wei; Li, Jiaxuan] E China Normal Univ, Shanghai Key Lab Urban Ecol Proc & EcoRestorat, Shanghai 200062, Peoples R China. [Dan, Li] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Fisher, Joshua B.; Parazoo, Nicholas C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gao, Zhiqiang; Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resource Res, Beijing, Peoples R China. [He, Yong] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China. [Huntzinger, Deborah] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. [Jain, Atul K.] Univ Illinois, Dept Atmospher Sci, Urbana, IL USA. [Mao, Jiafu; Shi, Xiaoying; Wei, Yaxing] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Mao, Jiafu; Shi, Xiaoying; Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Meng, Jihua] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China. [Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Parazoo, Nicholas C.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Peng, Changhui] Univ Quebec, Inst Environm Sci, Montreal, PQ H3C 3P8, Canada. [Peng, Changhui; Zhu, Qiuan] Northwest A&F Univ, Coll Forestry, Lab Ecol Forecasting & Global Change, Yangling, Peoples R China. [Poulter, Benjamin] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Schwalm, Christopher R.] Woods Hole Res Ctr, Falmouth, MA USA. [Sun, Rui] Beijing Normal Univ, Sch Geog & Remote Sensing Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China. [Tao, Fulu] Nat Resources Inst Finland Luke, Vantaa, Finland. [Tian, Hanqin] Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA. [Zeng, Ning] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Zeng, Ning] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Zhu, Wenquan] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resourc, Beijing 100875, Peoples R China. RP Zhou, XH (reprint author), E China Normal Univ, Sch Ecol & Environm Sci, Tiantong Natl Field Observat Stn Forest Ecosyst, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.; Zhou, XH (reprint author), E China Normal Univ, Ctr Global Change & Ecol Forecasting, Shanghai 200062, Peoples R China. EM xhzhou@des.ecnu.edu.cn RI Zhou, Xuhui/H-4332-2011; Zeng, Ning/A-3130-2008; Mao, Jiafu/B-9689-2012; Jain, Atul/D-2851-2016; OI Zeng, Ning/0000-0002-7489-7629; Mao, Jiafu/0000-0002-2050-7373; Jain, Atul/0000-0002-4051-3228; Fisher, Joshua/0000-0003-4734-9085 FU National Natural Science Foundation of China [31370489]; Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning; national "Thousand Young Talents" Program in China; NASA ROSES [NNX10AG01A, NNH10AN681]; U. S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research; DOE [DE-AC05-00OR22725]; U. S. DOE [DE-AC05-76RLO1830]; NASA Interdisciplinary Science Program; NASA Land Cover/Land Use Change Program (LCLUC); NASA Terrestrial Ecology Program; NASA Atmospheric Composition Modeling and Analysis Program; NSF Dynamics of Coupled Natural-Human System Program, Decadal and Regional Climate Prediction using Earth System Models; DOE National Institute for Climate Change Research; USDA AFRI Program; EPA STAR Program; Office of Science of the U. S. Department of Energy [DE-AC0205CH11231]; National Science Foundation [OCI-0725070, ACI-1238993]; state of Illinois; National Basic Research Program of China [2013CB956602] FX The data used in this analysis are shown in the supporting information. We thank the three anonymous reviewers for their constructive comments and suggestions. This research was financially supported by the National Natural Science Foundation of China (Grant 31370489), the Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning, and the national "Thousand Young Talents" Program in China. Funding for the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP; http://nacp.ornl.gov/MsTMIP. shtm) activity was provided through NASA ROSES Grant NNX10AG01A. Data management support for preparing, documenting, and distributing model driver and output data was performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National Laboratory (ORNL; http://nacp. ornl. gov), with funding through NASA ROSES Grant NNH10AN681. Finalized MsTMIP data products are archived at the ORNL DAAC (http://daac. ornl. gov). This is MsTMIP contribution # 5. Acknowledgments for specific MsTMIP participating models: Biome- BGC: Biome- BGC code was provided by the Numerical Terradynamic Simulation Group at the University of Montana. The computational facilities provided by NASA Earth Exchange at NASA Ames Research Center. CLM: This research is supported in part by the U. S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research. Oak Ridge National Laboratory is managed by UTBATTELLE for DOE under contract DE-AC05-00OR22725. CLM4VIC: CLM4VIC simulations were supported in part by the U. S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research (BER) through the Earth SystemModeling program and performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U. S. DOE- BER and located at Pacific NorthwestNational Laboratory (PNNL). Participation of M. Huang in the MsTMIP synthesis is supported by the U. S. DOE- BER through the Subsurface Biogeochemical Research Program (SBR) as part of the SBR Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U. S. DOE by BATTELLE Memorial Institute under contract DE-AC05-76RLO1830. DLEM: The Dynamic Land Ecosystem Model (DLEM) developed in the International Center for Climate and Global Change Research at Auburn University has been supported by NASA Interdisciplinary Science Program, NASA Land Cover/Land Use Change Program (LCLUC), NASA Terrestrial Ecology Program, NASA Atmospheric Composition Modeling and Analysis Program; NSF Dynamics of Coupled Natural-Human System Program, Decadal and Regional Climate Prediction using Earth System Models; DOE National Institute for Climate Change Research; USDA AFRI Program; and EPA STAR Program. ISAM: Integrated Science Assessment Model (ISAM) simulations were supported by the U.S. National Science Foundation (NSF-AGS12-43071 and NSF-EFRI-083598), the USDA National Institute of Food and Agriculture (2011-68002-30220), the U.S. Department of Energy (DOE) Office of Science (DOE-DE-SC0006706), and the NASA Land Cover and Land Use Change Program (NNX14AD94G). ISAM simulations were carried out at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S.; Department of Energy under contract DE-AC0205CH11231, and at the Blue Waters sustained-petascale computing, University of Illinois at UrbanaChampaign, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. LPJ-wsl: This work was conducted at LSCE, France, using a modified version of the LPJ version 3.1 model, originally made available by the Potsdam Institute for Climate Impact Research. ORCHIDEE-LSCE: ORCHIDEE is a global land surface model developed at the IPSL institute in France. The simulationswere performed with the support of the GhG Europe FP7 grant with computing facilities provided by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) or TGCC (Trs Grand Centre de Calcul). TRIPLEX-GHG: TRIPLEXGHG developed at University of Quebec at Montreal (Canada) and Northwest A& F University (China) has been supported by the National Basic Research Program of China (2013CB956602) and the National Science and Engineering Research Council of Canada (NSERC) Discover Grant. VISIT: VISIT was developed at the National Institute for Environmental Studies, Japan. This work was mostly conducted during a visiting stay at Oak Ridge National Laboratory. NR 113 TC 0 Z9 0 U1 20 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAY PY 2016 VL 121 IS 5 BP 1372 EP 1393 DI 10.1002/2015JG003062 PG 22 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DP7TX UT WOS:000378703200011 ER PT J AU Moghaddam, MG Achuthan, A Bednarcyk, BA Arnold, SM Pineda, EJ AF Moghaddam, Masoud Ghorbani Achuthan, Ajit Bednarcyk, Brett A. Arnold, Steven M. Pineda, Evan J. TI A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals SO MATERIALS LA English DT Article DE multiscale computational model; metallic polycrystals; Generalized Method of Cells homogenization; crystal plasticity constitutive model ID FINITE-ELEMENT ANALYSIS; MAGNESIUM ALLOY AZ31; HETEROGENEOUS MATERIALS; MULTIPHASE MATERIALS; MECHANICAL RESPONSE; FOURIER-TRANSFORMS; COMPOSITES; DEFORMATION; HOMOGENIZATION; STRAIN AB A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e., each individual grain. Two-three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities. C1 [Moghaddam, Masoud Ghorbani; Achuthan, Ajit] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA. [Bednarcyk, Brett A.; Arnold, Steven M.; Pineda, Evan J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Achuthan, A (reprint author), Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA. EM ghorbam@clarkson.edu; aachutha@clarkson.edu; brett.a.bednarcyk@nasa.gov; steven.m.arnold@nasa.gov; evan.j.pineda@nasa.gov FU NASA Glenn Research Center; Ohio Aerospace Institute FX Author Ajit Achuthan would like to thank NASA Glenn Research Center and Ohio Aerospace Institute for the summer research fellowship grant that supported part of this work. NR 45 TC 0 Z9 0 U1 1 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD MAY PY 2016 VL 9 IS 5 AR 335 DI 10.3390/ma9050335 PG 21 WC Materials Science, Multidisciplinary SC Materials Science GA DP6SG UT WOS:000378628500030 ER PT J AU Guo, F Li, H Daughton, W Li, XC Liu, YH AF Guo, Fan Li, Hui Daughton, William Li, Xiaocan Liu, Yi-Hsin TI Particle acceleration during magnetic reconnection in a low-beta pair plasma SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID GAMMA-RAY BURSTS; ELECTRON ACCELERATION; NONTHERMAL PARTICLES; CRAB-NEBULA; CURRENT SHEETS; SOLAR-FLARE; DISSIPATION; FIELDS; REGION; MODEL AB Plasma energization through magnetic reconnection in the magnetically dominated regime featured by low plasma beta (beta = 8 pi nkT(0)/B-2 << 1) and/or high magnetization (sigma = B-2/(4 pi nmc(2)) >> 1) is important in a series of astrophysical systems such as solar flares, pulsar wind nebula, and relativistic jets from black holes. In this paper, we review the recent progress on kinetic simulations of this process and further discuss plasma dynamics and particle acceleration in a low-beta reconnection layer that consists of electron-positron pairs. We also examine the effect of different initial thermal temperatures on the resulting particle energy spectra. While earlier papers have concluded that the spectral index is smaller for higher sigma, our simulations show that the spectral index approaches p = 1 for sufficiently low plasma beta, even if sigma similar to 1. Since this predicted spectral index in the idealized limit is harder than most observations, it is important to consider effects that can lead to a softer spectrum such as open boundary simulations. We also remark that the effects of three-dimensional reconnection physics and turbulence on reconnection need to be addressed in the future. Published by AIP Publishing. C1 [Guo, Fan; Li, Hui; Daughton, William] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Li, Xiaocan] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA. [Liu, Yi-Hsin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guo, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Daughton, William/L-9661-2013 NR 86 TC 2 Z9 2 U1 8 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 055708 DI 10.1063/1.4948284 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900132 ER PT J AU Guo, RL Pu, ZY Chen, LJ Fu, SY Xie, L Wang, XG Dunlop, M Bogdanova, YV Yao, ZH Xiao, CJ He, JS Fazakerley, AN AF Guo, Ruilong Pu, Zuyin Chen, Li-Jen Fu, Suiyan Xie, Lun Wang, Xiaogang Dunlop, Malcolm Bogdanova, Yulia V. Yao, Zhonghua Xiao, Chijie He, Jiansen Fazakerley, Andrew N. TI In-situ observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC RECONNECTION; CLUSTER MISSION; POINTS; ELECTRON; FIELD; ISLANDS AB Signatures of secondary islands are frequently observed in the magnetic reconnection regions of magnetotail plasmas. In this paper, magnetic structures with the secondary-island signatures observed by Cluster are reassembled by a fitting-reconstruction method. The results show three-dimensionally that a secondary island event can manifest the flux rope formed with an As-type null and a B-s-type null paired via their spines. We call this A(s)-spine-B-s-like configuration the helically wrapped spine model. The reconstructed field lines wrap around the spine to form the flux rope, and an O-type topology is therefore seen on the plane perpendicular to the spine. Magnetized electrons are found to rotate on and cross the fan surface, suggesting that both the torsional-spine and the spine-fan reconnection take place in the configuration. Furthermore, detailed analysis implies that the spiral nulls and flux ropes were locally generated nearby the spacecraft in the reconnection outflow region, indicating that secondary reconnection may occur in the exhaust away from the primary reconnection site. Published by AIP Publishing. C1 [Guo, Ruilong; Pu, Zuyin; Fu, Suiyan; Xie, Lun; He, Jiansen] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Chen, Li-Jen] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, Xiaogang] Harbin Inst Technol, Harbin 150001, Peoples R China. [Dunlop, Malcolm] Beihang Univ, Sch Astronaut, Beijing 100191, Peoples R China. [Dunlop, Malcolm; Bogdanova, Yulia V.] Rutherford Appleton Lab, RAL Space, STFC, Didcot OX11 0QX, Oxon, England. [Pu, Zuyin; Fu, Suiyan] Peking Univ, PKU UCLA Joint Res Inst Sci & Engn, Beijing 100871, Peoples R China. [Yao, Zhonghua; Fazakerley, Andrew N.] Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. [Xiao, Chijie] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. RP Guo, RL (reprint author), Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. OI Guo, Ruilong/0000-0002-7125-0942; Yao, Zhonghua/0000-0001-6826-2486 FU Chinese NSFC Program [41274167, 41374166, 41474139, 41404117]; PKU/UCLA JRI; ESA Guest Investigator Program; ISSI, Berne; STFC; ISSI Team (from Cluster) FX This work was supported by the Chinese NSFC Program Nos. 41274167, 41374166, 41474139, 41404117, and PKU/UCLA JRI, and also partly by the ESA 2013-2014 Guest Investigator Program and a working group sponsored by ISSI, Berne. We acknowledge the Cluster PEACE, CIS, FGM, and EFW instrument teams for the provision of the data and the Cluster CSA for providing access to the data. M. Dunlop and Y. V. Bogdanova are supported by STFC in-house research grant. We thank the International Space Science Institute in Bern, Switzerland, its staff and directors for partial support through the ISSI Team (from Cluster to MMS). NR 34 TC 1 Z9 1 U1 5 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052901 DI 10.1063/1.4948415 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900065 ER PT J AU Arvidson, RE Squyres, SW Morris, RV Knoll, AH Gellert, R Clark, BC Catalano, JG Jolliff, BL McLennan, SM Herkenhoff, KE VanBommel, S Mittlefehldt, DW Grotzinger, JP Guinness, EA Johnson, JR Bell, JF Farrand, WH Stein, N Fox, VK Golombek, MP Hinkle, MAG Calvin, WM de Souza, PA AF Arvidson, Raymond E. Squyres, Steven W. Morris, Richard V. Knoll, Andrew H. Gellert, Ralf Clark, Benton C. Catalano, Jeffrey G. Jolliff, Brad L. McLennan, Scott M. Herkenhoff, Kenneth E. VanBommel, Scott Mittlefehldt, David W. Grotzinger, John P. Guinness, Edward A. Johnson, Jeffrey R. Bell, James F., III Farrand, William H. Stein, Nathan Fox, Valerie K. Golombek, Matthew P. Hinkle, Margaret A. G. Calvin, Wendy M. de Souza, Paulo A., Jr. TI High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars SO AMERICAN MINERALOGIST LA English DT Article DE Mars; geochemistry; mineralogy; manganese oxides; sulfates ID MERIDIANI-PLANUM; IMPACT STRUCTURE; MARTIAN SURFACE; IRON CHEMISTRY; OXIDE MINERALS; SPECTROSCOPY; MODEL AB Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the similar to 22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity's observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity's rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O-2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion. C1 [Arvidson, Raymond E.; Catalano, Jeffrey G.; Jolliff, Brad L.; Guinness, Edward A.; Stein, Nathan; Fox, Valerie K.; Hinkle, Margaret A. G.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Squyres, Steven W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Morris, Richard V.; Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Knoll, Andrew H.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Gellert, Ralf; VanBommel, Scott] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Clark, Benton C.; Farrand, William H.] Space Sci Inst, Boulder, CO 80301 USA. [McLennan, Scott M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Herkenhoff, Kenneth E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Grotzinger, John P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Johnson, Jeffrey R.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Bell, James F., III] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA. [Golombek, Matthew P.] CALTECH, Jet Prop Lab, Pasadena, CA 91011 USA. [Calvin, Wendy M.] Univ Nevada, Geol Sci & Engn, Reno, NV 89503 USA. [de Souza, Paulo A., Jr.] CSIRO Digital Prod Flagship, Hobart, Tas 7004, Australia. RP Arvidson, RE (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM arvidson@wunder.wustl.edu RI Catalano, Jeffrey/A-8322-2013; de Souza, Paulo/B-8961-2008; OI Catalano, Jeffrey/0000-0001-9311-977X; de Souza, Paulo/0000-0002-0091-8925; Hinkle, Margaret/0000-0003-2652-1683 FU Mars Fundamental Research Program FX We thank the Opportunity Project Team at the NASA/Caltech Jet Propulsion Laboratory and scientists from many institutions who made possible the collection of data included in this paper. We thank Paolo Bellutta for help in localizing APXS fields of view and Susan Slavney and Jennifer Ward for careful review and editing of text and figures. Bonnie Redding, U.S. Geological Survey, kindly generated the MI anaglyphs. We also thank NASA for the support needed to operate Opportunity and collect and analyze the data included in this paper and the Mars Fundamental Research Program support to J.G. Catalano. The NASA Planetary Data System Geosciences Node houses the data included in this paper and we thank them for their efforts. See http://pds-geosciences.wustl.edu/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 54 TC 5 Z9 5 U1 10 U2 19 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2016 VL 101 IS 5-6 BP 1389 EP 1405 DI 10.2138/am-2016-5599 PG 17 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DP0ND UT WOS:000378185600038 ER PT J AU Stewart, EC Patil, MJ Canfield, RA Snyder, RD AF Stewart, Eric C. Patil, Mayuresh J. Canfield, Robert A. Snyder, Richard D. TI Aeroelastic Shape Optimization of a Flapping Wing SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT 10th AIAA Multidisciplinary Design Optimization Conference CY JAN 13-17, 2014 CL National Harbor, MD SP AIAA ID DESIGN; INSECT; FLIGHT; FLEXIBILITY; KINEMATICS AB This paper presents the theory and results for the shape and structural optimization of a platelike flapping wing. The aeroelastic system is analyzed by coupling an unsteady vortex lattice aerodynamics model with a plate finite element model. The assumptions in the aerodynamic model allow the system of equations to be calculated with the inversion of a single matrix, greatly reducing the computational cost. The design variables are the shape parameters from the modified Zimmerman method and the polynomial coefficients that describe the wing thickness. The wing shape and structure are optimized using two multiobjective optimization formulations. The first optimization minimizes the input power while maximizing the cycle-averaged thrust. The input power is the secondary objective function and is treated as a nonlinear constraint, whereas the cycle-averaged thrust is the primary objective function. A second multiobjective formulation that treats wing mass as the secondary objective function is also performed. The power-thrust-optimal wing designs minimize the contribution of the wing deformation to the input power over the flapping cycle. The mass-optimal shapes maximize the wingspan and tailor the wing thickness such that the wing deformation adds to the thrust. It is shown that, although thrust benefits from added wing deformation, it also adds to the power required to flap the wing. C1 [Stewart, Eric C.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24060 USA. [Patil, Mayuresh J.; Canfield, Robert A.] Virginia Polytech Inst & State Univ, Dept Aerosp & Ocean Engn, Blacksburg, VA 24060 USA. [Snyder, Richard D.] US Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. [Stewart, Eric C.] NASA, AST Struct Dynam, Washington, DC 20546 USA. RP Stewart, EC (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24060 USA.; Stewart, EC (reprint author), NASA, AST Struct Dynam, Washington, DC 20546 USA. EM ecstew@vt.edu; mpatil@vt.edu; bob.canfield@vt.edu; richard.snyder@wpafb.af.mil RI Patil, Mayuresh/E-4644-2013 OI Patil, Mayuresh/0000-0001-9601-2249 NR 47 TC 0 Z9 0 U1 5 U2 5 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD MAY-JUN PY 2016 VL 53 IS 3 BP 636 EP 650 DI 10.2514/1.C033278 PG 15 WC Engineering, Aerospace SC Engineering GA DP3SN UT WOS:000378415500003 ER PT J AU Raccanelli, A Montanari, F Bertacca, D Dore, O Durrer, R AF Raccanelli, Alvise Montanari, Francesco Bertacca, Daniele Dore, Olivier Durrer, Ruth TI Cosmological measurements with general relativistic galaxy correlations SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological parameters from LSS; dark energy theory; power spectrum; redshift surveys ID PRIMORDIAL NON-GAUSSIANITY; REDSHIFT-SPACE DISTORTIONS; EVOLUTION; HIZELS; Z=2.23 AB We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called "relativistic effects", and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys. C1 [Raccanelli, Alvise] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Raccanelli, Alvise; Dore, Olivier] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Raccanelli, Alvise; Dore, Olivier] CALTECH, MC 249-17, Pasadena, CA 91125 USA. [Montanari, Francesco; Durrer, Ruth] Univ Geneva, Dept Phys Theor, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland. [Montanari, Francesco; Durrer, Ruth] Univ Geneva, Ctr Astroparticle Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland. [Bertacca, Daniele] Argelander Inst Astron, Auf Hugel 71, D-53121 Bonn, Germany. [Bertacca, Daniele] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. RP Raccanelli, A (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.; Raccanelli, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Raccanelli, A (reprint author), CALTECH, MC 249-17, Pasadena, CA 91125 USA. EM alvise@jhu.edu; francesco.montanari@helsinki.fi; daniele.bertacca@gmail.com; Olivier.P.Dore@jpl.nasa.gov; ruth.durrer@unige.ch OI Bertacca, Daniele/0000-0002-2490-7139; Raccanelli, Alvise/0000-0001-6726-0438 FU Swiss National Science Foundation; Deutsche Forschungsgemeinschaft [Transregio 33]; The Dark Universe; South African Square Kilometre Array Project FX AR is supported by the John Templeton Foundation. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. FM and RD acknowledge financial support by the Swiss National Science Foundation. During the preparation of this work DB was supported by the Deutsche Forschungsgemeinschaft through the Transregio 33, The Dark Universe, and by the South African Square Kilometre Array Project. FM and DB aknowledge the hospitality of the Department of Physics & Astronomy, Johns Hopkins University, where this work was completed. NR 94 TC 1 Z9 1 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAY PY 2016 IS 5 AR 009 DI 10.1088/1475-7516/2016/05/009 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DO8NY UT WOS:000378041500010 ER PT J AU Fedewa, EJ Miller, JA Hurst, TP AF Fedewa, Erin J. Miller, Jessica A. Hurst, Thomas P. TI Pre-settlement processes of northern rock sole (Lepidopsetta polyxystra) in relation to interannual variability in the Gulf of Alaska SO JOURNAL OF SEA RESEARCH LA English DT Article DE Northern rock sole; Gulf of Alaska; Metamorphosis; Lepidopsetta polyxystra ID FLOUNDER PSEUDOPLEURONECTES-AMERICANUS; POLLOCK THERAGRA-CHALCOGRAMMA; SOUTHEASTERN BERING-SEA; LIFE-HISTORY TRAITS; OTOLITH MICROSTRUCTURE; MARINE FISH; RHOMBOSOLEA-TAPIRINA; SOMATIC GROWTH; CLIMATE-CHANGE; LARVAL SIZE AB Understanding the effects of climate variability on growth dynamics and timing of early life history events in marine fishes can provide insights into survival, recruitment and productivity. We examined interannual variation in indicators of larval growth rates, size at hatch and metamorphosis, and the timing of metamorphosis of northern rock sole (Lepidopsetta polyxystra) over 5 years in two nurseries at Kodiak Island, Alaska, USA. Variation in early life characteristics was quantified using laboratory-validated otolith structural analysis and related to water temperature and spring bloom dynamics in the Gulf of Alaska. Overall, results indicated that temperature contributed more to interannual variation in northern rock sole growth, size and phenology patterns than phytoplankton dynamics. Size at hatch was positively related to winter-spring spawning temperatures. Larval growth metrics were generally consistent with thermal effects as temperatures above 4 degrees C appear necessary, but are not sufficient to support rapid growth. Reflecting the cumulative effects of temperature, the timing of metamorphosis was related to both seasonal and interannual variation in temperature with earlier dates of metamorphosis in warmer years. Conversely, fish size at metamorphosis was similar across years, suggesting that the competency to metamorphose is related to attainment of a minimum size. These results demonstrate the important role of temperature in regulating early life history phenology of northern rock sole and suggest that temperature-driven phenological shifts may also influence the time of spawning and hatching. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fedewa, Erin J.; Miller, Jessica A.] Oregon State Univ, Dept Fisheries & Wildlife, Coastal Oregon Marine Expt Stn, Hatfield Marine Sci Ctr, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. [Hurst, Thomas P.] Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr,NOAA,Hatfield Marine Sci, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. RP Fedewa, EJ (reprint author), Oregon State Univ, Dept Fisheries & Wildlife, Coastal Oregon Marine Expt Stn, Hatfield Marine Sci Ctr, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. EM erin.fedewa@oregonstate.edu NR 57 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1385-1101 EI 1873-1414 J9 J SEA RES JI J. Sea Res. PD MAY PY 2016 VL 111 SI SI BP 25 EP 36 DI 10.1016/j.seares.2015.11.008 PG 12 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA DP0LI UT WOS:000378180900003 ER PT J AU Hurst, TP AF Hurst, Thomas P. TI Shallow-water habitat use by Bering Sea flatfishes along the central Alaska Peninsula SO JOURNAL OF SEA RESEARCH LA English DT Article DE Bering Sea; Juvenile flatfish; Essential fish habitat; Hydrography; Nursery areas; Size dependence ID NORTHERN ROCK SOLE; STAFF BEAM TRAWL; LEPIDOPSETTA-POLYXYSTRA; PACIFIC FLATFISHES; NURSERY AREAS; GROWTH; PLEURONECTIDS; ASSOCIATIONS; PREFERENCE; JUVENILES AB Flatfishes support a number of important fisheries in Alaskan waters and represent major pathways of energy flow through the ecosystem. Despite their economic and ecological importance, little is known about the use of habitat by juvenile flatfishes in the eastern Bering Sea. This study describes the habitat characteristics of juvenile flatfishes in coastal waters along the Alaska Peninsula and within the Port Moller-Herendeen Bay system, the largest marine embayment in the southern Bering Sea. The two most abundant species, northern rock sole and yellowfin sole, differed slightly in habitat use with the latter occupying slightly muddier substrates. Both were more common along the open coastline than they were within the bay, whereas juvenile Alaska plaice were more abundant within the bay than along the coast and used shallow waters with muddy, high organic content sediments. juvenile Pacific halibut showed the greatest shift in distribution between age classes: age-0 fish were found in deeper waters (similar to 30 m) along the coast, whereas older juveniles were found in the warmer, shallow waters within the bay, possibly due to increased thermal opportunities for growth in this temperature sensitive species. Three other species, starry flounder, flathead sole, and arrowtooth flounder, were also present but at much lower densities. In addition, the habitat use patterns of spring-spawning flatfishes (northern rock sole, Pacific halibut, and Alaska plaice) in this region appear to be strongly influenced by oceanographic processes that influence delivery of larvae to coastal habitats. Overall, use of the coastal embayment habitats appears to be less important to juvenile flatfishes in the Bering Sea than in the Gulf of Alaska. Published by Elsevier B.V. C1 [Hurst, Thomas P.] Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr,NOAA,Hatfield Marine Sci, Newport, OR 97365 USA. RP Hurst, TP (reprint author), Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr,NOAA,Hatfield Marine Sci, Newport, OR 97365 USA. EM thomas.hurst@noaa.gov NR 44 TC 0 Z9 0 U1 4 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1385-1101 EI 1873-1414 J9 J SEA RES JI J. Sea Res. PD MAY PY 2016 VL 111 SI SI BP 37 EP 46 DI 10.1016/j.seares.2015.11.009 PG 10 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA DP0LI UT WOS:000378180900004 ER PT J AU Dupuy, E Morino, I Deutscher, NM Yoshida, Y Uchino, O Connor, BJ De Maziere, M Griffith, DWT Hase, F Heikkinen, P Hillyard, PW Iraci, LT Kawakami, S Kivi, R Matsunaga, T Notholt, J Petri, C Podolske, JR Pollard, DF Rettinger, M Roehl, CM Sherlock, V Sussmann, R Toon, GC Velazco, VA Warneke, T Wennberg, PO Wunch, D Yokota, T AF Dupuy, Eric Morino, Isamu Deutscher, Nicholas M. Yoshida, Yukio Uchino, Osamu Connor, Brian J. De Maziere, Martine Griffith, David W. T. Hase, Frank Heikkinen, Pauli Hillyard, Patrick W. Iraci, Laura T. Kawakami, Shuji Kivi, Rigel Matsunaga, Tsuneo Notholt, Justus Petri, Christof Podolske, James R. Pollard, David F. Rettinger, Markus Roehl, Coleen M. Sherlock, Vanessa Sussmann, Ralf Toon, Geoffrey C. Velazco, Voltaire A. Warneke, Thorsten Wennberg, Paul O. Wunch, Debra Yokota, Tatsuya TI Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network SO REMOTE SENSING LA English DT Article DE GOSAT; H2O; SWIR; validation ID ATMOSPHERIC WATER-VAPOR; AIRCRAFT MEASUREMENT DATA; COLUMN OBSERVING NETWORK; CLIMATE-CHANGE; SWIR SPECTRA; TANSO-FTS; VALIDATION; CO2; CALIBRATION; ALGORITHM AB Understanding the atmospheric distribution of water (H2O) is crucial for global warming studies and climate change mitigation. In this context, reliable satellite data are extremely valuable for their global and continuous coverage, once their quality has been assessed. Short-wavelength infrared spectra are acquired by the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) aboard the Greenhouse gases Observing Satellite (GOSAT). From these, column-averaged dry-air mole fractions of carbon dioxide, methane and water vapor (XH2O) have been retrieved at the National Institute for Environmental Studies (NIES, Japan) and are available as a Level 2 research product. We compare the NIES XH2O data, Version 02.21, with retrievals from the ground-based Total Carbon Column Observing Network (TCCON, Version GGG2014). The datasets are in good overall agreement, with GOSAT data showing a slight global low bias of -3.1% +/- 24.0%, good consistency over different locations (station bias of -1.53% +/- 10.35%) and reasonable correlation with TCCON (R = 0.89). We identified two potential sources of discrepancy between the NIES and TCCON retrievals over land. While the TCCON XH2O amounts can reach 6000-7000 ppm when the atmospheric water content is high, the correlated NIES values do not exceed 5500 ppm. This could be due to a dry bias of TANSO-FTS in situations of high humidity and aerosol content. We also determined that the GOSAT-TCCON differences directly depend on the altitude difference between the TANSO-FTS footprint and the TCCON site. Further analysis will account for these biases, but the NIES V02.21 XH2O product, after public release, can already be useful for water cycle studies. C1 [Dupuy, Eric; Morino, Isamu; Yoshida, Yukio; Uchino, Osamu; Matsunaga, Tsuneo; Yokota, Tatsuya] NIES, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. [Deutscher, Nicholas M.; Griffith, David W. T.; Velazco, Voltaire A.] Univ Wollongong, Sch Chem, Ctr Atmospher Chem, Northfields Ave, Wollongong, NSW 2522, Australia. [Deutscher, Nicholas M.; Notholt, Justus; Petri, Christof; Warneke, Thorsten] Univ Bremen, Inst Environm Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany. [Connor, Brian J.] BC Consulting Ltd, 6 Fairway Dr, Alexandra 9320, New Zealand. [De Maziere, Martine] Inst Aeron Spatiale Belgique BIRA IASB, 3 Ave Circulaire, B-1180 Brussels, Belgium. [Hase, Frank] Karlsruhe Inst Technol, IMK ASF, Hermann von Helmholtz Pl 1, D-76344 Leopoldshafen, Germany. [Heikkinen, Pauli; Kivi, Rigel] FMI Arctic Res Ctr, Tahtelantie 62, FIN-99600 Sodankyla, Finland. [Hillyard, Patrick W.; Iraci, Laura T.; Podolske, James R.] NASA, Ames Res Ctr, Atmospher Sci Branch, Mail Stop 245-5, Moffett Field, CA 94035 USA. [Hillyard, Patrick W.] Bay Area Environm Res Inst, 625 2nd St,Suite 209, Petaluma, CA 94952 USA. [Kawakami, Shuji] Japan Aerosp Explorat Agcy JAXA, EORC, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. [Pollard, David F.; Sherlock, Vanessa] Natl Inst Water & Atmospher Res NIWA, Private Bag 50061, Omakau 9352, New Zealand. [Rettinger, Markus; Sussmann, Ralf] Karlsruhe Inst Technol, IMK IFU, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany. [Roehl, Coleen M.; Wennberg, Paul O.; Wunch, Debra] CALTECH, MC 131-24,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Toon, Geoffrey C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wunch, Debra] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. RP Dupuy, E (reprint author), NIES, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. EM dupuy.eric-albert@nies.go.jp; morino@nies.go.jp; ndeutsch@uow.edu.au; yoshida.yukio@nies.go.jp; uchino.osamu@nies.go.jp; bcconsulting@xtra.co.nz; Martine.DeMaziere@bira-iasb.oma.be; griffith@uow.edu.au; frank.hase@kit.edu; Pauli.Heikkinen@fmi.fi; patrick.hillyard@nasa.gov; Laura.T.Iraci@nasa.gov; kawakami.shuji@jaxa.jp; Rigel.Kivi@fmi.fi; matsunag@nies.go.jp; jnotholt@iup.physik.uni-bremen.de; christof_p@iup.physik.uni-bremen.de; James.R.Podolske@nasa.gov; Dave.Pollard@niwa.co.nz; markus.rettinger@kit.edu; coleen@gps.caltech.edu; vj.sherlock@gmail.com; ralf.sussmann@kit.edu; geoffrey.c.toon@jpl.nasa.gov; voltaire@uow.edu.au; warneke@iup.physik.uni-bremen.de; wennberg@gps.caltech.edu; dwunch@caltech.edu; yoko@nies.go.jp RI Morino, Isamu/K-1033-2014; Sussmann, Ralf/K-3999-2012; Notholt, Justus/P-4520-2016; OI Morino, Isamu/0000-0003-2720-1569; Notholt, Justus/0000-0002-3324-885X; Dupuy, Eric/0000-0002-6294-3317 FU Australian Research Council [DE140100178, DP140101552, DP110103118, DP0879468, LE0668470, LP0562346]; NASA [NNX14AI60G, NNX11AG01G, NAG5-12247, NNG05-GD07G]; NASA Orbiting Carbon Observatory Program; European Union's project InGOS; European Union's project ICOS-INWIRE; Senate of Bremen; New Zealand Foundation of Research, Science and Technology [CO1X0204, CO1X0703, CO1X0406]; New Zealand's National Institute of Water and Atmospheric Research (NIWA)'s Atmosphere Research Programme [3]; Bavarian Ministry of the Environment and Consumer Protection FX Nicholas Deutscher is supported by an Australian Research Council fellowship, DE140100178. TCCON data were obtained from the TCCON Data Archive, hosted by the Carbon Dioxide Information Analysis Center (CDIAC): http://tccon.ornl.gov. The TCCON Network is supported by NASA through a grant to the California Institute of Technology: NNX14AI60G. Park Falls, Lamont and JPL are funded by NASA grants NNX14AI60G, NNX11AG01G, NAG5-12247, NNG05-GD07G and the NASA Orbiting Carbon Observatory Program. We are grateful to the United States of America's Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for technical support in Lamont and to Jeff Ayers for technical support in Park Falls. Darwin and Wollongong are funded by NASA grants NAG5-12247 and NNG05-GD07G and the Australian Research Council grants DP140101552, DP110103118, DP0879468, LE0668470 and LP0562346. We are grateful to the DOE ARM program for technical support in Darwin. Bremen, Bialystok and Orleans are funded by the European Union's projects InGOS (Integrated non-CO2 Greenhouse gas Observing System) and ICOS-INWIRE (Integrated Carbon Observing System-Improved sensors, Network and Interoperability for GMES (Global Monitoring for Environment and Security)) and by the Senate of Bremen. From 2004-2011, the Lauder TCCON program was funded by the New Zealand Foundation of Research, Science and Technology contracts CO1X0204, CO1X0703 and CO1X0406. Since 2011, the program has been funded by New Zealand's National Institute of Water and Atmospheric Research (NIWA)'s Atmosphere Research Programme 3 (2011/2013 Statement of Corporate Intent). Garmisch water vapor retrievals have been supported by the Bavarian Ministry of the Environment and Consumer Protection. Indianapolis and Edwards measurements are supported by the NASA Earth Science Division. NR 60 TC 4 Z9 4 U1 6 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAY PY 2016 VL 8 IS 5 AR 414 DI 10.3390/rs8050414 PG 24 WC Remote Sensing SC Remote Sensing GA DP3PC UT WOS:000378406400058 ER PT J AU Holdaway, D Yang, YK AF Holdaway, Daniel Yang, Yuekui TI Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part II): Cloud Coverage SO REMOTE SENSING LA English DT Article DE cloud fraction; satellite sampling frequency; DSCOVR; EPIC; time series; GEOS-5; Nature Run; Fourier; spectral analysis AB This is the second part of a study on how temporal sampling frequency affects satellite retrievals in support of the Deep Space Climate Observatory (DSCOVR) mission. Continuing from Part 1, which looked at Earth's radiation budget, this paper presents the effect of sampling frequency on DSCOVR-derived cloud fraction. The output from NASA's Goddard Earth Observing System version 5 (GEOS-5) Nature Run is used as the "truth". The effect of temporal resolution on potential DSCOVR observations is assessed by subsampling the full Nature Run data. A set of metrics, including uncertainty and absolute error in the subsampled time series, correlation between the original and the subsamples, and Fourier analysis have been used for this study. Results show that, for a given sampling frequency, the uncertainties in the annual mean cloud fraction of the sunlit half of the Earth are larger over land than over ocean. Analysis of correlation coefficients between the subsamples and the original time series demonstrates that even though sampling at certain longer time intervals may not increase the uncertainty in the mean, the subsampled time series is further and further away from the "truth" as the sampling interval becomes larger and larger. Fourier analysis shows that the simulated DSCOVR cloud fraction has underlying periodical features at certain time intervals, such as 8, 12, and 24 h. If the data is subsampled at these frequencies, the uncertainties in the mean cloud fraction are higher. These results provide helpful insights for the DSCOVR temporal sampling strategy. C1 [Holdaway, Daniel] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Holdaway, Daniel; Yang, Yuekui] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD 21046 USA. [Yang, Yuekui] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA. RP Holdaway, D (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.; Holdaway, D (reprint author), Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD 21046 USA. EM dan.holdaway@nasa.gov; Yuekui.Yang-1@nasa.gov RI Yang, Yuekui/B-4326-2015; Holdaway, Daniel/Q-5198-2016 OI Holdaway, Daniel/0000-0002-3672-2588 FU NASA DSCOVR Earth Science Algorithms program [NNX15AB51G] FX This work was funded by the NASA DSCOVR Earth Science Algorithms program managed by Richard Eckman through Grant NNX15AB51G for the project EPIC Cloud Algorithms. NR 15 TC 0 Z9 0 U1 1 U2 1 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAY PY 2016 VL 8 IS 5 AR 431 DI 10.3390/rs8050431 PG 13 WC Remote Sensing SC Remote Sensing GA DP3PC UT WOS:000378406400075 ER PT J AU Yan, K Park, T Yan, GJ Chen, C Yang, B Liu, Z Nemani, RR Knyazikhin, Y Myneni, RB AF Yan, Kai Park, Taejin Yan, Guangjian Chen, Chi Yang, Bin Liu, Zhao Nemani, Ramakrishna R. Knyazikhin, Yuri Myneni, Ranga B. TI Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements SO REMOTE SENSING LA English DT Article DE Leaf Area Index (LAI); Fraction of Photo-synthetically Active Radiation (FPAR); MODIS; Collection 6; evaluation; consistency ID LEAF-AREA INDEX; PHOTOSYNTHETICALLY ACTIVE RADIATION; SYSTEM DATA RECORD; ABSORBED PAR; FRACTION; VALIDATION; ALGORITHM; UNCERTAINTIES; RETRIEVALS; RESOLUTION AB As the latest version of Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) products, Collection 6 (C6) has been distributed since August 2015. This collection is evaluated in this two-part series with the goal of assessing product accuracy, uncertainty and consistency with the previous version. In this first paper, we compare C6 (MOD15A2H) with Collection 5 (C5) to check for consistency and discuss the scale effects associated with changing spatial resolution between the two collections and benefits from improvements to algorithm inputs. Compared with C5, C6 benefits from two improved inputs: (1) L2G-lite surface reflectance at 500 m resolution in place of reflectance at 1 km resolution; and (2) new multi-year land-cover product at 500 m resolution in place of the 1 km static land-cover product. Global and seasonal comparison between C5 and C6 indicates good continuity and consistency for all biome types. Moreover, inter-annual LAI anomalies at the regional scale from C5 and C6 agree well. The proportion of main radiative transfer algorithm retrievals in C6 increased slightly in most biome types, notably including a 17% improvement in evergreen broadleaf forests. With same biome input, the mean RMSE of LAI and FPAR between C5 and C6 at global scale are 0.29 and 0.091, respectively, but biome type disagreement worsens the consistency (LAI: 0.39, FPAR: 0.102). By quantifying the impact of input changes, we find that the improvements of both land-cover and reflectance products improve LAI/FPAR products. Moreover, we find that spatial scale effects due to a resolution change from 1 km to 500 m do not cause any significant differences. C1 [Yan, Kai; Yan, Guangjian] Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China. [Yan, Kai; Park, Taejin; Chen, Chi; Yang, Bin; Liu, Zhao; Knyazikhin, Yuri; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Yang, Bin] Peking Univ, Beijing Key Lab Spatial Informat Integrat & Its A, Inst RS & GIS, Beijing 100871, Peoples R China. [Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Yan, K (reprint author), Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China.; Yan, K; Park, T (reprint author), Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. EM kaiyan.earthscience@gmail.com; taejin1392@gmail.com; gjyan@bnu.edu.cn; chenchi@bu.edu; ybjason@bu.edu; liuzhaofairy@gmail.com; rama.nemani@nasa.gov; jknjazi@bu.edu; ranga.myneni@gmail.com RI Myneni, Ranga/F-5129-2012; OI Yan, Guangjian/0000-0001-5030-748X; yan, kai/0000-0003-4262-1772; Yang, Bin/0000-0001-6127-3385 FU MODIS program of NASA; National Basic Research Program of China [2013CB733402]; NSFC [41331171]; Chinese Scholarship Council FX Help from MODIS & VIIRS Science team members is gratefully acknowledged. This work is supported by the MODIS program of NASA and partially funded by the National Basic Research Program of China (Grant No. 2013CB733402), the key program of NSFC (Grant No. 41331171) and Chinese Scholarship Council. NR 31 TC 4 Z9 4 U1 7 U2 10 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAY PY 2016 VL 8 IS 5 AR 359 DI 10.3390/rs8050359 PG 16 WC Remote Sensing SC Remote Sensing GA DP3PC UT WOS:000378406400003 ER PT J AU Yong, B Chen, B Tian, YD Yu, ZB Hong, Y AF Yong, Bin Chen, Bo Tian, Yudong Yu, Zhongbo Hong, Yang TI Error-Component Analysis of TRMM-Based Multi-Satellite Precipitation Estimates over Mainland China SO REMOTE SENSING LA English DT Article DE remote sensing; satellite precipitation; TMPA; uncertainty; error component ID CONTINENTAL UNITED-STATES; GAUGE-BASED ANALYSIS; SATELLITE PRECIPITATION; WATER-RESOURCES; REAL-TIME; DIURNAL CYCLE; ANALYSIS TMPA; LOW LATITUDES; PRODUCTS; FREQUENCY AB The Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) products have been widely used, but their error and uncertainty characteristics over diverse climate regimes still need to be quantified. In this study, we focused on a systematic evaluation of TMPA's error characteristics over mainland China, with an improved error-component analysis procedure. We performed the analysis for both the TMPA real-time and research product suite at a daily scale and 0.25 degrees x 0.25 degrees resolution. Our results show that, in general, the error components in TMPA exhibit rather strong regional and seasonal differences. For humid regions, hit bias and missed precipitation are the two leading error sources in summer, whereas missed precipitation dominates the total errors in winter. For semi-humid and semi-arid regions, the error components of two real-time TMPA products show an evident topographic dependency. Furthermore, the missed and false precipitation components have the similar seasonal variation but they counter each other, which result in a smaller total error than the individual components. For arid regions, false precipitation is the main problem in retrievals, especially during winter. On the other hand, we examined the two gauge-correction schemes, i.e., climatological calibration algorithm (CCA) for real-time TMPA and gauge-based adjustment (GA) for post-real-time TMPA. Overall, our results indicate that the upward adjustments of CCA alleviate the TMPA's systematic underestimation over humid region but, meanwhile, unfavorably increased the original positive biases over the Tibetan plateau and Tianshan Mountains. In contrast, the GA technique could substantially improve the error components for local areas. Additionally, our improved error-component analysis found that both CCA and GA actually also affect the hit bias at lower rain rates (particularly for non-humid regions), as well as at higher ones. Finally, this study recommends that future efforts should focus on improving hit bias of humid regions, false error of arid regions, and missed snow events in winter. C1 [Yong, Bin; Chen, Bo; Yu, Zhongbo] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China. [Yong, Bin] SOA, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Zhejiang, Peoples R China. [Tian, Yudong] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Tian, Yudong] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. RP Yong, B (reprint author), Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China.; Yong, B (reprint author), SOA, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Zhejiang, Peoples R China. EM yongbin_hhu@126.com; chenbo_hhu@126.com; yudong.tian@nasa.gov; zyu@hhu.edu.cn; yanghong@ou.edu RI Hong, Yang/D-5132-2009 OI Hong, Yang/0000-0001-8720-242X FU National Natural Science Foundation of China [91547101, 51379056, 91437214]; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, SOA [SOED1601]; Fundamental Research Funds for the Central Universities [2015B24614] FX The TMPA data used in this study were provided by the NASA/Goddard Space Flight Center's laboratory for Atmospheres and PPS, which develop and compute the TMPA as a contribution to TRMM. This work was financially supported by National Natural Science Foundation of China (91547101, 51379056, and 91437214). Also this work is partially sponsored by the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, SOA (SOED1601) and the Fundamental Research Funds for the Central Universities (2015B24614). The authors gratefully acknowledge three anonymous reviewers and the editor for their helpful suggestions. NR 46 TC 0 Z9 0 U1 4 U2 11 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAY PY 2016 VL 8 IS 5 AR 440 DI 10.3390/rs8050440 PG 20 WC Remote Sensing SC Remote Sensing GA DP3PC UT WOS:000378406400084 ER PT J AU Clements, EB Carlton, AK Joyce, CJ Schwadron, NA Spence, HE Sun, X Cahoy, K AF Clements, E. B. Carlton, A. K. Joyce, C. J. Schwadron, N. A. Spence, H. E. Sun, X. Cahoy, K. TI Interplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID LASER ALTIMETER; MISSION; DESIGN AB Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years). C1 [Clements, E. B.; Carlton, A. K.; Cahoy, K.] MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Joyce, C. J.; Schwadron, N. A.; Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space EOS, Durham, NH 03824 USA. [Sun, X.