FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Ferraz, A
Saatchi, S
Mallet, C
Jacquemoud, S
Goncalves, G
Silva, CA
Soares, P
Tome, M
Pereira, L
AF Ferraz, Antonio
Saatchi, Sassan
Mallet, Clement
Jacquemoud, Stephane
Goncalves, Gil
Silva, Carlos Alberto
Soares, Paula
Tome, Margarida
Pereira, Luisa
TI Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence
of Field Inventory
SO REMOTE SENSING
LA English
DT Article
DE airborne laser scanning; lidar; 3D point cloud clustering; multi-layered
forest structure; biomass; carbon; individual tree extraction; crown
delineation; vegetation cover
ID CARBON STOCKS; TREES; COVER; MODEL
AB The scientific community involved in the UN-REDD program is still reporting large uncertainties about the amount and spatial variability of CO2 stored in forests. The main limitation has been the lack of field samplings over space and time needed to calibrate and convert remote sensing measurements into aboveground biomass (AGB). As an alternative to costly field inventories, we examine the reliability of state-of-the-art lidar methods to provide direct retrieval of many forest metrics that are commonly collected through field sampling techniques (e.g., tree density, individual tree height, crown cover). AGB is estimated using existing allometric equations that are fed by lidar-derived metrics at either the individual tree-or forest layer-level (for the overstory or underneath layers, respectively). Results over 40 plots of a multilayered forest located in northwest Portugal show that the lidar method provides AGB estimates with a relatively small random error (RMSE = of 17.1%) and bias (of 4.6%). It provides local AGB baselines that meet the requirements in terms of accuracy to calibrate satellite remote sensing measurements (e.g., the upcoming lidar GEDI (Global Ecosystem Dynamics Investigation), and the Synthetic Aperture Radar (SAR) missions NISAR (National Aeronautics and Space Administration and Indian Space Research Organization SAR) and BIOMASS from the European Space Agency, ESA) for AGB mapping purposes. The development of similar techniques over a variety of forest types would be a significant improvement in quantifying CO2 stocks and changes to comply with the UN-REDD policies.
C1 [Ferraz, Antonio; Saatchi, Sassan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Mallet, Clement] Univ Paris Est, MATIS, Inst Natl Informat Geog & Forestiere IGN LaSTIG, F-94160 St Mande, France.
[Jacquemoud, Stephane] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Inst Phys Globe Paris,UMR 7154, F-75013 Paris, France.
[Goncalves, Gil] Univ Coimbra, INESC Coimbra, P-3001501 Coimbra, Portugal.
[Goncalves, Gil] Univ Coimbra, Dept Math, P-3001501 Coimbra, Portugal.
[Silva, Carlos Alberto] Univ Idaho, Coll Nat Resources, Dept Nat Resources & Soc, Moscow, ID 83843 USA.
[Soares, Paula; Tome, Margarida] Univ Lisbon, Sch Agron, Forest Res Ctr, P-1349017 Lisbon, Portugal.
[Pereira, Luisa] Univ Aveiro, Escola Super Tecnol & Gestao Agueda, P-3754909 Agueda, Portugal.
RP Ferraz, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Antonio.A.Ferraz@jpl.nasa.gov; Sasan.S.Saatchi@jpl.nasa.gov;
clement.mallet@ign.fr; jacquemoud@ipgp.fr; gil@mat.uc.pt;
csilva@uidaho.edu; paulasoares@isa.ulisboa.pt; magatome@isa.ulisboa.pt;
luisapereira@ua.pt
RI Soares, Paula/F-8251-2010; Jacquemoud, Stephane/F-8842-2010; Tome,
Margarida/F-5776-2010; Ferraz, Antonio/D-9662-2017;
OI Soares, Paula/0000-0002-7603-5467; Tome, Margarida/0000-0002-6242-8593;
Ferraz, Antonio/0000-0002-5328-5471; Mallet, Clement/0000-0002-2675-165X
FU Portuguese Foundation for Science and Technology - European Fund of
Regional Development (FEDER) through COMPETE-Operational Factors of
Competitiveness Program (POFC) [PTDC/AGR-CFL/72380/2006]; Jet Propulsion
Laboratory through the NASA; NASA; [Pest-OE/EEI/UI308/2014]
FX This work was supported in part by the Portuguese Foundation for Science
and Technology under Grant PTDC/AGR-CFL/72380/2006, co-financed by the
European Fund of Regional Development (FEDER) through
COMPETE-Operational Factors of Competitiveness Program (POFC) and the
Grant Pest-OE/EEI/UI308/2014. The work of Antonio Ferraz was supported
in part by the Jet Propulsion Laboratory through the NASA Postdoctoral
Program, which was administrated by the Oak Ridge Associated
Universities through a contract with NASA.
NR 43
TC 0
Z9 0
U1 25
U2 25
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD AUG
PY 2016
VL 8
IS 8
AR 653
DI 10.3390/rs8080653
PG 18
WC Remote Sensing
SC Remote Sensing
GA DU8JI
UT WOS:000382458700040
ER
PT J
AU Hannon, A
Lu, YJ
Li, J
Meyyappan, M
AF Hannon, Ami
Lu, Yijiang
Li, Jing
Meyyappan, M.
TI A Sensor Array for the Detection and Discrimination of Methane and Other
Environmental Pollutant Gases
SO SENSORS
LA English
DT Article
DE gas sensor; room temperature gas sensing; functionalized nanotubes;
principal component analysis; electronic nose; selective methane sensor;
smartphone based sensor
ID WALLED CARBON NANOTUBES; CONDUCTING POLYMER; CHEMICAL SENSORS;
MECHANOCHEMICAL REACTION; ACID CATALYST; THIN-FILMS; POLYANILINE;
FABRICATION; ADSORPTION; OXIDATION
AB We address the sensitive detection and discrimination of gases impacting the environment, such as CH4, NH3, SO2, and CO, using a sensor array and aided by principal component analysis (PCA). A 32-element chemiresistive sensor array consisting of nine different sensor materials including seven types of modified single-walled carbon nanotubes and two types of polymers has been constructed. PCA results demonstrate excellent discriminating ability of the chemiresistor sensor chip in the 1-30 ppm concentration range. The accuracy of the sensor was verified against data collected using cavity ring down spectroscopy. The sensor chip has also been integrated with a smartphone and has been shown to reproduce the sensing performance obtained with the laboratory measurement system.
C1 [Hannon, Ami; Lu, Yijiang; Li, Jing; Meyyappan, M.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
[Hannon, Ami] NASA Ames Res Ctr, Analty Mech Associates Inc, Moffett Field, CA 94035 USA.
[Lu, Yijiang] NASA Ames Res Ctr, ELORET Corp, Moffett Field, CA 94035 USA.
RP Meyyappan, M (reprint author), NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
EM ami.m.hannon@nasa.gov; yijiang.lu-1@nasa.gov; jing.li-1@nasa.gov;
m.meyyappan@nasa.gov
FU US Department of Homeland Security, HSARPA Cell-All program via NASA-DHS
[IAA: HSHQDC-08-X-00870]; AMA and ELORET Corporation
FX The smartphone development was funded by the US Department of Homeland
Security, HSARPA Cell-All program via a NASA-DHS interagency agreement
(IAA: HSHQDC-08-X-00870). The work conducted by the employees of AMA and
ELORET Corporation was supported through subcontracts to the respective
organizations. The authors acknowledge George Yu and Chang Hsiung for
their help with the smartphone sensor and Matt Fladeland for providing
the Picarro Instrument.
NR 52
TC 1
Z9 1
U1 31
U2 31
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 1424-8220
J9 SENSORS-BASEL
JI Sensors
PD AUG
PY 2016
VL 16
IS 8
AR 1163
DI 10.3390/s16081163
PG 11
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA DU6KJ
UT WOS:000382323200151
ER
PT J
AU Molter, EM
Nixon, CA
Cordiner, MA
Serigano, J
Irwin, PGJ
Teanby, NA
Charnley, SB
Lindberg, JE
AF Molter, Edward M.
Nixon, C. A.
Cordiner, M. A.
Serigano, J.
Irwin, P. G. J.
Teanby, N. A.
Charnley, S. B.
Lindberg, J. E.
TI ALMA OBSERVATIONS OF HCN AND ITS ISOTOPOLOGUES ON TITAN
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE planets and satellites: atmospheres; planets and satellites: individual
(Titan)
ID ISOTOPIC-RATIOS; HETERODYNE OBSERVATIONS; VERTICAL DISTRIBUTIONS;
SUB-DOPPLER; ATMOSPHERE; SPECTROSCOPY; HC3N; ISOTOPOMERS; C-12/C-13;
NITRILES
AB We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, (HCN)-C-13-N-15, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, (HCN)-C-13, (HCN)-N-15, DCN, and (HCN)-C-13-N-15 to derive abundances and infer the following isotopic ratios: C-12/C-13 = 89.8 +/- 2.8, N-14/N-15 = 72.3 +/- 2.2, D/H = (2.5 +/- 0.2) x 10(-4), and HCN/(HCN)-C-13-N-15 = 5800 +/- 270 (1 sigma errors). The carbon and nitrogen ratios are consistent with and improve on the precision of previous results, confirming a factor of similar to 2.3 elevation in N-14/N-15 in HCN compared to N-2 and a lack of fractionation in C-12/C-13 from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of similar to 2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan's atmosphere.
C1 [Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.; Charnley, S. B.; Lindberg, J. E.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Molter, Edward M.; Cordiner, M. A.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[Serigano, J.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.
[Irwin, P. G. J.] Univ Oxford, Clarendon Lab, Atmospher Ocean & Planetary Phys, Parks Rd, Oxford OX1 3PU, England.
[Teanby, N. A.] Univ Bristol, Sch Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England.
RP Molter, EM (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.; Molter, EM (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
EM edward.m.molter@nasa.gov
RI Nixon, Conor/A-8531-2009;
OI Nixon, Conor/0000-0001-9540-9121; Irwin, Patrick/0000-0002-6772-384X
FU NASA's Planetary Atmospheres program; NASA's Planetary Astronomy program
FX This research was supported by NASA's Planetary Atmospheres and
Planetary Astronomy programs.
NR 43
TC 0
Z9 0
U1 5
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD AUG
PY 2016
VL 152
IS 2
AR 42
DI 10.3847/0004-6256/152/2/42
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DT9KG
UT WOS:000381817500015
ER
PT J
AU Prsa, A
Harmanec, P
Torres, G
Mamajek, E
Asplund, M
Capitaine, N
Christensen-Dalsgaard, J
Depagne, E
Haberreiter, M
Hekker, S
Hilton, J
Kopp, G
Kostov, V
Kurtz, DW
Laskar, J
Mason, BD
Milone, EF
Montgomery, M
Richards, M
Schmutz, W
Schou, J
Stewart, SG
AF Prsa, Andrej
Harmanec, Petr
Torres, Guillermo
Mamajek, Eric
Asplund, Martin
Capitaine, Nicole
Christensen-Dalsgaard, Jorgen
Depagne, Eric
Haberreiter, Margit
Hekker, Saskia
Hilton, James
Kopp, Greg
Kostov, Veselin
Kurtz, Donald W.
Laskar, Jacques
Mason, Brian D.
Milone, Eugene F.
Montgomery, Michele
Richards, Mercedes
Schmutz, Werner
Schou, Jesper
Stewart, Susan G.
TI NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015
RESOLUTION B3
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE planets and satellites: fundamental parameters; standards; stars:
fundamental parameters; stars: general; Sun: fundamental parameters
ID STELLAR ASTROPHYSICS MESA; STARS; CONSTANTS; MODULES; PARAMETERS;
ACCURACY; BINARIES; SET
AB In this brief communication we provide the rationale for. and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards. fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.
C1 [Prsa, Andrej] Villanova Univ, Dept Astrophys & Planetary Sci, 800 Lancaster Ave, Villanova, PA 19085 USA.
[Harmanec, Petr] Charles Univ Prague, Fac Math & Phys, Astron Inst, V Holesovickach 2, CZ-18000 Prague 8, Czech Republic.
[Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Mamajek, Eric] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA.
[Asplund, Martin] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Capitaine, Nicole] Univ Paris 04, PSL Res Univ, Observ Paris, SYRTE,CNRS,UPMC,LNE, 61 Ave Observ, F-75014 Paris, France.
[Christensen-Dalsgaard, Jorgen] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.
[Depagne, Eric] South African Astron Observ, POB 9 Observ, Cape Town, South Africa.
[Depagne, Eric] Southern African Large Telescope, POB 9 Observ, Cape Town, South Africa.
[Haberreiter, Margit; Schmutz, Werner] World Radiat Ctr, Phys Meteorol Observ Davos, Dorfstr 33, Davos, Switzerland.
[Hekker, Saskia] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany.
[Hekker, Saskia] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.
[Hilton, James; Mason, Brian D.; Stewart, Susan G.] US Naval Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA.
[Kopp, Greg] Lab Atmospher & Space Phys, 1234 Innovat Dr, Boulder, CO 80303 USA.
[Kostov, Veselin] NASA, Goddard Space Flight Ctr, Mail Code 665, Greenbelt, MD 20771 USA.
[Kurtz, Donald W.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England.
[Laskar, Jacques] UPMC, Observ Paris, CNRS, ASD IMCCE,PSL,UMR8028, 77 Ave Denfert Rochereau, F-75014 Paris, France.
[Milone, Eugene F.] Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.
[Montgomery, Michele] Univ Cent Florida, Dept Phys, 4000 Cent Florida Blvd, Orlando, FL 32816 USA.
[Richards, Mercedes] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Schou, Jesper] Max Planck Inst Solar Syst Res, Justus von Liebig Weg 3, D-37077 Gottingen, Germany.
RP Prsa, A (reprint author), Villanova Univ, Dept Astrophys & Planetary Sci, 800 Lancaster Ave, Villanova, PA 19085 USA.
RI Schmutz, Werner/B-4153-2014;
OI Schmutz, Werner/0000-0003-1159-5639; Christensen-Dalsgaard,
Jorgen/0000-0001-5137-0966
FU Villanova University; Czech Science Foundation [P209/10/0715,
GA15-02112S]; NSF [AST-1509375]; NSF AST award [1313029]; NASA's NExSS
program; Danish National Research Foundation [DNRF106]; European
Research Council under the European Community's Seventh Framework
Programme (FP7)/ERC [338251]; European Community [313188]
FX We kindly acknowledge discussions with Philip Bennett, Wolfgang
Finsterle, William Folkner, and Hugh Hudson. We further acknowledge
remarkable work by Dr. Allen, Dr. Cox, and collaborators on
"Astrophysical Quantities." A.P. acknowledges support by Villanova
University's Summer Fellowship grant. The research of P.H. was supported
by grants P209/10/0715 and GA15-02112S of the Czech Science Foundation.
G. T. acknowledges partial support from NSF award AST-1509375. E.M.
acknowledges support from NSF AST award 1313029 and NASA's NExSS
program. J.C.-D. acknowledges funding for the Stellar Astrophysics
Centre that is provided by The Danish National Research Foundation
(Grant DNRF106). S.H. acknowledges funding from the European Research
Council under the European Community's Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 338251 (StellarAges). The
research leading to these results has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013) under Grant
Agreement no. 313188 (SOLID, http://projects.pmodwrc.ch/solid/).
NR 29
TC 9
Z9 9
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD AUG
PY 2016
VL 152
IS 2
AR 41
DI 10.3847/0004-6256/152/2/41
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DT9KG
UT WOS:000381817500014
ER
PT J
AU Rebull, LM
Carlberg, JK
Gibbs, JC
Deeb, JE
Larsen, E
Black, DV
Altepeter, S
Bucksbee, E
Cashen, S
Clarke, M
Datta, A
Hodgson, E
Lince, M
AF Rebull, Luisa M.
Carlberg, Joleen K.
Gibbs, John C.
Deeb, J. Elin
Larsen, Estefania
Black, David V.
Altepeter, Shailyn
Bucksbee, Ethan
Cashen, Sarah
Clarke, Matthew
Datta, Ashwin
Hodgson, Emily
Lince, Megan
TI ON INFRARED EXCESSES ASSOCIATED WITH LI-RICH K GIANTS (vol 150, 123,
2015)
SO ASTRONOMICAL JOURNAL
LA English
DT Correction
C1 [Rebull, Luisa M.] CALTECH, SSC, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
[Rebull, Luisa M.] CALTECH, Infrared Sci Arch IRSA, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
[Carlberg, Joleen K.] NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA.
[Gibbs, John C.; Cashen, Sarah; Datta, Ashwin; Hodgson, Emily; Lince, Megan] Glencoe High Sch, 2700 NW Glencoe Rd, Hillsboro, OR 97124 USA.
[Deeb, J. Elin] Bear Creek High Sch, 9800 W Dartmouth Pl, Lakewood, CO 80227 USA.
[Larsen, Estefania; Altepeter, Shailyn; Bucksbee, Ethan; Clarke, Matthew] Millard South High Sch, 14905 Q St, Omaha, NE 68137 USA.
[Black, David V.] Walden Sch Liberal Arts, 4230 N Univ Ave, Provo, UT 84604 USA.
RP Rebull, LM (reprint author), CALTECH, SSC, 1200 E Calif Blvd, Pasadena, CA 91125 USA.; Rebull, LM (reprint author), CALTECH, Infrared Sci Arch IRSA, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM rebull@ipac.caltech.edu
OI Rebull, Luisa/0000-0001-6381-515X
NR 1
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD AUG
PY 2016
VL 152
IS 2
AR 52
DI 10.3847/0004-6256/152/2/52
PG 3
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DT9KG
UT WOS:000381817500025
ER
PT J
AU Benner, DC
Devi, VM
Sung, K
Brown, LR
Miller, CE
Payne, VH
Drouin, BJ
Yu, SS
Crawford, TJ
Mantz, AW
Smith, MAH
Gamache, RR
AF Benner, D. Chris
Devi, V. Malathy
Sung, Keeyoon
Brown, Linda R.
Miller, Charles E.
Payne, Vivienne H.
Drouin, Brian J.
Yu, Shanshan
Crawford, Timothy J.
Mantz, Arlan W.
Smith, Mary Ann H.
Gamache, Robert R.
TI Line parameters including temperature dependences of air- and
self-broadened line shapes of (CO2)-C-12-O-16: 2.06-mu m region
SO JOURNAL OF MOLECULAR SPECTROSCOPY
LA English
DT Article
DE CO2; Lorentz widths; Pressure shifts; Temperature dependences; Spectral
line shapes; Relaxation matrix element coefficients; Speed dependence
ID MOLECULAR SPECTROSCOPIC DATABASE; PRESSURE SHIFT COEFFICIENTS; CO2
RETRIEVAL ALGORITHM; MU-M REGIONS; ATMOSPHERIC APPLICATIONS; SPEED
DEPENDENCE; 4750-7000 CM(-1); HALF-WIDTH; DATA-BANK; INTENSITIES
AB This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-mu m spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum non-linear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% C-13-enriched CO2 and fifteen spectra of mixtures of C-12-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two (CO2)-C-13 spectra the pressures were similar to 10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (X-co2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Benner, D. Chris; Devi, V. Malathy] Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA.
[Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Mantz, Arlan W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA.
[Smith, Mary Ann H.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA.
[Gamache, Robert R.] Univ Massachusetts, Off Acad Affairs, Student Affairs, Int Relat, One Beacon St, Boston, MA 02108 USA.
RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA.
EM Malathy.d.venkataraman@nasa.gov
RI Yu, Shanshan/D-8733-2016; Sung, Keeyoon/I-6533-2015
FU National Science Foundation [ATM-0338475, AGS-1156862]; JPL
FX Part of the material related to Kitt Peak measurements applied in this
investigation was based upon work supported by the National Science
Foundation under Grant # ATM-0338475 to the College of William and Mary.
The recent study involving the low temperature measurements was
supported by a Research Grant to the College of William and Mary for the
OCO-2 mission through JPL. The research at the Jet Propulsion Laboratory
(JPL), California Institute of Technology, Connecticut College and NASA
Langley Research Center was performed under contracts and cooperative
agreements with the National Aeronautics and Space Administration.; One
of the authors, RRG, was supported by the National Science Foundation
through Grant # AGS-1156862. DCB and VMD acknowledge the help provided
by Emily M. Nugent, a former student of the College of William and Mary.
NR 70
TC 6
Z9 6
U1 5
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2852
EI 1096-083X
J9 J MOL SPECTROSC
JI J. Mol. Spectrosc.
PD AUG
PY 2016
VL 326
BP 21
EP 47
DI 10.1016/j.jms.2016.02.012
PG 27
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA DT4KH
UT WOS:000381448100005
ER
PT J
AU Chamberlin, PC
AF Chamberlin, P. C.
TI Measuring Solar Doppler Velocities in the He II 30.38 nm Emission Using
the EUV Variability Experiment (EVE)
SO SOLAR PHYSICS
LA English
DT Article
DE Flares, dynamics; Flares, spectrum; Instrumentation and data management;
Solar irradiance; Spectrum, ultraviolet
ID IRRADIANCE; FLARES; MODELS; PLASMA; MARS
AB The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has provided unprecedented measurements of the solar EUV irradiance at high temporal cadence with good spectral resolution and range since May 2010. The main purpose of EVE was to connect the Sun to the Earth by providing measurements of the EUV irradiance as a driver for space weather and Living With a Star studies, but after launch the instrument has demonstrated the significance of its measurements in contributing to studies looking at the sources of solar variability for pure solar physics purposes. This paper expands upon previous findings that EVE can in fact measure wavelength shifts during solar eruptive events and therefore provide Doppler velocities for plasma at all temperatures throughout the solar atmosphere from the chromosphere to hot flaring temperatures. This process is not straightforward as EVE was not designed or optimized for these types of measurements. In this paper we describe the many detailed instrumental characterizations needed to eliminate the optical effects in order to provide an absolute baseline for the Doppler shift studies. An example is given of a solar eruption on 7 September 2011 (SOL2011-09-07), associated with an X1.2 flare, where EVE Doppler analysis shows plasma ejected from the Sun in the He II 30.38 nm emission at a velocity of almost 120 kms(-1) along the line-of-sight.
C1 [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Div, Greenbelt, MD 20771 USA.
RP Chamberlin, PC (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Div, Greenbelt, MD 20771 USA.
EM phillip.c.chamberlin@nasa.gov
RI Chamberlin, Phillip/C-9531-2012
OI Chamberlin, Phillip/0000-0003-4372-7405
FU Solar Dynamics Observatory project at NASA's Goddard Space Flight Center
FX This work is supported through Solar Dynamics Observatory project
funding at NASA's Goddard Space Flight Center. The author would like to
acknowledge the SDO and EVE operations teams that provided the maneuvers
and calibration support necessary for this analysis.
NR 22
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-0938
EI 1573-093X
J9 SOL PHYS
JI Sol. Phys.
PD AUG
PY 2016
VL 291
IS 6
BP 1665
EP 1679
DI 10.1007/s11207-016-0931-0
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU3EP
UT WOS:000382093900006
ER
PT J
AU Balakumar, P
Kegerise, M
AF Balakumar, P.
Kegerise, Michael
TI Roughness-Induced Transition in a Supersonic Boundary Layer
SO AIAA JOURNAL
LA English
DT Article
ID TOLLMIEN-SCHLICHTING WAVES; ELEMENT; INSTABILITY; EVOLUTION
AB Direct numerical simulation is used to investigate the transition induced by three-dimensional isolated roughness elements in a supersonic boundary layer at a freestream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness element, and the other is a diamond planform roughness element. The mean flow calculations show that the roughness element induces counter-rotating streamwise vortices downstream of the roughness element. These vortices persist for a long distance downstream, lift the low-momentum fluid from the near-wall region, and place it near the outer part of the boundary layer. This forms highly inflectional boundary-layer profiles. These observations agree with recent experimental observations. The receptivity calculations show that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond-shaped roughness element are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square-shaped roughness element.
C1 [Balakumar, P.; Kegerise, Michael] NASA, Langley Res Ctr, Flow Phys & Control Branch, Hampton, VA 23681 USA.
RP Balakumar, P (reprint author), NASA, Langley Res Ctr, Flow Phys & Control Branch, Hampton, VA 23681 USA.
NR 34
TC 0
Z9 0
U1 1
U2 1
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
EI 1533-385X
J9 AIAA J
JI AIAA J.
PD AUG
PY 2016
VL 54
IS 8
BP 2322
EP 2337
DI 10.2514/1.J054632
PG 16
WC Engineering, Aerospace
SC Engineering
GA DT2EI
UT WOS:000381293200011
ER
PT J
AU Busa, KM
Rice, BE
McDaniel, JC
Goyne, CP
Rockwell, RD
Fulton, JA
Edwards, JR
Diskin, GS
AF Busa, Kristin M.
Rice, Brian E.
McDaniel, James C.
Goyne, Christopher P.
Rockwell, Robert D.
Fulton, Jesse A.
Edwards, Jack R.
Diskin, Glenn S.
TI Scramjet Combustion Efficiency Measurement via Tomographic Absorption
Spectroscopy and Particle Image Velocimetry
SO AIAA JOURNAL
LA English
DT Article
ID DUAL-MODE SCRAMJET; DIODE-LASER ABSORPTION; PERFORMANCE
AB The combustion efficiency of a scramjet is a metric that evaluates the overall performance of the engine. Until recently, combustion efficiency was measured using indirect approaches such as a one-dimensional control volume calculation or a calorimeter and wall pressure tap measurements. A novel nonintrusive direct approach for the measurement of combustion efficiency is presented that combines the optical diagnostic techniques tunable diode laser absorption tomography and stereoscopic particle image velocimetry. Experimental results are presented for measurements of the University of Virginia's Supersonic Combustion Facility in both the scram and ram-modes of operation. The tunablediode-laser-absorption-tomography/stereoscopic-particle-image-velocimetry method directly measures the converted hydrogen (via water vapor) mass flow rate exiting the dual-mode scramjet and compares this to the facility-measured injected hydrogen fuel mass flow rate. A complementary computational fluid dynamics study was performed and results are available for the scram-mode operating condition. The results reported show excellent agreement between the tunable-diode-laser-absorption-tomography/stereoscopic-particle-image-velocimetry-measured combustion efficiency and the computational-fluid-dynamics-predicted combustion efficiency for the scram-mode of operation, which are both near 99%. The tunable-diode-laser-absorption-tomography/stereoscopic-particle-image-velocimetry-measured combustion efficiency for the ram-mode of operation is shown to be lower than that of the scram-mode operation: at 79%.
C1 [Busa, Kristin M.] US Air Force, Res Lab, High Speed Syst Div, AFRL RQHF, 2130 Eighth Street, Wright Patterson AFB, OH 45433 USA.
[Rice, Brian E.] US Air Force, Res Lab, AFRL RQHX, High Speed Syst Div, 676 Second Street, Arnold AFB, TN 37389 USA.
[McDaniel, James C.; Goyne, Christopher P.; Rockwell, Robert D.] Univ Virginia, Mech & Aerosp Engn, Charlottesville, VA 22904 USA.
[Fulton, Jesse A.] Sandia Natl Labs, Aerosp Syst Anal, Mail Stop 1162,1515 Eubank, Albuquerque, NM 87185 USA.
[Edwards, Jack R.] North Carolina State Univ, Mech & Aerosp Engn, Raleigh, NC 27695 USA.
[Diskin, Glenn S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Mail Stop 483, Hampton, VA 23681 USA.
RP Busa, KM (reprint author), US Air Force, Res Lab, High Speed Syst Div, AFRL RQHF, 2130 Eighth Street, Wright Patterson AFB, OH 45433 USA.
FU National Center for Hypersonic Combined Cycle Propulsion grant
[FA9550-09-1-0611]; U.S. Air Force Office of Scientific Research; NASA
[NNL11AB32P]; National Science Foundation
FX This research was supported by the National Center for Hypersonic
Combined Cycle Propulsion grant FA9550-09-1-0611, which was supported by
NASA and the U.S. Air Force Office of Scientific Research (Richard
Gaffney, Aaron Auslender, and Chiping Li as Technical Monitors); and by
NASA contract NNL11AB32P (Richard Gaffney as Technical Monitor). K.M.
Busa would like to acknowledge fellowship support from the National
Science Foundation. The authors also thank Roger Reynolds for operation
of the University of Virginia's Supersonic Combustion Facility and
fabrication of the tunable diode laser absorption tomography hardware.
NR 24
TC 1
Z9 1
U1 3
U2 3
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
EI 1533-385X
J9 AIAA J
JI AIAA J.
PD AUG
PY 2016
VL 54
IS 8
BP 2463
EP 2471
DI 10.2514/1.J054662
PG 9
WC Engineering, Aerospace
SC Engineering
GA DT2EI
UT WOS:000381293200021
ER
PT J
AU Sirbu, D
Kim, Y
Kasdin, NJ
Vanderbei, RJ
AF Sirbu, Dan
Kim, Yunjong
Kasdin, N. Jeremy
Vanderbei, Robert J.
TI Diffraction-based sensitivity analysis for an external occulter
laboratory demonstration
SO APPLIED OPTICS
LA English
DT Article
ID DENSITY-FUNCTION; PLANETS
AB An external flower-shaped occulter flying in formation with a space telescope can theoretically provide sufficient starlight suppression to enable direct imaging of an Earth-like planet. Occulter shapes are scaled to enable experimental validation of their performance at laboratory dimensions. Previous experimental results have shown promising performance but have not realized the full theoretical potential of occulter designs. Here, we develop a two-dimensional diffraction model for optical propagations for occulters incorporating experimental errors. We perform a sensitivity analysis, and comparison with experimental results from a scaled-occulter testbed validates the optical model to the 10(-10) contrast level. The manufacturing accuracy along the edge of the occulter shape is identified as the limiting factor to achieving the theoretical potential of the occulter design. This hypothesis is experimentally validated using a second occulter mask manufactured with increased edge feature accuracy and resulting in a measured contrast level approaching the 10(-12) level-a better than one order of magnitude improvement in performance. (C) 2016 Optical Society of America.
C1 [Sirbu, Dan; Kim, Yunjong; Kasdin, N. Jeremy; Vanderbei, Robert J.] Princeton Univ, High Contrast Imaging Lab, Mech & Aerosp Engn, Princeton, NJ 08544 USA.
[Sirbu, Dan] NASA, Ames Res Ctr, Mountain View, CA 94035 USA.
RP Sirbu, D (reprint author), Princeton Univ, High Contrast Imaging Lab, Mech & Aerosp Engn, Princeton, NJ 08544 USA.; Sirbu, D (reprint author), NASA, Ames Res Ctr, Mountain View, CA 94035 USA.
EM dan.sirbu@nasa.gov
FU National Aeronautics and Space Administration (NASA) [NNX09AB97G];
Technology Demonstration for Exoplanet Missions grant [NNX14AQ63G]; NASA
Postdoctoral Program Fellowship; California Institute of Technology
(Caltech) [1430187]; Natural Sciences and Engineering Research Council
of Canada (NSERC); U.S. Office of Naval Research (ONR) [N000141612162]
FX National Aeronautics and Space Administration (NASA) (NNX09AB97G, Earth
& Space Science Fellowship), a Technology Demonstration for Exoplanet
Missions grant (NNX14AQ63G), and a NASA Postdoctoral Program Fellowship;
California Institute of Technology (Caltech) (1430187); Natural Sciences
and Engineering Research Council of Canada (NSERC); U.S. Office of Naval
Research (ONR) (N000141612162).
NR 31
TC 0
Z9 0
U1 0
U2 0
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD AUG 1
PY 2016
VL 55
IS 22
BP 6083
EP 6094
DI 10.1364/AO.55.006083
PG 12
WC Optics
SC Optics
GA DS4HP
UT WOS:000380742300036
PM 27505392
ER
PT J
AU Leon, JJD
Norris, KJ
Hartnett, RJ
Garrett, MP
Tompa, GS
Kobayashi, NP
AF Leon, Juan J. Diaz
Norris, Kate J.
Hartnett, Ryan J.
Garrett, Matthew P.
Tompa, Gary S.
Kobayashi, Nobuhiko P.
TI Nonlinear current-voltage characteristics based on semiconductor
nanowire networks enable a new concept in thermoelectric device
optimization
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID INDIUM-PHOSPHIDE NANOWIRES; SILICON NANOWIRES; THERMAL-CONDUCTIVITY;
SOLAR-CELLS; GROWTH; PERFORMANCE; EFFICIENCY; TRANSPORT; SHELL; CORE
AB Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Delta T - T-hot - T-cold, T-hot: hot side temperature, T-cold: cold side temperature) with respect to the average temperature (T). While the resistance of TE devices changes as Delta T and/or T change, the current-voltage (I-V) characteristics have consistently been shown to remain linear, which clips generated electric power (P-gen) within the given open-circuit voltage (V-OC) and short-circuit current (I-SC). This P-gen clipping is altered when an appropriate nonlinearity is introduced to the I-V characteristics-increasing P-gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I-V characteristics. In this paper, the concept of a unique TE device with nonlinear I-V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I-V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P-gen that is more than 25 times larger than those of comparable devices with linear I-V characteristics. The plausible causes of the nonlinear I-V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P-gen of TE devices made of semiconductors.
C1 [Leon, Juan J. Diaz; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA.
[Leon, Juan J. Diaz; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, NASA Ames Res Ctr, Nanostruct Energy Convers Technol & Res NECTAR, Adv Studies Labs, Moffett Field, CA 94035 USA.
[Tompa, Gary S.] Struct Mat Ind Inc, Piscataway, NJ USA.
RP Leon, JJD (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA.; Leon, JJD (reprint author), Univ Calif Santa Cruz, NASA Ames Res Ctr, Nanostruct Energy Convers Technol & Res NECTAR, Adv Studies Labs, Moffett Field, CA 94035 USA.
EM jdiazleo@ucsc.edu
FU NASA [SBIR NNX11CE14P]; National Science Foundation Graduate Research
Fellowship [DGE-0809125]; Semiconductor Research Corporation CSR fund
FX This work was supported by NASA SBIR NNX11CE14P. The authors are
grateful to HP laboratories and the MACS facility (Moffett Field,
California) at Advanced Studies Laboratories, University of California
Santa Cruz, and NASA Ames Research Center for continuous support on
analytical equipment. This material is based on work supported by the
National Science Foundation Graduate Research Fellowship under Grant No.
DGE-0809125. Support by Semiconductor Research Corporation CSR fund (Dr.
Victor Zhirnov) is also highly appreciated.
NR 47
TC 0
Z9 0
U1 9
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
EI 1432-0630
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD AUG
PY 2016
VL 122
IS 8
AR 741
DI 10.1007/s00339-016-0260-z
PG 9
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DS3FC
UT WOS:000380667500027
ER
PT J
AU Cowperthwaite, PS
Berger, E
Soares-Santos, M
Annis, J
Brout, D
Brown, DA
Buckley-Geer, E
Cenko, SB
Chen, HY
Chornock, R
Diehl, HT
Doctor, Z
Drlica-Wagner, A
Drout, MR
Farr, B
Finley, DA
Foley, RJ
Fong, W
Fox, DB
Frieman, J
Garcia-Bellido, J
Gill, MSS
Gruendl, RA
Herner, K
Holz, DE
Kasen, D
Kessler, R
Lin, H
Margutti, R
Marriner, J
Matheson, T
Metzger, BD
Neilsen, EH
Quataert, E
Rest, A
Sako, M
Scolnic, D
Smith, N
Sobreira, F
Strampelli, GM
Villar, VA
Walker, AR
Wester, W
Williams, PKG
Yanny, B
Abbott, TMC
Abdalla, FB
Allam, S
Armstrong, R
Bechtol, K
Benoit-Levy, A
Bertin, E
Brooks, D
Burke, DL
Rosell, AC
Kind, MC
Carretero, J
Castander, FJ
Cunha, CE
D'Andrea, CB
da Costa, LN
Desai, S
Dietrich, JP
Evrard, AE
Neto, AF
Fosalba, P
Gerdes, DW
Giannantonio, T
Goldstein, DA
Gruen, D
Gutierrez, G
Honscheid, K
James, DJ
Johnson, MWG
Johnson, MD
Krause, E
Kuehn, K
Kuropatkin, N
Lima, M
Maia, MAG
Marshall, JL
Menanteau, F
Miquel, R
Mohr, JJ
Nichol, RC
Nord, B
Ogando, R
Plazas, AA
Reil, K
Romer, AK
Sanchez, E
Scarpine, V
Sevilla-Noarbe, I
Smith, RC
Suchyta, E
Tarle, G
Thomas, D
Thomas, RC
Tucker, DL
Weller, J
AF Cowperthwaite, P. S.
Berger, E.
Soares-Santos, M.
Annis, J.
Brout, D.
Brown, D. A.
Buckley-Geer, E.
Cenko, S. B.
Chen, H. Y.
Chornock, R.
Diehl, H. T.
Doctor, Z.
Drlica-Wagner, A.
Drout, M. R.
Farr, B.
Finley, D. A.
Foley, R. J.
Fong, W.
Fox, D. B.
Frieman, J.
Garcia-Bellido, J.
Gill, M. S. S.
Gruendl, R. A.
Herner, K.
Holz, D. E.
Kasen, D.
Kessler, R.
Lin, H.
Margutti, R.
Marriner, J.
Matheson, T.
Metzger, B. D.
Neilsen, E. H., Jr.
Quataert, E.
Rest, A.
Sako, M.
Scolnic, D.
Smith, N.
Sobreira, F.
Strampelli, G. M.
Villar, V. A.
Walker, A. R.
Wester, W.
Williams, P. K. G.
Yanny, B.
Abbott, T. M. C.
Abdalla, F. B.
Allam, S.
Armstrong, R.
Bechtol, K.
Benoit-Levy, A.
Bertin, E.
Brooks, D.
Burke, D. L.
Carnero Rosell, A.
Kind, M. Carrasco
Carretero, J.
Castander, F. J.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
Desai, S.
Dietrich, J. P.
Evrard, A. E.
Fausti Neto, A.
Fosalba, P.
Gerdes, D. W.
Giannantonio, T.
Goldstein, D. A.
Gruen, D.
Gutierrez, G.
Honscheid, K.
James, D. J.
Johnson, M. W. G.
Johnson, M. D.
Krause, E.
Kuehn, K.
Kuropatkin, N.
Lima, M.
Maia, M. A. G.
Marshall, J. L.
Menanteau, F.
Miquel, R.
Mohr, J. J.
Nichol, R. C.
Nord, B.
Ogando, R.
Plazas, A. A.
Reil, K.
Romer, A. K.
Sanchez, E.
Scarpine, V.
Sevilla-Noarbe, I.
Smith, R. C.
Suchyta, E.
Tarle, G.
Thomas, D.
Thomas, R. C.
Tucker, D. L.
Weller, J.
CA DES Collaboration
TI A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE
EVENT GW151226
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE binaries: close; catalogs; gravitational waves; stars: neutron; surveys
ID ENERGY CAMERA SEARCH; FOLLOW-UP; SUPERNOVA RATES; IA SUPERNOVAE;
GW150914; CURVES; PHOTOMETRY; PAN-STARRS1; AFTERGLOWS; LMC
AB We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2-24 days after the GW detection. We achieve 5 sigma point-source limiting magnitudes of i approximate to 21.7 and z approximate to 21.5, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with greater than or similar to 3 sigma significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of i - z approximate to 0.3 mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.
C1 [Cowperthwaite, P. S.; Berger, E.; Drout, M. R.; Villar, V. A.; Williams, P. K. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Soares-Santos, M.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Drlica-Wagner, A.; Finley, D. A.; Frieman, J.; Herner, K.; Lin, H.; Marriner, J.; Neilsen, E. H., Jr.; Wester, W.; Yanny, B.; Allam, S.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Tucker, D. L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Brout, D.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Brown, D. A.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA.
[Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Chen, H. Y.; Doctor, Z.; Frieman, J.; Kessler, R.; Scolnic, D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Chornock, R.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Clippinger Lab 251B, Athens, OH 45701 USA.
[Farr, B.; Holz, D. E.] Univ Chicago, Dept Astron & Astrophys, Dept Phys, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Farr, B.; Holz, D. E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Foley, R. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Foley, R. J.; Gruendl, R. A.; Kind, M. Carrasco; Menanteau, F.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Foley, R. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Fong, W.; Smith, N.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA.
[Fox, D. B.] Penn State Univ, Ctr Gravitat Wave & Particle Astrophys, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
[Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, 525 Davey Lab, University Pk, PA 16802 USA.
[Garcia-Bellido, J.] Univ Autonoma Madrid, CSIC, Inst Fis Teor UAM, E-28049 Madrid, Spain.
[Burke, D. L.; Cunha, C. E.; Gruen, D.; Krause, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Gill, M. S. S.; Burke, D. L.; Gruen, D.; Reil, K.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Gruendl, R. A.; Kind, M. Carrasco; Johnson, M. W. G.; Johnson, M. D.; Menanteau, F.] Natl Ctr Supercomputing Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94704 USA.
[Kasen, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94704 USA.
[Kasen, D.; Goldstein, D. A.; Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Margutti, R.] NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA.
[Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA.
[Metzger, B. D.] Columbia Univ, Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA.
[Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
[Rest, A.; Strampelli, G. M.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Sobreira, F.] Univ Estadual Paulista, Fundamental Res Inst Fis Teor, ICTP South Amer Inst, Sao Paulo, Brazil.
[Sobreira, F.; Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, Rio De Janeiro, RJ, Brazil.
[Walker, A. R.; Abbott, T. M. C.; Brooks, D.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile.
[Benoit-Levy, A.; Carnero Rosell, A.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Bechtol, K.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.
[Benoit-Levy, A.; Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carretero, J.; Castander, F. J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain.
[Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Barcelona, Spain.
[D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Evrard, A. E.; Gerdes, D. W.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Evrard, A. E.; Gerdes, D. W.; Suchyta, E.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Giannantonio, T.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Giannantonio, T.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England.
[Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
[Honscheid, K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil.
[Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain.
[Cowperthwaite, P. S.; Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany.
RP Cowperthwaite, PS (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.; Cowperthwaite, PS (reprint author), Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany.
EM pcowpert@cfa.harvard.edu
RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010;
OI Ogando, Ricardo/0000-0003-2120-1154; Cowperthwaite,
Philip/0000-0002-2478-6939; Garcia-Bellido, Juan/0000-0002-9370-8360;
Abdalla, Filipe/0000-0003-2063-4345; Sobreira,
Flavia/0000-0002-7822-0658; Neilsen, Eric/0000-0002-7357-0317
FU NSF through the Graduate Research Fellowship Program [DGE1144152]; NSF
[AST-1518052, AST-1138766]; Alfred P. Sloan Foundation; NSF CAREER
[PHY-1151836]; Kavli Institute for Cosmological Physics at the
University of Chicago through NSF [PHY-1125897]; FAS Division of
Science, Research Computing Group at Harvard University; National
Aeronautics and Space Administration; DOE; NSF (USA); MEC/MICINN/MINECO
(Spain); STFC (UK); HEFCE (UK); MINECO [AYA2012-39559, ESP2013-48274,
FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; ERC
under the EU's 7th Framework Programme [ERC 240672, 291329, 306478]
FX P.S.C. is grateful for support provided by the NSF through the Graduate
Research Fellowship Program, grant DGE1144152. R. J.F. gratefully
acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan
Foundation. D.E.H. was supported by NSF CAREER grant PHY-1151836. He
also acknowledges support from the Kavli Institute for Cosmological
Physics at the University of Chicago through NSF grant PHY-1125897 as
well as an endowment from the Kavli Foundation.r This research uses
services or data provided by the NOAO Science Archive. NOAO is operated
by the Association of Universities for Research in Astronomy (AURA),
Inc. under a cooperative agreement with the National Science Foundation.
The computations in this Letter were run on the Odyssey cluster
supported by the FAS Division of Science, Research Computing Group at
Harvard University. This research has made use of the NASA/IPAC
Extragalactic Database (NED), which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration. Light curve data for
PS15cdi were obtained from The Open Supernova Catalog (Guillochon et al.
2016). Some of the results in this Letter have been derived using the
HEALPix package (Gorski et al. 2005).r Funding for the DES Projects has
been provided by the DOE and NSF (USA), MEC/MICINN/MINECO (Spain), STFC
(UK), HEFCE (UK). NCSA (UIUC), KICP (U. Chicago), CCAPP (Ohio State),
MIFPA (Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), DFG (Germany) and the
Collaborating Institutions in the Dark Energy Survey.r The DES Data
Management System is supported by the NSF under grant number
AST-1138766. The DES participants from Spanish institutions are
partially supported by MINECO under grants AYA2012-39559, ESP2013-48274,
FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234.
Research leading to these results has received funding from the ERC
under the EU's 7th Framework Programme including grants ERC 240672,
291329, and 306478.
NR 45
TC 3
Z9 3
U1 5
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD AUG 1
PY 2016
VL 826
IS 2
AR L29
DI 10.3847/2041-8205/826/2/L29
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DT2TN
UT WOS:000381334800013
ER
PT J
AU Skemer, AJ
Morley, CV
Allers, KN
Geballe, TR
Marley, MS
Fortney, JJ
Faherty, JK
Bjoraker, GL
Lupu, R
AF Skemer, Andrew J.
Morley, Caroline V.
Allers, Katelyn N.
Geballe, Thomas R.
Marley, Mark S.
Fortney, Jonathan J.
Faherty, Jacqueline K.
Bjoraker, Gordon L.
Lupu, Roxana
TI THE FIRST SPECTRUM OF THE COLDEST BROWN DWARF
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE brown dwarfs
ID EXTRASOLAR GIANT PLANETS; T-DWARFS; THERMAL STRUCTURE; WATER CLOUDS;
ATMOSPHERES; JUPITERS; CHEMISTRY; DISCOVERY; DEUTERIUM; COLORS
AB The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs-near-infrared spectroscopy-is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 mu m spectrum, the same bandpass long used to study Jupiter's deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter's. The spectrum quality is high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter's atmosphere, but now on an extrasolar world.
C1 [Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA.
[Allers, Katelyn N.] Bucknell Univ, 701 Moore Ave, Lewisburg, PA 17837 USA.
[Geballe, Thomas R.] Gemini Observ, 670 North Aohoku Pl, Hilo, HI 96720 USA.
[Marley, Mark S.; Lupu, Roxana] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Faherty, Jacqueline K.] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA.
[Faherty, Jacqueline K.] Natl Museum Amer Hist, Cent Pk West & 79th St, New York, NY 10024 USA.
[Bjoraker, Gordon L.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
RP Skemer, AJ (reprint author), Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA.
OI Marley, Mark/0000-0002-5251-2943
NR 37
TC 2
Z9 2
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD AUG 1
PY 2016
VL 826
IS 2
AR L17
DI 10.3847/2041-8205/826/2/L17
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DT2TN
UT WOS:000381334800001
ER
PT J
AU Walton, DJ
Middleton, MJ
Pinto, C
Fabian, AC
Bachetti, M
Barret, D
Brightman, M
Fuerst, F
Harrison, FA
Miller, JM
Stern, D
AF Walton, D. J.
Middleton, M. J.
Pinto, C.
Fabian, A. C.
Bachetti, M.
Barret, D.
Brightman, M.
Fuerst, F.
Harrison, F. A.
Miller, J. M.
Stern, D.