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Clements, EB (reprint author), MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM eclements@mit.edu FU MIT Lincoln Laboratory Lincoln Scholars Program; NASA LRO/CRaTER/PREDICCS Project [NNG11PA03C] FX E.B.C. was funded by the MIT Lincoln Laboratory Lincoln Scholars Program. C.J.J., N.A.S., and H.E.S. were supported by NASA LRO/CRaTER/PREDICCS Project (contract NNG11PA03C). We would like to thank MIT PDOS for computing resources and A. Clements for IT assistance. We would like to thank G. A. Neumann, E. Mazarico, and D. E. Smith for their feedback on this paper. LOLA threshold voltage data can be found here: http://imbrium.mit.edu/BROWSE/LOLA_RDR/. The CRaTER data used here are available on the CRaTER website: http://crater-web.sr.unh.edu/. LRO Spice Files can be found here: http://naif.jpl.nasa.gov/pub/naif/pds/data/lro-l-spice-6-v1.0/lrosp_1000 /data/spk/. EMMREM data access is provided by the Predictions of radiation from REleASE, EMMREM, and Data Incorporating CRaTER, COSTEP, and other SEP (PREDICCS) measurements (http://prediccs.sr.unh.edu/). NOAA particle flux data are provided by the Space Weather Prediction Center and can be accessed through their archives: http://www.swpc.noaa.gov/Data/ NR 24 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAY PY 2016 VL 14 IS 5 BP 343 EP 350 DI 10.1002/2016SW001381 PG 8 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DP0CL UT WOS:000378155300003 ER PT J AU Facsko, G Honkonen, I Zivkovic, T Palin, L Kallio, E Agren, K Opgenoorth, H Tanskanen, EI Milan, S AF Facsko, G. Honkonen, I. Zivkovic, T. Palin, L. Kallio, E. Agren, K. Opgenoorth, H. Tanskanen, E. I. Milan, S. TI One year in the Earth's magnetosphere: A global MHD simulation and spacecraft measurements SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID MAGNETIC-FIELD; BOW SHOCK; CLUSTER; IONOSPHERE; MISSION; MODEL; MAGNETOPAUSE; PERFORMANCE; PLASMA; SHAPE AB The response of the Earth's magnetosphere to changing solar wind conditions is studied with a 3-D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earth's magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data are first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the L-1 Lagrange point to the foreshock; therefore, the OMNIWeb data are appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the Northern Hemisphere than the Southern one during quiet conditions. If the B-y is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the Southern Hemisphere. Overall, the study implies that a 3-D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions. C1 [Facsko, G.] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Geodet & Geophys Inst, Sopron, Hungary. [Facsko, G.; Honkonen, I.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Honkonen, I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Zivkovic, T.; Palin, L.; Agren, K.; Opgenoorth, H.] Swedish Inst Space Phys, Uppsala, Sweden. [Zivkovic, T.] DNV GL, Res & Innovat, Hovik, Norway. [Kallio, E.] Aalto Univ, Sch Elect Engn, Espoo, Finland. [Tanskanen, E. I.] Aalto Univ, ReSoLVE Ctr Excellence, ELEC Dept Radio Sci & Engn, Espoo, Finland. [Milan, S.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Facsko, G (reprint author), Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Geodet & Geophys Inst, Sopron, Hungary.; Facsko, G (reprint author), Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. EM facsko.gabor@csfk.mta.hu RI Kallio, Esa/F-9410-2014 OI Kallio, Esa/0000-0002-9791-804X FU European Union [263325, 262863]; Academy of Finland; European Research Council [200141-QuESpace]; Swedish National Space Board; Academy of Finland [272157]; OTKA of the Hungarian Scientific Research Fund [K75640] FX The OMNI data were obtained from the GSFC/SPDF OMNI interface at http://omniweb.gsfc.nasa.gov. The authors thank the FGM Team (principal investigator (PI): Chris Carr), the CIS Team (PI: Iannis Dandouras), the WHISPER Team (PI: Jean-Louis Rauch), the PEACE Team (PI: Andrew Fazakerley), and the Cluster Active Archive for providing FGM magnetic field, CIS HIA ion plasma, WHISPER, and PEACE electron density measurements. Data analysis was partly done with the QSAS science analysis system provided by the United Kingdom Cluster Science Centre (Imperial College London and Queen Mary, University of London) supported by the Science and Technology Facilities Council (STFC). This research was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 263325 (ECLAT) and no. 262863 (IMPEx). The work of Ilja Honkonen is supported by the Academy of Finland and the European Research Council Starting grant 200141-QuESpace. Laurianne Palin and Hermann Opgenoorth thank the Swedish National Space Board for funding. Eija Tanskanen acknowledges financial support from the Academy of Finland for the ReSoLVE Centre of Excellence (project no. 272157). The work of Gabor Facsko is supported by the OTKA grant K75640 of the Hungarian Scientific Research Fund. Gabor Facsko thanks Liisa Juusola for the useful discussions and comments; furthermore, Anna-Maria Vigh and William Martin for improving the English of the paper. The authors thank Pekka Janhunen for developing the GUMICS-4 code as well as the Finnish Meteorological Institute (especially for Lasse Jalava and Markku Hakola) for providing the computer facilities for carrying out the simulations. For further use of the year run data, please contact Minna Palmroth (minna.palmroth@fmi.fi). NR 35 TC 0 Z9 0 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAY PY 2016 VL 14 IS 5 BP 351 EP 367 DI 10.1002/2015SW001355 PG 17 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DP0CL UT WOS:000378155300004 ER PT J AU Makela, P Gopalswamy, N Yashiro, S AF Makela, P. Gopalswamy, N. Yashiro, S. TI The radial speed-expansion speed relation for Earth-directed CMEs SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID CORONAL MASS EJECTIONS; INTERPLANETARY SHOCKS; ARRIVAL TIMES; 1 AU; AERODYNAMIC DRAG; CONE MODEL; SOLAR-WIND; PROPAGATION; SUN; PREDICTION AB Earth-directed coronal mass ejections (CMEs) are the main drivers of major geomagnetic storms. Therefore, a good estimate of the disturbance arrival time at Earth is required for space weather predictions. The STEREO and SOHO spacecraft were viewing the Sun in near quadrature during January 2010 to September 2012, providing a unique opportunity to study the radial speed (V-rad)-expansion speed (V-exp) relationship of Earth-directed CMEs. This relationship is useful in estimating the V-rad of Earth-directed CMEs, when they are observed from Earth view only. We selected 19 Earth-directed CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO)/C3 coronagraph on SOHO and the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/COR2 coronagraph on STEREO during January 2010 to September 2012. We found that of the three tested geometric CME models the full ice-cream cone model of the CME describes best the V-rad-V-exp relationship, as suggested by earlier investigations. We also tested the prediction accuracy of the empirical shock arrival (ESA) model proposed by Gopalswamy et al. (2005a), while estimating the CME propagation speeds from the CME expansion speeds. If we use STEREO observations to estimate the CME width required to calculate the V-rad from the V-exp measurements, the mean absolute error (MAE) of the shock arrival times of the ESA model is 8.4 h. If the LASCO measurements are used to estimate the CME width, the MAE still remains below 17 h. Therefore, by using the simple V-rad-V-exp relationship to estimate the V-rad of the Earth-directed CMEs, the ESA model is able to predict the shock arrival times with accuracy comparable to most other more complex models. C1 [Makela, P.; Yashiro, S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Makela, P.; Gopalswamy, N.; Yashiro, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Makela, P (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.; Makela, P (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM Pertti.Makela@nasa.gov FU NASA; NSF [AGS-1358274] FX We thank the SOHO/LASCO and STEREO/SECCHI teams for providing the data. SOHO is an international cooperation project between ESA and NASA. This research was supported by NASA's Living with a Star TR and T Program. P.M. was partially supported by NSF grant AGS-1358274. NR 54 TC 1 Z9 1 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAY PY 2016 VL 14 IS 5 BP 368 EP 378 DI 10.1002/2015SW001335 PG 11 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DP0CL UT WOS:000378155300005 ER PT J AU Williams, DN Balaji, V Cinquini, L Denvil, S Duffy, D Evans, B Ferraro, R Hansen, R Lautenschlager, M Trenham, C AF Williams, Dean N. Balaji, V. Cinquini, Luca Denvil, Sebastien Duffy, Daniel Evans, Ben Ferraro, Robert Hansen, Rose Lautenschlager, Michael Trenham, Claire TI A GLOBAL REPOSITORY FOR PLANET-SIZED EXPERIMENTS AND OBSERVATIONS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article C1 [Williams, Dean N.; Hansen, Rose] Lawrence Livermore Natl Lab, Mail Stop L-103,7000 East Ave, Livermore, CA 94550 USA. [Balaji, V.] Princeton Univ, Princeton, NJ 08544 USA. [Cinquini, Luca; Ferraro, Robert] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Denvil, Sebastien] Inst Pierre Simon Laplace, Paris, France. [Duffy, Daniel] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Evans, Ben; Trenham, Claire] Australian Natl Univ, Natl Computat Infrastruct, Acton, ACT, Australia. [Lautenschlager, Michael] German Climate Comp Ctr, Hamburg, Germany. RP Williams, DN (reprint author), Lawrence Livermore Natl Lab, Mail Stop L-103,7000 East Ave, Livermore, CA 94550 USA. EM williams13@llnl.gov FU U.S. Department of Energy Office of Science/Office of Biological and Environmental Research at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Cooperative Institute for Climate Science, Princeton University from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce [NA08OAR4320752]; Australian Government; ANR Convergence project [ANR-13-MONU-0008]; FP7 IS-ENES2 project [312979] FX The authors wish to thank the participants at the 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference, whose presentations and conference report input helped considerably in the development of this article (Williams et al. 2015). This work was supported by the U.S. Department of Energy Office of Science/Office of Biological and Environmental Research under Contract DE-AC52-07NA27344 at Lawrence Livermore National Laboratory. VB is supported by the Cooperative Institute for Climate Science, Princeton University, under Award NA08OAR4320752 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Part of this work was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. Part of this activity was performed on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Part of this activity was performed on behalf of the Goddard Space Flight Center, under a contract with NASA. This work was supported by ANR Convergence project (Grant Agreement ANR-13-MONU-0008). This work was supported by FP7 IS-ENES2 project (Grant Agreement 312979). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of Princeton University, the National Oceanic and Atmospheric Administration, or the U.S. Department of Commerce. NR 10 TC 3 Z9 3 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAY PY 2016 VL 97 IS 5 BP 803 EP 816 DI 10.1175/BAMS-D-15-00132.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DN7IT UT WOS:000377249500009 ER PT J AU Urschel, MR Hamilton, TL Roden, EE Boyd, ES AF Urschel, Matthew R. Hamilton, Trinity L. Roden, Eric E. Boyd, Eric S. TI Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE autotroph; heterotroph; facultative; metabolic switching; Yellowstone; energetics; formate; hydrogen ID SULFATE-REDUCING BACTERIA; YELLOWSTONE-NATIONAL-PARK; THERMOPROTEUS-NEUTROPHILUS; VULCANO ISLAND; HYDROTHERMAL SYSTEM; HOT-SPRINGS; THERMOPHILIC ARCHAEBACTERIUM; HYPERTHERMOPHILIC ARCHAEA; CARBON ASSIMILATION; SULFIDE INHIBITION AB Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7 degrees C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S-8 degrees) and demonstrates hydrogen (H-2)-dependent autotrophic growth. H-2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 mu M, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 mu J compared to 2.5 mu J during autotrophic growth with H-2. These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments. C1 [Urschel, Matthew R.; Boyd, Eric S.] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA. [Urschel, Matthew R.; Boyd, Eric S.] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA. [Hamilton, Trinity L.] Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. [Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Roden, Eric E.; Boyd, Eric S.] NASA Astrobiol Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Boyd, ES (reprint author), Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA. EM eboyd@montana.edu FU NSF Partnerships in International Research and Education [PIRE-0968421]; NASA [NNA13AA94A, NNA15BB02A] FX This work was supported by the NSF Partnerships in International Research and Education award PIRE-0968421 (ESB). The NASA Astrobiology Institute is supported by NASA award NNA13AA94A (EER and ESB) and NNA15BB02A (ESB). NR 57 TC 0 Z9 0 U1 7 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD MAY PY 2016 VL 92 IS 5 AR fiw069 DI 10.1093/femsec/fiw069 PG 12 WC Microbiology SC Microbiology GA DO0MM UT WOS:000377473000019 PM 27037359 ER PT J AU Mortari, D D'Souza, CN Zanetti, R AF Mortari, Daniele D'Souza, Christopher N. Zanetti, Renato TI Image Processing of Illuminated Ellipsoid SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 11-15, 2013 CL Hilton Head, SC SP AAS, AIAA ID OPTICAL NAVIGATION; SENSOR AB This study introduces novel algorithms and the underlying mathematics to process photographs of planetary illuminated bodies and use them for navigation purposes. The goal is to accurately estimate the observer-to-body relative position in inertial coordinates. The main motivation is to provide autonomous navigation capabilities to spacecrafts by observing a planet or a moon. This is needed, for example, in human-rated vehicles in order to provide navigation capabilities in a loss-of-communications scenario. The algorithm is derived for the general case of a triaxial ellipsoid that is observed bounded by an elliptical cone. The orientation of the elliptical cone reference frame is obtained by eigenanalysis, and the offset between the elliptical cone axis and the body center direction as well as the equation of the terminator are quantified. The main contribution of this paper is in the image-processing approach adopted to derive centroid and distance to the body. This is done by selecting a set of pixels around the body limb and modeling the smooth limb transition using two-dimensional circular and elliptical sigmoid functions. More accurate estimates of the centroid and distance are then obtained by iterative nonlinear least-squares using these models. A sensitivity analysis is performed, and numerical examples using a real moon photograph taken from Earth are provided to clarify the image-processing steps and to validate the proposed theory. C1 [Mortari, Daniele] Texas A&M Univ, Aerosp Engn, 746C HR Bright Bldg, College Stn, TX 77843 USA. [D'Souza, Christopher N.; Zanetti, Renato] NASA, Lyndon B Johnson Space Ctr, Aerosci & Flight Mech Div, Houston, TX 77058 USA. RP Mortari, D (reprint author), Texas A&M Univ, Aerosp Engn, 746C HR Bright Bldg, College Stn, TX 77843 USA. EM mortari@tamu.edu NR 16 TC 2 Z9 2 U1 2 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAY PY 2016 VL 53 IS 3 BP 448 EP 456 DI 10.2514/1.A33342 PG 9 WC Engineering, Aerospace SC Engineering GA DN8YM UT WOS:000377365800005 ER PT J AU Buccino, DR Seubert, JA Asmar, SW Park, RS AF Buccino, Dustin R. Seubert, Jill A. Asmar, Sami W. Park, Ryan S. TI Optical Ranging Measurement with a Lunar Orbiter: Limitations and Potential SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB Ranging measurements provide precision distance between spacecraft on planetary mission and ground stations. Navigators, radio scientists, and planetary scientists use ranging for their applications and have collectively advanced the precision. Currently, conventional ranging is carried out coherently with radio links. Optical ranging promises several order of magnitude improvements over radio ranging. This study analyzes one-way uplink optical ranging data collected by the Lunar Reconnaissance Orbiter on a solar system scale. Analysis was approached from a navigation perspective to determine the quality of the optical ranging data. Because of the nature of one-way data, which use two different clocks to construct a range, special attention was paid to properly modeling the spacecraft clock, and several approaches are presented to model the clock. Trajectories computed using optical ranging data both match the published trajectory within the published uncertainty and result in a residual root mean square of 9-26 cm, several orders of magnitude improvement in root mean square from radio ranging (10 m S-band on the Lunar Reconnaissance Orbiter). Biases introduced by the spacecraft clock dominate the measurement; adding a more stable clock (such as the Deep Space Atomic Clock) or using a coherent system would improve the data type by decreasing these errors. C1 [Buccino, Dustin R.] CALTECH, Jet Prop Lab, Radio Sci Syst Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Seubert, Jill A.] CALTECH, Jet Prop Lab, Inner Planet Nav Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Asmar, Sami W.] CALTECH, Jet Prop Lab, Strateg Planning, Interplanetary Network Directorate, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Park, Ryan S.] CALTECH, Jet Prop Lab, Solar Syst Dynam Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Buccino, DR (reprint author), CALTECH, Jet Prop Lab, Radio Sci Syst Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, California. Government FX This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, California. Government sponsorship acknowledged. The authors would like to thank Dandan Mao, Erwan Mazarico, and Gregory A. Neumann and the rest of the Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter Laser Ranging Team for answering questions with regards to the data, Tomas Martin-Mur of the JPL Inner Navigation Group for help and inputs in the orbit determination analysis, Varoujan Akopian of the JPL Radio Science Systems Group, and Bill Folkner of the JPL Solar System Dynamics Group. NR 10 TC 1 Z9 1 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAY PY 2016 VL 53 IS 3 BP 457 EP 463 DI 10.2514/1.A33415 PG 7 WC Engineering, Aerospace SC Engineering GA DN8YM UT WOS:000377365800006 ER PT J AU Chung, SJ Bandyopadhyay, S Foust, R Subramanian, GP Hadaegh, FY AF Chung, Soon-Jo Bandyopadhyay, Saptarshi Foust, Rebecca Subramanian, Giri P. Hadaegh, Fred Y. TI Review of Formation Flying and Constellation Missions Using Nanosatellites SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 53rd AIAA Aerospace Sciences Meeting / AIAA Atmospheric Flight Mechanics Conference / 17th AIAA Non-Deterministic Approaches Conference / AIAA Science and Technology Forum / AIAA Infotech at Aerospace Conference CY JAN 05-09, 2015 CL Kissimmee, FL SP AIAA ID SPACECRAFT; GUIDANCE; SYSTEM C1 [Chung, Soon-Jo] Univ Illinois, Dept Aerosp Engn, Coordinated Sci Lab, Urbana, IL 61801 USA. [Bandyopadhyay, Saptarshi; Foust, Rebecca; Subramanian, Giri P.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. [Hadaegh, Fred Y.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Chung, SJ (reprint author), Univ Illinois, Dept Aerosp Engn, Coordinated Sci Lab, Urbana, IL 61801 USA. EM sjchung@illinois.edu; bandyop2@illinois.edu; foust3@illinois.edu; gpsubra2@illinois.edu; fred.y.hadaegh@jpl.nasa.gov NR 83 TC 0 Z9 0 U1 5 U2 7 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAY PY 2016 VL 53 IS 3 BP 567 EP 578 DI 10.2514/1.A33291 PG 12 WC Engineering, Aerospace SC Engineering GA DN8YM UT WOS:000377365800018 ER PT J AU Bellan, J AF Bellan, Josette TI Large-Eddy Simulation of Supersonic Round Jets: Effects of Reynolds and Mach Numbers SO AIAA JOURNAL LA English DT Article ID INFLOW CONDITIONS; TURBULENT JET; SHEAR-LAYER; SCHEMES; FLOWS; NOISE; INSTABILITY AB Large-eddy simulations of supersonic turbulent jets are performed for Reynolds numbers of Re < 10; 000 for the purpose of understanding the effects of Reynolds numbers and the Mach number M. The subgrid terms in large-eddy simulations are modeled using a combination of the dynamic Smagorinsky ("General Circulation Experiments with the Primitive Equations. Part I, Basic Experiments,"Monthly Weather Review, Vol. 54, No. 1, 1963, pp. 99-164) and Yoshizawa ("Statistical Theory for Compressible Turbulent Shear Flows, with the Application to Subgrid Modelling," Physics of Fluids, Vol. 29, No. 7, 1986, pp. 2152-2164) models. Simulations are performed for supersonic jets having Reynolds numbers of 1500, 3700, and 7900, and Mach numbers of 1.4 and 2.1. Two of the simulations are validated with experimental data. The Reynolds number value is observed to play a role in the transition to turbulence but, once transition is achieved, it has a subdued effect above a threshold value; that is, as seen experimentally for supersonic flows, a similarity is found here. This similarity occurs for Reynolds number values that are relatively small compared to those typical of the fully turbulent regime. The turbulent structures in the transition region are more coherent, and the potential core is longer when the Mach number is larger, which leads to a slower downstream velocity decay. The root-mean-square velocities are biased in the axial direction, as expected. In the fully turbulent regions, the computed Reynolds stress is higher for a larger-Mach-number jet. Peak pressure fluctuations occur at about half a jet diameter, radially away from the centerline of the jet, and this location is independent of both the Reynolds number and Mach number values. The pressure-velocity correlations and the turbulent kinetic energy profiles are investigated along the centerline and radial directions, and it is found that the peak turbulent kinetic energy occurs at the same location as the maximum pressure fluctuations. C1 [Bellan, Josette] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM josette.bellan@jpl.nasa.gov FU NASA Science Mission Directorate Lunar Advanced Science and Exploration Research (LASER) program FX This study was conducted at the Jet Propulsion Laboratory of the California Institute of Technology and was sponsored by the NASA Science Mission Directorate Lunar Advanced Science and Exploration Research (LASER) program. Kaushik Balakrishnan is acknowledged for his contributions to this study. The simulations were carried out at the NASA Advanced Supercomputing Division at NASA Ames Research Center. The author is very grateful to Wai-Sun Don (Brown University), who provided the baseline parallelization framework. NR 50 TC 0 Z9 0 U1 7 U2 7 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD MAY PY 2016 VL 54 IS 5 BP 1482 EP 1498 DI 10.2514/1.J054548 PG 17 WC Engineering, Aerospace SC Engineering GA DN6SA UT WOS:000377205000004 ER PT J AU Eisfeld, B Rumsey, C Togiti, V AF Eisfeld, Bernhard Rumsey, Chris Togiti, Vamshi TI Verification and Validation of a Second-Moment-Closure Model SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 22nd AIAA Computational Fluid Dynamics Conference CY JUN 22-26, 2015 CL Dallas, TX SP AIAA ID TURBULENT-BOUNDARY-LAYER; REYNOLDS-STRESS MODEL; FLOW; SIMULATION; CLOSURES; EQUATION AB The implementation of the combined Speziale-Sarkar-Gatski/Launder-Reece-Rodi differential Reynolds-stress model into different flow solvers is verified by studying the grid convergence of test cases from the Turbulence Modeling Resource Web site. The model's predictive capabilities are also assessed based on four basic and three extended validation cases, involving attached and separated boundary-layer flows, effects of streamline curvature, and secondary flow. Simulation results are compared against experimental data and predictions by the eddy-viscosity models of Spalart-Allmaras and Menter's shear-stress transport. C1 [Eisfeld, Bernhard; Togiti, Vamshi] German Aerosp Ctr, DLR, Ctr Comp Applicat Aerosp Sci & Engn, Inst Aerodynam & Flow Technol, D-38108 Braunschweig, Germany. [Rumsey, Chris] NASA, Langley Res Ctr, Computat AeroSci Branch, MS 128, Hampton, VA 23681 USA. RP Eisfeld, B (reprint author), German Aerosp Ctr, DLR, Ctr Comp Applicat Aerosp Sci & Engn, Inst Aerodynam & Flow Technol, D-38108 Braunschweig, Germany. NR 36 TC 1 Z9 1 U1 3 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD MAY PY 2016 VL 54 IS 5 BP 1524 EP 1541 DI 10.2514/1.J054718 PG 18 WC Engineering, Aerospace SC Engineering GA DN6SA UT WOS:000377205000007 ER PT J AU Canchero, A Tinney, CE Murray, N Ruf, JH AF Canchero, Andres Tinney, Charles E. Murray, Nathan Ruf, Joseph H. TI Flow and Acoustics of Clustered Rockets During Startup SO AIAA JOURNAL LA English DT Article ID CONVERGENT-DIVERGENT NOZZLES; RESTRICTED SHOCK SEPARATION; SUPERSONIC TWIN JETS; SHEAR-LAYER; SIDE LOADS; TURBULENCE; UNSTEADINESS; RESONANCE; REGIME; NOISE AB The plume produced by a cluster of two large-area-ratio thrust-optimized parabolic contour nozzles is visualized over a range of nozzle pressure ratios by way of retroreflective shadowgraphy. Both nozzles exhibit free-shock separated flow, restricted-shock separated flow, and an end-effects regime before flowing full. Transient (startup) operations of the nozzles are studied, with the primary focus being the pulsations that form during the end-effects regime. This occurs at a pressure ratio of 37 for these nozzles and is associated with elevated sound levels in the immediate vicinity of the nozzles and vehicle. The shadowgraphy images reveal the formation of turbulent large-scale structures, on the order of the nozzle diameter, during the end-effects regime. These large-scale structures are driven by the intermittent opening of the last trapped annular separation bubble to the ambient and grow rapidly within the first two nozzle diameters. C1 [Canchero, Andres] Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA. [Tinney, Charles E.] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA. [Murray, Nathan] Univ Mississippi, Jamie Whitten Natl Ctr Phys Acoust, University, MS 38677 USA. [Ruf, Joseph H.] NASA, George C Marshall Space Flight Ctr, Fluid Dynam Branch ER42, Huntsville, AL 35812 USA. RP Canchero, A (reprint author), Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA. FU NASA Engineering and Safety Center at NASA Langley Research Center FX Funding for this study was graciously provided by the NASA Engineering and Safety Center at NASA Langley Research Center. NR 41 TC 2 Z9 2 U1 3 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD MAY PY 2016 VL 54 IS 5 BP 1660 EP 1669 DI 10.2514/1.J054622 PG 10 WC Engineering, Aerospace SC Engineering GA DN6SA UT WOS:000377205000017 ER PT J AU Alpert, SE Tiwari, SK Moore, RL Winebarger, AR Savage, SL AF Alpert, Shane E. Tiwari, Sanjiv K. Moore, Ronald L. Winebarger, Amy R. Savage, Sabrina L. TI Hi-C OBSERVATIONS OF SUNSPOT PENUMBRAL BRIGHT DOTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: magnetic fields; Sun: transition region; sunspots ID REGION-IMAGING-SPECTROGRAPH; MOVING MAGNETIC FEATURES; TRANSITION REGION; HIGH-RESOLUTION; HEATING EVENTS; ACTIVE-REGION; UMBRAL DOTS; FILAMENTS; CORONA; WAVES AB We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 angstrom and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1 ''. and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 angstrom imag, which have a 1 '' 2 spatial resolution, but become readily apparent with Hi-C's spatial resolution, which is five times better. We supplement Hi-C data with data from AIA's 193 angstrom passband to see the complete lifetime of the BDs that appeared before and/or lasted longer than Hi-C ' s three-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, either toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, which was recently reported by Tian et al., and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the light curves of the BDs to test whether the Hi-C BDs have transition region (TR) temperatures like those of the IRIS BDs. The light curves of most Hi-C BDs peak together in different AIA channels, indicating that their temperatures are likely in the range of the cooler TR (1-4 x 10(5) K). C1 [Alpert, Shane E.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.; Savage, Sabrina L.] NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35812 USA. RP Alpert, SE (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. OI Tiwari, Sanjiv/0000-0001-7817-2978 FU NSF REU grant [AGS-1157027]; NASA Postdoctoral Program at the NASA MSFC; LWS TRT Program of the Heliophysics Division of NASA's SMD; Hinode project office, NASA SMD's STP Program FX This work is supported by NSF REU grant No. AGS-1157027. These BDs were reported in 2014 at the LWS Science Meeting and at the AGU meeting on November 2-6 and December 15-19, respectively. Thanks goes to Hui Tian for a helpful discussion on BDs and the methods of measurement. S.K.T. is supported by an appointment to the NASA Postdoctoral Program at the NASA MSFC, administered by ORAU through a contract with NASA. R.L.M. and A.W. were supported by funding from the LWS TRT Program of the Heliophysics Division of NASA's SMD. S.L.S. is supported through the Hinode project office as part of NASA SMD's STP Program. NR 39 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 35 DI 10.3847/0004-637X/822/1/35 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100035 ER PT J AU Beichman, C Livingston, J Werner, M Gorjian, V Krick, J Deck, K Knutson, H Wong, I Petigura, E Christiansen, J Ciardi, D Greene, TP Schlieder, JE Line, M Crossfield, I Howard, A Sinukoff, E AF Beichman, Charles Livingston, John Werner, Michael Gorjian, Varoujan Krick, Jessica Deck, Katherine Knutson, Heather Wong, Ian Petigura, Erik Christiansen, Jessie Ciardi, David Greene, Thomas P. Schlieder, Joshua E. Line, Mike Crossfield, Ian Howard, Andrew Sinukoff, Evan TI SPITZER OBSERVATIONS OF EXOPLANETS DISCOVERED WITH THE KEPLER K2 MISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: dynamical evolution and stability; planets and satellites: gaseous planets ID SYSTEMATIC RETRIEVAL ANALYSIS; TRANSIT TIMING OBSERVATIONS; M PHASE CURVES; SPACE-TELESCOPE; PLANETS; MASS; K2; ATMOSPHERES; DWARFS; STARS AB We have used the Spitzer Space Telescope to observe two transiting planetary systems orbiting low-mass stars discovered in the Kepler K2 mission. The system K2-3 (EPIC 201367065) hosts three planets, while K2-26 (EPIC 202083828) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other K2 targets. For K2-3b we find marginally significant evidence for a transit timing variation between the K2 and Spitzer epochs. C1 [Beichman, Charles] NASA, Exoplanet Sci Inst, CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Livingston, John; Werner, Michael; Gorjian, Varoujan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Krick, Jessica] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Deck, Katherine; Knutson, Heather; Wong, Ian; Petigura, Erik] CALTECH, Pasadena, CA 91125 USA. [Christiansen, Jessie; Ciardi, David] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Greene, Thomas P.; Schlieder, Joshua E.] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Line, Mike] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Crossfield, Ian] Univ Arizona, Tucson, AZ 85721 USA. [Howard, Andrew; Sinukoff, Evan] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. RP Beichman, C (reprint author), NASA, Exoplanet Sci Inst, CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. OI Ciardi, David/0000-0002-5741-3047 FU National Aeronautics and Space Administration; National Science Foundation; Wide-field Infrared Survey Explorer; joint project of the University of California, Los Angeles; Jet Propulsion Laboratory/California Institute of Technology; NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute FX This research has made use of data from the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work was based on observations obtained with numerous facilities: the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA; the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation; and the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We also took advantage of the NASA Exoplanet Archive. Some of the research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. I.C. was funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. Copyright 2014 California Inst of Technology. All rights reserved. NR 43 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 39 DI 10.3847/0004-637X/822/1/39 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100039 ER PT J AU Brown, TM Cassisi, S D'Antona, F Salaris, M Milone, AP Dalessandro, E Piotto, G Renzini, A Sweigart, AV Bellini, A Ortolani, S Sarajedini, A Aparicio, A Bedin, LR Anderson, J Pietrinferni, A Nardiello, D AF Brown, T. M. Cassisi, S. D'Antona, F. Salaris, M. Milone, A. P. Dalessandro, E. Piotto, G. Renzini, A. Sweigart, A. V. Bellini, A. Ortolani, S. Sarajedini, A. Aparicio, A. Bedin, L. R. Anderson, J. Pietrinferni, A. Nardiello, D. TI THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE globular clusters: general; stars: atmospheres; stars: evolution; stars: horizontal-branch; ultraviolet: stars ID COLOR-MAGNITUDE DIAGRAM; MULTIPLE STELLAR POPULATIONS; NA-O ANTICORRELATION; DWARF COOLING CURVE; NGC 2808; OMEGA-CENTAURI; RADIATIVE LEVITATION; VARIABLE-STARS; EVOLUTIONARY SEQUENCES; PHYSICAL PARAMETERS AB The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808,. Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arise in the metal-rich clusters NGC. 6388 and NGC. 6441, where the discontinuity within the blue HB (BHB) distribution shifts similar to 1000-2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment. C1 [Brown, T. M.; Bellini, A.; Anderson, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Cassisi, S.; Pietrinferni, A.] INAF, Osservatorio Astron Teramo, Via Mentore Maggini Snc, I-64100 Teramo, Italy. [D'Antona, F.] INAF, Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy. [Salaris, M.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool Sci Pk,IC2 Bldg,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Milone, A. P.] Australian Natl Univ, Res Sch Astron & Astrophys, Cotter Rd, Weston, ACT 2611, Australia. [Dalessandro, E.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Piotto, G.; Ortolani, S.; Nardiello, D.] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Piotto, G.; Renzini, A.; Ortolani, S.; Bedin, L. R.; Nardiello, D.] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Sweigart, A. V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sarajedini, A.] Univ Florida, Dept Astron, 211 Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Aparicio, A.] Inst Astrofis Canarias, Calle Via Lactea S-N, E-38200 Tenerife, Canary Islands, Spain. [Aparicio, A.] Univ La Laguna, Avda Astrofis Fco Sanchez S-N, E-38206 Tenerife, Canary Islands, Spain. RP Brown, TM (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM tbrown@stsci.edu; cassisi@oa-teramo.inaf.it; dantona@oa-roma.inaf.it; M.Salaris@ljmu.ac.uk; milone@mso.anu.edu.au; emanuele.dalessandr2@unibo.it; giampaolo.piotto@unipd.it; alvio.renzini@oapd.inaf.it; allen.sweigart@gmail.com; bellini@stsci.edu; sergio.ortolani@unipd.it; ata@astro.ufl.edu; aaj@iac.es; luigi.bedin@oapd.inaf.it; pietrinferni@oa-teramo.inaf.it; domenico.nardiello@unipd.it OI Brown, Thomas/0000-0002-1793-9968 FU NASA through a grant from the Space Telescope Science Institute [GO-13297]; Ministry of Competitiveness and Innovation of Spain [AYA2010-16717]; PRIN-INAF; Universit a degli Studi di Padova Progetto di Ateneo [CPDA141214]; Australian Research Council through Discovery Project grant [DP120100475]; Cosmic-Lab project - European Research Council [ERC-2010-AdG-267675] FX Support for program GO-13297 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. S.C. and G.P. recognize partial support by the IAC (grant P301031) and the Ministry of Competitiveness and Innovation of Spain (grant AYA2010-16717); S.C., G.P., and F.D. recognize partial support by PRIN-INAF 2014 (PI: S Cassisi). S.O. and G.P. also acknowledge partial support by the Universit" a degli Studi di Padova Progetto di Ateneo CPDA141214 "Towards understanding complex star formation in Galactic globular clusters."' A.P.M. acknowledges support by the Australian Research Council through Discovery Project grant DP120100475. F.R.F. and E.D. acknowledge the support from the Cosmic-Lab project (web site: http://www.cosmiclab.eu) funded by the European Research Council, under contract ERC-2010-AdG-267675. A.P. acknowledges support from PRIN-INAF2012 (PI: L Bedin). S.O. gives thanks for the support of the University of Padova. NR 96 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 44 DI 10.3847/0004-637X/822/1/44 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100044 ER PT J AU Dhungana, G Kehoe, R Vinko, J Silverman, JM Wheeler, JC Zheng, W Marion, GH Fox, OD Akerlof, C Biro, BI Borkovits, T Cenko, SB Clubb, KI Filippenko, AV Ferrante, FV Gibson, CA Graham, ML Hegedus, T Kelly, P Kelemen, J Lee, WH Marschalko, G Molnar, L Nagy, AP Ordasi, A Pal, A Sarneczky, K Shivvers, I Szakats, R Szalai, T Szegedi-Elek, E Szekely, P Szing, A Takats, K Vida, K AF Dhungana, G. Kehoe, R. Vinko, J. Silverman, J. M. Wheeler, J. C. Zheng, W. Marion, G. H. Fox, O. D. Akerlof, C. Biro, B. I. Borkovits, T. Cenko, S. B. Clubb, K. I. Filippenko, A. V. Ferrante, F. V. Gibson, C. A. Graham, M. L. Hegedus, T. Kelly, P. Kelemen, J. Lee, W. H. Marschalko, G. Molnar, L. Nagy, A. P. Ordasi, A. Pal, A. Sarneczky, K. Shivvers, I. Szakats, R. Szalai, T. Szegedi-Elek, E. Szekely, P. Szing, A. Takats, K. Vida, K. TI EXTENSIVE SPECTROSCOPY AND PHOTOMETRY OF THE TYPE IIP SUPERNOVA 2013ej SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: distances and redshifts; supernovae: general; supernovae: individual (SN 2013ej); techniques: photometric ID EXPANDING PHOTOSPHERE METHOD; CORE-COLLAPSE SUPERNOVAE; DIGITAL SKY SURVEY; LIGHT-CURVES; P SUPERNOVAE; SN 2013EJ; DISTANCE DETERMINATION; PLATEAU SUPERNOVAE; SHOCK BREAKOUT; ULTRAVIOLET SPECTROSCOPY AB We present extensive optical (UBV RI, g' r' i' z', and open CCD) and near-infrared (ZY JH) photometry for the very nearby Type IIP SN. 2013ej extending from + 1 to + 461 days after shock breakout, estimated to be MJD 56496.9 +/- 0.3. Substantial time series ultraviolet and optical spectroscopy obtained from + 8 to + 135 days are also presented. Considering well-observed SNe IIP from the literature, we derive UBV RIJHK bolometric calibrations from UBV RI and unfiltered measurements that potentially reach 2% precision with a B - V color-dependent correction. We observe moderately strong Si II lambda 6355 as early as + 8 days. The photospheric velocity (vph) is determined by modeling the spectra in the vicinity of Fe II lambda 5169 whenever observed, and interpolating at photometric epochs based on a semianalytic method. This gives vph= 4500. 500 km s(-1) at + 50 days. We also observe spectral homogeneity of ultraviolet spectra at + 10-12 days for SNe IIP, while variations are evident a week after explosion. Using the expanding photosphere method, from combined analysis of SN 2013ej and SN 2002ap, we estimate the distance to the host galaxy to be 9.0(-0.6)(+0.4) Mpc, consistent with distance estimates from other methods. Photometric and spectroscopic analysis during the plateau phase, which we estimated to be 94 +/- 7 days long, yields an explosion energy of 0.9 +/- 0.3 x 10(51) erg, a final pre-explosion progenitor mass of 15.2 +/- 4.2 M-circle dot and a radius of 250 +/- 70 R-circle dot. We observe a broken exponential profile beyond + 120 days, with a break point at + 183 +/- 16 days. Measurements beyond this break time yield a Ni-56 mass of 0.013 +/- 0.001. M-circle dot. C1 [Dhungana, G.; Kehoe, R.; Ferrante, F. V.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Vinko, J.; Silverman, J. M.; Wheeler, J. C.; Marion, G. H.] Univ Texas Austin, Austin, TX 78712 USA. [Vinko, J.; Nagy, A. P.; Ordasi, A.; Szalai, T.] Univ Szeged, Dept Opt & Quantum Elect, Szeged, Hungary. [Zheng, W.; Fox, O. D.; Clubb, K. I.; Filippenko, A. V.; Graham, M. L.; Shivvers, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Akerlof, C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Biro, B. I.; Borkovits, T.; Hegedus, T.; Szing, A.] Univ Szeged, Baja Observ, Baja, Hungary. NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Gibson, C. A.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Kelemen, J.; Marschalko, G.; Molnar, L.; Pal, A.; Sarneczky, K.; Szakats, R.; Szegedi-Elek, E.; Vida, K.] Hungarian Acad Sci, Konkoly Observ, Budapest, Hungary. [Lee, W. H.] Univ Nacl Autonoma Mexico, Inst Astron, Apartado Postal 70-264, Msexico 04510, DF, Mexico. [Szekely, P.] Univ Szeged, Dept Expt Phys, Szeged, Hungary. [Takats, K.] Millennium Inst Astrophys, Vicuna Mackenna 4860, Santiago 7820436, Chile. [Takats, K.] Univ Andres Bello, Dept Ciencias Fis, Avda Republ 252, Santiago 32349, Chile. RP Dhungana, G (reprint author), So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. EM gdhungana@smu.edu OI Shivvers, Isaac/0000-0003-3373-8047; Molnar, Laszlo/0000-0002-8159-1599 FU NASA [NNX10A196H, NNX09AH71G, NNX09AT02G, NNX10AI27G, NNX12AE66G]; NSF [AST-1109801, AST-1211916]; Hungarian OTKA grant [NN 107637]; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1302771]; OTKA Postdoctoral Fellowship [PD 112325]; Lendulet program of the Hungarian Academy of Sciences [LP2012-31]; Hungarian Research Grants [OTKA K-109276, OTKA K-113117]; ESA PECS [4000110889/14/NL/NDe]; CONICYT through the FONDECYT [3150473]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC12009]; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; Richard & Rhoda Goldman Fund; Christopher R. Redlich Fund; TABASGO Foundation; Southern Methodist University; CONACyT [INFR-2009-01-122785, CB-2008-101958]; UNAM PAPIIT [IN113810, IG100414]; UCMEXUS-CONACyT grant FX This research was supported by NASA grant NNX10A196H (P.I. Kehoe), NSF grant AST-1109801 (P.I. Wheeler), and Hungarian OTKA grant NN 107637 (P.I. Vinko). J.M.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. T.S. is funded by OTKA Postdoctoral Fellowship award PD 112325. K.S. has been supported by the Lendulet-2009 program of the Hungarian Academy of Sciences and ESA PECS Contract No. 4000110889/14/NL/NDe. We also acknowledge support from the Hungarian Research Grants OTKA K-109276 and OTKA K-113117, as well as the Lendulet-2009 and Lendulet-2012 Program (LP2012-31) of the Hungarian Academy of Sciences. K.T. was supported by CONICYT through the FONDECYT grant 3150473 and by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC12009, awarded to the Millennium Institute of Astrophysics, MAS. L.M. is supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. A.V.F.'s group at U.C. Berkeley is supported by Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund, the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. Research at Lick Observatory is partially supported by a generous gift from Google. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation.; HET is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-University Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics who fabricated several optics for the instrument but died before its completion. The LRS is a joint project of the HET partnership and the Instituto de Astronomica de la Universidad Nacional Autonova de Mexico. The ROTSE-IIIb telescope is owned and supported by Southern Methodist University. We thank the staff at McDonald Observatory and Lick Observatory for their excellent work during the observations. We also thank U.C. Berkeley undergraduate students Minkyu Kim, Kevin Hayakawa, Haejung Kim, Heechan Yuk, Andrew Bigley, Goni Halevy, Samantha Cargill, Sahana Kumar, Kenia Pina, Kiera Fuller, Chadwick Casper, James Bradley, Philip Lu, Erin Leonard, Stephen Taylor, Jenifer Gross, Daniel Cohen, Michael Hyland, Kyle Blanchard, and Gary Li for their effort in taking Lick/Nickel data. We gratefully acknowledge Jon Mauerhan and Brad Tucker for helping obtain some of our optical spectra. We also thank the anonymous referee for many helpful discussions during the submission process of this paper.; We thank the RATIR project team and the staff of the Observatorio Astronomico Nacional on Sierra San Pedro Martir. RATIR is a collaboration between the University of California, the Universidad Nacional Autonoma de Mexico, NASA Goddard Space Flight Center, and Arizona State University, benefiting from the loan of an H2RG detector and hardware and software support from Teledyne Scientific and Imaging. RATIR, the automation of the Harold L. Johnson Telescope of the Observatorio Astronomico Nacional on Sierra San Pedro Martir, and the operation of both are funded through NASA grants NNX09AH71G, NNX09AT02G, NNX10AI27G, and NNX12AE66G, CONACyT grants INFR-2009-01-122785 and CB-2008-101958, UNAM PAPIIT grants IN113810 and IG100414, and a UCMEXUS-CONACyT grant. NR 106 TC 7 Z9 7 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 6 DI 10.3847/0004-637X/822/1/6 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100006 ER PT J AU Douglas, ST Agueros, MA Covey, KR Cargile, PA Barclay, T Cody, A Howell, SB Kopytova, T AF Douglas, S. T. Agueeros, M. A. Covey, K. R. Cargile, P. A. Barclay, T. Cody, A. Howell, S. B. Kopytova, T. TI K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY SO ASTROPHYSICAL JOURNAL LA English DT Article DE open clusters and associations: individual (Hyades); stars: evolution; stars: late-type; stars: low-mass; stars: rotation ID ANGULAR-MOMENTUM EVOLUTION; RADIAL-VELOCITY SURVEY; DIGITAL SKY SURVEY; OPEN-CLUSTER; M-DWARFS; SPECTROSCOPIC ORBITS; LUMINOSITY RELATIONS; HIPPARCOS CATALOG; MAGNETIC-FIELDS; PROPER MOTIONS AB As the closest open cluster to the Sun, the Hyades is an important benchmark for many stellar properties, but its members are also scattered widely over the sky. Previous studies of stellar rotation in the Hyades relied on targeted observations of single stars or data from shallower all-sky variability surveys. The re-purposed Kepler mission, K2, is the first opportunity to measure rotation periods (P-rot) for many Hyads simultaneously while also being sensitive to fully convective M dwarf members. We analyze K2 data for 65 Hyads and present P-rot values for 48. Thirty-seven of these are new measurements, including the first P-rot measurements for fully convective Hyads. For 9 of the 11 stars with P-rot in the literature and this work, the measurements are consistent; we attribute the two discrepant cases to spot evolution. Nearly all stars with masses less than or similar to 0.3 M-circle dot are rapidly rotating, indicating a change in rotation properties at the boundary to full convection. When confirmed and candidate binaries are removed from the mass-period plane, only three rapid rotators with masses greater than or similar to 0.3 M-circle dot remain. This is in contrast to previous results showing that the single-valued mass-period sequence for approximate to 600 Myr old stars ends at approximate to 0.65 M-circle dot when binaries are included. We also find that models of rotational evolution predict faster rotation than is actually observed at approximate to 600 Myr for stars less than or similar to 0.9M(circle dot). The dearth of single rapid rotators more massive than approximate to 0.3M(circle dot) indicates that magnetic braking is more efficient than previously thought, and that age-rotation studies must account for multiplicity. C1 [Douglas, S. T.; Agueeros, M. A.] Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA. [Covey, K. R.] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. [Cargile, P. A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Barclay, T.; Cody, A.; Howell, S. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kopytova, T.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Kopytova, T.] Heidelberg Univ, Int Max Planck Res Sch Astron & Cosm Phys, IMPRS HD, Bergheimer Str 58, D-69115 Heidelberg, Germany. RP Douglas, ST (reprint author), Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA. OI Douglas, Stephanie/0000-0001-7371-2832; Covey, Kevin/0000-0001-6914-7797; Agueros, Marcel/0000-0001-7077-3664 FU NSF [AST-1255419, AST-1517367, AST-1449476]; NASA Science Mission directorate; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; U.S. Government grant [NAG W-2166]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX S.T.D.. gratefully acknowledges the hospitality of the Kepler/K2 Science Team at NASA Ames Research Center, particularly the advice and support of Geert Barentsen, Knicole Colon, Mike Haas, Mark Messersmith, Fergal Mullally, and Susan. E. Thompson. We thank Sean Matt, Subu Mohanty, and Ansgar Reiners for discussing and sharing their models with us, and Ruth Angus and Dan Foreman-Mackey for useful discussions and advice. We also thank Alisha Kundert for her work on the Hyades catalog and ASAS analysis. M.A.A.. acknowledges support provided by the NSF through grants AST-1255419 and AST-1517367. K.R.C.. acknowledges support provided by the NSF through grant AST-1449476. We thank the anonymous referee for their critique, which improved the paper.; This paper includes data collected by the K2 mission. Funding for the K2 mission is provided by the NASA Science Mission directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.; The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration. NR 81 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 47 DI 10.3847/0004-637X/822/1/47 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100047 ER PT J AU Gagne, J Plavchan, P Gao, P Anglada-Escude, G Furlan, E Davison, C Tanner, A Henry, TJ Riedel, AR Brinkworth, C Latham, D Bottom, M White, R Mills, S Beichman, C Johnson, JA Ciardi, DR Wallace, K Mennesson, B von Braun, K Vasisht, G Prato, L Kane, SR Mamajek, EE Walp, B Crawford, TJ Rougeot, R Geneser, CS Catanzarite, J AF Gagne, Jonathan Plavchan, Peter Gao, Peter Anglada-Escude, Guillem Furlan, Elise Davison, Cassy Tanner, Angelle Henry, Todd J. Riedel, Adric R. Brinkworth, Carolyn Latham, David Bottom, Michael White, Russel Mills, Sean Beichman, Chas Johnson, John A. Ciardi, David R. Wallace, Kent Mennesson, Bertrand von Braun, Kaspar Vasisht, Gautam Prato, Lisa Kane, Stephen R. Mamajek, Eric E. Walp, Bernie Crawford, Timothy J. Rougeot, Raphael Geneser, Claire S. Catanzarite, Joseph TI A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: detection; stars: low-mass; techniques: radial velocities; Supporting material: figure set; machine-readable tables ID YOUNG MOVING GROUPS; ANGULAR-MOMENTUM EVOLUTION; STELLAR KINEMATIC GROUPS; MAIN-SEQUENCE STARS; EXTRA-SOLAR PLANETS; EARTH-SIZED PLANET; FIELD M-DWARFS; VERY-LOW MASS; M-CIRCLE-PLUS; CA-II H AB We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2-M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (approximate to 25-150 Myr) moving groups, the young field star epsilon. Eridani, and 18 nearby (< 25 pc) low-mass stars and achieved typical single-measurement precisions of 8-15 m s(-1) with a long-term stability of 15-50 m s(-1) over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as similar to 25-50 m s(-1) at approximate to 2.3125 mu m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ. 876. bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD. 160934. AB and GJ. 725. AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3s-5s. Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of. 5 m s(-1) in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs. C1 [Gagne, Jonathan] Carnegie Inst Washington DTM, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. [Plavchan, Peter] Missouri State Univ, Dept Phys, 901 S Natl Ave, Springfield, MO 65897 USA. [Gao, Peter] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Anglada-Escude, Guillem] Queen Mary Univ London, Sch Phys & Astron, 327 Mile End Rd, London E1 4NS, England. [Anglada-Escude, Guillem] Univ Hertfordshire, Ctr Astrophys Res, Coll Lane, Hatfield AL10 9AB, Herts, England. [Furlan, Elise; Brinkworth, Carolyn] NASA, Exoplanet Sci Inst, CALTECH, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Davison, Cassy; Henry, Todd J.; White, Russel] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Tanner, Angelle] Mississippi State Univ, Dept Phys & Astron, Hilbun Hall, Starkville, MS 39762 USA. [Riedel, Adric R.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Brinkworth, Carolyn] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Mills, Sean] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Beichman, Chas] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Johnson, John A.] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA. [Bottom, Michael] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Wallace, Kent; Mennesson, Bertrand; Vasisht, Gautam; Crawford, Timothy J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [von Braun, Kaspar; Prato, Lisa] Lowell Observ, West Mars Hill Rd, Flagstaff, AZ 86001 USA. [Kane, Stephen R.] San Francisco State Univ, Dept Phys & Astron, 1600 Holloway Ave, San Francisco, CA 94132 USA. [Mamajek, Eric E.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Walp, Bernie] NASA, Stratospher Observ Infrared Astron, Dryden Flight Res Ctr, Mail Stop DAOF, S233,POB 273, Edwards AFB, CA 93523 USA. [Rougeot, Raphael] ESA, European Space Res & Technol Ctr, Keplerlaan 1, NL-2201 Noordwijk, Netherlands. [Catanzarite, Joseph] NASA, Ames Res Ctr, MS 245-3,POB 1, Moffett Field, CA 94035 USA. RP Gagne, J (reprint author), Carnegie Inst Washington DTM, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM jgagne@carnegiescience.edu; peterplavchan@missouristate.edu OI Anglada Escude, Guillem/0000-0002-3645-5977; Ciardi, David/0000-0002-5741-3047 FU Engineering Research Council of Canada; iREx postdoctoral fellowship; JPL Research and Technology Development Grant; National Aeronautics and Space Administration (NASA) through the Sagan Fellowship Program FX We thank the anonymous referee who provided valuable comments and suggestions that significantly improved the overall quality of this paper. We thank Jason Wright, Julien Rameau, tienne Artig, David Montes, and Noe AubinCadot for useful comments and discussions, as well as Keeyoon Sung, Sam Crawford, Brian Drouin, Edgardo Garcia-Berrios, Nathan S. Lewis, and S. Lin for precious help in the construction and setup of the methane isotopologue gas cell. We thank the IRTF staff for their collaboration and help throughout this project, in particular John Rayner, Lars Bergknut, Bobby Bus, and the telescope operators. This work was supported in part through an Infrared Processing and Analysis Center (IPAC) fellowship, a grant from the Fond de Recherche Quebecois-Nature et Technologie and the Natural Science, a grant from the Engineering Research Council of Canada, an iREx postdoctoral fellowship, and a JPL Research and Technology Development Grant. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by the National Aeronautics and Space Administration (NASA) through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. This research made use of the SIMBAD database and VizieR catalog access tool, operated at the Centre de Donnes Astronomiques de Strasbourg, France (Ochsenbein et al. 2000); data products from the Two Micron All Sky Survey (2MASS; Kirkpatrick et al. 2003; Skrutskie et al. 2006), which is a joint project of the University of Massachusetts and IPAC/Caltech, funded by NASA and the National Science Foundation; the Extrasolar Planets Encyclopaedia (exoplanet. eu), which was developed and is maintained by the exoplanet TEAM; the NASA Exoplanet Archive, which is operated by Caltech, under contract with NASA under the Exoplanet Exploration Program; the NASA/IPAC Infrared Science Archive (IRSA), which is operated by JPL, Caltech, under contract with NASA; the IRTF, which is operated by the University of Hawaii under Cooperative Agreement NNX08AE38A with NASA, Science Mission Directorate, Planetary Astronomy Program. This publication uses observations obtained at IRTF through program numbers 2010B022, 2011A083, 2011B083, 2012A065, 2012B021, 2014A048, 2014B082, and 2015B043, as well as through engineering time in the 2012A and 2012B semesters. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 155 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 DI 10.3847/0004-637X/822/1/40 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100040 ER PT J AU Krco, M Goldsmith, PF AF Krco, Marko Goldsmith, Paul F. TI GEOMETRY-INDEPENDENT DETERMINATION OF RADIAL DENSITY DISTRIBUTIONS IN MOLECULAR CLOUD CORES AND OTHER ASTRONOMICAL OBJECTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: clouds; ISM: general; methods: analytical; methods: data analysis; stars: formation ID PROBABILITY-DISTRIBUTION FUNCTIONS; ALL-SKY SURVEY; COLUMN-DENSITY; DARK CLOUDS; INFRARED EXTINCTION; IC 5146; DUST; CLUMPS; GAS; LAW AB We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objects and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law. C1 [Krco, Marko] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Goldsmith, Paul F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Goldsmith, Paul F.] Cornell Univ, Ithaca, NY 14853 USA. RP Krco, M (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM marko@astro.cornell.edu FU National Aeronautics and Space Administration; National Science Foundation FX This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We wish to thank Jorge Pineda for useful discussions. This research was carried out in part at the Jet Propulsion Laboratory operated for NASA by the California Institute of Technology. We thank the Hayden Planetarium. and Rebecca Oppenheimer in particular for generously providing a conducive environment in which a portion of this research was carried out. We appreciate the very insightful comments and suggestions from the anonymous reviewer that significantly improved this paper. NR 40 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 10 DI 10.3847/0004-637X/822/1/10 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100010 ER PT J AU Lotti, S Natalucci, L Mori, K Baganoff, FK Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Hong, J Krivonos, RA Rahoui, F Stern, D Tomsick, JA Zhang, S Zhang, WW AF Lotti, Simone Natalucci, Lorenzo Mori, Kaya Baganoff, Frederick K. Boggs, Steven E. Christensen, Finn E. Craig, William W. Hailey, Charles J. Harrison, Fiona A. Hong, Jaesub Krivonos, Roman A. Rahoui, Farid Stern, Daniel Tomsick, John A. Zhang, Shuo Zhang, William W. TI NUSTAR AND XMM-NEWTON OBSERVATIONS OF 1E1743.1-2843: INDICATIONS OF A NEUTRON STAR LMXB NATURE OF THE COMPACT OBJECT SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: neutron; X-rays: binaries; X-rays: individual (1E1743.1-2843) ID X-RAY BINARIES; GALACTIC PLANE SURVEY; SOURCE 1E 1743.1-2843; EMISSION; ASCA; LIKELIHOOD; DISCOVERY; CATALOG; BURSTS; UKIDSS AB We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with kT similar to 1.8 keV emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with kT(e) similar to 4.6 keV. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 mHz-49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a K-alpha line from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density (N-H similar to 1.6 x 10(23) cm(-2)). C1 [Lotti, Simone; Natalucci, Lorenzo] INAF IAPS Roma, Via Fosso Cavaliere 100, I-00133 Rome, Italy. [Mori, Kaya] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Baganoff, Frederick K.; Craig, William W.; Hailey, Charles J.; Zhang, Shuo] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Boggs, Steven E.; Craig, William W.; Krivonos, Roman A.; Tomsick, John A.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Christensen, Finn E.] DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hong, Jaesub] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Krivonos, Roman A.] Russian Acad Sci, Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia. [Rahoui, Farid] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. [Rahoui, Farid] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lotti, S (reprint author), INAF IAPS Roma, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM simone.lotti@iaps.inaf.it RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; lotti, simone/0000-0002-3088-1561 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ASI/INAF [I/037/12/0]; Russian Science Foundation [14-22-00271] FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). The Italian authors acknowledge the Italian Space Agency (ASI) for financial support by ASI/INAF grant I/037/12/0. R.K. acknowledges support from Russian Science Foundation (grant 14-22-00271). NR 46 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 57 DI 10.3847/0004-637X/822/1/57 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100057 ER PT J AU Yu, M Willacy, K Dodson-Robinson, SE Turner, NJ Evans, NJ AF Yu, Mo Willacy, Karen Dodson-Robinson, Sarah E. Turner, Neal J. Evans, Neal J., II TI PROBING PLANET FORMING ZONES WITH RARE CO ISOTOPOLOGUES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: molecules; planets and satellites: formation; protoplanetary disks ID T-TAURI STARS; YOUNG STELLAR OBJECTS; PROTOPLANETARY DISKS; CIRCUMSTELLAR DISKS; SOLAR-SYSTEM; INTERSTELLAR CLOUDS; MOLECULAR CLOUDS; GRAIN-GROWTH; WATER ICE; DUST AB The gas near the midplanes of planet-forming protostellar disks remains largely unprobed by observations due to the high optical depth of commonly observed molecules such as CO and H2O. However, rotational emission lines from rare molecules may have optical depths near unity in the vertical direction, so that the lines are strong enough to be detected, yet remain transparent enough to trace the disk midplane. Here we present a chemical model of an evolving T Tauri disk and predict the optical depths of rotational transitions of (CO)-C-12-O-16, (CO)-C-13-O-16, (CO)-C-12-O-17, and (CO)-C-12-O-18. The MRI-active disk is primarily heated by the central star due to the formation of the dead zone. CO does not freeze out in our modeled region within 70 AU around a sunlike star. However, the abundance of CO decreases because of the formation of complex organic molecules, producing an effect that can be misinterpreted as the "snow line." These results are robust to variations in our assumptions about the evolution of the gas-to-dust ratio. The optical depths of low-order rotational lines of (CO)-O-17 are around unity, making it possible to see into the disk midplane using (CO)-O-17. Combining observations with modeled (CO)-O-17/H-2 ratios, like those we provide, can yield estimates of protoplanetary disks' gas masses. C1 [Yu, Mo; Evans, Neal J., II] Univ Texas Austin, Dept Astron, 1 Univ Stn C1400, Austin, TX 78712 USA. [Willacy, Karen; Turner, Neal J.] CALTECH, Jet Prop Lab, Mail Stop 169-506,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Dodson-Robinson, Sarah E.] Univ Delaware, Dept Phys & Astron, 217 Sharp Lab, Newark, DE 19716 USA. RP Yu, M (reprint author), Univ Texas Austin, Dept Astron, 1 Univ Stn C1400, Austin, TX 78712 USA. OI Evans , Neal/0000-0001-5175-1777 FU NASA [NNX10AH28G]; NSF [AST-1109116]; NASA Origins of solar systems program [13-OSS13-0114] FX Work by M.Y., K.W., S.D.R., and N.J.T. was supported by NASA grant NNX10AH28G. N.J.E. and M.Y. were supported in part by NSF Grant AST-1109116 to the University of Texas at Austin. This work was performed in part at the Jet Propulsion Laboratory, California Institute of Technology. N.J.T. was supported by grant 13-OSS13-0114 from the NASA Origins of solar systems program. We are grateful to the referee for helpful suggestions. We would like to thank Edwin Bergin, Jacob Simon, Ilse Cleeves, Jeong-Eun Lee, Seok-Ho Lee, Jeffrey Cuzzi, Paul Estrada, Colette Salyk, Karin Oberg, and Raquel Salmeron for useful discussions. NR 69 TC 3 Z9 3 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 53 DI 10.3847/0004-637X/822/1/53 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100053 ER PT J AU Acero, F Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Chekhtman, A Chiang, J Chiaro, G Ciprini, S Claus, R Cohen, JM Cohen-Tanugi, J Cominsky, LR Condon, B Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Digel, SW Di Venere, L Drell, PS Drlica-Wagner, A Favuzzi, C Ferrara, EC Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Grenier, IA Grondin, MH Guillemot, L Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashida, M Hays, E Hewitt, JW Hill, AB Horan, D Hou, X Iafrate, G Jogler, T Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Katsuta, J Kerr, M Knodlseder, J Kocevski, D Kuss, M Laffon, H Lande, J Larsson, S Latronico, L Lemoine-Goumard, M Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Magill, J Maldera, S Marelli, M Mayer, M Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nemmen, R Nuss, E Ohsugi, T Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Petrosian, V Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Renaud, M Reposeur, T Rousseau, R Parkinson, PMS Schmid, J Schulz, A Sgro, C Siskind, EJ Spada, F Spandre, G Spinelli, P Strong, AW Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Troja, E Uchiyama, Y Vianello, G Wells, B Wood, KS Wood, M Yassine, M den Hartog, PR Zimmer, S AF Acero, F. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Claus, R. Cohen, J. M. Cohen-Tanugi, J. Cominsky, L. R. Condon, B. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Digel, S. W. Di Venere, L. Drell, P. S. Drlica-Wagner, A. Favuzzi, C. Ferrara, E. C. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Grenier, I. A. Grondin, M. -H. Guillemot, L. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Hewitt, J. W. Hill, A. B. Horan, D. Hou, X. Iafrate, G. Jogler, T. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Katsuta, J. Kerr, M. Knodlseder, J. Kocevski, D. Kuss, M. Laffon, H. Lande, J. Larsson, S. Latronico, L. Lemoine-Goumard, M. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Magill, J. Maldera, S. Marelli, M. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nemmen, R. Nuss, E. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Petrosian, V. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Renaud, M. Reposeur, T. Rousseau, R. Parkinson, P. M. Saz Schmid, J. Schulz, A. Sgro, C. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Vianello, G. Wells, B. Wood, K. S. Wood, M. Yassine, M. den Hartog, P. R. Zimmer, S. TI THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE acceleration of particles; catalogs; cosmic rays; gamma-rays: ISM; ISM: supernova remnants; radiation mechanisms: nonthermal ID LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; VERY-HIGH-ENERGY; PULSAR-WIND NEBULA; DIFFUSIVE SHOCK ACCELERATION; HARD X-RAY; MHZ MASER EMISSION; XMM-NEWTON OBSERVATIONS; GALACTIC PLANE SURVEY; HIGH MAGNETIC-FIELD AB To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays. C1 [Acero, F.; Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Schmid, J.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Ackermann, M.; Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; Drell, P. S.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.; den Hartog, P. R.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; Drell, P. S.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.; den Hartog, P. R.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Kuss, M.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.; Raino, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.] Ist Nazl Fis Nucl, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Cohen, J. M.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Kocevski, D.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Renaud, M.; Yassine, M.] Univ Montpellier, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caputo, R.; Parkinson, P. M. Saz; Wells, B.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Caputo, R.; Parkinson, P. M. Saz; Wells, B.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-20133 Milan, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Roma, Italy. [Cohen, J. M.; Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Cohen, J. M.; Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Condon, B.; Grondin, M. -H.; Laffon, H.; Lemoine-Goumard, M.; Reposeur, T.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France. [Conrad, J.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Li, L.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, Box 50005, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Drlica-Wagner, A.; Raino, S.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Fukazawa, Y.; Katsuta, J.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Dept Fis, Ave Vicuna Mackenna 4860, Santiago, Chile. [Guillemot, L.] Univ Orleans, Lab Phys & Chim Environm & Espace, CNRS, F-45071 Orleans 02, France. [Guillemot, L.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, F-18330 Nancay, France. [Gustafsson, M.] Univ Gottingen, Inst Theoret Phys, Fac Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. [Hadasch, D.; Reimer, A.; Reimer, O.] Leopold Fanzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Hadasch, D.; Reimer, A.; Reimer, O.] Leopold Fanzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. [Hewitt, J. W.] Univ N Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hou, X.] Chinese Acad Sci, Yunnan Observ, Kunming 650216, Peoples R China. [Hou, X.] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Kunming 650216, Peoples R China. [Iafrate, G.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland. [Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Katagiri, H.] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. [Kerr, M.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Knodlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knodlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Lande, J.] Twitter Inc, 1355 Market St 900, San Francisco, CA 94103 USA. [Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] CSIC, Inst Space Sci IEEC, Campus UAB, E-08193 Barcelona, Spain. [Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Mitthumsiri, W.] Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moretti, E.; Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Nemmen, R.] Univ Sao Paulo, Inst Astron Geofis & Cincias Atmosfer, Rua Matdo 1226, BR-05508090 Sao Paulo, SP, Brazil. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Razzaque, S.] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa. [Rousseau, R.] Lycee Fresnel, Paris, France. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tanaka, T.] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto, Japan. [Tibolla, O.] Univ Autonoma Chiapas UNACH, MCTP, Carretera Emiliano Zapata Km 4, Tuxtla Gutierrez 29050, Chiapas, Mexico. [Torres, D. F.] ICREA, Barcelona, Spain. [Uchiyama, Y.] 3-34-1 Nishi Ikebukuro,Toshima Ku, Tokyo 1718501, Japan. [Guiriec, S.; den Hartog, P. R.] HAL24K Data Intelligence Labs, Barbara Strozzilaan, NL-1083 HN Amsterdam, Netherlands. RP de Palma, F (reprint author), Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.; de Palma, F (reprint author), Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. EM t.j.brandt@nasa.gov; francesco.depalma@ba.infn.it RI Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Mazziotta, Mario Nicola/0000-0001-9325-4672 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 290 TC 9 Z9 9 U1 7 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 8 DI 10.3847/0067-0049/224/1/8 PG 50 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200008 ER PT J AU Coughlin, JL Mullally, F Thompson, SE Rowe, JF Burke, CJ Latham, DW Batalha, NM Ofir, A Quarles, BL Henze, CE Wolfgang, A Caldwell, DA Bryson, ST Shporer, A Catanzarite, J Akeson, R Barclay, T Borucki, WJ Boyajian, TS Campbell, JR Christiansen, JL Girouard, FR Haas, MR Howell, SB Huber, D Jenkins, JM Li, J Patil-Sabale, A Quintana, EV Ramirez, S Seader, S Smith, JC Tenenbaum, P Twicken, JD Zamudio, KA AF Coughlin, Jeffrey L. Mullally, F. Thompson, Susan E. Rowe, Jason F. Burke, Christopher J. Latham, David W. Batalha, Natalie M. Ofir, Aviv Quarles, Billy L. Henze, Christopher E. Wolfgang, Angie Caldwell, Douglas A. Bryson, Stephen T. Shporer, Avi Catanzarite, Joseph Akeson, Rachel Barclay, Thomas Borucki, William J. Boyajian, Tabetha S. Campbell, Jennifer R. Christiansen, Jessie L. Girouard, Forrest R. Haas, Michael R. Howell, Steve B. Huber, Daniel Jenkins, Jon M. Li, Jie Patil-Sabale, Anima Quintana, Elisa V. Ramirez, Solange Seader, Shawn Smith, Jeffrey C. Tenenbaum, Peter Twicken, Joseph D. Zamudio, Khadeejah A. TI PLANETARY CANDIDATES OBSERVED BY KEPLER. VII. THE FIRST FULLY UNIFORM CATALOG BASED ON THE ENTIRE 48-MONTH DATA SET (Q1-Q17 DR24) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; planetary systems; planets and satellites: detection; stars: statistics; surveys; techniques: photometric ID TRANSIT TIMING OBSERVATIONS; FALSE-POSITIVE RATE; SUN-LIKE STARS; ECLIPSING BINARIES; HABITABLE ZONE; LIGHT CURVES; DATA RELEASE; MISSION DATA; LOW-MASS; OCCURRENCE RATES AB We present the seventh Kepler planet candidate (PC) catalog, which is the first catalog to be based on the entire, uniformly processed 48-month Kepler data set. This is the first fully automated catalog, employing robotic vetting procedures to uniformly evaluate every periodic signal detected by the Q1-Q17 Data Release 24 (DR24) Kepler pipeline. While we prioritize uniform vetting over the absolute correctness of individual objects, we find that our robotic vetting is overall comparable to, and in most cases superior to, the human vetting procedures employed by past catalogs. This catalog is the first to utilize artificial transit injection to evaluate the performance of our vetting procedures and to quantify potential biases, which are essential for accurate computation of planetary occurrence rates. With respect to the cumulative Kepler Object of Interest (KOI) catalog, we designate 1478 new KOIs, of which 402 are dispositioned as PCs. Also, 237 KOIs dispositioned as false positives (FPs) in previous Kepler catalogs have their disposition changed to PC and 118 PCs have their disposition changed to FPs. This brings the total number of known KOIs to 8826 and PCs to 4696. We compare the Q1-Q17. DR24 KOI catalog to previous KOI catalogs, as well as ancillary Kepler catalogs, finding good agreement between them. We highlight new PCs that are both potentially rocky and potentially in the habitable zone of their host stars, many of which orbit solar-type stars. This work represents significant progress in accurately determining the fraction of Earth-size planets in the habitable zone of Sun-like stars. The full catalog is publicly available at the NASA Exoplanet Archive. C1 [Coughlin, Jeffrey L.; Mullally, F.; Thompson, Susan E.; Rowe, Jason F.; Burke, Christopher J.; Caldwell, Douglas A.; Catanzarite, Joseph; Campbell, Jennifer R.; Huber, Daniel; Li, Jie; Quintana, Elisa V.; Seader, Shawn; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.] SETI Inst, 189 Bernardo Ave,Suite 200, Mountain View, CA 94043 USA. [Coughlin, Jeffrey L.; Mullally, F.; Thompson, Susan E.; Rowe, Jason F.; Burke, Christopher J.; Batalha, Natalie M.; Quarles, Billy L.; Henze, Christopher E.; Caldwell, Douglas A.; Bryson, Stephen T.; Catanzarite, Joseph; Barclay, Thomas; Borucki, William J.; Girouard, Forrest R.; Haas, Michael R.; Howell, Steve B.; Jenkins, Jon M.; Li, Jie; Patil-Sabale, Anima; Quintana, Elisa V.; Seader, Shawn; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Zamudio, Khadeejah A.] NASA, Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. [Latham, David W.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Ofir, Aviv] Weizmann Inst Sci, Dept Earth & Planetary Sci, 234 Herzl St, IL-76100 Rehovot, Israel. [Wolfgang, Angie] Univ Calif Santa Cruz, Dept Astron, MS UCO LICK, 1156 High St, Santa Cruz, CA 95064 USA. [Wolfgang, Angie] Penn State Univ, 403 Davey Lab, University Pk, PA 16802 USA. [Shporer, Avi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Akeson, Rachel; Christiansen, Jessie L.; Ramirez, Solange] CALTECH, NASA Exoplanet Sci Inst, Mail Code 100-22,770 South Wilson Ave, Pasadena, CA 91125 USA. [Barclay, Thomas] Bay Area Environm Res Inst, 625 2nd St,Suite 209, Petaluma, CA 94952 USA. [Boyajian, Tabetha S.] Yale Univ, Dept Astron, 52 Hillhouse Ave, New Haven, CT 06511 USA. [Campbell, Jennifer R.; Patil-Sabale, Anima; Zamudio, Khadeejah A.] Wyle Labs, 1960 East Grand Ave,Suite 900, El Segundo, CA 90245 USA. [Girouard, Forrest R.] Orbital Sci Corp, 2401 East El Segundo Blvd, El Segundo, CA 90245 USA. [Huber, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Huber, Daniel] Aarhus Univ, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. RP Coughlin, JL (reprint author), SETI Inst, 189 Bernardo Ave,Suite 200, Mountain View, CA 94043 USA.; Coughlin, JL (reprint author), NASA, Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. EM jeffrey.l.coughlin@nasa.gov FU Australian Research Council [DE140101364]; National Aeronautics and Space Administration [NNX14AB92G]; NASA; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX We thank the anonymous referee for a careful reading of the paper and comments which greatly helped to improve the readability of the paper. B.Q. gratefully acknowledges support by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. D.H. acknowledges support by the Australian Research Council's Discovery Projects funding scheme (project number DE140101364) and support by the National Aeronautics and Space Administration under grant NNX14AB92G issued through the Kepler Participating Scientist Program. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The authors acknowledge the efforts of the Kepler Mission team for obtaining the calibrated pixel, light curve, and data validation reports used in this publication, which were generated by the Kepler Mission science pipeline through the efforts of the Kepler Science Operations Center and Science Office. The Kepler Mission is lead by the project office at NASA Ames Research Center. Ball Aerospace built the Kepler photometer and spacecraft which is operated by the mission operations center at LASP. These data products are archived at the NASA Exoplanet Science Institute, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research has made use of NASA's Astrophysics Data System. Some of the data presented in this paper were obtained from the Mikulksi Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 106 TC 16 Z9 16 U1 13 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 12 DI 10.3847/0067-0049/224/1/12 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200012 ER PT J AU Furlan, E Fischer, WJ Ali, B Stutz, AM Stanke, T Tobin, JJ Megeath, ST Osorio, M Hartmann, L Calvet, N Poteet, CA Booker, J Manoj, P Watson, DM Allen, L AF Furlan, E. Fischer, W. J. Ali, B. Stutz, A. M. Stanke, T. Tobin, J. J. Megeath, S. T. Osorio, M. Hartmann, L. Calvet, N. Poteet, C. A. Booker, J. Manoj, P. Watson, D. M. Allen, L. TI THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE circumstellar matter; infrared: stars; methods: data analysis; stars: formation; stars: protostars ID YOUNG STELLAR OBJECTS; SPITZER-SPACE-TELESCOPE; YSOVAR MIDINFRARED VARIABILITY; MASS STAR-FORMATION; 2-DIMENSIONAL RADIATIVE-TRANSFER; MULTIBAND IMAGING PHOTOMETER; AURIGA MOLECULAR CLOUD; INFRARED ARRAY CAMERA; CLASS-I PROTOSTARS; T-TAURI STARS AB We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2-870 mu m and sample the peak of the protostellar envelope emission at similar to 100 mu m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs. C1 [Furlan, E.] CALTECH, Infrared Proc & Anal Ctr, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Fischer, W. J.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Ali, B.] Space Sci Inst, 4750 Walnut St, Boulder, CO 80301 USA. [Stutz, A. M.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Stanke, T.] ESO, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Tobin, J. J.] Natl Radio Astron Observ, Edgemont Rd, Charlottesville, VA 22903 USA. [Megeath, S. T.; Booker, J.] Univ Toledo, Dept Phys & Astron, Ritter Astrophys Res Ctr, 2801 W Bancroft St, Toledo, OH 43606 USA. [Osorio, M.] CSIC, Inst Astrofis Andalucia, Camino Bajo de Huetor 50, E-18008 Granada, Spain. [Hartmann, L.; Calvet, N.] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. [Poteet, C. A.] Rensselaer Polytech Inst, New York Ctr Astrobiol, 110 Eighth St, Troy, NY 12180 USA. [Manoj, P.] Tata Inst Fundamental Res, Dept Astron & Astrophys, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Watson, D. M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Allen, L.] Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Tobin, J. J.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. RP Furlan, E (reprint author), CALTECH, Infrared Proc & Anal Ctr, 770 S Wilson Ave, Pasadena, CA 91125 USA. EM furlan@ipac.caltech.edu OI Stutz, Amelia/0000-0003-2300-8200; Furlan, Elise/0000-0001-9800-6248 FU NASA [HST-HF-51300.01-A, NAS 5-26555]; Netherlands Organisation for Scientific Research (NWO) [639.041.439]; Deutsche Forschungsgemeinschaft; MINECO (Spain) [AYA2011-30228-CO3-01, AYA2014-57369-C3-3-P]; FEDER funds; NSF FX Support for this work was provided by NASA through awards issued by JPL/Caltech. The work of W.J.F. was supported in part by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. J.J.T. acknowledges support provided by NASA through Hubble Fellowship grant #HST-HF-51300.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. J.J.T. acknowledges further support from grant 639.041.439 from the Netherlands Organisation for Scientific Research (NWO). The work of A.M.S. was supported by the Deutsche Forschungsgemeinschaft priority program 1573 ("Physics of the Interstellar Medium"). M.O. acknowledges support from MINECO (Spain) AYA2011-30228-CO3-01 and AYA2014-57369-C3-3-P grants (co-funded with FEDER funds). We thank Thomas Robitaille for helpful discussions regarding the model grid and model parameters. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with NASA; it is also based on observations made with the Herschel Space Observatory, a European Space Agency Cornerstone Mission with significant participation by NASA. The Herschel spacecraft was designed, built, tested, and launched under a contract to ESA managed by the Herschel/Planck Project team by an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen) responsible for the payload module and for system testing at spacecraft level, Thales Alenia Space (Turin) responsible for the service module, and Astrium (Toulouse) responsible for the telescope, with in excess of 100 subcontractors. We also include data from the Atacama Pathfinder Experiment, a collaboration between the Max-Planck Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and the NSF. NR 100 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 5 DI 10.3847/0067-0049/224/1/5 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200005 ER PT J AU Huber, D Bryson, ST Haas, MR Barclay, T Barentsen, G Howell, SB Sharma, S Stello, D Thompson, SE AF Huber, Daniel Bryson, Stephen T. Haas, Michael R. Barclay, Thomas Barentsen, Geert Howell, Steve B. Sharma, Sanjib Stello, Dennis Thompson, Susan E. TI THE K2 ECLIPTIC PLANE INPUT CATALOG (EPIC) AND STELLAR CLASSIFICATIONS OF 138,600 TARGETS IN CAMPAIGNS 1-8 SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; planetary systems; proper motions; stars: fundamental parameters; stars: late-type; techniques: photometric ID SOLAR-TYPE STARS; GIANT BRANCH STARS; DIGITAL SKY SURVEY; LOW-MASS STARS; TP-AGB MODELS; 1ST 4 MONTHS; GALACTIC ARCHAEOLOGY; KEPLER-MISSION; DATA RELEASE; MILKY-WAY AB The K2 Mission uses the Kepler spacecraft to obtain high-precision photometry over approximate to 80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry, and kinematics based on a federation of all-sky catalogs to support target selection and target management for the K2 mission. We describe the construction of the EPIC, as well as modifications and shortcomings of the catalog. Kepler magnitudes (Kp) are shown to be accurate to approximate to 0.1 mag for the Kepler field, and the EPIC is typically complete to Kp approximate to 17 (Kp approximate to 19 for campaigns covered by Sloan Digital Sky Survey). We furthermore classify 138,600 targets in Campaigns 1-8 (approximate to 88% of the full target sample) using colors, proper motions, spectroscopy, parallaxes, and galactic population synthesis models, with typical uncertainties for G-type stars of approximate to 3% in T-eff, approximate to 0.3 dex in log g, approximate to 40% in radius, approximate to 10% in mass, and approximate to 40% in distance. Our results show that stars targeted by K2 are dominated by K M dwarfs (approximate to 41% of all selected targets), F-G dwarfs (approximate to 36%), and K giants (approximate to 21%), consistent with key K2 science programs to search for transiting exoplanets and galactic archeology studies using oscillating red giants. However, we find significant variation of the fraction of cool dwarfs with galactic latitude, indicating a target selection bias due to interstellar reddening and increased contamination by giant stars near the galactic plane. We discuss possible systematic errors in the derived stellar properties, and differences with published classifications for K2 exoplanet host stars. The EPIC is hosted at the Mikulski Archive for Space Telescopes (MAST): http://archive.stsci.edu/k2/epic/rsearch.php. C1 [Huber, Daniel; Sharma, Sanjib; Stello, Dennis] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Huber, Daniel; Thompson, Susan E.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Huber, Daniel; Stello, Dennis] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Bryson, Stephen T.; Haas, Michael R.; Barclay, Thomas; Barentsen, Geert; Howell, Steve B.; Thompson, Susan E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Barclay, Thomas; Barentsen, Geert] Bay Area Environm Res Inst, 560 Third St, West Sonoma, CA 95476 USA. RP Huber, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia.; Huber, D (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.; Huber, D (reprint author), Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. EM daniel.huber@sydney.edu.au FU Kavli Institute for Theoretical Physics in Santa Barbara; Australian Research Council's Discovery Projects funding scheme [DE140101364]; National Aeronautics and Space Administration [NNX14AB92G]; NASA's Science Mission Directorate; National Aeronautics and Space Administration; National Science Foundation [NSF PHY11-25915]; Robert Martin Ayers Sciences Fund; National Geographic Society; Sloan Foundation; Samuel Oschin Foundation; Eastman Kodak Corporation FX We thank Tim Bedding, Jeff van Cleve, and Sebastien Lepine for comments and discussions, and numerous members of the K2 community for valuable feedback and bug reports. We also thank Randy Thompson, Scott Fleming, and everyone at MAST for their help in making the EPIC available to the community. We are furthermore grateful for the support of the Kavli Institute for Theoretical Physics in Santa Barbara, where part of this research was conducted.; D.H. acknowledges support by the Australian Research Council's Discovery Projects funding scheme (project number DE140101364) and support by the National Aeronautics and Space Administration under Grant NNX14AB92G issued through the Kepler Participating Scientist Program. Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research made use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund. The Second Palomar Observatory Sky Survey (POSS-II) was made by the California Institute of Technology with funds from the National Science Foundation, the National Geographic Society, the Sloan Foundation, the Samuel Oschin Foundation, and the Eastman Kodak Corporation. This research was supported in part by the National Science Foundation under grant No. NSF PHY11-25915. NR 87 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 2 DI 10.3847/0067-0049/224/1/2 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200002 ER PT J AU Rykoff, ES Rozo, E Hollowood, D Bermeo-Hernandez, A Jeltema, T Mayers, J Romer, AK Rooney, P Saro, A Cervantes, CV Wechsler, RH Wilcox, H Abbott, TMC Abdalla, FB Allam, S Annis, J Benoit-Levy, A Bernstein, GM Bertin, E Brooks, D Burke, DL Capozzi, D Rosell, AC Kind, MC Castander, FJ Childress, M Collins, CA Cunha, CE D'Andrea, CB da Costa, LN Davis, TM Desai, S Diehl, HT Dietrich, JP Doel, P Evrard, AE Finley, DA Flaugher, B Fosalba, P Frieman, J Glazebrook, K Goldstein, DA Gruen, D Gruendl, RA Gutierrez, G Hilton, M Honscheid, K Hoyle, B James, DJ Kay, ST Kuehn, K Kuropatkin, N Lahav, O Lewis, GF Lidman, C Lima, M Maia, MAG Mann, RG Marshall, JL Martini, P Melchior, P Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Plazas, AA Reil, K Sahlen, M Sanchez, E Santiago, B Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Stott, JP Suchyta, E Swanson, MEC Tarle, G Thomas, D Tucker, D Uddin, S Viana, PTP Vikram, V Walker, AR Zhang, Y AF Rykoff, E. S. Rozo, E. Hollowood, D. Bermeo-Hernandez, A. Jeltema, T. Mayers, J. Romer, A. K. Rooney, P. Saro, A. Cervantes, C. Vergara Wechsler, R. H. Wilcox, H. Abbott, T. M. C. Abdalla, F. B. Allam, S. Annis, J. Benoit-Levy, A. Bernstein, G. M. Bertin, E. Brooks, D. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Castander, F. J. Childress, M. Collins, C. A. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Davis, T. M. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Evrard, A. E. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Glazebrook, K. Goldstein, D. A. Gruen, D. Gruendl, R. A. Gutierrez, G. Hilton, M. Honscheid, K. Hoyle, B. James, D. J. Kay, S. T. Kuehn, K. Kuropatkin, N. Lahav, O. Lewis, G. F. Lidman, C. Lima, M. Maia, M. A. G. Mann, R. G. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Sahlen, M. Sanchez, E. Santiago, B. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Stott, J. P. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Tucker, D. Uddin, S. Viana, P. T. P. Vikram, V. Walker, A. R. Zhang, Y. CA DES Collaboration TI THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: clusters: general ID DIGITAL SKY SURVEY; DARK ENERGY SURVEY; STELLAR POPULATION SYNTHESIS; RICHNESS-MASS RELATION; X-RAY; DATA RELEASE; COSMOLOGICAL CONSTRAINTS; SDSS-III; SPECTROSCOPIC SURVEY; PLANCK 2013 AB We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to 150 deg(2) of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited and contains 786 clusters with richness lambda > 20 (roughly equivalent to M500c greater than or similar to 10(14) h(70)(-1)M(circle dot)) and 0.2 < z < 0.9. The DR8 catalog consists of 26,311 clusters with 0.08 < z < 0.6, with a sharply increasing richness threshold as a function of redshift for z greater than or similar to 0.35. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the sigma(z)/(1+ z) similar to 0.01 level for z greater than or similar to 0.7, rising to similar to 0.02 at z similar to 0.9 in DES SV. We make use of Chandra and XMM X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass-richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-z and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks. C1 [Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.; Gruen, D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Gruen, D.; Reil, K.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Hollowood, D.; Jeltema, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Hollowood, D.; Jeltema, T.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bermeo-Hernandez, A.; Mayers, J.; Romer, A. K.; Rooney, P.; Cervantes, C. Vergara] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Saro, A.; Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Wilcox, H.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Allam, S.; Annis, J.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Univ Sorbonne, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, G. M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Castander, F. J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Childress, M.] Australian Natl Univ, ARC Ctr Excellence All Sky Astrophys CAASTRO, Canberra, ACT 2611, Australia. [Childress, M.] Australian Natl Univ, Res Sch Astron & Astrophys, GPO Box 4, Canberra, ACT 2601, Australia. [Collins, C. A.] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool Sci Pk,Brownlow Hill, Liverpool L5 3AF, Merseyside, England. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Davis, T. M.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Glazebrook, K.; Uddin, S.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.; Hoyle, B.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Hilton, M.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus, ZA-4041 Durban, South Africa. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kay, S. T.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Kuehn, K.; Lidman, C.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lewis, G. F.] Univ Sydney, Sch Phys, Sydney Inst Astron, A28, Sydney, NSW 2006, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Mann, R. G.] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sahlen, M.; Stott, J. P.] Univ Oxford, Dept Phys, BIPAC, Denys Wilkinson Bldg,1 Keble Rd, Oxford OX1 3RH, England. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Viana, P. T. P.] Univ Porto, CAUP, Inst Astrofis & Ciencias Espaco, Rua Estrelas, P-4150762 Oporto, Portugal. [Viana, P. T. P.