TI AN IRON K COMPONENT TO THE ULTRAFAST OUTFLOW IN NGC 1313 X-1
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE black hole physics; X-rays: binaries; X-rays: individual (NGC 1313 X-1)
ID X-RAY SOURCES; XMM-NEWTON OBSERVATIONS; MASS BLACK-HOLES; HOLMBERG IX
X-1; BROAD-BAND; DISK WIND; ACCRETION DISKS; EMISSION-LINE;
NEUTRON-STAR; NUSTAR
AB We present the detection of an absorption feature at E = 8.77(+0.06)(+0.05) keV in the combined X-ray spectrum of the ultraluminous X-ray source NGC 1313 X-1 observed with XMM-Newton and NuSTAR, significant at the 3 sigma level. If associated with blueshifted ionized iron, the implied outflow velocity is similar to 0.2c for Fe XXVI, or similar to 0.25c for Fe XXV. These velocities are similar to the ultrafast outflow seen in absorption recently discovered in this source at lower energies by XMM-Newton, and we therefore conclude that this is an iron component to the same outflow. Photoionization modeling marginally prefers the Fe XXV solution, but in either case the outflow properties appear to be extreme, potentially supporting a super-Eddington hypothesis for NGC 1313 X-1.
C1 [Walton, D. J.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Walton, D. J.; Brightman, M.; Fuerst, F.; Harrison, F. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA.
[Middleton, M. J.; Pinto, C.; Fabian, A. C.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Bachetti, M.] INAF, Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, CA, Italy.
[Barret, D.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France.
[Barret, D.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Miller, J. M.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 49109 USA.
RP Walton, DJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.; Walton, DJ (reprint author), CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA.
OI Pinto, Ciro/0000-0003-2532-7379
FU STFC Ernest Rutherford fellowship; ERC Advanced Grant [340442]; French
Space Agency (CNES); NASA; ESA Member States
FX The authors would like to thank the anonymous referee for their
extremely timely and positive feedback, which helped improve the final
manuscript. M.J.M. acknowledges support from an STFC Ernest Rutherford
fellowship, C.P. and A.C.F. acknowledge support from ERC Advanced Grant
340442, and D.B. acknowledges financial support from the French Space
Agency (CNES). This research has made use of data obtained with NuSTAR,
a project led by Caltech, funded by NASA, and managed by NASA/JPL, and
has utilized the NUSTARDAS software package, jointly developed by the
ASDC (Italy) and Caltech (USA). This research has also made use of data
obtained with XMM-Newton, an ESA science mission with instruments and
contributions directly funded by ESA Member States.
NR 43
TC 2
Z9 2
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD AUG 1
PY 2016
VL 826
IS 2
AR L26
DI 10.3847/2041-8205/826/2/L26
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DT2TN
UT WOS:000381334800010
ER
PT J
AU Chang, KE
Hsiao, TC
Hsu, NC
Lin, NH
Wang, SH
Liu, GR
Liu, CY
Lin, TH
AF Chang, Kuo-En
Hsiao, Ta-Chih
Hsu, N. Christina
Lin, Neng-Huei
Wang, Sheng-Hsiang
Liu, Gin-Rong
Liu, Chian-Yi
Lin, Tang-Huang
TI Mixing weight determination for retrieving optical properties of
polluted dust with MODIS and AERONET data
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE mixing weight; dust-soot aerosols; MODIS; AOD; SSA; AERONET; spatial
distribution
ID AEROSOL PROPERTIES; SCATTERING PROPERTIES; SURFACE REFLECTIVITY; MISR
AEROSOL; PARTICLES; EMISSIONS; PRODUCTS; EGYPT; RANGE; DEPTH
AB In this study, an approach in determining effective mixing weight of soot aggregates from dust-soot aerosols is proposed to improve the accuracy of retrieving properties of polluted dusts by means of satellite remote sensing. Based on a pre-computed database containing several variables (such as wavelength, refractive index, soot mixing weight, surface reflectivity, observation geometries and aerosol optical depth (AOD)), the fan-shaped look-up tables can be drawn out accordingly for determining the mixing weights, AOD and single scattering albedo (SSA) of polluted dusts simultaneously with auxiliary regional dust properties and surface reflectivity. To validate the performance of the approach in this study, 6 cases study of polluted dusts (dust-soot aerosols) in Lower Egypt and Israel were examined with the ground-based measurements through AErosol RObotic NETwork (AERONET). The results show that the mean absolute differences could be reduced from 32.95% to 6.56% in AOD and from 2.67% to 0.83% in SSA retrievals for MODIS aerosol products when referenced to AERONET measurements, demonstrating the soundness of the proposed approach under different levels of dust loading, mixing weight and surface reflectivity. Furthermore, the developed algorithm is capable of providing the spatial distribution of the mixing weights and removing the requirement to assume that the dust plume properties are uniform. The case study further shows the spatially variant dust-soot mixing weight would improve the retrieval accuracy in AOD(mixture) and SSA(mixture) about 10.0% and 1.4% respectively.
C1 [Chang, Kuo-En; Lin, Tang-Huang] Natl Cent Univ, Grad Inst Space Sci, Taoyuan 32001, Taiwan.
[Hsiao, Ta-Chih] Natl Cent Univ, Grad Inst Environm Engn, Taoyuan 32001, Taiwan.
[Hsu, N. Christina] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Lin, Neng-Huei; Wang, Sheng-Hsiang; Liu, Gin-Rong; Liu, Chian-Yi] Natl Cent Univ, Dept Atmospher Sci, Taoyuan 32001, Taiwan.
[Liu, Gin-Rong; Liu, Chian-Yi; Lin, Tang-Huang] Natl Cent Univ, Ctr Space & Remote Sensing Res, Taoyuan 32001, Taiwan.
RP Lin, TH (reprint author), Natl Cent Univ, Grad Inst Space Sci, Taoyuan 32001, Taiwan.; Lin, TH (reprint author), Natl Cent Univ, Ctr Space & Remote Sensing Res, Taoyuan 32001, Taiwan.
EM thlin@csrsr.ncu.edu.tw
OI Liu, Chian-Yi/0000-0003-1725-4405; Hsiao, Ta-Chih/0000-0003-4103-6272
FU Taiwan Ministry of Science and Technology [MOST 103-2111-M-008-002, MOST
104-2111-M-008-007]; College of Geosciences at Texas AM University; NSF
[ATM-0803779]
FX This work was financially supported by the Taiwan Ministry of Science
and Technology Grant MOST 103-2111-M-008-002 and MOST
104-2111-M-008-007. We are grateful to being partially supported by the
College of Geosciences at Texas A&M University and NSF Grant
ATM-0803779, as well as to Professor Ping Yang at Texas A&M University
for providing the single-scattering properties of triaxial-ellipsoidal
mineral dust in this study.
NR 45
TC 0
Z9 0
U1 9
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD AUG
PY 2016
VL 11
IS 8
AR 085002
DI 10.1088/1748-9326/11/8/085002
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DT9NH
UT WOS:000381828300019
ER
PT J
AU Park, T
Ganguly, S
Tommervik, H
Euskirchen, ES
Hogda, KA
Karlsen, SR
Brovkin, V
Nemani, RR
Myneni, RB
AF Park, Taejin
Ganguly, Sangram
Tommervik, Hans
Euskirchen, Eugenie S.
Hogda, Kjell-Arild
Karlsen, Stein Rune
Brovkin, Victor
Nemani, Ramakrishna R.
Myneni, Ranga B.
TI Changes in growing season duration and productivity of northern
vegetation inferred from long-term remote sensing data
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE photosynthetically active growing season; gross primary productivity;
boreal and arctic; remote sensing; climate change; AVHRR; MODIS
ID GROSS PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; MONITORING VEGETATION;
HIGH-LATITUDES; ECOLOGICAL RESPONSES; ARCTIC VEGETATION; DATA SET;
PHENOLOGY; NDVI; AMERICA
AB Monitoring and understanding climate-induced changes in the boreal and arctic vegetation is critical to aid in prognosticating their future. Weused a 33 year (1982-2014) long record of satellite observations to robustly assess changes in metrics of growing season (onset: SOS, end: EOS and length: LOS) and seasonal total gross primary productivity. Particular attention was paid to evaluating the accuracy of these metrics by comparing them to multiple independent direct and indirect growing season and productivity measures. These comparisons reveal that the derived metrics capture the spatio-temporal variations and trends with acceptable significance level (generally p < 0.05). We find that LOS has lengthened by 2.60 d dec(-1) (p < 0.05) due to an earlier onset of SOS (-1.61 d dec(-1), p < 0.05) and a delayed EOS (0.67 d dec(-1), p < 0.1) at the circumpolar scale over the past three decades. Relatively greater rates of changes in growing season were observed in Eurasia (EA) and in boreal regions than in North America (NA) and the arctic regions. However, this tendency of earlier SOS and delayed EOS was prominent only during the earlier part of the data record (1982-1999). During the later part (2000-2014), this tendency was reversed, i.e. delayed SOS and earlier EOS. As for seasonal total productivity, we find that 42.0% of northern vegetation shows a statistically significant (p < 0.1) greening trend over the last three decades. This greening translates to a 20.9% gain in productivity since 1982. In contrast, only 2.5% of northern vegetation shows browning, or a 1.2% loss of productivity. These trends in productivity were continuous through the period of record, unlike changes in growing season metrics. Similarly, we find relatively greater increasing rates of productivity in EA and in arctic regions than in NA and the boreal regions. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation during last three decades.
C1 [Park, Taejin; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA.
[Ganguly, Sangram] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA.
[Tommervik, Hans] Norwegian Inst Nat Res, FRAM High North Ctr Climate & Environm, POB 6606, N-9296 Tromso, Norway.
[Euskirchen, Eugenie S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.
[Hogda, Kjell-Arild; Karlsen, Stein Rune] Norut, POB 6434, N-9294 Tromso, Norway.
[Brovkin, Victor] Max Planck Inst Meteorol, Hamburg, Germany.
[Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA.
RP Park, T (reprint author), Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA.
EM parktj@bu.edu
RI Brovkin, Victor/C-2803-2016; Myneni, Ranga/F-5129-2012
OI Brovkin, Victor/0000-0001-6420-3198;
FU NASA Earth Science Division [NNX14AP80A]; ArcticBiomass Project
(Norway-USA network project - Research Council of Norway) [RCN 227064]
FX This work was funded by the NASA Earth Science Division (Grant No.
NNX14AP80A) and the ArcticBiomass (Grant No. RCN 227064) Project
(Norway-USA network project funded by the Research Council of Norway).
We gratefully acknowledge the NASA GIMMS group and FLUXNET community for
sharing the invaluable datasets (i.e., NDVI3g and fair-use eddy
covariance datasets, respectively) and thank Sungho Choi and Jian Bi for
helpful comments and guides.
NR 56
TC 1
Z9 1
U1 33
U2 42
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD AUG
PY 2016
VL 11
IS 8
AR 084001
DI 10.1088/1748-9326/11/8/084001
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DT9NH
UT WOS:000381828300002
ER
PT J
AU Sung, MK
Kim, BM
Baek, EH
Lim, YK
Kim, SJ
AF Sung, Mi-Kyung
Kim, Baek-Min
Baek, Eun-Hyuk
Lim, Young-Kwon
Kim, Seong-Joong
TI Arctic-North Pacific coupled impacts on the late autumn cold in North
America
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE Pacific decadal oscillation; arctic warming; Arctic-midlatitude
interaction
ID EXTRATROPICAL SST ANOMALIES; DECADAL OSCILLATION; ATMOSPHERIC
CIRCULATION; CLIMATE-CHANGE; UNITED-STATES; SEA-ICE; WINTER; HEMISPHERE;
TEMPERATURE; VARIABILITY
AB The Pacific decadal oscillation (PDO) is known to bring an anomalously cold (warm) period to southeastern (northwestern) North America during the cold season of its positive phase through a Rossby wave linkage. This study provides evidence that the remote connection between the North Pacific and the downstream temperature over central North America is strengthened by the warm arctic conditions over the Chukchi and East Siberian Sea, especially in the late autumn season. The modulation effect of the Arctic manifests itself as an altered Rossby wave response to a transient vorticity forcing that results from an equatorward storm track shift, which is induced collaboratively by the PDO and the warm Arctic. This observational finding is supported by two independent modeling experiments: (1) an idealized coupled GCM experiment being nudged toward the warm arctic surface condition and (2) a simple stationary wave model experiment forced by transient eddy forcing.
C1 [Sung, Mi-Kyung; Kim, Baek-Min; Baek, Eun-Hyuk; Kim, Seong-Joong] Korea Polar Res Inst, Inchon, South Korea.
[Lim, Young-Kwon] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Goddard Earth Sci Technol & Res,IM Syst Grp, Greenbelt, MD USA.
RP Kim, BM (reprint author), Korea Polar Res Inst, Inchon, South Korea.
EM bmkim@kopri.re.kr
FU Korean government [KMIPA2015-2093 (PN16040)]; 'Development and
Application of the Korea Polar Prediction System (KPOPS) for Climate
Change and Weather Disaster' project [PE16100]
FX This study was supported by KMIPA2015-2093 (PN16040) of the Korean
government and 'Development and Application of the Korea Polar
Prediction System (KPOPS) for Climate Change and Weather Disaster
(PE16100)' project.
NR 49
TC 0
Z9 0
U1 10
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD AUG
PY 2016
VL 11
IS 8
AR 084016
DI 10.1088/1748-9326/11/8/084016
PG 8
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DT9NH
UT WOS:000381828300017
ER
PT J
AU Jungbluth, SP
Bowers, RM
Lin, HT
Cowen, JP
Rappe, MS
AF Jungbluth, Sean P.
Bowers, Robert M.
Lin, Huei-Ting
Cowen, James P.
Rappe, Michael S.
TI Novel microbial assemblages inhabiting crustal fluids within mid-ocean
ridge flank subsurface basalt
SO ISME JOURNAL
LA English
DT Article
ID DE-FUCA RIDGE; HYDROTHERMAL CIRCULATION; OCEANIC-CRUST; SEA-FLOOR;
BASEMENT FLUIDS; EASTERN FLANK; BIOSPHERE; DIVERSITY; SEDIMENT;
SUBSEAFLOOR
AB Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity.
C1 [Jungbluth, Sean P.; Rappe, Michael S.] Univ Hawaii, Hawaii Inst Marine Biol, SOEST, POB 1346, Kaneohe, HI 96744 USA.
[Jungbluth, Sean P.; Lin, Huei-Ting; Cowen, James P.] Univ Hawaii, Dept Oceanog, SOEST, Honolulu, HI 96822 USA.
[Bowers, Robert M.] Univ Hawaii, NASA, Astrobiol Inst, IfA, Honolulu, HI 96822 USA.
[Bowers, Robert M.] DOE Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA.
RP Rappe, MS (reprint author), Univ Hawaii, Hawaii Inst Marine Biol, SOEST, POB 1346, Kaneohe, HI 96744 USA.
EM rappe@hawaii.edu
RI Jungbluth, Sean/A-9054-2012
OI Jungbluth, Sean/0000-0001-9265-8341
FU National Science Foundation Microbial Observatories [MCB06-04014];
Schlanger Ocean Drilling Fellowship; National Science Foundation-funded
Science and Technology Centers of Excellence; UH NASA Astrobiology
Institute; Center for Dark Energy Biosphere Investigations (C-DEBI)
[OCE-0939564]; NSF
FX This study is dedicated to the memory of our friend, colleague, mentor
and co-author, James P Cowen, whose determination and enthusiasm were
driving forces in the adaptation of seafloor borehole observatories for
microbiology. We thank the captain and crew, A Fisher, K Becker, CG
Wheat and other members of the science teams on board R/V Atlantis
cruises AT15-35, AT15-51, AT15-66 and AT18-07. We also thank the pilots
and crew of human-occupied vehicle Alvin and remote-operated vehicle
Jason II and Brian Glazer, Ryan Matsumoto, Michael Matzinger, Michelle
Jungbluth, Alberto Robador, Jennifer Murphy, Chih-Chiang Hseih, Natalie
Hamada, Karen Meech and Joshua Bninski for sampling, technical and other
assistance. This research was supported by funding from National Science
Foundation Microbial Observatories grant MCB06-04014 (to JC and MSR), a
Schlanger Ocean Drilling Fellowship (to SPJ), which is part of the
NSF-sponsored US Science Support Program for IODP that is administered
by the Consortium for Ocean Leadership, the UH NASA Astrobiology
Institute and the Center for Dark Energy Biosphere Investigations
(C-DEBI) (OCE-0939564), a National Science Foundation-funded Science and
Technology Centers of Excellence. This study used samples and data
provided by the Integrated Ocean Drilling Program. This is SOEST
contribution 9539, HIMB contribution 1636 and C-DEBI contribution 289.
NR 57
TC 1
Z9 1
U1 7
U2 7
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD AUG
PY 2016
VL 10
IS 8
BP 2033
EP 2047
DI 10.1038/ismej.2015.248
PG 15
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA DS7JN
UT WOS:000380959800020
PM 26872042
ER
PT J
AU Crucian, B
Johnston, S
Mehta, S
Stowe, R
Uchakin, P
Quiriarte, H
Pierson, D
Laudenslager, ML
Sams, C
AF Crucian, Brian
Johnston, Smith
Mehta, Satish
Stowe, Raymond
Uchakin, Peter
Quiriarte, Heather
Pierson, Duane
Laudenslager, Mark L.
Sams, Clarence
TI Acaseofpersistent skinrashandrhinitis with immune system dysregulation
onboard the International Space Station
SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE
LA English
DT Letter
ID VARICELLA-ZOSTER-VIRUS; LONG-DURATION SPACEFLIGHT; EPSTEIN-BARR-VIRUS;
CHRONIC STRESS; HERPES-ZOSTER; REACTIVATION; ASTRONAUTS; SALIVA;
RESPONSES; FLIGHT
C1 [Crucian, Brian; Pierson, Duane] NASA, Johnson Space Ctr, Biomed Res & Environm Sci, Houston, TX USA.
[Johnston, Smith; Sams, Clarence] NASA, Johnson Space Ctr, Space & Clin Operat, Houston, TX USA.
[Mehta, Satish; Quiriarte, Heather] JES Tech, Biomed Res & Environm Sci, Houston, TX USA.
[Stowe, Raymond] Microgen Labs, Immunol Res, La Marque, TX USA.
[Uchakin, Peter] Mercer Univ, Dept Internal Med, Macon, GA 31207 USA.
[Laudenslager, Mark L.] Univ Colorado, Denver Anschutz Med Campus, Behav Immunol & Endocrinol Lab, Denver, CO 80202 USA.
RP Crucian, B (reprint author), NASA, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM brian.crucian-1@nasa.gov
OI Laudenslager, Mark/0000-0002-9815-3026
NR 23
TC 1
Z9 1
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2213-2198
EI 2213-2201
J9 J ALLER CL IMM-PRACT
JI J. Allergy Clin. Immunol.-Pract.
PD AUG
PY 2016
VL 4
IS 4
BP 759
EP +
DI 10.1016/j.jaip.2015.12.021
PG 12
WC Allergy; Immunology
SC Allergy; Immunology
GA DU0SZ
UT WOS:000381916100033
PM 27036643
ER
PT J
AU Datiles, MB
Ferris, F
Ansari, RR
Zigler, JS
AF Datiles, Manuel B., III
Ferris, Frederick, III
Ansari, Rafat R.
Zigler, J. Samuel, Jr.
TI Re: Datiles et al.: Longitudinal study of age-related cataract using
dynamic light scattering: loss of alpha-crystallin leads to nuclear
cataract development (Ophthalmology 2016;123:248-54) REPLY
SO OPHTHALMOLOGY
LA English
DT Letter
C1 [Datiles, Manuel B., III; Ferris, Frederick, III] NEI, Off Clin Director, NIH, 10 Ctr Dr,Bldg 10,Room 1, Bethesda, MD 20892 USA.
[Ansari, Rafat R.] NASA, Glenn Res Ctr, Cleveland, OH USA.
[Zigler, J. Samuel, Jr.] Johns Hopkins Univ Hosp, Wilmer Eye Inst, Baltimore, MD 21287 USA.
RP Datiles, MB (reprint author), NEI, Off Clin Director, NIH, 10 Ctr Dr,Bldg 10,Room 1, Bethesda, MD 20892 USA.
EM Datilesm@nei.nih.gov
NR 1
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0161-6420
EI 1549-4713
J9 OPHTHALMOLOGY
JI Ophthalmology
PD AUG
PY 2016
VL 123
IS 8
BP E48
EP E48
PG 1
WC Ophthalmology
SC Ophthalmology
GA DS4MC
UT WOS:000380754200005
PM 27450826
ER
PT J
AU Naghipour, P
Pineda, EJ
Arnold, SM
AF Naghipour, P.
Pineda, E. J.
Arnold, S. M.
TI Simulation of Lightning-Induced Delamination in Un-protected CFRP
Laminates
SO APPLIED COMPOSITE MATERIALS
LA English
DT Article
DE Lightning damage; Temperature-dependent delamination; Interlaminar
damage
ID COMPOSITES; MODELS
AB Lightning is a major cause of damage in laminated composite aerospace structures during flight. The most significant failure mode induced by lightning is delamination, which might extend well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. Therefore, it is crucial to develop a numerical tool capable of predicting the damage zone induced from a lightning strike to minimize costly repair acreage and supplement extremely expensive lightning experiments. Herein, a detailed numerical study consisting of a multidirectional composite with user-defined, temperature-dependent, interlaminar elements subjected to a lightning strike is designed, and delamination/damage expansion is studied under specified conditions. It is observed both the size and shape of the delamination zone are strongly dependent on the assumed temperature-dependent fracture toughness; the primary parameter controlling lightning-induced delamination propagation. An accurate estimation of the fracture toughness profile is crucial in order to have a reliable prediction of the delamination zone and avoid sub-critical structural failures.
C1 [Naghipour, P.] Ohio Aerosp Inst, 22800 Cedar Point Rd, Cleveland, OH 44142 USA.
[Pineda, E. J.; Arnold, S. M.] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA.
RP Naghipour, P (reprint author), Ohio Aerosp Inst, 22800 Cedar Point Rd, Cleveland, OH 44142 USA.
EM paria.naghipourghezeljeh@nasa.gov
FU NASA Atmospheric Environment Safety Technologies (AEST) Project
FX The authors would like to thank George Szatkowski and Kenneth Dudley
from NASA LaRC for providing the experimental data used in this
manuscript. This work was funded under the NASA Atmospheric Environment
Safety Technologies (AEST) Project.
NR 22
TC 0
Z9 0
U1 6
U2 8
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0929-189X
EI 1573-4897
J9 APPL COMPOS MATER
JI Appl. Compos. Mater.
PD AUG
PY 2016
VL 23
IS 4
BP 523
EP 535
DI 10.1007/s10443-016-9472-9
PG 13
WC Materials Science, Composites
SC Materials Science
GA DS3DV
UT WOS:000380664100001
ER
PT J
AU Galazka, JM
Klocko, AD
Uesaka, M
Honda, S
Selker, EU
Freitag, M
AF Galazka, Jonathan M.
Klocko, Andrew D.
Uesaka, Miki
Honda, Shinji
Selker, Eric U.
Freitag, Michael
TI Neurospora chromosomes are organized by blocks of importin
alpha-dependent heterochromatin that are largely independent of H3K9me3
SO GENOME RESEARCH
LA English
DT Article
ID DNA METHYLATION; HISTONE H3; DROSOPHILA GENOME; FACULTATIVE
HETEROCHROMATIN; NUCLEAR ARCHITECTURE; X-CHROMOSOME; CRASSA; CHROMATIN;
GENE; YEAST
AB Eukaryotic genomes are organized into chromatin domains with three-dimensional arrangements that presumably result from interactions between the chromatin constituents-proteins, DNA, and RNA-within the physical constraints of the nucleus. We used chromosome conformation capture (3C) followed by high-throughput sequencing (Hi-C) with wild-type and mutant strains of Neurospora crassa to gain insight into the role of heterochromatin in the organization and function of the genome. We tested the role of three proteins thought to be important for establishment of heterochromatin, namely, the histone H3 lysine 9 methyltransferase DIM-5, Heterochromatin Protein 1 (HP1), which specifically binds to the product of DIM-5 (trimethylated H3 lysine 9 [H3K9me3]), and DIM-3 (importin alpha), which is involved in DIM-5 localization. The average genome configuration of the wild-type strain revealed strong intra-and inter-chromosomal associations between both constitutive and facultative heterochromatic domains, with the strongest interactions among the centromeres, subtelomeres, and interspersed heterochromatin. Surprisingly, loss of either H3K9me3 or HP1 had only mild effects on heterochromatin compaction, whereas dim-3 caused more drastic changes, specifically decreasing interactions between constitutive heterochromatic domains. Thus, associations between heterochromatic regions are a major component of the chromosome conformation in Neurospora, but two widely studied key heterochromatin proteins are not necessary, implying that undefined protein factors play key roles in maintaining overall chromosome organization.
C1 [Galazka, Jonathan M.; Freitag, Michael] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA.
[Klocko, Andrew D.; Selker, Eric U.] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA.
[Uesaka, Miki; Honda, Shinji] Univ Fukui, Fac Med Sci, Dept Biochem & Bioinformat Sci, Fukui 9101193, Japan.
[Galazka, Jonathan M.] NASA, Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA.
RP Freitag, M (reprint author), Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA.
EM freitagm@cgrb.oregonstate.edu
FU National Institute of General Medical Sciences (NIH) [GM097637,
GM035690, GM093061, GM097821]; Competitive Funds in Program to
Disseminate Tenure Tracking System grant, MEXT, Japan; NASA Postdoctoral
Program fellowship
FX We thank Tereza Ormsby for validating the Delta hpo::hph strain obtained
from the Fungal Genetics Stock Center; Diana Libuda and Jackie Helm for
assistance with deconvolution microscopy; Jordan Gessaman for assistance
with nuclear membrane diameter statistics; and Ayumi Yokoyama for
technical support. We also thank members of the Freitag and Selker
laboratories for helpful comments and discussions. Funding was provided
by grants from the National Institute of General Medical Sciences (NIH)
to M.F. (GM097637), E.U.S. (GM035690 and GM093061), and A.D.K.
(GM097821), and a Competitive Funds in Program to Disseminate Tenure
Tracking System grant, MEXT, Japan, to S.H. J.M.G. was partly supported
by a NASA Postdoctoral Program fellowship.
NR 56
TC 3
Z9 3
U1 2
U2 3
PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
PI COLD SPRING HARBOR
PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA
SN 1088-9051
EI 1549-5469
J9 GENOME RES
JI Genome Res.
PD AUG
PY 2016
VL 26
IS 8
BP 1069
EP 1080
DI 10.1101/gr.203182.115
PG 12
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
GA DT8IH
UT WOS:000381733000006
PM 27260477
ER
PT J
AU Williams, CA
Gu, H
MacLean, R
Masek, JG
Collatz, GJ
AF Williams, Christopher A.
Gu, Huan
MacLean, Richard
Masek, Jeffrey G.
Collatz, G. James
TI Disturbance and the carbon balance of US forests: A quantitative review
of impacts from harvests, fires, insects, and droughts
SO GLOBAL AND PLANETARY CHANGE
LA English
DT Review
DE Forest ecology and management; Carbon sequestration; Climate change;
Global environmental change; Carbon balance and management
ID MOUNTAIN PINE-BEETLE; WESTERN UNITED-STATES; CANADA BOREAL FORESTS;
OLD-GROWTH FORESTS; CLIMATE-CHANGE; TREE MORTALITY; MANAGING FORESTS;
LODGEPOLE PINE; INVENTORY DATA; HURRICANE IMPACTS
AB Disturbances are a major determinant of forest carbon stocks and uptake. They generally reduce land carbon stocks but also initiate a regrowth legacy that contributes substantially to the contemporary rate of carbon stock increase in US forestlands. As managers and policy makers increasingly look to forests for climate protection and mitigation, and because of increasing concern about changes in disturbance intensity and frequency, there is a need for synthesis and integration of current understanding about the role of disturbances and other processes in governing forest carbon cycle dynamics, and the likely future of this and other sinks for atmospheric carbon. This paper aims to address that need by providing a quantitative review of the distribution, extent and carbon impacts of the major disturbances active in the US. We also review recent trends in disturbances, climate, and other global environmental changes and consider their individual and collective contributions to the US carbon budget now and in the likely future. Lastly, we identify some key challenges and opportunities for future research needed to improve current understanding, advance predictive capabilities, and inform forest management in the face of these pressures.
Harvest is found to be the most extensive disturbance both in terms of area and carbon impacts, followed by fire, windthrow and bark beetles, and lastly droughts. Collectively these lead to the gross loss of about 200 Tg C y(-1) in live biomass annually across the conterminous US. At the same time, the net change in forest carbon stocks is positive (190 Tg C y(-1)), indicating not only forest resilience but also an apparently large response to growth enhancements such as fertilization by CO2 and nitrogen. Uncertainty about disturbance legacies, disturbance interactions, likely trends, and global change factors make the future of the US forest carbon sink unclear. While there is scope for management to enhance carbon sinks in US forests, tradeoffs with other values and uses are likely to significantly limit practical implementation. Continued and expanded remote sensing and field-based monitoring capabilities and manipulative experimentation are needed to improve understanding of the US forest carbon sink, and assess how disturbance processes are responding to the pressures of global environmental change. In addition, continued development and application of holistic, decision support tools that consider a range of forest values are needed to enable managers and policy makers to use the best available information for guiding forest resources now and into the future. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Williams, Christopher A.; Gu, Huan; MacLean, Richard] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA.
[Masek, Jeffrey G.; Collatz, G. James] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA.
RP Williams, CA (reprint author), Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA.
RI collatz, george/D-5381-2012
FU NASA's Carbon Monitoring System program [NNH14ZDA001N-CMS, NNX14AR39G]
FX We thank Timothy Horscroft and the editors of Global and Planetary
Change for inviting this review. We also thank two anonymous reviewers
for providing helpful critique that resulted in substantial
improvements. This study was supported by NASA's Carbon Monitoring
System program (NNH14ZDA001N-CMS) under award NNX14AR39G.
NR 157
TC 2
Z9 2
U1 62
U2 82
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-8181
EI 1872-6364
J9 GLOBAL PLANET CHANGE
JI Glob. Planet. Change
PD AUG
PY 2016
VL 143
BP 66
EP 80
DI 10.1016/j.gloplacha.2016.06.002
PG 15
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA DS2IU
UT WOS:000380594000007
ER
PT J
AU Hobbs, WR
Massom, R
Stammerjohn, S
Reid, P
Williams, G
Meier, W
AF Hobbs, William R.
Massom, Rob
Stammerjohn, Sharon
Reid, Phillip
Williams, Guy
Meier, Walter
TI A review of recent changes in Southern Ocean sea ice, their drivers and
forcings
SO GLOBAL AND PLANETARY CHANGE
LA English
DT Review
ID WESTERN ANTARCTIC PENINSULA; LOW-FREQUENCY VARIABILITY; SURFACE
MASS-BALANCE; NCEP-NCAR REANALYSES; EARTH SYSTEM MODEL; FRESH-WATER
FLUX; CLIMATE-CHANGE; CMIP5 MODELS; ANNULAR MODE; WHALING RECORDS
AB Over the past 37 years, satellite records show an increase in Antarctic sea ice cover that is most pronounced in the period of sea ice growth. This trend is dominated by increased sea ice coverage in the western Ross Sea, and is mitigated by a strong decrease in the Bellingshausen and Amundsen seas. The trends in sea ice areal coverage are accompanied by related trends in yearly duration. These changes have implications for ecosystems, as well as global and regional climate. In this review, we summarise the research to date on observing these trends, identifying their drivers, and assessing the role of anthropogenic climate change. Whilst the atmosphere is thought to be the primary driver, the ocean is also essential in explaining the seasonality of the trend patterns. Detecting an anthropogenic signal in Antarctic sea ice is particularly challenging for a number of reasons: the expected response is small compared to the very high natural variability of the system; the observational record is relatively short; and the ability of global coupled climate models to faithfully represent the complex Antarctic climate system is in doubt. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Hobbs, William R.; Massom, Rob; Reid, Phillip] Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Private Bag 80, Hobart, Tas 7001, Australia.
[Hobbs, William R.] Univ Tasmania, ARC Ctr Excellence Climate Syst Sci, IMAS, Private Bag 129, Hobart, Tas 7001, Australia.
[Massom, Rob] Australian Antarctic Div, 203 Channel Highway, Kingston, Tas 7050, Australia.
[Stammerjohn, Sharon] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.
[Reid, Phillip] Australian Bur Meteorol, Ctr Australian Weather & Climate Res, Hobart, Tas, Australia.
[Williams, Guy] Univ Tasmania, Inst Marine & Antarctic Studies, Private Bag 129, Hobart, Tas 7001, Australia.
[Meier, Walter] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Hobbs, WR (reprint author), Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Private Bag 80, Hobart, Tas 7001, Australia.
EM whobbs@utas.edu.au
RI Hobbs, Will/G-5116-2014;
OI Hobbs, Will/0000-0002-2061-0899; STAMMERJOHN,
SHARON/0000-0002-1697-8244; Meier, Walter/0000-0003-2857-0550
FU Australian Government's Cooperative Research Centres Programme through
the Antarctic Climate and Ecosystems Cooperative Research Center (ACE
CRC); National Science Foundation Office of Polar Programs Palmer
Long-Term Ecological Project [ANT-1440435]; [4116]
FX The authors are indebted to William de la Mare for providing his whale
catch data, Kate Sinclair for the Whitehall Glacier excess deuterium
record, and Holly Titchner for providing the HadISST2.2 sea ice
concentration data. The authors express their gratitude to Paul Holland
and an anonymous reviewer for their invaluable comments and help in
improving this manuscript. Data analysis and visualisation was performed
using NCL (http://dx.doi.org/10.5065/D6WD3XH5). We acknowledge the World
Climate Research Programme's Working Group on Coupled Modeling, which is
responsible for CMIP, and we thank the climate modeling groups (listed
in Appendix A) for producing and making available their model output.
For CMIP the U.S. Department of Energy's Programme for Climate Model
Diagnosis and Intercomparison provides coordinating support and led
development of software infrastructure in partnership with the Global
Organization for Earth System Science Portals. This work was supported
by the Australian Government's Cooperative Research Centres Programme
through the Antarctic Climate and Ecosystems Cooperative Research Center
(ACE CRC), and contributes to AAS Project 4116. SS acknowledges support
and contributions from the National Science Foundation Office of Polar
Programs Palmer Long-Term Ecological Project (ANT-1440435).
NR 265
TC 7
Z9 7
U1 19
U2 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-8181
EI 1872-6364
J9 GLOBAL PLANET CHANGE
JI Glob. Planet. Change
PD AUG
PY 2016
VL 143
BP 228
EP 250
DI 10.1016/j.gloplacha.2016.06.008
PG 23
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA DS2IU
UT WOS:000380594000018
ER
PT J
AU Abbott, T
Abdalla, FB
Aleksic, J
Allam, S
Amara, A
Bacon, D
Balbinot, E
Banerji, M
Bechtol, K
Benoit-Levy, A
Bernstein, GM
Bertin, E
Blazek, J
Bonnett, C
Bridle, S
Brooks, D
Brunner, RJ
Buckley-Geer, E
Burke, DL
Caminha, GB
Capozzi, D
Carlsen, J
Carnero-Rosell, A
Carollo, M
Carrasco-Kind, M
Carretero, J
Castander, FJ
Clerkin, L
Collett, T
Conselice, C
Crocce, M
Cunha, CE
D'Andrea, CB
da Costa, LN
Davis, TM
Desai, S
Diehl, HT
Dietrich, JP
Dodelson, S
Doel, P
Drlica-Wagner, A
Estrada, J
Etherington, J
Evrard, AE
Fabbri, J
Finley, DA
Flaugher, B
Foley, RJ
Fosalba, P
Frieman, J
Garcia-Bellido, J
Gaztanaga, E
Gerdes, DW
Giannantonio, T
Goldstein, DA
Gruen, D
Gruendl, RA
Guarnieri, P
Gutierrez, G
Hartley, W
Honscheid, K
Jain, B
James, DJ
Jeltema, T
Jouvel, S
Kessler, R
King, A
Kirk, D
Kron, R
Kuehn, K
Kuropatkin, N
Lahav, O
Li, TS
Lima, M
Lin, H
Maia, MAG
Makler, M
Manera, M
Maraston, C
Marshall, JL
Martini, P
McMahon, RG
Melchior, P
Merson, A
Miller, CJ
Miquel, R
Mohr, JJ
Morice-Atkinson, X
Naidoo, K
Neilsen, E
Nichol, RC
Nord, B
Ogando, R
Ostrovski, F
Palmese, A
Papadopoulos, A
Peiris, HV
Peoples, J
Percival, WJ
Plazas, AA
Reed, SL
Refregier, A
Romer, AK
Roodman, A
Ross, A
Rozo, E
Rykoff, ES
Sadeh, I
Sako, M
Sanchez, C
Sanchez, E
Santiago, B
Scarpine, V
Schubnell, M
Sevilla-Noarbe, I
Sheldon, E
Smith, M
Smith, RC
Soares-Santos, M
Sobreira, F
Soumagnac, M
Suchyta, E
Sullivan, M
Swanson, M
Tarle, G
Thaler, J
Thomas, D
Thomas, RC
Tucker, D
Vieira, JD
Vikram, V
Walker, AR
Wechsler, RH
Weller, J
Wester, W
Whiteway, L
Wilcox, H
Yanny, B
Zhang, Y
Zuntz, J
AF Abbott, T.
Abdalla, F. B.
Aleksic, J.
Allam, S.
Amara, A.
Bacon, D.
Balbinot, E.
Banerji, M.
Bechtol, K.
Benoit-Levy, A.
Bernstein, G. M.
Bertin, E.
Blazek, J.
Bonnett, C.
Bridle, S.
Brooks, D.
Brunner, R. J.
Buckley-Geer, E.
Burke, D. L.
Caminha, G. B.
Capozzi, D.
Carlsen, J.
Carnero-Rosell, A.
Carollo, M.
Carrasco-Kind, M.
Carretero, J.
Castander, F. J.
Clerkin, L.
Collett, T.
Conselice, C.
Crocce, M.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
Davis, T. M.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Dodelson, S.
Doel, P.
Drlica-Wagner, A.
Estrada, J.
Etherington, J.
Evrard, A. E.
Fabbri, J.
Finley, D. A.
Flaugher, B.
Foley, R. J.
Fosalba, P.
Frieman, J.
Garcia-Bellido, J.
Gaztanaga, E.
Gerdes, D. W.
Giannantonio, T.
Goldstein, D. A.
Gruen, D.
Gruendl, R. A.
Guarnieri, P.
Gutierrez, G.
Hartley, W.
Honscheid, K.
Jain, B.
James, D. J.
Jeltema, T.
Jouvel, S.
Kessler, R.
King, A.
Kirk, D.
Kron, R.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Li, T. S.
Lima, M.
Lin, H.
Maia, M. A. G.
Makler, M.
Manera, M.
Maraston, C.
Marshall, J. L.
Martini, P.
McMahon, R. G.
Melchior, P.
Merson, A.
Miller, C. J.
Miquel, R.
Mohr, J. J.
Morice-Atkinson, X.
Naidoo, K.
Neilsen, E.
Nichol, R. C.
Nord, B.
Ogando, R.
Ostrovski, F.
Palmese, A.
Papadopoulos, A.
Peiris, H. V.
Peoples, J.
Percival, W. J.
Plazas, A. A.
Reed, S. L.
Refregier, A.
Romer, A. K.
Roodman, A.
Ross, A.
Rozo, E.
Rykoff, E. S.
Sadeh, I.
Sako, M.
Sanchez, C.
Sanchez, E.
Santiago, B.
Scarpine, V.
Schubnell, M.
Sevilla-Noarbe, I.
Sheldon, E.
Smith, M.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Soumagnac, M.
Suchyta, E.
Sullivan, M.
Swanson, M.
Tarle, G.
Thaler, J.
Thomas, D.
Thomas, R. C.
Tucker, D.
Vieira, J. D.
Vikram, V.
Walker, A. R.
Wechsler, R. H.
Weller, J.
Wester, W.
Whiteway, L.
Wilcox, H.
Yanny, B.
Zhang, Y.
Zuntz, J.
CA Dark Energy Survey Collaboration
TI The Dark Energy Survey: more than dark energy - an overview
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE surveys; minor planets, asteroids: general; supernovae: general; Galaxy:
general; galaxies: general; quasars: general
ID LARGE-MAGELLANIC-CLOUD; DIGITAL-SKY-SURVEY; BRIGHTEST CLUSTER GALAXIES;
ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; GRAVITATIONALLY LENSED
QUASARS; SCIENCE VERIFICATION DATA; STAR-FORMING GALAXIES; STELLAR MASS
FUNCTION; MILKY-WAY SATELLITES
AB This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from 'Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be I >+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).
C1 [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile.
[Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Clerkin, L.; Doel, P.; Fabbri, J.; Jouvel, S.; Kirk, D.; Lahav, O.; Manera, M.; Merson, A.; Naidoo, K.; Palmese, A.; Peiris, H. V.; Sadeh, I.; Soumagnac, M.; Whiteway, L.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Aleksic, J.; Carretero, J.; Miquel, R.; Sanchez, C.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain.
[Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Dodelson, S.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Lin, H.; Neilsen, E.; Nord, B.; Peoples, J.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.; Wester, W.; Yanny, B.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Amara, A.; Hartley, W.; Refregier, A.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
[Bacon, D.; Capozzi, D.; Carlsen, J.; Collett, T.; D'Andrea, C. B.; Etherington, J.; Guarnieri, P.; Maraston, C.; Morice-Atkinson, X.; Nichol, R. C.; Papadopoulos, A.; Percival, W. J.; Thomas, D.; Wilcox, H.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England.
[Banerji, M.; Giannantonio, T.; McMahon, R. G.; Ostrovski, F.; Reed, S. L.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England.
[Banerji, M.; Giannantonio, T.; McMahon, R. G.; Ostrovski, F.; Reed, S. L.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Bechtol, K.] Wisconsin IceCube Particle Astrophys Ctr WIPAC, Madison, WI 53703 USA.
[Bechtol, K.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
[Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Benoit-Levy, A.; Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Bernstein, G. M.; Jain, B.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Blazek, J.; Honscheid, K.; Martini, P.; Ross, A.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Bonnett, C.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Bridle, S.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Brunner, R. J.; Foley, R. J.; Thaler, J.; Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Brunner, R. J.; Carrasco-Kind, M.; Gruendl, R. A.; Vieira, J. D.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Figure, IL 61801 USA.
[Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Caminha, G. B.; Makler, M.] Ctr Brasileiro Pesquisas Fis, ICRA, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil.
[Caminha, G. B.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[Carnero-Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carnero-Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carollo, M.] Swiss Fed Inst Technol, Inst Astron, CH-8093 Zurich, Switzerland.
[Carrasco-Kind, M.; Foley, R. J.; Gruendl, R. A.; Sevilla-Noarbe, I.; Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain.
[Conselice, C.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Davis, T. M.; King, A.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia.
[Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Dodelson, S.; Kessler, R.; Kron, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Dodelson, S.; Frieman, J.; Kessler, R.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Garcia-Bellido, J.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain.
[Goldstein, D. A.; Miquel, R.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
[Goldstein, D. A.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.
[Jeltema, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Jeltema, T.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dipartimento Fis Matemat, CP 66318, BR-05314970 Sao Paulo, Brazil.
[Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA.
[Melchior, P.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Papadopoulos, A.] European Univ Cyprus, Sch Sci, 6 Diogenis Str, CY-1516 Nicosia, Cyprus.
[Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Rozo, E.] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85721 USA.
[Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain.
[Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Smith, M.; Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Swanson, M.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[Thomas, D.] South East Phys Network Www Sepnet Ac Uk, London, England.
[Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany.
RP Abbott, T (reprint author), Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile.; Lahav, O (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
EM o.lahav@ucl.ac.uk
RI Sobreira, Flavia/F-4168-2015; Lima, Marcos/E-8378-2010; Natarajan,
Meena/J-9167-2012; Bartosch Caminha, Gabriel/C-8952-2013; Ogando,
Ricardo/A-1747-2010; Davis, Tamara/A-4280-2008; Gaztanaga,
Enrique/L-4894-2014;
OI Sullivan, Mark/0000-0001-9053-4820; Garcia-Bellido,
Juan/0000-0002-9370-8360; Sobreira, Flavia/0000-0002-7822-0658;
Natarajan, Meena/0000-0001-5652-9681; Bartosch Caminha,
Gabriel/0000-0001-6052-3274; Ogando, Ricardo/0000-0003-2120-1154; Davis,
Tamara/0000-0002-4213-8783; Gaztanaga, Enrique/0000-0001-9632-0815;
Tucker, Douglas/0000-0001-7211-5729; Weller, Jochen/0000-0002-8282-2010;
Abdalla, Filipe/0000-0003-2063-4345
FU US Department of Energy; US National Science Foundation; Ministry of
Science and Education of Spain; Science and Technology Facilities
Council of the United Kingdom; Higher Education Funding Council for
England; National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign; Kavli Institute of
Cosmological Physics at the University of Chicago; Center for Cosmology
and Astro-Particle Physics at the Ohio State University; Mitchell
Institute for Fundamental Physics and Astronomy at Texas AM University;
Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de
Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia;
Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating
Institutions in the Dark Energy Survey; National Science Foundation
[AST-1138766]; University of California at Santa Cruz; University of
Cambridge, Centro de Investigaciones Energeticas, Medioambientales y
Tecnologicas-Madrid; University of Chicago, University College London;
DES-Brazil Consortium; University of Edinburgh; Eidgenossische
Technische Hochschule (ETH) Zurich, Fermi National Accelerator
Laboratory; University of Illinois at Urbana-Champaign; Institut de
Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies,
Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat
Munchen; European Research Council [FP7/291329]; MINECO [AYA2012-39559,
ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa
[SEV-2012-0234]; European Research Council under the European Union
[240672, 291329, 306478]
FX Funding for the DES Projects has been provided by the US Department of
Energy, the US National Science Foundation, the Ministry of Science and
Education of Spain, the Science and Technology Facilities Council of the
United Kingdom, the Higher Education Funding Council for England, the
National Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmological
Physics at the University of Chicago, the Center for Cosmology and
Astro-Particle Physics at the Ohio State University, the Mitchell
Institute for Fundamental Physics and Astronomy at Texas A&M University,
Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de
Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia,
Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the
Collaborating Institutions in the Dark Energy Survey. The DES Data
Management system is supported by the National Science Foundation under
Grant Number AST-1138766.r The Collaborating Institutions are Argonne
National Laboratory, the University of California at Santa Cruz, the
University of Cambridge, Centro de Investigaciones Energeticas,
Medioambientales y Tecnologicas-Madrid, the University of Chicago,
University College London, the DES-Brazil Consortium, the University of
Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi
National Accelerator Laboratory, the University of Illinois at
Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the
Institut de Fisica d'Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universitat Munchen and the
associated Excellence Cluster Universe, the University of Michigan, the
National Optical Astronomy Observatory, the University of Nottingham,
the Ohio State University, the University of Pennsylvania, the
University of Portsmouth, SLAC National Accelerator Laboratory, Stanford
University, the University of Sussex and Texas A&M University.r OL
acknowledges support from a European Research Council Advanced Grant
FP7/291329. The DES participants from Spanish institutions are partially
supported by MINECO under grants AYA2012-39559, ESP2013-48274,
FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234.