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 687, P-4169007 Oporto, Portugal. [Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Rykoff, ES (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.; Rykoff, ES (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM erykoff@slac.stanford.edu RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Davis, Tamara/A-4280-2008; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Davis, Tamara/0000-0002-4213-8783; Sahlen, Martin/0000-0003-0973-4804; Abdalla, Filipe/0000-0003-2063-4345; Stott, John/0000-0002-1679-9983 FU U.S. Department of Energy [DE-AC02-76SF00515]; DOE [DE-SC0007093, DE-SC0013541]; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory, the University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory, Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Unions Seventh Framework Programme (FP7) ERC grant [240672, 291329, 306478]; Australian Astronomical Observatory [A/2013B/012]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory, University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Pennsylvania State University; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; National Aeronautics and Space Administration; STFC (UK); ARC (Australia); AAO FX This work was supported in part by the U.S. Department of Energy contract to SLAC No. DE-AC02-76SF00515, as well as DOE grants DE-SC0007093 (DH) and DE-SC0013541 (DH and TJ).; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under grant No. AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; Based in part on observations taken at the Australian Astronomical Observatory under program A/2013B/012.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www,sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalog is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT, and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/. NR 93 TC 13 Z9 13 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 1 DI 10.3847/0067-0049/224/1/1 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200001 ER PT J AU Svinkin, DS Frederiks, DD Aptekar, RL Golenetskii, SV Pal'shin, VD Oleynik, PP Tsvetkova, AE Ulanov, MV Cline, TL Hurley, K AF Svinkin, D. S. Frederiks, D. D. Aptekar, R. L. Golenetskii, S. V. Pal'shin, V. D. Oleynik, Ph. P. Tsvetkova, A. E. Ulanov, M. V. Cline, T. L. Hurley, K. TI THE SECOND KONUS-WIND CATALOG OF SHORT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general ID EXTENDED EMISSION; PEAK ENERGY; INTERPLANETARY NETWORK; SPECTRAL CATALOG; GIANT FLARE; BATSE; REPEATER; CLASSIFICATION; AFTERGLOWS; LUMINOSITY AB In this catalog, we present the results of a systematic study of 295 short gamma-ray bursts (GRBs) detected by Konus-Wind (KW) from 1994 to 2010. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with three model functions, the total energy fluences, and the peak energy fluxes of the bursts. We discuss evidence found for an additional power-law spectral component and the presence of extended emission in a fraction of the KW short GRBs. Finally, we consider the results obtained in the context of the Type I (merger-origin)/Type II (collapsar-origin) classifications. C1 [Svinkin, D. S.; Frederiks, D. D.; Aptekar, R. L.; Golenetskii, S. V.; Pal'shin, V. D.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.] Ioffe Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia. [Cline, T. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. RP Svinkin, DS (reprint author), Ioffe Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia. FU RFBR [15-02-00532, 13-02-12017-ofi-m] FX We thank the reviewer comments which significantly contributed to improving the quality of the publication. R.L. A. and S.V.G. gratefully acknowledge support from RFBR grants 15-02-00532 and 13-02-12017-ofi-m. This research made use of Astropy, 10 a community-developed core Python package for Astronomy. (Astropy Collaboration et al. 2013). NR 46 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 10 DI 10.3847/0067-0049/224/1/10 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200010 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Buson, S Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S DaVela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Dominguez, A Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Gora, D Guberman, D Hadasch, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Pedaletti, G Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Acosta, MV Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanin, R Pfrommer, C Pinzke, A Zandanel, F AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. de Almeida, U. Barres Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Buson, S. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. DaVela, P. Dazzi, F. De Angelis, A. De Lotto, B. de Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Dominguez, A. Dominis Prester, D. Dorner, D. Doro, M. Einecke, S. Eisenacher Glawion, D. Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Gora, D. Guberman, D. Hadasch, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Pedaletti, G. Persic, M. Poutanen, J. Prada Moroni, P. G. Prandini, E. Puljak, I. Rhode, W. Ribo, M. Rico, J. Rodriguez Garcia, J. Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Vazquez Acosta, M. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanin, R. Pfrommer, C. Pinzke, A. Zandanel, F. CA MAGIC Collaboration TI Deep observation of the NGC1275 region with MAGIC: search of diffuse gamma-ray emission from cosmic rays in the Perseus cluster SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays: galaxies: clusters; acceleration of particles; galaxies: clusters: individual: Perseus; galaxies: individual: NGC 1275; galaxies: individual: NGC 1265 ID INTERGALACTIC MAGNETIC-FIELD; RADIO MINI-HALOS; INVERSE-COMPTON EMISSION; COSMOLOGICAL SHOCK-WAVES; LARGE-SCALE STRUCTURE; GALAXY CLUSTERS; COMA CLUSTER; TEV BLAZARS; PAIR BEAMS; HADRONIC MODELS AB Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse gamma-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E greater than or similar to 100GeV) for a total of 253 h from 2009 to 2014. The active nuclei of NGC1275, the central dominant galaxy of the cluster, and IC310, lying at about 0.6 degrees from the centre, have been detected as point-like VHE gamma-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC1275 spectrum, which is described well by a power law with a photon index Gamma = 3.6 +/- 0.2(stat) +/- 0.2(syst) between 90GeV and 1200 GeV. We do not detect any diffuse gamma-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes alpha. For alpha = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be less than or similar to 1-2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to less than or similar to 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B-0, that depend on the CR distribution. For alpha = 2.2, B-0 greater than or similar to 5-8 mu G, which is below the similar to 25 mu G inferred from Faraday rotation measurements, whereas for alpha less than or similar to 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our gamma-ray flux upper limits independently of the magnetic field strength. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; DaVela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; DaVela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, Rijeka 51000, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Split, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Zagreb, Zagreb 41000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1 AF Bidhannagar,Sect 1, Kolkata 700064, India. [Bangale, P.; de Almeida, U. Barres; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Rodriguez Garcia, J.; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Dominguez, A.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Vazquez Acosta, M.; Will, M.] Univ La Laguna, Inst Astrofis Canarias, Dpto Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Garczarczyk, M.; Gora, D.; Mallot, K.; Pedaletti, G.] DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.; Ward, J. E.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Bretz, T.; Dorner, D.; Eisenacher Glawion, D.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] INFN, I-35131 Padua, Italy. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [de Ona Wilhelmi, E.; Torres, D. F.; Wu, M. H.] Inst Space Sci CSIC IEEC, Barcelona 08193, Spain. [Einecke, S.; Elsaesser, D.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokyo, ICRR, Japanese MAGIC Consortium, Tokyo, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Kyoto Univ, Dept Phys, Kyoto 606, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Kyoto Univ, Hakubi Ctr, Kyoto, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Tokai Univ, Tokai, Ibaraki, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokushima, Tokushima 770, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] KEK, Tokyo, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Finnish MAGIC Consortium, Turku, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, FIN-90570 Oulu, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Prada Moroni, P. G.] Univ Pisa, I-56126 Pisa, Italy. [Prada Moroni, P. G.] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [de Almeida, U. Barres] Ctr Brasileiro Pesquisas Fis CBPF MCTI, R Dr Xavier Sigaud 150 Urca, BR-22290180 Rio De Janeiro, RJ, Brazil. [Becerra Gonzalez, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardini, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Bretz, T.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Dominguez, A.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Mazin, D.; Teshima, M.] Japanese MAGIC Consortium, Tokyo, Japan. [Nilsson, K.] Finnish Ctr Astron ESO FINCA, Turku 20740, Finland. [Persic, M.] INAF, Trieste, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Pfrommer, C.] Heidelberg Inst Theoret Studies, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany. [Pinzke, A.] Univ Copenhagen, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Zandanel, F.] Univ Amsterdam, GRAPPA Inst, NL-1098 XH Amsterdam, Netherlands. RP Colin, P (reprint author), Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.; Zandanel, F (reprint author), Univ Amsterdam, GRAPPA Inst, NL-1098 XH Amsterdam, Netherlands. EM colin@mppmu.mpg.de; f.zandanel@uva.nl RI Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Nievas Rosillo, Mireia/K-9738-2014; Font, Lluis/L-4197-2014; Miranda, Jose Miguel/F-2913-2013; Delgado, Carlos/K-7587-2014; Torres, Diego/O-9422-2016; Barrio, Juan/L-3227-2014; GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017 OI Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Temnikov, Petar/0000-0002-9559-3384; Nievas Rosillo, Mireia/0000-0002-8321-9168; Font, Lluis/0000-0003-2109-5961; Miranda, Jose Miguel/0000-0002-1472-9690; Delgado, Carlos/0000-0002-7014-4101; Torres, Diego/0000-0002-1522-9065; Barrio, Juan/0000-0002-0965-0259; GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; FU BMBF; MPG; INFN; INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; JSPS; MEXT; Centro de Excelencia Severo Ochoa project of the Spanish Consolider-Ingenio programme [SEV-2012-0234]; CPAN project of the Spanish Consolider-Ingenio programme [CSD2007-00042]; MultiDark project of the Spanish Consolider-Ingenio programme [CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0]; Netherlands Organisation for Scientific Research (NWO); Klaus Tschira Foundation FX The MAGIC collaboration would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. F. Zandanel acknowledges the support of the Netherlands Organisation for Scientific Research (NWO) through a Veni grant. C. Pfrommer gratefully acknowledges support of the Klaus Tschira Foundation. NR 143 TC 6 Z9 6 U1 5 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A33 DI 10.1051/0004-6361/201527846 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300045 ER PT J AU Biver, N Moreno, R Bockelee-Morvan, D Sandqvist, A Colom, P Crovisier, J Lis, DC Boissier, J Debout, V Paubert, G Milam, S Hjalmarson, A Lundin, S Karlsson, T Battelino, M Frisk, U Murtagh, D AF Biver, N. Moreno, R. Bockelee-Morvan, D. Sandqvist, Aa. Colom, P. Crovisier, J. Lis, D. C. Boissier, J. Debout, V. Paubert, G. Milam, S. Hjalmarson, A. Lundin, S. Karlsson, T. Battelino, M. Frisk, U. Murtagh, D. CA Odin Team TI Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radio lines: planetary systems; submillimeter: planetary systems; comets: individual: C/2012 F6 (Lemmon); comets: individual: C/2014 Q2 (Lovejoy); comets: general ID SOLAR-SYSTEM; HALE-BOPP; C/1995 O1; PARENT MOLECULES; ETHYLENE-GLYCOL; 103P/HARTLEY 2; B2 HYAKUTAKE; OORT-CLOUD; D/H RATIO; NITROGEN AB The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30 m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January-3 February 2015. We detected 22 molecules and several isotopologues. The (H2O)-O-16 and (H2O)-O-18 production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of similar to 25%. The inferred isotope ratios in comet Lovejoy are O-16/O-18 = 499 +/- 24 and D/H = 1.4 +/- 0.4 x 10(-4) in water, S-32/S-34 = 24.7 +/- 3.5 in CS, all compatible with terrestrial values. The ratio C-12/C-13 = 109 +/- 14 in HCN is marginally higher than terrestrial and N-14/N-15 = 145 +/- 12 in HCN is half the Earth ratio. Several upper limits for D/H or C-12/C-13 in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system. C1 [Biver, N.; Moreno, R.; Bockelee-Morvan, D.; Colom, P.; Crovisier, J.; Debout, V.] Univ Paris Diderot, Univ Paris 06, Sorbonne Univ, LESIA,Observ Paris,PSL Res Univ,CNRS,Sorbonne Par, 5 Pl Jules Janssen, F-92195 Meudon, France. [Sandqvist, Aa.] AlbaNova Univ Ctr, Stockholm Observ, S-10691 Stockholm, Sweden. [Lis, D. C.] Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS, F-75014 Paris, France. [Boissier, J.] IRAM, 300 Rue Piscine, F-38406 St Martin Dheres, France. [Paubert, G.] IRAM, Avd Divina Pastora 7, E-18012 Granada, Spain. [Milam, S.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Code 691-0, Greenbelt, MD 20771 USA. [Hjalmarson, A.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Lundin, S.; Karlsson, T.; Battelino, M.] OHB Sweden, POB 1269, S-16429 Kista, Sweden. [Frisk, U.] Omnisys Instruments, August Barks Gata 6B, S-42132 Vastra Frolunda, Sweden. [Murtagh, D.] Chalmers Tech Univ, Dept Radio & Space Sci, S-41258 Gothenburg, Sweden. RP Biver, N (reprint author), Univ Paris Diderot, Univ Paris 06, Sorbonne Univ, LESIA,Observ Paris,PSL Res Univ,CNRS,Sorbonne Par, 5 Pl Jules Janssen, F-92195 Meudon, France. EM nicolas.biver@obspm.fr RI Murtagh, Donal/F-8694-2011 OI Murtagh, Donal/0000-0003-1539-3559 FU Programme national de planetologie de l'Institut des sciences de l'univers (INSU); NASA Planetary Astronomy program FX The IRAM observations were conducted under the target of opportunity proposal D04-14 and regular proposal 128-14 and we gratefully acknowledge the support from the IRAM director for awarding us discretionary time and the IRAM staff for its support and for scheduling the observations on short notice. This research has been supported by the Programme national de planetologie de l'Institut des sciences de l'univers (INSU). S.N.M. acknowledges the NASA Planetary Astronomy program for support. NR 52 TC 1 Z9 1 U1 2 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A78 DI 10.1051/0004-6361/201528041 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300090 ER PT J AU Duro, R Dauser, T Grinberg, V Miskovicova, I Rodriguez, J Tomsick, J Hanke, M Pottschmidt, K Nowak, MA Kreykenbohm, S Bel, MC Bodaghee, A Lohfink, A Reynolds, CS Kendziorra, E Kirsch, MGF Staubert, R Wilms, J AF Duro, Refiz Dauser, Thomas Grinberg, Victoria Miskovicova, Ivica Rodriguez, Jerome Tomsick, John Hanke, Manfred Pottschmidt, Katja Nowak, Michael A. Kreykenbohm, Sonja Bel, Marion Cadolle Bodaghee, Arash Lohfink, Anne Reynolds, Christopher S. Kendziorra, Eckhard Kirsch, Marcus G. F. Staubert, Rudiger Wilms, Jorn TI Revealing the broad iron K alpha line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: binaries; black hole physics; gravitation ID LONG-TERM VARIABILITY; X-RAY SPECTROSCOPY; BLACK-HOLE SPIN; PN-CCD CAMERA; ACCRETION DISCS; TIMING MODE; HARD STATE; GX 339-4; TEMPORAL CORRELATIONS; EMISSION-LINES AB We report on the analysis of the broad Fe K alpha line feature of Cyg X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission (XMM-Newton), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe K alpha reflection line at 6.4 keV with a very high signal to noise ratio. The 4-500 keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole parameters with a spin of a similar to 0.9, in agreement with recent measurements from reflection and disk continuum fitting. The inclination is found to be i similar to 30 degrees, consistent with the orbital inclination and different from inclination measurements made during the soft state, which show a higher inclination. We speculate that the difference between the inclination measurements is due to changes in the inner region of the accretion disk. C1 [Duro, Refiz; Dauser, Thomas; Miskovicova, Ivica; Hanke, Manfred; Kreykenbohm, Sonja; Wilms, Jorn] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany. [Duro, Refiz; Dauser, Thomas; Miskovicova, Ivica; Hanke, Manfred; Kreykenbohm, Sonja; Wilms, Jorn] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Sternwartstr 7, D-96049 Bamberg, Germany. [Duro, Refiz] AIT Austrian Inst Technol GmbH, Donau City Str 1, A-1220 Vienna, Austria. [Grinberg, Victoria; Nowak, Michael A.] MIT, Kavli Inst Astrophys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Rodriguez, Jerome] Univ Paris Diderot, Lab AIM, Ctr Saclay, CEA,IRFU,CNRS,INSU,CEA DSM,IRFU,SAp, F-91191 Gif Sur Yvette, France. [Tomsick, John; Bodaghee, Arash] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Pottschmidt, Katja] CRESST, Code 661, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Kreykenbohm, Sonja; Kendziorra, Eckhard; Staubert, Rudiger] Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72074 Tubingen, Germany. [Bel, Marion Cadolle] Max Planck Comp & Data Facil, Giessenbachstr 2, D-85748 Garching, Germany. [Bodaghee, Arash] Georgia Coll, Dept Chem Phys & Astron, CBX 082, Milledgeville, GA 31061 USA. [Lohfink, Anne] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Reynolds, Christopher S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Reynolds, Christopher S.] Univ Maryland, Maryland Astron Ctr Theory & Computat, College Pk, MD 20742 USA. [Kirsch, Marcus G. F.] European Space Agcy, European Space Operat Ctr, Robert Bosch Str 5, D-64293 Darmstadt, Germany. RP Wilms, J (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany. EM joern.wilms@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU European Commission [ITN 215212]; Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt [50OR0701, 50OR1007, 50OR1113]; NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060, NNX13AE98G]; DFG Cluster of Excellence "Origin and Structure of the Universe"; French National Research Agency [ANR-12-BS05-0009] FX We thank Norbert Schartel and the XMM-Newton operations team for agreeing to perform observations in a new and untested mode, and Maria Diaz-Trigo for many useful discussions on CTE and pile up effects in the EPIC-pn camera. This work was partly supported by the European Commission under contract ITN 215212 "Black Hole Universe" and by the Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt grants 50OR0701, 50OR1007, and 50OR1113. Further support for this work was provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for Support of the Chandra X-Ray Center (CXC) and Science Instruments. CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. JAT acknowledges partial support from NASA Astrophysics Data Analysis Program grant NNX13AE98G. We acknowledge the support by the DFG Cluster of Excellence "Origin and Structure of the Universe". We are grateful for the support of M. Cadolle Bel through the Computational Center for Particle and Astrophysics (C2PAP). J.R. acknowledges funding support from the French National Research Agency, CHAOS project ANR-12-BS05-0009 (http://www.chaos-project.fr). This research has made use of ISIS functions provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). We thank John E. Davis for development of the SLXfig package that was used to create the figures throughout this paper and Sasha Tchekhovskoy for useful discussions on accretion disk warping. This paper is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA. NR 113 TC 2 Z9 2 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A14 DI 10.1051/0004-6361/201424740 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300026 ER PT J AU Martin-Domenech, R Caro, GMM Cruz-Diaz, GA AF Martin-Domenech, R. Munoz Caro, G. M. Cruz-Diaz, G. A. TI Study of the photon-induced formation and subsequent desorption of CH3OH and H2CO in interstellar ice analogs SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: molecules; ISM: clouds; methods: laboratory: molecular ID YOUNG STELLAR OBJECTS; SPITZER SPECTROSCOPIC SURVEY; M LINE SURVEY; CO ICE; H2O-CO ICE; SOLID CO; 10 K; LABORATORY SIMULATION; ABSORPTION FEATURES; UV PHOTODESORPTION AB Context. Methanol and formaldehyde are two simple organic molecules that are ubiquitously detected in the interstellar medium, in both the solid and gaseous phases. An origin in the solid phase and a subsequent nonthermal desorption into the gas phase is often invoked to explain their abundances in some of the environments where they are found. Experimental simulations under astrophysically relevant conditions have been carried out in the past four decades in order to find a suitable mechanism for that process. Aims. In particular, photodesorption from pure methanol ice (and presumably from pure formaldehyde ice) has been found to be negligible in previous works, probably because both molecules are very readily dissociated by vacuum-UV photons. Therefore, we explore the in situ formation and subsequent photon-induced desorption of these species, studying the UV photoprocessing of pure ethanol ice, and a more realistic binary H2O:CH4 ice analog. Methods. Experimental simulations were performed in an ultra-high vacuum chamber. Pure ethanol and binary H2O:CH4 ice samples deposited onto an infrared transparent window at 8 K were UV-irradiated using a microwave-discharged hydrogen flow lamp. Evidence of photochemical production of these two species and subsequent UV-photon-induced desorption into the gas phase were searched for by means of a Fourier transform infrared spectrometer and a quadrupole mass spectrometer, respectively. After irradiation, ice samples were warmed up to room temperature until complete sublimation was attained for detection of volatile products. Results. Formation of CH3OH was only observed during photoprocessing of the H2O:CH4 ice analog, accounting for similar to 4% of the initial CH4 ice column density, but no photon-induced desorption was detected. Photochemical production of H2CO was observed in both series of experiments. Formation of formaldehyde accounted for <= 45% conversion of the initial ethanol ice, but it could not be quantified during irradiation of the binary H2O:CH4 ice analogs. Photochemidesorption of formaldehyde, i.e., photon-induced formation on the ice surface and inmediate desorption, was observed, with a yield of similar to 6 x 10(-5) (molecules/incident photon) in the case of the pure ethanol ice experiments, and similar to 4.4 x 10(-5) (molecules/incident photon) when the H2O:CH4 ice analogs were photoprocessed. Photoprocessing of the ice analogs lead to formation of other species. Some of them were also found to desorb upon UV irradiation. Conclusions. While certain C-bearing species, in particular H2CO, were found to desorb upon irradiation, nonthermal desorption of CH3OH was not observed. So far, there is no experimental evidence of any efficient CH3OH desorption induced by UV photons. On the other hand, the observed photon-induced desorption of H2CO could account for the total formaldehyde abundance observed in the Horsehead photodissociation-dominated region. C1 [Martin-Domenech, R.; Munoz Caro, G. M.; Cruz-Diaz, G. A.] CSIC, Ctr Astrobiol INTA, Km 4, Madrid 28850, Spain. [Cruz-Diaz, G. A.] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Cruz-Diaz, G. A.] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. RP Martin-Domenech, R (reprint author), CSIC, Ctr Astrobiol INTA, Km 4, Madrid 28850, Spain. EM rmartin@cab.inta-csic.es RI Munoz Caro, Guillermo /L-6370-2014 OI Munoz Caro, Guillermo /0000-0001-7003-7368 FU Spanish MINECO [AYA2011-29375, AYA2014-60585-P] FX We are grateful to Javier Manzano-Santamaria for his support on the experiments. Special thanks go to Marcelino Agundez for useful discussions. This research was financed by the Spanish MINECO under projects AYA2011-29375 and AYA2014-60585-P. R.M.D. benefited from a FPI grant from Spanish MINECO. NR 85 TC 4 Z9 4 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A107 DI 10.1051/0004-6361/201528025 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300119 ER PT J AU Masini, A Comastri, A Balokovic, M Zaw, I Puccetti, S Ballantyne, DR Bauer, FE Boggs, SE Brandt, WN Brightman, M Christensen, FE Craig, WW Gandhi, P Hailey, CJ Harrison, FA Koss, MJ Madejski, G Ricci, C Rivers, E Stern, D Zhang, WW AF Masini, A. Comastri, A. Balokovic, M. Zaw, I. Puccetti, S. Ballantyne, D. R. Bauer, F. E. Boggs, S. E. Brandt, W. N. Brightman, M. Christensen, F. E. Craig, W. W. Gandhi, P. Hailey, C. J. Harrison, F. A. Koss, M. J. Madejski, G. Ricci, C. Rivers, E. Stern, D. Zhang, W. W. TI NuSTAR observations of water megamaser AGN SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE masers; galaxies: active; galaxies: Seyfert ID ACTIVE GALACTIC NUCLEI; H2O MASER EMISSION; SEYFERT 2 GALAXIES; ACCRETION DISK; CIRCINUS GALAXY; NGC 4945; BLACK-HOLE; UGC 3789; OPTICAL-PROPERTIES; OBSCURING TORUS AB Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping. Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of similar to 10(23) cm(-2); in particular, 79% are Compton-thick (N-H > 1.5 x 10(24) cm(-2)). When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect. C1 [Masini, A.; Comastri, A.] Osservatorio Astron Bologna, INAF, Via Ranzani 1, I-40127 Bologna, Italy. [Masini, A.] Univ Bologna, Dipartimento Fis & Astron DIFA, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Balokovic, M.; Brightman, M.; Harrison, F. A.; Rivers, E.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Zaw, I.] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates. [Zaw, I.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Puccetti, S.] ASI, ASDC, Via Politecn, I-00133 Rome, Italy. [Puccetti, S.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 306 22, Chile. [Bauer, F. E.] MAS, Millennium Inst Astrophys, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Bauer, F. E.; Ricci, C.] EMBIGGEN Anillo, Concepcion, Chile. [Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gandhi, P.] Univ Durham, Dept Phys, Ctr Extragalact Astron, South Rd, Durham DH1 3LE, England. [Gandhi, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Koss, M. J.] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Madejski, G.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Masini, A (reprint author), Osservatorio Astron Bologna, INAF, Via Ranzani 1, I-40127 Bologna, Italy. EM alberto.masini4@unibo.it RI Boggs, Steven/E-4170-2015 OI Boggs, Steven/0000-0001-9567-4224 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ASI/INAF [I/037/12/0-011/13]; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]; CONICYT-Chile grants Basal-CATA [PFB-06/2007]; FONDECYT [1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; NuSTAR [44A-1092750] FX We thank the anonymous referee for useful suggestions that helped to improve the paper. This work was supported under NASA Contract NNG08FD60C, and it made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). A.M., A.C., and S.P. acknowledge support from the ASI/INAF grant I/037/12/0-011/13. M.B. acknowledges support from NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H. We acknowledge support from CONICYT-Chile grants Basal-CATA PFB-06/2007 (F.E.B., C.R.), FONDECYT 1141218 (F.E.B., C.R.), "EMBIGGEN" Anillo ACT1101 (F.E.B., C.R.), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F.E.B.). W.N.B. acknowledges support from NuSTAR subcontract 44A-1092750. NR 69 TC 3 Z9 3 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A59 DI 10.1051/0004-6361/201527689 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300071 ER PT J AU Mason, E Howell, SB AF Mason, E. Howell, S. B. TI Kepler and Hale observations of V523 Lyrae SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: general; stars: dwarf novae; stars: individual: V523 Lyr; novae, cataclysmic variables ID CLUSTER NGC 6791; FIELD-OF-VIEW; Z-CAM STARS; CATACLYSMIC VARIABLES; STUNTED OUTBURSTS; V344 LYRAE; TIME-SERIES; X-RAY; OLD; NGC-6791 AB We present new observations of the cataclysmic variable (CV) V523 Lyr, a member of the open cluster NGC 6791. The Kepler Space telescope obtained photometric observations of this source and we examine the nearly three-year-long light curve. The observations show numerous small amplitude outbursts recurring on average every 33 d, intermittent quasi-periodic oscillations, and a significant fully coherent period of similar to 3.8 h, which we identify as the orbital period of the binary. Contemporaneous optical spectroscopy of V523 Lyr reveals a faint blue source with broad Balmer absorption lines containing narrow emission cores. H alpha is in emission above the continuum. The low amplitude of the photometric signal and no detected velocity motion suggest a low orbital inclination. We discuss the properties of V523 Lyr and show that it is a member of the growing group of anomalous Z Cam type CVs, systems that show stunted outbursts, light curve standstills, and occasional deep drops in brightness. C1 [Mason, E.] INAF OATS, Via GB Tiepolo 11, I-34143 Trieste, Italy. [Howell, S. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mason, E (reprint author), INAF OATS, Via GB Tiepolo 11, I-34143 Trieste, Italy.; Howell, SB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM emason@oats.inaf.it; steve.b.howell@nasa.gov FU NASA's Science Mission Directorate; National Aeronautics and Space Administration under the Exoplanet Exploration Program FX The NASA Kepler Mission was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA's Science Mission Directorate. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. S.H. wishes to thank the staff at the Mt. Palomar Hale 200-inch telescope for their help and expertise during the collection of the spectra, and Sally Seebode and Dawn Gelino for help with the observations. E.M. thanks Steven Shore for their confrontations as well as the occasionally strong criticisms. E.M. wishes to thank also Carlo Morossi for being the ideal "officemate" always ready to help and take questions and the Kepler GO team for support with PyKE. The authors thank the anonymous referee for careful reading of the manuscript and valuable suggestions. NR 41 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A106 DI 10.1051/0004-6361/201628245 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300118 ER PT J AU Palmeri, P Quinet, P Mendoza, C Bautista, MA Witthoeft, MC Kallman, TR AF Palmeri, P. Quinet, P. Mendoza, C. Bautista, M. A. Witthoeft, M. C. Kallman, T. R. TI K-shell photoabsorption and photoionisation of trace elements I. Isoelectronic sequences with electron number 3 <= N <= 11 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE atomic data; X-rays: general ID X-RAY-SPECTRUM; R-MATRIX; CROSS-SECTIONS; IONS; SUPERNOVA; EMISSION; LINES; IRON; ACCRETION; OXYGEN AB Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars. Aims. The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements. Methods. Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the auto structure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential. Results. Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3 <= N <= 11. The Na sequence (N = 11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]mu) and those containing 3d orbitals, which will be crucial when considering sequences with N > 11. Conclusions. It is found that the [2s] mu configurations must be included in the target representations of species with N >= 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region. C1 [Palmeri, P.; Quinet, P.] Univ Mons UMONS, Phys Atom & Astrophys, 20 Pl Parc, B-7000 Mons, Belgium. [Quinet, P.] Univ Liege, IPNAS, Campus Sart Tilman,Bat B15, B-4000 Liege, Belgium. [Mendoza, C.] IVIC, Ctr Fis, AP 21827, Caracas 1020, Venezuela. [Bautista, M. A.] Western Michigan Univ, Dept Phys, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA. [Witthoeft, M. C.] ADNET Syst Inc, Bethesda, MD 20817 USA. [Witthoeft, M. C.; Kallman, T. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Palmeri, P; Quinet, P (reprint author), Univ Mons UMONS, Phys Atom & Astrophys, 20 Pl Parc, B-7000 Mons, Belgium.; Quinet, P (reprint author), Univ Liege, IPNAS, Campus Sart Tilman,Bat B15, B-4000 Liege, Belgium.; Mendoza, C (reprint author), IVIC, Ctr Fis, AP 21827, Caracas 1020, Venezuela. EM patrick.palmeri@umons.ac.be; pascal.quinet@umons.ac.be; claudio@ivic.gov.ve FU NASA through the Astrophysics Research and Analysis Program [12-APRA12-0070] FX This project is sponsored by the NASA grant 12-APRA12-0070 through the Astrophysics Research and Analysis Program. NR 32 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A137 DI 10.1051/0004-6361/201628457 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300149 ER PT J AU Requena-Torres, MA Israel, FP Okada, Y Gusten, R Stutzki, J Risacher, C Simon, R Zinnecker, H AF Requena-Torres, M. A. Israel, F. P. Okada, Y. Guesten, R. Stutzki, J. Risacher, C. Simon, R. Zinnecker, H. TI Carbon gas in SMC low-metallicity star-forming regions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Magellanic Clouds; ISM: kinematics and dynamics; ISM: lines and bands; ISM: individual objects: N 66; ISM: individual objects: N 88; ISM: individual objects: N 25/N 26 ID SMALL-MAGELLANIC-CLOUD; H-II REGION; SEST KEY PROGRAM; C II; NGC 346; N 66; NGC-346; N66; TELESCOPE; EMISSION AB This paper presents [C II], [C I] and CO emission line maps of the star-forming regions N 66, N 25+N 26, and N 88 in the metal-poor Local Group dwarf galaxy SMC. The spatial and velocity structure of the large H II region N 66 reveals an expanding ring of shocked molecular gas centered on the exciting star cluster NGC 346, whereas a more distant dense molecular cloud is being eroded by UV radiation from the same cluster. In the N 25+N 26 and N 88 maps, diffuse [C II] emission at a relatively low surface brightness extends well beyond the compact boundaries of the bright emission associated with the H II regions. In all regions, the distribution of this bright [C II] emission and the less prominent [C I] emission closely follows the outline of the CO complexes, but the intensity of the [C II] and [C I] emission is generally anticorrelated, which can be understood by the action of photodissociation and photoionization processes. Notwithstanding the overall similarity of CO and [C II] maps, the intensity ratio of these lines varies significantly, mostly due to changes in CO brightness. [C II] emission line profiles are up to 50% wider in velocity than corresponding CO profiles. A radiative transfer analysis shows that the [C II] line is the dominant tracer of (CO-dark) molecular hydrogen in the SMC. CO emission traces only a minor fraction of the total amount of gas. The similarity of the spatial distribution and line profile shape, and the dominance of molecular gas associated with [C II] rather than CO emission imply that in the low-metallicity environment of the SMC the small amount of dense molecular gas traced by CO is embedded in the much more extended molecular gas traced only by [C II] emission. The contribution from neutral atomic and ionized hydrogen zones is negligible in the star-forming regions observed. C1 [Requena-Torres, M. A.; Guesten, R.; Risacher, C.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Israel, F. P.] Leiden Univ, Sterrewacht Leiden, Postbus 9513, NL-2300 RA Leiden, Netherlands. [Okada, Y.; Stutzki, J.; Simon, R.] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany. [Zinnecker, H.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Deutsch SOFIA Inst, Moffett Field, CA 94035 USA. [Requena-Torres, M. A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. RP Requena-Torres, MA (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM mrequena@stsci.edu FU NASA [NAS2-97001]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901] FX Based [in part] on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. NR 54 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A28 DI 10.1051/0004-6361/201526244 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300040 ER PT J AU Schreiber, C Elbaz, D Pannella, M Ciesla, L Wang, T Koekemoer, A Rafelski, M Daddi, E AF Schreiber, C. Elbaz, D. Pannella, M. Ciesla, L. Wang, T. Koekemoer, A. Rafelski, M. Daddi, E. TI Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: bulges; galaxies: star formation; galaxies: statistics; infrared: galaxies ID HERSCHEL REFERENCE SURVEY; HIGH-REDSHIFT GALAXIES; AROMATIC-HYDROCARBON EMISSION; SPECTRAL ENERGY-DISTRIBUTIONS; EXTRAGALACTIC LEGACY SURVEY; CO-TO-H-2 CONVERSION FACTOR; MOLECULAR GAS FRACTIONS; ACTIVE GALACTIC NUCLEI; RED-SEQUENCE GALAXIES; LYMAN BREAK GALAXIES AB We study the causes of the reported mass-dependence in the slope of the SFR-M-* relation, the so-called main sequence of star-forming galaxies, and discuss its implication on the physical processes that shaped the star formation history of massive galaxies over cosmic time. We made use of the near-infrared high-resolution imaging from the Hubble Space Telescope in the CANDELS fields to perform a careful bulge-to-disk decomposition of distant galaxies and measure for the first time the slope of the SFR-M-disk relation at z = 1. We find that this relation very closely follows the shape of the nominal SFR-M-* correlation, still with a pronounced flattening at the high-mass end. This clearly excludes, at least at z = 1, the progressive growth of quiescent stellar bulges in star-forming galaxies as the main driver for the change of slope of the main sequence. Then, by stacking the Herschel data available in the CANDELS field, we estimated the gas mass (M-gas = M-H1 + M-H2) and the star formation efficiency (SFE equivalent to SFR/M-gas) at different positions on the SFR-M-* relation. We find that the relatively low SFRs observed in massive galaxies (M-* > 5 x 10(10) M-circle dot) are not caused by a reduced gas content, but by a star formation efficiency that is lower by up to a factor of 3 than in galaxies with lower stellar mass. The trend at the lowest masses is probably linked to the dominance of atomic over molecular gas. We argue that this stellar-mass-dependent SFE can explain the varying slope of the main sequence since z = 1 : 5, hence over 70% of the Hubble time. The drop in SFE occurs at lower masses in the local Universe (M-* > 2 x 1010 M-circle dot) and is not present at z = 2. Altogether, this provides evidence for a slow decrease in star formation efficiency in massive main sequence galaxies. The resulting loss of star formation is found to be rising starting from z = 2 to reach a level similar to the mass growth of the quiescent population by z = 1. We finally discuss the possible physical origin of this phenomenon. C1 [Schreiber, C.; Elbaz, D.; Pannella, M.; Ciesla, L.; Wang, T.; Daddi, E.] CEA DSM Irfu CNRS Univ Paris Diderot, Lab AIM Paris Saclay, Pt Courrier 131, F-91191 Gif Sur Yvette, France. [Schreiber, C.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Pannella, M.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Ciesla, L.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Ciesla, L.] Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sen, Penteli 15236, Greece. [Wang, T.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Koekemoer, A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Rafelski, M.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Pannella, M.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. RP Schreiber, C (reprint author), CEA DSM Irfu CNRS Univ Paris Diderot, Lab AIM Paris Saclay, Pt Courrier 131, F-91191 Gif Sur Yvette, France.; Schreiber, C (reprint author), Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. EM cschreib@strw.leidenuniv.nl RI Daddi, Emanuele/D-1649-2012; OI Daddi, Emanuele/0000-0002-3331-9590; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [NAS5-26555]; French Agence Nationale de la Recherche (ANR) [ANR-09-BLAN-0224]; European Commission [312725]; European Union [383549]; Greek Government in the framework of the program "Education and lifelong learning" [383549]; National Natural Science Foundation of China [11303014] FX We thank the referee, J. Braine, for his comments and suggestions that improved the readability, clarity, and correctness of this paper. C.S. wants to thank F. Galliano for his input on the dust grain composition and for making his dust model available. Most of the numerical analysis conducted in this work have been performed using phy++, a free and open source C++ library for fast and robust numerical astrophysics (cschreib.github.io/phypp/). This work is based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. This research was supported by the French Agence Nationale de la Recherche (ANR) project ANR-09-BLAN-0224 and by the European Commission through the FP7 SPACE project ASTRODEEP (Ref. No: 312725). LC benefited from the THALES project 383549 that is jointly funded by the European Union and the Greek Government in the framework of the program "Education and lifelong learning". T.W. acknowledges support for this work from the National Natural Science Foundation of China under grants No. 11303014. NR 164 TC 3 Z9 3 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A35 DI 10.1051/0004-6361/201527200 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300047 ER PT J AU Goshe, LR Snover, ML Hohn, AA Balazs, GH AF Goshe, Lisa R. Snover, Melissa L. Hohn, Aleta A. Balazs, George H. TI Validation of back-calculated body lengths and timing of growth mark deposition in Hawaiian green sea turtles SO ECOLOGY AND EVOLUTION LA English DT Article DE Chelonia mydas; growth rate; line of arrested growth; mark-recapture; oxytetracycline; skeletochronology ID LOGGERHEAD CARETTA-CARETTA; WESTERN NORTH-ATLANTIC; ANNUAL SKELETAL MARKS; CHELONIA-MYDAS; SKELETOCHRONOLOGICAL ANALYSIS; LEPIDOCHELYS-OLIVACEA; SOMATIC GROWTH; AGE; RATES; BONE AB Somatic growth rate data for wild sea turtles can provide insight into life-stage durations, time to maturation, and total lifespan. When appropriately validated, the technique of skeletochronology allows prior growth rates of sea turtles to be calculated with considerably less time and labor than required by mark-recapture studies. We applied skeletochronology to 10 dead, stranded green turtles Chelonia mydas that had previously been measured, tagged, and injected with OTC (oxytetracycline) during mark-recapture studies in Hawaii for validating skeletochronological analysis. We tested the validity of back-calculating carapace lengths (CLs) from diameters of LAGs (lines of arrested growth), which mark the outer boundaries of individual skeletal growth increments. This validation was achieved by comparing CLs estimated from measurements of the LAG proposed to have been deposited closest to the time of tagging to actual CLs measured at the time of tagging. Measureable OTC-mark diameters in five turtles also allowed us to investigate the time of year when LAGs are deposited. We found no significant difference between CLs measured at tagging and those estimated through skeletochronology, which supports calculation of somatic growth rates by taking the difference between CLs estimated from successive LAG diameters in humerus bones for this species. Back-calculated CLs associated with the OTC mark and growth mark deposited closest to tagging indicated that annual LAGs are deposited in the spring. The results of this validation study increase confidence in utilization of skeletochronology to rapidly obtain accurate age and growth data for green turtles. C1 [Goshe, Lisa R.; Hohn, Aleta A.] NOAA, Natl Marine Fisheries Serv, SE Fisheries Ctr, Beaufort Lab, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. [Snover, Melissa L.; Balazs, George H.] Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, 1845 Wasp Blvd, Honolulu, HI 96818 USA. RP Goshe, LR (reprint author), NOAA, Natl Marine Fisheries Serv, SE Fisheries Ctr, Beaufort Lab, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. EM lisa.goshe@gmail.com RI Hohn, Aleta/G-2888-2011 OI Hohn, Aleta/0000-0002-9992-7062 NR 45 TC 1 Z9 1 U1 10 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-7758 J9 ECOL EVOL JI Ecol. Evol. PD MAY PY 2016 VL 6 IS 10 BP 3208 EP 3215 DI 10.1002/ece3.2108 PG 8 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA DM8XB UT WOS:000376646700014 PM 27096079 ER PT J AU Fader, M Rulli, MC Carr, J Dell'Angelo, J D'Odorico, P Gephart, JA Kummu, M Magliocca, N Porkka, M Prell, C Puma, MJ Ratajczak, Z Seekell, DA Suweis, S Tavoni, A AF Fader, Marianela Rulli, Maria Cristina Carr, Joel Dell'Angelo, Jampel D'Odorico, Paolo Gephart, Jessica A. Kummu, Matti Magliocca, Nicholas Porkka, Miina Prell, Christina Puma, Michael J. Ratajczak, Zak Seekell, David A. Suweis, Samir Tavoni, Alessandro TI Past and present biophysical redundancy of countries as a buffer to changes in food supply SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE redundancy; water; spare land; yield gap; productivity; resilience ID CLIMATE-CHANGE; GLOBAL WATER; FRESH-WATER; BIODIVERSITY; SECURITY; AGRICULTURE; RESILIENCE; SCARCITY; IMPACTS; NATIONS AB Spatially diverse trends in population growth, climate change, industrialization, urbanization and economic development are expected to change future food supply and demand. These changes may affect the suitability of land for food production, implying elevated risks especially for resource-constrained, food-importing countries. Wepresent the evolution of biophysical redundancy for agricultural production at country level, from 1992 to 2012. Biophysical redundancy, defined as unused biotic and abiotic environmental resources, is represented by the potential food production of 'spare land', available water resources (i.e., not already used for human activities), as well as production increases through yield gap closure on cultivated areas and potential agricultural areas. In 2012, the biophysical redundancy of 75 (48) countries, mainly in North Africa, Western Europe, the Middle East and Asia, was insufficient to produce the caloric nutritional needs for at least 50% (25%) of their population during a year. Biophysical redundancy has decreased in the last two decades in 102 out of 155 countries, 11 of these went from high to limited redundancy, and nine of these from limited to very low redundancy. Although the variability of the drivers of change across different countries is high, improvements in yield and population growth have a clear impact on the decreases of redundancy towards the very low redundancy category. We took a more detailed look at countries classified as 'Low Income Economies (LIEs)' since they are particularly vulnerable to domestic or external food supply changes, due to their limited capacity to offset for food supply decreases with higher purchasing power on the international market. Currently, nine LIEs have limited or very low biophysical redundancy. Many of these showed a decrease in redundancy over the last two decades, which is not always linked with improvements in per capita food availability. C1 [Fader, Marianela] Univ Avignon, Aix Marseille Univ, Inst Mediterraneen Biodivers & Ecol Marine & Cont, CNRS,IRD, Europole Arbois BP 80,Batiment Villemin, F-13545 Aix En Provence 04, France. [Rulli, Maria Cristina] Politecn Milan, Dept Civil & Environm Engn, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy. [Carr, Joel; D'Odorico, Paolo; Gephart, Jessica A.; Ratajczak, Zak] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Dell'Angelo, Jampel; Magliocca, Nicholas] Univ Maryland, Natl Socioenvironm Synth Ctr, 1 Pk Pl, Annapolis, MD USA. [Kummu, Matti; Porkka, Miina] Aalto Univ, Water & Dev Res Grp, Aalto, Finland. [Prell, Christina] Univ Maryland, Dept Sociol, College Pk, MD 20742 USA. [Puma, Michael J.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Puma, Michael J.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Seekell, David A.] Umea Univ, Dept Ecol & Environm Sci, Umea, Sweden. [Suweis, Samir] Univ Padua, Dept Phys & Astron, Natl Consortium Phys Sci Matter, I-35131 Padua, Italy. [Suweis, Samir] Natl Inst Nucl Phys, I-35131 Padua, Italy. [Tavoni, Alessandro] London Sch Econ, Grantham Res Inst, London WC2A 2AZ, England. RP Fader, M (reprint author), Univ Avignon, Aix Marseille Univ, Inst Mediterraneen Biodivers & Ecol Marine & Cont, CNRS,IRD, Europole Arbois BP 80,Batiment Villemin, F-13545 Aix En Provence 04, France. EM marianela.fader@imbe.fr RI Kummu, Matti/C-4797-2011; D'Odorico, Paolo/A-5836-2008; Porkka, Miina/M-6106-2014 OI Carr, Joel/0000-0002-9164-4156; Kummu, Matti/0000-0001-5096-0163; Porkka, Miina/0000-0002-8285-6122 FU National Socio-Environmental Synthesis Center (SESYNC) from the National Science Foundation [DBI-1052875]; Labex OT-Med - French Government "Investissements d'Avenir" program of the French National Research Agency (ANR) through the A*MIDEX project [ANR-11-LABX-0061, ANR-11-IDEX-0001-02]; European Union [603542, LUC4C]; National Science Foundation [DGE-00809128]; Carl Tryggers Foundation for Scientific Research; University of Padova Physics and Astronomy Department Senior Grant [129/2013]; Maa-ja vesitekniikan tuki ry; Academy of Finland [267463]; Interdisciplinary Global Change Research under NASA - NASA Climate and Earth Observing Program [NNX08AJ75A]; Centre for Climate Change Economics and Policy - ESRC; Grantham Foundation for the Protection of the Environment; National Science foundation (DBI) [1402033] FX This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1052875. Marianela Fader was supported by the Labex OT-Med (no ANR-11-LABX-0061) funded by the French Government "Investissements d'Avenir" program of the French National Research Agency (ANR) through the A*MIDEX project (no ANR-11-IDEX-0001-02), and the European Union's Seventh Framework Programme for research, technological development and demonstration under the project LUC4C (grant agreement number 603542). Jessica Gephart was supported by the National Science Foundation (Grant Number: DGE-00809128). David A Seekell is supported by the Carl Tryggers Foundation for Scientific Research. Samir Suweis thanks University of Padova Physics and Astronomy Department Senior Grant 129/2013 Prot. 1634. Miina Porkka received funding from the Maa-ja vesitekniikan tuki ry. Matti Kummu received funding from the Academy of Finland funded project SCART (grant no. 267463). Michael Puma gratefully acknowledges support from the Interdisciplinary Global Change Research under NASA cooperative agreement NNX08AJ75A supported by the NASA Climate and Earth Observing Program. Alessandro Tavoni acknowledges support from the Centre for Climate Change Economics and Policy, funded by the ESRC, and the Grantham Foundation for the Protection of the Environment. Zak Ratajczak was supported by the National Science foundation (DBI #1402033). The authors wish to thank Dr Kees Klein Golgewijk (University of Utrecht and Netherlands Environmental Assessment Agency) for providing of the HYDE 3.2 data that went into the calculations. We also thank Roberto Patricio Korzeniewicz and Philippe Marchand for their participation in early discussions on this project. NR 53 TC 4 Z9 4 U1 5 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD MAY PY 2016 VL 11 IS 5 AR 055008 DI 10.1088/1748-9326/11/5/055008 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DM6TC UT WOS:000376484300032 ER PT J AU Elmer, NJ Berndt, E Jedlovec, GJ AF Elmer, Nicholas J. Berndt, Emily Jedlovec, Gary J. TI Limb Correction of MODIS and VIIRS Infrared Channels for the Improved Interpretation of RGB Composites SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID SAHARAN AIR LAYER; SATELLITE; PERFORMANCE; CALIBRATION; CLIMATOLOGY; RADIANCES; HUMIDITY; IMPACT; IMAGER; DUST AB Red-green-blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical pathlength of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This study develops a technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical pathlength in order to produce limb-corrected RGB composites. The improved functionality of limb-corrected RGB composites is demonstrated by multiple case studies of Air Mass and Dust RGB composites using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi-National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations. C1 [Elmer, Nicholas J.] Univ Alabama, Dept Atmospher Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Elmer, Nicholas J.; Berndt, Emily; Jedlovec, Gary J.] NASA, Short Term Predict Res & Transit SPoRT Ctr, Huntsville, AL USA. [Berndt, Emily] Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35805 USA. [Jedlovec, Gary J.] NASA, Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL USA. RP Elmer, NJ (reprint author), Univ Alabama, Dept Atmospher Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM nicholas.j.elmer@nasa.gov FU NASA Research and Analysis Program as part of the Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center FX This work was supported by the NASA Research and Analysis Program as part of the Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center. NR 38 TC 0 Z9 0 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD MAY PY 2016 VL 33 IS 5 BP 1073 EP 1087 DI 10.1175/JTECH-D-15-0245.1 PG 15 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DM5BU UT WOS:000376362600014 ER PT J AU Wu, D Peters-Lidard, C Tao, WK Petersen, W AF Wu, Di Peters-Lidard, Christa Tao, Wei-Kuo Petersen, Walter TI Evaluation of NU-WRF Rainfall Forecasts for IFloodS SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID QUANTITATIVE PRECIPITATION FORECASTS; LAND-SURFACE MODEL; SIMULATED RADAR REFLECTIVITIES; NUMERICAL WEATHER PREDICTION; CONVECTIVE ADJUSTMENT SCHEME; BULK MICROPHYSICS SCHEME; EVAPORATIVE FRACTION; WARM-SEASON; ENVIRONMENTAL-PREDICTION; HORIZONTAL RESOLUTION AB The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre-GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real-time forecasts were conducted utilizing the NASA-Unified Weather Research and Forecasting (NU-WRF) Model to support the daily weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are conducted with different soil initializations, one from the spatially interpolated North American Mesoscale Forecast System (NAM) and the other produced by the Land Information System (LIS) using daily analysis of bias-corrected stage IV data. Both forecasts are then compared with NAM, stage IV, and Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation (QPE) to understand the impact of land surface initialization on the predicted precipitation. In general, both NU-WRF runs are able to reproduce individual peaks of precipitation at the right time. NU-WRF is also able to replicate a better rainfall spatial distribution compared with NAM. Further sensitivity tests show that the high-resolution runs (1 and 3 km) are able to better capture the precipitation event compared to its coarser-resolution counterpart (9 km). Finally, the two sets of NU-WRF simulations produce very close rainfall characteristics in bias, spatial and temporal correlation scores, and probability density function. The land surface initialization does not show a significant impact on short-term rainfall forecast, which is largely because of high soil moisture during the field campaign period. C1 [Wu, Di; Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA. [Wu, Di] Sci Syst & Applicat Inc, Lanham, MD USA. [Peters-Lidard, Christa] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Petersen, Walter] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Code 610 W, Wallops Isl, VA 23337 USA. RP Wu, D (reprint author), NASA, Goddard Space Flight Ctr, Code 612,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM di.wu@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU NASA Precipitation Measurement Missions (PMM); Modeling and Analysis Program (MAP) FX This research was supported by the NASA Precipitation Measurement Missions (PMM) and Modeling and Analysis Program (MAP) solicitations through awards to PIs Peters-Lidard, Tao, and Petersen. This support is gratefully acknowledged. We also acknowledge the excellent computational and storage support provided by NASA's Center for Climate Simulation (NCCS). Finally, the authors are grateful for the constructive comments from three anonymous reviewers. NR 61 TC 1 Z9 1 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAY PY 2016 VL 17 IS 5 BP 1317 EP 1335 DI 10.1175/JHM-D-15-0134.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DM5NP UT WOS:000376396700001 ER PT J AU Matsui, T Chern, JD Tao, WK Lang, S Satoh, M Hashino, T Kubota, T AF Matsui, Toshi Chern, Jiun-Dar Tao, Wei-Kuo Lang, Stephen Satoh, Masaki Hashino, Tempei Kubota, Takuji TI On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SIMULATED RADAR REFLECTIVITIES; VERTICAL VELOCITY; PRECIPITATION; SYSTEMS; SCHEME; DISTRIBUTIONS; RAINFALL; REGIMES; CLOUDS; ICE AB A 14-yr climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multisensor signal statistics reveals a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM Precipitation Radar and Microwave Imager show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of more/larger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multiyear time scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-Sensor Three-Step Evaluation Framework via a satellite simulator. The models evaluated are the NASA Multiscale Modeling Framework (MMF) and the Nonhydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moister in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling. C1 [Matsui, Toshi; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Code 612, Greenbelt, MD 20771 USA. [Matsui, Toshi; Chern, Jiun-Dar] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Satoh, Masaki] Univ Tokyo, Atmosphere & Ocean Res Inst, Tokyo, Japan. [Hashino, Tempei] Kyushu Univ, Appl Mech Res Inst, Fukuoka 812, Japan. [Kubota, Takuji] Japan Aerosp Explorat Agcy, Earth Observing Res Ctr, Tsukuba, Ibaraki, Japan. RP Matsui, T (reprint author), NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Code 612, Greenbelt, MD 20771 USA. EM toshihisa.matsui-1@nasa.gov RI Kyushu, RIAM/F-4018-2015; Kubota, Takuji/E-6024-2011; PMM, JAXA/K-8537-2016; Satoh, Masaki/G-3325-2015 OI Kubota, Takuji/0000-0003-0282-1075; Satoh, Masaki/0000-0003-3580-8897 FU NASA FX This study has been funded by the NASA Modeling, Analysis, and Prediction (MAP) program (Project Manager: D. Considine at NASA HQ). Drs. T. Matsui, J. Chern, and W.-K. Tao and Mr. S. Lang are also funded by the NASA Precipitation Measurement Missions (PMM) program (Project Manager: R. Kakar at NASA HQ). We also thank the NASA Advanced Supercomputing (NAS) Division (Project Manager: T. Lee at NASA HQ) for providing the computational resources. The lead author (T. Matsui) would like to give special thanks to Dr. E. Zipser at the University of Utah for his useful discussions. NR 79 TC 1 Z9 1 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAY PY 2016 VL 17 IS 5 BP 1425 EP 1445 DI 10.1175/JHM-D-15-0111.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DM5OC UT WOS:000376398200001 ER PT J AU McRae, CD Johansen, CT Danehy, PM Gallo, ECA Cantu, LML Cutler, AD Rockwell, RD Goyne, CP McDaniel, JC AF McRae, Colin D. Johansen, Craig T. Danehy, Paul M. Gallo, Emanuela C. A. Cantu, Luca M. L. Cutler, Andrew D. Rockwell, Robert D., Jr. Goyne, Christopher P. McDaniel, James C. TI Image Analysis of Hydroxyl-Radical Planar Laser-Induced Fluorescence in Turbulent Supersonic Combustion SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID SCRAMJET COMBUSTOR; MIXING LAYERS; HEAT RELEASE; SHEAR-LAYER; FLOW; VISUALIZATION; FLAME; JET; OH; SIMULATION AB Flow visualization and statistical analysis of a supersonic, turbulent reacting flow from nonintrusive hydroxyl radical planar laser-induced fluorescence images are presented. The OH-PLIF images show instantaneous structures of turbulence in two combustor configurations at different fuel-equivalence ratios. Proper orthogonal decomposition and autocorrelations are performed on the OH-PLIF data to extract quantitative information about turbulent fluctuations and length-scale correlations. Changes in correlation length scales, representative of the integral length scales of the flow, and turbulent energy flow patterns are observed as a function of position in the combustor and fuel-equivalence ratio. Correlation length scales were found to increase with streamwise distance for all configurations. Dual-mode operation with supersonic and subsonic combustion is demonstrated in the facility. Correlation length scales and the growth rate of these length scales were found to be smaller in the subsonic combustion mode. C1 [McRae, Colin D.; Johansen, Craig T.] Univ Calgary, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada. [Danehy, Paul M.] NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, Hampton, VA 23681 USA. [Gallo, Emanuela C. A.; Cantu, Luca M. L.; Cutler, Andrew D.] George Washington Univ, Dept Mech & Aerosp Engn, Newport News, VA 23602 USA. [Rockwell, Robert D., Jr.; Goyne, Christopher P.; McDaniel, James C.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. RP McRae, CD (reprint author), Univ Calgary, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada. FU Air Force Office of Scientific Research (AFOSR)/ National Aeronautics and Space Administration (NASA) National Center for Hypersonic Combined Cycle Propulsion grant [FA 9550-09-1-0611]; Natural Sciences and Engineering Research Council of Canada (NSERC) FX This work was performed at the University of Virginia Supersonic Combustion Facility (UVaSCF), and supported by the Air Force Office of Scientific Research (AFOSR)/ National Aeronautics and Space Administration (NASA) National Center for Hypersonic Combined Cycle Propulsion grant FA 9550-09-1-0611. The technical monitors are Chiping Li from AFOSR and Rick Gaffney from NASA. Dr. Johansen was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 48 TC 1 Z9 1 U1 5 U2 6 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 EI 1533-3876 J9 J PROPUL POWER JI J. Propul. Power PD MAY PY 2016 VL 32 IS 3 BP 542 EP 559 DI 10.2514/1.B35611 PG 18 WC Engineering, Aerospace SC Engineering GA DM9GH UT WOS:000376672600002 ER PT J AU Gonyea, KC Braun, RD Auslender, AH AF Gonyea, Keir C. Braun, Robert D. Auslender, Aaron H. TI Propulsion System Design for a Martian Atmosphere-Breathing Supersonic Retropropulsion Engine SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID CARBON-DIOXIDE; MAGNESIUM; COMBUSTION; DESCENT; ENTRY AB Design and analysis of an atmospheric-breathing propulsion system to land large-scale spacecraft (10 + t) on Mars was performed. Mg-CO2 propulsion feasibility was analytically investigated by employing equilibrium combustion simulations, finite-rate kinetics simulations, and first-order propellant mass and inlet sizing. I-SP values (based on total propellant usage) were determined to be on the order of 120-160 s for onboard subsystems having a 10-to-1 oxidizer compression ratio. This corresponds to an I-SP of 600-800 s based on onboard fuel consumption. Although Mg-CO2 mixtures have significant ignition constraints, favorable conditions were found, yielding ignition delay times of less than 1 ms, by simultaneously employing designs exploiting both large reentry Mach numbers (M = 4 +) and modest compression ratios. These combinations allow for combustion to occur within moderately sized combustion chambers. The first-order sizing calculations confirmed that atmospheric-breathing supersonic retropropulsion has the potential for significant mass savings relative to traditional architectures. Designs with higher oxidizer-to-fuel ratios were more mass efficient. The largest benefit was seen for small inlet area vehicles that leveraged deceleration from a terminal instantaneous burn over higher thrust throughout the trajectory. C1 [Gonyea, Keir C.] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA. [Braun, Robert D.] Georgia Inst Technol, Sch Aerosp Engn, Space Technol, Atlanta, GA 30332 USA. [Auslender, Aaron H.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. RP Gonyea, KC (reprint author), Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA.; Braun, RD (reprint author), Georgia Inst Technol, Sch Aerosp Engn, Space Technol, Atlanta, GA 30332 USA.; Auslender, AH (reprint author), NASA, Langley Res Ctr, Hampton, VA 23666 USA. EM keir@gatech.edu; robert.braun@aerospace.gatech.edu; aaron.h.auslender@nasa.gov FU NASA Space Technology Research Fellowship FX This research is funded by the NASA Space Technology Research Fellowship. NR 26 TC 0 Z9 0 U1 1 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 EI 1533-3876 J9 J PROPUL POWER JI J. Propul. Power PD MAY PY 2016 VL 32 IS 3 BP 574 EP 582 DI 10.2514/1.B35776 PG 9 WC Engineering, Aerospace SC Engineering GA DM9GH UT WOS:000376672600004 ER PT J AU Rubinstein, R AF Rubinstein, Robert TI Self-consistency conditions for elementary Reynolds stress closures SO RADIATION EFFECTS AND DEFECTS IN SOLIDS LA English DT Article DE theory; technology; liquids ID ANISOTROPIC TURBULENCE; MODEL AB This paper summarizes the analytical representation of the correlation tensor in homogeneous anisotropic turbulence and sketches an application to Reynolds stress transport turbulence models. It is shown that the analytical approach can address some of the limitations of conventional modeling. C1 [Rubinstein, Robert] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23665 USA. RP Rubinstein, R (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23665 USA. EM r.rubinstein@nasa.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1042-0150 EI 1029-4953 J9 RADIAT EFF DEFECT S JI Radiat. Eff. Defects Solids PD MAY PY 2016 VL 171 IS 1-2 SI SI BP 13 EP 21 DI 10.1080/10420150.2016.1155584 PG 9 WC Nuclear Science & Technology; Physics, Fluids & Plasmas; Physics, Condensed Matter SC Nuclear Science & Technology; Physics GA DM6DF UT WOS:000376439700002 ER PT J AU Montes, C Rutllant, JA Aguirre, A Bascunan-Godoy, L Julia, C AF Montes, Carlo Rutllant, Jose A. Aguirre, Anita Bascunan-Godoy, Luisa Julia, Cristobal TI Terral de Vicuna, a Foehnlike Wind in Semiarid Northern Chile: Meteorological Aspects and Implications for the Fulfillment of Chill Requirements in Deciduous Fruit Trees SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID HEAT REQUIREMENTS; TEMPERATURE-DEPENDENCE; DORMANCY BREAKING; REST COMPLETION; PISTACHIO TREES; DYNAMIC-MODEL; AUSTRALIA; IMPACT; 30-DEGREES-S; PREDICTION AB The terral de Vicuna is a warm and dry wind that flows down the Elqui Valley in north-central Chile typically at dawn and early morning. Given that most terral episodes occur in austral winter when chill accumulation by deciduous fruit trees proceeds, negative effects on agriculture may be expected. During 11 (2004-14) winters a meteorological characterization of terral winds and the assessment of their impact on chill accumulation, by the modified Utah Model and the Dynamic Model, were performed. Within this period, 67 terral days (TD) were identified as those in which nighttime to early morning wind direction and speed, air temperature, and relative humidity reached defined thresholds on an hourly basis (terral hours). Most frequent TD featured 6-9 consecutive terral hours; duration is considered here as a proxy for their intensity. Synoptic-scale meteorological analysis shows that 65% of moderate and strong terral events develop as a cold, migratory anticyclone drifts poleward of the study area, coinciding with the onset of a midtropospheric ridge over central Chile, bringing southwest winds on top of the Andes (similar to 500-hPa level). The remaining 35% are either associated with 500-hPa easterlies (foehn like), with prefrontal conditions ahead of a trough driving northwest 500-hPa winds, or with transitional 500-hPa westerlies. Assessments of chill accumulation during TD show that, although present average and cold winter conditions do not represent a major TD hazard to local agriculture, lower chill accumulation associated with anomalously high nocturnal temperatures could be significantly more important during present and future warmer winters. C1 [Montes, Carlo] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Rutllant, Jose A.; Bascunan-Godoy, Luisa; Julia, Cristobal] Univ Catolica Norte, Inst Invest Agr Intihuasi, Consorcio Univ La Serena, Ctr Estudios Avanzados Zonas Aridas, Coquimbo, Chile. [Rutllant, Jose A.] Univ Chile, Dept Geofis, Santiago, Chile. [Aguirre, Anita] Univ Aconcagua, Fac Agron, La Serena, Chile. RP Rutllant, JA (reprint author), Raul Bitran 1305, La Serena, Chile. EM jose.rutllant@ceaza.cl NR 53 TC 0 Z9 0 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2016 VL 55 IS 5 BP 1183 EP 1196 DI 10.1175/JAMC-D-15-0275.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DM3HV UT WOS:000376238400003 ER PT J AU Bauer, M Tselioudis, G Rossow, WB AF Bauer, Mike Tselioudis, George Rossow, William B. TI A New Climatology for Investigating Storm Influences in and on the Extratropics SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID NCEP-NCAR REANALYSIS; MIDLATITUDE CYCLONES; SOUTHERN-HEMISPHERE; TROPICAL CYCLONES; WINTER STORM; PART I; TRACKING; SIZE; ERA-40; PRECIPITATION AB The NASA Modeling, Analysis, and Prediction (MAP) Climatology of Mid-Latitude Storm Area (MCMS) project is a set of tools for examining midlatitude cyclones in model-generated data. The MCMS software has two primary tasks. The first task identifies and tracks likely cyclones in sea level pressure fields. Special care is taken to minimize the known problems of this approach near steep or high topography. The second task finds the outermost closed pressure contour that uniquely surrounds each cyclone center, or collection of centers in the case of multicenter cyclones. This enclosed area is then used as a rough proxy for the domain over which a cyclone influences its immediate environment. Here the MCMS software is applied to several decades of re-analysis data. These results are shown to be consistent with the findings of a recent intercomparison of cyclone-finding methods. Besides providing details concerning cyclone storm area, the MCMS software departs from other cyclone-finding methods by providing a comprehensive record concerning every cyclone it processes. The MCMS software also provides extensive diagnostics about the actions of specific operations (filters) and adjustable parameters. The benefits of this accounting are demonstrated and discussed, as are those related to the use of cyclone storm area as a tool for climate research. MCMS datasets are available for several reanalysis products, as is the MCMS software itself, including the source code needed to generate new MCMS datasets and utilities for working with existing ones. C1 [Bauer, Mike] Columbia Univ, Dept Appl Phys & Math, New York, NY USA. [Tselioudis, George] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Rossow, William B.] CUNY City Coll, Cooperat Remote Sensing Sci & Technol Inst, New York, NY 10031 USA. RP Bauer, M (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mpb20@columbia.edu FU NASA [08MAP0004, NNXD7AN04G]; NSF [1240643, PO-06-5740] FX Work by all authors was supported in part by the NASA Modeling and Analysis Program (managed by Dr. David Considine) under Grants 08MAP0004 and NNXD7AN04G and by NSF 1240643 from PO-06-5740 (Dr. Eric DeWeaver). The ERA-Interim reanalysis pressure fields were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and obtained from their data server (http://www.ecmwf.int/en/research/climate-reanalysis/era-interim). We also express our gratitude to the numerous reviewers and editors for their generosity of time and effort. Their many contributions and corrections made this a much better article and reminded us that good science is often a community effort. NR 33 TC 3 Z9 3 U1 4 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2016 VL 55 IS 5 AR 1287 DI 10.1175/JAMC-D-15-0245.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DM3IX UT WOS:000376241200003 ER PT J AU Wong, S Teixeira, J AF Wong, Sun Teixeira, Joao TI Extreme Convection and Tropical Climate Variability: Scaling of Cold Brightness Temperatures to Sea Surface Temperature SO JOURNAL OF CLIMATE LA English DT Article ID PRECIPITATION EXTREMES; FREQUENCY; INTENSITY; ATLANTIC; FEEDBACK; LAYER; RAIN AB Changes in tropical convective events provide a test bed for understanding changes of extreme convection in a warming climate. Because convective cloud top in deep convection is associated with cold brightness temperatures (BTs) in infrared window channels, variability in global convective events can be studied by spaceborne measurements of BTs. The sensitivity of BTs, directly measured by an Atmospheric Infrared Sounder (AIRS) window channel, to natural changes (the seasonal cycle and El Ni (n) over tildeo-Southern Oscillation) in tropical sea surface temperature (SST) is examined. It is found that tropical average BTs (over the ocean) at the low percentiles of their probability distributions scale with tropical average SSTs (higher SST leading to colder BTs), with the lower percentiles being significantly more sensitive to changes in SST. The sensitivity is reduced for high percentiles of BT and is insignificant for the median BT, and has similar magnitudes for the two natural changes used in the study. The regions where the lower-percentile BTs are most sensitive to SST are near the edges of the convection active areas (intertropical convergence zone and South Pacific convergence zone), including areas with active tropical cyclone activity. Since cold BTs of lower percentiles represent stronger convective events, this study provides, for the first time, global observational evidence of higher sensitivity of changes in stronger convective activity to a changing SST. This result has important potential implications in answering the key climate question of how severe tropical convection will change in a warming world. C1 [Wong, Sun; Teixeira, Joao] CALTECH, Jet Prop Lab, Sect 3243,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Wong, S (reprint author), CALTECH, Jet Prop Lab, Sect 3243,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM sun.wong@jpl.nasa.gov FU National Aeronautics and Space Administration; U.S. government FX We thank Andrew Dessler at Texas A&M University for his comments and discussion. We also thank George Aumann and Mathias Schreier at JPL for discussions on AIRS data. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. U.S. government sponsorship for this work is acknowledged. NR 34 TC 1 Z9 1 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAY PY 2016 VL 29 IS 10 BP 3893 EP 3905 DI 10.1175/JCLI-D-15-0214.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DL9GS UT WOS:000375950400023 ER PT J AU Wargan, K Coy, L AF Wargan, Krzysztof Coy, Lawrence TI Strengthening of the Tropopause Inversion Layer during the 2009 Sudden Stratospheric Warming: A MERRA-2 Study SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID CIRCULATION; MECHANISM; EVOLUTION; REGION AB The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA's Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75 degrees and 90 degrees N. In addition, similar to 6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%-80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis. C1 [Wargan, Krzysztof] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. Sci Syst & Applicat Inc, Lanham, MD USA. RP Wargan, K (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM krzysztof.wargan-1@nasa.gov OI Wargan, Krzysztof/0000-0002-3795-2983 FU NASA's Modeling, Analysis, and Prediction (MAP) program FX MERRA-2 is an official product of the Global Modeling and Assimilation Office at NASA GSFC, supported by NASA's Modeling, Analysis, and Prediction (MAP) program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. We thank Dr. Steven Pawson, Dr. Gloria Manney, and Zachary Lawrence for their comments on the original manuscript and our colleagues at the Global Modeling and Assimilation Office who produced MERRA-2. Finally, we would like to express our gratitude to three anonymous reviewers, whose insightful suggestions helped us improve the manuscript significantly. NR 35 TC 4 Z9 4 U1 4 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAY PY 2016 VL 73 IS 5 BP 1871 EP 1887 DI 10.1175/JAS-D-15-0333.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DL9HM UT WOS:000375952700002 ER PT J AU Hannah, WM Mapes, BE Elsaesser, GS AF Hannah, Walter M. Mapes, Brian E. Elsaesser, Gregory S. TI A Lagrangian View of Moisture Dynamics during DYNAMO SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MADDEN-JULIAN OSCILLATION; STATIC ENERGY BUDGET; TEMPERATURE-GRADIENT APPROXIMATION; TRMM PRECIPITATION RADAR; WATER-VAPOR; INTRASEASONAL OSCILLATION; STRATIFORM PRECIPITATION; TROPICAL CONVECTION; VERTICAL STRUCTURE; DEEP CONVECTION AB Column water vapor (CWV) is studied using data from the Dynamics of the Madden-Julian Oscillation (DYNAMO) field experiment. A distinctive moist mode in tropical CWV probability distributions motivates the work. The Lagrangian CWV tendency (LCT) leaves together the compensating tendencies from phase change and vertical advection, quantities that cannot be measured accurately by themselves, to emphasize their small residual, which governs evolution. The slope of LCT versus CWV suggests that the combined effects of phase changes and vertical advection act as a robust positive feedback on CWV variations, while evaporation adds a broadscale positive tendency. Analyzed diabatic heating profiles become deeper and stronger as CWV increases. Stratiform heating is found to accompany Lagrangian drying at high CWV, but its association with deep convection makes the mean LCT positive at high CWV. Lower-tropospheric wind convergence is found in high-CWV air masses, acting to shrink their area in time. When ECMWF heating profile indices and S-Pol and TRMM radar data are binned jointly by CWV and LCT, bottom-heavy heating associated with shallow and congestus convection is found in columns transitioning through Lagrangian moistening into the humid, high-rain-rate mode of the CWV distribution near 50-55 mm, while nonraining columns and columns with widespread stratiform precipitation are preferentially associated with Lagrangian drying. Interpolated sounding-array data produce substantial errors in LCT budgets, because horizontal advection is inaccurate without satellite input to constrain horizontal gradients. C1 [Hannah, Walter M.] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Campus Box 8208, Raleigh, NC 27695 USA. [Mapes, Brian E.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Dept Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Elsaesser, Gregory S.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. RP Hannah, WM (reprint author), N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Campus Box 8208, Raleigh, NC 27695 USA. EM walter@hannahlab.org FU NOAA, U.S. Department of Commerce [NA13OAR4310156]; NASA [NNX13AQ50G, NNX15AD11G]; DOE [DE-SC0006806]; ONR [N000141310704] FX The authors thank Dr. Paquita Zuidema for providing the Gan radiometer data and Dr. Matt Janiga for his assistance obtaining the S-Pol radar data used in this study. The authors appreciate feedback from Adam Sobel and two anonymous reviewers, as their comments greatly helped to improve this manuscript. This work was supported by Award NA13OAR4310156 from NOAA, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations do not necessarily reflect the views of NOAA or the Department of Commerce. Brian Mapes also acknowledges support from NASA Grants NNX13AQ50G and NNX15AD11G, DOE Award Number DE-SC0006806, and ONR Grant N000141310704. NR 62 TC 0 Z9 0 U1 8 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAY PY 2016 VL 73 IS 5 BP 1967 EP 1985 DI 10.1175/JAS-D-15-0243.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DL9HM UT WOS:000375952700007 ER PT J AU Kanakidou, M Myriokefalitakis, S Daskalakis, N Fanourgakis, G Nenes, A Baker, AR Tsigaridis, K Mihalopoulos, N AF Kanakidou, M. Myriokefalitakis, S. Daskalakis, N. Fanourgakis, G. Nenes, A. Baker, A. R. Tsigaridis, K. Mihalopoulos, N. TI Past, Present, and Future Atmospheric Nitrogen Deposition SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID SECONDARY ORGANIC AEROSOL; GLOBAL TROPOSPHERE; CHEMISTRY; EMISSION; CLIMATE; AMINES; MODEL; AIR; PHOSPHORUS; POLLUTION AB Reactive nitrogen emissions into the atmosphere are increasing as a result of human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry-transport model [Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4-ECPL)] is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases and past and projected changes due to anthropogenic activities. The anthropogenic and biomass-burning Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20%-25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN), as is considered in most global models. Almost a threefold increase over land (twofold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25% and 35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions. C1 [Kanakidou, M.; Myriokefalitakis, S.; Daskalakis, N.; Fanourgakis, G.; Mihalopoulos, N.] Univ Crete, Dept Chem, Environm Chem Proc Lab, Voutes Campus,POB 2208, Iraklion 70013, Greece. [Nenes, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Nenes, A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Baker, A. R.] Univ E Anglia, Sch Environm Sci, Ctr Ocean & Atmospher Sci, Norwich NR4 7TJ, Norfolk, England. [Tsigaridis, K.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Tsigaridis, K.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Mihalopoulos, N.] Natl Observ Athens, Inst Environm Res & Sustainable Dev, Athens, Greece. [Daskalakis, N.] LATMOS, IPSL, Paris, France. RP Kanakidou, M (reprint author), Univ Crete, Dept Chem, Environm Chem Proc Lab, Voutes Campus,POB 2208, Iraklion 70013, Greece. EM mariak@uoc.gr RI Baker, Alex/D-1233-2011; Kanakidou, Maria/D-7882-2012; Myriokefalitakis, Stylianos/J-3701-2014; Mihalopoulos, Nikolaos/H-5327-2016 OI Baker, Alex/0000-0002-8365-8953; Kanakidou, Maria/0000-0002-1724-9692; Myriokefalitakis, Stylianos/0000-0002-1541-7680; Mihalopoulos, Nikolaos/0000-0002-1282-0896 FU European Union [European Social Fund (ESF)]; Greek national funds through the Operational Program "Education and Lifelong Learning'' of National Strategic Reference Framework (NSRF) - Research Funding Program ARISTEIA I - PANOPLY; ADAMANT project FX This research has been co-financed by the European Union [European Social Fund (ESF)] and Greek national funds through the Operational Program "Education and Lifelong Learning'' of the National Strategic Reference Framework (NSRF) - Research Funding Program ARISTEIA I - PANOPLY. AB and MK have been partially supported by ADAMANT project. The authors gratefully acknowledge the sources of the precipitation chemistry and deposition data listed in Vet et al. (2014, p. 92). This is a contribution to GESAMP WG 38. We thank the anonymous reviewers for their pertinent and useful comments. NR 40 TC 3 Z9 3 U1 23 U2 44 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAY PY 2016 VL 73 IS 5 BP 2039 EP 2047 DI 10.1175/JAS-D-15-0278.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DL9HM UT WOS:000375952700011 ER PT J AU Zoller, LK AF Zoller, Lowell K. TI Prospectus for NDT in the Saturn And Advanced Space Flight Programs SO MATERIALS EVALUATION LA English DT Article C1 [Zoller, Lowell K.] NASA, George C Marshall Space Flight Ctr, Projects Off, Div Mat, Huntsville, AL 35812 USA. RP Zoller, LK (reprint author), NASA, George C Marshall Space Flight Ctr, Projects Off, Div Mat, Huntsville, AL 35812 USA. FU Magnaflux Corp.; Georgia Institute of Technology in Atlanta, Georgia FX Adapted from a talk by Mr. Zoller at the Third Annual Aerospace Conference on Nondestructive Testing sponsored by the Magnaflux Corp. and Georgia Institute of Technology May 2-3, 1966, in Atlanta, Georgia. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD MAY PY 2016 VL 74 IS 5 PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA DL7NP UT WOS:000375827700015 ER PT J AU Kurowski, MJ Wojcik, DK Ziemianski, MZ Rosa, B Piotrowski, ZP AF Kurowski, Marcin J. Wojcik, Damian K. Ziemianski, Michal Z. Rosa, Bogdan Piotrowski, Zbigniew P. TI Convection-Permitting Regional Weather Modeling with COSMO-EULAG: Compressible and Anelastic Solutions for a Typical Westerly Flow over the Alps SO MONTHLY WEATHER REVIEW LA English DT Article ID PROSPECTIVE DYNAMICAL CORE; PART I; SOUNDPROOF EQUATIONS; PREDICTION MODELS; SCALE ANALYSIS; SIMULATIONS; DEEP; CLOUD; APPROXIMATION; SENSITIVITIES AB A comparison between anelastic and compressible convection-permitting weather forecasts for the Alpine region is presented. This involves mesoscale simulation of a typical westerly flow accompanied by a passage of frontal systems as well as intense airmass convection and orographic convection. The limited-area model employing a 2.2-km horizontal grid length is driven by time-dependent boundary conditions from a coarse-resolution model. The results obtained with the anelastic and the compressible model versions show good agreement. Validations of the 10-m wind, 2-m temperature, 2-m dewpoint temperature, total cloud cover, and surface precipitation against observations for a seven-member forecast ensemble reveal only minor differences between the two configurations. The sensitivity study demonstrates only a small impact of realistic pressure perturbations (about a reference profile) on the solutions. Overall, anelastic approximation proves remarkably accurate in simulating moist mesoscale dynamics. The study has been conducted using a newly developed hybrid limited-area nonhydrostatic version of the Consortium for Small-Scale Modeling (COSMO) model. This version facilitates the use of two alternative dynamical cores: compressible (original) and anelastic (new). The new dynamical core, which is based on the Euler-Lagrangian (EULAG) solver, aims at integrating atmospheric flow equations at resolutions higher than O(1) km for steep orography. A coupler has been developed to merge the EULAG dynamical core with the COSMO numerical weather prediction framework. C1 [Kurowski, Marcin J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 233-300, Pasadena, CA 91109 USA. [Wojcik, Damian K.; Ziemianski, Michal Z.; Rosa, Bogdan; Piotrowski, Zbigniew P.] Inst Meteorol & Water Management, Natl Res Inst, Warsaw, Poland. RP Kurowski, MJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 233-300, Pasadena, CA 91109 USA. EM marcin.j.kurowski@jpl.nasa.gov RI Piotrowski, Zbigniew/H-1989-2011; Rosa, Bogdan/A-1931-2017 OI Piotrowski, Zbigniew/0000-0002-5383-4127; FU National Aeronautics and Space Administration; Swiss National Supercomputing Centre (CSCS) [d25] FX Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The initial and boundary conditions for simulations were kindly provided by the MeteoSwiss. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID d25. We acknowledge PRACE for awarding us access to the resource Monte Rosa based in Switzerland at CSCS. Support from Prof. Piotr K. Smolarkiewicz in the process of the COSMO-EULAG model development is gratefully acknowledged. Comments by Prof. W. W. Grabowski on an earlier version of this manuscript are acknowledged. Support from Drs. Ritthik Bhattacharya and Peter Kalmus in editing the manuscript is acknowledged. Comments from the three anonymous reviewers helped to improve the paper considerably. NR 47 TC 1 Z9 1 U1 1 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD MAY PY 2016 VL 144 IS 5 BP 1961 EP 1982 DI 10.1175/MWR-D-15-0264.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DM1TZ UT WOS:000376130700003 ER PT J AU Kerr, RL Edwards, JP Jones, SC Elliott, BJ Gin, DL AF Kerr, Robert L. Edwards, Julian P. Jones, Simon C. Elliott, Brian J. Gin, Douglas L. TI Effect of varying the composition and nanostructure of organic carbonate-containing lyotropic liquid crystal polymer electrolytes on their ionic conductivity SO POLYMER JOURNAL LA English DT Article ID BICONTINUOUS CUBIC PHASES; LITHIUM BATTERIES; SELF-ORGANIZATION; CROWNED AZOBENZENE; SIDE-CHAIN; ASSEMBLIES; MOIETIES; FILMS; TRANSPORT; SALTS AB Nanostructured composite electrolyte films consisting of a cross-linked lyotropic liquid crystal (LLC) monomer, an organic carbonate liquid electrolyte (propylene carbonate, dimethylcarbonate, diethylcarbonate) and a Li salt (LiClO4, LiBF4, LiPF6) were systematically prepared and characterized at two electrolyte concentrations (0.245 and 1.0 M) and four liquid loading levels (5, 15, 30, 50 wt %). The LLC morphology of the films was investigated using polarized light microscopy and powder X-ray diffraction; their ionic conductivity was investigated using AC impedance measurements. Higher liquid electrolyte loadings and Li salt concentrations generally increased ionic conductivity, regardless of the liquid electrolyte or salt used. Some mixed-phase LLC morphologies displayed good ionic conductivity; however, as initially prepared, these formulations were at the limit of liquid uptake. In contrast, composites with a type II bicontinuous cubic (Q(II)) LLC phase containing ordered, three-dimensional interconnected nanopores exhibited good conductivity using much less liquid electrolyte and a lower Li salt concentration, indicating that this structure is more amenable to ion transport than less ordered/uniform morphologies. When wetted with electrolyte solution and integrated into Li/fluorinated carbon coin cells, the Q(II) films were sufficiently strong to act as an ion-conductive separator and displayed stable open-circuit potentials. Many of the mixed-phase films gave shorted cells. C1 [Kerr, Robert L.; Edwards, Julian P.; Gin, Douglas L.] Univ Colorado, Dept Chem & Biochem, UCB 424, Boulder, CO 80309 USA. [Jones, Simon C.] Contour Energy Syst Inc, Azusa, CA USA. [Elliott, Brian J.] TDA Res Inc, Wheat Ridge, CO USA. [Kerr, Robert L.] ITT Cannon LLC, MTC Labs, 666 E Dyer Rd, Santa Ana, CA 92705 USA. [Edwards, Julian P.] CALTECH, Div Chem & Chem Engn, MC 164-30 CH, Pasadena, CA 91125 USA. [Jones, Simon C.] NASA JPL, Electrochem Technol Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Gin, DL (reprint author), Univ Colorado, Dept Chem & Biochem, UCB 424, Boulder, CO 80309 USA. EM gin@spot.colorado.edu FU U.S. Department of Energy via an STTR Grant [DE-FG02-04ER84093]; NSF Liquid Crystal Materials Research Center at CU Boulder [DMR-0820579] FX This work was funded by the U.S. Department of Energy via an STTR Grant to TDA Research with a subcontract to CU Boulder (DE-FG02-04ER84093) and the NSF Liquid Crystal Materials Research Center at CU Boulder (DMR-0820579). NR 62 TC 1 Z9 1 U1 24 U2 35 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0032-3896 EI 1349-0540 J9 POLYM J JI Polym. J. PD MAY PY 2016 VL 48 IS 5 BP 635 EP 643 DI 10.1038/pj.2015.119 PG 9 WC Polymer Science SC Polymer Science GA DM2QK UT WOS:000376191400010 ER PT J AU He, SM Tominski, C Kappler, A Behrens, S Roden, EE AF He, Shaomei Tominski, Claudia Kappler, Andreas Behrens, Sebastian Roden, Eric E. TI Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PROTEIN SUBCELLULAR-LOCALIZATION; EXTRACELLULAR ELECTRON-TRANSFER; PHOTOTROPHIC FE(II) OXIDATION; COMPARATIVE-ANALYSIS SYSTEM; GEOBACTER-SULFURREDUCENS; ESCHERICHIA-COLI; IRON OXIDATION; ACIDITHIOBACILLUS FERROOXIDANS; BRADYRHIZOBIUM-JAPONICUM; OXIDIZING BACTERIA AB Nitrate-dependent ferrous iron [Fe(II)] oxidation (NDFO) is a well-recognized chemolithotrophic pathway in anoxic sediments. The neutrophilic chemolithoautotrophic enrichment culture KS originally obtained from a freshwater sediment (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl Environ Microbiol 62:1458-1460, 1996) has been used as a model system to study NDFO. However, the primary Fe(II) oxidizer in this culture has not been isolated, despite extensive efforts to do so. Here, we present a metagenomic analysis of this enrichment culture in order to gain insight into electron transfer pathways and the roles of different bacteria in the culture. We obtained a near-complete genome of the primary Fe(II) oxidizer, a species in the family Gallionellaceae, and draft genomes from its flanking community members. A search of the putative extracellular electron transfer pathways in these genomes led to the identification of a homolog of the MtoAB complex [a porin-multiheme cytochrome c system identified in neutrophilic microaerobic Fe(II)-oxidizing Sideroxydans lithotrophicus ES-1] in a Gallionellaceae sp., and findings of other putative genes involving cytochrome c and multicopper oxidases, such as Cyc2 and OmpB. Genome-enabled metabolic reconstruction revealed that this Gallionellaceae sp. lacks nitric oxide and nitrous oxide reductase genes and may partner with flanking populations capable of complete denitrification to avoid toxic metabolite accumulation, which may explain its resistance to growth in pure culture. This and other revealed interspecies interactions and metabolic interdependencies in nitrogen and carbon metabolisms may allow these organisms to cooperate effectively to achieve robust chemolithoautotrophic NDFO. Overall, the results significantly expand our knowledge of NDFO and suggest a range of genetic targets for further exploration. C1 [He, Shaomei; Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI USA. [He, Shaomei] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [He, Shaomei; Roden, Eric E.