Research leading to these results has received funding from the European
Research Council under the European Union's Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329 and
306478.r We are grateful for the extraordinary contributions of our CTIO
colleagues and the DECam Construction, Commissioning and Science
Verification teams in achieving the excellent instrument and telescope
conditions that have made this work possible. The success of this
project also relies critically on the expertise and dedication of the
DES Data Management group.r The VISTA Hemisphere Survey (VHS) is based
on observations obtained as part of ESO Programme 179.A-2010 (PI:
McMahon).r This paper has gone through internal review by the DES
Collaboration.
NR 358
TC 19
Z9 19
U1 9
U2 18
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD AUG 1
PY 2016
VL 460
IS 2
BP 1270
EP 1299
DI 10.1093/mnras/stw641
PG 30
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3WH
UT WOS:000379832800009
ER
PT J
AU Merson, AI
Jasche, J
Abdalla, FB
Lahav, O
Wandelt, B
Jones, DH
Colless, M
AF Merson, Alexander I.
Jasche, Jens
Abdalla, Filipe B.
Lahav, Ofer
Wandelt, Benjamin
Jones, D. Heath
Colless, Matthew
TI Halo detection via large-scale Bayesian inference
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: numerical; methods: statistical; galaxies: haloes; galaxies:
clusters: general; dark matter; large-scale structure of Universe
ID DIGITAL SKY SURVEY; 6DF GALAXY SURVEY; POWER-SPECTRUM INFERENCE; MASS
ASSEMBLY GAMA; X-RAY-CLUSTERS; DATA RELEASE; DARK-MATTER; WIENER
RECONSTRUCTION; LUMINOSITY FUNCTIONS; SPECTROSCOPY SYSTEM
AB We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (hades), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of hades to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the hades density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.
C1 [Merson, Alexander I.; Abdalla, Filipe B.; Lahav, Ofer] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Merson, Alexander I.] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Jasche, Jens] Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Abdalla, Filipe B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Wandelt, Benjamin] Univ Paris 06, CNRS, UMR 7095, IAP, 98Bis Blvd Arago, F-75014 Paris, France.
[Wandelt, Benjamin] Sorbonne Univ, ILP, 98Bis Blvd Arago, F-75014 Paris, France.
[Wandelt, Benjamin] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Wandelt, Benjamin] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Jones, D. Heath] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia.
[Colless, Matthew] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
RP Merson, AI (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.; Merson, AI (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM alex.i.merson@jpl.nasa.gov
OI Abdalla, Filipe/0000-0003-2063-4345; Colless,
Matthew/0000-0001-9552-8075
FU Royal Society; European Research Council [FP7/291329]; NSF [AST
07-08849, AST 09-08693 ARRA]; Chaire d'Excellence from the Agence
Nationale de Recherche; DFG cluster of excellence 'Origin and Structure
of the Universe'
FX We thank the anonymous referee for many thorough and constructive
comments. In addition, we also thank Sreekumar Thaithara Balan, Boris
Leistedt, Michelle Lochner and Hiranya Peiris for several productive and
insightful discussions and suggestions. FBA acknowledges the support of
the Royal Society for a University Research Fellowship. OL acknowledges
support from a European Research Council Advanced Grant FP7/291329. BDW
acknowledges support from NSF grants AST 07-08849 and AST 09-08693 ARRA,
and a Chaire d'Excellence from the Agence Nationale de Recherche. This
research was supported by the DFG cluster of excellence 'Origin and
Structure of the Universe' (www.universe-cluster.de).
NR 87
TC 0
Z9 0
U1 3
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD AUG 1
PY 2016
VL 460
IS 2
BP 1340
EP 1355
DI 10.1093/mnras/stw948
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3WH
UT WOS:000379832800014
ER
PT J
AU Ruchayskiy, O
Boyarsky, A
Iakubovskyi, D
Bulbul, E
Eckert, D
Franse, J
Malyshev, D
Markevitch, M
Neronov, A
AF Ruchayskiy, Oleg
Boyarsky, Alexey
Iakubovskyi, Dmytro
Bulbul, Esra
Eckert, Dominique
Franse, Jeroen
Malyshev, Denys
Markevitch, Maxim
Neronov, Andrii
TI Searching for decaying dark matter in deep XMM-Newton observation of the
Draco dwarf spheroidal
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE line: identification; galaxies: dwarf; dark matter; X-rays: general
ID PHOTON IMAGING CAMERA; 3.5 KEV LINE; GALAXY CLUSTERS; EMISSION-LINE;
MILKY-WAY; ORIGIN; HALO; CONSTRAINTS; SPECTRA; SUZAKU
AB We present results of a search for the 3.5 keV emission line in our recent very long (similar to 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau > (7-9) x 10(27) s at 95 per cent CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modelled continuum) at E = 3.54 +/- A 0.06 keV with a 2.3 sigma significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1 sigma with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Centre within their 1 - 2 sigma uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects.
C1 [Ruchayskiy, Oleg] Ecole Polytech Fed Lausanne, FSB ITP LPPC, BSP 720, CH-1015 Lausanne, Switzerland.
[Ruchayskiy, Oleg; Iakubovskyi, Dmytro] Niels Bohr Inst & Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
[Boyarsky, Alexey; Franse, Jeroen] Leiden Univ, Inst Lorentz Theoret Phys, Niels Bohrweg 2, Leiden, Netherlands.
[Iakubovskyi, Dmytro] Bogolyubov Inst Theoret Phys, Metrologichna Str 14-b, UA-03680 Kiev, Ukraine.
[Bulbul, Esra] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Eckert, Dominique; Malyshev, Denys; Neronov, Andrii] Univ Geneva, Dept Astron, Ch Ecogia 16, CH-1290 Versoix, Switzerland.
[Franse, Jeroen] Leiden Univ, Leiden Observ, Niels Bohrweg 2, Leiden, Netherlands.
[Markevitch, Maxim] NASA, Goddard Space Flight Ctr, Code 662,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
RP Ruchayskiy, O (reprint author), Ecole Polytech Fed Lausanne, FSB ITP LPPC, BSP 720, CH-1015 Lausanne, Switzerland.; Ruchayskiy, O (reprint author), Niels Bohr Inst & Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
EM oleg.ruchayskiy@epfl.ch
RI Iakubovskyi, Dmytro/D-6418-2012;
OI Iakubovskyi, Dmytro/0000-0002-6969-0738; Eckert,
Dominique/0000-0001-7917-3892
FU NASA [NNX123AE77G]; Swiss National Science Foundation grant SCOPE
[IZ7370-152581]; State Fund for Fundamental Research of Ukraine
[F64/42-2015]; Program of Cosmic Research of the National Academy of
Sciences of Ukraine; State Programme of Implementation of Grid
Technology in Ukraine; ESA Member States; NASA
FX We would like to thank K. Abazajian, G. Bertone, A. Geringer-Sameth, M.
Lovell, M. Walker, C. Weniger for collaboration, discussion and useful
comments. EB acknowledges support by NASA through grant no. NNX123AE77G.
The work of DI has been partially supported from the Swiss National
Science Foundation grant SCOPE IZ7370-152581, the grant no. F64/42-2015
of the State Fund for Fundamental Research of Ukraine, the Program of
Cosmic Research of the National Academy of Sciences of Ukraine, and the
State Programme of Implementation of Grid Technology in Ukraine. The
Draco dSph observations were performed as a part of AO-14 Very Large
Programme obtained with XMM Newton, an ESA science mission with
instruments and contributions directly funded by ESA Member States and
NASA.
NR 49
TC 7
Z9 7
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD AUG 1
PY 2016
VL 460
IS 2
BP 1390
EP 1398
DI 10.1093/mnras/stw1026
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3WH
UT WOS:000379832800018
ER
PT J
AU Guainazzi, M
Risaliti, G
Awaki, H
Arevalo, P
Bauer, FE
Bianchi, S
Boggs, SE
Brandt, WN
Brightman, M
Christensen, FE
Craig, WW
Forster, K
Hailey, CJ
Harrison, F
Koss, M
Longinotti, A
Markwardt, C
Marinucci, A
Matt, G
Reynolds, CS
Ricci, C
Stern, D
Svoboda, J
Walton, D
Zhang, W
AF Guainazzi, M.
Risaliti, G.
Awaki, H.
Arevalo, P.
Bauer, F. E.
Bianchi, S.
Boggs, S. E.
Brandt, W. N.
Brightman, M.
Christensen, F. E.
Craig, W. W.
Forster, K.
Hailey, C. J.
Harrison, F.
Koss, M.
Longinotti, A.
Markwardt, C.
Marinucci, A.
Matt, G.
Reynolds, C. S.
Ricci, C.
Stern, D.
Svoboda, J.
Walton, D.
Zhang, W.
TI The nature of the torus in the heavily obscured AGN Markarian 3: an
X-ray study
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: active; galaxies: Seyfert; X-rays: galaxies; X-rays:
individual: Markarian 3
ID ACTIVE GALACTIC NUCLEI; SEYFERT 2 GALAXY; XMM-NEWTON; NGC 1068;
REVERBERATION MEASUREMENTS; ENERGY-DISTRIBUTIONS; CIRCINUS GALAXY; WARM
ABSORBERS; INNER RADIUS; LINE REGION
AB In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM-Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N-H similar to 0.8-1.1 x 10(24) cm(-2)). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle a parts per thousand integral 66A degrees, and is seen at a grazing angle through its upper rim (inclination angle a parts per thousand integral 70A degrees). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [a parts per thousand integral (4.9 +/- 1.5) x 10(22) cm(-2)]. The comparison of IR and X-ray spectroscopic results with state-of-the art 'torus' models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.
C1 [Guainazzi, M.] Inst Space & Astronat Sci JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525252, Japan.
[Guainazzi, M.] ESA, European Space Astron Ctr, POB 78, E-28691 Madrid, Spain.
[Risaliti, G.] Osservatorio Arcetri, INAF, Largo E Fermi 5, I-50125 Florence, Italy.
[Risaliti, G.] Univ Florence, Dipartimento Fis & Astron, Via G Sansone 1, I-50019 Florence, Italy.
[Awaki, H.] Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, Japan.
[Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile.
[Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.
[Bauer, F. E.] Millennium Inst Astrophys MAS, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile.
[Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA.
[Bianchi, S.; Marinucci, A.; Matt, G.] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy.
[Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
[Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Brandt, W. N.] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA.
[Brightman, M.; Forster, K.; Harrison, F.; Walton, D.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA.
[Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Koss, M.] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
[Longinotti, A.] Inst Nacl Astrofis Opt & Electr, Catedrat CONACYT, Luis E Erro 1, Puebla 72840, Mexico.
[Markwardt, C.; Zhang, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Stern, D.; Walton, D.] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Svoboda, J.] Acad Sci Czech Republic, Astron Inst, Bocni 2 1401, CZ-14100 Prague, Czech Republic.
RP Guainazzi, M (reprint author), Inst Space & Astronat Sci JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525252, Japan.; Guainazzi, M (reprint author), ESA, European Space Astron Ctr, POB 78, E-28691 Madrid, Spain.
EM Matteo.Guainazzi@sciops.esa.int
RI Bianchi, Stefano/B-4804-2010; Svoboda, Jiri/G-9045-2014
OI Bianchi, Stefano/0000-0002-4622-4240;
NR 87
TC 0
Z9 0
U1 2
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD AUG 1
PY 2016
VL 460
IS 2
BP 1954
EP 1969
DI 10.1093/mnras/stw1033
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3WH
UT WOS:000379832800064
ER
PT J
AU Jarvis, M
Sheldon, E
Zuntz, J
Kacprzak, T
Bridle, SL
Amara, A
Armstrong, R
Becker, MR
Bernstein, GM
Bonnett, C
Chang, C
Das, R
Dietrich, JP
Drlica-Wagner, A
Eifler, TF
Gangkofner, C
Gruen, D
Hirsch, M
Huff, EM
Jain, B
Kent, S
Kirk, D
MacCrann, N
Melchior, P
Plazas, AA
Refregier, A
Rowe, B
Rykoff, ES
Samuroff, S
Sanchez, C
Suchyta, E
Troxel, MA
Vikram, V
Abbott, T
Abdalla, FB
Allam, S
Annis, J
Benoit-Levy, A
Bertin, E
Brooks, D
Buckley-Geer, E
Burke, DL
Capozzi, D
Rosell, AC
Kind, MC
Carretero, J
Castander, FJ
Clampitt, J
Crocce, M
Cunha, CE
D'Andrea, CB
da Costa, LN
DePoy, DL
Desai, S
Diehl, HT
Doel, P
Neto, AF
Flaugher, B
Fosalba, P
Frieman, J
Gaztanaga, E
Gerdes, DW
Gruendl, RA
Gutierrez, G
Honscheid, K
James, DJ
Kuehn, K
Kuropatkin, N
Lahav, O
Li, TS
Lima, M
March, M
Martini, P
Miquel, R
Mohr, JJ
Neilsen, E
Nord, B
Ogando, R
Reil, K
Romer, AK
Roodman, A
Sako, M
Sanchez, E
Scarpine, V
Schubnell, M
Sevilla-Noarbe, I
Smith, RC
Soares-Santos, M
Sobreira, F
Swanson, MEC
Tarle, G
Thaler, J
Thomas, D
Walker, AR
Wechsler, RH
AF Jarvis, M.
Sheldon, E.
Zuntz, J.
Kacprzak, T.
Bridle, S. L.
Amara, A.
Armstrong, R.
Becker, M. R.
Bernstein, G. M.
Bonnett, C.
Chang, C.
Das, R.
Dietrich, J. P.
Drlica-Wagner, A.
Eifler, T. F.
Gangkofner, C.
Gruen, D.
Hirsch, M.
Huff, E. M.
Jain, B.
Kent, S.
Kirk, D.
MacCrann, N.
Melchior, P.
Plazas, A. A.
Refregier, A.
Rowe, B.
Rykoff, E. S.
Samuroff, S.
Sanchez, C.
Suchyta, E.
Troxel, M. A.
Vikram, V.
Abbott, T.
Abdalla, F. B.
Allam, S.
Annis, J.
Benoit-Levy, A.
Bertin, E.
Brooks, D.
Buckley-Geer, E.
Burke, D. L.
Capozzi, D.
Rosell, A. Carnero
Kind, M. Carrasco
Carretero, J.
Castander, F. J.
Clampitt, J.
Crocce, M.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
DePoy, D. L.
Desai, S.
Diehl, H. T.
Doel, P.
Neto, A. Fausti
Flaugher, B.
Fosalba, P.
Frieman, J.
Gaztanaga, E.
Gerdes, D. W.
Gruendl, R. A.
Gutierrez, G.
Honscheid, K.
James, D. J.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Li, T. S.
Lima, M.
March, M.
Martini, P.
Miquel, R.
Mohr, J. J.
Neilsen, E.
Nord, B.
Ogando, R.
Reil, K.
Romer, A. K.
Roodman, A.
Sako, M.
Sanchez, E.
Scarpine, V.
Schubnell, M.
Sevilla-Noarbe, I.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Swanson, M. E. C.
Tarle, G.
Thaler, J.
Thomas, D.
Walker, A. R.
Wechsler, R. H.
TI The DES Science Verification weak lensing shear catalogues
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE gravitational lensing: weak; methods: data analysis; techniques: image
processing; catalogues; surveys; cosmology: observations
ID IMAGE-ANALYSIS COMPETITION; GALAXY SHAPE MEASUREMENT; DARK ENERGY
CAMERA; DIGITAL SKY SURVEY; COSMIC SHEAR; NOISE BIAS; CHALLENGE
HANDBOOK; MAXIMUM-LIKELIHOOD; GREAT08 CHALLENGE; SYSTEMATIC-ERRORS
AB We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, im3shape and ngmix, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees.
C1 [Jarvis, M.; Bernstein, G. M.; Eifler, T. F.; Jain, B.; Clampitt, J.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Zuntz, J.; Bridle, S. L.; MacCrann, N.; Samuroff, S.; Troxel, M. A.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Kacprzak, T.; Amara, A.; Chang, C.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
[Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Becker, M. R.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Becker, M. R.; Rykoff, E. S.; Burke, D. L.; Cunha, C. E.; Roodman, A.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Bonnett, C.; Sanchez, C.; Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Dietrich, J. P.; Gangkofner, C.; Desai, S.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Dietrich, J. P.; Gangkofner, C.; Desai, S.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Amara, A.; Drlica-Wagner, A.; Kent, S.; Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Gruen, D.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Hirsch, M.; Kirk, D.; Rowe, B.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Huff, E. M.; Melchior, P.; Suchyta, E.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Huff, E. M.; Melchior, P.; Suchyta, E.; Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Rykoff, E. S.; Burke, D. L.; Reil, K.; Roodman, A.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
[Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile.
[Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys, F-75014 Paris, France.
[Capozzi, D.; D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Rosell, A. Carnero; da Costa, L. N.; Neto, A. Fausti; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Rosell, A. Carnero; da Costa, L. N.; Ogando, R.] Observ Nacl, Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans,S-N, E-08193 Barcelona, Spain.
[DePoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenal, College Stn, TX 77843 USA.
[DePoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Lima, M.] Univ Sao Paulo, Dept Fis Matemat, Inst Fis, CP 66318, BR-05314970 Sao Paulo, Brazil.
[Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain.
[Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
RP Jarvis, M (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
EM michael@jarvis.net
RI Sobreira, Flavia/F-4168-2015; Lima, Marcos/E-8378-2010; Ogando,
Ricardo/A-1747-2010; Gaztanaga, Enrique/L-4894-2014;
OI Sobreira, Flavia/0000-0002-7822-0658; Ogando,
Ricardo/0000-0003-2120-1154; Gaztanaga, Enrique/0000-0001-9632-0815;
Stern, Corvin/0000-0003-4406-6127; Rowe, Barnaby/0000-0002-7042-9174;
Abdalla, Filipe/0000-0003-2063-4345
FU NSF [AST-0812790, AST-1138729]; DoE [DE-SC0007901, DE-AC02-98CH10886,
DE-SC0007859, DE-FG02-91ER40690]; European Research Council [240672];
Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33]; DFG cluster
of excellence 'Origin and Structure of the Universe'; JPL; FAPESP; CNPq;
US Department of Energy; US National Science Foundation; Ministry of
Science and Education of Spain; Science and Technology Facilities
Council of the United Kingdom; Higher Education Funding Council for
England; National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign; Kavli Institute of
Cosmological Physics at the University of Chicago; Center for Cosmology
and Astro-Particle Physics at the Ohio State University; Mitchell
Institute for Fundamental Physics and Astronomy at Texas AM University;
Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de
Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e
Tecnologia; Deutsche Forschungsgemeinschaft; Collaborating Institutions
in the DES; National Science Foundation [AST-1138766]; MINECO
[AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia
Severo Ochoa [SEV-2012-0234]; European Union; Argonne National
Laboratory; University of California at Santa Cruz; University of
Cambridge; Centro de Investigaciones Energeticas, Medioambientales y
Tecnologicas-Madrid; University of Chicago; University College London;
DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH)
Zurich; Fermi National Accelerator Laboratory; University of Edinburgh;
University of Illinois at Urbana-Champaign; Institut de Ciencies de
l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; LBNL;
Ludwig-Maximilians Universitat; associated Excellence Cluster Universe,
the University of Michigan; National Optical Astronomy Observatory;
University of Nottingham; Ohio State University; University of
Pennsylvania; University of Portsmouth; SLAC National Accelerator
Laboratory; Stanford University; University of Sussex; Texas AM
University
FX Jarvis has been supported on this project by NSF grants AST-0812790 and
AST-1138729. Jarvis, Bernstein, Clampitt, and Jain are partially
supported by DoE grant DE-SC0007901. Sheldon is supported by DoE grant
DE-AC02-98CH10886. Zuntz, Kacprzak, Bridle, and Troxel acknowledge
support from the European Research Council in the form of a Starting
Grant with number 240672. Das was funded by DoE Grant DE-SC0007859.
Gruen was supported by SFB-Transregio 33 'The Dark Universe' by the
Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence
'Origin and Structure of the Universe'. Gangkofner acknowledges the
support by the DFG Cluster of Excellence 'Origin and Structure of the
Universe'. Melchior was supported by DoE grant DE-FG02-91ER40690. Plazas
was supported by DoE grant DE-AC02-98CH10886 and by JPL, run by Caltech
under a contract for NASA. Lima is partially supported by FAPESP and
CNPq.r Funding for the DES Projects has been provided by the US
Department of Energy, the US National Science Foundation, the Ministry
of Science and Education of Spain, the Science and Technology Facilities
Council of the United Kingdom, the Higher Education Funding Council for
England, the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign, the Kavli Institute of
Cosmological Physics at the University of Chicago, the Center for
Cosmology and Astro-Particle Physics at the Ohio State University, the
Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M
University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas
Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio
da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the
Collaborating Institutions in the DES.r The DES data management system
is supported by the National Science Foundation under Grant Number
AST-1138766. The DES participants from Spanish institutions are
partially supported by MINECO under grants AYA2012-39559, ESP2013-48274,
FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some
of which include ERDF funds from the European Union.r The Collaborating
Institutions are Argonne National Laboratory, the University of
California at Santa Cruz, the University of Cambridge, Centro de
Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the
University of Chicago, University College London, the DES-Brazil
Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi
National Accelerator Laboratory, the University of Edinburgh, the
University of Illinois at Urbana-Champaign, the Institut de Ciencies de
l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, LBNL, the
Ludwig-Maximilians Universitat and the associated Excellence Cluster
Universe, the University of Michigan, the National Optical Astronomy
Observatory, the University of Nottingham, The Ohio State University,
the University of Pennsylvania, the University of Portsmouth, SLAC
National Accelerator Laboratory, Stanford University, the University of
Sussex, and Texas A&M University.
NR 120
TC 17
Z9 17
U1 1
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD AUG 1
PY 2016
VL 460
IS 2
BP 2245
EP 2281
DI 10.1093/mnras/stw990
PG 37
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3WH
UT WOS:000379832800087
ER
PT J
AU Leppert, KD
Cecil, DJ
AF Leppert, Kenneth D., II
Cecil, Daniel J.
TI Tropical Cyclone Diurnal Cycle as Observed by TRMM
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID PRECIPITATION RADAR; ICE SCATTERING; SATELLITE; RAINFALL; INTENSITY;
RAINBANDS; OSCILLATION; IMAGERY; CLOUD
AB Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone's clouds.
The composite coverage by PR reflectivity >= 20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2-10-km height) of the troposphere using 1998-2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity >= 20 dBZ at radii 100-500 km peaks in the morning (0130-1030 LST) and reaches a minimum 1030-1930 LST. Radii between 300 and 500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0-100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8-10 km) with a maximumat 2230-0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130-0730 LST).
C1 [Leppert, Kenneth D., II] Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35899 USA.
[Cecil, Daniel J.] NASA Marshall Space Flight Ctr, Huntsville, AL USA.
[Leppert, Kenneth D., II] Univ Louisiana Monroe, Monroe, LA USA.
RP Leppert, KD (reprint author), Univ Louisiana Monroe, Sch Sci, Hanna Rm 306,700 Univ Ave, Monroe, LA 71209 USA.
EM leppert@ulm.edu
FU NASA [NNX12AK70G, NNM11AA01A]
FX Funding for this research was generously provided through NASA Grants
NNX12AK70G and NNM11AA01A. The authors thank Dr. Haiyan Jiang for her
help in identifying TRMM orbits that passed over tropical cyclones and
Dr. Jason Dunion for his helpful suggestions for conducting this work.
The authors are also grateful to the University of Utah for providing
the TRMM data, Colorado State University for providing the radius of
maximum wind and wind shear data, and the helpful suggestions from Jon
Zawislak and another anonymous reviewer that led to the improvement of
the manuscript.
NR 31
TC 0
Z9 0
U1 2
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD AUG
PY 2016
VL 144
IS 8
BP 2793
EP 2808
DI 10.1175/MWR-D-15-0358.1
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS5BT
UT WOS:000380796200002
ER
PT J
AU Carletta, ND
Mullendore, GL
Starzec, M
Xi, BK
Feng, Z
Dong, XQ
AF Carletta, Nicholas D.
Mullendore, Gretchen L.
Starzec, Mariusz
Xi, Baike
Feng, Zhe
Dong, Xiquan
TI Determining the Best Method for Estimating the Observed Level of Maximum
Detrainment Based on Radar Reflectivity
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID LIGHTNING OBSERVATIONS; DEEP CONVECTION; STORM; STEPS; PRECIPITATION;
KINEMATICS; TRANSPORT
AB Convective mass transport is the transport of mass from near the surface up to the upper troposphere and lower stratosphere (UTLS) by a deep convective updraft. This transport can alter the chemical makeup and water vapor balance of the UTLS, which affects cloud formation and the radiative properties of the atmosphere. It is, therefore, important to understand the exact altitudes at which mass is detrained from convection. The purpose of this study was to improve upon previously published methodologies for estimating the level of maximum detrainment (LMD) within convection using data from a single ground-based radar. Four methods were used to identify the LMD and validated against dual-Doppler-derived vertical mass divergence fields for six cases with a variety of storm types. The best method for locating the LMD was determined to be the method that used a reflectivity texture technique to determine convective cores and a multilayer echo identification to determine anvil locations. Although an improvement over previously published methods, the new methodology still produced unreliable results in certain regimes. The methodology worked best when applied to mature updrafts, as the anvil needs time to grow to a detectable size. Thus, radar reflectivity is found to be valuable in estimating the LMD, but storm maturity must also be considered for best results.
C1 [Carletta, Nicholas D.; Mullendore, Gretchen L.; Starzec, Mariusz; Xi, Baike; Dong, Xiquan] Univ North Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA.
[Carletta, Nicholas D.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
[Carletta, Nicholas D.] Sci Syst & Applicat Inc, Lanham, MD USA.
[Feng, Zhe] Pacific Northwest Natl Lab, Richland, WA 99352 USA.
RP Mullendore, GL (reprint author), Univ North Dakota, Clifford Hall,Room 400,4149 Univ Ave,Stop 9006, Grand Forks, ND 58202 USA.
EM gretchen@atmos.und.edu
FU NSF [ATM-0918010, ATM-1432930]; U.S. Department of Energy (DOE), Office
of Science, Biological and Environmental Research; DOE
[DE-AC05-76RL01830]
FX The authors would like to acknowledge the support from NSF Grants
ATM-0918010 and ATM-1432930. The authors thank Timothy Lang for
providing access to the STEPS and CHILL dual-Doppler data. The authors
would also like to thank Mark Askelson for his advice as a graduate
committee member. The authors also thank the three anonymous reviewers
for taking the time to provide thoughtful and constructive feedback. Dr.
Zhe Feng at the Pacific Northwest National Laboratory is supported by
the U.S. Department of Energy (DOE), Office of Science, Biological and
Environmental Research as part of the Atmospheric System Research
Program and the Regional and Global Climate Modeling Program. The
Pacific Northwest National Laboratory is operated for DOE by the
Battelle Memorial Institute under Contract DE-AC05-76RL01830.
NR 22
TC 0
Z9 0
U1 3
U2 3
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD AUG
PY 2016
VL 144
IS 8
BP 2915
EP 2926
DI 10.1175/MWR-D-15-0427.1
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS5BT
UT WOS:000380796200008
ER
PT J
AU Lavraud, B
Liu, Y
Segura, K
He, J
Qin, G
Temmer, M
Vial, JC
Xiong, M
Davies, JA
Rouillard, AP
Pinto, R
Auchere, F
Harrison, RA
Eyles, C
Gan, W
Lamy, P
Xia, L
Eastwood, JP
Kong, L
Wang, J
Wimmer-Schweingruber, RF
Zhang, S
Zong, Q
Soucek, J
An, J
Prech, L
Zhang, A
Rochus, P
Bothmer, V
Janvier, M
Maksimovic, M
Escoubet, CP
Kilpua, EKJ
Tappin, J
Vainio, R
Poedts, S
Dunlop, MW
Savani, N
Gopalswamy, N
Bale, SD
Li, G
Howard, T
DeForest, C
Webb, D
Lugaz, N
Fuselier, SA
Dalmasse, K
Tallineau, J
Vranken, D
Fernandez, JG
AF Lavraud, B.
Liu, Y.
Segura, K.
He, J.
Qin, G.
Temmer, M.
Vial, J-C
Xiong, M.
Davies, J. A.
Rouillard, A. P.
Pinto, R.
Auchere, F.
Harrison, R. A.
Eyles, C.
Gan, W.
Lamy, P.
Xia, L.
Eastwood, J. P.
Kong, L.
Wang, J.
Wimmer-Schweingruber, R. F.
Zhang, S.
Zong, Q.
Soucek, J.
An, J.
Prech, L.
Zhang, A.
Rochus, P.
Bothmer, V.
Janvier, M.
Maksimovic, M.
Escoubet, C. P.
Kilpua, E. K. J.
Tappin, J.
Vainio, R.
Poedts, S.
Dunlop, M. W.
Savani, N.
Gopalswamy, N.
Bale, S. D.
Li, G.
Howard, T.
DeForest, C.
Webb, D.
Lugaz, N.
Fuselier, S. A.
Dalmasse, K.
Tallineau, J.
Vranken, D.
Fernandez, J. G.
TI A small mission concept to the Sun-Earth Lagrangian L5 point for
innovative solar, heliospheric and space weather science
SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS
LA English
DT Article
DE Space mission; Coronal mass ejections; Instrumentation; Space weather
ID CORONAL MASS EJECTIONS; IN-SITU OBSERVATIONS; L-ALPHA-LINE;
MAGNETIC-FIELD; STEREO MISSION; 1 AU; INTERPLANETARY SHOCKS; ENERGETIC
PARTICLES; RADIATION BELT; DRIVEN SHOCK
AB We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Lavraud, B.; Segura, K.; Rouillard, A. P.; Pinto, R.] Univ Toulouse 3, Inst Rech Astrophys & Planetol, Toulouse, France.
[Lavraud, B.; Segura, K.; Rouillard, A. P.; Pinto, R.] CNRS, UMR 5277, Toulouse, France.
[Liu, Y.; Qin, G.; Xiong, M.; Kong, L.; Wang, J.; Zhang, S.; An, J.; Zhang, A.] Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China.
[He, J.; Zong, Q.] Peking Univ, Beijing 100871, Peoples R China.
[Temmer, M.] Graz Univ, Inst Phys, Graz, Austria.
[Vial, J-C; Auchere, F.; Janvier, M.] Inst Astrophys Spatiale, Orsay, France.
[Davies, J. A.; Harrison, R. A.; Eyles, C.; Tappin, J.; Dunlop, M. W.] RAL Space, Didcot, Oxon, England.
[Gan, W.] Purple Mt Observ, Nanjing, Jiangsu, Peoples R China.
[Lamy, P.] CNRS, Lab Astrophys Marseille, Marseille, France.
[Lamy, P.] Aix Marseille Univ, Marseille, France.
[Xia, L.] Shandong Univ, Weihai, Peoples R China.
[Eastwood, J. P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Wimmer-Schweingruber, R. F.] Univ Kiel, Kiel, Germany.
[Soucek, J.] Inst Atmospher Phys, Prague, Czech Republic.
[Prech, L.] Charles Univ Prague, Prague, Czech Republic.
[Rochus, P.] Ctr Spatial Liege, Liege, Belgium.
[Bothmer, V.] Univ Gottingen, Gottingen, Germany.
[Janvier, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Paris, France.
[Maksimovic, M.] Observ Paris, Meudon, France.
[Escoubet, C. P.] European Space Agcy, Noordwijk, Netherlands.
[Kilpua, E. K. J.] Univ Helsinki, Helsinki, Finland.
[Vainio, R.] Univ Turku, Turku, Finland.
[Poedts, S.] Katholieke Univ Leuven, Leuven, Belgium.
[Dunlop, M. W.] Beihang Univ, Beijing, Peoples R China.
[Savani, N.] Univ Maryland, UMBC, GPHI, Baltimore, MD USA.
[Savani, N.; Gopalswamy, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Bale, S. D.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Li, G.] Univ Alabama, Huntsville, AL 35899 USA.
[Howard, T.; DeForest, C.] Southwest Res Inst, Boulder, CO USA.
[Webb, D.] Boston Coll, ISR, Chestnut Hill, MA USA.
[Lugaz, N.] Univ New Hampshire, Durham, NH 03824 USA.
[Fuselier, S. A.] Southwest Res Inst, San Antonio, TX USA.
[Dalmasse, K.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
[Tallineau, J.; Vranken, D.] Qinetiq Space, Kruibeke, Belgium.
[Fernandez, J. G.] GMV, Tres Cantos, Spain.
RP Lavraud, B (reprint author), Univ Toulouse 3, Inst Rech Astrophys & Planetol, Toulouse, France.
RI Bale, Stuart/E-7533-2011; Vainio, Rami/A-5590-2009; Soucek,
Jan/G-3424-2014; Kilpua, Emilia/G-8994-2012; Qin, Gang/B-2250-2009;
Lugaz, Noe/C-1284-2008
OI Bale, Stuart/0000-0002-1989-3596; Vainio, Rami/0000-0002-3298-2067;
Soucek, Jan/0000-0003-0462-6804; Qin, Gang/0000-0002-3437-3716; Lugaz,
Noe/0000-0002-1890-6156
FU CNES; CNRS
FX The authors acknowledge the inputs and support from more than 180
collaborators to the INSTANT mission proposal submitted to the ESA and
CAS call for small missions in 2015. Although INSTANT was not selected
in that call, the concept will be proposed in future opportunities at
ESA or other agencies. Work at IRAP was supported by CNES and CNRS. BL
wishes to thank D. Lario for providing the figure from which Fig. 5 is
adapted.
NR 79
TC 0
Z9 0
U1 4
U2 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-6826
EI 1879-1824
J9 J ATMOS SOL-TERR PHY
JI J. Atmos. Sol.-Terr. Phys.
PD AUG
PY 2016
VL 146
BP 171
EP 185
DI 10.1016/j.jastp.2016.06.004
PG 15
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
GA DS2IN
UT WOS:000380593300017
ER
PT J
AU Knysh, S
AF Knysh, Sergey
TI Zero-temperature quantum annealing bottlenecks in the spin-glass phase
SO Nature Communications
LA English
DT Article
ID CRITICAL-BEHAVIOR; TRANSVERSE-FIELD; NEURAL-NETWORKS; MODEL;
COMPUTATION; ROTORS
AB A promising approach to solving hard binary optimization problems is quantum adiabatic annealing in a transverse magnetic field. An instantaneous ground state-initially a symmetric superposition of all possible assignments of N qubits-is closely tracked as it becomes more and more localized near the global minimum of the classical energy. Regions where the energy gap to excited states is small (for instance at the phase transition) are the algorithm's bottlenecks. Here I show how for large problems the complexity becomes dominated by O(log N) bottlenecks inside the spin-glass phase, where the gap scales as a stretched exponential. For smaller N, only the gap at the critical point is relevant, where it scales polynomially, as long as the phase transition is second order. This phenomenon is demonstrated rigorously for the two-pattern Gaussian Hopfield model. Qualitative comparison with the Sherrington-Kirkpatrick model leads to similar conclusions.
C1 [Knysh, Sergey] NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA.
[Knysh, Sergey] SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA.
RP Knysh, S (reprint author), NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA.; Knysh, S (reprint author), SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA.
EM Sergey.I.Knysh@nasa.gov
FU Office of the Director of National Intelligence (ODNI); Intelligence
Advanced Research Projects Activity (IARPA) [IAA 145483]; Air Force
Research Laboratory (AFRL) Information Directorate [F4HBKC4162G001]
FX I would like to thank Vadim Smelyanskiy for useful discussions. This
work was supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via IAA 145483, and by the Air Force Research Laboratory (AFRL)
Information Directorate under grant F4HBKC4162G001. The views and
conclusions contained herein are those of the author and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of ODNI, IARPA, AFRL or the
U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purpose notwithstanding any
copyright annotation thereon.
NR 51
TC 2
Z9 2
U1 8
U2 8
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD AUG
PY 2016
VL 7
AR 12370
DI 10.1038/ncomms12370
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DS5ZA
UT WOS:000380860300001
PM 27491338
ER
PT J
AU Harvey, N
AF Harvey, Nate
TI GRACE star camera noise
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Low Earth orbit satellites; Attitude; Star cameras; GRACE
AB Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Harvey, Nate] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Harvey, Nate] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Harvey, N (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.; Harvey, N (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM nathaniel.e.harvey@jpl.nasa.gov
FU National Aeronautics and Space Administration
FX This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.
NR 9
TC 1
Z9 1
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD AUG 1
PY 2016
VL 58
IS 3
BP 408
EP 414
DI 10.1016/j.asr.2016.04.025
PG 7
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA DQ9WW
UT WOS:000379561000012
ER
PT J
AU Armellin, R
Di Lizia, P
Zanetti, R
AF Armellin, Roberto
Di Lizia, Pierluigi
Zanetti, Renato
TI Dealing with uncertainties in angles-only initial orbit determination
SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY
LA English
DT Article
DE Initial orbit determination (IOD); Optical observations; Uncertainties
mapping; Differential algebra (DA)
ID DOMAIN
AB A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map uncertainties from the observation space to the state space. When a minimum set of observations is available, DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available, high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.
C1 [Armellin, Roberto] Univ La Rioja, Dept Matemat & Comp, Logrono 26006, Spain.
[Di Lizia, Pierluigi] Politecn Milan, Dept Aerosp Sci & Technol, I-20156 Milan, Italy.
[Zanetti, Renato] NASA, Johnson Space Ctr, 2101 NASA Rd 1, Houston, TX 77058 USA.
RP Armellin, R (reprint author), Univ La Rioja, Dept Matemat & Comp, Logrono 26006, Spain.
EM roberto.armellin@unirioja.es; pierluigi.dilizia@polimi.it;
renato.zanetti@nasa.gov
OI Armellin, Roberto/0000-0002-3516-6428
FU Sklodowska-Curie Grant [627111]
FX R. Armellin acknowledges the support received by the Sklodowska-Curie
Grant 627111 (HOPT -Merging Lie perturbation theory and Taylor
Differential algebra to address space debris challenges). The authors
are grateful to Monica Valli, who implemented a preliminary version of
the DA-based IOD update. R. Armellin is thankful to Cristina Parigini
for her help in the visualization of the results.
NR 22
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0923-2958
EI 1572-9478
J9 CELEST MECH DYN ASTR
JI Celest. Mech. Dyn. Astron.
PD AUG
PY 2016
VL 125
IS 4
BP 435
EP 450
DI 10.1007/s10569-016-9694-z
PG 16
WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications
SC Astronomy & Astrophysics; Mathematics
GA DR0VJ
UT WOS:000379624700003
ER
PT J
AU Potter, C
AF Potter, Christopher
TI Measurements of fog water interception by shrubs on the California
central coast
SO JOURNAL OF COASTAL CONSERVATION
LA English
DT Article
DE Fog; Deposition; Coastal shrub; Central California; Water budget
ID STOMATAL CONDUCTANCE; ESTABLISHMENT; AVAILABILITY; VEGETATION;
GRASSLAND; STRATUS; DRIP
AB Fog water deposition may be an important component of the water budget of herbaceous-shrub ecosystems on the central and southern coastal regions of California. This paper presents the first analysis of measured fog water drip rates and meteorological controls in shrublands of Big Sur, California. Seasonal totals of 1255 mm and 306 mm of fog water drip were recorded in 2014 and 2015 (respectively), for averaged fog deposition rates of 0.02-0.08 l m(2) hr.(-1) to the soil under shrub canopy cover. The diurnal patterns of fog water drip showed that the majority of all trough water collected under shrubs on no-rain days occurred between the hours of 11 PM and 9 AM. During the study period from June 1 to October 31 of both 2014 and 2015, soil water content decreased significantly from average levels of 4-6 % at the shrub canopy center and middle locations, through 2-3 % VWC at the shrub edge locations, to levels at or below 2 % at 2-m distance locations from the shrub edge in open grass cover. Based on these results, we conclude that detectable rates of shrub canopy fog interception help sustain elevated soil water levels under shrubs and aid woody vegetation survival through periods of low rainfall.
C1 [Potter, Christopher] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Potter, C (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM chris.potter@nasa.gov
NR 26
TC 0
Z9 0
U1 10
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1400-0350
EI 1874-7841
J9 J COAST CONSERV
JI J. Coast. Conserv.
PD AUG
PY 2016
VL 20
IS 4
BP 315
EP 325
DI 10.1007/s11852-016-0443-y
PG 11
WC Biodiversity Conservation; Environmental Sciences; Marine & Freshwater
Biology; Water Resources
SC Biodiversity & Conservation; Environmental Sciences & Ecology; Marine &
Freshwater Biology; Water Resources
GA DR0FW
UT WOS:000379584400006
ER
PT J
AU Haddad, EE
Tuite, ML
Martinez, AM
Williford, K
Boyer, DL
Droser, ML
Love, GD
AF Haddad, Emily E.
Tuite, Michael L.
Martinez, Aaron M.
Williford, Kenneth
Boyer, Diana L.
Droser, Mary L.
Love, Gordon D.
TI Lipid biomarker stratigraphic records through the Late Devonian
Frasnian/Famennian boundary: Comparison of high-and low-latitude
epicontinental marine settings
SO ORGANIC GEOCHEMISTRY
LA English
DT Article
DE Upper Kellwasser; Black shale; Mass extinctions; Appalachian Basin;
Madre de Dios Basin; Lipid biomarkers; Redox; Nitrogen isotopes
ID HOLY-CROSS MOUNTAINS; SEDIMENTARY ORGANIC-MATTER; OCEANIC ANOXIC EVENT;
PHOTIC ZONE EUXINIA; BLACK SHALES; MASS EXTINCTION; BIOGEOCHEMICAL
CYCLES; NITROGEN LIMITATION; BIOLOGICAL MARKERS; APPALACHIAN BASIN
AB The pervasiveness of black shale preservation in association with Late Devonian biological crises suggests marine anoxia played a major role in driving ecological perturbations. However, Devonian black shale deposition is still mechanistically poorly understood. We have compiled detailed biomarker lipid chemostratigraphic records for 83 different rock samples using molecular constituents of bitumens of Upper Kellwasser equivalent black shales from two foreland basins: from the low paleolatitude Appalachian Basin (New York State) and from the high paleolatitude Madre de Dios Basin (Bolivia), in order to better understand local environmental conditions and organic source inputs during this depositional event. Despite strong indications from stable nitrogen isotopic signatures for fixed nitrogen nutrient limitation, the biomarker assemblages with consistently low-moderate hopane/sterane ratios (< 0.8) indicate that algae were major marine primary producers in both basins throughout the Frasnian/Famennian (F/F) stratigraphic coverage. Consistently higher C-28/C-29 sterane ratios at higher paleolatitude in the more nutrient-replete Madre de Dios Basin suggest prasinophyte microalgae flourished in this setting in accordance with palynological evidence for high contributions of Tasmanites cysts in these strata. All samples contain only very low absolute amounts of aryl isoprenoids (with 2,3,6-trimethyl substitution) and other aromatic carotenoids, up to several orders of magnitude lower than concentrations reported from other Phanerozoic euxinic basins. These data are consistent with local marine paleoredox models for both basins lacking a persistently shallow sulfidic aquatic zone and demonstrate that temporally persistent or spatially pervasive photic zone euxinia is not necessarily associated with all black shale sequences in the Late Devonian. (C) 2016 Published by Elsevier Ltd.
C1 [Haddad, Emily E.; Martinez, Aaron M.; Droser, Mary L.; Love, Gordon D.] Univ Calif Riverside, Dept Earth Sci, 900 Univ Ave, Riverside, CA 92521 USA.
[Tuite, Michael L.; Williford, Kenneth] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Boyer, Diana L.] SUNY Coll Oswego, Shineman Sci Ctr 241, Dept Earth Sci, Oswego, NY 13126 USA.
RP Haddad, EE (reprint author), Univ Calif Riverside, Dept Earth Sci, 900 Univ Ave, Riverside, CA 92521 USA.
EM emily.haddad@email.ucr.edu
FU National Science Foundation Earth Sciences Program [NSF-EAR 1348988,
NSF-EAR 1348981]; Agouron Institute; NSF GRFP; AAPG; SEPM; Gulf Coast
Section of SEPM; Paleontological Society
FX This work was funded principally by a National Science Foundation Earth
Sciences Program grants to GDL (NSF-EAR 1348988) and DLB (NSF-EAR
1348981). GDL also thanks the Agouron Institute for grant support. EEH
acknowledges graduate student support from the NSF GRFP, AAPG, SEPM, the
Gulf Coast Section of SEPM, and the Paleontological Society. The authors
are indebted to Sarah de la Rue for providing Pando X-1 core samples for
geochemical analysis.
NR 107
TC 0
Z9 0
U1 5
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0146-6380
J9 ORG GEOCHEM
JI Org. Geochem.
PD AUG
PY 2016
VL 98
BP 38
EP 53
DI 10.1016/j.orggeochem.2016.05.007
PG 16
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DR3DH
UT WOS:000379782300004
ER
PT J
AU Chen, TL
Primiero, G
Raimondi, F
Rungta, N
AF Chen, Taolue
Primiero, Giuseppe
Raimondi, Franco
Rungta, Neha
TI A Computationally Grounded, Weighted Doxastic Logic
SO STUDIA LOGICA
LA English
DT Article; Proceedings Paper
CT 7th Workshop on Logical Aspects of Multi-Agent Systems (LAMAS)
Co-Located with 15th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS)
CY 2014
CL Paris, FRANCE
DE Multi-agent systems; Doxastic logic; Model checking
ID MODEL CHECKING; VERIFICATION; SYSTEMS
AB Modelling, reasoning and verifying complex situations involving a system of agents is crucial in all phases of the development of a number of safety-critical systems. In particular, it is of fundamental importance to have tools and techniques to reason about the doxastic and epistemic states of agents, to make sure that the agents behave as intended. In this paper we introduce a computationally grounded logic called COGWED and we present two types of semantics that support a range of practical situations. We provide model checking algorithms, complexity characterisations and a prototype implementation. We validate our proposal against a case study from the avionic domain: we assess and verify the situational awareness of pilots flying an aircraft with several automated components in off-nominal conditions.
C1 [Chen, Taolue; Primiero, Giuseppe; Raimondi, Franco] Middlesex Univ, Dept Comp Sci, London, England.
[Rungta, Neha] NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Chen, TL (reprint author), Middlesex Univ, Dept Comp Sci, London, England.
EM t.chen@mdx.ac.uk; g.primiero@mdx.ac.uk; f.raimondi@mdx.ac.uk;
neha.s.rungta@nasa.gov
OI Primiero, Giuseppe/0000-0003-3264-7100
NR 27
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0039-3215
J9 STUD LOGICA
JI Stud. Log.
PD AUG
PY 2016
VL 104
IS 4
SI SI
BP 679
EP 703
DI 10.1007/s11225-015-9621-4
PG 25
WC Mathematics; Logic; Philosophy
SC Mathematics; Science & Technology - Other Topics; Philosophy
GA DQ9KW
UT WOS:000379529800004
ER
PT J
AU Ho, SP
Pappas, CG
Austermann, J
Beall, JA
Becker, D
Choi, SK
Datta, R
Duff, SM
Gallardo, PA
Grace, E
Hasselfield, M
Henderson, SW
Hilton, GC
Hubmayr, J
Koopman, BJ
Lanen, JV
Li, D
McMahon, J
Nati, F
Niemack, MD
Niraula, P
Salatino, M
Schillaci, A
Schmitt, BL
Simon, SM
Staggs, ST
Stevens, JR
Ward, JT
Wollack, EJ
Vavagiakis, EM
AF Ho, S. P.
Pappas, C. G.
Austermann, J.
Beall, J. A.
Becker, D.
Choi, S. K.
Datta, R.
Duff, S. M.
Gallardo, P. A.
Grace, E.
Hasselfield, M.
Henderson, S. W.
Hilton, G. C.
Hubmayr, J.
Koopman, B. J.
Lanen, J. V.
Li, D.
McMahon, J.
Nati, F.
Niemack, M. D.
Niraula, P.
Salatino, M.
Schillaci, A.
Schmitt, B. L.
Simon, S. M.
Staggs, S. T.
Stevens, J. R.
Ward, J. T.
Wollack, E. J.
Vavagiakis, E. M.
TI The First Multichroic Polarimeter Array on the Atacama Cosmology
Telescope: Characterization and Performance
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE ACTPol; Cosmic microwave background; Multichroic; Polarization;
Transition edge sensors; SQUID
AB The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 K, and detector time constants and saturation powers suitable for ACT CMB observations.
C1 [Ho, S. P.; Pappas, C. G.; Choi, S. K.; Grace, E.; Hasselfield, M.; Niraula, P.; Salatino, M.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA.
[Austermann, J.; Beall, J. A.; Becker, D.; Duff, S. M.; Hilton, G. C.; Hubmayr, J.; Lanen, J. V.; Li, D.] NIST Quantum Devices Grp, 325 Broadway,Mailcode 817-03, Boulder, CO 80305 USA.
[Datta, R.; McMahon, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA.
[Gallardo, P. A.; Henderson, S. W.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA.
[Wollack, E. J.] Natl Aeronaut & Space Adm, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Ho, SP (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08540 USA.
EM spho@princeton.edu
RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016
OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088
FU U.S. National Science Foundation [AST-0965625, PHY-1214379]; NIST
Quantum Initiative; NASA [NNX13AE56G, NNX14AB58G]; NASA Space Technology
Research Fellowship awards
FX This work was supported by the U.S. National Science Foundation through
awards AST-0965625 and PHY-1214379. The NIST authors would like to
acknowledge the support of the NIST Quantum Initiative. The development
of multichroic detectors and lenses was supported by NASA Grants s
NNX13AE56G and NNX14AB58G. The work of KPC, KTC, EG, BJK, CM, BLS, JTW,
and SMS was supported by NASA Space Technology Research Fellowship
awards.
NR 11
TC 2
Z9 2
U1 4
U2 9
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 559
EP 567
DI 10.1007/s10909-016-1573-1
PG 9
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700006
ER
PT J
AU Datta, R
Austermann, J
Beall, JA
Becker, D
Coughlin, KP
Duff, SM
Gallardo, PA
Grace, E
Hasselfield, M
Henderson, SW
Hilton, GC
Ho, SP
Hubmayr, J
Koopman, BJ
Lanen, JV
Li, D
McMahon, J
Munson, CD
Nati, F
Niemack, MD
Page, L
Pappas, CG
Salatino, M
Schmitt, BL
Schillaci, A
Simon, SM
Staggs, ST
Stevens, JR
Vavagiakis, EM
Ward, JT
Wollack, EJ
AF Datta, R.
Austermann, J.
Beall, J. A.
Becker, D.
Coughlin, K. P.
Duff, S. M.
Gallardo, P. A.
Grace, E.
Hasselfield, M.
Henderson, S. W.
Hilton, G. C.
Ho, S. P.
Hubmayr, J.
Koopman, B. J.
Lanen, J. V.
Li, D.
McMahon, J.
Munson, C. D.
Nati, F.
Niemack, M. D.
Page, L.
Pappas, C. G.
Salatino, M.
Schmitt, B. L.
Schillaci, A.
Simon, S. M.
Staggs, S. T.
Stevens, J. R.
Vavagiakis, E. M.
Ward, J. T.
Wollack, E. J.
TI Design and Deployment of a Multichroic Polarimeter Array on the Atacama
Cosmology Telescope
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Anti-reflection coating; Cosmic microwave background; Feedhorn;
Millimeter wave; Polarimeter; Silicon lenses; Superconducting detectors;
TES
ID OPTICAL DESIGN; POLARIZATION
AB We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.
C1 [Datta, R.; Coughlin, K. P.; McMahon, J.; Munson, C. D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Austermann, J.; Beall, J. A.; Becker, D.; Duff, S. M.; Hilton, G. C.; Hubmayr, J.; Lanen, J. V.; Li, D.] NIST, Quantum Devices Grp, 325 Broadway Mailcode 817-03, Boulder, CO 80305 USA.
[Gallardo, P. A.; Henderson, S. W.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Grace, E.; Ho, S. P.; Page, L.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA.
[Hasselfield, M.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Li, D.] SLAC Natl Accelerator Lab, 2575 Sandy Hill Rd, Menlo Pk, CA 94025 USA.
[Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA.
[Schillaci, A.] Soc Radiosky Asesorias Ingn Ltd, Dept 805, Lincoya 54, Concepcion, Chile.
[Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Datta, R (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
EM dattar@umich.edu
RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016
OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088
FU NASA [NNX13AE56G, NNX14AB58G]; U.S. National Science Foundation
[AST-0965625, PHY-1214379]; NIST Quantum Initiative; NASA Office of the
Chief Technologists Space Technology Research Fellowship awards
FX This work was supported by NASA through awards NNX13AE56G and NNX14AB58G
and by the U.S. National Science Foundation through awards AST-0965625
and PHY-1214379. The NIST authors would like to acknowledge the support
of the NIST Quantum Initiative. The work of KPC, EG, BJK, BLS, CDM, JTW,
and SMS were supported by NASA Office of the Chief Technologists Space
Technology Research Fellowship awards.
NR 25
TC 3
Z9 3
U1 2
U2 4
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 568
EP 575
DI 10.1007/s10909-016-1553-5
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700007
ER
PT J
AU Jhabvala, CA
Benford, DJ
Brekosky, RP
Costen, NP
Datesman, AM
Hilton, GC
Irwin, KD
Maher, SF
Manos, G
Miller, TM
Moseley, SH
Sharp, EH
Staguhn, JG
Wang, F
Wollack, EJ
AF Jhabvala, C. A.
Benford, D. J.
Brekosky, R. P.
Costen, N. P.
Datesman, A. M.
Hilton, G. C.
Irwin, K. D.
Maher, S. F.
Manos, G.
Miller, T. M.
Moseley, S. H.
Sharp, E. H.
Staguhn, J. G.
Wang, F.
Wollack, E. J.
TI Superconducting Pathways Through Kilopixel Backshort-Under-Grid Arrays
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Backshort-Under-Grid; Bolometer; HAWC; Through wafer via; Transition
edge sensor; Indium bump bonding; Atomic layer deposition
ID INFRARED ASTRONOMY; BOLOMETER ARRAYS
AB We have demonstrated in the laboratory multiple, fully functional, kilopixel, bolometer arrays for the upgraded instrument, the High-resolution airborne wideband camera plus (HAWC+), for the stratospheric observatory for infrared astronomy (SOFIA). Each kilopixel array consists of three individual components assembled into a single working unit: (1) a filled, Transition Edge Sensor (TES) bolometer array, (2) an infrared, back-termination, and (3) an integrated, two-dimensional superconducting quantum interference device (SQUID) multiplexer readout. Kilopixel TES arrays are directly indium-bump-bonded to a 32 40 SQUID multiplexer (MUX) circuit. In order to provide a fully superconducting pathway from the TES to the SQUID readout, numerous superconductor-to-superconductor interfaces must be made. This paper focuses on the fabrication techniques needed to create the superconducting path from the TES, out of the detector membrane, through the wafer, and to the SQUID readout.
C1 [Jhabvala, C. A.; Benford, D. J.; Manos, G.; Miller, T. M.; Moseley, S. H.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Brekosky, R. P.; Costen, N. P.; Datesman, A. M.] Stinger Ghaffarian Technol Inc, Seabrook, MD USA.
[Hilton, G. C.] NIST, Boulder, CO USA.
[Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Sharp, E. H.] Global Sci & Technol Inc, Greenbelt, MD USA.
[Maher, S. F.] Sci Syst & Applicat Inc, Greenbelt, MD USA.
[Staguhn, J. G.] Johns Hopkins Univ, Baltimore, MD USA.
[Wang, F.] ASRC Fed Space & Def, Greenbelt, MD USA.
RP Jhabvala, CA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM christine.a.jhabvala@nasa.gov
RI Wollack, Edward/D-4467-2012; Benford, Dominic/D-4760-2012
OI Wollack, Edward/0000-0002-7567-4451; Benford,
Dominic/0000-0002-9884-4206
FU NASA
FX This work was supported through a series of NASA awards, including the
High resolution Airborne Wideband Camera Plus (HAWC+/SOFIA, Dr. Darren
Dowell, Principal Investigator) and the Primordial Inflation
Polarization Explorer (PIPER, Dr. Alan Kogut, Principal Investigator).
The authors also wish to thank the work of Dr. James A. Chervenak, NASA
Goddard Space Flight Center, Detector Systems Branch, for cryogenic test
support.
NR 10
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 615
EP 620
DI 10.1007/s10909-016-1487-y
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700014
ER
PT J
AU Lowitz, AE
Brown, AD
Mikula, V
Stevenson, TR
Timbie, PT
Wollack, EJ
AF Lowitz, A. E.
Brown, A. D.
Mikula, V.
Stevenson, T. R.
Timbie, P. T.
Wollack, E. J.
TI Design, Fabrication, and Testing of a TiN/Ti/TiN Trilayer KID Array for
3 mm CMB Observations
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Kinetic inductance detector; CMB; Titanium nitride; Trilayer
AB Kinetic inductance detectors (KIDs) are a promising technology for astronomical observations over a wide range of wavelengths in the mm and sub-mm regime. Simple fabrication, in as little as one lithographic layer, and passive frequency-domain multiplexing, with readout of up to 1000 pixels on a single line with a single cold amplifier, make KIDs an attractive solution for high-pixel-count detector arrays. We are developing an array that optimizes KIDs for optical frequencies near 100 GHz to expand their usefulness in mm-wave applications, with a particular focus on CMB B-mode measurement efforts in association with the QUBIC telescope. We have designed, fabricated, and tested a 20-pixel prototype array using a simple quasi-lumped microstrip design and pulsed DC reactive magnetron-sputtered TiN/Ti/TiN trilayer resonators, optimized for detecting 100 GHz (3 mm) signals. Here we present a discussion of design considerations for the array, as well as preliminary detector characterization measurements and results from a study of TiN trilayer properties.
C1 [Lowitz, A. E.; Timbie, P. T.] Univ Wisconsin, Madison, WI 53706 USA.
[Brown, A. D.; Stevenson, T. R.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Mikula, V.] Catholic Univ Amer, Washington, DC 20064 USA.
RP Lowitz, AE (reprint author), Univ Wisconsin, Madison, WI 53706 USA.
EM lowitz@wisc.edu
RI Wollack, Edward/D-4467-2012
OI Wollack, Edward/0000-0002-7567-4451
FU NASA Space Technology Research Fellowship
FX This work was supported by a NASA Space Technology Research Fellowship.
NR 6
TC 0
Z9 0
U1 4
U2 7
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 627
EP 633
DI 10.1007/s10909-016-1584-y
PG 7
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700016
ER
PT J
AU Duff, SM
Austermann, J
Beall, JA
Becker, D
Datta, R
Gallardo, PA
Henderson, SW
Hilton, GC
Ho, SP
Hubmayr, J
Koopman, BJ
Li, D
McMahon, J
Nati, F
Niemack, MD
Pappas, CG
Salatino, M
Schmitt, BL
Simon, SM
Staggs, ST
Stevens, JR
Van Lanen, J
Vavagiakis, EM
Ward, JT
Wollack, EJ
AF Duff, S. M.
Austermann, J.
Beall, J. A.
Becker, D.
Datta, R.
Gallardo, P. A.
Henderson, S. W.
Hilton, G. C.
Ho, S. P.
Hubmayr, J.
Koopman, B. J.
Li, D.
McMahon, J.
Nati, F.
Niemack, M. D.
Pappas, C. G.
Salatino, M.
Schmitt, B. L.
Simon, S. M.
Staggs, S. T.
Stevens, J. R.
Van Lanen, J.
Vavagiakis, E. M.
Ward, J. T.
Wollack, E. J.
TI Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for
150 mm Wafers
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE AlMn; Multichroic; Polarimeter; SiNx; Transition-edge sensor
ID POLARIZATION
AB Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN) materials and microwave structures, and the resulting performance improvements.
C1 [Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Hilton, G. C.; Hubmayr, J.; Van Lanen, J.] NIST, 325 Broadway, Boulder, CO 80305 USA.
[Datta, R.; McMahon, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA.
[Gallardo, P. A.; Henderson, S. W.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Ho, S. P.; Pappas, C. G.; Salatino, M.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Li, D.] SLAC Natl Accelerator Lab, 2575 Sandy Hill Rd, Menlo Pk, CA 94025 USA.
[Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Duff, SM (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA.
EM shannon.duff@nist.gov
RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016
OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088
FU U.S. National Science Foundation [1440226]; NIST Quantum Initiative;
NASA [NNX13AE56G, NNX14AB58G]; NASA Space Technology Research Fellowship
awards
FX This work was supported by the U.S. National Science Foundation through
award 1440226. The NIST authors would like to acknowledge the support of
the NIST Quantum Initiative. The development of multichroic detectors
and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. The
work of BJK, BLS, JTW, and SMS was supported by NASA Space Technology
Research Fellowship awards.
NR 15
TC 2
Z9 2
U1 1
U2 4
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 634
EP 641
DI 10.1007/s10909-016-1576-y
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700017
ER
PT J
AU Denis, KL
Ali, A
Appel, J
Bennett, CL
Chang, MP
Chuss, DT
Colazo, FA
Costen, N
Essinger-Hileman, T
Hu, R
Marriage, T
Rostem, K
U-Yen, K
Wollack, EJ
AF Denis, K. L.
Ali, A.
Appel, J.
Bennett, C. L.
Chang, M. P.
Chuss, D. T.
Colazo, F. A.
Costen, N.
Essinger-Hileman, T.
Hu, R.
Marriage, T.
Rostem, K.
U-Yen, K.
Wollack, E. J.
TI Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for
Measurement of the Cosmic Microwave Background Polarization
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE TES; CMB; Wafer bonding; Micro-machining; Polarization
ID BOLOMETER
AB Characterization of the minute cosmic microwave background polarization signature requires multi-frequency, high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of detector modules for measurement of the CMB at 90 GHz. The 90 GHz detectors are a scaled version of the 40 GHz architecture where, due to smaller size detectors, we have implemented a modular (wafer level) rather than the chip-level architecture. The new fabrication process utilizes the same design rules with the added challenge of increased wiring density to the 74 TES's as well as a new wafer level hybridization procedure. The hexagonally shaped modules are tile-able, and as such can be used to form the large focal planes required for a space-based CMB polarimeter. The detectors described here will be deployed in two focal planes with seven modules each in the Johns Hopkins University led ground-based Cosmology Large Angular Scale Surveyor (CLASS) telescope.
C1 [Denis, K. L.; Chang, M. P.; Colazo, F. A.; Costen, N.; Hu, R.; U-Yen, K.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ali, A.; Appel, J.; Bennett, C. L.; Essinger-Hileman, T.; Marriage, T.; Rostem, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chang, M. P.; Costen, N.; Hu, R.] Stinger Ghaffarian Technol Greenbelt, Greenbelt, MD 20770 USA.
[Chuss, D. T.] Villanova Univ, Villanova, PA 19085 USA.
RP Denis, KL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM kevin.l.denis@nasa.gov
RI Wollack, Edward/D-4467-2012;
OI Wollack, Edward/0000-0002-7567-4451; Denis, Kevin/0000-0002-3592-5703
FU NASA ROSES/APRA grant; National Science Foundation [0959349, 1429236]
FX NASA ROSES/APRA grant provided support for the detector technology
development. We acknowledge the National Science Foundation for their
support of CLASS under Grants numbered 0959349 and 1429236.
NR 10
TC 1
Z9 1
U1 2
U2 3
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 668
EP 673
DI 10.1007/s10909-015-1366-y
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700022
ER
PT J
AU Fyhrie, A
Glenn, J
Wheeler, J
Day, P
Eom, BH
Leduc, H
Skrutskie, M
AF Fyhrie, A.
Glenn, J.
Wheeler, J.
Day, P.
Eom, B. H.
Leduc, H.
Skrutskie, M.
TI Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic
Far-Infrared Space Telescope
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Kinetic inductance detector; Far-infrared; Low NEP
AB Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3 W/. We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 m optically loaded by cold blackbody radiation.
C1 [Fyhrie, A.; Glenn, J.; Wheeler, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Day, P.; Eom, B. H.; Leduc, H.] Jet Prop Lab, Pasadena, CA USA.
[Skrutskie, M.] Univ Virginia, Charlottesville, VA USA.
RP Fyhrie, A (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
EM adalyn.fyhrie@colorado.edu
NR 10
TC 1
Z9 1
U1 3
U2 3
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 712
EP 717
DI 10.1007/s10909-016-1539-3
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700029
ER
PT J
AU Hunacek, J
Bock, J
Bradford, CM
Bumble, B
Chang, TC
Cheng, YT
Cooray, A
Crites, A
Hailey-Dunsheath, S
Gong, Y
Kenyon, M
Koch, P
Li, CT
O'Brient, R
Shirokoff, E
Shiu, C
Staniszewski, Z
Uzgil, B
Zemcov, M
AF Hunacek, J.
Bock, J.
Bradford, C. M.
Bumble, B.
Chang, T-C.
Cheng, Y-T.
Cooray, A.
Crites, A.
Hailey-Dunsheath, S.
Gong, Y.
Kenyon, M.
Koch, P.
Li, C-T.
O'Brient, R.
Shirokoff, E.
Shiu, C.
Staniszewski, Z.
Uzgil, B.
Zemcov, M.
TI Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII]
Intensity Mapping Experiment
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Reionization; Intensity mapping; Bolometers; Transition edge sensors
ID POWER SPECTRUM; REIONIZATION; SPECTROMETER; CONSTRAINTS; GALAXIES;
UNIVERSE; EPOCH
AB We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 m emission line of singly ionized carbon ([CII]) from redshift to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of . The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of . This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.
C1 [Hunacek, J.; Bock, J.; Bradford, C. M.; Cheng, Y-T.; Crites, A.; Hailey-Dunsheath, S.; O'Brient, R.; Shiu, C.] CALTECH, Pasadena, CA 91125 USA.
[Bock, J.; Bradford, C. M.; Bumble, B.; Kenyon, M.; O'Brient, R.; Staniszewski, Z.] Jet Prop Lab, Pasadena, CA USA.
[Chang, T-C.; Koch, P.; Li, C-T.] Acad Sinica, Inst Astron & Astrophys, Taipei, Taiwan.
[Cooray, A.] Univ Calif Irvine, Irvine, CA USA.
[Shirokoff, E.] Univ Chicago, Chicago, IL 60637 USA.
[Uzgil, B.] Univ Penn, Philadelphia, PA 19104 USA.
[Gong, Y.] Natl Astron Observ China, Beijing, Peoples R China.
[Zemcov, M.] Rochester Inst Technol, Rochester, NY 14623 USA.
RP Hunacek, J (reprint author), CALTECH, Pasadena, CA 91125 USA.
EM jhunacek@caltech.edu
FU National Science Foundation Graduate Research Fellowship [DGE1144469]
FX This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE1144469.
NR 14
TC 0
Z9 0
U1 1
U2 2
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 733
EP 738
DI 10.1007/s10909-015-1359-x
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700032
ER
PT J
AU Chuss, DT
Ali, A
Amiri, M
Appel, J
Bennett, CL
Colazo, F
Denis, KL
Dunner, R
Essinger-Hileman, T
Eimer, J
Fluxa, P
Gothe, D
Halpern, M
Harrington, K
Hilton, G
Hinshaw, G
Hubmayr, J
Iuliano, J
Marriage, TA
Miller, N
Moseley, SH
Mumby, G
Petroff, M
Reintsema, C
Rostem, K
U-Yen, K
Watts, D
Wagner, E
Wollack, EJ
Xu, Z
Zeng, L
AF Chuss, D. T.
Ali, A.
Amiri, M.
Appel, J.
Bennett, C. L.
Colazo, F.
Denis, K. L.
Dunner, R.
Essinger-Hileman, T.
Eimer, J.
Fluxa, P.
Gothe, D.
Halpern, M.
Harrington, K.
Hilton, G.
Hinshaw, G.
Hubmayr, J.
Iuliano, J.
Marriage, T. A.
Miller, N.
Moseley, S. H.
Mumby, G.
Petroff, M.
Reintsema, C.
Rostem, K.
U-Yen, K.
Watts, D.
Wagner, E.
Wollack, E. J.
Xu, Z.
Zeng, L.
TI Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE CMB; TES
ID MICROWAVE BACKGROUND POLARIMETRY; BANDWIDTH
AB The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at 10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
C1 [Chuss, D. T.] Villanova Univ, Dept Phys, Villanova, PA 19085 USA.
[Ali, A.; Appel, J.; Bennett, C. L.; Essinger-Hileman, T.; Eimer, J.; Gothe, D.; Harrington, K.; Iuliano, J.; Marriage, T. A.; Miller, N.; Mumby, G.; Petroff, M.; Rostem, K.; Watts, D.; Wagner, E.; Xu, Z.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.
[Colazo, F.; Miller, N.; Moseley, S. H.; Rostem, K.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.
[Denis, K. L.] NASA, Goddard Space Flight Ctr, Code 553, Greenbelt, MD 20771 USA.
[U-Yen, K.] NASA, Goddard Space Flight Ctr, Code 555, Greenbelt, MD 20771 USA.
[Amiri, M.; Halpern, M.; Hinshaw, G.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada.
[Hilton, G.; Hubmayr, J.; Reintsema, C.] NIST, 325 Broadway, Boulder, CO 80305 USA.
[Zeng, L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Dunner, R.; Fluxa, P.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago, Chile.
RP Chuss, DT (reprint author), Villanova Univ, Dept Phys, Villanova, PA 19085 USA.
EM david.chuss@villanova.edu
RI Wollack, Edward/D-4467-2012;
OI Wollack, Edward/0000-0002-7567-4451; Watts, Duncan/0000-0002-5437-6121
FU National Science Foundation [0959349, 1429236]; NASA ROSES/APRA program;
NASA Space Technology Research Fellowship [NNX14AM49H]; Maryland Space
Grant Consortium
FX Support for CLASS has been provided by the National Science Foundation
through Grant Numbers 0959349 and 1429236. The NASA ROSES/APRA program
has provided funding for the development of the detectors. K. Harrington
was supported by a NASA Space Technology Research Fellowship
(NNX14AM49H). D Watts is funded by the Maryland Space Grant Consortium.
NR 18
TC 0
Z9 0
U1 0
U2 4
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 759
EP 764
DI 10.1007/s10909-015-1368-9
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700036
ER
PT J
AU Wu, WLK
Ade, PAR
Ahmed, Z
Alexander, KD
Amiri, M
Barkats, D
Benton, SJ
Bischoff, CA
Bock, JJ
Bowens-Rubin, R
Buder, I
Bullock, E
Buza, V
Connors, JA
Filippini, JP
Fliescher, S
Grayson, JA
Halpern, M
Harrison, SA
Hilton, GC
Hristov, VV
Hui, H
Irwin, KD
Kang, J
Karkare, KS
Karpel, E
Kefeli, S
Kernasovskiy, SA
Kovac, JM
Kuo, CL
Megerian, KG
Netterfield, CB
Nguyen, HT
O'Brient, R
Ogburn, RW
Pryke, C
Reintsema, CD
Richter, S
Sorensen, C
Staniszewski, ZK
Steinbach, B
Sudiwala, RV
Teply, GP
Thompson, KL
Tolan, JE
Tucker, CE
Turner, AD
Vieregg, AG
Weber, AC
Wiebe, DV
Willmert, J
Yoon, KW
AF Wu, W. L. K.
Ade, P. A. R.
Ahmed, Z.
Alexander, K. D.
Amiri, M.
Barkats, D.
Benton, S. J.
Bischoff, C. A.
Bock, J. J.
Bowens-Rubin, R.
Buder, I.
Bullock, E.
Buza, V.
Connors, J. A.
Filippini, J. P.
Fliescher, S.
Grayson, J. A.
Halpern, M.
Harrison, S. A.
Hilton, G. C.
Hristov, V. V.
Hui, H.
Irwin, K. D.
Kang, J.
Karkare, K. S.
Karpel, E.
Kefeli, S.
Kernasovskiy, S. A.
Kovac, J. M.
Kuo, C. L.
Megerian, K. G.
Netterfield, C. B.
Nguyen, H. T.
O'Brient, R.
Ogburn, R. W.
Pryke, C.
Reintsema, C. D.
Richter, S.
Sorensen, C.
Staniszewski, Z. K.
Steinbach, B.
Sudiwala, R. V.
Teply, G. P.
Thompson, K. L.
Tolan, J. E.
Tucker, C. E.
Turner, A. D.
Vieregg, A. G.
Weber, A. C.
Wiebe, D. V.
Willmert, J.
Yoon, K. W.
TI Initial Performance of Bicep3: A Degree Angular Scale 95 GHz Band
Polarimeter
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Cosmic microwave background; Primordial gravitational waves; Inflation;
Instrumentation: polarimetry; Telescopes
AB Bicep3 is a 550-mm aperture telescope with cold, on-axis, refractive optics designed to observe at the 95-GHz band from the South Pole. It is the newest member of the Bicep/Keck family of inflationary probes specifically designed to measure the polarization of the cosmic microwave background (CMB) at degree angular scales. Bicep3 is designed to house 1280 dual-polarization pixels, which, when fully populated, totals to 9 the number of pixels in a single Keck 95-GHz receiver, thus further advancing the Bicep/Keck program's 95 GHz mapping speed. Bicep3 was deployed during the austral summer of 2014-2015 with nine detector tiles, to be increased to its full capacity of 20 in the second season. After instrument characterization, measurements were taken, and CMB observation commenced in April 2015. Together with multi-frequency observation data from Planck, Bicep2, and the Keck Array, Bicep3 is projected to set upper limits on the tensor-to-scalar ratio to at 95 % C.L.
C1 [Wu, W. L. K.; Ahmed, Z.; Grayson, J. A.; Irwin, K. D.; Kang, J.; Karpel, E.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Wu, W. L. K.; Ahmed, Z.; Grayson, J. A.; Irwin, K. D.; Kang, J.; Karpel, E.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Ade, P. A. R.; Sudiwala, R. V.; Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Alexander, K. D.; Barkats, D.; Bischoff, C. A.; Bowens-Rubin, R.; Buder, I.; Buza, V.; Connors, J. A.; Harrison, S. A.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Sorensen, C.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Amiri, M.; Halpern, M.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Benton, S. J.; Netterfield, C. B.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada.
[Bock, J. J.; Hristov, V. V.; Hui, H.; Kefeli, S.; O'Brient, R.; Staniszewski, Z. K.; Steinbach, B.; Teply, G. P.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Bock, J. J.; Megerian, K. G.; Nguyen, H. T.; O'Brient, R.; Staniszewski, Z. K.; Turner, A. D.; Weber, A. C.] Jet Prop Lab, Pasadena, CA 91109 USA.
[Bullock, E.; Fliescher, S.; Pryke, C.; Willmert, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Filippini, J. P.] Univ Illinois, Dept Phys, Urbana, IL 61820 USA.
[Hilton, G. C.; Reintsema, C. D.] NIST, Boulder, CO 80305 USA.
[Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA.
RP Wu, WLK (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
EM wlwu@stanford.edu
OI Barkats, Denis/0000-0002-8971-1954
FU National Science Foundation [1313158, 1313010, 1313062, 1313287,
1056465, 0960243]; SLAC Laboratory Directed Research and Development
Fund; Canada Foundation for Innovation, Science and Technology
Facilities Council Consolidated Grant [ST/K000926/1]; British Columbia
Development Fund; JPL Research and Technology Development Fund; NASA
APRA program [06-ARPA206-0040, 10-SAT10-0017, 12-SAT12-0031]; NASA SAT
program [06-ARPA206-0040, 10-SAT10-0017, 12-SAT12-0031]
FX This work is supported by the National Science Foundation (Grant Nos.
1313158, 1313010, 1313062, 1313287, 1056465, 0960243), the SLAC
Laboratory Directed Research and Development Fund, the Canada Foundation
for Innovation, Science and Technology Facilities Council Consolidated
Grant (ST/K000926/1), and the British Columbia Development Fund. The
development of detector technology was supported by the JPL Research and
Technology Development Fund and Grants 06-ARPA206-0040, 10-SAT10-0017,
and 12-SAT12-0031 from the NASA APRA and SAT programs. The development
and testing of detector modules were supported by the Gordon and Betty
Moore Foundation.
NR 12
TC 1
Z9 1
U1 4
U2 5
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 765
EP 771
DI 10.1007/s10909-015-1403-x
PG 7
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700037
ER
PT J
AU Henderson, SW
Allison, R
Austermann, J
Baildon, T
Battaglia, N
Beall, JA
Becker, D
De Bernardis, F
Bond, JR
Calabrese, E
Choi, SK
Coughlin, KP
Crowley, KT
Datta, R
Devlin, MJ
Duff, SM
Dunkley, J
Dunner, R
van Engelen, A
Gallardo, PA
Grace, E
Hasselfield, M
Hills, F
Hilton, GC
Hincks, AD
Hlozek, R
Ho, SP
Hubmayr, J
Huffenberger, K
Hughes, JP
Irwin, KD
Koopman, BJ
Kosowsky, AB
Li, D
McMahon, J
Munson, C
Nati, F
Newburgh, L
Niemack, M
Niraula, P
Page, LA
Pappas, CG
Salatino, M
Schillaci, A
Schmitt, BL
Sehgal, N
Sherwin, BD
Sievers, JL
Simon, SM
Spergel, DN
Staggs, ST
Stevens, JR
Thornton, R
Van Lanen, J
Vavagiakis, EM
Ward, JT
Wollack, EJ
AF Henderson, S. W.
Allison, R.
Austermann, J.
Baildon, T.
Battaglia, N.
Beall, J. A.
Becker, D.
De Bernardis, F.
Bond, J. R.
Calabrese, E.
Choi, S. K.
Coughlin, K. P.
Crowley, K. T.
Datta, R.
Devlin, M. J.
Duff, S. M.
Dunkley, J.
Dunner, R.
van Engelen, A.
Gallardo, P. A.
Grace, E.
Hasselfield, M.
Hills, F.
Hilton, G. C.
Hincks, A. D.
Hlozek, R.
Ho, S. P.
Hubmayr, J.
Huffenberger, K.
Hughes, J. P.
Irwin, K. D.
Koopman, B. J.
Kosowsky, A. B.
Li, D.
McMahon, J.
Munson, C.
Nati, F.
Newburgh, L.
Niemack, M. D.
Niraula, P.
Page, L. A.
Pappas, C. G.
Salatino, M.
Schillaci, A.
Schmitt, B. L.
Sehgal, N.
Sherwin, B. D.
Sievers, J. L.
Simon, S. M.
Spergel, D. N.
Staggs, S. T.
Stevens, J. R.
Thornton, R.
Van Lanen, J.
Vavagiakis, E. M.
Ward, J. T.
Wollack, E. J.
TI Advanced ACTPol Cryogenic Detector Arrays and Readout
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Bolometers; Cosmic microwave background; Millimeter-wave; Polarimetry;
Superconducting detectors; Transition edge sensors
ID TELESCOPE; COSMOLOGY; MILLIMETER; CAMERA
AB Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.
C1 [Henderson, S. W.; De Bernardis, F.; Gallardo, P. A.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Keble Rd, Ithaca, NY 14853 USA.
[Allison, R.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Austermann, J.; Beall, J. A.; Becker, D.; Duff, S. M.; Hilton, G. C.; Hubmayr, J.; Li, D.; Van Lanen, J.] NIST, Quantum Devices Grp, 325 Broadway Mailcode 817-03, Boulder, CO 80305 USA.
[Baildon, T.; Coughlin, K. P.; Datta, R.; Hills, F.; McMahon, J.; Munson, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA.
[Battaglia, N.; Calabrese, E.; Hasselfield, M.; Hlozek, R.; Spergel, D. N.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Bond, J. R.; van Engelen, A.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Choi, S. K.; Crowley, K. T.; Grace, E.; Ho, S. P.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA.
[Devlin, M. J.; Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA.
[Dunner, R.] Ponticia Univ Catolica, Dept Astron & Astrofis, Casilla 306, Santiago 22, Chile.
[Hincks, A. D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada.
[Huffenberger, K.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Hughes, J. P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Kosowsky, A. B.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Li, D.] SLAC Natl Accelerator Lab, 2575 Sandy Hill Rd, Menlo Pk, CA 94025 USA.
[Newburgh, L.] Univ Toronto, Dunlap Inst, 50 St George St, Toronto, ON M5S 3H4, Canada.
[Sehgal, N.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Sherwin, B. D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
[Sievers, J. L.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4041 Durban, South Africa.
[Thornton, R.] West Chester Univ Penns, Dept Phys, W Chester, PA 19383 USA.
[Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Schillaci, A.] Soc Radiosky Asesorias Ingn Ltd, Lincoyan 54, Concepcion, Chile.
RP Henderson, SW (reprint author), Cornell Univ, Dept Phys, Keble Rd, Ithaca, NY 14853 USA.
EM swh76@cornell.edu
RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016;
OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088;
Huffenberger, Kevin/0000-0001-7109-0099
FU U.S. National Science Foundation [1312380, 1440226]; NIST Quantum
Initiative; NASA [NNX13AE56G, NNX14AB58G]; NASA Space Technology
Research Fellowship awards
FX This work was supported by the U.S. National Science Foundation through
Awards 1312380 and 1440226. The NIST authors would like to acknowledge
the support of the NIST Quantum Initiative. The development of
multichroic detectors and lenses was supported by NASA Grants NNX13AE56G
and NNX14AB58G. The work of KPC, KTC, EG, BJK, CM, BLS, JTW, and SMS was
supported by NASA Space Technology Research Fellowship awards.
NR 37
TC 14
Z9 14
U1 2
U2 7
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 772
EP 779
DI 10.1007/s10909-016-1575-z
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700038
ER
PT J
AU Suzuki, A
Ade, P
Akiba, Y
Aleman, C
Arnold, K
Baccigalupi, C
Barch, B
Barron, D
Bender, A
Boettger, D
Borrill, J
Chapman, S
Chinone, Y
Cukierman, A
Dobbs, M
Ducout, A
Dunner, R
Elleflot, T
Errard, J
Fabbian, G
Feeney, S
Feng, C
Fujino, T
Fuller, G
Gilbert, A
Goeckner-Wald, N
Groh, J
Haan, T
Hall, G
Halverson, N
Hamada, T
Hasegawa, M
Hattori, K
Hazumi, M
Hill, C
Holzapfel, W
Hori, Y
Howe, L
Inoue, Y
Irie, F
Jaehnig, G
Jaffe, A
Jeong, O
Katayama, N
Kaufman, J
Kazemzadeh, K
Keating, B
Kermish, Z
Keskitalo, R
Kisner, T
Kusaka, A
Jeune, M
Lee, A
Leon, D
Linder, E
Lowry, L
Matsuda, F
Matsumura, T
Miller, N
Mizukami, K
Montgomery, J
Navaroli, M
Nishino, H
Peloton, J
Poletti, D
Puglisi, G
Rebeiz, G
Raum, C
Reichardt, C
Richards, P
Ross, C
Rotermund, K
Segawa, Y
Sherwin, B
Shirley, I
Siritanasak, P
Stebor, N
Stompor, R
Suzuki, J
Tajima, O
Takada, S
Takakura, S
Takatori, S
Tikhomirov, A
Tomaru, T
Westbrook, B
Whitehorn, N
Yamashita, T
Zahn, A
Zahn, O
AF Suzuki, A.
Ade, P.
Akiba, Y.
Aleman, C.
Arnold, K.
Baccigalupi, C.
Barch, B.
Barron, D.
Bender, A.
Boettger, D.
Borrill, J.
Chapman, S.
Chinone, Y.
Cukierman, A.
Dobbs, M.
Ducout, A.
Dunner, R.
Elleflot, T.
Errard, J.
Fabbian, G.
Feeney, S.
Feng, C.
Fujino, T.
Fuller, G.
Gilbert, A.
Goeckner-Wald, N.
Groh, J.
Haan, T. De
Hall, G.
Halverson, N.
Hamada, T.
Hasegawa, M.
Hattori, K.
Hazumi, M.
Hill, C.
Holzapfel, W.
Hori, Y.
Howe, L.
Inoue, Y.
Irie, F.
Jaehnig, G.
Jaffe, A.
Jeong, O.
Katayama, N.
Kaufman, J.
Kazemzadeh, K.
Keating, B.
Kermish, Z.
Keskitalo, R.
Kisner, T.
Kusaka, A.
Jeune, M. Le
Lee, A.
Leon, D.
Linder, E.
Lowry, L.
Matsuda, F.
Matsumura, T.
Miller, N.
Mizukami, K.
Montgomery, J.
Navaroli, M.
Nishino, H.
Peloton, J.
Poletti, D.
Puglisi, G.
Rebeiz, G.
Raum, C.
Reichardt, C.
Richards, P.
Ross, C.
Rotermund, K.
Segawa, Y.
Sherwin, B.
Shirley, I.
Siritanasak, P.
Stebor, N.
Stompor, R.
Suzuki, J.
Tajima, O.
Takada, S.
Takakura, S.
Takatori, S.
Tikhomirov, A.
Tomaru, T.
Westbrook, B.
Whitehorn, N.
Yamashita, T.
Zahn, A.
Zahn, O.
TI The POLARBEAR-2 and the Simons Array Experiments
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Cosmic microwave background; Inflation; Gravitational weak lensing;
Polarization; B-mode
ID B-MODE POLARIZATION; SCALES
AB We present an overview of the design and status of the Polarbear-2 and the Simons Array experiments. Polarbear-2 is a cosmic microwave background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic lenslet-antenna-coupled polarization sensitive transition edge sensor (TES) bolometric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high-purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 K in each frequency band. Polarbear-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three Polarbear-2 type receivers. The Simons Array will cover 95, 150, and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to at and to 40 meV.
C1 [Barch, B.; Barron, D.; Chinone, Y.; Cukierman, A.; Goeckner-Wald, N.; Groh, J.; Haan, T. De; Hall, G.; Hill, C.; Holzapfel, W.; Hori, Y.; Jeong, O.; Lee, A.; Raum, C.; Richards, P.; Shirley, I.; Westbrook, B.; Whitehorn, N.; Zahn, O.] Univ Calif, Dept Phys, Berkeley, CA 94720 USA.
[Suzuki, A.] Univ Calif, Radio Astron Lab, Berkeley, CA 94720 USA.
[Fujino, T.; Irie, F.; Katayama, N.; Mizukami, K.; Yamashita, T.] Univ Tokyo, Kavli IPMU WPI, UTIAS, Chiba 2778583, Japan.
[Ade, P.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, Wales.
[Hamada, T.; Hasegawa, M.; Hattori, K.; Nishino, H.; Segawa, Y.; Suzuki, J.; Tajima, O.; Takatori, S.; Tomaru, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan.
[Aleman, C.; Elleflot, T.; Fuller, G.; Howe, L.; Kaufman, J.; Kazemzadeh, K.; Keating, B.; Leon, D.; Lowry, L.; Matsuda, F.; Navaroli, M.; Siritanasak, P.; Stebor, N.; Zahn, A.] Univ Calif, Dept Phys, San Diego, CA 92093 USA.
[Baccigalupi, C.; Fabbian, G.; Puglisi, G.] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy.
[Bender, A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Borrill, J.; Keskitalo, R.; Kisner, T.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Chapman, S.; Ross, C.; Rotermund, K.; Tikhomirov, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada.
[Dobbs, M.; Gilbert, A.; Montgomery, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada.
[Ducout, A.; Feeney, S.; Jaffe, A.] Imperial Coll London, Dept Phys, Blackett Lab, London SW7 2AZ, England.
[Boettger, D.; Dunner, R.] Pontif Univ Catol, Dept Astron, Santiago, Chile.
[Feng, C.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Halverson, N.; Jaehnig, G.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
[Kermish, Z.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Kusaka, A.; Linder, E.; Sherwin, B.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Jeune, M. Le; Peloton, J.; Poletti, D.; Stompor, R.] Univ Paris Diderot, AstroParticule & Cosmol, CEA Irfu, Obs Paris, Paris, France.
[Matsumura, T.] Inst Space & Astronaut Studies ISAS, Tokyo, Japan.
[Miller, N.] NASA Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.
[Rebeiz, G.] Univ Calif, Dept Elect & Comp Engn, San Diego, CA 92093 USA.
[Reichardt, C.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia.
[Takada, S.] Natl Inst Fusion Sci, Toki, Gifu, Japan.
[Akiba, Y.; Hazumi, M.; Inoue, Y.] SOKENDAI Kamiyamaguchi, Hayama, Miura, Kanagawa 2400115, Japan.
[Arnold, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Takakura, S.] Osaka Univ, Dept Phys, Osaka, Japan.
[Errard, J.] Inst Lagrange Paris ILP, Univ Sorbonne, F-75014 Paris, France.
EM asuzuki@berkeley.edu
OI Fabbian, Giulio/0000-0002-3255-4695; Reichardt,
Christian/0000-0003-2226-9169
FU MEXT Kahenhi [21111002]; NSF [AST-0618398]; NASA [NNG06GJ08G]; Simons
Foundation; Natural Sciences and Engineering Research Council; Canadian
Institute for Advanced Research; Japan Society for the Promotion of
Science; CONICYT
FX We acknowledge the support from the MEXT Kahenhi Grant 21111002, NSF
Grant AST-0618398, NASA Grant NNG06GJ08G, The Simons Foundation, Natural
Sciences and Engineering Research Council, Canadian Institute for
Advanced Research, and Japan Society for the Promotion of Science, and
the CONICYT provided invaluable funding and support. Detectors were
fabricated at the Berkeley Marvell Nanofabrication laboratory.
NR 22
TC 7
Z9 7
U1 7
U2 12
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 805
EP 810
DI 10.1007/s10909-015-1425-4
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700043
ER
PT J
AU Staguhn, JG
Benford, DJ
Dowell, CD
Fixsen, DJ
Hilton, GC
Irwin, KD
Jhabvala, CA
Maher, SF
Miller, TM
Moseley, SH
Sharp, EH
Runyan, MC
Wollack, EJ
AF Staguhn, J. G.
Benford, D. J.
Dowell, C. D.
Fixsen, D. J.
Hilton, G. C.
Irwin, K. D.
Jhabvala, C. A.
Maher, S. F.
Miller, T. M.
Moseley, S. H.
Sharp, E. H.
Runyan, M. C.
Wollack, E. J.
TI Performance of Backshort-Under-Grid Kilopixel TES Arrays for HAWC
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Transition edge sensor; Backshort-Under-Grid; Bolometer; HAWC;
Far-infrared astronomy; Polarimetry
AB We present results from laboratory detector characterizations of the first kilopixel BUG arrays for the High- resolution Wideband Camera Plus (HAWC+) which is the imaging far-infrared polarimeter camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our tests demonstrate that the array performance is consistent with the predicted properties. Here, we highlight results obtained for the thermal conductivity, noise performance, detector speed, and first optical results demonstrating the pixel yield of the arrays.
C1 [Staguhn, J. G.] Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA.
[Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Jhabvala, C. A.; Maher, S. F.; Miller, T. M.; Moseley, S. H.; Sharp, E. H.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Dowell, C. D.; Runyan, M. C.] Jet Prop Lab, Pasadena, CA 91109 USA.
[Hilton, G. C.] NIST, Boulder, CO 80305 USA.
[Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Maher, S. F.] Sci Syst & Applicat Inc, Greenbelt, MD 20770 USA.
[Sharp, E. H.] Global Sci & Technol Inc, Greenbelt, MD 20770 USA.
RP Staguhn, JG (reprint author), Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA.
EM johannes.staguhn@nasa.gov
RI Wollack, Edward/D-4467-2012; Benford, Dominic/D-4760-2012
OI Wollack, Edward/0000-0002-7567-4451; Benford,
Dominic/0000-0002-9884-4206
NR 3
TC 0
Z9 0
U1 2
U2 3
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 811
EP 815
DI 10.1007/s10909-016-1509-9
PG 5
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700044
ER
PT J
AU Faverzani, M
Alpert, B
Backer, D
Bennet, D
Biasotti, M
Brofferio, C
Ceriale, V
Ceruti, G
Corsini, D
Day, PK
De Gerone, M
Dressler, R
Ferri, E
Fowler, J
Fumagalli, E
Gard, J
Gatti, F
Giachero, A
Hays-Wehle, J
Heinitz, S
Hilton, G
Koster, U
Lusignoli, M
Maino, M
Mates, J
Nisi, S
Nizzolo, R
Nucciotti, A
Orlando, A
Parodi, L
Pessina, G
Pizzigoni, G
Puiu, A
Ragazzi, S
Reintsema, C
Ribeiro-Gomez, M
Schmidt, D
Schuman, D
Siccardi, F
Sisti, M
Swetz, D
Terranova, F
Ullom, J
Vale, L
AF Faverzani, M.
Alpert, B.
Backer, D.
Bennet, D.
Biasotti, M.
Brofferio, C.
Ceriale, V.
Ceruti, G.
Corsini, D.
Day, P. K.
De Gerone, M.
Dressler, R.
Ferri, E.
Fowler, J.
Fumagalli, E.
Gard, J.
Gatti, F.
Giachero, A.
Hays-Wehle, J.
Heinitz, S.
Hilton, G.
Koster, U.
Lusignoli, M.
Maino, M.
Mates, J.
Nisi, S.
Nizzolo, R.
Nucciotti, A.
Orlando, A.
Parodi, L.
Pessina, G.
Pizzigoni, G.
Puiu, A.
Ragazzi, S.
Reintsema, C.
Ribeiro-Gomez, M.
Schmidt, D.
Schuman, D.
Siccardi, F.
Sisti, M.
Swetz, D.
Terranova, F.
Ullom, J.
Vale, L.
TI The HOLMES Experiment
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Neutrino mass measurement; Electron capture; Holmium; Transition edge
sensors
ID ELECTRON NEUTRINO MASS; CAPTURE; HO-163
AB The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment will measure the end-point energy of the electron capture decay of Ho, aiming at a statistical sensitivity on the neutrino mass around 1 eV/c. In order to acquire the large needed statistics by keeping the pile-up contribution as low as possible, 1000 transition edge sensors will be readout simultaneously with the frequency domain readout, a multiplexing technique where the multiplex factor is only limited by the bandwidth of the available commercial fast digitizers. We outline here the HOLMES project with its technical challenges, and its status and perspectives.