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA. [Tominski, Claudia; Kappler, Andreas] Univ Tubingen, Ctr Appl Geosci ZAG, Geomicrobiol, Tubingen, Germany. [Behrens, Sebastian] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN USA. [Behrens, Sebastian] Univ Minnesota, Inst Biotechnol, St Paul, MN 55108 USA. RP He, SM; Roden, EE (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI USA.; He, SM (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.; He, SM; Roden, EE (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA. EM she@wisc.edu; eroden@geology.wisc.edu FU NASA Astrobiology Institute [NNA13AA94A]; University of Wisconsin-Madison (UW); European Research Council under the European Union's Seventh Framework Program (FP)/ERC grant [307320] FX This work, including the efforts of Shaomei He and Eric Roden, was funded by NASA Astrobiology Institute (NNA13AA94A). This work, including the efforts of Eric Roden, was funded by University of Wisconsin-Madison (UW) (Vilas Associateship award). This work, including the efforts of Andreas Kappler, was funded by the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013)/ERC grant, agreement no. 307320 - MICROFOX. NR 68 TC 2 Z9 2 U1 14 U2 54 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2016 VL 82 IS 9 BP 2656 EP 2668 DI 10.1128/AEM.03493-15 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DK0ZA UT WOS:000374640400008 PM 26896135 ER PT J AU David, TJ Conroy, KE Hillenbrand, LA Stassun, KG Stauffer, J Rebull, LM Cody, AM Isaacson, H Howard, AW Aigrain, S AF David, Trevor J. Conroy, Kyle E. Hillenbrand, Lynne A. Stassun, Keivan G. Stauffer, John Rebull, Luisa M. Cody, Ann Marie Isaacson, Howard Howard, Andrew W. Aigrain, Suzanne TI NEW PLEIADES ECLIPSING BINARIES AND A HYADES TRANSITING SYSTEM IDENTIFIED BY K2 SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; open clusters and associations: individual (pleiades, hyades); stars: pre-main sequence ID LOW-MASS STARS; PRE-MAIN-SEQUENCE; LOW-LUMINOSITY MEMBERS; SOLAR-TYPE STARS; PROPER MOTIONS; OPEN CLUSTERS; BROWN-DWARF; LITHIUM ABUNDANCES; MODEL ATMOSPHERES; SUPER-EARTHS AB We present the discovery in Kepler's K2 mission observations and our follow-up radial velocity (RV) observations from Keck/HIRES for four eclipsing binary (EB) star systems in the young benchmark Pleiades and Hyades clusters. Based on our modeling results, we announce two new low mass (M-tot < 0.6 M-circle dot) EBs among Pleiades members (HCG 76 and MHO 9) and we report on two previously known Pleiades binaries that are also found to be EB systems (HII 2407 and HD 23642). We measured the masses of the binary HCG 76 to <2.5% precision, and the radii to <4.5% precision, which together with the precise effective temperatures yield an independent Pleiades distance of 132 5 pc. We discuss another EB toward the Pleiades that is a possible but unlikely Pleiades cluster member (AK II 465). The two new confirmed Pleiades systems extend the mass range of Pleiades EB components to 0.2-2 M-circle dot. Our initial measurements of the fundamental stellar parameters for the Pleiades EBs are discussed in the context of the current stellar models and the nominal cluster isochrone, finding good agreement with the stellar models of Baraffe et al. at the nominal Pleiades age of 120 Myr. Finally, in the Hyades, we report a new low mass eclipsing system (vA 50) that was concurrently discovered and studied by Mann et al. We confirm that the eclipse is likely caused by a Neptune-sized transiting planet, and with the additional RV constraints presented here we improve the constraint on the maximum mass of the planet to be <1.2 Miup. C1 [David, Trevor J.; Hillenbrand, Lynne A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Conroy, Kyle E.; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Stauffer, John; Rebull, Luisa M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Cody, Ann Marie] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Isaacson, Howard] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Howard, Andrew W.] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. [Aigrain, Suzanne] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. RP Conroy, KE (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM kyle.conroy@vanderbilt.edu OI Rebull, Luisa/0000-0001-6381-515X; Isaacson, Howard/0000-0002-0531-1073; Stassun, Keivan/0000-0002-3481-9052; David, Trevor/0000-0001-6534-6246 FU NASA [NNX15AV62G]; National Science Foundation [DGE1144469]; Neugebauer Scholarship; NASA Office of Space Science [NNX09AF08G]; NASA Science Mission directorate; W.M. Keck Foundation FX We thank the referee for helpful comments which led to significant improvement in the quality of this work. T.J.D thanks J. Southworth for helpful discussions regarding the use of JKTEBOP, and I. Crossfield for providing his MCMC transit fitting routine which was used to fit vA 50b. Support for this work was provided by NASA via grant NNX15AV62G. Some of the material presented herein is based upon work supported in 2015 by the National Science Foundation Graduate Research Fellowship under Grant DGE1144469. T.J.D. gratefully acknowledges research activities support from F. Cordova through the Neugebauer Scholarship. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 95 TC 10 Z9 10 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2016 VL 151 IS 5 AR 112 DI 10.3847/0004-6256/151/5/112 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL4MH UT WOS:000375610400003 ER PT J AU Lister, ML Cohen, MH Homan, DC Kadler, M Kellermann, KI Kovalev, YY Ros, E Savolainen, T Zensus, JA AF Lister, M. L. Cohen, M. H. Homan, D. C. Kadler, M. Kellermann, K. I. Kovalev, Y. Y. Ros, E. Savolainen, T. Zensus, J. A. TI MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VI. KINEMATICS ANALYSIS OF A COMPLETE SAMPLE OF BLAZAR JETS (vol 138, 1874, 2009) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Lister, M. L.] Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA. [Cohen, M. H.] CALTECH, Dept Astron, Mail Stop 249-17, Pasadena, CA 91125 USA. [Homan, D. C.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Kadler, M.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte Bamberg, Sternwartstr 7, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany. [Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kadler, M.] Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA. [Kellermann, K. I.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Kovalev, Y. Y.; Ros, E.; Savolainen, T.; Zensus, J. A.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Kovalev, Y. Y.] PN Lebedev Phys Inst, Ctr Astro Space, Profsoyuznaya 84-32, Moscow 117997, Russia. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. RP Lister, ML (reprint author), Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA.; Cohen, MH (reprint author), CALTECH, Dept Astron, Mail Stop 249-17, Pasadena, CA 91125 USA.; Homan, DC (reprint author), Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA.; Kadler, M (reprint author), Univ Erlangen Nurnberg, Dr Remeis Sternwarte Bamberg, Sternwartstr 7, D-96049 Bamberg, Germany.; Kadler, M (reprint author), Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany.; Kadler, M (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.; Kadler, M (reprint author), Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA.; Kellermann, KI (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.; Kovalev, YY; Ros, E; Savolainen, T; Zensus, JA (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.; Kovalev, YY (reprint author), PN Lebedev Phys Inst, Ctr Astro Space, Profsoyuznaya 84-32, Moscow 117997, Russia.; Ros, E (reprint author), Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. EM mlister@purdue.edu; mhc@astro.caltech.edu; homand@denison.edu; matthias.kadler@sternwarte.uni-erlangen.de; kkellerm@nrao.edu; yyk@asc.rssi.ru; Eduardo.Ros@uv.es; tsavolainen@mpifr-bonn.mpg.de; azensus@mpifr-bonn.mpg.de RI Kovalev, Yuri/J-5671-2013 OI Kovalev, Yuri/0000-0001-9303-3263 NR 1 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2016 VL 151 IS 5 AR 132 DI 10.3847/004-6256/151/5/132 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL4MH UT WOS:000375610400023 ER PT J AU Lister, ML Aller, HD Aller, MF Cohen, MH Homan, DC Kadler, M Kellermann, KI Kovalev, YY Ros, E Savolainen, T Zensus, JA Vermeulen, RC AF Lister, M. L. Aller, H. D. Aller, M. F. Cohen, M. H. Homan, D. C. Kadler, M. Kellermann, K. I. Kovalev, Y. Y. Ros, E. Savolainen, T. Zensus, J. A. Vermeulen, R. C. TI MOJAVE: MONITORING OF JETS IN AGN WITH VLBA EXPERIMENTS. V. MULTI -EPOCH VLBA IMAGES (vol 137, 3718, 2009) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Lister, M. L.] Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, 817 Denison Bldg, Ann Arbor, MI 48109 USA. [Cohen, M. H.] CALTECH, Dept Astron, Mail Stop 249-17, Pasadena, CA 91125 USA. [Homan, D. C.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Kadler, M.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte Bamberg, Sternwartstr 7, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany. [Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kadler, M.] Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA. [Kellermann, K. I.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Kovalev, Y. Y.; Ros, E.; Savolainen, T.; Zensus, J. A.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Kovalev, Y. Y.] PN Lebedev Phys Inst, Ctr Astro Space, Profsoyuznaya 84-32, Moscow 117997, Russia. [Vermeulen, R. C.] ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. RP Lister, ML (reprint author), Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA.; Aller, HD; Aller, MF (reprint author), Univ Michigan, Dept Astron, 817 Denison Bldg, Ann Arbor, MI 48109 USA.; Cohen, MH (reprint author), CALTECH, Dept Astron, Mail Stop 249-17, Pasadena, CA 91125 USA.; Homan, DC (reprint author), Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA.; Kadler, M (reprint author), Univ Erlangen Nurnberg, Dr Remeis Sternwarte Bamberg, Sternwartstr 7, D-96049 Bamberg, Germany.; Kadler, M (reprint author), Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany.; Kadler, M (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.; Kadler, M (reprint author), Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA.; Kellermann, KI (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.; Kovalev, YY; Ros, E; Savolainen, T; Zensus, JA (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.; Kovalev, YY (reprint author), PN Lebedev Phys Inst, Ctr Astro Space, Profsoyuznaya 84-32, Moscow 117997, Russia.; Vermeulen, RC (reprint author), ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. EM mlister@purdue.edu; haller@umich.edu; mfa@umich.edu; mhc@astro.caltech.edu; homand@denison.edu; matthias.kadler@sternwarte.uni-erlangen.de; kkellerm@nrao.edu; ykovalev@mpifr-bonn.mpg.de; ros@mpifr-bonn.mpg.de; tsavolainen@mpifr-bonn.mpg.de; azensus@mpifr-bonn.mpg.de; rvermeulen@astron.nl RI Kovalev, Yuri/J-5671-2013 OI Kovalev, Yuri/0000-0001-9303-3263 NR 1 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2016 VL 151 IS 5 AR 131 DI 10.3847/004-6256/151/5/131 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL4MH UT WOS:000375610400022 ER PT J AU Quarles, B Lissauer, JJ AF Quarles, B. Lissauer, Jack J. TI LONG-TERM STABILITY OF PLANETS IN THE alpha CENTAURI SYSTEM SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: general; planets and satellites: detection; planets and satellites: dynamical evolution and stability ID BINARY STAR SYSTEMS; RESTRICTED 3-BODY PROBLEM; RESONANCE OVERLAP; GLOBAL DYNAMICS; KOZAI MECHANISM; SOLAR-SYSTEM; ORBITS; MASS; PERTURBATIONS; SATELLITES AB We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales, and we calculate the positions on the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert and Holman (AJ 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. C1 [Quarles, B.; Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. [Quarles, B.] Univ Nebraska Kearney, Dept Phys & Phys Sci, Kearney, NE 68849 USA. RP Quarles, B (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA.; Quarles, B (reprint author), Univ Nebraska Kearney, Dept Phys & Phys Sci, Kearney, NE 68849 USA. EM billylquarles@gmail.com FU NASA; NASA [13-APRA13-0178] FX B.Q. gratefully acknowledges support by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. The authors thank Ruslan Belikov for stimulating conversations over the course of this work. We thank R. Belikov, A. Dobrovolskis, and E. Quintana for helpful comments on the manuscript. This work was supported in part by NASA's Astrophysics Research and Analysis program under Proposal No. 13-APRA13-0178. NR 39 TC 2 Z9 2 U1 3 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2016 VL 151 IS 5 AR 111 DI 10.3847/0004-6256/151/5/111 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL4MH UT WOS:000375610400002 ER PT J AU Tombesi, F AF Tombesi, F. TI Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE accretion, accretion disks; black hole physics; galaxies: active; techniques: spectroscopic; X-rays: galaxies ID ULTRA-FAST OUTFLOWS; SUPERMASSIVE BLACK-HOLES; HIGHLY IONIZED OUTFLOWS; SHELL ABSORPTION-LINES; RADIATIVE-TRANSFER; WARM ABSORBERS; HOST GALAXIES; MASS OUTFLOWS; SUZAKU VIEW; NGC 5548 AB Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028). (C) 2016 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Tombesi, F.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.] CRESST, College Pk, MD 20742 USA. RP Tombesi, F (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.; Tombesi, F (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Tombesi, F (reprint author), CRESST, College Pk, MD 20742 USA. EM francesco.tombesi@nasa.gov NR 79 TC 1 Z9 1 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0004-6337 EI 1521-3994 J9 ASTRON NACHR JI Astro. Nachr. PD MAY PY 2016 VL 337 IS 4-5 BP 410 EP 416 DI 10.1002/asna.201612322 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6CJ UT WOS:000375725600012 ER PT J AU Fukumura, K Tombesi, F Kazanas, D Shrader, C Behar, E Contopoulos, I AF Fukumura, K. Tombesi, F. Kazanas, D. Shrader, C. Behar, E. Contopoulos, I. TI Fast ionized X-ray absorbers in AGNs SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE galaxies: Seyfert; methods: numerical; X-rays: galaxies; accretion, accretion disks; magnetohydrodynamics (MHD) ID ACTIVE GALACTIC NUCLEI; TRANSMISSION GRATING SPECTROMETER; ACCRETION-DISK WINDS; ASCA OBSERVATIONS; ABSORPTION LINES; WARM ABSORBERS; OUTFLOWS; JETS; EMISSION; GALAXIES AB We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N-H, line-of-sight (LoS) velocity v, ionization parameter xi, among others. Assuming that the wind density scales as n proportional to r(-1), we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Ka absorption feature by focusing on a bright quasar PG1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine. (C) 2016 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Fukumura, K.] James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22840 USA. [Tombesi, F.; Kazanas, D.; Shrader, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Shrader, C.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Behar, E.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Contopoulos, I.] Acad Athens, Res Ctr Astron, Athens 11527, Greece. RP Fukumura, K (reprint author), James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22840 USA. EM fukumukx@jmu.edu NR 25 TC 0 Z9 0 U1 3 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0004-6337 EI 1521-3994 J9 ASTRON NACHR JI Astro. Nachr. PD MAY PY 2016 VL 337 IS 4-5 BP 454 EP 458 DI 10.1002/asna.201612329 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6CJ UT WOS:000375725600019 ER PT J AU Matzeu, GA Reeves, JN Nardini, E Braito, V Costa, MT Tombesi, F Gofford, J AF Matzeu, G. A. Reeves, J. N. Nardini, E. Braito, V. Costa, M. T. Tombesi, F. Gofford, J. TI Broadband short term X-ray variability of the quasar PDS 456 SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE Black hole physics; galaxies: active; galaxies: nuclei; quasars: individual (PDS 456); X-rays: galaxies ID ULTRA-FAST OUTFLOWS; LUMINOUS QUASAR; BLACK-HOLES; GALAXIES; DISCOVERY; ABSORBER; FEEDBACK; SAMPLE; SUZAKU; VIEW AB We present a detailed analysis of a recent 500 ks net exposure Suzaku observation, carried out in 2013, of the nearby (z = 0.184) luminous (L-bol similar to 10(47) erg s(-1)) quasar PDS 456 in which the X-ray flux was unusually low. The short term X-ray spectral variability has been interpreted in terms of variable absorption and/or intrinsic continuum changes. In the former scenario, the spectral variability is due to variable covering factors of two regions of partially covering absorbers. We find that these absorbers are characterised by an outflow velocity comparable to that of the highly ionised wind, i.e. similar to 0.25c, at the 99.9% (3.26 sigma) confidence level. This suggests that the partially absorbing clouds may be the denser clumpy part of the inhomogeneous wind. Following an obscuration event we obtained a direct estimate of the size of the X-ray emitting region, to be not larger than 20 R-g in PDS 456. (C) 2016 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Costa, M. T.; Gofford, J.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Reeves, J. N.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Braito, V.] Osserv Astron Brera, INAF, Via Bianchi 46, I-23807 Merate, LC, Italy. [Tombesi, F.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.] Univ Maryland, CRESST, College Pk, MD 20742 USA. RP Matzeu, GA (reprint author), Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. EM g.matzeu@keele.ac.uk NR 16 TC 0 Z9 0 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0004-6337 EI 1521-3994 J9 ASTRON NACHR JI Astro. Nachr. PD MAY PY 2016 VL 337 IS 4-5 BP 495 EP 499 DI 10.1002/asna.201612336 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6CJ UT WOS:000375725600026 ER PT J AU Roberts, TP Middleton, MJ Sutton, AD Mezcua, M Walton, DJ Heil, LM AF Roberts, T. P. Middleton, M. J. Sutton, A. D. Mezcua, M. Walton, D. J. Heil, L. M. TI ULX behaviour: The ultraluminous state, winds and interesting anomalies SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE accretion, accretion disks; black hole physics; X-rays: binaries ID X-RAY SOURCES; MASS BLACK-HOLE; NGC 5408 X-1; SUPER-EDDINGTON ACCRETION; XMM-NEWTON OBSERVATIONS; HOLMBERG IX X-1; FUNDAMENTAL PLANE; SOLAR MASSES; BROAD-BAND; ESO 243-49 AB Recent evidence - in particular the hard X-ray spectra obtained by NuSTAR, and the large amplitude hard X-ray variability observed when ULXs show soft spectra - reveals that common ultraluminous X-ray source (ULX) behaviour is inconsistent with known sub-Eddington accretion modes, as would be expected for an intermediate-mass black hole (IMBH). Instead, it appears that the majority of ULXs are powered by super-Eddington accretion onto stellar-mass black holes. Here, we will review work that delves deeper into ULX spectral-timing behaviour, demonstrating it remains consistent with the expectations of super-Eddington accretion. One critical missing piece from this picture is the direct detection of the massive, radiatively-driven winds expected from ULXs as atomic emission/absorption line features in ULX spectra; we will show it is very likely these have already been detected as residuals in the soft X-ray spectra of ULXs. Finally, we will discuss ULXs that do not appear to conform to the emerging ULX behaviour patterns. In particular we discuss the implications of the identification of a good IMBH candidate as a background QSO; and the confirmation of an IMBH/ULX candidate in the galaxy NGC 2276 via the radio/X-ray fundamental plane. (C) 2016 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Roberts, T. P.] Univ Durham, Ctr Extragalact Astron, Dept Phys, S Rd, Durham DH1 3LE, England. [Middleton, M. J.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Sutton, A. D.] NASA, George C Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA. [Mezcua, M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Walton, D. J.] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Walton, D. J.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Heil, L. M.] Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. RP Roberts, TP (reprint author), Univ Durham, Ctr Extragalact Astron, Dept Phys, S Rd, Durham DH1 3LE, England. EM t.p.roberts@durham.ac.uk FU STFC [ST/L00075X/1]; NASA Chandra Grant [G05-16099X] FX TPR acknowledges support from STFC as part of the consolidated grant ST/L00075X/1. MM acknowledges financial support from NASA Chandra Grant G05-16099X. All data used is, or will be, public in the relevant mission archives. NR 42 TC 1 Z9 1 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0004-6337 EI 1521-3994 J9 ASTRON NACHR JI Astro. Nachr. PD MAY PY 2016 VL 337 IS 4-5 BP 534 EP 540 DI 10.1002/asna.201612343 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6CJ UT WOS:000375725600033 ER PT J AU Li, C Hsu, NC Sayer, AM Krotkov, NA Fu, JS Lamsal, LN Lee, J Tsay, SC AF Li, Can Hsu, N. Christina Sayer, Andrew M. Krotkov, Nickolay A. Fu, Joshua S. Lamsal, Lok N. Lee, Jaehwa Tsay, Si-Chee TI Satellite observation of pollutant emissions from gas flaring activities near the Arctic SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Gas flaring; Oil; OMI NO2; MODIS AOD; Arctic ID GLOBAL AEROSOL MODELS; CANADIAN OIL SANDS; BLACK CARBON; AIR-POLLUTION; NO2 OBSERVATIONS; TRENDS; OMI; RETRIEVALS; CLIMATE; HAZE AB Gas flaring is a common practice in the oil industry that can have significant environmental impacts, but has until recently been largely overlooked in terms of relevance to climate change. We utilize data from various satellite sensors to examine pollutant emissions from oil exploitation activities in four areas near the Arctic. Despite the remoteness of these sparsely populated areas, tropospheric NO2 retrieved from the Ozone Monitoring Instrument (OMI) is substantial at -1 x 10(15) molecules cm(2), suggesting sizeable emissions from these industrial activities. Statistically significant (at the 953 confidence level, corresponding uncertainties in parentheses) increasing trends of 0.017 (0.01) x 10(15) and 0.015 (0.006) x 10(15) molecules cm(-2) year(-1) over 2004-2015 were found for Bakken (USA) and Athabasca (Canada), two areas having recently experienced fast expansion in the oil industry. This rapid change has implications for emission inventories, which are updated less frequently. No significant trend was found for the North Sea (Europe), where oil production has been declining since the 1990s. For northern Russia, the trend was just under the 95% significance threshold at 0.0057 (0.006) x 10(15) molecules cm(-2) year This raises an interesting inconsistency as prior studies have suggested that, in contrast to the continued, albeit slow, expansion of Russian oil/gas production, gas flaring in Russia has decreased in recent years. However, only a fraction of oil fields in Russia were covered in our analysis. Satellite aerosol optical depth (AOD) data revealed similar tendencies, albeit at a weaker level of statistical significance, due to the longer lifetime of aerosols and contributions from other sources. This study demonstrates that synergetic use of data from multiple satellite sensors can provide valuable information on pollutant emission sources that is otherwise difficult to acquire. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Can; Lee, Jaehwa] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Can; Hsu, N. Christina; Sayer, Andrew M.; Krotkov, Nickolay A.; Lamsal, Lok N.; Lee, Jaehwa; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Code 614, Greenbelt, MD USA. [Sayer, Andrew M.; Lamsal, Lok N.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Fu, Joshua S.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. RP Li, C (reprint author), NASA, Goddard Space Flight Ctr, Code 614, Greenbelt, MD USA. EM can.li@nasa.gov RI Krotkov, Nickolay/E-1541-2012; Sayer, Andrew/H-2314-2012 OI Krotkov, Nickolay/0000-0001-6170-6750; Sayer, Andrew/0000-0001-9149-1789 FU NASA Earth Sciences Division; NASA Earth Observing System (EDS) program FX The authors wish to thank Robert Simmon (formerly of NASA Earth Observatory at NASA GSFC) for the 'Black Marble' VIIRS Day-Night Band composite. The OMI standard NO2 product is funded by NASA Earth Sciences Division, and are archived and can be obtained free of charge at the Goddard Earth Sciences (GES) Data and Information Services Center (DISC, http://daac.gsfc.nasa.gov/). The MODIS aerosol products are funded under the NASA Earth Observing System (EDS) program, managed by Hal Maring, and are archived and can be obtained free of charge from http://ladsweb.nascom.nasa.gov/. The Center for International Earth Science Information Network at Columbia University and Centro Internacional de Agricultura Tropical are thanked for the GPW data, and EU Joint Research Council (JRC) thanked for the EDGAR HTAP V2 emission inventory. http://ladsweb.nascom.nasa.gov. NR 60 TC 1 Z9 1 U1 9 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2016 VL 133 BP 1 EP 11 DI 10.1016/j.atmosenv.2016.03.019 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DK0PG UT WOS:000374614100001 ER PT J AU Hernandez, S Akella, MR AF Hernandez, Sonia Akella, Maruthi R. TI Energy preserving low-thrust guidance for orbit transfers in KS variables SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Low-thrust; Orbit transfer; Closed-loop guidance; Regularization; Kustaanheimo-Stiefel model ID MOTION AB A Lyapunov-based approach is presented to design finite-thrust closed-loop guidance schemes in a two-body model, to perform any general orbit transfer. The design is performed in the Kustaanheimo-Stiefel (KS) model, a regularized two-body framework. The KS model aids in the design of the guidance schemes, but the new guidance solutions can be explicitly characterized in the regular two-body model. The control scheme covers two main phases: first, a matching of the semi-major axis of the target orbit; and second, a matching of the remaining desired orbital elements by holding energy constant. No constraint is imposed on the magnitude of the thrust; however, an emphasis is placed on low-thrust examples. C1 [Hernandez, Sonia; Akella, Maruthi R.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. [Hernandez, Sonia] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Hernandez, S (reprint author), Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA.; Hernandez, S (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM sonia.hernandez@utexas.edu; makella@mail.utexas.edu NR 25 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 EI 1572-9478 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD MAY PY 2016 VL 125 IS 1 BP 107 EP 132 DI 10.1007/s10569-016-9677-0 PG 26 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA DJ7SH UT WOS:000374411600005 ER PT J AU Rianon, N Mccormick, J Ambrose, C Smith, S Fisher-Hoch, S AF Rianon, N. Mccormick, J. Ambrose, C. Smith, S. Fisher-Hoch, S. TI Bone turnover does not reflect skeletal aging in an older Hispanic cohort with type 2 diabetes SO JOURNAL OF THE AMERICAN GERIATRICS SOCIETY LA English DT Meeting Abstract CT Annual Scientific Meeting of the American-Geriatrics-Society CY MAY 19-21, 2016 CL Long Beach, CA SP Amer Geriatr Soc C1 [Rianon, N.; Ambrose, C.] UTHealth, Hosuton, TX USA. [Mccormick, J.; Fisher-Hoch, S.] UTSPH, Brownsville, TX USA. [Smith, S.] NASA JSC, Houston, TX USA. FU Herzstein Foundation FX Supported By: Herzstein Foundation NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-8614 EI 1532-5415 J9 J AM GERIATR SOC JI J. Am. Geriatr. Soc. PD MAY PY 2016 VL 64 SU 1 SI SI MA C61 BP S171 EP S171 PG 1 WC Geriatrics & Gerontology; Gerontology SC Geriatrics & Gerontology GA DK2SD UT WOS:000374763800472 ER PT J AU Luque, E Queiroz, A Santiago, B Pieres, A Balbinot, E Bechtol, K Drlica-Wagner, A Neto, AF da Costa, LN Maia, MAG Yanny, B Abbott, T Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Rosell, AC Kind, MC Carretero, J Cunha, CE Desai, S Diehl, HT Dietrich, JP Eifler, TF Finley, DA Flaugher, B Fosalba, P Frieman, J Gerdes, DW Gruen, D Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS March, M Marshall, JL Martini, P Miquel, R Neilsen, E Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Tucker, D Walker, AR Zhang, Y AF Luque, E. Queiroz, A. Santiago, B. Pieres, A. Balbinot, E. Bechtol, K. Drlica-Wagner, A. Fausti Neto, A. da Costa, L. N. Maia, M. A. G. Yanny, B. Abbott, T. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Cunha, C. E. Desai, S. Diehl, H. T. Dietrich, J. P. Eifler, T. F. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Gruen, D. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. March, M. Marshall, J. L. Martini, P. Miquel, R. Neilsen, E. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Tucker, D. Walker, A. R. Zhang, Y. TI Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE globular clusters: general; globular clusters: individual (DES 1); galaxies: dwarf ID DIGITAL SKY SURVEY; PAN-STARRS1 3-PI SURVEY; ULTRA-FAINT SATELLITES; GLOBULAR-CLUSTERS; STAR CLUSTER; PROPER MOTIONS; DWARF GALAXIES; DATA RELEASE; HALO; CONSTELLATION AB We use the first-year Dark Energy Survey (DES) data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES 1 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources. Assuming different spatial profile parameterizations, the best-fitting heliocentric distance and total absolute magnitude in the range of 77.6-87.1 kpc and -3.00 less than or similar to M-V less than or similar to -2.21, respectively. The half-light radius of this object, r(h) similar to 10 pc and total luminosity are consistent with it being a low-mass halo cluster. It is also found to have a very elongated shape (epsilon similar to 0.57). In addition, our deeper probe of DES first-year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature. C1 [Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.; Balbinot, E.; Fausti Neto, A.; da Costa, L. N.; Maia, M. A. G.; Carnero Rosell, A.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Bechtol, K.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Drlica-Wagner, A.; Yanny, B.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [da Costa, L. N.; Maia, M. A. G.; Carnero Rosell, A.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Benoit-Levy, A.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Bertin, E.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kind, M. Carrasco; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 W Clark St, Urbana, IL 61801 USA. [Carretero, J.; Fosalba, P.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gerdes, D. W.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Luque, E; Santiago, B (reprint author), Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil.; Luque, E; Santiago, B (reprint author), Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. EM elmer.luque@ufrgs.br; basilio.santiago@ufrgs.br RI Fosalba Vela, Pablo/I-5515-2016; Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Balbinot, Eduardo/E-8019-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Tucker, Douglas/0000-0001-7211-5729; Balbinot, Eduardo/0000-0002-1322-3153; Carrasco Kind, Matias/0000-0002-4802-3194 NR 48 TC 9 Z9 9 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2016 VL 458 IS 1 BP 603 EP 612 DI 10.1093/mnras/stw302 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YI UT WOS:000374568900039 ER PT J AU Tritsis, A Tassis, K Willacy, K AF Tritsis, A. Tassis, K. Willacy, K. TI Chemistry as a diagnostic of prestellar core geometry SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; star: formation; ISM: clouds; ISM: molecules ID MOLECULAR CLOUD CORES; NONAXISYMMETRIC PROTOSTELLAR CORES; STAR-FORMATION; MAGNETIC-FIELD; INTRINSIC SHAPES; DENSE GAS; NONEQUILIBRIUM CHEMISTRY; DARK CLOUDS; EVOLUTION; OPHIUCHUS AB We present a new method for assessing the intrinsic 3D shape of prestellar cores from molecular column densities. We have employed hydrodynamic simulations of contracting, isothermal cores considering three intrinsic geometries: spherical, cylindrical/filamentary and disc-like. We have coupled our hydrodynamic simulations with non-equilibrium chemistry. We find that (a) when cores are observed very elongated (i.e. for aspect ratios <= 0.15) the intrinsic 3D geometry can be probed by their 2D molecular emission maps, since these exhibit significant qualitative morphological differences between cylindrical and disc-like cores. Specifically, if a disc-like core is observed as a filamentary object in dust emission, then it will be observed as two parallel filaments in N2H+; (b) for cores with higher aspect ratios (i.e. 0.15-0.9) we define a metric Delta that quantifies whether a molecular column density profile is centrally peaked, depressed or flat. We have identified one molecule (CN) for which Delta as a function of the aspect ratio probes the 3D geometry of the core; and (c) for cores with almost circular projections (i.e. for aspect ratios similar to 1), we have identified three molecules (OH, CO and H2CO) that can be used to probe the intrinsic 3D shape by close inspection of their molecular column density radial profiles. We alter the temperature and the cosmic ray ionization rate and demonstrate that our method is robust against the choice of parameters. C1 [Tritsis, A.; Tassis, K.] Univ Crete, Dept Phys, POB 2208, Iraklion 71003, Greece. [Tassis, K.] Fdn Res & Technol Hellas, IESL, POB 1527, Iraklion 71110, Crete, Greece. [Willacy, K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Tritsis, A; Tassis, K (reprint author), Univ Crete, Dept Phys, POB 2208, Iraklion 71003, Greece.; Tassis, K (reprint author), Fdn Res & Technol Hellas, IESL, POB 1527, Iraklion 71110, Crete, Greece. EM tritsis@physics.uoc.gr; tassis@physics.uoc.gr RI Tassis, Konstantinos/C-3155-2011 FU FP7 through Marie Curie Career Integration Grant [PCIG-GA-2011-293531]; EU FP7 Grant [PIRSES-GA- 2012-31578]; NASA Origins of Solar system Program; European Union [316165] FX We thank G. V. Panopoulou, T. Mouschovias, V. Pavlidou, P. Goldsmith and N. Kylafis for useful suggestions and discussions. We also thank the anonymous referee for useful comments that helped us improve this paper. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. 3D plots were created using MAYAVI2 (Ramachandran & Varoquaux 2012). For post processing our results we partly used YT analysis toolkit (Turk et al. 2011). KT and AT acknowledge support by FP7 through Marie Curie Career Integration Grant PCIG-GA-2011-293531 'SFOnset'. AT and KT would like to acknowledge partial support from the EU FP7 Grant PIRSES-GA- 2012-31578 'EuroCal'. KW's work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. KW acknowledges support from the NASA Origins of Solar system Program. Usage of the Metropolis HPC Facility at the CCQCN of the University of Crete, supported by the European Union Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement no. 316165, is also acknowledged. NR 50 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2016 VL 458 IS 1 BP 789 EP 801 DI 10.1093/mnras/stw329 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YI UT WOS:000374568900055 ER PT J AU Hallakoun, N Maoz, D Kilic, M Mazeh, T Gianninas, A Agol, E Bell, KJ Bloemen, S Brown, WR Debes, J Faigler, S Kull, I Kupfer, T Loeb, A Morris, BM Mullally, F AF Hallakoun, N. Maoz, D. Kilic, M. Mazeh, T. Gianninas, A. Agol, E. Bell, K. J. Bloemen, S. Brown, W. R. Debes, J. Faigler, S. Kull, I. Kupfer, T. Loeb, A. Morris, B. M. Mullally, F. TI SDSS J1152+0248: an eclipsing double white dwarf from the Kepler K2 campaign SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; techniques: radial velocities; binaries: eclipsing; stars: individual: SDSS J115219.99+024814.4; white dwarfs ID BINARY NLTT 11748; SUBDWARF-B-STARS; SPECTROSCOPIC ANALYSIS; CSS 41177; HELIUM; COEFFICIENTS; CONSTRAINTS; PROGENITORS; SUPERNOVAE; EVOLUTION AB We report the discovery of the sixth known eclipsing double white dwarf (WD) system, SDSS J1152+0248, with a 2.3968 +/- 0.0003 h orbital period, in data from the Kepler Mission's K2 continuation. Analysing and modelling the K2 data together with ground-based fast photometry, spectroscopy, and radial-velocity measurements, we determine that the primary is a DA-type WD with mass M-1 = 0.47 +/- 0.11M(circle dot), radius R-1 = 0.0197 +/- 0.0035 R-circle dot, and cooling age t(1) = 52 +/- 36 Myr. No lines are detected, to within our sensitivity, from the secondary WD, but it is likely also of type DA. Its central surface brightness, as measured from the secondary eclipse, is 0.31 of the primary's surface brightness. Its mass, radius, and cooling age, respectively, are M-2 = 0.44 +/- 0.09M(circle dot), R-2 = 0.0223(-0.0050)(+0.0064) R-circle dot, and t(2) = 230 +/- 100 Myr. SDSS J1152+0248 is a near twin of the double-lined eclipsing WD system CSS 41177. C1 [Hallakoun, N.; Maoz, D.; Mazeh, T.; Faigler, S.; Kull, I.] Tel Aviv Univ, Sch Phys & Astron, IL-6997801 Tel Aviv, Israel. [Hallakoun, N.] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Kilic, M.; Gianninas, A.] Univ Oklahoma, Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Agol, E.; Morris, B. M.] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Bell, K. J.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Bloemen, S.; Kupfer, T.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Brown, W. R.] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. [Debes, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Loeb, A.] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. [Mullally, F.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Hallakoun, N; Maoz, D (reprint author), Tel Aviv Univ, Sch Phys & Astron, IL-6997801 Tel Aviv, Israel.; Hallakoun, N (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM naama@wise.tau.ac.il; maoz@astro.tau.ac.il OI Morris, Brett/0000-0003-2528-3409; /0000-0002-0802-9145; Gianninas, Alexandros/0000-0002-8655-4308 FU I-CORE programme of the PBC [1829/12]; Israel Science Foundation; ISF; European Research Council under the EU's Seventh Framework Programme (FP7/ERC Grant) [291352]; NSF [AST-1312678]; NASA [NNX14AF65G]; Raymond and Beverly Sackler Tel-Aviv University - Harvard/ITC Astronomy Programme FX We thank Shai Kaspi for his help with the observations at the Wise Observatory. We are grateful for valuable comments by J. J. Hermes and by the anonymous referee. This work was supported in part by Grant 1829/12 of the I-CORE programme of the PBC and the Israel Science Foundation (DM and TM). DM and TM acknowledge further support by individual grants from the ISF. The research by TM leading to these results has received funding from the European Research Council under the EU's Seventh Framework Programme (FP7/(2007-2013)/ERC Grant Agreement No. 291352). MK, AG and KB gratefully acknowledge the support of the NSF under grant AST-1312678. MK and AG also acknowledge the support of NASA under grant NNX14AF65G. AL acknowledges support by the Raymond and Beverly Sackler Tel-Aviv University - Harvard/ITC Astronomy Programme. The William Herschel Telescope is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The analysis presented in this paper is based on observations obtained with the Apache Point Observatory 3.5-metre telescope, which is owned and operated by the Astrophysical Research Consortium. This paper includes data taken at the McDonald Observatory of The University of Texas at Austin. The authors acknowledge the Texas Advanced Computing Center (TACC)5 at The University of Texas at Austin for providing data base resources that have contributed to the research results reported within this paper. NR 49 TC 4 Z9 4 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2016 VL 458 IS 1 BP 845 EP 854 DI 10.1093/mnras/stw364 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YI UT WOS:000374568900059 ER PT J AU Katwal, G Paulose, M Rusakova, IA Martinez, JE Varghese, OK AF Katwal, Giwan Paulose, Maggie Rusakova, Irene A. Martinez, James E. Varghese, Oomman K. TI Rapid Growth of Zinc Oxide Nanotube-Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection SO NANO LETTERS LA English DT Article DE Zinc oxide; nanotube; anodization; volatile organic compound; breast cancer; breath sensor ID ELECTRODEPOSITED ZNO NANORODS; ROOM-TEMPERATURE; REDEPOSITION PROCESSES; CARBONATE SOLUTIONS; TITANIA NANOTUBES; CATALYTIC GROWTH; AQUEOUS ALKALI; FILM FORMATION; LUNG-CANCER; GAS SENSORS AB A simple direct method for the rapid fabrication of zinc oxide nanotube-nanowire hybrid structure in an environmentally friendly way is described here. Zinc foils were anodized in an aqueous solution of washing soda and baking soda at room temperature in order to obtain the hybrid architecture. At the beginning of the process nanowires were formed on the substrate. The wider nanowires transformed into nanotubes in about a minute and grew in length with time. The morphological integrity was maintained upon heat treatment at temperatures up to the melting point of the substrate (similar to 400 degrees C) except that the nanotube wall became porous. The chemiresistor devices fabricated using the heat-treated structure exhibited high response to low-concentration volatile organic compounds that are considered markers for breast cancer. The response was not significantly affected by high humidity or presence of hydrogen, methane, or carbon dioxide. The devices are expected to find use as breath sensors for noninvasive early detection of breast cancer. C1 [Katwal, Giwan; Paulose, Maggie; Varghese, Oomman K.] Univ Houston, Dept Phys, Nanomat & Devices Lab, Houston, TX 77204 USA. [Rusakova, Irene A.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Rusakova, Irene A.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Martinez, James E.] NASA, Lyndon B Johnson Space Ctr, Jacobs Technol, Struct Engn, Houston, TX 77058 USA. RP Varghese, OK (reprint author), Univ Houston, Dept Phys, Nanomat & Devices Lab, Houston, TX 77204 USA. EM okvarghese@uh.edu FU University of Houston FX The authors thank Dr. John C. Graf, NASA Johnson Space Center, Houston for facilitating SEM studies. O.K.V. acknowledges the financial support from University of Houston. NR 67 TC 5 Z9 5 U1 40 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 3014 EP 3021 DI 10.1021/acs.nanolett.5b05280 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700019 PM 27045345 ER PT J AU Peng, SQ Zeng, XZ Li, ZJ AF Peng, Shiqiu Zeng, Xuezhi Li, Zhijin TI A three-dimensional variational data assimilation system for the South China Sea: preliminary results from observing system simulation experiments SO OCEAN DYNAMICS LA English DT Article DE OSSE; 3DVAR; South China Sea; Meso-scale eddies; Observing network ID OCEAN MODELING SYSTEM; PART I; SATELLITE ALTIMETRY; BARRIER LAYER; SUMMER 2000; CIRCULATION; SURFACE; ROMS; METHODOLOGY; EDDIES AB A three-dimensional variational data assimilation (3DVAR) system based on the Regional Ocean Modeling System (ROMS) is established for the South China Sea (SCS). A set of Observing System Simulation Experiments (OSSEs) are performed to evaluate the performance of this data assimilation system and investigate the impacts of different types of observations on representation of three-dimensional large-scale circulations and meso-scale eddies in the SCS. The pseudo-observations that are examined include sea surface temperatures (SSTs), sea surface heights (SSHs), sparse temperature/salinity (T/S) profiles, sea surface velocities (SSVs), and sea surface salinities (SSSs). The results show that SSHs can extend their impacts into the subsurface or even the deep ocean while other surface observations only have impacts within surface mixed layer. SSVs have similar impacts though confined to their spatial coverage, suggesting that SSVs could be a substitute of SSHs nearshore where SSHs are of poor quality. Despite their sparseness, the T/S profiles improve the representation of the temperature and salinity structures below the mixed layer, and a combination of T/S profiles with surface observations leads to a better representation of the meso-scale eddies. Based on the OSSE results, an affordable observing network for the SCS in the near future is proposed. C1 [Peng, Shiqiu] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Xingang West Rd 164, Guangzhou 510301, Guangdong, Peoples R China. [Zeng, Xuezhi] State Ocean Adm, South China Sea Marine Predict Ctr, Guangzhou 510310, Guangdong, Peoples R China. [Li, Zhijin] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Peng, Shiqiu] Qinzhou Univ, Sch Oceanog, Qinzhou 535000, Peoples R China. RP Peng, SQ (reprint author), Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Xingang West Rd 164, Guangzhou 510301, Guangdong, Peoples R China.; Peng, SQ (reprint author), Qinzhou Univ, Sch Oceanog, Qinzhou 535000, Peoples R China. EM speng@scsio.ac.cn FU MOST of China [2014CB953904, 2011CB403505]; China Special Fund for Meteorological Research in the Public Interest [GYHY201406008]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA01020304]; National Natural Science Foundation of China [41376021]; Hundred Talent Program of the Chinese Academy of Sciences FX This work was jointly supported by the MOST of China (Grant Nos. 2014CB953904 and 2011CB403505), China Special Fund for Meteorological Research in the Public Interest (No. GYHY201406008), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA01020304), National Natural Science Foundation of China (Grants No. 41376021), and the Hundred Talent Program of the Chinese Academy of Sciences. The authors gratefully acknowledge the use of the HPCC at the South China Sea Institute of Oceanology, Chinese Academy of Sciences. NR 67 TC 0 Z9 1 U1 2 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 EI 1616-7228 J9 OCEAN DYNAM JI Ocean Dyn. PD MAY PY 2016 VL 66 IS 5 BP 737 EP 750 DI 10.1007/s10236-016-0946-y PG 14 WC Oceanography SC Oceanography GA DK0CG UT WOS:000374579400009 ER PT J AU Rodriguez, JAP Zarroca, M Linares, R Gulick, V Weitz, CM Yan, JG Fairen, AG Miyamoto, H Platz, T Baker, V Kargel, J Glines, N Higuchi, K AF Rodriguez, J. Alexis P. Zarroca, Mario Linares, Rogelio Gulick, Virginia Weitz, Catherine M. Yan, Jianguo Fairen, Alberto G. Miyamoto, Hideaki Platz, Thomas Baker, Victor Kargel, Jeffrey Glines, Natalie Higuchi, Kana TI Groundwater flow induced collapse and flooding in Noctis Labyrinthus, Mars SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mars; Collapse; Groundwater ID VALLES-MARINERIS; LAYERED DEPOSITS; EVOLUTION; SURFACE; ORIGIN; SEDIMENTS; CHANNELS; TERRAINS; HISTORY; PLAINS AB Catastrophic floods of enormous proportions played a major role in the excavation of some of the Solar System's largest channels, the circum-Chryse outflow channels. The generation of the floods has been attributed to both the evacuation of regional highland aquifers and ancient paleo-lakes. Numerous investigators indicate that these source regions were likely recharged and pressurized by eastward groundwater flow via conduits extending thousands of kilometers from an elevated groundwater table in the Tharsis volcanic rise. This hypothesis remains controversial, largely because subsequent stages of Valles Marineris development and enlargement would have resulted in the widespread destruction of the proposed groundwater pathways. Here, we show that Noctis Labyrinthus, a unique system of troughs connecting the Tharsis volcanic rise and western Valles Marineris, retains geologic evidence of conduit development associated with structurally-controlled groundwater flow through salt-rich upper crustal deposits. The inferred groundwater flow spatial pattern is in agreement with aquifer drainage from the Tharsis volcanic rise region. Our investigation indicates that subsequent surface collapse over these conduits during the Hesperian Period resulted in the generation of large basins in the central and eastern regions of Noctis Labyrinthus, and contributed to chasmata formation in the western portion of Valles Marineris. The lava-covered floors of these basins, dated by previous workers as Late Amazonian, contain hydrated mineral deposits coexisting spatially with decameter-scale features that we interpret to be lacustrine and periglacial in origin. The proposed paleo-lake sites also include chaotic terrains, which could comprise groundwater discharge zones, pointing to regional hydrologic processes that likely operated from the Early Hesperian until a few tens of millions of years ago. Episodic fluidized discharges from eastern Noctis Labyrinthus troughs delivered vast volumes of sediments and volatiles into western Valles Marineris, contributing to the construction of a regional volatile-rich stratigraphy. Intermittent formation of lakes within regional tectono-volcanic basins could have lasted hundreds of millions of years, thus, we highlight the potential of Noctis Labyrinthus as a region of prime interest for astrobiological exploration. (C) 2016 Published by Elsevier Ltd. C1 [Rodriguez, J. Alexis P.; Weitz, Catherine M.; Platz, Thomas] Planetary Sci Inst, 1700 East Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. [Rodriguez, J. Alexis P.; Gulick, Virginia; Glines, Natalie] NASA Ames Res Ctr, MS 239-20, Moffett Field, CA 94035 USA. [Zarroca, Mario; Linares, Rogelio] Autonomous Univ Barcelona, Dept Geol, E-08193 Barcelona, Spain. [Gulick, Virginia; Glines, Natalie] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Yan, Jianguo] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430070, Peoples R China. [Fairen, Alberto G.; Higuchi, Kana] Ctr Astrobiol, Madrid 28850, Spain. [Fairen, Alberto G.] Cornell Univ, Dept Astron, Ithaca, NY 14850 USA. [Miyamoto, Hideaki] Univ Tokyo, Univ Museum, Tokyo 1130033, Japan. [Platz, Thomas] Free Univ Berlin, Inst Geol Sci, Planetary Sci & Remote Sensing, D-12249 Berlin, Germany. [Baker, Victor; Kargel, Jeffrey] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Rodriguez, JAP (reprint author), Planetary Sci Inst, 1700 East Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. EM alexis@psi.edu RI Platz, Thomas/F-7539-2013; OI Platz, Thomas/0000-0002-1253-2034; Zarroca, Mario/0000-0001-6907-1892 FU NASA NPP; MRO HiRISE Co-Investigator; SETI Institute's NAI Co-Investigator funds; DFG [PL613/2-1]; Helmholtz association through the research alliance "Planetary Evolution and Life"; European Research Council under the European Union [307496] FX Funding provided by the NASA NPP to J. Alexis P. Rodriguez and by MRO HiRISE Co-Investigator and SETI Institute's NAI Co-Investigator funds to V.C. Gulick. T. Platz was supported by a DFG Grant (PL613/2-1) and the Helmholtz association through the research alliance "Planetary Evolution and Life". A. G. Fairen was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013), ERC Grant agreement no. 307496. We are also grateful to Mr. Alexander Cox for his very helpful edits and corrections. NR 56 TC 0 Z9 0 U1 4 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2016 VL 124 BP 1 EP 14 DI 10.1016/j.pss.2015.12.009 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ7CN UT WOS:000374369600001 ER PT J AU Sears, DWG Sears, H Ostrowski, DR Bryson, KL Dotson, J Syal, MB Swift, DC AF Sears, Derek W. G. Sears, Hazel Ostrowski, Daniel R. Bryson, Kathryne L. Dotson, Jessie Syal, Megan Bruck Swift, Damian C. TI A meteorite perspective on asteroid hazard mitigation SO PLANETARY AND SPACE SCIENCE LA English DT Review DE Meteorites; Asteroid impact hazard; Fireball; Craters; Near earth asteroids; Impact ID NEAR-EARTH OBJECTS; PHOTOGRAPHIC OBSERVATIONS; INNISFREE METEORITE; ORDINARY CHONDRITES; INFRASOUND RECORDS; LARGE METEOROIDS; VIDEO RECORDS; SOLAR-SYSTEM; FALL; ORBIT AB Meteorites, and their fall to Earth, have the potential to inform studies of the asteroid impact hazard and of impact mitigation. We describe six ways in which they have relevance to understanding the behavior of meteoroids in the atmosphere and thus impact mitigation. (1) Hundreds of meteorite falls have been described in the literature. While eyewitness observations are subjective, at their core there is unique information on which to build and test numerical models of an asteroid's behavior as it passes through the atmosphere. (2) For 19 recovered meteorites, film or video recordings have been obtained and for most of these light curves have been derived which provide quantitative information on meteorite fall and fragmentation. (3) There are 188 known meteorite craters on Earth and in 10 cases fragments of the meteorite responsible have been recovered. In these cases numerical impact models can utilize the known properties of the projectile and the dimensions of the crater. (4) Studies of the meteorites provide information on their preatmospheric size, internal structure and physical properties (tensile strength, density, porosity, thermal conductivity etc.) which are essential for understanding the behavior of objects coming through the atmosphere. (5) The flow patterns on the fusion crust of the meteorite, and the shape of the recovered meteorite, provides information on orientation and physical behavior during flight. Petrographic changes under the fusion crust provide information on thermal history during the latter stages of flight. (6) The structure and composition of the so-called "gas-rich regolith breccias" provide information on the outermost layer of the parent asteroid from which the meteorites came. This information is critical to certain mitigation strategies. We conclude by describing initiatives for hazardous asteroid impact mitigation at Ames Research Center and Lawrence Livermore National Laboratory that will exploit and disseminate the information available from meteorites. This includes characterization of the meteorites likely to be analogous of incoming asteroids and the development of a website to advise the world-wide community of information available. Published by Elsevier Ltd. C1 [Sears, Derek W. G.; Sears, Hazel; Ostrowski, Daniel R.; Bryson, Kathryne L.; Dotson, Jessie] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Sears, Derek W. G.; Sears, Hazel; Ostrowski, Daniel R.; Bryson, Kathryne L.