C1 [Alpert, B.; Backer, D.; Bennet, D.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Mates, J.; Reintsema, C.; Schmidt, D.; Schuman, D.; Swetz, D.; Ullom, J.; Vale, L.] NIST, Boulder, CO USA.
[Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Fumagalli, E.; Gatti, F.; Orlando, A.; Parodi, L.; Pizzigoni, G.; Siccardi, F.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Fumagalli, E.; Gatti, F.; Orlando, A.; Parodi, L.; Pizzigoni, G.; Siccardi, F.] Ist Nazl Fis Nuc, Sez Genova, Genoa, Italy.
[Faverzani, M.; Brofferio, C.; Ferri, E.; Nizzolo, R.; Nucciotti, A.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy.
[Faverzani, M.; Brofferio, C.; Ceruti, G.; Ferri, E.; Giachero, A.; Maino, M.; Nizzolo, R.; Nucciotti, A.; Pessina, G.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy.
[Day, P. K.] Jet Prop Lab, Pasadena, CA USA.
[Dressler, R.; Heinitz, S.] Paul Scherrer Inst, Villigen, Switzerland.
[Koster, U.] Inst Laue Langeving, Grenoble, France.
[Lusignoli, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Nisi, S.] INFN, Lab Nazl Gran Sasso, Assergi, AQ, Italy.
[Ribeiro-Gomez, M.] Univ Lisbon, Multidisciplinary Ctr Astrophys CENTRA IST, Lisbon, Portugal.
RP Nucciotti, A (reprint author), Univ Milano Bicocca, Dipartimento Fis, Milan, Italy.; Nucciotti, A (reprint author), Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy.
EM angelo.nucciotti@mib.infn.it
RI Ferri, Elena/L-8531-2014; Biasotti, Michele/C-7890-2017; Giachero,
Andrea/I-1081-2013;
OI Ferri, Elena/0000-0003-1425-3669; Biasotti, Michele/0000-0002-7241-8479;
Giachero, Andrea/0000-0003-0493-695X; De Gerone,
Matteo/0000-0002-5489-6581; Pessina, Gianluigi Ezio/0000-0003-3700-9757
FU European Research Council under the European Union/ERC [340321]; INFN;
Fundacao para a Ciencia e a Tecnologia [PTDC/FIS/116719/2010]
FX The HOLMES experiment is funded by the European Research Council under
the European Union Seventh Framework Programme (FP7/2007-2013)/ERC Grant
Agreement no. 340321. We also acknowledge support from INFN for the MARE
project, from the NIST Innovations in Measurement Science program for
the TES detector development, and from Fundacao para a Ciencia e a
Tecnologia (PTDC/FIS/116719/2010) for providing the enriched
Er2O3 used in preliminary 163Ho
production by means of neutron irradiation.
NR 15
TC 1
Z9 1
U1 0
U2 3
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD AUG
PY 2016
VL 184
IS 3-4
BP 922
EP 929
DI 10.1007/s10909-016-1540-x
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DQ2HF
UT WOS:000379022700060
ER
PT J
AU Simon, JI
Matzel, JEP
Simon, SB
Hutcheon, ID
Ross, DK
Weber, PK
Grossman, L
AF Simon, Justin I.
Matzel, Jennifer E. P.
Simon, Steven B.
Hutcheon, Ian D.
Ross, D. Kent
Weber, Peter K.
Grossman, Lawrence
TI Oxygen isotopic variations in the outer margins and Wark-Lovering rims
of refractory inclusions
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
DE Oxygen isotopes; CAIs; Wark-Lovering rims; NanoSIMS; Protoplanetary disk
ID AL-RICH INCLUSIONS; EARLY SOLAR-SYSTEM; COARSE-GRAINED CA; CARBONACEOUS
CHONDRITES; PROTOPLANETARY DISK; ALLENDE METEORITE; CV3 CHONDRITES;
INITIAL AL-26/AL-27; SELF-DIFFUSION; NEBULA GAS
AB Oxygen isotopic variations across the outer margins and Wark-Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a O-16-rich protosolar gas reservoir and were later exposed to both relatively O-17,O-18-rich and O-16-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles as diffusion gradients between inclusion interiors and edges establishes a range of permissible time-temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 x 10(3) to 3 x 10(5) years. Assuming CAIs originated with a relatively O-16-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. Evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively O-16-rich but subtly distinct among different CAIs. Melilite is often relatively O-16-poor, but rare relatively O-16-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward O-16-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively, these results support numerical protoplanetary disk models in which CAIs were transported between several distinct nebular reservoirs multiple times prior to accretion onto a parent body. Published by Elsevier Ltd.
C1 [Simon, Justin I.; Ross, D. Kent] NASA, Ctr Isotope Cosmochem & Geochronol, Astromat Res & Explorat Sci Div Explorat Integrat, Johnson Space Ctr, Houston, TX 77058 USA.
[Matzel, Jennifer E. P.; Hutcheon, Ian D.; Weber, Peter K.] Lawrence Livermore Natl Lab, Livermore, CA 94451 USA.
[Simon, Steven B.; Grossman, Lawrence] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA.
[Ross, D. Kent] Univ Texas El Paso, Jacobs Technol, Houston, TX 77058 USA.
[Grossman, Lawrence] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
RP Simon, JI (reprint author), NASA, Ctr Isotope Cosmochem & Geochronol, Astromat Res & Explorat Sci Div Explorat Integrat, Johnson Space Ctr, Houston, TX 77058 USA.
EM justin.i.simon@nasa.gov
FU NASA Cosmochemistry and Origins Programs [NNH11ZDA66N, NNH10AO48I,
NNH10AO05I, NNX13AE73G]; U.S. Department of Energy at Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]
FX This work is dedicated to Dr. Ian Douglass Hutcheon (1947-2015), an
exceptional scientist, mentor, and friend. He made significant
contributions to this work, masterfully integrating intuition,
open-mindedness, and skepticism. The remaining authors and many others
in our community will sorely miss him. We are grateful to Journal Editor
D. Papanastassiou and three anonymous reviewers for their careful and
constructive reviews of this paper. The work was supported by NASA
Cosmochemistry and Origins Programs: Grants NNH11ZDA66N to JIS,
NNH10AO48I and NNH10AO05I to IDH, and NNX13AE73G to LG. Repolishing of
several 'well-used' samples by Roger Harrington is gratefully
appreciated. This work was performed under the auspices of the U.S.
Department of Energy at Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
NR 92
TC 2
Z9 2
U1 5
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD AUG 1
PY 2016
VL 186
BP 242
EP 276
DI 10.1016/j.gca.2016.04.025
PG 35
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DP9SF
UT WOS:000378836600015
ER
PT J
AU Barnes, JJ
Tartese, R
Anand, M
McCubbin, FM
Neal, CR
Franchi, IA
AF Barnes, Jessica J.
Tartese, Romain
Anand, Mahesh
McCubbin, Francis M.
Neal, Clive R.
Franchi, Ian A.
TI Early degassing of lunar urKREEP by crust-breaching impact(s)
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE Moon; apatite; volatiles; NanoSIMS; chlorine; magma ocean
ID CHLORINE ISOTOPE COMPOSITION; FORMING GIANT IMPACT; NOBLE-GAS-ANALYSES;
MAGMATIC VOLATILES; VOLCANIC GLASSES; MARE BASALTS; MG-SUITE; MOON;
WATER; HYDROGEN
AB Current models for the Moon's formation have yet to fully account for the thermal evolution of the Moon in the presence of H2O and other volatiles. Of particular importance is chlorine, since most lunar samples are characterised by unique heavy delta Cl-37 values, significantly deviating from those of other planetary materials, including Earth, for which delta Cl-37 values cluster around similar to 0 parts per thousand. In order to unravel the cause(s) of the Moon's unique chlorine isotope signature, we performed a comprehensive study of high-precision in situ Cl isotope measurements of apatite from a suite of Apollo samples with a range of geochemical characteristics and petrologic types. The Cl-isotopic compositions measured in lunar apatite in the studied samples display a wide range of delta Cl-37 values (reaching a maximum value of +36 parts per thousand), which are positively correlated with the amount of potassium (K), Rare Earth Element (REE) and phosphorous (P) (CREEP) component in each sample. Using these new data, integrated with existing H-isotope data obtained for the same samples, we are able to place these findings in the context of the canonical lunar magma ocean (LMO) model. The results are consistent with the urKREEP reservoir being characterised by a delta Cl-37 similar to+30%o. Such a heavy Cl isotope signature requires metal-chloride degassing from a Cl-enriched urKREEP LMO residue, a process likely to have been triggered by at least one large crust-breaching impact event that facilitated the transport and exposure of urKREEP liquid to the lunar surface. (C) 2016 The Authors. Published by Elsevier B.V.
C1 [Barnes, Jessica J.; Tartese, Romain; Anand, Mahesh; Franchi, Ian A.] Open Univ, Planetary & Space Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England.
[Tartese, Romain] UPMC, Univ Paris 04, Museum Natl Hist Nat, Inst Mineral Phys Mat & Cosmochim,CNRS, F-75005 Paris, France.
[Tartese, Romain] IRD, F-75005 Paris, France.
[Anand, Mahesh] Nat Hist Museum, Dept Earth Sci, Cromwell Rd, London SW7 5BD, England.
[McCubbin, Francis M.] NASA, Johnson Space Ctr, Mailcode X12,2101 NASA Pkwy, Houston, TX 77058 USA.
[Neal, Clive R.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA.
RP Barnes, JJ (reprint author), Open Univ, Planetary & Space Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England.
EM jessica.bames@open.ac.uk
OI Tartese, Romain/0000-0002-3490-9875
FU UK Science and Technology Facilities Council [ST/L000776/1]; NASA's
LASER program [NNX13AK32G]
FX We thank NASA CAPTEM for allocation of lunar samples (to MA and CRN).
This research was supported by a grant from the UK Science and
Technology Facilities Council (grant # ST/L000776/1 to M.A. and I.A.F.).
FMM acknowledges support from NASA's LASER program during this study
through grant NNX13AK32G. We thank Erik Hauri and Evelyn Furl for their
insightful reviews which helped to improve this manuscript, and we thank
the editor Bernard Marty for his handling of this manuscript.
NR 59
TC 3
Z9 3
U1 6
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
EI 1385-013X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD AUG 1
PY 2016
VL 447
BP 84
EP 94
DI 10.1016/j.epsl.2016.04.036
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DP4AS
UT WOS:000378438400008
ER
PT J
AU Daigle, MJ
Bregon, A
Koutsoukos, X
Biswas, G
Pulido, B
AF Daigle, Matthew J.
Bregon, Anibal
Koutsoukos, Xenofon
Biswas, Gautam
Pulido, Belarmino
TI A qualitative event-based approach to multiple fault diagnosis in
continuous systems using structural model decomposition
SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
LA English
DT Article
DE Fault diagnosis; Model-based diagnosis; Multiple faults; Diagnosability;
Structural model decomposition; Discrete-event systems
ID ANALYTICAL REDUNDANCY RELATIONS; DIAGNOSABILITY; CONFLICTS
AB Multiple fault diagnosis is a difficult problem for dynamic systems, and, as a result, most multiple fault diagnosis approaches are restricted to static systems, and most dynamic system diagnosis approaches make the single fault assumption. Within the framework of consistency-based diagnosis, the challenge is to generate conflicts from dynamic signals. For multiple faults, this becomes difficult due to the possibility of fault masking and different relative times of fault occurrence, resulting in many different ways that any given combination of faults can manifest in the observations. In order to address these challenges, we develop a novel multiple fault diagnosis framework for continuous dynamic systems. We construct a qualitative event-based framework, in which discrete qualitative symbols are generated from residual signals. Within this framework, we formulate an online diagnosis approach and establish definitions of multiple fault diagnosability. Residual generators are constructed based on structural model decomposition, which, as we demonstrate, has the effect of reducing the impact of fault masking by decoupling faults from residuals, thus improving diagnosability and fault isolation performance. Through simulation-based multiple fault diagnosis experiments, we demonstrate and validate the concepts developed here, using a multi-tank system as a case study. Published by Elsevier Ltd.
C1 [Daigle, Matthew J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Bregon, Anibal; Pulido, Belarmino] Univ Valladolid, Dept Informat, E-47011 Valladolid, Spain.
[Koutsoukos, Xenofon; Biswas, Gautam] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Inst Software Integrated Syst, Nashville, TN 37235 USA.
RP Daigle, MJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM matthew.j.daigle@nasa.gov; anibal@infor.uva.es;
xenofon.koutsoukos@vanderbilt.edu; gautam.biswas@vanderbilt.edu;
belar@infor.uva.es
OI Daigle, Matthew/0000-0002-4616-3302
FU NASA System-Wide Safety and Assurance Technologies (SSAT) project;
Spanish MINECO Grant [DPI2013-45414-R]
FX The author's work has been partially supported by the NASA System-Wide
Safety and Assurance Technologies (SSAT) project.; The authors work has
been supported by the Spanish MINECO Grant DPI2013-45414-R.
NR 40
TC 1
Z9 1
U1 2
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0952-1976
EI 1873-6769
J9 ENG APPL ARTIF INTEL
JI Eng. Appl. Artif. Intell.
PD AUG
PY 2016
VL 53
BP 190
EP 206
DI 10.1016/j.engappai.2016.04.002
PG 17
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Engineering, Multidisciplinary; Engineering, Electrical & Electronic
SC Automation & Control Systems; Computer Science; Engineering
GA DP0LH
UT WOS:000378180800014
ER
PT J
AU Gwenzi, D
Lefsky, MA
Suchdeo, VP
Harding, DJ
AF Gwenzi, David
Lefsky, Michael A.
Suchdeo, Vijay P.
Harding, David J.
TI Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem
structural studies based on airborne simulation data
SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
LA English
DT Article
DE Photon counting lidar; ICESat-2; MABEL; MATLAS; Savanna; Canopy height
ID LIDAR; VEGETATION; FOREST
AB The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics (r(2) and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices (r(2) ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the simulated data, there is reason to believe that the ability of ICESat-2 to estimate height in savannas will be comparable to the original ICESat mission although the respective sensors have different measurement principles. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
C1 [Gwenzi, David; Lefsky, Michael A.] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Nat Resource Ecol Lab, NESB 108,1499 Campus Delivery, Ft Collins, CO 80523 USA.
[Suchdeo, Vijay P.; Harding, David J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Gwenzi, D (reprint author), Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Nat Resource Ecol Lab, NESB 108,1499 Campus Delivery, Ft Collins, CO 80523 USA.
EM dgwenzi@rams.colostate.edu
RI Harding, David/F-5913-2012
FU NASA [NNH11ZDA001N-ICESAT2]
FX We are grateful to NASA, Grant number NNH11ZDA001N-ICESAT2 for funding
this project. Anita Brenner (Sigma Space Corporation) is thanked for
providing the MABEL photons classification algorithm. We also thank the
2 anonymous reviewers whose valuable criticism of our first draft
greatly improved the manuscript.
NR 20
TC 1
Z9 1
U1 9
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0924-2716
EI 1872-8235
J9 ISPRS J PHOTOGRAMM
JI ISPRS-J. Photogramm. Remote Sens.
PD AUG
PY 2016
VL 118
BP 68
EP 82
DI 10.1016/j.isprsjprs.2016.04.009
PG 15
WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing;
Imaging Science & Photographic Technology
SC Physical Geography; Geology; Remote Sensing; Imaging Science &
Photographic Technology
GA DP4FI
UT WOS:000378451300006
ER
PT J
AU Patzold, M
Hausler, B
Tyler, GL
Andert, T
Asmar, SW
Bird, MK
Dehant, V
Hinson, DP
Rosenblatt, P
Simpson, RA
Tellmann, S
Withers, P
Beuthe, M
Efimov, AI
Hahn, M
Kahan, D
Le Maistre, S
Oschlisniok, J
Peter, K
Remus, S
AF Paetzold, M.
Haeusler, B.
Tyler, G. L.
Andert, T.
Asmar, S. W.
Bird, M. K.
Dehant, V.
Hinson, D. P.
Rosenblatt, P.
Simpson, R. A.
Tellmann, S.
Withers, P.
Beuthe, M.
Efimov, A. I.
Hahn, M.
Kahan, D.
Le Maistre, S.
Oschlisniok, J.
Peter, K.
Remus, S.
TI Mars Express 10 years at Mars: Observations by the Mars Express Radio
Science Experiment (MaRS)
SO PLANETARY AND SPACE SCIENCE
LA English
DT Review
DE Mars Express; Mars; Atmosphere; Ionosphere; Radio science; Radio
occultation
ID MARTIAN DAYSIDE IONOSPHERE; CONVECTIVE BOUNDARY-LAYER; ORBITER LASER
ALTIMETER; GLOBAL SURVEYOR; OCCULTATION MEASUREMENTS; BISTATIC RADAR;
ATMOSPHERIC PROFILES; SOLAR CONJUNCTION; VENUS-EXPRESS; SCATTERING
OBSERVATIONS
AB The Mars Express spacecraft is operating in Mars orbit since early 2004. The Mars Express Radio Science Experiment (MaRS) employs the spacecraft and ground station radio systems (i) to conduct radio occultations of the atmosphere and ionosphere to obtain vertical profiles of temperature, pressure, neutral number densities and electron density, (ii) to conduct bistatic radar experiments to obtain information on the dielectric and scattering properties of the surface, (iii) to investigate the structure and variation of the crust and lithosphere in selected target areas, (iv) to determine the mass, bulk and internal structure of the moon Phobos, and (v) to track the MEX radio signals during superior solar conjunction to study the morphology of coronal mass ejections (CMEs). Here we report observations, results and discoveries made in the Mars environment between 2004 and 2014 over almost an entire solar cycle. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Paetzold, M.; Bird, M. K.; Tellmann, S.; Hahn, M.; Oschlisniok, J.; Peter, K.] Univ Cologne, Abt Planetenforsch, Rhein Inst Umweltforsch, D-50931 Cologne, Germany.
[Haeusler, B.; Andert, T.] Univ Bundeswehr Munchen, Inst Raumfahrttech & Weltraumnutzung, Neubiberg, Germany.
[Tyler, G. L.; Hinson, D. P.; Simpson, R. A.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA.
[Asmar, S. W.; Kahan, D.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Dehant, V.; Rosenblatt, P.; Beuthe, M.; Le Maistre, S.] Observ Royal Belgique, B-1180 Brussels, Belgium.
[Withers, P.] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA.
[Efimov, A. I.] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Moscow 125009, Russia.
[Remus, S.] ESA ESTEC, Noordwijk, Netherlands.
RP Patzold, M (reprint author), Univ Cologne, Abt Planetenforsch, Rhein Inst Umweltforsch, D-50931 Cologne, Germany.
EM martin.paetzold@uni-koeln.de
FU Bundesministerium fur Wirtschaft BMWi, Berlin via German Space Agency
DLR, Bonn [50QM1004, 50QM1401, 50QM1002]; NASA [1217744]; NASA/JPL
FX The Mars Express Radio Science experiment (MaRS) is funded by the
Bundesministerium fur Wirtschaft BMWi, Berlin, via the German Space
Agency DLR, Bonn, under grants 50QM1004, 50QM1401 and 50QM1002 (UniBw).
Support for MaRS at Stanford University is provided by NASA through JPL
contract 1217744. Support for the Multimission Radio Science Support
Team is provided by NASA/JPL. We thank everyone involved with the Mars
Express mission at ESTEC, ESOC, ESAC, JPL and in particular at the
ESTRACK and DSN ground stations. The MaRS team expresses deep
appreciation for the critical support provided by the MEX SGS at ESAC
during the planning and the data acquisition periods. We are deeply
indebted to Padma Varanasi and Tommy Thompson, both at JPL, for their
dedicated support.
NR 164
TC 3
Z9 3
U1 11
U2 21
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0032-0633
J9 PLANET SPACE SCI
JI Planet Space Sci.
PD AUG
PY 2016
VL 127
BP 44
EP 90
DI 10.1016/j.pss.2016.02.013
PG 47
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DP0MS
UT WOS:000378184500004
ER
PT J
AU Mokhtarishirazabad, M
Lopez-Crespo, P
Moreno, B
-Moreno, AL
Zanganeh, M
AF Mokhtarishirazabad, M.
Lopez-Crespo, P.
Moreno, B.
-Moreno, A. Lopez
Zanganeh, M.
TI Evaluation of crack-tip fields from DIC data: A parametric study
SO INTERNATIONAL JOURNAL OF FATIGUE
LA English
DT Article; Proceedings Paper
CT 3rd International Conference on Characterisation of Crack Tip Fields
CY APR 20-22, 2015
CL Urbino, ITALY
SP Italian Grp Fracture
DE Linear elastic fracture mechanics; Digital image correlation; Stress
intensity factor; K-dominance; Crack-tip displacement field
ID DIGITAL IMAGE CORRELATION; STRESS INTENSITY FACTORS;
DISPLACEMENT-FIELDS; SYSTEMATIC-ERRORS; FATIGUE; CLOSURE; PATTERNS; SIZE
AB In the past two decades, crack-tip mechanics has been studied increasingly using full-field techniques. Within these techniques, Digital Image Correlation (DIC) has been most widely used due to its many advantages, to extract important crack-tip information, including Stress Intensity Factor (SIF), crack opening displacement, J-integral, T-stress, closure level, plastic zone size, etc. However, little information is given in the literature about the experimental setup that provides best estimations for the different parameters. The current work aims at understanding how the experimental conditions used in DIC influence the crack-tip information extracted experimentally. The influence of parameters such as magnification factor, the position of the images with respect the crack-tip and size of the subset used in the correlation is studied. The influence is studied in terms of SIF by using Williams' model. In this regard, cyclic loading on a fatigue crack in a compact tension (CT) specimen, made of aluminium 2024-T351 alloy, has been applied and the surface deformation around the crack-tip has been examined. The comparison between nominal and experimental values of K-I showed that the effect of subset size on the measured K-I is negligible compared to the effect of the field of view and the position of the area of interest. (C) 2016 Published by Elsevier Ltd.
C1 [Mokhtarishirazabad, M.; Lopez-Crespo, P.; Moreno, B.] Univ Malaga, Dept Civil & Mat Engn, C Dr Ortiz Ramos S-N, E-29071 Malaga, Spain.
[-Moreno, A. Lopez] Univ Jaen, Dept Mat Sci & Met Engn, Campus Las Lagunillas, Jaen 23071, Spain.
[Zanganeh, M.] NASA, Lyndon B Johnson Space Ctr, Jacobs Technol, Houston, TX 77058 USA.
RP Lopez-Crespo, P (reprint author), Univ Malaga, Dept Civil & Mat Engn, C Dr Ortiz Ramos S-N, E-29071 Malaga, Spain.
EM plopezcrespo@uma.es
NR 49
TC 3
Z9 3
U1 12
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0142-1123
EI 1879-3452
J9 INT J FATIGUE
JI Int. J. Fatigue
PD AUG
PY 2016
VL 89
SI SI
BP 11
EP 19
DI 10.1016/j.ijfatigue.2016.03.006
PG 9
WC Engineering, Mechanical; Materials Science, Multidisciplinary
SC Engineering; Materials Science
GA DO5QY
UT WOS:000377839100003
ER
PT J
AU Pahlevan, N
Sarkar, S
Franz, BA
AF Pahlevan, Nima
Sarkar, Sudipta
Franz, Bryan A.
TI Uncertainties in coastal ocean color products: Impacts of spatial
sampling
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Coastal ocean color; Spatial sampling; Uncertainty; Intercomparison
ID RESOLUTION IMAGING SPECTRORADIOMETER; INHERENT OPTICAL-PROPERTIES;
REMOTE-SENSING REFLECTANCE; ATMOSPHERIC CORRECTION; CLIMATE-CHANGE;
VICARIOUS CALIBRATION; SATELLITE DATA; BIOOPTICAL MODEL; LANDSAT 8; DATA
SETS
AB With increasing demands for ocean color (OC) products with improved accuracy and well characterizdd, per retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R-rs products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R-rs(443), R-rs(482), R-rs(561), R-rs(655), Chla, K-d (482), and b(bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km x 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in situ coastal stations provides an optimal sampling size for validation efforts. These findings will have implications for enhancing our understanding of uncertainties in ocean color retrievals and for planning of future ocean color missions and the associated calibration/validation exercises. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.] NASA, Goddard Space Flight Ctr, Code 619 8800 Greenbelt Rd,Greenbelt Bldg 32, Greenbelt, MD 20771 USA.
[Pahlevan, Nima; Sarkar, Sudipta] Sci Syst & Applicat Inc, 10210 Greenbelt Rd,Suite 600, Lanham, MD 20706 USA.
RP Pahlevan, N (reprint author), NASA, Goddard Space Flight Ctr, Code 619 8800 Greenbelt Rd,Greenbelt Bldg 32, Greenbelt, MD 20771 USA.
RI Franz, Bryan/D-6284-2012;
OI Franz, Bryan/0000-0003-0293-2082; Pahlevan, Nima/0000-0002-5454-5212
FU NASA [NNG15HQ01C]; Geo-CAPE mission pre-fomulation studies
FX Financial support by the NASA contract (award # NNG15HQ01C) and the
Geo-CAPE mission pre-fomulation studies is acknowledged. We are also
grateful to Robert E. Wolfe and Gary Lin with NASA GSFC's Terrestrial
Information Systems Lab for the discussions of spatial performance of
VIIRS and MODIS instruments. The computing support at the Terrestrial
Information Systems Lab by Miguel O. Roman and Ed Masuoka is
acknowledged. We are also grateful to the anonymous reviewers for their
thoughtful comments that help improve this manuscript.
NR 77
TC 2
Z9 2
U1 7
U2 21
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
EI 1879-0704
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD AUG
PY 2016
VL 181
BP 14
EP 26
DI 10.1016/j.rse.2016.03.022
PG 13
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA DO4CU
UT WOS:000377730200002
ER
PT J
AU Alexandrov, MD
Cairns, B
van Diedenhoven, B
Ackerman, AS
Wasilewski, AP
McGill, MJ
Yorks, JE
Hlavka, DL
Platnick, SE
Arnold, GT
AF Alexandrov, Mikhail D.
Cairns, Brian
van Diedenhoven, Bastiaan
Ackerman, Andrew S.
Wasilewski, Andrzej P.
McGill, Matthew J.
Yorks, John E.
Hlavka, Dennis L.
Platnick, Steven E.
Arnold, G. Thomas
TI Polarized view of supercooled liquid water clouds
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Clouds; Supercooled water; Electromagnetic scattering; Polarization; Mie
theory; Rainbow; Remote sensing
ID RESEARCH SCANNING POLARIMETER; AIRCRAFT ICING ENVIRONMENTS;
THERMODYNAMIC PHASE; SOUTHERN-OCEAN; LARGE DROPS; AEROSOLS; SIMULATIONS;
INSTRUMENT; MISSION; PHYSICS
AB Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 degrees C present a wellknown aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8 degrees intervals within 60 degrees from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 degrees and 165 degrees. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features varying between glaciated and liquid phases at altitudes as high as 10 km, which correspond to temperatures close to the homogeneous freezing temperature of pure water drops (about-35 degrees C or colder). The multimodal droplet size distributions retrieved from RSP data in these cases are consistent with the multi-layer cloud structure observed by correlative Cloud Physics Lidar (CPL) measurements. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Alexandrov, Mikhail D.] Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA.
[Alexandrov, Mikhail D.; Cairns, Brian; van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.] NASA Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
[van Diedenhoven, Bastiaan] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA.
[Wasilewski, Andrzej P.] Trinnovim LLC, 2880 Broadway, New York, NY 10025 USA.
[Hlavka, Dennis L.; Arnold, G. Thomas] Sci Syst & Applicat Inc, Lanham, MD USA.
[McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas] NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Alexandrov, MD (reprint author), NASA Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
EM mda14@columbia.edu
RI Platnick, Steven/J-9982-2014;
OI Platnick, Steven/0000-0003-3964-3567; Cairns, Brian/0000-0002-1980-1022
FU NASA Radiation Sciences Program; NASA Earth Science Division; NASA ROSES
program [NNX15AD44G]
FX This research was funded by the NASA Radiation Sciences Program managed
by Hal Maring and by the NASA ROSES program under grant NNX15AD44G. This
work was also funded by the NASA Earth Science Division as part of the
pre-formulation study for the Aerosol, Cloud, and ocean Ecosystem (ACE)
Mission. We would like to thank David Starr, Richard Ferrare and Jens
Redeman for providing the leadership needed to get the best possible
observations from the available flight hours during PODEX. We are
tremendously grateful to the SEAC4RS leadership team that
allowed us to obtain such a comprehensive cloud remote sensing dataset.
The NASA ER-2 pilots, crew and management were immensely supportive and
we thank them for all the help they so generously provided.
NR 55
TC 0
Z9 0
U1 12
U2 21
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
EI 1879-0704
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD AUG
PY 2016
VL 181
BP 96
EP 110
DI 10.1016/j.rse.2016.04.002
PG 15
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA DO4CU
UT WOS:000377730200008
ER
PT J
AU Sharma, P
Jones, CE
Dudas, J
Bawden, GW
Deverel, S
AF Sharma, Priyanka
Jones, Cathleen E.
Dudas, Joel
Bawden, Gerald W.
Deverel, Steven
TI Monitoring of subsidence with UAVSAR on Sherman Island in California's
Sacramento-San Joaquin Delta
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Deltas; Subsidence; Synthetic aperture radar; Interferometry; InSAR;
Land use; UAVSAR
ID RADAR INTERFEROMETRY; SOILS; FAULT
AB Sherman Island, the westernmost island in the Sacramento-San Joaquin Delta in California, plays a crucial role in maintaining the water flux between saline ocean water from the San Francisco Bay to its west and the rest of the Delta to its east. Land elevation below mean sea level and continuous subsidence over the past century has made this island a high priority area for investigations of subsidence and restoration in the Delta. This study reports the results of successful application of Interferometric Synthetic Aperture Radar (InSAR) data and technique to measure subsidence in the Delta, which is a coherence-challenged non-urban area. We carried out a time series interferometric analysis of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band (23.8 cm) data, collected from July 2009-August 2014, to assess both the spatial and temporal variation of subsidence on Sherman Island. We report both large-scale (island-wide) subsidence trends and small-scale (levee/ farm scale) subsidence features in Sherman Island. Assuming the subsidence is linear during the five years of UAVSAR data acquisition, subsidence rates across the island range from 0-5 cm/yr, with an average of 1.3 +/- 0.2 cm/yr. We estimate our systematic uncertainty to be 03 cm/yr. Overall, the central region in the island has subsided at a faster rate than the rest of the island. We find our results to be consistent with previous measurements of subsidence rates at electric transmission line towers scattered throughout the island. The results of this study provide insights into several factors influencing subsidence, including soil type, water table depth, land use, land elevation and the location and time of levee repairs. Subsidence monitoring on Sherman Island is essential for maintaining a reliable water supply for the state of California and for protecting the Delta ecosystem. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Sharma, Priyanka; Jones, Cathleen E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S T1721-220, Pasadena, CA 91109 USA.
[Dudas, Joel] Calif Dept Water Resources, 1416 9th St, Sacramento, CA 95814 USA.
[Bawden, Gerald W.] NASA Headquarters, 300 E St SW, Washington, DC 20546 USA.
[Deverel, Steven] HydroFocus Inc, 2827 Spafford St, Davis, CA 95618 USA.
RP Sharma, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S T1721-220, Pasadena, CA 91109 USA.
EM Priyanka.Sharma@jpl.nasa.gov; Cathleen.E.Jones@jpl.nasa.gov;
Joel.Dudas@water.ca.gov; Gerald.W.Bawden@nasa.gov;
sdeverel@hydrofocus.com
FU Delta Science Program; California Sea Grant; NASA [NASA DEC08-0019];
Department of Homeland Security (DHS) [HSHPM-15-X-00023]; Department of
Land, Air and Water Resources at UC Davis (NIFA) [2011-67003-30371]; US
Department of Agriculture [201015552-06]; National Aeronautics and Space
Administration
FX The authors gratefully acknowledge those who designed, developed and
operate the Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR). We are grateful to the Delta Science Program and the
California Sea Grant for awarding the Delta Science Sea Grant
Postdoctoral Fellowship to the lead author of this study, which enabled
the research described here to be conducted. We thank Mike Gunson and
Duane Waliser for their mentorship and financial support during this
study. This work was also supported through grants from NASA (NASA
DEC08-0019), Department of Homeland Security (DHS HSHPM-15-X-00023),
Department of Land, Air and Water Resources at UC Davis (NIFA #
2011-67003-30371) and US Department of Agriculture (Sub award No.
201015552-06). The research described here was carried out in part at
the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. The
UAVSAR data are provided courtesy of NASA/JPL-Caltech. Copyright 2015.
All rights reserved.
NR 62
TC 0
Z9 0
U1 6
U2 14
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
EI 1879-0704
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD AUG
PY 2016
VL 181
BP 218
EP 236
DI 10.1016/j.rse.2016.04.012
PG 19
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA DO4CU
UT WOS:000377730200018
ER
PT J
AU Nghiem, SV
Rigor, IG
Clemente-Colon, P
Neumann, G
Li, PP
AF Nghiem, S. V.
Rigor, I. G.
Clemente-Colon, P.
Neumann, G.
Li, P. P.
TI Geophysical constraints on the Antarctic sea ice cover
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Antarctic sea ice; Passive and active microwave remote sensing; Frontal
ice zone; Wind patterns; Antarctic Circumpolar Current front; GEBCO
bathymetry
ID SOUTHERN-OCEAN FRONTS; THICKNESS DISTRIBUTION; CIRCUMPOLAR CURRENT; SHIP
OBSERVATIONS; CLIMATE-CHANGE; SATELLITE DATA; AMUNDSEN SEAS; SNOW COVER;
VARIABILITY; MICROWAVE
AB The contrast between the slight increase of Antarctic sea ice and the drastic reduction of Arctic sea ice since the 1970s has been a conundrum to be resolved. Sea ice trajectory tracking with satellite scatterometer data in 2008 shows that ice around Antarctica is pushed offshore by katabatic winds influenced by the continental topography. The ice trajectories reveal that sea ice, grown earlier in the ice season, drifts northward away from the Antarctic continent forming a circumpolar frontal ice zone (FIZ) behind the ice edge. The FIZ thereby consists of sea ice that becomes rougher due to a longer exposure to wind and wave actions, and thicker over time by more ice growth and greater snow accumulation.
In the Antarctic circumpolar sea ice zone adjacent to the sea ice edge, satellite data in 1999-2009 exhibit a band of strong radar backscatter, which is consistent with the signature of older, thicker, and rougher sea ice with more snow in the FIZ. This sea ice band, as wide as 1000 km, serves as a 'Great Shield,' encapsulating and protecting younger and thinner ice in the internal ice pack. In the young and thin ice region behind the FIZ, ice can grow rapidly as winds continue opening interior areas thereby creating effective "ice factories." In addition, ridging can enhance ice thickness by convergence toward the circumpolar FIZ that is recirculated by westerly winds and currents. During the ice growth season, the FIZ advances until reaching lower-latitude warm waters at a boundary determined by the southern Antarctic Circumpolar Current front that is constrained by seafloor features. These persistent topographical and bathymetric geological factors help sustain the Antarctic sea ice cover. As such, the behavior of Antarctic sea ice is not a paradox as some have suggested, but instead is consistent with the geophysical characteristics in the southern polar region that starkly contrast to those in the Arctic. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Nghiem, S. V.; Neumann, G.; Li, P. P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Nghiem, S. V.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.
[Rigor, I. G.] Univ Washington, Appl Phys Lab, 1013 NE 40th St,Box 355640, Seattle, WA 98105 USA.
[Clemente-Colon, P.] NOAA Satellite Operat Facil, US Natl Naval Ice Ctr, 4251 Suitland Rd, Washington, DC 20395 USA.
RP Nghiem, SV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Son.V.Nghiem@jpl.nasa.gov
RI Clemente-Colon, Pablo/F-5581-2010
FU National Aeronautics and Space Administration (NASA) Cryospheric
Sciences Program; National Oceanic and Atmospheric Administration
(NOAA); National Science Foundation
FX The research carried out at the Jet Propulsion Laboratory, California.
Institute of Technology, was supported by the National Aeronautics and
Space Administration (NASA) Cryospheric Sciences Program. This research
was also carried out in part under the support of the National Oceanic
and Atmospheric Administration (NOAA) via a subcontract to the Joint
Institute for Regional Earth System Science and Engineering of the
University of California at Los Angeles. Rigor is funded by NASA,
National Science Foundation, and NOAA. The statements, findings,
conclusions, and recommendations in this paper are those of the authors
and do not necessarily reflect the views of NOAA or the Department of
Commerce. We thank S. Helfrich of NIC for preparing NIC SIE data, L.
Kaleschke of the University of Hamburg for helping in the ICDC SIE data
access, D.T. Nguyen of JPL for assisting in GEBCO bathymetry
representation, and J. Vazquez and T.M. Chin of JPL for the MUR SST data
access and documentation. We thank the reviewers, all having positive
and constructive comments and suggestions in the review process by
Remote Sensing of Environment. In particular, we highly appreciate the
excellent and thorough review by Claire Parkinson of the NASA Goddard
Space Flight Center.
NR 76
TC 3
Z9 3
U1 12
U2 31
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
EI 1879-0704
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD AUG
PY 2016
VL 181
BP 281
EP 292
DI 10.1016/j.rse.2016.04.005
PG 12
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA DO4CU
UT WOS:000377730200022
ER
PT J
AU Yao, WG
Liou, MS
AF Yao, Weigang
Liou, Meng-Sing
TI A nonlinear modeling approach using weighted piecewise series and its
applications to predict unsteady flows
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Modeling of nonlinear dynamics with parametric inputs; Weighted
piecewise linear (WPL) model; Unsteady flow; Limited cycle oscillations
ID PROPER ORTHOGONAL DECOMPOSITION; REDUCTION; COMPUTATION; SIMULATION;
DYNAMICS; SYSTEMS
AB To preserve nonlinearity of a full-order system over a range of parameters of interest, we propose an accurate and robust nonlinear modeling approach by assembling a set of piecewise linear local solutions expanded about some sampling states. The work by Rewienski and White [1] on micromachined devices inspired our use of piecewise linear local solutions to study nonlinear unsteady aerodynamics. These local approximations are assembled via nonlinear weights of radial basis functions. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving with different pitching motions, specifically AGARD's CT2 and CT5 problems [27], in which the flows exhibit different nonlinear behaviors. Furthermore, application of the developed aerodynamic model to a two-dimensional aero-elastic system proves the approach is capable of predicting limit cycle oscillations (LCOs) by using AGARD's CT6 [28] as a benchmark test. All results, based on inviscid solutions, confirm that our nonlinear model is stable and accurate, against the full model solutions and measurements, and for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robust for inputs that considerably depart from the base trajectory in form and magnitude. This modeling provides a very efficient way for predicting unsteady flowfields with varying parameters because it needs only a tiny fraction of the cost of a full-order modeling for each new condition-the more cases studied, the more savings rendered. Hence, the present approach is especially useful for parametric studies, such as in the case of design optimization and exploration of flow phenomena. Published by Elsevier Inc.
C1 [Yao, Weigang; Liou, Meng-Sing] NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA.
[Yao, Weigang] NASA Postdoc Program, Washington, DC USA.
[Yao, Weigang] Queens Univ Belfast, Sch Mech & Aerosp Engn, Belfast, Antrim, North Ireland.
RP Liou, MS (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA.
EM meng-sing.liou@nasa.gov
FU Subsonic Fixed Wing Project under NASA's Fundamental Aeronautics
Program; Aero Sciences Project under NASA's Fundamental Aeronautics
Program
FX Weigang Yao was a NASA Postdoc Fellow supported by the Subsonic Fixed
Wing Project, under NASA's Fundamental Aeronautics Program; Mr. William
Haller is the Technical Lead of the task. Meng-Sing Liou has been
supported by the Subsonic Fixed Wing and Aero Sciences Projects, under
NASA's Fundamental Aeronautics Program and Dr. Jeffery Moder is the task
Technical Lead for the Aero Sciences Project. The authors thank the
reviewers for several useful suggestions and comments that have
contributed to improvement of the paper.
NR 36
TC 1
Z9 1
U1 3
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD AUG 1
PY 2016
VL 318
BP 58
EP 84
DI 10.1016/j.jcp.2016.04.052
PG 27
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA DN4NF
UT WOS:000377043400004
ER
PT J
AU Laguna, AA
Lani, A
Deconinck, H
Mansour, NN
Poedts, S
AF Laguna, A. Alvarez
Lani, A.
Deconinck, H.
Mansour, N. N.
Poedts, S.
TI A fully-implicit finite-volume method for multi-fluid reactive and
collisional magnetized plasmas on unstructured meshes
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Plasma; Finite volume method; Magnetohydrodynamics (MHD); Multi-fluid
ID IDEAL MAGNETOHYDRODYNAMICS; RIEMANN SOLVER; EQUATIONS; MODEL;
SIMULATIONS; SCHEME; RECONNECTION; MAXWELL; SEQUEL; AUSM
AB We present a Finite Volume scheme for solving Maxwell's equations coupled to magnetized multi-fluid plasma equations for reactive and collisional partially ionized flows on unstructured meshes. The inclusion of the displacement current allows for studying electromagnetic wave propagation in a plasma as well as charge separation effects beyond the standard magnetohydrodynamics (MHD) description, however, it leads to a very stiff system with characteristic velocities ranging from the speed of sound of the fluids up to the speed of light. In order to control the fulfillment of the elliptical constraints of the Maxwell's equations, we use the hyperbolic divergence cleaning method. In this paper, we extend the latter method applying the CIR scheme with scaled numerical diffusion in order to balance those terms with the Maxwell flux vectors. For the fluids, we generalize the AUSM+-up to multiple fluids of different species within the plasma. The fully implicit second-order method is first verified on the Hartmann flow (including comparison with its analytical solution), two ideal MHD cases with strong shocks, namely, Orszag-Tang and the MHD rotor, then validated on a much more challenging case, representing a two-fluid magnetic reconnection under solar chromospheric conditions. For the latter case, a comparison with pioneering results available in literature is provided. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Laguna, A. Alvarez; Lani, A.; Deconinck, H.] Von Karman Inst Fluid Dynam, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium.
[Laguna, A. Alvarez; Poedts, S.] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Celestijnenlaan 200B, B-3001 Leuven, Belgium.
[Mansour, N. N.] NASA, Ames Res Ctr, MS 230-3, Moffett Field, CA 94035 USA.
RP Laguna, AA (reprint author), Von Karman Inst Fluid Dynam, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium.; Laguna, AA (reprint author), Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Celestijnenlaan 200B, B-3001 Leuven, Belgium.
EM alejandro.alvarez.laguna@vki.ac.be; alani@vki.ac.be;
deconinck@vki.ac.be; Nagi.N.Mansour@nasa.gov;
Stefaan.Poedts@wis.kuleuven.be
RI Poedts, Stefaan/C-9775-2012;
OI Poedts, Stefaan/0000-0002-1743-0651; Lani, Andrea/0000-0003-4017-215X
FU Agency for Innovation by Science and Technology in Flanders (IWT);
Research Foundation of Flanders [FWO G.0729.11N]; KU Leuven
[GOA/2015-014]; FWO-Vlaanderen [G.0A23.16N]; ESA Prodex [C90347]
FX The first author's contribution was supported by a Ph.D. grant from the
Agency for Innovation by Science and Technology in Flanders (IWT). The
second author's contribution was supported by the FWO G.0729.11N grant
from the Research Foundation of Flanders. Some magnetic reconnection
simulations whose results have been discussed in this work were run on
Pleiades, NASA's supercomputer at the NASA Ames Research Center. These
results were obtained in the framework of the projects GOA/2015-014 (KU
Leuven), G.0A23.16N (FWO-Vlaanderen) and C90347 (ESA Prodex).
NR 61
TC 2
Z9 2
U1 2
U2 7
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD AUG 1
PY 2016
VL 318
BP 252
EP 276
DI 10.1016/j.jcp.2016.04.058
PG 25
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA DN4NF
UT WOS:000377043400012
ER
PT J
AU Tsafack, T
Alred, JM
Wise, KE
Jensen, B
Siochi, E
Yakobson, BI
AF Tsafack, Thierry
Alred, John M.
Wise, Kristopher E.
Jensen, Benjamin
Siochi, Emilie
Yakobson, Boris I.
TI Exploring the interface between single-walled carbon nanotubes and epoxy
resin
SO CARBON
LA English
DT Article
ID MOLECULAR-DYNAMICS; MECHANICAL-PROPERTIES; NANOCOMPOSITES; COMPOSITES;
RUBBER; STATES
AB A significant mechanical reinforcement of epoxy matrices with carbon nanotubes (CNTs) requires a very strong covalent interfacial bonding between the tube and the resin, diglycidylether of bisphenol A (DGEBA). Using classical molecular dynamics (MD) and density functional theory (DFT), various methods of improving covalent binding to CNTs are applied on four major categories: CNT diameters, dopants, defects, and functional groups. The diameter category includes (n, 0) CNTs with n = 5, 7, 9,11, 13, 15; the dopant category includes B-, N-, and Si-doped CNTs; the defect category includes CNTs with monovacancies, Stone-Wales, and more complex nitrogen terminated monovacancies and divacancies; the functional group category includes CNTs with atomic oxygen, hydroxyl, amine, carboxyl, and a combination of oxygen and hydroxyl. The computation of binding energies (BE), affinity indices (AI), and shear fracture forces on all configurations converged to the conclusion that smaller tubes, Si-doped CNTs, CNTs functionalized with a combination of oxygen and hydroxyl, and CNTs with monovacancies show the strongest indication for mechanical reinforcement in their respective categories. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Tsafack, Thierry; Alred, John M.; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & Nanoengn, 6100 Main St MS-325, Houston, TX USA.
[Wise, Kristopher E.; Jensen, Benjamin; Siochi, Emilie] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23665 USA.
RP Yakobson, BI (reprint author), Rice Univ, Dept Mat Sci & Nanoengn, 6100 Main St MS-325, Houston, TX USA.; Wise, KE (reprint author), NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23665 USA.
EM Kristopher.E.Wise@nasa.gov; biy@rice.edu
RI Jensen, Benjamin/B-1297-2013
OI Jensen, Benjamin/0000-0002-7982-0663
FU NASA under the NASA Langley Research Center Nano Incubator Project
[NNX13AN37G]
FX The authors appreciate the useful discussions with Dr. Adri van Duin.
This research was funded by NASA under the NASA Langley Research Center
Nano Incubator Project (Grant NNX13AN37G).
NR 44
TC 0
Z9 0
U1 23
U2 58
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
EI 1873-3891
J9 CARBON
JI Carbon
PD AUG
PY 2016
VL 105
BP 600
EP 606
DI 10.1016/j.carbon.2016.04.066
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA DM8JB
UT WOS:000376607200069
ER
PT J
AU Stephan, K
Wagner, R
Jaumann, R
Clark, RN
Cruikshank, DP
Brown, RH
Giese, B
Roatsch, T
Filacchione, G
Matson, D
Ore, CD
Capaccioni, F
Baines, KH
Rodriguez, S
Krupp, N
Buratti, BJ
Nicholson, PD
AF Stephan, Katrin
Wagner, Roland
Jaumann, Ralf
Clark, Roger N.
Cruikshank, Dale P.
Brown, Robert H.
Giese, Bernd
Roatsch, Thomas
Filacchione, Gianrico
Matson, Dennis
Ore, Cristina Dalle
Capaccioni, Fabrizio
Baines, Kevin H.
Rodriguez, Sebastien
Krupp, Norbert
Buratti, Bonnie J.
Nicholson, Phil D.
TI Cassini's geological and compositional view of Tethys
SO ICARUS
LA English
DT Article
DE Saturn; Satellites surfaces; Geological processes; Ices; IR spectroscopy
ID SATURNS ICY SATELLITES; SURFACE-COMPOSITION; CRATERING HISTORY; IMAGING
SCIENCE; VIMS; MIMAS; RHEA; ENCELADUS; DIONE; SYSTEM
AB The Saturnian satellite Tethys exhibits geological and spectral properties, whose appearance, nature and spatial distribution partly mirror those identified on the neighboring satellites Dione and Rhea or fit to the picture how spectral surface properties are expected to change from one satellite to the other within the inner Saturnian system. However, we also identified spectral variations that are unique in the Saturnian system. Whereas geologically young surface features are characterized by pure H2O-ice composition with relatively large particles, which match the particle sizes measured for fresh surface features also on Dione and Rhea, geologically old weathered regions are dominated by submicron-sized ice particles. Our investigations confirm that the Odysseus impact event did not cause the formation of Tethys' extended graben system Ithaca Chasma. On the contrary, Odysseus might be responsible for the N-S trending 'icy' bands that mark Tethys' surface in the center of its leading and trailing hemisphere. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Stephan, Katrin; Wagner, Roland; Jaumann, Ralf; Giese, Bernd; Roatsch, Thomas] DLR, Inst Planetary Res, D-12489 Berlin, Germany.
[Jaumann, Ralf] Free Univ Berlin, Dept Earth Sci, Inst Geosci, Berlin, Germany.
[Clark, Roger N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA.
[Cruikshank, Dale P.; Ore, Cristina Dalle] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Filacchione, Gianrico; Capaccioni, Fabrizio; Buratti, Bonnie J.] INAF IAPS, I-00133 Rome, Italy.
[Matson, Dennis] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Baines, Kevin H.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA.
[Rodriguez, Sebastien] Univ Paris 07, CEA Saclay, Lab AIM, CNRS,DSM,IRFU,SAp, F-91191 Gif Sur Yvette, France.
[Krupp, Norbert] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany.
[Nicholson, Phil D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
RP Stephan, K (reprint author), DLR, Inst Planetary Res, D-12489 Berlin, Germany.
EM Katrin.Stephan@dlr.de
RI Rodriguez, Sebastien/H-5902-2016;
OI Rodriguez, Sebastien/0000-0003-1219-0641; Filacchione,
Gianrico/0000-0001-9567-0055
NR 64
TC 0
Z9 0
U1 3
U2 12
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 1
EP 22
DI 10.1016/j.icarus.2016.03.002
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700001
ER
PT J
AU Davies, AG
Sotin, C
Choukroun, M
Matson, DL
Johnson, TV
AF Davies, Ashley Gerard
Sotin, Christophe
Choukroun, Mathieu
Matson, Dennis L.
Johnson, Torrence V.
TI Cryolava flow destabilization of crustal methane clathrate hydrate on
Titan
SO ICARUS
LA English
DT Article
DE Titan; Volcanism; Titan, atmosphere; Titan, surface
ID POSSIBLE ORIGIN; ICY SATELLITES; CRYOVOLCANISM; ENCELADUS; FEATURES;
SURFACE; ETHANE; SYSTEM; RADAR; SPOT
AB To date, there has been no conclusive observation of ongoing endogenous volcanic activity on Saturn's moon Titan. However, with time, Titan's atmospheric methane is lost and must be replenished. We have modeled one possible mechanism for the replenishment of Titan's methane loss. Cryolavas can supply enough heat to release large amounts of methane from methane clathrate hydrates (MCH). The volume of methane released is controlled by the flow thickness and its areal extent. The depth of the destabilisation layer is typically approximate to 30% of the thickness of the lava flow (approximate to 3 m for a 10-m thick flow). For this flow example, a maximum of 372 kg of methane is released per m(2) of flow area. Such an event would release methane for nearly a year. One or two events per year covering similar to 20 km(2) would be sufficient to resupply atmospheric methane. A much larger effusive event covering an area of approximate to 9000 km(2) with flows 200 m thick would release enough methane to sustain current methane concentrations for 10,000 years. The minimum size of "cryo-flows" sufficient to maintain the current atmospheric methane is small enough that their detection with current instruments (e.g., Cassini) could be challenging. We do not suggest that Titan's original atmosphere was generated by this mechanism. It is unlikely that small-scale surface MCH destabilisation is solely responsible for long-term (> a few Myr) sustenance of Titan's atmospheric methane, but rather we present it as a possible contributor to Titan's past and current atmospheric methane. (C) 2016 Published by Elsevier Inc.
C1 [Davies, Ashley Gerard; Sotin, Christophe; Choukroun, Mathieu; Johnson, Torrence V.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Matson, Dennis L.] Bear Fight Inst, Winthrop, WA 98862 USA.
RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Ashley.Davies@jpl.nasa.gov
RI Choukroun, Mathieu/F-3146-2017
OI Choukroun, Mathieu/0000-0001-7447-9139
FU NASA Outer Planets Research Program [NMO710931]
FX This work was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract to NASA. (c) 2016 Caltech. We
thank the NASA Outer Planets Research Program for support through award
NMO710931. We thank a number of reviewers, including Christopher McKay
and Ralph Lorenz, for their input.
NR 56
TC 1
Z9 1
U1 7
U2 19
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 23
EP 32
DI 10.1016/j.icarus.2016.02.046
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700002
ER
PT J
AU Craddock, RA
Golombek, MP
AF Craddock, Robert A.
Golombek, Matthew P.
TI Characteristics of terrestrial basaltic rock populations: Implications
for Mars lander and rover science and safety
SO ICARUS
LA English
DT Article
DE Mars; Mars, surface; Terrestrial planets
ID PATHFINDER LANDING SITE; MARTIAN SURFACE; GROUND ICE; SOUTHWEST ICELAND;
VIKING LANDERS; BRITTLE SOLIDS; FRAGMENT SIZE; DEBRIS FLOWS; GRAIN
SHAPE; GALE CRATER
AB We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt. Published by Elsevier Inc.
C1 [Craddock, Robert A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, Washington, DC 20560 USA.
[Golombek, Matthew P.] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA.
RP Craddock, RA (reprint author), Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, Washington, DC 20560 USA.
EM craddockb@si.edu
FU Smithsonian Institution's George F. Becker endowment fund; Smithsonian
Institution's George F. Becker Endowment
FX This research was supported by the Smithsonian Institution's George F.
Becker endowment fund. We thank Scott Eaton, Carolyn Russo, and Alan
Howard for assistance in the field. We also thank Aileen Yingst for her
constructive comments on the initial draft of this manuscript. Scott
Rowland and an anonymous reviewer provided many valuable and insightful
comments that improved the final version of the manuscript. This
research was partially supported by a grant from the Smithsonian
Institution's George F. Becker Endowment. Part of the research in this
paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with NASA.
NR 156
TC 0
Z9 0
U1 7
U2 16
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 50
EP 72
DI 10.1016/j.icarus.2016.02.042
PG 23
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700005
ER
PT J
AU Kollmann, P
Brandt, PC
Collinson, G
Rong, ZJ
Futaana, Y
Zhang, TL
AF Kollmann, P.
Brandt, P. C.
Collinson, G.
Rong, Z. J.
Futaana, Y.
Zhang, T. L.
TI Properties of planetward ion flows in Venus' magnetotail
SO ICARUS
LA English
DT Article
DE Venus; Magnetospheres; Reconnection; Venus Express; Plasma
ID EXPRESS OBSERVATIONS; MAGNETIC-FIELD; SOLAR-WIND; PLASMA ENVIRONMENT;
FLAPPING MOTIONS; MARS-EXPRESS; ESCAPE RATE; PRECIPITATION;
DISTRIBUTIONS; CONSEQUENCES
AB Venus is gradually losing some of its atmosphere in the form of ions through its induced magnetotail. Some of these ions have been reported previously to flow back to the planet. Proposed drivers are magnetic reconnection and deflection of pickup ions in the magnetic field. We analyze protons and oxygen ions with eV to keV energies acquired by the ASPERA-4/IMA instrument throughout the entire Venus Express mission. We find that venusward flowing ions are important in the sense that their density and deposition rate into the atmosphere is of the same order of magnitude as the density and escape rate of downtail flowing ions. Our analysis shows that during strong EUV irradiance, which occurs during solar maximum, the flux of venusward flowing protons is weaker and of oxygen ions is stronger than during weak irradiance. Since such a behavior was observed when tracing oxygen ions through a MHD model, the ultimate driver of the venusward flowing ions may simply be the magnetic field configuration around Venus. Although the pure downtail oxygen flux stays mostly unchanged for all observed EUV conditions, the increase in venusward oxygen flux for high irradiance results in a lower net atmospheric escape rate. Venusward bulk flows are mostly found in locations where the magnetic field is weak relative to the interplanetary conditions. Although a weak field is generally an indicator of proximity to the magnetotail current sheet, these flows do not cluster around current sheet crossings, as one may expect if they would be driven by magnetic reconnection. (C) 2016 The Authors. Published by Elsevier Inc.
C1 [Kollmann, P.; Brandt, P. C.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
[Collinson, G.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA.
[Futaana, Y.] Swedish Inst Space Phys IRF, S-98128 Kiruna, Sweden.
[Rong, Z. J.] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Earth & Planetary Phys, Beijing 100029, Peoples R China.
[Zhang, T. L.] Austrian Acad Sci, Space Res Inst IWF, A-8042 Graz, Austria.
RP Kollmann, P (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
EM peter.kollmann@jhuapl.edu
RI Kollmann, Peter/C-2583-2016; Brandt, Pontus/N-1218-2016;
OI Kollmann, Peter/0000-0002-4274-9760; Brandt, Pontus/0000-0002-4644-0306;
Futaana, Yoshifumi/0000-0002-7056-3517
FU NASA [NNX10AI17G]
FX Venus Express/ASPERA-4 and MAG data are available online through ESA's
planetary science archive (PSA). Timed/SEE data is available through the
LASP Interactive Solar Irradiance Data Center (LISIRD) at
lasp.colorado.edu/lisird. JHU/APL authors were supported by NASA grant
NNX10AI17G for Venus Express Participating Scientists. The authors like
to thank M. Fraenz (MPS) and A. Fedorov (IRAP) for analysis software and
data processing.
NR 50
TC 0
Z9 0
U1 4
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 73
EP 82
DI 10.1016/j.icarus.2016.02.053
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700006
ER
PT J
AU Carlson, RW
Baines, KH
Anderson, MS
Filacchione, G
Simon, AA
AF Carlson, R. W.
Baines, K. H.
Anderson, M. S.
Filacchione, G.
Simon, A. A.
TI Chromophores from photolyzed ammonia reacting with acetylene:
Application to Jupiter's Great Red Spot
SO ICARUS
LA English
DT Article
DE Jupiter, atmosphere; Photochemistry; Atmospheres, chemistry;
Atmospheres, composition; Organic chemistry
ID INFRARED MAPPING SPECTROMETER; SIMULATED JOVIAN ATMOSPHERE; ORGANIC
SYNTHESIS; PHOSPHINE PHOTOLYSIS; MASS-SPECTROMETER; UPPER TROPOSPHERE;
CROSS-SECTIONS; IMAGING DATA; NH3; PHOTOCHEMISTRY
AB The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using. ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Carlson, R. W.; Baines, K. H.; Anderson, M. S.] CALTECH, Jet Prop Lab, Mail Stop 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Filacchione, G.] Ist Astrofis & Planetol Spaziali, Rome, Italy.
[Simon, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Carlson, RW (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Robert.W.Carlson@jpl.nasa.gov
RI Simon, Amy/C-8020-2012;
OI Simon, Amy/0000-0003-4641-6186; Filacchione,
Gianrico/0000-0001-9567-0055
FU NASA's Planetary Atmospheres Program; Association of Universities for
Research in Astronomy, Inc., under NASA [NAS 5-26555]; [GO6009];
[GO6452]; [GO11498]; [GO13937]
FX We thank the two anonymous reviewers for their careful reading and
thoughtful comments that have greatly improved the paper. RWC and KHB
gratefully acknowledge funding from NASA's Planetary Atmospheres
Program. Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Space and Aeronautics Administration. Some results were based
on observations made with the NASA/ESA Cassini spacecraft and the Hubble
Space Telescope. Data from the latter were obtained from the Data
Archive at the Space Telescope Science Institute, operated by the
Association of Universities for Research in Astronomy, Inc., under NASA
Contract NAS 5-26555. These observations are associated with programs
GO6009, GO6452, GO11498 and GO13937.
NR 78
TC 0
Z9 0
U1 7
U2 15
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 106
EP 115
DI 10.1016/j.icarus.2016.03.008
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700009
ER
PT J
AU Konopliv, AS
Park, RS
Folkner, WM
AF Konopliv, Alex S.
Park, Ryan S.
Folkner, William M.
TI An improved JPL Mars gravity field and orientation from Mars orbiter and
lander tracking data
SO ICARUS
LA English
DT Article
DE Mars, interior; Rotational dynamics; Mars
ID GLOBAL SURVEYOR; ORDER MODEL; PHOBOS
AB The Mars gravity field resolution is mostly determined by the lower altitude Mars Reconnaissance Orbiter (MRO) tracking data. With nearly four years of additional MRO and Mars Odyssey tracking data since the last JPL released gravity field MRO110C and lander tracking from the MER Opportunity Rover, the gravity field and orientation of Mars have been improved. The new field, MRO120D, extends the maximum spherical harmonic degree slightly to 120, improves the determination of the higher degree coefficients as demonstrated by improved correlation with topography and reduces the uncertainty in the corresponding Mars orientation parameters by up to a factor of two versus previously combined gravity and orientation solutions. The new precession solution is (psi) over dot = -7608.3 +/- 2.1 mas/yr and is consistent with previous results but with a reduced uncertainty by 40%. The Love number solution, k(2) = 0.169 +/- 0.006, also shows a similar result to previous studies. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Konopliv, Alex S.; Park, Ryan S.; Folkner, William M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Konopliv, AS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Alex.Konopliv@jpl.nasa.gov
NR 28
TC 1
Z9 1
U1 10
U2 18
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 253
EP 260
DI 10.1016/j.icarus.2016.02.052
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700018
ER
PT J
AU de Pater, I
Davies, AG
Marchis, F
AF de Pater, Imke
Davies, Ashley Gerard
Marchis, Franck
TI Keck observations of eruptions on Io in 2003-2005
SO ICARUS
LA English
DT Article
DE Io; Infrared observations; Volcanism
ID GALILEO NIMS DATA; VOLCANIC ACTIVITY; HEAT-FLOW; THERMAL SIGNATURE;
STANDARD STARS; LOKI PATERA; MU-M; MISSION; TELESCOPE; EVOLUTION
AB We report observations of four energetic volcanic eruptions on Io: at Tupan Patera on UT 8 March 2003; Tung Yo Patera on UT 28 May 2004; Sui Jen Patera on UT 30 May 2004; and south of Babbar Patera on UT 31 May 2005. The Tung Yo, Sui Jen and south of Babbar Paterae eruptions are in locations where no activity had been seen before. Our observations were obtained at near-infrared wavelengths (1.2-4.7 mu m) with the 10-m Keck telescope equipped with adaptive optics. We report single and two-temperature blackbody fits, as well as single-component and dual-component Io Flow Model (IFM) fits (Davies, 1996, Icarus, 124, 45-61) to all four eruptions where applicable. We use 2-mu m and 5-mu m radiant fluxes, the 2:5-mu m radiant flux ratio, and radiant flux density of each thermal source to constrain the likely style of volcanic eruption. All eruptions are characterized by a high temperature IFM component (ranging from 1475 to similar to 900 K) from a relatively small area (<1 km(2) to several tens of km(2)), and a lower temperature component with a more extensive surface area. The relationship of the areas at the highest temperatures to the cooler, more extensive area is of particular importance in deriving eruption style. Model fits to the Sui Jen Patera data are strongly suggestive of lava fountaining, although not at a level consistent with a large "outburst" eruption. Activity at Tupan Patera suggests that the entire floor of the patera may have been resurfaced with silicate lava in 2003. (C) 2016 Elsevier Inc. All rights reserved.
C1 [de Pater, Imke] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
[de Pater, Imke] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands.
[de Pater, Imke] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands.
[Davies, Ashley Gerard] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Marchis, Franck] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.
[Marchis, Franck] IMCCE Obs Paris, F-75014 Paris, France.
RP de Pater, I (reprint author), Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
EM imke@berkeley.edu
FU W.M. Keck Foundation; National Science Foundation, NSF [AST-1313485];
NASA Outer Planets Research and Planetary Geology and Geophysics Program
FX We thank Alfred McEwen and an anonymous referee for valuable comments on
the paper, which helped improve the paper substantially. The data
presented in this paper were obtained at the W.M. Keck Observatories.
The Keck Telescopes are operated as a scientific partnership among the
California Institute of Technology, the University of California and the
National Aeronautics and Space Administration. The Observatory was made
possible by the generous financial support of the W.M. Keck Foundation.
Our research was partially supported by the National Science Foundation,
NSF grant AST-1313485 to UC Berkeley. Ashley Davies thanks the NASA
Outer Planets Research and Planetary Geology and Geophysics Program for
support. The authors recognize and acknowledge the very significant
cultural role and reverence that the summit of Mauna Kea has always had
within the indigenous Hawaiian community. We are most fortunate to have
the opportunity to conduct observations of Ionian volcanoes from this
Hawaiian volcano.
NR 42
TC 1
Z9 1
U1 4
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 284
EP 296
DI 10.1016/j.icarus.2015.12.054
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700021
ER
PT J
AU Farnocchia, D
Chesley, SR
Brown, PG
Chodas, PW
AF Farnocchia, Davide
Chesley, Steven R.
Brown, Peter G.
Chodas, Paul W.
TI The trajectory and atmospheric impact of asteroid 2014 AA
SO ICARUS
LA English
DT Article
DE Asteroids; Asteroids; Dynamics; Astrometry; Near-Earth objects; Orbit
determination
AB Near-Earth asteroid 2014 AA entered the Earth's atmosphere on 2014 January 2, only 21 h after being discovered by the Catalina Sky Survey. In this paper we compute the trajectory of 2014 AA by combining the available optical astrometry, seven ground-based observations over 69 min, and the International Monitoring System detection of the atmospheric impact infrasonic airwaves in a least-squares orbit estimation filter. The combination of these two sources of observations results in a tremendous improvement in the orbit uncertainties. The impact time is 3:05 UT with a 1 sigma uncertainty of 6 min, while the impact location corresponds to a west longitude of 44.2 degrees and a latitude of 13.1 degrees with a 1 sigma uncertainty of 140 km. The minimum impact energy estimated from the infrasound data and the impact velocity result in an estimated minimum mass of 22.6 t. By propagating the trajectory of 2014 AA backwards we find that the only window for finding precovery observations is for the three days before its discovery. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Brown, Peter G.] Univ Western Ontario, London, ON N6A 3K7, Canada.
RP Farnocchia, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Davide.Farnocchia@jpl.nasa.gov
FU NASA [NNX11AB76A]
FX We thank J. D. Giorgini and the reviewers, P. Jenniskens and an
anonymous one, for useful comments that helped improve the paper. D.
Farnocchia, S. R., Chesley, and P. W. Chodas conducted this research at
the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with NASA. P. G. Brown received support for this study from
NASA Cooperative agreement NNX11AB76A. P. G. Brown thanks the Canadian
Hazard Information Service of Natural Resources Canada for technical
support and IDC access as part of the Canadian National Data Center.
NR 25
TC 1
Z9 1
U1 4
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 327
EP 333
DI 10.1016/j.icarus.2016.02.056
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700024
ER
PT J
AU Filacchione, G
Capaccioni, F
Ciarniello, M
Raponi, A
Tosi, F
De Sanctis, MC
Erard, S
Morvan, DB
Leyrat, C
Arnold, G
Schmitt, B
Quirico, E
Piccioni, G
Migliorini, A
Capria, MT
Palomba, E
Cerroni, P
Longobardo, A
Barucci, A
Fornasier, S
Carlson, RW
Jaumann, R
Stephan, K
Moroz, LV
Kappel, D
Rousseau, B
Fonti, S
Mancarella, F
Despan, D
Faure, M
AF Filacchione, Gianrico
Capaccioni, Fabrizio
Ciarniello, Mauro
Raponi, Andrea
Tosi, Federico
De Sanctis, Maria Cristina
Erard, Stephane
Morvan, Dominique Bockelee
Leyrat, Cedric
Arnold, Gabriele
Schmitt, Bernard
Quirico, Eric
Piccioni, Giuseppe
Migliorini, Alessandra
Capria, Maria Teresa
Palomba, Ernesto
Cerroni, Priscilla
Longobardo, Andrea
Barucci, Antonella
Fornasier, Sonia
Carlson, Robert W.
Jaumann, Ralf
Stephan, Katrin
Moroz, Lyuba V.
Kappel, David
Rousseau, Batiste
Fonti, Sergio
Mancarella, Francesca
Despan, Daniela
Faure, Mathilde
TI The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I)
Prelanding mission phase
SO ICARUS
LA English
DT Article
DE Comets, composition; Comets, nucleus; Spectroscopy
ID EXPOSED WATER ICE; COMET 67P/CHURYUMOV-GERASIMENKO; PHOTOMETRIC
PROPERTIES; IMAGING SPECTROMETER; OSIRIS OBSERVATIONS; ONBOARD ROSETTA;
IMHOTEP REGION; VIRTIS; SHAPE; H2O
AB From August to November 2014 the Rosetta orbiter has performed an extensive observation campaign aimed at the characterization of 67P/CG nucleus properties and to the selection of the Philae landing site. The campaign led to the production of a global map of the illuminated portion of 67P/CG nucleus. During this prelanding phase the comet's heliocentric distance decreased from 3.62 to 2.93 AU while Rosetta was orbiting around the nucleus at distances between 100 to 10 km. VIRTIS-M, the Visible and InfraRed Thermal Imaging Spectrometer - Mapping channel (Coradini et al., [2007] Space Sci. Rev., 128, 529-559) onboard the orbiter, has acquired 0.25-5.1 mu m hyperspectral data of the entire illuminated surface, e.g. the north hemisphere and the equatorial regions, with spatial resolution between 2.5 and 25 m/pixel. I/F spectra have been corrected for thermal emission removal in the 3.5-5.1 mu m range and for surface's photometric response. The resulting reflectance spectra have been used to compute several Cometary Spectral Indicators (CSI): single scattering albedo at 0.55 mu m, 0.5-0.8 mu m and 1.0-2.5 mu m spectral slopes, 3.2 mu m organic material and 2.0 mu m water ice band parameters (center, depth) with the aim to map their spatial distribution on the surface and to study their temporal variability as the nucleus moved towards the Sun. Indeed, throughout the investigated period, the nucleus surface shows a significant increase of the single scattering albedo along with a decrease of the 0.5-0.8 and 1.0-2.5 mu m spectral slopes, indicating a flattening of the reflectance. We attribute the origin of this effect to the partial removal of the dust layer caused by the increased contribution of water sublimation to the gaseous activity as comet crossed the frost-line. The regions more active at the time of these observations, like Hapi in the neck/north pole area, appear brighter, bluer and richer in organic material than the rest of the large and small lobe of the nucleus. The parallel coordinates method (Inselberg [1985] Vis. Comput., 1, 69-91) has been used to identify associations between average values of the spectral indicators and the properties of the geomorphological units as defined by (Thomas et al., [2015] Science, 347, 6220) and (El-Maarr et al., [2015] Astron. Astrophys., 583, A26). Three classes have been identified (smooth/active areas, dust covered areas and depressions), which can be clustered on the basis of the 3.2 mu m organic material's band depth, while consolidated terrains show a high variability of the spectral properties resulting being distributed across all three classes. These results show how the spectral variability of the nucleus surface is more variegated than the morphological classes and that 67P/CG surface properties are dynamical, changing with the heliocentric distance and with activity processes. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Filacchione, Gianrico; Capaccioni, Fabrizio; Ciarniello, Mauro; Raponi, Andrea; Tosi, Federico; De Sanctis, Maria Cristina; Piccioni, Giuseppe; Migliorini, Alessandra; Capria, Maria Teresa; Palomba, Ernesto; Cerroni, Priscilla; Longobardo, Andrea] Ist Astrofis & Planetol Spaziali, INAF IAPS, Area Ric Tor Vergata, Via Fosso del Cavaliere 100, I-00133 Rome, Italy.
[Erard, Stephane; Morvan, Dominique Bockelee; Leyrat, Cedric; Barucci, Antonella; Fornasier, Sonia; Rousseau, Batiste; Despan, Daniela] Univ Paris Diderot, UPMC, Observ Paris, LESIA,CNRS, F-92195 Meudon, France.
[Arnold, Gabriele; Jaumann, Ralf; Stephan, Katrin; Moroz, Lyuba V.; Kappel, David] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Planetary Res, Berlin, Germany.
[Schmitt, Bernard; Quirico, Eric; Faure, Mathilde] Univ Grenoble Alpes, CNRS, IPAG, Grenoble, France.
[Carlson, Robert W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Fonti, Sergio; Mancarella, Francesca] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Lecce, Italy.
RP Filacchione, G (reprint author), Ist Astrofis & Planetol Spaziali, INAF IAPS, Area Ric Tor Vergata, Via Fosso del Cavaliere 100, I-00133 Rome, Italy.
EM gianrico.filacchione@iaps.inaf.it
RI Schmitt, Bernard/A-1064-2009; quirico, eric/K-9650-2013;
OI Schmitt, Bernard/0000-0002-1230-6627; quirico, eric/0000-0003-2768-0694;
Migliorini, Alessandra/0000-0001-7386-9215; Filacchione,
Gianrico/0000-0001-9567-0055; Rousseau, Batiste/0000-0001-9247-7890;
Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434
FU Italian Space Agency (ASI - Italy); Centre National d'Etudes Spatiales
(CNES- France); Deutsches Zentrum fur Luft- and Raumfahrt (DLR-Germany);
National Aeronautic and Space Administration (NASA-USA); ASI; CNES; DLR
FX The authors would like to thank the following institutions and agencies,
which supported this work: Italian Space Agency (ASI - Italy), Centre
National d'Etudes Spatiales (CNES- France), Deutsches Zentrum fur Luft-
and Raumfahrt (DLR-Germany), National Aeronautic and Space
Administration (NASA-USA). VIRTIS was built by a consortium from Italy,
France and Germany, under the scientific responsibility of IAPS,
Istituto di Astrofisica e Planetologia Spaziali of INAF, Rome (IT),
which lead also the scientific operations. The VIRTIS instrument
development for ESA has been funded and managed by ASI, with
contributions from Observatoire de Meudon financed by CNES and from DLR.
The VIRTIS instrument industrial prime contractor was former Officine
Galileo, now Selex ES (Finmeccanica Group) in Campi Bisenzio, Florence,
IT. The authors wish to thank the Rosetta Liaison Scientists, the
Rosetta Science Ground Segment and the Rosetta Mission Operations Centre
for their support in planning the VIRTIS observations. The VIRTIS
calibrated data will be available through the ESA's Planetary Science
Archive (PSA) web site. This research has made use of NASA's
Astrophysics Data System.
NR 42
TC 5
Z9 5
U1 5
U2 12
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD AUG
PY 2016
VL 274
BP 334
EP 349
DI 10.1016/j.icarus.2016.02.055
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL8IM
UT WOS:000375885700025
ER
PT J
AU Chyba, CF
Hand, KP
AF Chyba, Christopher F.
Hand, Kevin P.
TI Electric Power Generation from Earth's Rotation through its Own Magnetic
Field
SO PHYSICAL REVIEW APPLIED
LA English
DT Article
ID AT-A-DISTANCE; UNIPOLAR INDUCTION; STATIC SITUATION; LINES; GAUGE;
SHIELDS; COULOMB; THEOREM; MOTION
AB We examine electric power generation from Earth's rotation through its own nonrotating magnetic field (that component of the field symmetric about Earth's rotation axis). There is a simple general proof that this is impossible. However, we identify a loophole in that proof and show that voltage can be continuously generated in a low-magnetic-Reynolds-number conductor rotating with Earth, provided magnetically permeable material is used to ensure curl (v x B-0) not equal 0 within the conductor, where B-0 derives from the axially symmetric component of Earth's magnetic flux density, and v is Earth's rotation velocity at the conductor's location. We solve the relevant equations for one laboratory realization, and from this solution, we predict the voltage magnitude and sign dependence on system dimensions and orientation relative to Earth's rotation. The effect, which would be available nearly globally with no intermittency, requires testing and further examination to see if it can be scaled to practical emission-free power generation.
C1 [Chyba, Christopher F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Chyba, Christopher F.] Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Princeton, NJ 08544 USA.
[Hand, Kevin P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Chyba, CF (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Chyba, CF (reprint author), Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Princeton, NJ 08544 USA.
EM cchyba@princeton.edu; Kevin.P.Hand@jpl.nasa.gov
FU Woodrow Wilson School; Department of Astrophysical Sciences at Princeton
University; Jet Propulsion Laboratory, California Institute of
Technology; National Aeronautics and Space Administration; National
Aeronautics and Space Administration Exobiology Program [NNH09ZDA001N]
FX We thank three anonymous referees for their reviews, and we are grateful
for helpful discussions with T. H. Chyba, R. L. Garwin, M. J. Rees, P.
J. Thomas, E. L. Turner, and three anonymous colleagues. We thank G. Z.
McDermott and G. Cooper for administrative support, B. A. Lin for
reference assistance, and M. Northrup of National Magnetics Group Inc.
for help with materials. C. F. C. acknowledges research funds from the
Woodrow Wilson School and the Department of Astrophysical Sciences at
Princeton University. K. P. H. acknowledges support through the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration, and
through the National Aeronautics and Space Administration Exobiology
Program (Grant No. NNH09ZDA001N).
NR 67
TC 0
Z9 0
U1 2
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2331-7019
J9 PHYS REV APPL
JI Phys. Rev. Appl.
PD JUL 29
PY 2016
VL 6
IS 1
AR 014017
DI 10.1103/PhysRevApplied.6.014017
PG 18
WC Physics, Applied
SC Physics
GA DT5CV
UT WOS:000381499200002
ER
PT J
AU Breuillard, H
Le Contel, O
Retino, A
Chasapis, A
Chust, T
Mirioni, L
Graham, DB
Wilder, FD
Cohen, I
Vaivads, A
Khotyaintsev, YV
Lindqvist, PA
Marklund, GT
Burch, JL
Torbert, RB
Ergun, RE
Goodrich, KA
Macri, J
Needell, J
Chutter, M
Rau, D
Dors, I
Russell, CT
Magnes, W
Strangeway, RJ
Bromund, KR
Plaschke, F
Fischer, D
Leinweber, HK
Anderson, BJ
Le, G
Slavin, JA
Kepko, EL
Baumjohann, W
Mauk, B
Fuselier, SA
Nakamura, R
AF Breuillard, H.
Le Contel, O.
Retino, A.
Chasapis, A.
Chust, T.
Mirioni, L.
Graham, D. B.
Wilder, F. D.
Cohen, I.
Vaivads, A.
Khotyaintsev, Yu V.
Lindqvist, P. -A.
Marklund, G. T.
Burch, J. L.
Torbert, R. B.
Ergun, R. E.
Goodrich, K. A.
Macri, J.
Needell, J.
Chutter, M.
Rau, D.
Dors, I.
Russell, C. T.
Magnes, W.
Strangeway, R. J.
Bromund, K. R.
Plaschke, F.
Fischer, D.
Leinweber, H. K.
Anderson, B. J.
Le, G.
Slavin, J. A.
Kepko, E. L.
Baumjohann, W.
Mauk, B.
Fuselier, S. A.
Nakamura, R.
TI Multispacecraft analysis of dipolarization fronts and associated
whistler wave emissions using MMS data
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Earth magnetotail; dipolarization fronts
ID KINETIC BALLOONING/INTERCHANGE INSTABILITY; ELECTROMAGNETIC
ENERGY-CONVERSION; PLASMA SHEET; RECONNECTION; MAGNETOTAIL; SIMULATIONS;
TURBULENCE; DRIVEN; FLOW
AB Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
C1 [Breuillard, H.; Le Contel, O.; Retino, A.; Chust, T.; Mirioni, L.] CNRS, LPP, UMR, Paris, France.
[Chasapis, A.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Graham, D. B.; Vaivads, A.; Khotyaintsev, Yu V.; Mauk, B.] Swedish Inst Space Phys, Uppsala, Sweden.
[Wilder, F. D.; Ergun, R. E.; Goodrich, K. A.] Univ Colorado, LASP, Boulder, CO 80309 USA.
[Cohen, I.; Anderson, B. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Lindqvist, P. -A.; Marklund, G. T.] Royal Inst Technol, Alfven Lab, Stockholm, Sweden.
[Burch, J. L.] Southwest Res Inst, San Antonio, TX USA.
[Torbert, R. B.; Macri, J.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Torbert, R. B.; Macri, J.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
[Magnes, W.; Plaschke, F.; Fischer, D.; Baumjohann, W.; Nakamura, R.] Austrian Acad Sci, Space Res Inst IWF, Graz, Austria.
[Bromund, K. R.; Le, G.; Kepko, E. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Slavin, J. A.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
[Fuselier, S. A.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA.
RP Breuillard, H (reprint author), CNRS, LPP, UMR, Paris, France.
EM hugo.breuillard@lpp.polytechnique.fr
RI NASA MMS, Science Team/J-5393-2013; Cohen, Ian/K-3038-2015; Le,
Guan/C-9524-2012; Slavin, James/H-3170-2012; Mauk, Barry/E-8420-2017
OI NASA MMS, Science Team/0000-0002-9504-5214; Cohen,
Ian/0000-0002-9163-6009; Le, Guan/0000-0002-9504-5214; Slavin,
James/0000-0002-9206-724X; Mauk, Barry/0000-0001-9789-3797
FU CNES; CNRS-INSIS; CNRS-INSU
FX H.B.'s work has been supported by CNES through the grant "Allocations de
recherche post-doctorale." The French involment (SCM) on MMS is
supported by CNES, CNRS-INSIS, and CNRS-INSU. Used data are available at
https://lasp.colorado.edu/mms/sdc.
NR 56
TC 4
Z9 4
U1 8
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7279
EP 7286
DI 10.1002/2016GL069188
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200001
ER
PT J
AU Lee, SH
Sibeck, DG
Hwang, KJ
Wang, Y
Silveira, MVD
Fok, MC
Mauk, BH
Cohen, IJ
Ruohoniemi, JM
Kitamura, N
Burch, JL
Giles, BL
Torbert, RB
Russell, CT
Lester, M
AF Lee, S. H.
Sibeck, D. G.
Hwang, K. -J.
Wang, Y.
Silveira, M. V. D.
Fok, M. -C.
Mauk, B. H.
Cohen, I. J.
Ruohoniemi, J. M.
Kitamura, N.
Burch, J. L.
Giles, B. L.
Torbert, R. B.
Russell, C. T.
Lester, M.
TI Inverse energy dispersion of energetic ions observed in the
magnetosheath
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE particle escape; energetic ions; magnetosheath; magnetic reconnection;
solar wind-magnetosphere interaction
ID UPSTREAM PRESSURE VARIATIONS; OXYGEN IONS; DAYSIDE MAGNETOPAUSE;
MAGNETOSPHERIC IONS; BOW SHOCK; ACCELERATION; SIGNATURES; RECONNECTION;
LATITUDES; LEAKAGE
AB We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximate to 50-1000keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5R(E) using combined Super Dual Auroral Radar Network radar and EPD observations.
C1 [Lee, S. H.; Sibeck, D. G.; Hwang, K. -J.; Silveira, M. V. D.; Fok, M. -C.; Giles, B. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Hwang, K. -J.] Univ Maryland, Goddard Planetary & Heliophys Inst, Baltimore, MD 21201 USA.
[Wang, Y.] Peking Univ, Sch Earth & Space Sci, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China.
[Mauk, B. H.; Cohen, I. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Ruohoniemi, J. M.] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA.
[Kitamura, N.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan.
[Burch, J. L.] Southwest Res Inst, San Antonio, TX USA.
[Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
[Lester, M.] Univ Leicester, Dept Phys & Astron, Leicester, Leics, England.
RP Lee, SH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM sun.h.lee@nasa.gov
RI NASA MMS, Science Team/J-5393-2013; Cohen, Ian/K-3038-2015; Lester,
Mark/C-9657-2016; Mauk, Barry/E-8420-2017
OI NASA MMS, Science Team/0000-0002-9504-5214; Cohen,
Ian/0000-0002-9163-6009; Lester, Mark/0000-0001-7353-5549; Mauk,
Barry/0000-0001-9789-3797
FU NASA; MMS project; NSF [AGS-1341918]; NERC [NE/K011766/1]; national
scientific agency of Australia; national scientific agency of Canada;
national scientific agency of China; national scientific agency of
France; national scientific agency of Japan; national scientific agency
of South Africa; national scientific agency of United Kingdom; national
scientific agency of United States; AFOSR
FX We thank the FGM, FPI, and EPD instrument teams of MMS mission and
ARTEMIS mission for the successful spacecraft operation and for
providing plasma and magnetic field data. This research was supported by
an appointment to the NASA Postdoctoral Program appointment at the
NASA/GSFC, administered by Universities Space Research Association
through a contract with NASA. Some of the work conducted at NASA/GSFC
was supported by the MMS project. J.M.R. acknowledges the support of NSF
under AGS-1341918. M.L. is supported by NERC grant NE/K011766/1. The
SuperDARN radars are funded by the national scientific agencies of
Australia, Canada, China, France, Japan, South Africa, United Kingdom,
and the United States. We thank the team of Katie Herlingshaw, Suzie
Imber, Hammed Lawal, Tim Yeoman, Jasmine Sandhu, Rosie Johnson, and
Timothy David at the University of Leicester who collected the
Hankasalmi radar data used in this paper which supported the CAPER
rocket campaign. We thank the national institutes that support them and
INTERMAGNET for promoting high standards of magnetic observatory
practice. We also thank E. Yizengaw, E. Zesta, M.B. Moldwin, and the
rest of the AMBER team for the data. AMBER is operated by Boston College
and funded by NASA and AFOSR. The Kp and Dst indices were provided by
the website (http://wdc.kugi.kyoto-u.ac.jp/).
NR 31
TC 0
Z9 0
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7338
EP 7347
DI 10.1002/2016GL069840
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200008
ER
PT J
AU Jaynes, AN
Turner, DL
Wilder, FD
Osmane, A
Baker, DN
Blake, JB
Fennell, JF
Cohen, IJ
Mauk, BH
Reeves, GD
Ergun, RE
Giles, BL
Gershman, DJ
Torbert, RB
Burch, JL
AF Jaynes, A. N.
Turner, D. L.
Wilder, F. D.
Osmane, A.
Baker, D. N.
Blake, J. B.
Fennell, J. F.
Cohen, I. J.
Mauk, B. H.
Reeves, G. D.
Ergun, R. E.
Giles, B. L.
Gershman, D. J.
Torbert, R. B.
Burch, J. L.
TI Energetic electron acceleration observed by MMS in the vicinity of an
X-line crossing
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE electron acceleration; wave-particle interactions; VLF waves;
magnetopause; dayside reconnection; MMS
ID MAGNETIC RECONNECTION; LATITUDE MAGNETOPAUSE; WAVES; LAYER
AB During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to >100keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line, whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments.
C1 [Jaynes, A. N.; Wilder, F. D.; Baker, D. N.; Ergun, R. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
[Turner, D. L.; Blake, J. B.; Fennell, J. F.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA.
[Osmane, A.] Aalto Univ, Dept Radio Sci & Engn, Helsinki, Finland.
[Cohen, I. J.; Mauk, B. H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Giles, B. L.; Gershman, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Burch, J. L.] Southwest Res Inst, San Antonio, TX USA.
RP Jaynes, AN (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
EM allison.jaynes@lasp.colorado.edu
RI NASA MMS, Science Team/J-5393-2013; Cohen, Ian/K-3038-2015; Mauk,
Barry/E-8420-2017;
OI NASA MMS, Science Team/0000-0002-9504-5214; Cohen,
Ian/0000-0002-9163-6009; Mauk, Barry/0000-0001-9789-3797; Reeves,
Geoffrey/0000-0002-7985-8098
FU MMS mission, under NASA [NNG04EB99C]
FX This work was supported by funding from the MMS mission, under NASA
contract NNG04EB99C. The data presented here are publicly available on
the MMS Science Data Center website: https://lasp.colorado.edu/mms/sdc/
or by request for dates earlier than 1 September 2015. Solar wind OMNI
data from ACE and Wind are available via the Space Physics Data Facility
at http://cdaweb.gsfc.nasa.gov/istp_public/.
NR 32
TC 2
Z9 2
U1 4
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7356
EP 7363
DI 10.1002/2016GL069206
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200010
ER
PT J
AU Yizengaw, E
Moldwin, MB
Zesta, E
Magoun, M
Pradipta, R
Biouele, CM
Rabiu, AB
Obrou, OK
Bamba, Z
de Paula, ER
AF Yizengaw, E.
Moldwin, M. B.
Zesta, E.
Magoun, M.
Pradipta, R.
Biouele, C. M.
Rabiu, A. B.
Obrou, O. K.
Bamba, Z.
de Paula, E. R.
TI Response of the equatorial ionosphere to the geomagnetic DP 2 current
system
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE DP 2 current; equatorial electrodynamics
ID ELECTRIC-FIELD; PENETRATION; SUBSTORMS
AB The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and magnetosphere generates a convection electric field that can penetrate to the ionosphere and cause the DP 2 current system. The quasiperiodic DP 2 current system, which fluctuates coherently with fluctuations of the interplanetary magnetic field (IMF) B-z, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF B-z component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF B-z.
C1 [Yizengaw, E.; Magoun, M.; Pradipta, R.] Boston Coll, Inst Sci Res, Boston, MA USA.
[Moldwin, M. B.] Univ Michigan, Dept Climate Space Sci & Engn, Ann Arbor, MI 48109 USA.
[Zesta, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Biouele, C. M.] Univ Yaounde, Dept Phys, Yaounde, Cameroon.
[Rabiu, A. B.] Natl Space Res & Dev Agcy, Abuja, Nigeria.
[Obrou, O. K.] Univ Felix Houphouet Boigny FHB, Lab Phys Atmosphere, Abidjan, Cote Ivoire.
[Bamba, Z.] Ctr Rech Sci Conakry Rogbane, Conakry, Guinea.
[de Paula, E. R.] Inst Nacl Pesquisas Espaciais, Sao Jose Dos Campos, Brazil.
RP Yizengaw, E (reprint author), Boston Coll, Inst Sci Res, Boston, MA USA.
EM Kassie@bc.edu
FU AFOSR [FA9550-12-1-0437, FA9550-15-1-0399]; NSF [AGS145136, AGS1450512]
FX This work has been partially supported by AFOSR (FA9550-12-1-0437 and
FA9550-15-1-0399) and NSF (AGS145136 and AGS1450512) grants. The authors
are indebted to the Jicamarca Radio Observatory and INTERMAGNET team for
the magnetometer data resources they made available to the public. We
also thank the Global Ionospheric Radio Observatory team for the
ionosonde data. The solar wind data were obtained from the CDAWeb
database.
NR 18
TC 0
Z9 0
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7364
EP 7372
DI 10.1002/2016GL070090
PG 9
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200011
ER
PT J
AU Plaschke, F
Kahr, N
Fischer, D
Nakamura, R
Baumjohann, W
Magnes, W
Burch, JL
Torbert, RB
Russell, CT
Giles, BL
Strangeway, RJ
Leinweber, HK
Bromund, KR
Anderson, BJ
Le, G
Chutter, M
Slavin, JA
Kepko, EL
AF Plaschke, F.
Kahr, N.
Fischer, D.
Nakamura, R.
Baumjohann, W.
Magnes, W.
Burch, J. L.
Torbert, R. B.
Russell, C. T.
Giles, B. L.
Strangeway, R. J.
Leinweber, H. K.
Bromund, K. R.
Anderson, B. J.
Le, G.
Chutter, M.
Slavin, J. A.
Kepko, E. L.
TI Steepening of waves at the duskside magnetopause
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE magnetopause; surface wave; steepening; Kelvin-Helmholtz instability;
plasma depletion layer; Magnetospheric Multiscale
ID INTERPLANETARY MAGNETIC-FIELD; KELVIN-HELMHOLTZ INSTABILITY; SOLAR-WIND;
MAGNETOSPHERE; BOUNDARY; PLASMA; LAYER; SHAPE; FLOW
AB Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous/inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular/inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.
C1 [Plaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria.
[Burch, J. L.; Torbert, R. B.] Southwest Res Inst, San Antonio, TX USA.
[Torbert, R. B.; Chutter, M.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA.
[Giles, B. L.; Bromund, K. R.; Le, G.; Kepko, E. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Anderson, B. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Slavin, J. A.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
RP Plaschke, F (reprint author), Austrian Acad Sci, Space Res Inst, Graz, Austria.
EM Ferdinand.Plaschke@oeaw.ac.at
RI NASA MMS, Science Team/J-5393-2013; Le, Guan/C-9524-2012; Slavin,
James/H-3170-2012
OI NASA MMS, Science Team/0000-0002-9504-5214; Le,
Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X
FU NASA [NNG04EB99C]; Austrian Academy of Sciences; Austrian Space
Applications Programme [FFG/ASAP-844377]
FX The dedication and expertise of the Magnetopheric MultiScale (MMS)
development and operations teams are greatly appreciated. Work at
JHU/APL, UCLA, UNH, and SwRI was supported by NASA contract NNG04EB99C.
We acknowledge the use of merged magnetic field measurements that are
based on burst FluxGate Magnetometer (FGM) data from the Digital
Flux-Gate (DFG) magnetometers and burst Search Coil Magnetometer (SCM)
data. Furthermore, we acknowledge the use of fast survey Fast Plasma
Investigation (FPI) data. The FPI data are stored at the MMS Science
Data Center https://lasp.colorado.edu/mms/sdc/ and are publicly
available. The merged magnetic field data are available upon request.
The Austrian part of the development, operation, and calibration of the
DFG was financially supported by rolling grant of the Austrian Academy
of Sciences and the Austrian Space Applications Programme with the
contract FFG/ASAP-844377.