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Mountain View, CA 94035 USA. [Syal, Megan Bruck; Swift, Damian C.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Sears, DWG (reprint author), NASA, Ames Res Ctr, Mountain View, CA 94035 USA. EM Derek.Sears@nasa.gov FU NASAs NEO program FX We are grateful to Jim Arnold for leading the asteroid hazard assessment effort at Ames Research Center, his team for stimulating discussions, and NASAs NEO program (Lindley Johnson, program executive) for funding the effort. We are grateful to Guy Consolmagno and an anonymous reviewer for very thorough and constructive reviews. NR 121 TC 0 Z9 0 U1 7 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2016 VL 124 BP 105 EP 117 DI 10.1016/j.pss.2016.01.016 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ7CN UT WOS:000374369600009 ER PT J AU Miki, S Marsili, F Casaburi, A AF Miki, Shigehito Marsili, Francesco Casaburi, Alessandro TI Recent research trends for superconducting detectors: introduction for the special issue 'Focus on Superconducting Dectectors' SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Editorial Material C1 [Miki, Shigehito] Natl Inst Informat & Commun Technol, Tokyo, Japan. [Marsili, Francesco] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Casaburi, Alessandro] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland. RP Miki, S (reprint author), Natl Inst Informat & Commun Technol, Tokyo, Japan. NR 27 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2016 VL 29 IS 5 AR 050301 DI 10.1088/0953-2048/29/5/050301 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DL3ZL UT WOS:000375572100001 ER PT J AU Chen, JL Famiglietti, JS Scanlon, BR Rodell, M AF Chen, Jianli Famiglietti, James S. Scanlon, Bridget R. Rodell, Matthew TI Groundwater Storage Changes: Present Status from GRACE Observations (vol 37, pg 397, 2016) SO SURVEYS IN GEOPHYSICS LA English DT Correction C1 [Chen, Jianli] Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. [Famiglietti, James S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Scanlon, Bridget R.] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78759 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. RP Chen, JL (reprint author), Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. EM chen@csr.utexas.edu RI Rodell, Matthew/E-4946-2012; Scanlon, Bridget/A-3105-2009 OI Rodell, Matthew/0000-0003-0106-7437; Scanlon, Bridget/0000-0002-1234-4199 NR 1 TC 0 Z9 0 U1 2 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAY PY 2016 VL 37 IS 3 BP 701 EP 701 DI 10.1007/s10712-016-9370-6 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DK0AB UT WOS:000374573600008 ER PT J AU Aaron, KM Moussessian, A Newlin, LE Willis, PB Chen, F Harcke, LJ Chapin, E Jun, I Gim, Y McEachen, M Allen, S Kirchner, D Blankenship, D AF Aaron, Kim M. Moussessian, Alina Newlin, Laura E. Willis, Paul B. Chen, Fei Harcke, Leif J. Chapin, Elaine Jun, Insoo Gim, Yonggyu McEachen, Michael Allen, Scotty Kirchner, Donald Blankenship, Donald TI Planetary protection for Europa radar sounder antenna SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Planetary protection for Europa; Europa radar antenna planetary protection AB The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [McEachen, Michael; Allen, Scotty] Orbital ATK, 600 Pine Ave, Goleta, CA 93117 USA. [Kirchner, Donald] Univ Iowa, Dept Phys & Astron, 30 N Dubuque St, Iowa City, IA 52242 USA. [Blankenship, Donald] Univ Texas Austin, Inst Geophys, 10100 Burnet Rd, Austin, TX 78758 USA. RP Moussessian, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM moussess@jpl.nasa.gov FU National Aeronautics and Space Administration Instrument Concepts for Europa Exploration (ICEE) program; National Aeronautics and Space Administration; Orbital ATK; University of Iowa; University of Texas at Austin FX The work described in this paper was funded by the National Aeronautics and Space Administration Instrument Concepts for Europa Exploration (ICEE) program. The work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and in collaboration with Orbital ATK, the University of Iowa and the University of Texas at Austin. NR 7 TC 1 Z9 1 U1 4 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 1 PY 2016 VL 57 IS 9 BP 2013 EP 2021 DI 10.1016/j.asr.2015.08.015 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DK3FE UT WOS:000374801700016 ER PT J AU Schubert, WW Engler, DL Beaudet, RA AF Schubert, Wayne W. Engler, Diane L. Beaudet, Robert A. TI Hydrazine vapor inactivates Bacillus spores SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Hydrazine; Planetary Protection; Spores; Lethality rate; Bacillus; D-value ID IMPLEMENTING PLANETARY PROTECTION; VIABILITY; SUBTILIS; HEAT AB NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 +/- 0.50 h at 25 degrees C and 2.85 +/- 0.13 h at 35 degrees C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Schubert, WW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM wayne.w.schubert@jpl.nasa.gov FU National Aeronautics and Space Administration; Mars Science Laboratory Mission FX The work described was carried out by the California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California, under contract with the National Aeronautics and Space Administration. This work was supported by the Mars Science Laboratory Mission. The authors thank Gary Plett of the Analytical Chemistry Group who handled the hydrazine and carried out all of the hazardous steps. The authors thank Robert Koukol, MSL Planetary Protection Lead, who requested this experimental work and made helpful suggestions about the spore exposure apparatus. The authors also thank Walter Tam of ATK Space Systems and Todd J. Barber, Carl S. Guernsey, and Joseph C. Lewis of JPL for helpful information and insight regarding permeability of hydrazine through the diaphragm. NR 13 TC 1 Z9 1 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 1 PY 2016 VL 57 IS 9 BP 2022 EP 2026 DI 10.1016/j.asr.2016.02.011 PG 5 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DK3FE UT WOS:000374801700017 ER PT J AU Schubert, WW Newlin, L Chung, SY Ellyin, R AF Schubert, Wayne W. Newlin, Laura Chung, Shirley Y. Ellyin, Raymond TI Assessment of bioburden encapsulated in bulk materials SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Planetary protection; Encapsulated; Bioburden; Spacecraft; Organic materials ID IN-SITU HYBRIDIZATION AB The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cells/cm(3) or 300 viable cells/cm(3) in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm(3). Results also demonstrated that non-spore-forming microorganisms are capable of surviving encapsulation within, and liberation from, epoxy solids. It must be noted, however, that all purposely spiked experimental solids, resulted in very low recovery (1 x 10(-3)-1 x 10(-5) CFU/cm(3)) of viable organisms. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Schubert, WW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM wayne.w.schubert@jpl.nasa.gov FU National Aeronautics and Space Administration FX Copyright 2015, California Institute of Technology. U.S. Government sponsorship acknowledged. The research described in this communication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors thank Alissa (Tenuto) Korsak of the University of Idaho for desiccation resistant strains and valuable information, Paul Willis for advice regarding materials selection, Subha Comandur for cabling and wire test materials, Steve Dawson, Kumar Bugga, and Charlie Krause for Lithium-ion battery electrolyte components, Eric Oakes for epoxy adhesive, Myron La Duc for reviewing this manuscript, and J. Andy Spry for mission and policy consultation. NR 14 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 1 PY 2016 VL 57 IS 9 BP 2027 EP 2036 DI 10.1016/j.asr.2016.02.012 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DK3FE UT WOS:000374801700018 ER PT J AU Evans, TM Sing, DK Wakeford, HR Nikolov, N Ballester, GE Drummond, B Kataria, T Gibson, NP Amundsen, DS Spake, J AF Evans, Thomas M. Sing, David K. Wakeford, Hannah R. Nikolov, Nikolay Ballester, Gilda E. Drummond, Benjamin Kataria, Tiffany Gibson, Neale P. Amundsen, David S. Spake, Jessica TI DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; stars: individual (WASP-121); techniques: photometric; techniques: spectroscopic ID TRANSMISSION SPECTRAL SURVEY; HUBBLE-SPACE-TELESCOPE; GIANT PLANET ATMOSPHERES; LIMB-DARKENING LAW; OR-EQUAL-TO; EXTRASOLAR PLANET; BROWN DWARF; HD 209458B; IRRADIATED ATMOSPHERES; SURFACE GRAVITIES AB We present a primary transit observation for the ultra-hot (T-eq similar to 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 mu m wavelength range. The 1.4 mu m water absorption band is detected at high confidence (5.4 sigma) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 mu m wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion. C1 [Evans, Thomas M.; Sing, David K.; Nikolov, Nikolay; Drummond, Benjamin; Kataria, Tiffany; Spake, Jessica] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Wakeford, Hannah R.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ballester, Gilda E.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Gibson, Neale P.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Amundsen, David S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Amundsen, David S.] NASA Goddard Inst Space Studies, New York, NY 10025 USA. RP Evans, TM (reprint author), Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. EM tevans@astro.ex.ac.uk OI Gibson, Neale/0000-0002-9308-2353; Wakeford, Hannah/0000-0003-4328-3867 FU NASA [NAS 5-26555]; European Research Council under European Union Seventh Framework Program ERC grant [336792]; Royal Society; [GO-14468] FX The authors would like to thank the referee for their prompt and thoughtful review. This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14468. The authors are grateful to the WASP-121 discovery team for generously providing the ground-based photometric light curves. The research leading to these results received funding from the European Research Council under the European Union Seventh Framework Program (FP7/2007-2013) ERC grant agreement no. 336792. H.R.W. acknowledges support by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by ORAU and USRA through a contract with NASA. N.P.G. gratefully acknowledges support from the Royal Society in the form of a University Research Fellowship. NR 46 TC 11 Z9 11 U1 4 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2016 VL 822 IS 1 DI 10.3847/2041-8205/822/1/L4 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DK8CF UT WOS:000375154100004 ER PT J AU Sand, DJ Hsiao, EY Banerjee, DPK Marion, GH Diamond, TR Joshi, V Parrent, JT Phillips, MM Stritzinger, MD Venkataraman, V AF Sand, D. J. Hsiao, E. Y. Banerjee, D. P. K. Marion, G. H. Diamond, T. R. Joshi, V. Parrent, J. T. Phillips, M. M. Stritzinger, M. D. Venkataraman, V. TI POST-MAXIMUM NEAR-INFRARED SPECTRA OF SN 2014J: A SEARCH FOR INTERACTION SIGNATURES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Infrared: general; supernovae: general; supernovae: individual (2014J) ID HUBBLE-SPACE-TELESCOPE; IA SUPERNOVA 2014J; PROGENITOR SYSTEM; NEBULAR SPECTRA; CONSTRAINTS; HYDROGEN; SPECTROSCOPY; ABSORPTION; EXPLOSION; COMPANION AB We present near-infrared (NIR) spectroscopic and photometric observations of the nearby Type Ia SN 2014J. The 17 NIR spectra span epochs from +15.3 to +92.5 days after B-band maximum light, while the JHK(s) photometry include epochs from -10 to +71 days. These. data are. used to constrain the progenitor system of SN 2014J utilizing the Pa beta line, following recent suggestions that this phase period and the NIR in particular are excellent for constraining the amount of swept-up hydrogen-rich material associated with a non-degenerate companion star. We find no evidence for Pa beta emission lines in our post-maximum spectra, with a rough hydrogen mass limit of less than or similar to 0.1 M-circle dot, which is consistent with previous limits in SN. 2014J from late-time optical spectra of the H alpha line. Nonetheless, the growing data. set of high-quality NIR spectra holds the promise of very useful hydrogen constraints. C1 [Sand, D. J.] Texas Tech Univ, Dept Phys, Box 41051, Lubbock, TX 79409 USA. [Hsiao, E. Y.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Banerjee, D. P. K.; Joshi, V.; Venkataraman, V.] Phys Res Lab, Astron & Astrophys Div, Ahmadabad 380009, Gujarat, India. [Marion, G. H.] Univ Texas Austin, 1 Univ Stn C1400, Austin, TX 78712 USA. [Diamond, T. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Parrent, J. T.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Phillips, M. M.] Las Campanas Observ, Carnegie Observ, Casilla 601, Colina El Pino, Chile. [Stritzinger, M. D.] Aarhus Univ, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. RP Sand, DJ (reprint author), Texas Tech Univ, Dept Phys, Box 41051, Lubbock, TX 79409 USA. EM david.sand@ttu.edu OI Hsiao, Eric/0000-0003-1039-2928; Parrent, Jerod/0000-0002-5103-7706; Sand, David/0000-0003-4102-380X FU NSF [AST-1412504, AST-1517649]; Department of Space, Government of India; Danish Agency for Science and Technology and Innovation; National Science Foundation [AST-1008343] FX D.J.S. acknowledges support from NSF grants AST-1412504 and AST-1517649. The research work at the PRL is funded by the Department of Space, Government of India. M.D.S. acknowledges support provided by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant. This Letter is partially based on observations carried out by the CSP that were supported by the National Science Foundation under grant No. AST-1008343. We are grateful to Stefano Valenti for his comments. NR 42 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2016 VL 822 IS 1 AR L16 DI 10.3847/2041-8205/822/1/L16 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DK8CF UT WOS:000375154100016 ER PT J AU Troja, E Read, AM Tiengo, A Salvaterra, R AF Troja, E. Read, A. M. Tiengo, A. Salvaterra, R. TI XMM-NEWTON SLEW SURVEY OBSERVATIONS OF THE GRAVITATIONAL WAVE EVENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: general; gravitational waves; X-rays: general ID GAMMA-RAY BURSTS; BINARY NEUTRON-STARS; SOURCE CATALOG; X-RAY; MERGER; AFTERGLOWS; PROSPECTS; EMISSION AB The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW150914 error region during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 and 4.8 deg(2) of the final GW localization region. No X-ray counterpart to GW150914 is found down to a sensitivity of 6 x 10(-13) erg cm(-2) s(-1) in the 0.2-2 keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for searching for the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take less than or similar to 1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections. C1 [Troja, E.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Troja, E.] Univ Maryland, Dept Phys & Astron, College Pk, MD 20742 USA. [Read, A. M.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Tiengo, A.] Ist Univ Studi Super, Piazza Vittoria 15, I-27100 Pavia, Italy. [Tiengo, A.; Salvaterra, R.] Ist Astrofis Spaziale & Fis Cosm Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. RP Troja, E (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.; Troja, E (reprint author), Univ Maryland, Dept Phys & Astron, College Pk, MD 20742 USA. OI Troja, Eleonora/0000-0002-1869-7817 FU ESA; NASA FX We thank Richard Saxton and the anonymous referee for useful and constructive comments that helped improve the manuscript. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 28 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2016 VL 822 IS 1 AR L8 DI 10.3847/2041-8205/822/1/L8 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DK8CF UT WOS:000375154100008 ER PT J AU Ray, RD AF Ray, Richard D. TI On Measurements of the Tide at Churchill, Hudson Bay SO ATMOSPHERE-OCEAN LA English DT Article DE tides; tidal changes; tide gauges; satellite altimetry ID ICE COVER; RIVER AB Since the late 1990s the semi-diurnal tide at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M-2 amplitudes falling from approximately 154 cm in 1998 to 146 cm in 2012 and 142 cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning tide gauge, the fact that there are no other measurements in the region and the possibility that the tide is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the tide in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M2 that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself. C1 [Ray, Richard D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Ray, RD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM richard.ray@nasa.gov RI Ray, Richard/D-1034-2012 FU National Aeronautics and Space Administration through the Ocean Surface Topography program FX This work was supported by the National Aeronautics and Space Administration through the Ocean Surface Topography program. NR 28 TC 0 Z9 0 U1 3 U2 7 PU CMOS-SCMO PI OTTAWA PA BOX 3211, STATION D, OTTAWA, ON K1P 6H7, CANADA SN 0705-5900 EI 1480-9214 J9 ATMOS OCEAN JI Atmos.-Ocean PD MAY PY 2016 VL 54 IS 2 BP 108 EP 116 DI 10.1080/07055900.2016.1139540 PG 9 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA DK6PA UT WOS:000375045000002 ER PT J AU Takahashi, H Su, H Jiang, JH AF Takahashi, Hanii Su, Hui Jiang, Jonathan H. TI Error analysis of upper tropospheric water vapor in CMIP5 models using "A-Train" satellite observations and reanalysis data SO CLIMATE DYNAMICS LA English DT Article DE Upper tropospheric water vapor; "A-Train" satellite observations; CMIP5; Error analysis; Large-scale circulation ID TROPICAL DEEP CONVECTION; SEA-SURFACE TEMPERATURE; HUMIDITY; FEEDBACK; MLS; CLOUD AB Upper tropospheric water vapor (UTWV) plays a critical role in amplifying global warming caused by increasing greenhouse gases, yet it is one of the most poorly simulated quantities in climate models. It is not clear what physical processes play a central role in controlling the model errors in UTWV. We diagnose the UTWV simulation errors from AMIP models submitted to the CMIP5 project by using "A-Train" satellite observation and reanalysis data. We identify the relative contributions of errors in relative humidity (RH), temperature, and large-scale circulation (represented by vertical pressure velocity at 500 hPa, omega(500)) to the modeled UTWV errors over the tropics (30 degrees N-30 degrees S). It is found that models generally have positive biases in UTWV, except over the continental convective regions where negative biases predominate. The errors in the patterns and amplitudes of climatological UTWV are highly correlated with those in RH and omega(500). The fractional UTWV errors show large positive errors over the large-scale descending regimes (0 < omega(500) < 40 hPa/day) where large model spreads also exist. The seasonal cycle of hemispherically averaged UTWV closely resembles that of omega(500). The errors for UTWV interannual anomalies are abundant over the climatologically deep convective regions (SST > 300 K or omega(500) < -30 hPa/day) and these errors are positive (negative) where anomalous descent (ascent) occurs during El Nio. We find that the water vapor errors are dominated by the errors in RH rather than in temperature throughout the troposphere, while temperature errors play an important role for water vapor errors near the tropopause. C1 [Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Takahashi, H (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM Hanii.Takahashi@jpl.nasa.gov FU NASA [ROSES10-NEWS, ROSES12-NDOA, ROSES13-AST] FX The authors acknowledge the funding support from NASA ROSES10-NEWS, ROSES12-NDOA and ROSES13-AST programs. This work is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 41 TC 1 Z9 1 U1 5 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAY PY 2016 VL 46 IS 9-10 BP 2787 EP 2803 DI 10.1007/s00382-015-2732-9 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DK5OU UT WOS:000374970200007 ER PT J AU Loeb, NG Wang, HL Cheng, AN Kato, S Fasullo, JT Xu, KM Allan, RP AF Loeb, Norman G. Wang, Hailan Cheng, Anning Kato, Seiji Fasullo, John T. Xu, Kuan-Man Allan, Richard P. TI Observational constraints on atmospheric and oceanic cross-equatorial heat transports: revisiting the precipitation asymmetry problem in climate models SO CLIMATE DYNAMICS LA English DT Article DE Energy budget; Heat transport; Radiation; Precipitation; Latent heat; Sensible heat ID INTERTROPICAL CONVERGENCE ZONE; ANGULAR-DISTRIBUTION MODELS; RADIATIVE FLUX ESTIMATION; ENERGY SYSTEM INSTRUMENT; LAST GLACIAL MAXIMUM; PART II; SOUTHERN-OCEAN; CLOUDS; VALIDATION; BUDGET AB Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT(EQ)) and ocean (OHTEQ). The contrast in net atmospheric radiation implies an AHT(EQ) from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT(EQ) in the opposite direction (0.51 PW), resulting in a net NH to SH AHT(EQ) (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHTEQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT(EQ) and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds. C1 [Loeb, Norman G.; Kato, Seiji; Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Wang, Hailan; Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA. [Fasullo, John T.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Allan, Richard P.] Univ Reading, Dept Meteorol, Reading, Berks, England. RP Loeb, NG (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM norman.g.loeb@nasa.gov RI Xu, Kuan-Man/B-7557-2013; Allan, Richard/B-5782-2008 OI Xu, Kuan-Man/0000-0001-7851-2629; Allan, Richard/0000-0003-0264-9447 FU NASA CERES project; UK Natural Environment Research Council DEEP-C project [NE/K005480/1]; National Centre for Earth Observation FX We would like to thank Dr. Aaron Donohoe for his thorough review of this paper and insightful comments. This research has been supported by the NASA CERES project. The CERES datasets were obtained from http://ceres.larc.nasa.gov/compare_products.php. The NASA Langley Atmospheric Sciences Data Center processed the instantaneous Single Scanner Footprint and monthly SYN1 deg_Edition3 data used to produce EBAF Ed2.8. R. Allan is supported by the UK Natural Environment Research Council DEEP-C project (NE/K005480/1) and National Centre for Earth Observation. NR 52 TC 5 Z9 5 U1 5 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAY PY 2016 VL 46 IS 9-10 BP 3239 EP 3257 DI 10.1007/s00382-015-2766-z PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DK5OU UT WOS:000374970200035 ER PT J AU Giassi, D Cao, S Bennett, BAV Stocker, DP Takahashi, F Smooke, MD Long, MB AF Giassi, Davide Cao, Su Bennett, Beth Anne V. Stocker, Dennis P. Takahashi, Fumiaki Smooke, Mitchell D. Long, Marshall B. TI Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity SO COMBUSTION AND FLAME LA English DT Article DE CH*; Chemiluminescence; Coflow flame; Microgravity; Heat release rate ID CHEMILUMINESCENT EMISSION; COMBUSTION; SYSTEMS; JET AB The chemiluminescence from electronically excited CH (denoted as CH*) is investigated in nitrogen diluted laminar coflow methane diffusion flames under microgravity and normal gravity conditions. In combustion studies, this radical species is of significant interest since its spatial distribution is indicative of the flame front position; moreover, given the relatively simple diagnostic involved with its measurement, several studies have been done to evaluate the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the publicly available NASA Structure and Liftoff in Combustion Experiments (SLICE) microgravity and normal gravity nitrogen-diluted methane flames has been considered, and a method to extract quantitative CH* concentration information from the SLICE raw data is demonstrated. The measured CH* concentration is then discussed and compared with numerical simulations to assess the correlation between CH* chemiluminescence and heat release rate. The spectral characterization of the digital single lens reflex (DSLR) color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission of the A(2)Delta -> X-2 Pi transition centered around 431 nm; the analysis of the spectral emission of a reference nitrogen-diluted laminar diffusion methane flame accounted for the contribution of chemiluminescence from emitting species other than CH*. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the two-dimensional intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Comparisons with numerical results display reasonably good agreement between measured and computed flame shapes, and it is shown that the difference in peak CH* concentration, between micro and normal gravity cases, is minimal. Independent of the gravity level, the integrated CH* concentration in a cross section scales proportionally to the integrated computed heat release rate. The two-dimensional CH* and heat release rate spatial profiles match in a satisfactory way, but the gradients and intensity distributions are not comparable. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Giassi, Davide; Cao, Su; Bennett, Beth Anne V.; Smooke, Mitchell D.; Long, Marshall B.] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA. [Stocker, Dennis P.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Takahashi, Fumiaki] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Cleveland, OH 44106 USA. [Cao, Su] GE Global Res, Niskayuna, NY 12309 USA. RP Giassi, D (reprint author), Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA. EM davide.giassi@yale.edu FU NASA [NNX11AP43A] FX This work was supported by NASA under cooperative agreement NNX11AP43A. The authors would like to thank astronaut Don Pettit for conducting the test on board the ISS, SLICE project manager Bob Hawersaat, and operations team members Chuck Bunnell, Tibor Lorik, Jay Owens, and Carol Reynolds. NR 26 TC 0 Z9 0 U1 10 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2016 VL 167 BP 198 EP 206 DI 10.1016/j.combustflame.2016.02.012 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DK3FQ UT WOS:000374802900016 ER PT J AU Casner, SM Hutchins, EL Norman, D AF Casner, Stephen M. Hutchins, Edwin L. Norman, Don TI The Challenges of Partially Automated Driving SO COMMUNICATIONS OF THE ACM LA English DT Article ID PERFORMANCE; DISTRACTION; COLLISION; RISK; PASSENGERS; SIMULATOR; DRIVERS C1 [Casner, Stephen M.] NASA Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA USA. [Hutchins, Edwin L.] Univ Calif San Diego, Cognit Sci, San Diego, CA 92103 USA. [Norman, Don] Univ Calif San Diego, ACM, San Diego, CA 92103 USA. [Norman, Don] Univ Calif San Diego, Design Lab, San Diego, CA 92103 USA. RP Casner, SM (reprint author), NASA Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA USA.; Hutchins, EL (reprint author), Univ Calif San Diego, Cognit Sci, San Diego, CA 92103 USA.; Norman, D (reprint author), Univ Calif San Diego, ACM, San Diego, CA 92103 USA.; Norman, D (reprint author), Univ Calif San Diego, Design Lab, San Diego, CA 92103 USA. EM stephen.casner@nasa.gov; ehutchins@ucsd.edu; dnorman@ucsd.edu RI Norman, Donald/A-1487-2017 OI Norman, Donald/0000-0002-8273-6534 NR 44 TC 6 Z9 6 U1 1 U2 6 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 EI 1557-7317 J9 COMMUN ACM JI Commun. ACM PD MAY PY 2016 VL 59 IS 5 BP 70 EP 77 DI 10.1145/2830565 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DK5AE UT WOS:000374931100021 ER PT J AU Friedman, L AF Friedman, Louis TI Future Tense Becoming a Multi-Planet Species SO COMMUNICATIONS OF THE ACM LA English DT Editorial Material C1 [Friedman, Louis] CALTECH, Jet Prop Lab, Deep Space Missions, Pasadena, CA USA. [Friedman, Louis] CALTECH, Keck Inst Space Studies Asteroid Retrieval Missio, Pasadena, CA 91125 USA. RP Friedman, L (reprint author), CALTECH, Jet Prop Lab, Deep Space Missions, Pasadena, CA USA.; Friedman, L (reprint author), CALTECH, Keck Inst Space Studies Asteroid Retrieval Missio, Pasadena, CA 91125 USA. EM louisdfriedman@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 EI 1557-7317 J9 COMMUN ACM JI Commun. ACM PD MAY PY 2016 VL 59 IS 5 BP 136 EP + DI 10.1145/2904352 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DK5AE UT WOS:000374931100029 ER PT J AU Harriss, R AF Harriss, Robert TI Arctic Offshore Oil: Great Risks in an Evolving Ocean SO ENVIRONMENT LA English DT Article C1 [Harriss, Robert] Houston Adv Res Ctr, The Woodlands, TX USA. [Harriss, Robert] Environm Def Fund, Nat Gas Project, Washington, DC USA. [Harriss, Robert] NCAR, Inst Study Soc & Environm, Boulder, CO USA. [Harriss, Robert] Texas A&M Univ, Sustainabil, College Stn, TX USA. [Harriss, Robert] NASA Headquarters, Div Earth Sci, Washington, DC USA. [Harriss, Robert] Univ New Hampshire, Earth Sci & Nat Resources, Durham, NH 03824 USA. [Harriss, Robert] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Harriss, Robert] Florida State Univ, Marine Lab, Oceanog, Tallahassee, FL 32306 USA. [Harriss, Robert] Florida State Univ, Marine Lab, Tallahassee, FL 32306 USA. RP Harriss, R (reprint author), Houston Adv Res Ctr, The Woodlands, TX USA.; Harriss, R (reprint author), Environm Def Fund, Nat Gas Project, Washington, DC USA.; Harriss, R (reprint author), NCAR, Inst Study Soc & Environm, Boulder, CO USA.; Harriss, R (reprint author), Texas A&M Univ, Sustainabil, College Stn, TX USA.; Harriss, R (reprint author), NASA Headquarters, Div Earth Sci, Washington, DC USA.; Harriss, R (reprint author), Univ New Hampshire, Earth Sci & Nat Resources, Durham, NH 03824 USA.; Harriss, R (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA.; Harriss, R (reprint author), Florida State Univ, Marine Lab, Oceanog, Tallahassee, FL 32306 USA.; Harriss, R (reprint author), Florida State Univ, Marine Lab, Tallahassee, FL 32306 USA. NR 31 TC 0 Z9 0 U1 2 U2 6 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 0013-9157 EI 1939-9154 J9 ENVIRONMENT JI Environment PD MAY-JUN PY 2016 VL 58 IS 3 BP 18 EP 29 DI 10.1080/00139157.2016.1162006 PG 12 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA DK5OT UT WOS:000374970100004 ER PT J AU Watkins, JA Ehlmann, BL Yin, A AF Watkins, Jessica A. Ehlmann, Bethany L. Yin, An TI Long-runout landslides and the long-lasting effects of early water activity on Mars SO GEOLOGY LA English DT Editorial Material ID MINERALS C1 [Watkins, Jessica A.; Yin, An] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Watkins, Jessica A.; Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Watkins, JA (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.; Watkins, JA (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. NR 12 TC 0 Z9 0 U1 2 U2 4 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD MAY PY 2016 VL 44 IS 5 BP E387 EP E387 DI 10.1130/G37892Y.1 PG 1 WC Geology SC Geology GA DK4HG UT WOS:000374877500002 ER PT J AU Spry, DJ Neudeck, PG Chen, LY Lukco, D Chang, CW Beheim, GM AF Spry, David J. Neudeck, Philip G. Chen, Liangyu Lukco, Dorothy Chang, Carl W. Beheim, Glenn M. TI Prolonged 500 degrees C Demonstration of 4H-SiC JFET ICs With Two-Level Interconnect SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE JFET integrated circuits; integrated circuit interconnections; integrated circuit reliability ID 6H-SIC JFETS; TECHNOLOGY AB This letter reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 h of stable electrical operation at 500 degrees C in air ambient. These ICs are based on 4H-SiC junction field-effect transistor technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N(4) dielectric layers over similar to 1-mu m scale vertical topology. Following initial burn-in, important circuit parameters remain stable within 15% for more than 1000 h of 500 degrees C operational testing. These results advance the technology foundation for realizing long-term durable 500 degrees C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications. C1 [Spry, David J.; Neudeck, Philip G.; Beheim, Glenn M.] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. [Chen, Liangyu] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Lukco, Dorothy; Chang, Carl W.] Vantage Partners LLC, Brookpark, OH 44142 USA. RP Spry, DJ (reprint author), NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. EM david.j.spry@nasa.gov FU National Aeronautics and Space Administration in part through the Transformative Tools and Technologies Project; Planetary Instrument Concepts for the Advancement of Solar System Observations Programs FX This work was supported by the National Aeronautics and Space Administration in part through the Transformative Tools and Technologies Project and in part by the Planetary Instrument Concepts for the Advancement of Solar System Observations Programs. The review of this letter was arranged by Editor K. Matocha. NR 29 TC 5 Z9 5 U1 2 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 EI 1558-0563 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD MAY PY 2016 VL 37 IS 5 BP 625 EP 628 DI 10.1109/LED.2016.2544700 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA DK4DW UT WOS:000374868300026 ER PT J AU Scarino, BR Doelling, DR Minnis, P Gopalan, A Chee, T Bhatt, R Lukashin, C Haney, C AF Scarino, Benjamin R. Doelling, David R. Minnis, Patrick Gopalan, Arun Chee, Thad Bhatt, Rajendra Lukashin, Constantine Haney, Conor TI A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived From SCIAMACHY Hyperspectral Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hyperspectral sensors; spectral band adjustment factor (SBAF); visible imager calibration ID ABSOLUTE CALIBRATION; DESERT SITES; SENSORS; SATELLITE; INTERCALIBRATION; IMAGERS; PERFORMANCE; RADIANCES; CLOUDS; AIRS AB Monitoring and adjusting calibrations of various satellite imagers is often exacerbated by differences in their spectral response functions (SRFs). To help account for spectral disparities among satellite imagers, a web-based spectral band difference correction calculator has been developed to characterize the relationship between a specified pair of satellite imager channels in the hyperspectral wavelength range of 240-1750 nm. These spectral band adjustment factors (SBAFs) are derived by convolving hyperspectral data from the SCIAMACHY instrument with the SRFs of a reference and target sensor. The SBAF tool can be used for all combinations of instrument/channel pairs over pre-defined Earth spectra, intercalibration domains, or user-defined spatial domains. Options are available to the user whereby SBAFs can be subsetted by time, angle, and/or precipitable water content. To evaluate the relative spectral calibration of SCIAMACHY, comparisons of SBAFs derived from SCIAMACHY, Hyperion, and Global Ozone Monitoring Experiment-2 (GOME-2) were performed. Using observations over the Libya 4 desert pseudoinvariant calibration site, it is shown that SCIAMACHY-based SBAFs are within 0.1%-0.3% of SBAFs derived from Hyperion or GOME-2. This result implies that spectral calibration differences, i.e., the calibration uncertainties of SCIAMACHY relative to other potential spectral sources, have a minor impact on the SBAF compared with the influence of effective parameter-based subsetting. The SCIAMACHY instrument is most suited for calculating the SBAFs, given its high spectral resolution, broad spectral range, and nearly continuous global availability. The calibration community will find this SBAF tool useful for mitigating the SRF differences that can complicate the comparison and intercalibration of visible and near-infrared sensors. C1 [Scarino, Benjamin R.; Gopalan, Arun; Chee, Thad; Bhatt, Rajendra; Haney, Conor] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Doelling, David R.; Minnis, Patrick; Lukashin, Constantine] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. RP Scarino, BR; Gopalan, A; Chee, T; Bhatt, R; Haney, C (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.; Doelling, DR; Minnis, P; Lukashin, C (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. EM benjarmin.r.scarino@nasa.gov; david.r.doelling@nasa.gov; p.minnis@nasa.gov; arun.gopalan-1@nasa.gov; thad.1.chee@nasa.gov; rajendra.bhatt@nasa.gov; constantine.lukashin-1@nasa.gov; conor.o.haney@nasa.gov FU NASA Modeling, Analysis, and Prediction Program; NASA Satellite Calibration Interconsistency Program; NOAA Climate Data Records Program [IA1-17982] FX This work was supported in part by the NASA Modeling, Analysis, and Prediction Program, by the NASA Satellite Calibration Interconsistency Program, and by the NOAA Climate Data Records Program Agreement IA1-17982. NR 32 TC 8 Z9 8 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2016 VL 54 IS 5 BP 2529 EP 2542 DI 10.1109/TGRS.2015.2502904 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DK5OF UT WOS:000374968500003 ER PT J AU Wu, AS Xiong, XX Cao, CY Chiang, KF AF Wu, Aisheng Xiong, Xiaoxiong Cao, Changyong Chiang, Kwo-Fu TI Assessment of SNPP VIIRS VIS/NIR Radiometric Calibration Stability Using Aqua MODIS and Invariant Surface Targets SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Moderate Resolution Imaging Spectroradiometer (MODIS); vicarious calibration; Visible Infrared Imaging Radiometer Suite (VIIRS) ID INTERSATELLITE CALIBRATION; BIDIRECTIONAL REFLECTANCE; PERFORMANCE; PRODUCTS; BANDS; SNOW AB The first Visible Infrared Imaging Radiometer Suite (VIIRS) is onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. As a primary sensor, it collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the spectral regions from visible (VIS) to long-wave infrared. NASA's National Polar-orbiting Partnership (NPP) VIIRS Characterization Support Team has been actively involved in the VIIRS radiometric and geometric calibration to support its Science Team Principal Investigators for their independent quality assessment of VIIRS Environmental Data Records. This paper presents the performance assessment of the radiometric calibration stability of the VIIRS VIS and NIR spectral bands using measurements from SNPP VIIRS and AquaMODIS simultaneous nadir overpasses and over the invariant surface targets at the Libya-4 desert and Antarctic Dome Concordia snow sites. The VIIRS sensor data records (SDRs) used in this paper are reprocessed by the NASA SNPP Land Product Evaluation and Analysis Tool Element. This paper shows that the reprocessed VIIRS SDRs have been consistently calibrated from the beginning of the mission, and the calibration stability is similar to or better than MODIS. Results from different approaches indicate that the calibrations of the VIIRS VIS and NIR spectral bands are maintained to be stable to within 1% over the first three-year mission. The absolute calibration differences between VIIRS and MODIS are within 2%, with an exception for the 0.865-mu m band, after correction of their spectral response differences. C1 [Wu, Aisheng; Chiang, Kwo-Fu] Sci & Syst Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Cao, Changyong] Natl Ocean & Atmospher Adm, Natl Environm Satellite Data & Informat Serv, Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA. RP Wu, AS; Chiang, KF (reprint author), Sci & Syst Applicat Inc, Lanham, MD 20706 USA.; Xiong, XX (reprint author), NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. EM aisheng.wu@ssaihq.com; Xiaoxiong.Xiong-1@nasa.gov; vincent.chiang@ssaihq.com RI Cao, Changyong/F-5578-2010; Richards, Amber/K-8203-2015 NR 32 TC 4 Z9 4 U1 6 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2016 VL 54 IS 5 BP 2918 EP 2924 DI 10.1109/TGRS.2015.2508379 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DK5OF UT WOS:000374968500034 ER PT J AU Opila, EJ Verrilli, MJ Robinson, RC AF Opila, Elizabeth J. Verrilli, Michael J. Robinson, R. Craig TI Borosilicate Glass-Induced Fiber Degradation of SiC/BN/SiC Composites Exposed in Combustion Environments SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID HIGH-TEMPERATURE OXIDATION; SIO2 SCALE VOLATILITY; SIC-MATRIX COMPOSITES; WATER-VAPOR-PRESSURE; BORON-NITRIDE; CERAMIC COMPOSITES; SIC/SIC COMPOSITES; BARRIER COATINGS; DIFFUSION; SILICON AB Three SiC/BN/SiC composite specimens reinforced with different SiC fibers (Sylramic, Sylramic-iBN, and Hi-Nicalon Type S) were exposed in a combustion environment. Exposures were carried out for 151 h in a fuel-lean high pressure burner rig at 0.9 MPa total pressure, sample temperatures near 1573 K, and a gas velocity of 15 m/s. Weight loss of all three composites was observed. Extensive oxidation of SiC fibers was observed in cracked locations. A mechanism based on borosilicate enhanced oxidation coupled with volatilization of boria is described. Ramifications of this degradation mechanism are discussed for long-term applications of SiC/BN/SiC composites in combustion environments. C1 [Opila, Elizabeth J.; Verrilli, Michael J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Robinson, R. Craig] NASA, Jacobs Grp, Glenn Res Ctr, Cleveland, OH 44135 USA. [Opila, Elizabeth J.] Univ Virginia, Charlottesville, VA 22904 USA. [Verrilli, Michael J.] Gen Elect Aviat, Evendale, OH 45215 USA. RP Opila, EJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.; Opila, EJ (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM opila@virginia.edu NR 30 TC 2 Z9 2 U1 10 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1546-542X EI 1744-7402 J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD MAY-JUN PY 2016 VL 13 IS 3 BP 434 EP 442 DI 10.1111/ijac.12499 PG 9 WC Materials Science, Ceramics SC Materials Science GA DK7NM UT WOS:000375112400002 ER PT J AU Li, F Vikhliaev, YV Newman, PA Pawson, S Perlwitz, J Waugh, DW Douglass, AR AF Li, Feng Vikhliaev, Yury V. Newman, Paul A. Pawson, Steven Perlwitz, Judith Waugh, Darryn W. Douglass, Anne R. TI Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5) SO JOURNAL OF CLIMATE LA English DT Article ID SEA-ICE EXTENT; OZONE DEPLETION; CMIP5 MODELS; CIRCULATION; TRENDS; SIMULATIONS; VARIABILITY; FORMULATION; BIASES; WINDS AB Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. This study investigates the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean meridional overturning circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease. C1 [Li, Feng; Vikhliaev, Yury V.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Li, Feng; Newman, Paul A.