NR 33
TC 0
Z9 0
U1 2
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7373
EP 7380
DI 10.1002/2016GL070003
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200012
ER
PT J
AU Lanza, NL
Wiens, RC
Arvidson, RE
Clark, BC
Fischer, WW
Gellert, R
Grotzinger, JP
Hurowitz, JA
McLennan, SM
Morris, RV
Rice, MS
Bell, JF
Berger, JA
Blaney, DL
Bridges, NT
Calef, F
Campbell, JL
Clegg, SM
Cousin, A
Edgett, KS
Fabre, C
Fisk, MR
Forni, O
Frydenvang, J
Hardy, KR
Hardgrove, C
Johnson, JR
Lasue, J
Le Mouelic, S
Malin, MC
Mangold, N
Martin-Torres, J
Maurice, S
McBride, MJ
Ming, DW
Newsom, HE
Ollila, AM
Sautter, V
Schroder, S
Thompson, LM
Treiman, AH
VanBommel, S
Vaniman, DT
Zorzano, MP
AF Lanza, Nina L.
Wiens, Roger C.
Arvidson, Raymond E.
Clark, Benton C.
Fischer, Woodward W.
Gellert, Ralf
Grotzinger, John P.
Hurowitz, Joel A.
McLennan, Scott M.
Morris, Richard V.
Rice, Melissa S.
Bell, James F., III
Berger, Jeffrey A.
Blaney, Diana L.
Bridges, Nathan T.
Calef, Fred, III
Campbell, John L.
Clegg, Samuel M.
Cousin, Agnes
Edgett, Kenneth S.
Fabre, Cecile
Fisk, Martin R.
Forni, Olivier
Frydenvang, Jens
Hardy, Keian R.
Hardgrove, Craig
Johnson, Jeffrey R.
Lasue, Jeremie
Le Mouelic, Stephane
Malin, Michael C.
Mangold, Nicolas
Martin-Torres, Javier
Maurice, Sylvestre
McBride, Marie J.
Ming, Douglas W.
Newsom, Horton E.
Ollila, Ann M.
Sautter, Violaine
Schroder, Susanne
Thompson, Lucy M.
Treiman, Allan H.
VanBommel, Scott
Vaniman, David T.
Zorzano, Maria-Paz
TI Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale
crater, Mars
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Mars; manganese; oxidation; MSL; ChemCam
ID ATMOSPHERE; MINERALOGY; CHEMISTRY; EVOLUTION; ORIGIN; DIFFRACTION;
DIAGENESIS; ROCKNEST; COATINGS; SULFUR
AB The Curiosity rover observed high Mn abundances (>25wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.
C1 [Lanza, Nina L.; Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Arvidson, Raymond E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA.
[Clark, Benton C.] Space Sci Inst, Boulder, CO USA.
[Fischer, Woodward W.; Grotzinger, John P.] CALTECH, Pasadena, CA 91125 USA.
[Gellert, Ralf; Campbell, John L.; VanBommel, Scott] Univ Guelph, Guelph, ON, Canada.
[Hurowitz, Joel A.; McLennan, Scott M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.
[Morris, Richard V.; Ming, Douglas W.] NASA, Johnson Space Ctr, Houston, TX USA.
[Rice, Melissa S.] Western Washington Univ, Dept Geol, Bellingham, WA 98225 USA.
[Bell, James F., III; Hardgrove, Craig] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA.
[Berger, Jeffrey A.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada.
[Blaney, Diana L.; Calef, Fred, III] Jet Prop Lab, Pasadena, CA USA.
[Bridges, Nathan T.; Johnson, Jeffrey R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Cousin, Agnes; Forni, Olivier; Lasue, Jeremie; Maurice, Sylvestre; Schroder, Susanne] Inst Rech Astrophys & Planetol, Toulouse, France.
[Edgett, Kenneth S.; Malin, Michael C.] Malin Space Sci Syst, San Diego, CA USA.
[Fabre, Cecile] Univ Lorraine, GeoRessources Lab, Nancy, France.
[Fisk, Martin R.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA.
[Frydenvang, Jens] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Hardy, Keian R.] US Naval Acad, Aerosp Engn, Annapolis, MD 21402 USA.
[Le Mouelic, Stephane; Mangold, Nicolas] Univ Nantes, CNRS, LPGNantes, UMR 6112, Nantes, France.
[Martin-Torres, Javier; Zorzano, Maria-Paz] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Kiruna, Sweden.
[Martin-Torres, Javier] Inst Andaluz Ciencias Tierra CSIC UGR, Granada, Spain.
[McBride, Marie J.] Purdue Univ, Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA.
[Newsom, Horton E.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA.
[Sautter, Violaine] Museum Hist Nat, IMPMC, Paris, France.
[Thompson, Lucy M.] Univ New Brunswick, Planetary & Space Sci Ctr, Fredericton, NB, Canada.
[Treiman, Allan H.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA.
[Vaniman, David T.] Planetary Sci Inst, Tucson, AZ USA.
[Zorzano, Maria-Paz] Ctr Astrobiol INTA CSIC, Madrid, Spain.
RP Lanza, NL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM nlanza@lanl.gov
RI Frydenvang, Jens/D-4781-2013; Zorzano, Maria-Paz/F-2184-2015;
OI Frydenvang, Jens/0000-0001-9294-1227; Zorzano,
Maria-Paz/0000-0002-4492-9650; Clegg, Sam/0000-0002-0338-0948
FU NASA's Mars Program Office; Centre National d'Etude Spatiale; Canadian
Space Agency
FX We gratefully acknowledge the very helpful comments of M. Osterloo and
N. Tosca. This research was carried out in the U.S. under contract from
NASA's Mars Program Office. Work in France was carried out with funding
from the Centre National d'Etude Spatiale and in Canada by the Canadian
Space Agency. This team acknowledges the Jet Propulsion Laboratory for
developing and leading the Mars Science Laboratory (MSL) Curiosity rover
mission. The data reported in this paper are archived at the Planetary
Data System, accessible at
http://pds-geosciences.wustl.edu/missions/msl/index.htm. Additional data
are available as supporting information.
NR 50
TC 3
Z9 3
U1 17
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7398
EP 7407
DI 10.1002/2016GL069109
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200015
ER
PT J
AU Byrne, PK
Ostrach, LR
Fassett, CI
Chapman, CR
Denevi, BW
Evans, AJ
Klimczak, C
Banks, ME
Head, JW
Solomon, SC
AF Byrne, Paul K.
Ostrach, Lillian R.
Fassett, Caleb I.
Chapman, Clark R.
Denevi, Brett W.
Evans, Alexander J.
Klimczak, Christian
Banks, Maria E.
Head, James W.
Solomon, Sean C.
TI Widespread effusive volcanism on Mercury likely ended by about 3.5Ga
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Mercury; volcanism; crater size-frequency distributions; global
contraction; impact cratering
ID 1ST MESSENGER FLYBY; INNER SOLAR-SYSTEM; SMOOTH PLAINS; GLOBAL
CONTRACTION; CRATER CHRONOLOGY; EVOLUTION; ERUPTIONS; ORIGIN;
STRATIGRAPHY; INTERIOR
AB Crater size-frequency analyses have shown that the largest volcanic plains deposits on Mercury were emplaced around 3.7Ga, as determined with recent model production function chronologies for impact crater formation on that planet. To test the hypothesis that all major smooth plains on Mercury were emplaced by about that time, we determined crater size-frequency distributions for the nine next-largest deposits, which we interpret also as volcanic. Our crater density measurements are consistent with those of the largest areas of smooth plains on the planet. Model ages based on recent crater production rate estimates for Mercury imply that the main phase of plains volcanism on Mercury had ended by similar to 3.5Ga, with only small-scale volcanism enduring beyond that time. Cessation of widespread effusive volcanism is attributable to interior cooling and contraction of the innermost planet.
C1 [Byrne, Paul K.] North Carolina State Univ, Dept Marine Earth & Atmospher Sci, Planetary Res Grp, Raleigh, NC 27695 USA.
[Byrne, Paul K.; Klimczak, Christian; Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DE USA.
[Ostrach, Lillian R.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD USA.
[Fassett, Caleb I.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA.
[Chapman, Clark R.; Evans, Alexander J.] Southwest Res Inst, Dept Space Studies, Boulder, CO USA.
[Denevi, Brett W.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Evans, Alexander J.; Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
[Klimczak, Christian] Univ Georgia, Dept Geol, Athens, GA 30602 USA.
[Banks, Maria E.] Smithsonian Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DE USA.
[Banks, Maria E.] Planetary Sci Inst, Tucson, AZ USA.
[Head, James W.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA.
RP Byrne, PK (reprint author), North Carolina State Univ, Dept Marine Earth & Atmospher Sci, Planetary Res Grp, Raleigh, NC 27695 USA.
EM paul.byrne@ncsu.edu
RI Denevi, Brett/I-6502-2012
OI Denevi, Brett/0000-0001-7837-6663
FU NASA Discovery Program [NASW-00002, NAS5-97271]; North Carolina State
University; NASA [NNX14AR88G]
FX We thank David A. Rothery and an anonymous reviewer for their comments
that helped improve the paper. We also thank Greg Michael for his help
with the application of Poisson timing analysis with Craterstats to this
study. The MESSENGER project is supported by the NASA Discovery Program
under contracts NASW-00002 to the Carnegie Institution of Washington and
NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory.
P.K.B. acknowledges support from North Carolina State University faculty
start-up funds. C.I.F. is supported on this study by NASA grant
NNX14AR88G. All MESSENGER data used in this paper are publicly available
at the NASA Planetary Data System (PDS). This research made use of
NASA's PDS and Astrophysics Data System.
NR 61
TC 5
Z9 5
U1 4
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7408
EP 7416
DI 10.1002/2016GL069412
PG 9
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200016
ER
PT J
AU Huang, MH
Tung, H
Fielding, EJ
Huang, HH
Liang, CR
Huang, C
Hu, JC
AF Huang, Mong-Han
Tung, Hsin
Fielding, Eric J.
Huang, Hsin-Hua
Liang, Cunren
Huang, Chung
Hu, Jyr-Ching
TI Multiple fault slip triggered above the 2016 M-w 6.4 MeiNong earthquake
in Taiwan
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE coseismic deformation; finite source inversion; stress triggering; SW
Taiwan tectonics
ID JOINT INVERSION; WAVEFORM DATA; GEODETIC DATA; DEFORMATION; CALIFORNIA;
RUPTURE; SEISMICITY; THRUST
AB Rapid shortening in convergent mountain belts is often accommodated by slip on faults at multiple levels in upper crust, but no geodetic observation of slip at multiple levels within hours of a moderate earthquake has been shown before. Here we show clear evidence of fault slip within a shallower thrust at 5-10km depth in SW Taiwan triggered by the 2016 M-w 6.4 MeiNong earthquake at 15-20km depth. We constrain the primary coseismic fault slip with kinematic modeling of seismic and geodetic measurements and constrain the triggered slip and fault geometry using synthetic aperture radar interferometry. The shallower thrust coincides with a proposed duplex located in a region of high fluid pressure and high interseismic uplift rate, and may be sensitive to stress perturbations. Our results imply that under tectonic conditions such as high-background stress level and high fluid pressure, a moderate lower crustal earthquake can trigger faults at shallower depth.
C1 [Huang, Mong-Han; Fielding, Eric J.; Liang, Cunren] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.
[Tung, Hsin; Huang, Chung; Hu, Jyr-Ching] Natl Taiwan Univ, Dept Geosci, Taipei, Taiwan.
[Huang, Hsin-Hua] CALTECH, Seismol Lab, Pasadena, CA 91125 USA.
[Huang, Hsin-Hua] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA.
RP Huang, MH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.
EM mong@seismo.berkeley.edu
RI Fielding, Eric/A-1288-2007;
OI Fielding, Eric/0000-0002-6648-8067; Huang, Mong-Han/0000-0003-2331-3766
FU NASA Earth Surface and Interior focus area; NASA
FX We thank D. Dreger for providing the codes for computing data weighting,
smoothing, and inversions. The Central Weather Bureau, Taiwan and C.-H.
Chang provided the aftershock relocations based on Shin et al. [2013].
We thank IRIS/DMC for data services and management. Discussion with M.
Simons, Y.-R. Hsu, J. Suppe, R. Burgmann, C. Johnson, A. Freed, L.-H.
Chung, M. Le Beon, and K.-M. Yang significantly improved this
manuscript. K. Johnson and an anonymous reviewer gave insightful
feedback that improved the original manuscript. Original ALOS-2 data are
copyright by Japanese Aerospace Exploration Agency (JAXA) and were
provided under JAXA ALOS RA-4 projects P1385 (S. Owen) and P1372 (E.
Fielding). The Sentinel-1 interferograms contain Copernicus data. Part
of this research was supported by the NASA Earth Surface and Interior
focus area and performed at the Jet Propulsion Laboratory, California
Institute of Technology. M.-H. Huang is supported by an appointment to
the NASA Postdoctoral Programat the Jet Propulsion Laboratory,
administered by the University of Space and Research Association through
a contract with NASA.
NR 37
TC 2
Z9 2
U1 2
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 28
PY 2016
VL 43
IS 14
BP 7459
EP 7467
DI 10.1002/2016GL069351
PG 9
WC Geosciences, Multidisciplinary
SC Geology
GA DV9VL
UT WOS:000383290200022
ER
PT J
AU Lehnert, H
Stone, RP
AF Lehnert, Helmut
Stone, Robert P.
TI A comprehensive inventory of the Gulf of Alaska sponge fauna with the
description of two new species and geographic range extensions
SO ZOOTAXA
LA English
DT Article
DE new demosponges; Gulf of Alaska; North Pacific Ocean
ID ALEUTIAN ISLANDS; BRITISH-COLUMBIA; ADJACENT WATERS; PORIFERA;
DEMOSPONGIAE; NOV
AB Two new species, Hamacantha (Vomerula) cassanoi n. sp. and Prosuberites salgadoi n. sp., are described from the eastern Gulf of Alaska in the North Pacific Ocean. These are the first records of the genera Hamacantha and Prosuberites from Alaska. We also report two geographic range extensions for the region. Geodia japonica Sollas, 1888 was previously known only from Japan and is now recorded from the Gulf of Alaska. We also document the first record of Rhizaxinella cervicornis Thiele, 1898 from the Gulf of Alaska. Our comprehensive inventory of the sponge fauna of the Gulf of Alaska confirms the presence of 52 taxa with an additional 38 taxa suspected of occurring in the region. This is a much lower number of species than that recorded from neighbouring regions like the Aleutian Islands and British Columbia.
C1 [Lehnert, Helmut] Eichenstr 14, D-86507 Oberottmarshausen, Germany.
[Lehnert, Helmut] GeoBioctr LMU Munchen, Richard Wagner Str 10, D-80333 Munich, Germany.
[Stone, Robert P.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop, Juneau, AK 99801 USA.
RP Lehnert, H (reprint author), Eichenstr 14, D-86507 Oberottmarshausen, Germany.
EM Lehnert@spongetaxonomics.de
FU Alaska Fisheries Science Center
FX We thank Pelagic Research Services and the captain and crew of the RV
Dorado Discovery for their assistance with the research cruise that made
these collections possible. Special thanks to ROV team leader Edward
Cassano for going the extra league. We thank Michele Masuda (Auke Bay
Laboratories) for providing Figure 1 and Bruce Ott (Khoyatan Marine
Laboratory) for providing distributional data for several species in the
Gulf of Alaska. Thanks to the Zoologische Staatssammlung, Munchen, for
providing access to the scanning electron microscope (SEM), especially
to Enrico Schwabe for help operating the SEM. Thanks to Hjalmar Kunz for
advice on Latin. Helmut Lehnert was supported by a contract from the
Alaska Fisheries Science Center. The findings and conclusions in this
paper are those of the authors and do not necessarily represent the
views of the National Marine Fisheries Service, NOAA.
NR 62
TC 0
Z9 0
U1 1
U2 1
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1175-5326
EI 1175-5334
J9 ZOOTAXA
JI Zootaxa
PD JUL 28
PY 2016
VL 4144
IS 3
BP 365
EP 382
DI 10.11646/zootaxa.4144.3.5
PG 18
WC Zoology
SC Zoology
GA DS1LL
UT WOS:000380357000005
PM 27470862
ER
PT J
AU Delp, MD
Charvat, JM
Limoli, CL
Globus, RK
Ghosh, P
AF Delp, Michael D.
Charvat, Jacqueline M.
Limoli, Charles L.
Globus, Ruth K.
Ghosh, Payal
TI Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality:
Possible Deep Space Radiation Effects on the Vascular Endothelium
SO SCIENTIFIC REPORTS
LA English
DT Article
ID IONIZING-RADIATION; CIRCULATORY DISEASE; CANCELLOUS BONE; RISK;
EXPOSURE; HEALTH; MICE; CANCER; VASODILATION; EXPLORATION
AB As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.
C1 [Delp, Michael D.; Ghosh, Payal] Florida State Univ, Dept Nutr Food & Exercise Sci, Tallahassee, FL 32306 USA.
[Charvat, Jacqueline M.] Johnson Space Ctr, Wyle Sci Technol & Engn Grp, Houston, TX 77058 USA.
[Limoli, Charles L.] Univ Calif Irvine, Dept Radiat Oncol, Irvine, CA 92697 USA.
[Globus, Ruth K.] NASA Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA.
RP Delp, MD (reprint author), Florida State Univ, Dept Nutr Food & Exercise Sci, Tallahassee, FL 32306 USA.
EM mdelp@fsu.edu
FU National Space and Biomedical Research Institute under NASA [MA02501,
NCC 9-58]; National Space and Biomedical Research Institute under NASA
Space Biology [NNX14AQ57G, NNX16AC28G]
FX We would like to thank Candice Tahimic, Yasaman Shirazi-Fard, Ann-Sofie
Schreurs, Masahira Terada and Joshua Alwood for their help with the
animal husbandry radiation exposures, Drs David Goukassian, Matthew
Coleman and Leif Peterson for their assistance with the initial
astronaut mortality analysis, and Dr. Judy Muller-Delp for her
dissection of the mouse coronary arteries. This study was supported by
grants from the National Space and Biomedical Research Institute
(MA02501) under the NASA Cooperative Agreement NCC 9-58 and NASA Space
Biology (NNX14AQ57G and NNX16AC28G).
NR 42
TC 3
Z9 3
U1 17
U2 23
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUL 28
PY 2016
VL 6
AR 29901
DI 10.1038/srep29901
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DS2YO
UT WOS:000380650100001
PM 27467019
ER
PT J
AU Funatsu, BM
Claud, C
Keckhut, P
Hauchecorne, A
Leblanc, T
AF Funatsu, Beatriz M.
Claud, Chantal
Keckhut, Philippe
Hauchecorne, Alain
Leblanc, Thierry
TI Regional and seasonal stratospheric temperature trends in the last
decade (2002-2014) from AMSU observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID UPPER TROPOSPHERE; CLIMATE-CHANGE; DATA RECORDS; OZONE; LIDAR; SYSTEM;
SSU
AB Stratospheric temperature trends for the period 2002-2014 have been estimated using NOAA's Integrated Microwave Inter-calibration Approach (IMICA) version of advanced microwave sounding unit (AMSU) on AQUA satellite. In this period the stratosphere continued cooling over most of the globe with a rate ranging from -0.4 0.3 to -0.5 0.4K/decade above 25km. Considering specific latitude bands, trends are highly variable with height. In the tropical region, trends vary from -0.5 0.3K/decade for channel 12 (approximate to 30km) to -0.7 0.3K/decade for higher channels and present small seasonal variability in the intensity of cooling. In the polar regions and in the midlatitudes, trends for all channels are negative but not significant; uncertainties are large due to the high dynamical variability particularly in high latitudes. There is also large seasonal variability, with southern midlatitudes seasonal trends significant during summer (December, January, February) and autumn (March, April, May) above approximate to 25km, with values ranging from -1.0 +/- 0.5 to -0.6 +/- 0.5K/decade. Regional trends estimated with AMSU and long-term lidar measurements (over two decades) confirm stratospheric cooling in the northern midlatitudes and tropical regions. The effect of the length of the short series on trends was found to be small outside polar regions. It was found to be large in polar regions with about 1K changes in trend depending on start dates of the time series.
C1 [Funatsu, Beatriz M.] Univ Rennes 2, CNRS, LETG Rennes COSTEL UMR 6554, Rennes, France.
[Claud, Chantal] Ecole Polytech, CNRS UMR 5839, LMD, IPSL, Palaiseau, France.
[Keckhut, Philippe; Hauchecorne, Alain] Univ Versailles St Quentin, CNRS UMR 8190, LATMOS, IPSL, Guyancourt, France.
[Leblanc, Thierry] CALTECH, Jet Prop Lab, Wrightwood, CA USA.
RP Funatsu, BM (reprint author), Univ Rennes 2, CNRS, LETG Rennes COSTEL UMR 6554, Rennes, France.
EM bmf.amit@gmail.com
RI Hauchecorne, Alain/A-8489-2013;
OI Claud, Chantal/0000-0001-7613-9525; Hauchecorne,
Alain/0000-0001-9888-6994
FU Climserv-IPSL; French National Research Agency (ANR) through the
StraDyVariUS project [ANR-13-BS06-0011]; EU H2020 project ARISE2
(Atmospheric dynamics Research InfraStructure in Europe)
FX The AMSU-A Climate Data Record (CDR) used in this study was acquired
from NOAA's National Climatic Data Center (http://www.ncdc.noaa.gov)
with the support of Climserv-IPSL. This CDR was originally developed by
Cheng-Zhi Zou and colleagues at NOAA through support from NOAA's CDR
Program. The lidar data used in this publication were obtained through
the Network for the Detection of Atmospheric Composition Change (NDACC)
and are publicly available (see http://www.ndacc.org). This work was
supported by the French National Research Agency (ANR) through the
StraDyVariUS project (ANR-13-BS06-0011), by the EU H2020 project ARISE2
(Atmospheric dynamics Research InfraStructure in Europe), and is a
contribution to the WCRP/SPARC Temperature Trends Group. We are grateful
for the critical comments from three anonymous Reviewers that helped
improve the manuscript.
NR 43
TC 0
Z9 0
U1 5
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 27
PY 2016
VL 121
IS 14
BP 8172
EP 8185
DI 10.1002/2015JD024305
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DT6YX
UT WOS:000381632100003
ER
PT J
AU Boeke, RC
Taylor, PC
AF Boeke, Robyn C.
Taylor, Patrick C.
TI Evaluation of the Arctic surface radiation budget in CMIP5 models
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID CLIMATE MODEL; ATMOSPHERE RADIATION; POLAR AMPLIFICATION; PART I; CLOUD;
FEEDBACKS; ALBEDO; CERES; PARAMETERIZATION; UNCERTAINTY
AB The Arctic region is warming at a rate more than double the global average, a trend predicted to continue by all Coupled Model Intercomparison Project 5 (CMIP5) climate models. Despite this consistency, significant intermodel spread exists in the simulated Arctic climate related to differences in the Arctic surface radiation budget. Building upon previous work to characterize and understand surface radiation budget biases in climate models, the annual mean and seasonal cycle of the Arctic surface radiation budget in 17 CMIP5 models using the Historical-forcing scenario is evaluated against state-of-the-art Cloud and Earth's Radiant Energy System Surface Energy Balanced and Filled data. The CMIP5 multimodel ensemble is found to simulate longwave surface fluxes well during the sunlit months (similar to 1Wm(-2) differences in July) but exhibits significant wintertime biases (up to -19Wm(-2)). Shortwave fluxes show substantial across-model spread during summer; the model standard deviation approaches 20Wm(-2) in July. Applying a decomposition analysis to the cloud radiative effect (CRE) seasonal cycles, an unrealistic compensation is uncovered between the model-simulated seasonal cycles of cloud fraction, all-sky/clear-sky flux differences, and surface albedo that enables models to simulate realistic CRE seasonal cycles with unrealistic individual contributions. This unrealistic behavior in models must be constrained to improve Arctic climate simulation; observational uncertainty is sufficient to do so. Lastly, biases in all and clear-sky longwave downwelling fluxes positively correlate with model surface temperature in winter, while in summer surface temperature is most strongly related to clear-sky upwelling radiation biases from surface albedo errors.
C1 [Boeke, Robyn C.] Sci Syst Applicat Inc, Hampton, VA 23666 USA.
[Taylor, Patrick C.] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA.
RP Boeke, RC (reprint author), Sci Syst Applicat Inc, Hampton, VA 23666 USA.
EM robyn.c.boeke@nasa.gov
FU NASA Interdisciplinary Studies Program [NNH12ZDA001N-IDS]; NASA Energy
and Water Cycle Studies program
FX This work is funded by the NASA Interdisciplinary Studies Program grant
NNH12ZDA001N-IDS. The processing of the C3M data used in this analysis
was funded under the NASA Energy and Water Cycle Studies program. The
C3M and CERES data are available from the Langley Atmospheric Science
Data Center (http://eosweb.larc.nasa.gov). We acknowledge the World
Climate Research Programme's Working Group on Coupled Modelling, which
is responsible for CMIP, and we thank the climate modeling groups
(listed in Table 1 of this paper) for producing and making available
their model output. For CMIP the U.S. Department of Energy's Program for
Climate Model Diagnosis and Intercomparison provides coordinating
support and led development of software infrastructure in partnership
with the Global Organization for Earth System Science Portals.
NR 59
TC 0
Z9 0
U1 10
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 27
PY 2016
VL 121
IS 14
BP 8525
EP 8548
DI 10.1002/2016JD025099
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DT6YX
UT WOS:000381632100023
ER
PT J
AU Alfaro-Nunez, A
Bojesen, AM
Bertelsen, MF
Wales, N
Balazs, GH
Gilbert, MTP
AF Alfaro-Nunez, Alonzo
Bojesen, Anders Miki
Bertelsen, Mads F.
Wales, Nathan
Balazs, George H.
Gilbert, M. Thomas P.
TI Further evidence of Chelonid herpesvirus 5 (ChHV5) latency: high levels
of ChHV5 DNA detected in clinically healthy marine turtles
SO PEERJ
LA English
DT Article
DE Chelonid herpesvirus 5 (ChHV5); Fibropapillomatosis (FP); Glycoprotein
B; Clinically healthy; Quantitative PCR; Viral loads; Ubiquitous;
Asymptomatic
ID FIBROPAPILLOMA-ASSOCIATED HERPESVIRUS; SIMPLEX-VIRUS; GREEN TURTLES;
SEA-TURTLES; MYDAS; ESTABLISHMENT; PROTEINS; EXPOSURE; ASSAY
AB The Chelonid herpesvirus 5 (ChHV5) has been consistently associated with fibropapillomatosis (FP), a transmissible neoplastic disease of marine turtles. Whether ChHV5 plays a causal role remains debated, partly because while FP tumours have been clearly documented to contain high concentrations of ChHV5 DNA, recent PCR-based studies have demonstrated that large proportions of asymptomatic marine turtles are also carriers of ChHV5. We used a real-time PCR assay to quantify the levels of ChHV5 Glycoprotein B (gB) DNA in both tumour and non-tumour skin tissues, from clinically affected and healthy turtles drawn from distant ocean basins across four species. In agreement with previous studies, higher ratios of viral to host DNA were consistently observed in tumour versus non-tumour tissues in turtles with FP. Unexpectedly however, the levels of ChHV5 gB DNA in clinically healthy turtles were significantly higher than in non-tumour tissues from FP positive turtles. Thus, a large proportion of clinically healthy sea turtle populations worldwide across species carry ChHV5 gB DNA presumably through persistent latent infections. ChHV5 appears to be ubiquitous regardless of the animals' clinical conditions. Hence, these results support the theory that ChHV5 is a near ubiquitous virus with latency characteristics requiring co-factors, possibly environmental or immune related, to induce FP.
C1 [Alfaro-Nunez, Alonzo; Wales, Nathan; Gilbert, M. Thomas P.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr GeoGenet, Sect Evolutionary Genom, Copenhagen K, Denmark.
[Alfaro-Nunez, Alonzo] Escuela Super Politecn Litoral, Biomed Labs, Fac Ciencias Vida, Guayaquil, Ecuador.
[Bojesen, Anders Miki] Univ Copenhagen, Fac Hlth & Med Sci, Dept Vet Dis Biol, Vet Clin Microbiol, Copenhagen, Denmark.
[Bertelsen, Mads F.] Copenhagen Zoo, Ctr Zoo & Wild Anim Hlth, Copenhagen, Denmark.
[Balazs, George H.] Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI USA.
[Gilbert, M. Thomas P.] Curtin Univ Technol, Sch Environm & Agr, Trace & Environm DNA Lab, Perth, WA, Australia.
RP Alfaro-Nunez, A (reprint author), Univ Copenhagen, Nat Hist Museum Denmark, Ctr GeoGenet, Sect Evolutionary Genom, Copenhagen K, Denmark.; Alfaro-Nunez, A (reprint author), Escuela Super Politecn Litoral, Biomed Labs, Fac Ciencias Vida, Guayaquil, Ecuador.
EM alonzoalfaro@gmail.com
OI Bertelsen, Mads/0000-0001-9201-7499; Wales, Nathan/0000-0003-0359-8450
FU Lundbeck Foundation Grant [R52-A5062]
FX This project study was funded by the Lundbeck Foundation Grant
R52-A5062. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 32
TC 1
Z9 1
U1 9
U2 10
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
SN 2167-8359
J9 PEERJ
JI PeerJ
PD JUL 27
PY 2016
VL 4
AR e2274
DI 10.7717/peerj.2274
PG 16
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DS4HU
UT WOS:000380742900006
PM 27547576
ER
PT J
AU Richardson, DE
Marancik, KE
Guyon, JR
Lutcavage, ME
Galuardi, B
Lam, CH
Walsh, HJ
Wildes, S
Yates, DA
Hare, JA
AF Richardson, David E.
Marancik, Katrin E.
Guyon, Jeffrey R.
Lutcavage, Molly E.
Galuardi, Benjamin
Lam, Chi Hin
Walsh, Harvey J.
Wildes, Sharon
Yates, Douglas A.
Hare, Jonathan A.
TI REPLY TO SAFINA AND WALTER ET AL.: Multiple lines of evidence for
size-structured spawning migrations in western Atlantic bluefin tuna
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
ID THUNNUS-THYNNUS; GULF
C1 [Richardson, David E.; Marancik, Katrin E.; Walsh, Harvey J.; Hare, Jonathan A.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Ecosyst Proc Div, Narragansett, RI 02882 USA.
[Marancik, Katrin E.] Northeast Fisheries Sci Ctr, Integrated Stat, Narragansett, RI 02882 USA.
[Guyon, Jeffrey R.; Wildes, Sharon; Yates, Douglas A.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Genet Program, Juneau, AK 99801 USA.
[Lutcavage, Molly E.; Lam, Chi Hin] Univ Massachusetts Boston, Sch Environm, Large Pelag Res Ctr, Gloucester, MA 01931 USA.
[Galuardi, Benjamin] Univ Massachusetts Dartmouth, Sch Marine Sci & Technol, Fairhaven, MA 02719 USA.
[Galuardi, Benjamin] NOAA, Natl Marine Fisheries Serv, Greater Atlantic Reg Fisheries Off, Gloucester, MA 01930 USA.
RP Richardson, DE (reprint author), NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Ecosyst Proc Div, Narragansett, RI 02882 USA.
EM david.richardson@noaa.gov
NR 14
TC 0
Z9 0
U1 7
U2 7
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 26
PY 2016
VL 113
IS 30
BP E4262
EP E4263
DI 10.1073/pnas.1607666113
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DS1HJ
UT WOS:000380346200003
PM 27436889
ER
PT J
AU Kara, E
Miller, JM
Reynolds, C
Dai, LX
AF Kara, Erin
Miller, Jon M.
Reynolds, Chris
Dai, Lixin
TI Relativistic reverberation in the accretion flow of a tidal disruption
event
SO NATURE
LA English
DT Article
ID ACTIVE GALACTIC NUCLEI; X-RAY REVERBERATION; MASSIVE BLACK-HOLE;
BROAD-LINE REGION; RADIUS-LUMINOSITY RELATIONSHIP; K-ALPHA
REVERBERATION; NARROW-LINE; XMM-NEWTON; IRON K; TIME LAGS
AB Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating(1); however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe(2). Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole(3), can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet(4-8), but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation(9-12) arising from gravitationally redshifted iron Ka photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more(13). The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought(5,14).
C1 [Kara, Erin; Reynolds, Chris] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Kara, Erin] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Kara, Erin; Reynolds, Chris; Dai, Lixin] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48103 USA.
[Dai, Lixin] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
RP Kara, E (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Kara, E (reprint author), NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Kara, E (reprint author), Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
EM ekara@astro.umd.edu
FU Hubble Fellowship Program from Space Telescope Science Institute
[HST-HF2-51360.001-A]; NASA [NAS5-26555, NNX14AF86G]; NASA/NSF/TCAN
[NNX14AB46G]; NSF/XSEDE/TACC [TG-PHY120005]; NASA/Pleiades
[SMD-14-5451]; ESA member states; US (NASA); Suzaku satellite
FX E.K. thanks A. Zoghbi, M. C. Miller, F. Tombesi, E. Miller and L. Denby
for discussions. E. K. also thanks the Hubble Fellowship Program for
support under grant number HST-HF2-51360.001-A from the Space Telescope
Science Institute, which is operated by the Association of Universities
for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.
J.M.M. acknowledges N. Schartel and XMM-Newton for executing
target-of-opportunity observations of Swift J1644+57. C.R. acknowledges
support from NASA under grant number NNX14AF86G. L.D. thanks J. McKinney
for discussions. L.D. acknowledges support from NASA/NSF/TCAN
(NNX14AB46G), NSF/XSEDE/TACC (TG-PHY120005) and NASA/Pleiades
(SMD-14-5451). This work is based on observations made with XMM-Newton,
a European Space Agency (ESA) science mission with instruments and
contributions directly funded by ESA member states and the US (NASA) and
the Suzaku satellite, a collaborative mission between the space agencies
of Japan (JAXA) and the US (NASA).
NR 61
TC 3
Z9 3
U1 3
U2 4
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD JUL 21
PY 2016
VL 535
IS 7612
BP 388
EP +
DI 10.1038/nature18007
PG 16
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DS1GQ
UT WOS:000380344200033
PM 27338795
ER
PT J
AU Wright, AH
Robotham, ASG
Bourne, N
Driver, SP
Dunne, L
Maddox, SJ
Alpaslan, M
Andrews, SK
Bauer, AE
Bland-Hawthorn, J
Brough, S
Brown, MJI
Clarke, C
Cluver, M
Davies, LJM
Grootes, MW
Holwerda, BW
Hopkins, AM
Jarrett, TH
Kafle, PR
Lange, R
Liske, J
Loveday, J
Moffett, AJ
Norberg, P
Popescu, CC
Smith, M
Taylor, EN
Tuffs, RJ
Wang, L
Wilkins, SM
AF Wright, A. H.
Robotham, A. S. G.
Bourne, N.
Driver, S. P.
Dunne, L.
Maddox, S. J.
Alpaslan, M.
Andrews, S. K.
Bauer, A. E.
Bland-Hawthorn, J.
Brough, S.
Brown, M. J. I.
Clarke, C.
Cluver, M.
Davies, L. J. M.
Grootes, M. W.
Holwerda, B. W.
Hopkins, A. M.
Jarrett, T. H.
Kafle, P. R.
Lange, R.
Liske, J.
Loveday, J.
Moffett, A. J.
Norberg, P.
Popescu, C. C.
Smith, M.
Taylor, E. N.
Tuffs, R. J.
Wang, L.
Wilkins, S. M.
TI Galaxy And Mass Assembly: accurate panchromatic photometry from optical
priors using lambdar
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: photometric; astronomical data bases: miscellaneous;
galaxies: evolution; galaxies: general; galaxies: photometry
ID DIGITAL SKY SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; EXTRAGALACTIC LEGACY
SURVEY; DATA RELEASE; PRECISION PHOTOMETRY; MATCHED PHOTOMETRY; HERSCHEL
ATLAS; STAR-FORMATION; DATA PRODUCTS; DATA SETS
AB We present the Lambda Adaptive Multi-Band Deblending Algorithm in R (lambdar), a novel code for calculating matched aperture photometry across images that are neither pixel- nor PSF-matched, using prior aperture definitions derived from high-resolution optical imaging. The development of this program is motivated by the desire for consistent photometry and uncertainties across large ranges of photometric imaging, for use in calculating spectral energy distributions. We describe the program, specifically key features required for robust determination of panchromatic photometry: propagation of apertures to images with arbitrary resolution, local background estimation, aperture normalization, uncertainty determination and propagation, and object deblending. Using simulated images, we demonstrate that the program is able to recover accurate photometric measurements in both high-resolution, low-confusion, and low-resolution, high-confusion, regimes. We apply the program to the 21-band photometric data set from the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR; Driver et al. 2016), which contains imaging spanning the far-UV to the far-IR. We compare photometry derived from lambdar with that presented in Driver et al. (2016), finding broad agreement between the data sets. None the less, we demonstrate that the photometry from lambdar is superior to that from the GAMA PDR, as determined by a reduction in the outlier rate and intrinsic scatter of colours in the lambdar data set. We similarly find a decrease in the outlier rate of stellar masses and star formation rates using lambdar photometry. Finally, we note an exceptional increase in the number of UV and mid-IR sources able to be constrained, which is accompanied by a significant increase in the mid-IR colour-colour parameter-space able to be explored.
C1 [Wright, A. H.; Robotham, A. S. G.; Driver, S. P.; Andrews, S. K.; Kafle, P. R.; Lange, R.; Moffett, A. J.] Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia.
[Bourne, N.; Dunne, L.; Maddox, S. J.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Driver, S. P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
[Dunne, L.; Maddox, S. J.; Smith, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Alpaslan, M.] NASA, Ames Res Ctr, N232, Mountain View, CA 94035 USA.
[Bauer, A. E.; Brough, S.; Hopkins, A. M.] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia.
[Bland-Hawthorn, J.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia.
[Brown, M. J. I.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia.
[Clarke, C.; Loveday, J.; Wilkins, S. M.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Cluver, M.] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Bellville, South Africa.
[Grootes, M. W.] ESA, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Holwerda, B. W.] Leiden Univ, Sterrenwacht Leiden, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands.
[Jarrett, T. H.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa.
[Liske, J.] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany.
[Norberg, P.] Univ Durham, Dept Phys, ICC, South Rd, Durham DH1 3LE, England.
[Norberg, P.] Univ Durham, Dept Phys, CEA, South Rd, Durham DH1 3LE, England.
[Popescu, C. C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England.
[Popescu, C. C.] Romanian Acad, Astron Inst, Str Cutitul Argint 5, Bucharest, Romania.
[Taylor, E. N.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Tuffs, R. J.] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany.
[Wang, L.] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands.
RP Wright, AH (reprint author), Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia.
EM angus.wright@icrar.org
RI Brown, Michael/B-1181-2015
OI Brown, Michael/0000-0002-1207-9137
FU Australian Government's Department of Industry Australian Postgraduate
Award (APA); Australian Research Council [FT140101166]; ERC in the form
of the Advanced Investigator Program; COS-MICISM; ERC Consolidator Grant
CosmicDust; European Union [312725]; STFC (UK); ARC (Australia); AAO
FX We thank the anonymous referee for a thorough reading of the paper and
for their many constructive comments. AHW and SKA are supported by the
Australian Government's Department of Industry Australian Postgraduate
Award (APA). SB acknowledges funding support from the Australian
Research Council through a Future Fellowship (FT140101166). LD and SJM
acknowledge support from the ERC in the form of the Advanced
Investigator Program, COS-MICISM, and the ERC Consolidator Grant
CosmicDust. NB acknowledges funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 312725.
GAMA is a joint European-Australasian project based around a
spectroscopic campaign using the AAT. The GAMA IC is based on data taken
from the SDSS and the UKIRT Infrared Deep Sky Survey. Complementary
imaging of the GAMA regions is being obtained by a number of independent
survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE,
Herschel-ATLAS, GMRT, and ASKAP providing UV to radio coverage. GAMA is
funded by the STFC (UK), the ARC (Australia), the AAO, and the
participating institutions. The GAMA website is
http://www.gama-survey.org/. The Herschel-ATLAS is a project with
Herschel, which is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with
important participation from NASA. The H-ATLAS website is
http://www.h-atlas.org/. We thank the Herschel Multitiered Extragalactic
Survey (HERMES) collaboration for providing the mock FIR imaging used in
Section 5. Figures in this paper have been prepared using the R package
MAGICAXIS.2 This research has made use of NASA's Astrophysics
Data System.
NR 72
TC 9
Z9 9
U1 2
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 21
PY 2016
VL 460
IS 1
BP 765
EP 801
DI 10.1093/mnras/stw832
PG 37
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3XE
UT WOS:000379835200053
ER
PT J
AU Champion, DJ
Petroff, E
Kramer, M
Keith, MJ
Bailes, M
Barr, ED
Bates, SD
Bhat, NDR
Burgay, M
Burke-Spolaor, S
Flynn, CML
Jameson, A
Johnston, S
Ng, C
Levin, L
Possenti, A
Stappers, BW
van Straten, W
Thornton, D
Tiburzi, C
Lyne, AG
AF Champion, D. J.
Petroff, E.
Kramer, M.
Keith, M. J.
Bailes, M.
Barr, E. D.
Bates, S. D.
Bhat, N. D. R.
Burgay, M.
Burke-Spolaor, S.
Flynn, C. M. L.
Jameson, A.
Johnston, S.
Ng, C.
Levin, L.
Possenti, A.
Stappers, B. W.
van Straten, W.
Thornton, D.
Tiburzi, C.
Lyne, A. G.
TI Five new fast radio bursts from the HTRU high-latitude survey at Parkes:
first evidence for two-component bursts
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE scattering; surveys; pulsars: general; intergalactic medium
ID UNIVERSE PULSAR SURVEY; GAMMA-RAY BURSTS; NEUTRON-STARS; GIANT PULSES;
COSMOLOGICAL DISTANCES; REIONIZATION HISTORY; INITIAL DISCOVERIES;
GALACTIC LATITUDES; CRAB PULSAR; TRANSIENTS
AB The detection of five new fast radio bursts (FRBs) found in the 1.4-GHz High Time Resolution Universe high-latitude survey at Parkes, is presented. The rate implied is 7(-3)(+5) x 10(3) (95 per cent) FRBs sky(-1) d(-1) above a fluence of 0.13 Jy ms for an FRB of 0.128 ms duration to 1.5 Jy ms for 16 ms duration. One of these FRBs has a two-component profile, in which each component is similar to the known population of single component FRBs and the two components are separated by 2.4 +/- 0.4 ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intrachannel smearing. The two-component burst, FRB 121002, also has the highest dispersion measure (1629 pc cm(-3)) of any FRB to-date. Many of the proposed models to explain FRBs use a single high-energy event involving compact objects (such as neutron-star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing, or orbital events, however, could produce multiple component profiles. The compatibility of these models and the FRB rate implied by these detections is discussed.
C1 [Champion, D. J.; Kramer, M.; Ng, C.; Tiburzi, C.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
[Petroff, E.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Flynn, C. M. L.; Jameson, A.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Mail H30,POB 218, Hawthorn, Vic 3122, Australia.
[Petroff, E.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Flynn, C. M. L.; Jameson, A.; van Straten, W.] Swinburne Univ Technol, ARC Ctr Excellence All Sky Astron CAASTRO, Mail H30,POB 218, Hawthorn, Vic 3122, Australia.
[Petroff, E.; Johnston, S.; Thornton, D.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, POB 76, Epping, NSW 1710, Australia.
[Kramer, M.; Keith, M. J.; Bates, S. D.; Levin, L.; Stappers, B. W.; Thornton, D.; Lyne, A. G.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Bates, S. D.] Natl Radio Astron Observ, POB 2, Green Bank, WV 24944 USA.
[Bhat, N. D. R.] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia.
[Burgay, M.; Possenti, A.] INAF Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, Italy.
[Burke-Spolaor, S.] NASA, Jet Prop Lab, M-S 138-307, Pasadena, CA 91106 USA.
[Tiburzi, C.] Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany.
RP Champion, DJ (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
EM champion@mpifr-bonn.mpg.de
FU Commonwealth of Australia; Australian Research Council Centre of
Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; Swinburne;
Australian Government's Education Investment Fund
FX The Parkes radio telescope is part of the Australia Telescope which is
funded by the Commonwealth of Australia for operation as a National
Facility managed by CSIRO. Parts of this research were conducted by the
Australian Research Council Centre of Excellence for All-sky
Astrophysics (CAASTRO), through project number CE110001020. This work
used the gSTAR national facility which is funded by Swinburne and the
Australian Government's Education Investment Fund.
NR 42
TC 24
Z9 24
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 21
PY 2016
VL 460
IS 1
BP L30
EP L34
DI 10.1093/mnrasl/slw069
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3VZ
UT WOS:000379832000007
ER
PT J
AU Cusumano, G
La Parola, V
D' Ai, A
Segreto, A
Tagliaferri, G
Barthelmy, SD
Gehrels, N
AF Cusumano, G.
La Parola, V.
D' Ai, A.
Segreto, A.
Tagliaferri, G.
Barthelmy, S. D.
Gehrels, N.
TI An unexpected drop in the magnetic field of the X-ray pulsar V0332+53
after the bright outburst occurred in 2015
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE magnetic fields; pulsars: individual: V0332+53; X-rays: binaries
ID ACCRETING NEUTRON-STARS; TRANSIENT V0332+53; CYCLOTRON LINES; DISCOVERY;
EVOLUTION; MASS; LUMINOSITY; TELESCOPE; X0331+53; FEATURES
AB How the accreted mass settling on the surface of a neutron star affects the topology of the magnetic field and how the secular evolution of the binary system depends on the magnetic field change is still an open issue. We report evidence for a clear drop in the observed magnetic field in the accreting pulsar V0332+53 after undergoing a bright 3-month long X-ray outburst. We determine the field from the position of the fundamental cyclotron line in its X-ray spectrum and relate it to the luminosity. For equal levels of luminosity, in the declining phase we measure a systematically lower value of the cyclotron line energy with respect to the rising phase. This results in a drop of similar to 1.7 x 10(11) G of the observed field between the onset and the end of the outburst. The settling of the accreted plasma on to the polar cap seems to induce a distortion of the magnetic field lines weakening their intensity along the accretion columns. Therefore, the dissipation rate of the magnetic field could be much faster than previously estimated, unless the field is able to restore its original configuration on a time-scale comparable with the outbursts recurrence time.
C1 [Cusumano, G.; La Parola, V.; D' Ai, A.; Segreto, A.] INAF Ist Astrofis Spaziale & Fis Cosm, Via U La Malfa 153, I-90146 Palermo, Italy.
[Tagliaferri, G.] INAF Brera Astron Observ, Via Bianchi 46, Merate, LC, Italy.
[Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Cusumano, G (reprint author), INAF Ist Astrofis Spaziale & Fis Cosm, Via U La Malfa 153, I-90146 Palermo, Italy.
EM cusumano@ifc.inaf.it
FU ASI [I/004/11/1]
FX This work has been supported by ASI grant I/004/11/1.
NR 27
TC 3
Z9 3
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 21
PY 2016
VL 460
IS 1
BP L99
EP L103
DI 10.1093/mnrasl/slw084
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3VZ
UT WOS:000379832000021
ER
PT J
AU Evans, PA
Kennea, JA
Barthelmy, SD
Beardmore, AP
Burrows, DN
Campana, S
Cenko, SB
Gehrels, N
Giommi, P
Gronwall, C
Marshall, FE
Malesani, D
Markwardt, CB
Mingo, B
Nousek, JA
O'Brien, PT
Osborne, JP
Pagani, C
Page, KL
Palmer, DM
Perri, M
Racusin, JL
Siegel, MH
Sbarufatti, B
Tagliaferri, G
AF Evans, P. A.