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Vikhliaev, Yury V.; Pawson, Steven] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Perlwitz, Judith] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Perlwitz, Judith] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA. [Waugh, Darryn W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. RP Li, F (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM feng.li@nasa.gov RI Perlwitz, Judith/B-7201-2008; Pawson, Steven/I-1865-2014; Waugh, Darryn/K-3688-2016; Douglass, Anne/D-4655-2012 OI Perlwitz, Judith/0000-0003-4061-2442; Pawson, Steven/0000-0003-0200-717X; Waugh, Darryn/0000-0001-7692-2798; FU NASA's Modeling, Analysis and Prediction Program (MAP); Atmospheric Composition Modeling and Analysis Program (ACMAP); U.S. National Science Foundation FX This work is supported by NASA's Modeling, Analysis and Prediction Program (MAP) and Atmospheric Composition Modeling and Analysis Program (ACMAP). D.W.W. is funded, in part, by a grant from the U.S. National Science Foundation. Computational resources for this work were provided by NASA's High-Performance Computing though the generous award of computing time at NASA Center for Climate Simulation (NCCS) and NASA Advanced Supercomputing (NAS) Division. We thank three anonymous reviewers for their valuable comments. NR 72 TC 2 Z9 2 U1 6 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAY PY 2016 VL 29 IS 9 BP 3199 EP 3218 DI 10.1175/JCLI-D-15-0572.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DK8AD UT WOS:000375147800006 ER PT J AU Zaal, PMT AF Zaal, Peter M. T. TI Manual Control Adaptation to Changing Vehicle Dynamics in Roll-Pitch Control Tasks SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID PERCEPTION AB This paper investigates how pilot control behavior adapts to time-varying vehicle dynamics in a roll-pitch control task. Nine general aviation pilots performed eight experimental conditions in which the axis containing the time-varying controlled dynamics and the rate of change of the dynamics varied. To characterize time-varying human control behavior, a maximum likelihood estimation procedure was used to estimate the parameters of a pilot model with time-dependent sigmoid functions. Pilot control behavior in both axes was significantly affected by the time-varying controlled dynamics in roll and pitch and by the rate of change of the dynamics. Control behavior was mainly affected in the axis containing the time-varying controlled dynamics. However, control behavior in the axis not containing the time-varying dynamics was also affected, indicating cross coupling in human perception and control processes between roll and pitch. The maximum likelihood estimation method provided accurate parameter estimations when applied to a pilot model with time-dependent sigmoid functions. The parameters defining pilots' equalization dynamics after the transition in controlled dynamics and the maximum rate of change of the equalization dynamics had the lowest estimation accuracy. C1 [Zaal, Peter M. T.] San Jose State Univ, NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. RP Zaal, PMT (reprint author), San Jose State Univ, NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. EM peter.m.t.zaal@nasa.gov NR 24 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD MAY PY 2016 VL 39 IS 5 BP 1046 EP 1058 DI 10.2514/1.G001592 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DK9ZA UT WOS:000375289700006 ER PT J AU Mendonca, J Strong, K Toon, GC Wunch, D Sung, K Deutscher, NM Griffith, DWT Franklin, JE AF Mendonca, J. Strong, K. Toon, G. C. Wunch, D. Sung, K. Deutscher, N. M. Griffith, D. W. T. Franklin, J. E. TI Improving atmospheric CO2 retrievals using line mixing and speed dependence when fitting high-resolution ground-based solar spectra SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE CO2; Absorption coefficient; Line mixing; Speed-dependence; High-resolution solar spectra ID CONSTRAINED MULTISPECTRUM ANALYSIS; MU-M REGIONS; HALF-WIDTHS; SEMICLASSICAL CALCULATIONS; SPECTROSCOPIC DATABASE; SHAPE PARAMETERS; TRANSITIONS; BANDS; AIR; COLLISIONS AB A quadratic speed-dependent Voigt spectral line shape with line mixing (qSDV + LM) has been included in atmospheric trace-gas retrievals to improve the accuracy of the calculated CO2 absorption coefficients. CO2 laboratory spectra were used to validate absorption coefficient calculations for three bands: the strong 20013 <- 00001 band centered at 4850 cm(-1), and the weak 30013 <- 00001 and 30012 <- 00001 bands centered at 6220 cm(-1) and 6340 cm(-1) respectively, and referred to below as bands 1 and 2. Several different line lists were tested. Laboratory spectra were best reproduced for the strong CO2 band when using HITRAN 2008 spectroscopic data with air-broadened widths divided by 0.985, self-broadened widths divided by 0.978, line mixing coefficients calculated using the exponential power gap (EPG) law, and a speed-dependent parameter of 0.11 used for all lines. For the weak CO2 bands, laboratory spectra were best reproduced using spectroscopic parameters from the studies by Devi et al. in 2007 coupled with line mixing coefficients calculated using the EPG law. A total of 132,598 high-resolution ground based solar absorption spectra were fitted using qSDV + LM to calculate CO2 absorption coefficients and compared to fits that used the Voigt line shape. For the strong CO2 band, the average root mean square (RMS) residual is 0.49 +/- 0.22% when using qSDV + LM to calculate the absorption coefficients. This is an improvement over the results with the Voigt line shape, which had an average RMS residual of 0.60 +/- 0.21%. When using the qSDV + LM to fit the two weak CO2 bands, the average RMS residual is 0.47 +/- 0.19% and 0.51 +/- 0.20% for bands 1 and 2, respectively. These values are identical to those obtained with the Voigt line shape. Finally, we find that using the qSDV + LM decreases the airmass dependence of the column averaged dry air mole fraction of CO2 retrieved from the strong and both weak CO2 bands when compared to the retrievals obtained using the Voigt line shape. (C) 2016 Elsevier Inc. All rights reserved. C1 [Mendonca, J.; Strong, K.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Wunch, D.] CALTECH, Pasadena, CA 91125 USA. [Toon, G. C.; Sung, K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Deutscher, N. M.; Griffith, D. W. T.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Franklin, J. E.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. RP Mendonca, J (reprint author), 60 St George St, Toronto, ON M5S 1A7, Canada. EM joseph.mendonca@utoronto.ca RI Sung, Keeyoon/I-6533-2015 FU Canadian Space Agency (CSA); Natural Sciences and Engineering Research Council of Canada (NSERC); AIF/NSRIT; CFI; CFCAS; CSA; Environment Canada (EC); Government of Canada IPY funding; OIT; ORF; PCSP; FQRNT; NASA [NNX14AI60G, NAG5-12247, NNG05-GD07G]; National Aeronautics and Space Administration; Australian Research Council [DP140101552, DP110103118, DP0879468, LP0562346]; ARC-DECRA [DE140100178] FX This work was primarily supported by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada (NSERC). The Eureka measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of Atmospheric Change (CANDAC), which has been supported by the AIF/NSRIT, CFI, CFCAS, CSA, Environment Canada (EC), Government of Canada IPY funding, NSERC, OIT, ORF, PCSP, and FQRNT. The authors wish to thank the staff at EC's Eureka Weather Station and CANDAC for the logistical and on-site support provided. Thanks to CANDAC Principal Investigator James R. Drummond, PEARL Site Manager Pierre Fogal, and CANDAC/PEARL operators Mike Maurice and Peter McGovern, for their invaluable assistance in maintaining and operating the Bruker 125HR. We thank Paul O. Wennberg for making available solar absorption spectra from Park Falls and Lamont. Geoff C. Toon, Debra Wunch, and Paul O. Wennberg acknowledge support from NASA for the development of TCCON via grant number NNX14AI60G. We thank Linda Brown and Chris Benner for making available laboratory measurements of CO2. Part of the research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Darwin TCCON measurements are possible thanks to support from NASA grants NAG5-12247 and NNG05-GD07G and the Australian Research Council grants DP140101552, DP110103118, DP0879468 and LP0562346. We are grateful to the DOE ARM program for technical support in Darwin. Nicholas Deutscher is supported by an ARC-DECRA DE140100178. NR 43 TC 0 Z9 0 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAY PY 2016 VL 323 SI SI BP 15 EP 27 DI 10.1016/j.jms.2016.01.007 PG 13 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA DL2VL UT WOS:000375493200003 ER PT J AU Olsen, KS Toon, GC Strong, K AF Olsen, K. S. Toon, G. C. Strong, K. TI Simulation of source intensity variations from atmospheric dust for solar occultation Fourier transform infrared spectroscopy at Mars SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Fourier transform spectroscopy; Infrared; Source brightness fluctuations; Mars; Dust; ACE-FTS ID SPECTROMETRY; ALGORITHMS; SPECTRA; COLUMN; CO2 AB A Fourier transform spectrometer observing in solar occultation mode from orbit is ideally suited to detecting and characterizing vertical profiles of trace gases in the Martian atmosphere. This technique benefits from a long optical path length and high signal strength, and can have high spectral resolution. The Martian atmosphere is often subject to large quantities of suspended dust, which attenuates solar radiation along the line-of-sight. An instrument making solar occultation measurements scans the limb of the atmosphere continuously, and the optical path moves through layers of increasing or decreasing dust levels during a single interferogram acquisition, resulting in time-varying signal intensity. If uncorrected, source intensity variations (SIVs) can affect the relative depth of absorption lines, negatively impacting trace gas retrievals. We have simulated SIVs using synthetic spectra for the Martian atmosphere, and investigated different techniques to mitigate the effects of SIVs. We examined high-pass filters in the wavenumber domain, and smoothing methods in the optical path difference (OPD) domain, and conclude that using a convolution operator in the OPD domain can isolate the SIVs and be used to correct for it. We observe spectral residuals of less than 0.25% in both high- and low-dust conditions, and retrieved volume mixing ratio vertical profile differences on the order of 0.5-3% for several trace gases known to be present in the Martian atmosphere. These differences are smaller than those caused by adding realistic noise to the spectra. This work thus demonstrates that it should be possible to retrieve vertical profiles of trace gases in a dusty Martian atmosphere using solar occultation if the interferograms are corrected for the effects of dust. (C) 2015 Elsevier Inc. All rights reserved. C1 [Olsen, K. S.; Strong, K.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Toon, G. C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Olsen, KS (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM ksolsen@atmosp.physics.utoronto.ca; geoffrey.c.toon@jpl.nasa.gov; strong@atmosp.physics.utoronto.ca OI Olsen, Kevin/0000-0002-2173-9889 FU CSA; Natural Sciences and Engineering Research Council of Canada (NSERC) FX Funding for this project was provided by the CSA and the Natural Sciences and Engineering Research Council of Canada (NSERC). We would like to thank the ACE Science Team for providing Level 1 data (spectra), Level 0 data (raw interferograms), and for their help and input throughput the project. We want to thank collaborators on MATMOS and members of TCCON for guidance with GGG. NR 25 TC 0 Z9 0 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAY PY 2016 VL 323 SI SI BP 78 EP 85 DI 10.1016/j.jms.2015.11.008 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA DL2VL UT WOS:000375493200009 ER PT J AU Seol, ML Han, JW Park, SJ Ron, SB Choi, YK AF Seol, Myeong-Lok Han, Jin-Woo Park, Sang-Jae Ron, Seung-Bae Choi, Yang-Kyu TI Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package SO NANO ENERGY LA English DT Article DE Energy harvesting; Triboelectric nanogenerator; Electromagnetic induced generator; Hybridization; Packaging; Circuit ID MECHANICAL ENERGY; PIEZOELECTRIC NANOGENERATOR; ELECTRIFICATION; ELECTRONICS; SPONGE AB Hybridization of two energy harvesters with different mechanisms in one device is a fascinating idea, but a rational design of a hybrid energy harvester for practical applications is challenging. In this work, a floating oscillator-embedded triboelectric-electromagnetic (FO-TEEM) generator is proposed. A triboelectric nanogenerator (TENG) component and an electromagnetic generator (EMG) component independently but simultaneously produce power using the shared floating oscillator. This floating oscillator-based configuration enables versatile energy harvesting capability, excellent size scalability, self packaged structure, and operation at frequencies in the sub-10 Hz range. Under sinusoidal vibrations with 7.5 Hz frequency, the TENG and the EMG components produced normalized output power of 130 W/kg m(3) and 128 W/kg m(3), respectively. The charging characteristics were analyzed to design an effective operation scenario. From experimental results, it was found that the TENG component provides consistent charging characteristics, while the EMG component provides fast charging speed. The hybrid device provides both advantages. Using stored electrical energy collected from the FO-TEEM generator, commercial products were successfully powered including an LED lamp, a portable fan, wireless illuminance sensor system, and charging of a smart phone. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Seol, Myeong-Lok; Park, Sang-Jae; Ron, Seung-Bae; Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Sch Elect Engn, 291 Daehak Ro, Daejeon 34141, South Korea. [Han, Jin-Woo] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Choi, YK (reprint author), Korea Adv Inst Sci & Technol, Sch Elect Engn, 291 Daehak Ro, Daejeon 34141, South Korea. EM ykchoi@ee.kaist.ac.kr OI Seol, Myeong-Lok/0000-0001-5724-2244 FU Center for Integrated Smart Sensors Project - Ministry of Science, ICT & Future Planning as Global Frontier Project [CISS-2011-0031848]; Open Innovation Lab Project from the National Nanofab Center (NNFC); EndRun Project FX This work was supported by the Center for Integrated Smart Sensors Project funded by the Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-2011-0031848). This work is also supported by Open Innovation Lab Project from the National Nanofab Center (NNFC) and the EndRun Project. NR 41 TC 7 Z9 7 U1 18 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD MAY PY 2016 VL 23 BP 50 EP 59 DI 10.1016/j.nanoen.2016.03.004 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DK6PH UT WOS:000375045900007 ER PT J AU Shindell, DT Lee, Y Faluvegi, G AF Shindell, Drew T. Lee, Yunha Faluvegi, Greg TI Climate and health impacts of US emissions reductions consistent with 2 degrees C SO NATURE CLIMATE CHANGE LA English DT Article ID PARTICULATE AIR-POLLUTION; GLOBAL BURDEN; BLACK CARBON; LUNG-CANCER; MORTALITY; OZONE; EXPOSURE; BENEFITS; QUALITY; MATTER AB An emissions trajectory for the US consistent with 2 degrees C warming would require marked societal changes, making it crucial to understand the associated benefits. Previous studies have examined technological potentials and implementation costs(1,2) and public health benefits have been quantified for less-aggressive potential emissions-reduction policies (for example, refs 3,4), but researchers have not yet fully explored the multiple benefits of reductions consistent with 2 degrees C. We examine the impacts of such highly ambitious scenarios for clean energy and vehicles. US transportation emissions reductions avoid similar to 0.03 degrees C global warming in 2030 (0.15 degrees C in 2100), whereas energy emissions reductions avoid similar to 0.05-0.07 degrees C 2030 warming (similar to 0.25 degrees C in 2100). Nationally, however, clean energy policies produce climate disbenefits including warmer summers (although these would be eliminated by the remote effects of similar policies if they were undertaken elsewhere). The policies also greatly reduce damaging ambient particulate matter and ozone. By 2030, clean energy policies could prevent similar to 175,000 premature deaths, with similar to 22,000 (11,000-96,000; 95% confidence) fewer annually thereafter, whereas clean transportation could prevent similar to 120,000 premature deaths and similar to 144,000 (9,000-52,000) annually thereafter. Near-term national benefits are valued at similar to US$250 billion (140 billion to 1,050 billion) per year, which is likely to exceed implementation costs. Including longer-term, worldwide climate impacts, benefits roughly quintuple, becoming similar to 5-10 times larger than estimated implementation costs. Achieving the benefits, however, would require both larger and broader emissions reductions than those in current legislation or regulations. C1 [Shindell, Drew T.; Lee, Yunha] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Shindell, DT (reprint author), Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. EM drew.shindell@duke.edu RI Lee, Yunha/Q-7222-2016 OI Lee, Yunha/0000-0001-7478-2672 FU NASA's Applied Science Program; US Department of Transportation's Research and Innovation Technology Administration; NASA FX We thank K. Riahi and S. Rao from IIASA for providing information regarding MESSAGE RCP8.5 emissions. We thank NASA's Applied Science Program and the US Department of Transportation's Research and Innovation Technology Administration for financial support along with the NASA High-End Computing Program through the NASA Center for Climate Simulation at Goddard Space Flight Center for computational resources. NR 41 TC 5 Z9 5 U1 8 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD MAY PY 2016 VL 6 IS 5 BP 503 EP + DI 10.1038/NCLIMATE2935 PG 7 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DK7SE UT WOS:000375125200019 ER PT J AU Cook, BI Cook, ER Smerdon, JE Seager, R Williams, AP Coats, S Stahle, DW Diaz, JV AF Cook, Benjamin I. Cook, Edward R. Smerdon, Jason E. Seager, Richard Williams, A. Park Coats, Sloan Stahle, David W. Villanueva Diaz, Jose TI North American megadroughts in the Common Era: reconstructions and simulations SO WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE LA English DT Review ID SEA-SURFACE TEMPERATURE; WESTERN UNITED-STATES; MEDIEVAL WARM PERIOD; ATLANTIC MULTIDECADAL OSCILLATION; PACIFIC DECADAL OSCILLATION; HOLOCENE DUNE ACTIVITY; WATER-USE EFFICIENCY; CENTRAL GREAT-PLAINS; EARTH SYSTEM MODELS; NEBRASKA SAND HILLS AB During the Medieval Climate Anomaly (MCA), Western North America experienced episodes of intense aridity that persisted for multiple decades or longer. These megadroughts are well documented in many proxy records, but the causal mechanisms are poorly understood. General circulation models (GCMs) simulate megadroughts, but do not reproduce the temporal clustering of events during the MCA, suggesting they are not caused by the time history of volcanic or solar forcing. Instead, GCMs generate megadroughts through (1) internal atmospheric variability, (2) sea-surface temperatures, and (3) land surface and dust aerosol feedbacks. While no hypothesis has been definitively rejected, and no GCM has accurately reproduced all features (e.g., timing, duration, and extent) of any specific megadrought, their persistence suggests a role for processes that impart memory to the climate system (land surface and ocean dynamics). Over the 21st century, GCMs project an increase in the risk of megadrought occurrence through greenhouse gas forced reductions in precipitation and increases in evaporative demand. This drying is robust across models and multiple drought indicators, but major uncertainties still need to be resolved. These include the potential moderation of vegetation evaporative losses at higher atmospheric [CO2], variations in land surface model complexity, and decadal to multidecadal modes of natural climate variability that could delay or advance onset of aridification over the the next several decades. Because future droughts will arise from both natural variability and greenhouse gas forced trends in hydroclimate, improving our understanding of the natural drivers of persistent multidecadal megadroughts should be a major research priority. WIREs Clim Change 2016, 7:411-432. doi: 10.1002/wcc.394 For further resources related to this article, please visit the . C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard] Columbia Univ, Div Ocean & Climate Phys, Lamont Doherty Earth Observ, Palisades, NY USA. [Cook, Edward R.; Williams, A. Park] Columbia Univ, Lamont Doherty Earth Observ, Div Biol & Paleo Environm, Palisades, NY USA. [Coats, Sloan] Univ Colorado, Boulder, CO 80309 USA. [Stahle, David W.] Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA. [Villanueva Diaz, Jose] INIFAP Ctr Nacl Invest Disciplinaria Relac Agua S, Lerdo, Mexico. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM bc9z@ldeo.columbia.edu RI Smerdon, Jason/F-9952-2011; Cook, Benjamin/H-2265-2012 FU NSF [AGS-1243204, AGS-1401400]; NASA; NASA Modeling, Analysis, and Predictions program FX Funding for this work comes from NSF grants AGS-1243204 and AGS-1401400. Support for BI Cook comes from NASA and the NASA Modeling, Analysis, and Predictions program. Lamont contribution #7971. NR 200 TC 5 Z9 5 U1 14 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-7780 EI 1757-7799 J9 WIRES CLIM CHANGE JI Wiley Interdiscip. Rev.-Clim. Chang. PD MAY-JUN PY 2016 VL 7 IS 3 BP 411 EP 432 DI 10.1002/wcc.394 PG 22 WC Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DK2VC UT WOS:000374771500006 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Brown, AM Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Christy, B Clark, K Classen, L Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC Dumm, JP Dunkman, M Eagans, R Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fadiran, O Fahey, S Fazely, AR Fedynitch, A Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Fuchs, T Glagla, M Gaisser, TK Gaior, R Gallagher, J Gerhardth, L Ghorbani, K Gier, D Gladstone, L Gliisenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jero, K Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Koob, A Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lunemann, J Madsen, J Maggi, G Mahn, KBM Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Middlemas, E Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Saba, SM Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Scheriau, F Schimp, M Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Seckel, D Seunarine, S Shanidze, R Smith, MWE Soldin, D Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S van Eijndhoven, N Vandenbroucke, J van Santen, J Vanheule, S Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Wille, L Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xun, Y Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Zoll, M AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Archinger, M. Argueelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Brown, A. M. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. Dumm, J. P. Dunkman, M. Eagans, R. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fadiran, O. Fahey, S. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Fuchs, T. Glagla, M. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardth, L. Ghorbani, K. Gier, D. Gladstone, L. Gliisenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jero, K. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klas, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koob, A. Kopke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lunemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Paul, L. Pepper, J. A. Perez de los Heros, C. Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Putz, J. Quinnan, M. Radel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Saba, S. M. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Scheriau, F. Schimp, M. Schmidt, T. Schmitz, M. Schoenen, S. Schoneberg, S. Schonwald, A. Schukraft, A. Schulte, L. Seckel, D. Seunarine, S. Shanidze, R. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stossl, A. Strahler, E. A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Vandenbroucke, J. van Santen, J. Vanheule, S. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Wandkowsky, N. Weaver, Ch Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xun, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Zoll, M. TI Characterization of the atmospheric muon flux in IceCube SO ASTROPARTICLE PHYSICS LA English DT Article DE Atmospheric muons; Cosmic rays; Prompt leptons ID COSMIC-RAY MUONS; ARRIVAL DIRECTIONS; NEUTRINO TELESCOPE; ENERGY-SPECTRUM; CHARM PRODUCTION; ELEMENTAL GROUPS; INTRINSIC CHARM; PROTON; ANISOTROPY; MODEL AB Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers. (C) 2016 Elsevier B.V. All rights reserved. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Putz, J.; Radel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Feintzeig, J.; Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardth, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Christov, A.; Gerhardth, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S. M.; Schoneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Aguilar, J. A.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Sarkar, S.] Univ Libre Bruxelles, Fac Sci, CP230, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Cheung, E.; Christov, A.; Christy, B.; Clark, K.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Arlen, T. C.; Dunkman, M.; Eagans, R.; Groh, J. C.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sandroos, J.; Sarkar, S.; Tesic, G.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Boerner, M.; Christov, A.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Scheriau, F.; Schmitz, M.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Mahn, K. B. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Buzinsky, N.; Grant, D.; Karg, T.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Argueelles, C.; Beiser, E.; BenZvi, S.; Bernhard, A.; Braun, J.; Chirkin, D.; Christov, A.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Wendt, C.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Argueelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Kopke, L.; Kroll, G.; Lunemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Heereman, D.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Kurahashi, N.; Richman, M.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xun, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Adams, J.; Brown, A. M.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Anderson, T.; Cowen, D. F.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bernhard, A.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klas, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gliisenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schonwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stossl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Tokyo 1130032, Japan. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Berghaus, P (reprint author), DESY, D-15735 Zeuthen, Germany. EM berghaus@icecube.wisc.edu RI Tjus, Julia/G-8145-2012; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; OI Arguelles Delgado, Carlos/0000-0003-4186-4182; Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; Perez de los Heros, Carlos/0000-0002-2084-5866 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison; Open Science Grid (OSG); U.S. Department of Energy; National Energy Research Scientific Computing Center; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fonds De La Recherche Scientifique - FNRS; FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (BELSPO); University of Mord, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fonds De La Recherche Scientifique - FNRS, FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (BELSPO); University of Mord, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). NR 92 TC 2 Z9 2 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2016 VL 78 BP 1 EP 27 DI 10.1016/j.astropartphys.2016.01.006 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DK0OQ UT WOS:000374612500001 ER PT J AU Ma, J Bajracharya, M Susca, S Matthies, L Malchano, M AF Ma, Jeremy Bajracharya, Max Susca, Sara Matthies, Larry Malchano, Matt TI Real-time pose estimation of a dynamic quadruped in GPS-denied environments for 24-hour operation SO INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH LA English DT Article DE Localization; mobile and distributed robotics SLAM; sensor fusion; sensing and perception computer vision; legged robots; mechanics; design and control; field robots; field and service robotics; visual tracking; sensing and perception computer vision ID ODOMETRY AB We present a real-time system that enables a highly capable dynamic quadruped robot to maintain an accurate six-degree-of-freedom pose estimate (within a 1.0% error of distance traveled) over long distances traversed through complex, dynamic outdoor terrain, during day and night, in the presence of camera occlusion and saturation, and occasional large external disturbances, such as slips or falls. The system fuses a stereo-camera sensor, inertial measurement unit, leg odometry, and optional intermittent GPS position updates with an extended Kalman filter to ensure robust, low-latency performance. To maintain a six-degree-of-freedom local positioning accuracy alongside the global positioning knowledge, two reference frames are used; a local reference frame and a global reference frame, with the former benefiting obstacle detection and mapping and the latter for operator-specified and autonomous way-point following. Extensive experimental results obtained from multiple field tests are presented to illustrate the performance and robustness of the system over hours of continuous runs and hundreds of kilometers of distance traveled in a wide variety of terrains and conditions. C1 [Ma, Jeremy; Bajracharya, Max; Susca, Sara; Matthies, Larry] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Bajracharya, Max] Google, Mountain View, CA USA. [Malchano, Matt] Boston Dynam, Waltham, MA USA. RP Ma, J (reprint author), Jet Prop Lab, M-S 198-235,4800 Oak Grove Dr, Pasadena, CA 91011 USA. EM jeremy.ma@gmail.com FU DARPA LS3 program [DARPA-BAA-08-71] FX This work was supported by the DARPA LS3 program (grant number DARPA-BAA-08-71). NR 25 TC 0 Z9 0 U1 5 U2 17 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0278-3649 EI 1741-3176 J9 INT J ROBOT RES JI Int. J. Robot. Res. PD MAY PY 2016 VL 35 IS 6 BP 631 EP 653 DI 10.1177/0278364915587333 PG 23 WC Robotics SC Robotics GA DK1EY UT WOS:000374656500002 ER PT J AU Stuart, RK Mayali, X Lee, JZ Everroad, RC Hwang, M Bebout, BM Weber, PK Pett-Ridge, J Thelen, MP AF Stuart, Rhona K. Mayali, Xavier Lee, Jackson Z. Everroad, R. Craig Hwang, Mona Bebout, Brad M. Weber, Peter K. Pett-Ridge, Jennifer Thelen, Michael P. TI Cyanobacterial reuse of extracellular organic carbon in microbial mats SO ISME JOURNAL LA English DT Article ID NOSTOC-COMMUNE CYANOBACTERIA; POLYMERIC SUBSTANCES; POLYSACCHARIDES; PROCHLOROCOCCUS; PHOTOSYNTHESIS; DESICCATION; FIXATION; RELEASE; UV; SYNECHOCOCCUS AB Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either alpha or beta (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. C1 [Stuart, Rhona K.; Mayali, Xavier; Hwang, Mona; Weber, Peter K.; Pett-Ridge, Jennifer; Thelen, Michael P.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808,L-452, Livermore, CA 94550 USA. [Lee, Jackson Z.; Everroad, R. Craig; Bebout, Brad M.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. RP Thelen, MP (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808,L-452, Livermore, CA 94550 USA. EM mthelen@llnl.gov RI Thelen, Michael/G-2032-2014; OI Thelen, Michael/0000-0002-2479-5480; Stuart, Rhona/0000-0001-5916-9693 FU DOE [DE-FG02-93ER20097]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy, Office of Science by Genome Sciences Program of the Office of Biological and Environmental Research [SCW1039] FX We thank Leslie Prufert-Bebout (NASA) for isolating and providing ESFC-1 and for comments on the manuscript; Whitney Stannard (LLNL) for technical assistance with cultures; Mark Boggs (LLNL) for initial NMR analyses of EPS samples; Heather Dang (UC Berkeley) for isotope-ratio mass spectrometry analysis; Michelle Salemi and Brett Phinney for analysis at the UC Davis Proteomics Core Facility; and Parastoo Azadi and Christian Heiss for analyses carried out at the Complex Carbohydrate Research Center at the University of Georgia, Athens, supported in part by DOE grant DE-FG02-93ER20097, 'Center for Plant and Microbial Complex Carbohydrates'. We also thank Jeff Cann, Associate Wildlife Biologist, Central Region, California Department of Fish and Wildlife for coordinating access to the Moss Landing Wildlife Area; and Tijana Glavina del Rio and the DOE Joint Genome Institute (JGI) staff for sequencing and bioinformatics support (as part of JGI Community Sequencing Project # 701). This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and was supported by the US Department of Energy, Office of Science, under contract number SCW1039 supported by the Genome Sciences Program of the Office of Biological and Environmental Research. Institution Paper Number LLNL-JRNL-667325. NR 59 TC 6 Z9 6 U1 11 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD MAY PY 2016 VL 10 IS 5 BP 1240 EP 1251 DI 10.1038/ismej.2015.180 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DJ7FL UT WOS:000374377200020 PM 26495994 ER PT J AU Nurge, MA Youngquist, RC Starr, SO AF Nurge, Mark A. Youngquist, Robert C. Starr, Stanley O. TI A satellite formation flying approach providing both positioning and tracking SO ACTA ASTRONAUTICA LA English DT Article DE Spacecraft formation flying; Satellite swarms; Satellite propulsion; Satellite tracking; Satellite positioning ID ELECTROMAGNETIC FORMATION FLIGHT AB A magnetic field approach is presented whereby a large number of closely located satellites can be positioned and oriented relative to each other, but can also be tracked in six degrees of freedom. This is accomplished by using frequency-multiplexed magnetic fields where coils are placed on each satellite to allow them to generate magnetic fields, to interact with the magnetic fields from other satellites, and to sample the surrounding magnetic fields. By doing this, a satellite can choose which alternating field to push or pull against, to provide torque about, or to sample in order to determine its location and orientation relative to the other satellites. Theory is provided demonstrating the capability of this approach along with its advantages and limitations. An experimental system allowing 3 degrees-of-freedom was constructed and used to demonstrate a feedback and control system where a satellite is told to move to a location and it does this by interacting with the surrounding satellites to both generate forces and torques and to track its position and orientation. (C) 2016 Published by Elsevier Ltd. on behalf of IAA. C1 [Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.] NASA, Mail Stop UBR3, Kennedy Space Ctr, FL 32899 USA. RP Nurge, MA (reprint author), NASA, Mail Stop UBR3, Kennedy Space Ctr, FL 32899 USA. EM Mark.A.Nurge@nasa.gov; Robert.C.Youngquist@nasa.gov; Stanley.O.Starr@nasa.gov FU NASA Space Technology Mission Directorate FX The authors would like to thank the NASA Space Technology Mission Directorate for providing funding for this study via the Center Innovation Funding Program. NR 14 TC 0 Z9 0 U1 6 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAY-JUN PY 2016 VL 122 BP 1 EP 9 DI 10.1016/j.actaastro.2016.01.010 PG 9 WC Engineering, Aerospace SC Engineering GA DJ3AE UT WOS:000374076000001 ER PT J AU Kaur, J Rickman, D Schoonen, MA AF Kaur, Jasmeet Rickman, Douglas Schoonen, Martin A. TI Reactive Oxygen Species (ROS) generation by lunar simulants SO ACTA ASTRONAUTICA LA English DT Article DE Reactive Oxygen Species; Hydroxyl Radical; Lunar Simulants; Inhalation exposure; Dust; Mineral reactivity ID COAL-WORKERS PNEUMOCONIOSIS; GLASS-FIBER DISSOLUTION; HUMAN EXPOSURE LEVELS; INTRATRACHEAL INSTILLATION; PULMONARY TOXICITY; HYDROGEN-PEROXIDE; MINERAL DUSTS; MARTIAN DUSTS; DEPOSITION; INHALATION AB The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock -induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (center dot OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7.5 h. By contrast ROS is formed rapidly within 30 min when simulants are dispersed in DI, but then the concentration either stabilizes or decreases over time. The results indicate that mechanical stress and the absence of molecular oxygen and water, which are important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. However, compositional difference among simulants is the most important factor in governing the production of ROS. Simulants with glass content in excess of 40 wt% appear to produce as much as of order of magnitude more ROS than simulants with lower glass content. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Kaur, Jasmeet; Schoonen, Martin A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Kaur, Jasmeet; Schoonen, Martin A.] SUNY Stony Brook, RIS4E, Stony Brook, NY 11794 USA. [Rickman, Douglas] NASA, George C Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35812 USA. RP Schoonen, MA (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM martin.schoonen@stonybrook.edu OI Rickman, Doug/0000-0003-3409-2882 FU RIS4E node of the NASA Solar System Exploration Research Virtual Institute (SSERVI) FX This study was supported by the RIS4E node of the NASA Solar System Exploration Research Virtual Institute (SSERVI). This is SSERVI publication #SSERVI-2015-234. This work is part of the lead author's Ph.D. thesis at Stony Brook University. The manuscript benefitted from the comments by two anonymous journal reviewers and the lead author's thesis committee (Drs. R.J. Reeder, J. Hurowitz, T. Rasberry-Holt, and D.R. Strongin). NR 83 TC 0 Z9 0 U1 5 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAY-JUN PY 2016 VL 122 BP 196 EP 208 DI 10.1016/j.actaastro.2016.02.002 PG 13 WC Engineering, Aerospace SC Engineering GA DJ3AE UT WOS:000374076000017 ER PT J AU Kim, JW Sauti, G Cano, RJ Wincheski, RA Ratcliffe, JG Czabaj, M Gardner, NW Siochi, EJ AF Kim, Jae-Woo Sauti, Godfrey Cano, Roberto J. Wincheski, Russell A. Ratcliffe, James G. Czabaj, Michael Gardner, Nathaniel W. Siochi, Emilie J. TI Assessment of carbon nanotube yarns as reinforcement for composite overwrapped pressure vessels SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Carbon nanotube; Nanocomposites; Filament winding; Mechanical properties ID SHEET/BISMALEIMIDE NANOCOMPOSITES; SHEET NANOCOMPOSITES; PERFORMANCE; STRENGTH AB Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. Recent advances in CNT manufacturing have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use. The high tensile properties of CNT composites can be exploited in tension dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum (Al) rings were overwrapped with thermoset/CNT yarn, thermally cured under a vacuum bag, and their mechanical properties measured. Fabrication parameters such as CNT/resin ratio, tension applied during winding, and the number of CNT yarn layers were investigated to determine their effects on the mechanical performance of overwrapped Al rings. Mechanical properties of the CNT composite overwrapped Al rings (CCOARs) were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their performance relative to bare Al rings. The ultimate load carried by the composite overwrap in the CCOARs increased with increasing number of wraps. The wet winding process for the CCOAR fabrication improved load transfer compared to the dry winding process due to enhanced interfacial adhesion between the CNT yarn and the applied resin. Wet winding Al rings with CNT yarn/thermoset overwraps resulted in similar to 11% increase in weight relative to the bare ring and increased the room temperature breaking load by over 200%. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kim, Jae-Woo; Sauti, Godfrey] Natl Inst Aerosp, Hampton, VA 23666 USA. [Cano, Roberto J.; Siochi, Emilie J.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Wincheski, Russell A.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23681 USA. [Ratcliffe, James G.] NASA, Langley Res Ctr, Durabil Damage Tolerance & Reliabil Branch, Hampton, VA 23681 USA. [Czabaj, Michael] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA. [Gardner, Nathaniel W.] Analyt Serv & Mat Inc, Hampton, VA 23666 USA. RP Kim, JW (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA.; Siochi, EJ (reprint author), NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. EM jae-woo.kim-1@nasa.gov; emiliej.siochi@nasa.gov RI Kim, Jae-Woo/A-8314-2008 FU NASA Game Changing Development Program/Nanotechnology Project FX This work was funded through the NASA Game Changing Development Program/Nanotechnology Project. The authors thank Mr. Hoa H. Luong (NASA Langley Research Center) and Mr. Sean M. Britton (NASA LaRC) for their assistance on vacuum bagging and composite processing, Mr. Charles E. Townsley (NASA LaRC) for his assistance on mechanical measurements, Mr. Christopher J. Stelter (NASA LaRC), Mr. Andrew Antczak (UNCC), and Ms. Michelle H. Shanahan (NIA) for their assistance on the filament winder assembly and modifications and Dr. John C. Thesken (NASA Glenn Research Center) for technical discussions on COPV design. NR 20 TC 0 Z9 0 U1 12 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X EI 1878-5840 J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD MAY PY 2016 VL 84 BP 256 EP 265 DI 10.1016/j.compositesa.2016.02.003 PG 10 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA DJ4SN UT WOS:000374198400027 ER PT J AU Magney, TS Eitel, JUH Griffin, KL Boelman, NT Greaves, HE Prager, CM Logan, BA Zheng, G Ma, L Fortin, EA Oliver, RY Vierling, LA AF Magney, Troy S. Eitel, Jan U. H. Griffin, Kevin L. Boelman, Natalie T. Greaves, Heather E. Prager, Case M. Logan, Barry A. Zheng, Guang Ma, Lixia Fortin, Elizabeth A. Oliver, Ruth Y. Vierling, Lee A. TI LiDAR canopy radiation model reveals patterns of photosynthetic partitioning in an Arctic shrub SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Terrestrial LiDAR; 3D canopy; Salix pulchra; Ray tracing; Light interception model; Photosynthetic partitioning ID LEAF-AREA INDEX; TERRESTRIAL LASER SCANNER; LOCALLY WEIGHTED REGRESSION; TEMPERATE DECIDUOUS TREES; WHEAT NITROGEN STATUS; GAP FRACTION; FOREST CANOPY; HEMISPHERICAL PHOTOGRAPHY; CARBON GAIN; LITTER DECOMPOSITION AB Characterizing the wide range of light availability and photosynthetic properties throughout a plant canopy is important for modeling the exchanges of carbon, water, and nutrients between the biosphere and the atmosphere. Such characterization could be especially important in one of the world's most rapidly changing biomes - the Arctic tundra - where further warming-induced increases in the size, abundance and complexity of small arctic shrubs are projected. An improved understanding of their canopy organization could provide insights into associated climate feedbacks since multifaceted interactions between 3D canopy structure, environmental conditions, leaf physiology, and light availability affect the potentials and limitations of vegetation carbon assimilation and storage. The aim of this study was to explore new methods to elucidate evidence for photosynthetic partitioning according to light availability within a short canopy (<1 m tall) of Salix pulchra exposed to near continuous sunlight at low solar angles in the Arctic tundra. Instantaneous photosynthetic photon flux density (PPFD) and daily integrated quantum flux density (Q(int)) were modeled from a ray-tracing algorithm for voxels (edge-length .01 m) within the canopy that were each assigned a physically based directional gap fraction (DGF) and extinction coefficient (k) from which each voxel's effective leaf area index (LAI(e)) was calculated. Voxel parameters for the ray-tracing model were derived from the x, y, and z locations of high spatial resolution (<1 mm) three-dimensional (3D) maps of shrub canopies from terrestrial LiDAR point clouds. Two LiDAR-derived light quantification variables - modeled Q(int) and path-length (determined as the accumulated photon travel distance from the canopy-edge) were compared with two variables derived from traditional light quantification techniques-ceptometer derived leaf-area index (LAI), and manually measured vertical canopy depth. Insignificant relationships were observed between traditional measurements of light environment (LAI and vertical canopy depth) and TLS derived measurements (Q(int) and path length), suggesting wide variability among these methods. When each of four light quantification variables were compared against leaf-level variables classically associated with photosynthetic partitioning (percent nitrogen (N%), chlorophyll a to b ratio (Chl a/b), and photosynthetic capacity (A(max))), patterns suggesting photosynthetic partitioning emerged only when the LiDAR-derived 3D locations of the leaf samples were considered (Q(int) and path length). Statistically significant (p < 0.05) trends that follow the theoretical response of leaves to light availability were observed between all three photosynthetic variables and LiDAR-derived Q(int) (r = 0.31, 0.46, 0.49 for N%, Chl a/b, and A(max), respectively), while 2 of 3 showed a statistically significant response to LiDAR derived path length. Only 1 of 3 photosynthetic variables showed a statistically significant response to manually measured canopy depth or ceptometer derived LAI. Results from this study suggest that LiDAR-based techniques for quantifying the 3D light environment of small shrubs exposed to low solar angles reveal patterns of photosynthetic partitioning that may otherwise be overlooked using more traditional techniques. (C) 2016 Elsevier B.V. All rights reserved. C1 [Magney, Troy S.; Eitel, Jan U. H.; Greaves, Heather E.; Vierling, Lee A.] Univ Idaho, Geospatial Lab Environm Dynam, Moscow, ID 83844 USA. [Eitel, Jan U. H.; Vierling, Lee A.] Univ Idaho, McCall Outdoor Sci Sch, Mccall, ID 83638 USA. [Griffin, Kevin L.; Boelman, Natalie T.; Oliver, Ruth Y.] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10964 USA. [Prager, Case M.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. [Logan, Barry A.] Bowdoin Coll, Dept Biol, Brunswick, ME 04011 USA. [Zheng, Guang; Ma, Lixia] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China. [Fortin, Elizabeth A.] Columbia Univ Barnard Coll, Dept Biol, New York, NY 10027 USA. RP Magney, TS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 233-300, Pasadena, CA 91109 USA. EM Troy.S.Magney@jpl.nasa.gov; jeitel@uidaho.edu; leev@uidaho.edu RI Griffin, Kevin/B-2629-2013 OI Griffin, Kevin/0000-0003-4124-3757 FU NASA Terrestrial Ecology grant [NNX12AK83G]; NASA Idaho Space Grant Fellowship [NNX10AM75H] FX This work was supported by NASA Terrestrial Ecology grant NNX12AK83G and a NASA Idaho Space Grant Fellowship NNX10AM75H awarded to TSM. The authors are extremely grateful for field and lab assistance from Jess Gersony and Jaret Reblin, and for support from the staff and greater research community of Toolik Field Station, Institute of Arctic Biology, and University of Alaska Fairbanks. NR 121 TC 3 Z9 3 U1 15 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD MAY 1 PY 2016 VL 221 BP 78 EP 93 DI 10.1016/j.agrformet.2016.02.007 PG 16 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA DJ2ZM UT WOS:000374074200007 ER EF