Kennea, J. A.
Barthelmy, S. D.
Beardmore, A. P.
Burrows, D. N.
Campana, S.
Cenko, S. B.
Gehrels, N.
Giommi, P.
Gronwall, C.
Marshall, F. E.
Malesani, D.
Markwardt, C. B.
Mingo, B.
Nousek, J. A.
O'Brien, P. T.
Osborne, J. P.
Pagani, C.
Page, K. L.
Palmer, D. M.
Perri, M.
Racusin, J. L.
Siegel, M. H.
Sbarufatti, B.
Tagliaferri, G.
TI Swift follow-up of the gravitational wave source GW150914
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE gravitational waves; methods: data analysis; X-rays: general
ID ALL-SKY SURVEY; X-RAY-TELESCOPE; SOURCE CATALOG; COUNTERPART; SEARCHES;
MISSION
AB The Advanced Laser Interferometer Gravitational-Wave Observatory (ALIGO) observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, optical, UV or hard X-ray sources were detected in our observations, which were focused on nearby galaxies in the GW error region and covered 4.7 deg(2) similar to 2 per cent of the probability in the rapidly available GW error region; 0.3 per cent of the probability from the final GW error region, which was produced several months after the trigger). We describe the rapid Swift response and automated analysis of the X-ray telescope and UV/Optical telescope data, and note the importance to electromagnetic follow-up of early notification of the progenitor details inferred from GW analysis.
C1 [Evans, P. A.; Beardmore, A. P.; Mingo, B.; O'Brien, P. T.; Osborne, J. P.; Pagani, C.; Page, K. L.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Kennea, J. A.; Burrows, D. N.; Gronwall, C.; Nousek, J. A.; Siegel, M. H.; Sbarufatti, B.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
[Barthelmy, S. D.; Cenko, S. B.; Gehrels, N.; Marshall, F. E.; Markwardt, C. B.; Racusin, J. L.] NASA, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA.
[Campana, S.; Sbarufatti, B.; Tagliaferri, G.] Osserv Astron Brera, INAF, Via E Bianchi 46, I-23807 Merate, Italy.
[Cenko, S. B.] Univ Maryland, Joint Space Sci Institude, College Pk, MD 20742 USA.
[Giommi, P.; Perri, M.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy.
[Gronwall, C.] Penn State Univ, Inst Gravitat & Cosmos, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Malesani, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark.
[Markwardt, C. B.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Palmer, D. M.] Los Alamos Natl Lab, B244, Los Alamos, NM 87545 USA.
[Perri, M.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
EM pae9@leicester.ac.uk
OI Sbarufatti, Boris/0000-0001-6620-8347
FU UK Space Agency; Italian Space Agency; National Aeronautics and Space
Administration; National Science Foundation; SIMBAD data base
FX This work made use of data supplied by the UK Swift Science Data Centre
at the University of Leicester, and used the ALICE High Performance
Computing Facility at the University of Leicester. This research has
made use of the XRT Data Analysis Software (XRT-DAS) developed under the
responsibility of the ASI Science Data Center (ASDC), Italy. PAE, APB,
BM, KLP and JPO acknowledge UK Space Agency support. SC and GT
acknowledge Italian Space Agency support. This publication makes use of
data products from the Two Micron All Sky Survey, which is a joint
project of the University of Massachusetts and the Infrared Processing
and Analysis Center/California Institute of Technology, funded by the
National Aeronautics and Space Administration and the National Science
Foundation, and the SIMBAD data base, operated at CDS, Strasbourg,
France. Fig. 1 was created using the KAPETYN package (Terlouw & Vogelaar
2015). We thank the anonymous referee for their helpful feedback on the
original version of the Letter.
NR 34
TC 11
Z9 11
U1 1
U2 6
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 21
PY 2016
VL 460
IS 1
BP L40
EP L44
DI 10.1093/mnrasl/slw065
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3VZ
UT WOS:000379832000009
ER
PT J
AU Kumarasinghe, CS
Premaratne, M
Gunapala, SD
Agrawal, GP
AF Kumarasinghe, Chathurangi S.
Premaratne, Malin
Gunapala, Sarath D.
Agrawal, Govind P.
TI Theoretical analysis of hot electron injection from metallic nanotubes
into a semiconductor interface
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID SURFACE-PLASMONS; NANOPARTICLES; AU; PHOTOEMISSION; DYNAMICS; NANORODS;
CARRIERS; DEVICE; LIGHT
AB Metallic nanostructures under optical illumination can generate a non-equilibrium high-energy electron gas (also known as hot electrons) capable of being injected into neighbouring media over a potential barrier at particle boundaries. The nature of this process is highly nanoparticle shape and size dependent. Here, we have derived an analytical expression for the frequency dependent rate of injection of these energetic electrons from a metallic nanotube into a semiconductor layer in contact with its inner boundary. In our derivation, we have considered the quantum mechanical motion of the electron gas confined by the particle boundaries in determining the electron energy spectrum and wave functions. We present a comprehensive theoretical analysis of how different geometric parameters such as the outer to inner radius ratio, length and thickness of a nanotube and illumination frequency affect the hot electron injection and internal quantum efficiency of the nanotube. We reveal that longer nanotubes with thin shells and high inner to outer radius ratios show better performance at visible and infrared frequencies. Our derivations and results provide the much needed theoretical insight for optimization of thin nanotubes for different hot electron based applications.
C1 [Kumarasinghe, Chathurangi S.; Premaratne, Malin] Monash Univ, Adv Comp & Simulat Lab A L, Dept Elect & Comp Syst Engn, Clayton, Vic 3800, Australia.
[Gunapala, Sarath D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Agrawal, Govind P.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA.
RP Kumarasinghe, CS; Premaratne, M (reprint author), Monash Univ, Adv Comp & Simulat Lab A L, Dept Elect & Comp Syst Engn, Clayton, Vic 3800, Australia.
EM chathurangi.kumarasinghe@monash.edu; malin.premaratne@monash.edu
FU Monash University Institute of Graduate Research; Australian Research
Council [DP140100883]
FX The work of C. S. K. is supported by the Monash University Institute of
Graduate Research. The work of M. P., S. D. G. and G. P. A. is supported
by the Australian Research Council, through its Discovery Grant
DP140100883.
NR 47
TC 1
Z9 1
U1 3
U2 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
EI 1463-9084
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PD JUL 21
PY 2016
VL 18
IS 27
BP 18227
EP 18236
DI 10.1039/c6cp03043b
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DQ8UH
UT WOS:000379486200051
PM 27332556
ER
PT J
AU Ackermann, M
Ajello, M
Baldini, L
Ballet, J
Barbiellini, G
Bastieri, D
Bellazzini, R
Bissaldi, E
Blandford, RD
Bloom, ED
Bonino, R
Brandt, TJ
Bregeon, J
Bruel, P
Buehler, R
Buson, S
Caliandro, GA
Cameron, RA
Caragiulo, M
Caraveo, PA
Cavazzuti, E
Cecchi, C
Charles, E
Chekhtman, A
Cheung, CC
Chiaro, G
Ciprini, S
Cohen, JM
Cohen-Tanugi, J
Costanza, F
Cutini, S
D'Ammando, F
Davis, DS
de Angelis, A
de Palma, F
Desiante, R
Digel, SW
Di Lalla, N
Di Mauro, M
Di Venere, L
Favuzzi, C
Fegan, SJ
Ferrara, EC
Focke, WB
Fukazawa, Y
Funk, S
Fusco, P
Gargano, F
Gasparrini, D
Georganopoulos, M
Giglietto, N
Giordano, F
Giroletti, M
Godfrey, G
Green, D
Grenier, IA
Guiriec, S
Hays, E
Hewitt, JW
Hill, AB
Jogler, T
Johnnesson, G
Kensei, S
Kuss, M
Larsson, S
Latronico, L
Li, J
Li, L
Longo, F
Loparco, F
Lubrano, P
Magill, JD
Maldera, S
Manfreda, A
Mayer, M
Mazziotta, MN
McConville, W
McEnery, JE
Michelson, PF
Mitthumsiri, W
Mizuno, T
Monzani, ME
Morselli, A
Moskalenko, IV
Murgia, S
Negro, M
Nuss, E
Ohno, M
Ohsugi, T
Orienti, M
Orlando, E
Ormes, JF
Paneque, D
Perkins, JS
Pesce-Rollins, M
Piron, F
Pivato, G
Porter, TA
Raino S
Rando, R
Razzano, M
Reimer, A
Reimer, O
Schmid, J
Sgro, C
Simone, D
Siskind, EJ
Spada, F
Spandre, G
Spinelli, P
Stawarz, L
Takahashi, H
Thayer, JB
Thompson, DJ
Torres, DF
Tosti, G
Troja, E
Vianello, G
Wood, KS
Wood, M
Zimmer, S
AF Ackermann, M.
Ajello, M.
Baldini, L.
Ballet, J.
Barbiellini, G.
Bastieri, D.
Bellazzini, R.
Bissaldi, E.
Blandford, R. D.
Bloom, E. D.
Bonino, R.
Brandt, T. J.
Bregeon, J.
Bruel, P.
Buehler, R.
Buson, S.
Caliandro, G. A.
Cameron, R. A.
Caragiulo, M.
Caraveo, P. A.
Cavazzuti, E.
Cecchi, C.
Charles, E.
Chekhtman, A.
Cheung, C. C.
Chiaro, G.
Ciprini, S.
Cohen, J. M.
Cohen-Tanugi, J.
Costanza, F.
Cutini, S.
D'Ammando, F.
Davis, D. S.
de Angelis, A.
de Palma, F.
Desiante, R.
Digel, S. W.
Di Lalla, N.
Di Mauro, M.
Di Venere, L.
Favuzzi, C.
Fegan, S. J.
Ferrara, E. C.
Focke, W. B.
Fukazawa, Y.
Funk, S.
Fusco, P.
Gargano, F.
Gasparrini, D.
Georganopoulos, M.
Giglietto, N.
Giordano, F.
Giroletti, M.
Godfrey, G.
Green, D.
Grenier, I. A.
Guiriec, S.
Hays, E.
Hewitt, J. W.
Hill, A. B.
Jogler, T.
Johnnesson, G.
Kensei, S.
Kuss, M.
Larsson, S.
Latronico, L.
Li, J.
Li, L.
Longo, F.
Loparco, F.
Lubrano, P.
Magill, J. D.
Maldera, S.
Manfreda, A.
Mayer, M.
Mazziotta, M. N.
McConville, W.
McEnery, J. E.
Michelson, P. F.
Mitthumsiri, W.
Mizuno, T.
Monzani, M. E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Negro, M.
Nuss, E.
Ohno, M.
Ohsugi, T.
Orienti, M.
Orlando, E.
Ormes, J. F.
Paneque, D.
Perkins, J. S.
Pesce-Rollins, M.
Piron, F.
Pivato, G.
Porter, T. A.
Raino, S.
Rando, R.
Razzano, M.
Reimer, A.
Reimer, O.
Schmid, J.
Sgro, C.
Simone, D.
Siskind, E. J.
Spada, F.
Spandre, G.
Spinelli, P.
Stawarz, L.
Takahashi, H.
Thayer, J. B.
Thompson, D. J.
Torres, D. F.
Tosti, G.
Troja, E.
Vianello, G.
Wood, K. S.
Wood, M.
Zimmer, S.
TI FERMI LARGE AREA TELESCOPE DETECTION OF EXTENDED GAMMA-RAY EMISSION FROM
THE RADIO GALAXY FORNAX A
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: individual (Fornax A); galaxies: jets; gamma
rays: galaxies; radiation mechanisms: non-thermal
ID EXTRAGALACTIC BACKGROUND LIGHT; ACTIVE GALACTIC NUCLEI; COMPTON X-RAYS;
SOURCE CATALOG; EAST LOBE; SCALE; STRENGTHS; OUTBURST; NGC-1316; CLUSTER
AB We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax. A using 6.1 years of Pass. 8 data. After Centaurus. A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total gamma-ray flux. A preferred alignment of the gamma-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on similar to 0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the gamma-rays. With the extended nature of the > 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus. A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about similar to 2-3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.
C1 [Ackermann, M.; Buehler, R.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
[Ajello, M.] Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA.
[Baldini, L.] Univ Pisa, I-56127 Pisa, Italy.
[Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Baldini, L.; Blandford, R. D.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Digel, S. W.; Di Mauro, M.; Focke, W. B.; Godfrey, G.; Hill, A. B.; Jogler, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Baldini, L.; Blandford, R. D.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Digel, S. W.; Di Mauro, M.; Focke, W. B.; Godfrey, G.; Hill, A. B.; Jogler, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Ballet, J.; Grenier, I. A.; Schmid, J.] Univ Paris Diderot, CNRS, CEA IRFU, Lab AIM,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France.
[Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Bellazzini, R.; Di Lalla, N.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Bissaldi, E.; Caragiulo, M.; Costanza, F.; de Palma, F.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Simone, D.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.; Negro, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bonino, R.; Negro, M.] Univ Torino, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy.
[Brandt, T. J.; Buson, S.; Cohen, J. M.; Davis, D. S.; Ferrara, E. C.; Green, D.; Guiriec, S.; Hays, E.; McConville, W.; McEnery, J. E.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, Lab Univers & Particules Montpellier, CNRS IN2P3, F-34095 Montpellier, France.
[Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Buson, S.; Georganopoulos, M.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Buson, S.; Georganopoulos, M.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Buson, S.] CRESST, Greenbelt, MD 20771 USA.
[Caliandro, G. A.] CIFS, I-10133 Turin, Italy.
[Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy.
[Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy.
[Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Cecchi, C.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA.
[Cheung, C. C.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Cheung, C. C.; Wood, K. S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Cohen, J. M.; Green, D.; Magill, J. D.; McConville, W.; McEnery, J. E.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy.
[de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy.
[de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy.
[Desiante, R.] Univ Udine, I-33100 Udine, Italy.
[Fukazawa, Y.; Kensei, S.; Ohno, M.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan.
[Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Hewitt, J. W.] Univ North Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA.
[Hill, A. B.] Univ Southampton, Highfield, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Johnnesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland.
[Larsson, S.; Li, L.] AlbaNova, KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden.
[Larsson, S.; Li, L.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.
[Li, J.; Torres, D. F.] Inst Space Sci IEEC CSIC, Campus UAB, E-08193 Barcelona, Spain.
[Mitthumsiri, W.] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand.
[Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan.
[Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Murgia, S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA.
[Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret, A-6020 Innsbruck, Austria.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland.
[Torres, D. F.] ICREA, Barcelona, Spain.
[Zimmer, S.] Univ Geneva, DPNC, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
[Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA.
RP Cheung, CC (reprint author), Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
EM Teddy.Cheung@nrl.navy.mil; georgano@umbc.edu; jmagill@umd.edu;
wmcconvi@umd.edu; stawarz@oa.uj.edu.pl
RI Reimer, Olaf/A-3117-2013; Orlando, E/R-5594-2016; Funk,
Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Torres,
Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017;
OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080;
Torres, Diego/0000-0002-1522-9065; Di Venere,
Leonardo/0000-0003-0703-824X; Hill, Adam/0000-0003-3470-4834; orienti,
monica/0000-0003-4470-7094; DI MAURO, MATTIA/0000-0003-2759-5625;
Mazziotta, Mario Nicola/0000-0001-9325-4672; Ajello,
Marco/0000-0002-6584-1703
FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes
Spatiales in France
FX Additional support for science analysis during the operations phase is
gratefully acknowledged from the Istituto Nazionale di Astrofisica in
Italy and the Centre National d'Etudes Spatiales in France.
NR 45
TC 2
Z9 2
U1 6
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 1
DI 10.3847/0004-637X/826/1/1
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200001
ER
PT J
AU Ajello, M
Ghisellini, G
Paliya, VS
Kocevski, D
Tagliaferri, G
Madejski, G
Rau, A
Schady, P
Greiner, J
Massaro, F
Balokovic, M
Buhler, R
Giomi, M
Marcotulli, L
D'Ammando, F
Stern, D
Boggs, SE
Christensen, FE
Craig, WW
Hailey, CJ
Harrison, FA
Zhang, WW
AF Ajello, M.
Ghisellini, G.
Paliya, V. S.
Kocevski, D.
Tagliaferri, G.
Madejski, G.
Rau, A.
Schady, P.
Greiner, J.
Massaro, F.
Balokovic, M.
Buehler, R.
Giomi, M.
Marcotulli, L.
D'Ammando, F.
Stern, D.
Boggs, S. E.
Christensen, F. E.
Craig, W. W.
Hailey, C. J.
Harrison, F. A.
Zhang, W. W.
TI NUSTAR, SWIFT, AND GROND OBSERVATIONS OF THE FLARING MEV BLAZAR PMN
J0641-0320
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; quasars: general; quasars: individual (PMN
J0641-0320); X-rays: general
ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; SUPERMASSIVE BLACK-HOLES;
BURST ALERT TELESCOPE; GAMMA-RAY SOURCES; RELATIVISTIC JETS; DISTANT
BLAZAR; HOST GALAXIES; HIGH-REDSHIFT; EMISSION
AB MeV blazars are a sub-population of the blazar family, exhibiting larger-than-average jet powers, accretion luminosities, and black hole masses. Because of their extremely hard X-ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the Fermi Large Area Telescope and subsequent follow-up observations with NuSTAR, Swift, and GROND of a new member of the MeV blazar family: PMN J0641-0320. Our optical spectroscopy provides confirmation that this is a flat-spectrum radio quasar located at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power-law photon index of similar to 1 up to similar to 80 keV) indicates that the emission is produced via inverse Compton scattering off of photons coming from outside the jet. The overall spectral energy distribution of PMN J0641-0320 is typical of powerful blazars and, using a simple one-zone leptonic emission model, we infer that the emission region is located either inside the broad line region or within the dusty torus.
C1 [Ajello, M.; Paliya, V. S.; Marcotulli, L.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA.
[Ghisellini, G.] Ist Nazl Fis Nucl, Osservatorio Astronomico Brera, Via E Bianchi 46, I-23807 Merate, Italy.
[Paliya, V. S.] Indian Inst Astrophys, Block 2 Koramangala, Bangalore 560034, Karnataka, India.
[Kocevski, D.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Madejski, G.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA.
[Rau, A.; Schady, P.; Greiner, J.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany.
[Massaro, F.] Univ Turin, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy.
[Balokovic, M.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Buehler, R.; Giomi, M.] DESY, D-15738 Zeuthen, Germany.
[D'Ammando, F.] INAF, Ist Radioastron, I-40129 Bologna, Italy.
[D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy.
[Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA.
RP Ajello, M (reprint author), Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA.
EM majello@clemson.edu
RI Massaro, Francesco/L-9102-2016;
OI Massaro, Francesco/0000-0002-1704-9850; Ajello,
Marco/0000-0002-6584-1703
FU NASA grant [NNH09ZDA001N]; International Fulbright Science and
Technology Award; NASA Headquarters under the NASA Earth and Space
Science Fellowship Program [NNX14AQ07H]; Istituto Nazionale di
Astrofisica in Italy; Centre National d'Etudes Spatiales in France; NASA
[NNG08FD60C]; National Aeronautics and Space Administration;
Leibniz-Prize (DFG grant) [HA 1850/28-1]
FX We thank the anonymous referee for useful comments. M.A. acknowledges
generous support from NASA grant NNH09ZDA001N. M.B. acknowledges support
from the International Fulbright Science and Technology Award and from
NASA Headquarters under the NASA Earth and Space Science Fellowship
Program, grant NNX14AQ07H.; The Fermi-LAT Collaboration acknowledges
generous ongoing support from a number of agencies and institutes that
have supported both the development and the operation of LAT as well as
scientific data analysis. These include the National Aeronautics and
Space Administration and the Department of Energy in the United States,
the Commissariat a l'Energie Atomique and the Centre National de la
Recherche Scientifique/Institut National de Physique Nucleaire et de
Physique des Particules in France, the Agenzia Spaziale Italiana and the
Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of
Education, Culture, Sports, Science, and Technology (MEXT), High Energy
Accelerator Research Organization (KEK) and Japan Aerospace Exploration
Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish
Research Council and the Swedish National Space Board in Sweden.
Additional support for science analysis during the operations phase is
gratefully acknowledged from the Istituto Nazionale di Astrofisica in
Italy and the Centre National d'Etudes Spatiales in France.; This NuSTAR
work was supported under NASA Contract No. NNG08FD60C, and made use of
data from the NuSTAR mission, a project led by the California Institute
of Technology, managed by the Jet Propulsion Laboratory, and funded by
the National Aeronautics and Space Administration. We thank the NuSTAR
Operations, Software, and Calibration teams for support with the
execution and analysis of these observations. This research has made use
of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by
the ASI Science Data Center (ASDC, Italy) and the California Institute
of Technology (USA).; Part of this work is based on archival data,
software, or online services provided by the ASI Data Center (ASDC).
This research has made use of the XRT Data Analysis Software (XRTDAS).
Part of the funding for GROND (both hardware and personnel) was
generously granted by the Leibniz-Prize to G. Hasinger (DFG grant HA
1850/28-1).
NR 66
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 76
DI 10.3847/0004-637X/826/1/76
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200076
ER
PT J
AU Brightman, M
Masini, A
Ballantyne, DR
Balokovic, M
Brandt, WN
Chen, CT
Comastri, A
Farrah, D
Gandhi, P
Harrison, FA
Ricci, C
Stern, D
Walton, DJ
AF Brightman, M.
Masini, A.
Ballantyne, D. R.
Balokovic, M.
Brandt, W. N.
Chen, C. -T.
Comastri, A.
Farrah, D.
Gandhi, P.
Harrison, F. A.
Ricci, C.
Stern, D.
Walton, D. J.
TI A GROWTH-RATE INDICATOR FOR COMPTON-THICK ACTIVE GALACTIC NUCLEI
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE black hole physics; galaxies: general; galaxies: nuclei; galaxies:
Seyfert; masers
ID SUPERMASSIVE BLACK-HOLES; RAY SPECTRAL MODEL; H2O MASER EMISSION; X-RAY;
CIRCINUS GALAXY; ACCRETION DISK; NGC 1068; BOLOMETRIC LUMINOSITIES;
NUSTAR OBSERVATIONS; MEGAMASER DISKS
AB Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGNs) is difficult to measure. A statistically significant correlation between the Eddington ratio, lambda(Edd), and the X-ray power-law index, Gamma, observed in unobscured AGNs offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line of sight to the central engine is heavily obscured, the recovery of the intrinsic Gamma is challenging. Here we study a sample of local, predominantly CT megamaser AGNs, where the black hole mass, and thus Eddington luminosity, are well known. We compile results of the X-ray spectral fitting of these sources with sensitive high-energy (E > 10 keV) NuSTAR data, where X-ray torus models, which take into account the reprocessing effects have been used to recover the intrinsic Gamma values and X-ray luminosities, L-X. With a simple bolometric correction to L-X to calculate lambda(Edd), we find a statistically significant correlation between Gamma and lambda(Edd) (p = 0.007). A linear fit to the data yields Gamma = (0.41 +/- 0.18)log(10)lambda(Edd) + (2.38 +/- 0.20), which is statistically consistent with results for unobscured AGNs. This result implies that torus modeling successfully recovers the intrinsic AGN parameters. Since the megamasers have low-mass black holes (M-BH approximate to 10(6)-10(7) M-circle dot) and are highly inclined, our results extend the Gamma-lambda(Edd) relationship to lower masses and argue against strong orientation effects in the corona, in support of AGN unification. Finally this result supports the use of Gamma as a growth-rate indicator for accreting black holes, even for CT AGNs.
C1 [Brightman, M.; Balokovic, M.; Harrison, F. A.; Walton, D. J.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA.
[Masini, A.; Comastri, A.] INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy.
[Masini, A.] Univ Bologna, Dipartimento Fis & Astron DIFA, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Brandt, W. N.; Chen, C. -T.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
[Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA.
[Gandhi, P.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.
[Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Brightman, M (reprint author), CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA.
OI Comastri, Andrea/0000-0003-3451-9970
FU NASA [NNG08FD60C]; National Aeronautics and Space Administration;
ASI/INAF [I/037/12/0-011/13]; STFC [ST/J003697/2]; NASA Headquarters
under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]
FX This work was supported under NASA Contract No. NNG08FD60C, and made use
of data from the NuSTAR mission, a project led by the California
Institute of Technology, managed by the Jet Propulsion Laboratory, and
funded by the National Aeronautics and Space Administration. We thank
the NuSTAR Operations, Software and Calibration teams for support with
the execution and analysis of these observations. Furthermore, this
research has made use of the NASA/IPAC Extragalactic Database (NED),
which is operated by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics and Space
Administration. A.M. and A.C. acknowledge support from the ASI/INAF
grant I/037/12/0-011/13. P.G. acknowledges funding from STFC
(ST/J003697/2). M.B. acknowledges support from NASA Headquarters under
the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H.
NR 66
TC 3
Z9 3
U1 5
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 93
DI 10.3847/0004-637X/826/1/93
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200093
ER
PT J
AU Darling, J
Gerard, B
Amiri, N
Lawrence, K
AF Darling, Jeremy
Gerard, Benjamin
Amiri, Nikta
Lawrence, Kelsey
TI WATER MASERS IN THE ANDROMEDA GALAXY. I. A SURVEY FOR WATER MASERS,
AMMONIA, AND HYDROGEN RECOMBINATION LINES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: individual (M31); galaxies: ISM; ISM: molecules; Local Group;
masers; radio lines: galaxies
ID STAR-FORMING REGIONS; PROPER-MOTION; LOCAL GROUP; NEARBY GALAXIES;
MILKY-WAY; GALACTIC H-2-REGIONS; SPACE-TELESCOPE; MOLECULAR GAS; HOT
AMMONIA; H2O MASERS
AB We report the results of a Green Bank Telescope survey for water masers, ammonia (1, 1) and (2, 2), and the H66 alpha recombination line toward 506 luminous compact 24 mu m emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for similar to 10 mu as yr(-1) astrometry. No new water masers, ammonia lines, or H66 alpha recombination lines were detected individually or in spectral stacks reaching rms noise levels of similar to 3 mJy and similar to 0.2 mJy, respectively, in 3.1-3.3 km s(-1) channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade.
C1 [Darling, Jeremy; Gerard, Benjamin; Amiri, Nikta; Lawrence, Kelsey] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA.
[Gerard, Benjamin] Univ Victoria, Dept Phys & Astron, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
[Amiri, Nikta] Jet Prop Lab, M-S 238-600,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Darling, J (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA.
EM jdarling@colorado.edu
OI Gerard, Benjamin/0000-0003-3978-9195; Darling,
Jeremy/0000-0003-2511-2060
FU NSF [AST-1109078]
FX All authors acknowledge support from the NSF grant AST-1109078. The
authors thank K. Gordon for the Spitzer map, M. Claussen and T. Beasley
for sharing their results, and the anonymous referee for helpful
comments. This research has made use of NASA's Astrophysics Data System
Bibliographic Services and the NASA/IPAC Extragalactic Database (NED),
and uses observations made with the Spitzer Space Telescope, both of
which are operated by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with NASA.
NR 49
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 24
DI 10.3847/0004-637X/826/1/24
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200024
ER
PT J
AU Gotthelf, EV
Mori, K
Aliu, E
Paredes, JM
Tomsick, JA
Boggs, SE
Christensen, FE
Craig, WW
Hailey, CJ
Harrison, FA
Hong, JS
Rahoui, F
Stern, D
Zhang, WW
AF Gotthelf, E. V.
Mori, K.
Aliu, E.
Paredes, J. M.
Tomsick, J. A.
Boggs, S. E.
Christensen, F. E.
Craig, W. W.
Hailey, C. J.
Harrison, F. A.
Hong, J. S.
Rahoui, F.
Stern, D.
Zhang, W. W.
TI HARD X-RAY EMISSION FROM SH 2-104: A NuSTAR SEARCH FOR GAMMA-RAY
COUNTERPARTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: individual objects (Sh 2-104, MGRO J2019+37, 3XMM J201744.7+365045,
VER J2019+368); pulsars: individual (NuSTAR J201744.3+364812); stars:
neutron
ID GALACTIC PLANE; CLUSTER WESTERLUND-1; TEMPERATURE RELATION; MGRO
J2019+37; XMM-NEWTON; TELESCOPE; DISCOVERY; REGION; YOUNG; PULSAR
AB We present NuSTAR hard X-ray observations of Sh 2-104, a compact H II region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Fainter, diffuse X-rays coincident with the eastern YMSC in Sh2-104 likely result from the colliding winds of a component star. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula, NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with N-H= (3.1 +/- 1.0) x 10(22) cm(-2) and a photon index Gamma= 2.1 +/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (<= 43% modulation), this object is likely a background active galactic nucleus rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV, suggesting an optically obscured galaxy cluster at z = 0.19 +/- 0.02 (d = 800 Mpc) and L-X = 1.2 x 10(44) erg s(-1). Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS excess south of Sh 2-104, is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the H II region.
C1 [Gotthelf, E. V.; Mori, K.; Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA.
[Gotthelf, E. V.; Aliu, E.; Paredes, J. M.] Univ Barcelona, IEEC UB, Dept Fis Quant & Astrofis, Inst Ciencies Cosmos, Marti i Franques 1, E-08028 Barcelona, Spain.
[Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Hong, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Rahoui, F.] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA.
[Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Rahoui, F.] European Southern Observ, Karl Schwarzchild Str 2, D-85748 Garching, Germany.
RP Gotthelf, EV (reprint author), Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA.; Gotthelf, EV (reprint author), Univ Barcelona, IEEC UB, Dept Fis Quant & Astrofis, Inst Ciencies Cosmos, Marti i Franques 1, E-08028 Barcelona, Spain.
EM eric@astro.columbia.edu
FU NASA [NNG08FD60C]; National Aeronautics and Space Administration;
National Aeronautics and Space Administration through XMM-Newton Award
[NNX15AG28G]; Chandra Award [G05-16061X]; National Aeronautics Space
Administration [NAS8-03060]; Spanish MINECO under grants of ICCUB
(Unidad de Excelencia "Maria de Maeztu") [AYA2013-47447-C3-1-P,
MDM-2014-0369]; Catalan DEC grant [SGR 86]; ICREA Academia
FX This work was supported under NASA Contract No. NNG08FD60C and made use
of data from the NuSTAR mission, a project led by the California
Institute of Technology, managed by the Jet Propulsion Laboratory, and
funded by the National Aeronautics and Space Administration. We thank
the NuSTAR operations, software, and calibration teams for support with
the execution and analysis of these observations. This research has made
use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed
by the ASI Science Data Center (ASDC, Italy) and the California
Institute of Technology (USA). E.V.G. acknowledges partial support by
the National Aeronautics and Space Administration through XMM-Newton
Award Number NNX15AG28G and Chandra Award Number G05-16061X, issued by
the Chandra X-ray Observatory Center, which is operated by the
Smithsonian Astrophysical Observatory for and on behalf of the National
Aeronautics Space Administration under contract NAS8-03060. J.M.P.
acknowledges support by the Spanish MINECO under grants
AYA2013-47447-C3-1-P, MDM-2014-0369 of ICCUB (Unidad de Excelencia
"Maria de Maeztu"), and the Catalan DEC grant 2014 SGR 86 and ICREA
Academia.
NR 44
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 25
DI 10.3847/0004-637X/826/1/25
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200025
ER
PT J
AU Grefenstette, BW
Glesener, L
Krucker, S
Hudson, H
Hannah, IG
Smith, DM
Vogel, JK
White, SM
Madsen, KK
Marsh, AJ
Caspi, A
Chen, B
Shih, A
Kuhar, M
Boggs, SE
Christensen, FE
Craig, WW
Forster, K
Hailey, CJ
Harrison, FA
Miyasaka, H
Stern, D
Zhang, WW
AF Grefenstette, Brian W.
Glesener, Lindsay
Krucker, Sam
Hudson, Hugh
Hannah, Iain G.
Smith, David M.
Vogel, Julia K.
White, Stephen M.
Madsen, Kristin K.
Marsh, Andrew J.
Caspi, Amir
Chen, Bin
Shih, Albert
Kuhar, Matej
Boggs, Steven E.
Christensen, Finn E.
Craig, William W.
Forster, Karl
Hailey, Charles J.
Harrison, Fiona A.
Miyasaka, Hiromasa
Stern, Daniel
Zhang, William W.
TI THE FIRST FOCUSED HARD X-RAY IMAGES OF THE SUN WITH NuSTAR
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE acceleration of particles; methods: data analysis; Sun: X-rays, gamma
rays
ID SOLAR-FLARES; ACCELERATION REGION; ENERGY-DISTRIBUTION; QUIET SUN;
MICROFLARES; NANOFLARES; TELESCOPE; MISSION; RHESSI; EMISSION
AB We present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.
C1 [Grefenstette, Brian W.; Madsen, Kristin K.; Forster, Karl; Harrison, Fiona A.; Miyasaka, Hiromasa] CALTECH, Cahill Ctr Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA.
[Glesener, Lindsay] Univ Minnesota Twin Cities, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Glesener, Lindsay; Krucker, Sam; Hudson, Hugh; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Krucker, Sam; Kuhar, Matej] Univ Appl Sci & Arts Northwestern Switzerland, CH-5210 Windisch, Switzerland.
[Hudson, Hugh; Hannah, Iain G.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
[Smith, David M.; Marsh, Andrew J.] Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA.
[Smith, David M.; Marsh, Andrew J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, 1156 High St, Santa Cruz, CA 95064 USA.
[Vogel, Julia K.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Div Phys, Livermore, CA 94550 USA.
[White, Stephen M.] US Air Force, Res Lab, Albuquerque, NM USA.
[Caspi, Amir] Southwest Res Inst, Boulder, CO 80302 USA.
[Chen, Bin] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Shih, Albert] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA.
[Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA.
[Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Zhang, William W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
RP Grefenstette, BW (reprint author), CALTECH, Cahill Ctr Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA.
EM bwgref@srl.caltech.edu
RI Hannah, Iain/F-1972-2011;
OI Hannah, Iain/0000-0003-1193-8603; Hudson, Hugh/0000-0001-5685-1283;
Glesener, Lindsay/0000-0001-7092-2703; Madsen,
Kristin/0000-0003-1252-4891; Caspi, Amir/0000-0001-8702-8273
FU NASA [NNX12AJ36G, NNX14AG07G, NNX15AK26G, NNX14AN84G]; Swiss National
Science Foundation [200021-140308]; NASA Earth and Space Science
Fellowship [NNX13AM41H]; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]; Royal Society University
Research Fellowship
FX This work was supported under NASA contract NNG08FD60C and made use of
data from the NuSTAR mission, a project led by the California Institute
of Technology, managed by the Jet Propulsion Laboratory, and funded by
NASA. Additional funding for this work was also provided under NASA
grants NNX12AJ36G and NNX14AG07G. S.K. acknowledges funding from the
Swiss National Science Foundation (200021-140308). A.J.M.'s
participation was supported by NASA Earth and Space Science Fellowship
award NNX13AM41H. Part of this work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. A.C. was supported by NASA grants
NNX15AK26G and NNX14AN84G. I.G.H. is supported by a Royal Society
University Research Fellowship.
NR 37
TC 3
Z9 3
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 20
DI 10.3847/0004-637X/826/1/20
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200020
ER
PT J
AU Kaplan, DL
Kupfer, T
Nice, DJ
Irrgang, A
Heber, U
Arzoumanian, Z
Beklen, E
Crowter, K
DeCesar, ME
Demorest, PB
Dolch, T
Ellis, JA
Ferdman, RD
Ferrara, EC
Fonseca, E
Gentile, PA
Jones, G
Jones, ML
Kreuzer, S
Lam, MT
Levin, L
Lorimer, DR
Lynch, RS
McLaughlin, MA
Miller, AA
Ng, C
Pennucci, TT
Prince, TA
Ransom, SM
Ray, PS
Spiewak, R
Stairs, IH
Stovall, K
Swiggum, J
Zhu, WW
AF Kaplan, David L.
Kupfer, Thomas
Nice, David J.
Irrgang, Andreas
Heber, Ulrich
Arzoumanian, Zaven
Beklen, Elif
Crowter, Kathryn
DeCesar, Megan E.
Demorest, Paul B.
Dolch, Timothy
Ellis, Justin A.
Ferdman, Robert D.
Ferrara, Elizabeth C.
Fonseca, Emmanuel
Gentile, Peter A.
Jones, Glenn
Jones, Megan L.
Kreuzer, Simon
Lam, Michael T.
Levin, Lina
Lorimer, Duncan R.
Lynch, Ryan S.
McLaughlin, Maura A.
Miller, Adam A.
Ng, Cherry
Pennucci, Timothy T.
Prince, Tom A.
Ransom, Scott M.
Ray, Paul S.
Spiewak, Renee
Stairs, Ingrid H.
Stovall, Kevin
Swiggum, Joseph
Zhu, Weiwei
TI PSR J1024-0719: A MILLISECOND PULSAR IN AN UNUSUAL LONG-PERIOD ORBIT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: general; pulsars: individual (PSR J1024-0719); stars:
distances
ID SKY SURVEY 2MASS; GLOBULAR-CLUSTERS; MILKY-WAY; PROPER MOTIONS;
NEUTRON-STARS; BINARY PULSAR; EVOLUTION; RESOLUTION; DISCOVERY;
TELESCOPE
AB PSR J1024-0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to a reexamination of its properties. We present updated radio timing observations along with new and archival optical data which show that PSR J1024-0719 is most likely in a long-period (2-20 kyr) binary system with a low-mass (approximate to 0.4 M-circle dot), low-metallicity (Z approximate to -0.9 dex) main-sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, which is consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters.
C1 [Kaplan, David L.; DeCesar, Megan E.; Spiewak, Renee; Swiggum, Joseph] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA.
[Kupfer, Thomas; Miller, Adam A.; Prince, Tom A.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA.
[Irrgang, Andreas; Heber, Ulrich; Kreuzer, Simon] Univ Erlangen Nurnberg, Astron Inst, Dr Karl Remeis Observ & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany.
[Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA.
[Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA.
[Beklen, Elif] Suleyman Demirel Univ, Dept Phys, TR-32260 Isparta, Turkey.
[Beklen, Elif; Gentile, Peter A.; Jones, Megan L.; Levin, Lina; Lorimer, Duncan R.; McLaughlin, Maura A.] West Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26506 USA.
[Crowter, Kathryn; Fonseca, Emmanuel; Ng, Cherry; Stairs, Ingrid H.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada.
[Demorest, Paul B.] Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA.
[Dolch, Timothy] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA.
[Ellis, Justin A.; Miller, Adam A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Ferdman, Robert D.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
[Ferrara, Elizabeth C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Jones, Glenn] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Lam, Michael T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Lynch, Ryan S.] Natl Radio Astron Observ, POB 2, Green Bank, WV 24944 USA.
[Pennucci, Timothy T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA.
[Ransom, Scott M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.
[Ray, Paul S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Stairs, Ingrid H.] McGill Space Inst, 3550 Rue Univ, Montreal, PQ H3A 2A7, Canada.
[Stovall, Kevin] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Miller, Adam A.; Zhu, Weiwei] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
RP Kaplan, DL (reprint author), Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA.
RI Heber, Ulrich/G-3306-2013;
OI Heber, Ulrich/0000-0001-7798-6769; Kaplan, David/0000-0001-6295-2881
FU National Science Foundation (NSF) PIRE program [0968296]; NSF Physics
Frontiers Center [1430284]; NSERC Discovery Grant; Canadian Institute
for Advanced Research; NASA from a Hubble Fellowship [HST-HF-51325.01];
STScI; NASA [NAS 5-26555]
FX We thank J. Creighton, C. Bassa, and S. Phinney for useful discussions.
The NANOGrav project receives support from National Science Foundation
(NSF) PIRE program award number 0968296 and NSF Physics Frontiers Center
award number 1430284. P.S.R.'s work at NRL is supported by the Chief of
Naval Research. Pulsar research at UBC is supported by an NSERC
Discovery Grant and by the Canadian Institute for Advanced Research.
A.A.M. acknowledges support for this work by NASA from a Hubble
Fellowship grant: HST-HF-51325.01, awarded by STScI, operated by AURA,
Inc., for NASA, under contract NAS 5-26555. Part of the research was
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA. The National Radio Astronomy
Observatory is a facility of the National Science Foundation operated
under cooperative agreement by Associated Universities, Inc.
NR 67
TC 2
Z9 2
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 86
DI 10.3847/0004-637X/826/1/86
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200086
ER
PT J
AU Keek, L
Wolf, Z
Ballantyne, DR
AF Keek, L.
Wolf, Z.
Ballantyne, D. R.
TI ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE
MISSIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; stars: neutron; X-rays: binaries; X-rays:
bursts
ID EQUATION-OF-STATE; NEUTRON-STARS; TIMING-EXPLORER; THERMONUCLEAR BURSTS;
ANGULAR-DISTRIBUTION; SPECTRAL EVOLUTION; MILLISECOND PULSAR; EXO
0748-676; 4U 1636-536; AQL X-1
AB Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes. greater than or similar to 10(-7.5) erg cm(-2) s(-1) and also effectively constrain the reflection parameters for bright bursts with fluxes of similar to 10(-7) erg cm(-2) s(-1) in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.
C1 [Keek, L.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA.
[Keek, L.] NASA, Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA.
[Keek, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Wolf, Z.; Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, 837 State St, Atlanta, GA 30332 USA.
RP Keek, L (reprint author), NASA, CRESST, GSFC, Greenbelt, MD 20771 USA.; Keek, L (reprint author), NASA, Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA.; Keek, L (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM laurens.keek@nasa.gov
FU NASA [NNG06EO90A]
FX The authors thank R.E. Rutledge for encouraging to write this paper and
T.E. Strohmayer for helpful comments. L.K. is supported by NASA under
award number NNG06EO90A. L.K. thanks the International Space Science
Institute in Bern, Switzerland for hosting an International Team on
X-ray bursts.
NR 77
TC 1
Z9 1
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 79
DI 10.3847/0004-637X/826/1/79
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200079
ER
PT J
AU Kinch, BE
Schnittman, JD
Kallman, TR
Krolik, JH
AF Kinch, Brooks E.
Schnittman, Jeremy D.
Kallman, Timothy R.
Krolik, Julian H.
TI Fe K alpha PROFILES FROM SIMULATIONS OF ACCRETING BLACK HOLES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; black hole physics; line: formation
ID X-RAY REFLECTION; ACTIVE GALACTIC NUCLEI; SEYFERT-GALAXIES; RADIATION
TRANSPORT; IRON LINES; GX 339-4; DISKS; EMISSION; SPECTRA; SPIN
AB We present the first results from a new technique for the prediction of Fe K alpha profiles directly from general relativistic magnetohydrodynamic (GRMHD) simulations. Data from a GRMHD simulation are processed by a Monte Carlo global radiation transport code, which determines the X-ray flux irradiating the disk surface and the coronal electron temperature self-consistently. With that irradiating flux and the disk's density structure drawn from the simulation, we determine the reprocessed Fe K alpha emission from photoionization equilibrium and solution of the radiation transfer equation. We produce maps of the surface brightness of Fe K alpha emission over the disk surface, which-for our example of a 10M(circle dot) Schwarzschild black hole accreting at 1% the Eddington value-rises steeply one gravitational radius outside the radius of the innermost stable circular orbit and then falls alpha r(-2) at larger radii. We explain these features of the Fe K alpha radial surface brightness profile as consequences of the disk's ionization structure and an extended coronal geometry, respectively. We also present the corresponding Fe K alpha line profiles as would be seen by distant observers at several inclinations. Both the shapes of the line profiles and the equivalent widths of our predicted K alpha lines are qualitatively similar to those typically observed from accreting black holes. Most importantly, this work represents a direct link between theory and observation: in a fully self-consistent way, we produce observable results-iron fluorescence line profiles-from the theory of black hole accretion with almost no phenomenological assumptions.
C1 [Kinch, Brooks E.; Krolik, Julian H.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Schnittman, Jeremy D.; Kallman, Timothy R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Kinch, BE (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
EM kinch@jhu.edu; jeremy.d.schnittman@nasa.gov; timothy.r.kallman@nasa.gov;
jhk@jhu.edu
FU NASA/ATP Grant [NNX14AB43G, 13-0077]; NSF Grant [AST-0908869]; NASA
grant
FX This work was partially supported by NASA/ATP Grant NNX14AB43G, NSF
Grant AST-0908869, and NASA/ATP Grant 13-0077. We are particularly
grateful to John Hawley for providing funds from the NSF grant and to
John Baker for funds from the latter NASA grant. B.E.K. also thanks the
GSFC Laboratory for High Energy Astrophysics for hospitality.
NR 45
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 52
DI 10.3847/0004-637X/826/1/52
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200052
ER
PT J
AU Lanz, L
Ogle, PM
Alatalo, K
Appleton, PN
AF Lanz, Lauranne
Ogle, Patrick M.
Alatalo, Katherine
Appleton, Philip N.
TI STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH
SHOCKED WARM MOLECULAR GAS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: evolution; galaxies: ISM; galaxies: jets;
galaxies: star formation
ID ACTIVE GALACTIC NUCLEI; SPITZER-SPACE-TELESCOPE; DIGITAL-SKY-SURVEY;
SPECTRAL IRRADIANCE CALIBRATION; MULTIBAND IMAGING PHOTOMETER; CO-TO-H-2
CONVERSION FACTOR; INFRARED ARRAY CAMERA; SIMILAR-TO 0.1; X-RAY;
HYDROGEN EMISSION
AB We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of similar to 3-6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H-2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H-2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.
C1 [Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.] CALTECH, Infrared Proc & Anal Ctr, MC100-22, Pasadena, CA 91125 USA.
[Alatalo, Katherine] Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA.
[Appleton, Philip N.] CALTECH, NASA, Herschel Sci Ctr, IPAC, MC100-22, Pasadena, CA 91125 USA.
RP Lanz, L (reprint author), CALTECH, Infrared Proc & Anal Ctr, MC100-22, Pasadena, CA 91125 USA.
EM llanz@ipac.caltech.edu
OI Alatalo, Katherine/0000-0002-4261-2326
FU NASA through an award issued by JPL/Caltech; NASA through Hubble
Fellowship grant - Space Telescope Science Institute
[HST-HF2-51352.001]; NASA [NAS5-26555]; NASA; NSF; Sloan Digital Sky
Survey (Sloan-III); Alfred P. Sloan Foundation; Participating
Institutions; U.S. DOE Office of Science; Association of Universities
for Research in Astronomy, Inc., under NASA [NAS5-26555]; NASA Office of
Space Science [NNX09AF08G]
FX We thank Mark Lacy for his advice and useful discussion with regards to
the Sajina model, as well as George Helou for suggesting the extended
Schmidt law as another point of analysis, and Yong Shi, Michael Brown,
and Aditya Togi, whose comments improved the revised version of this
paper. This work made use of the remote access computing accounts of the
NASA Herschel Science Center, which were very helpful in reducing the
Herschel data. L.L. and P.M.O. acknowledges support for this work
provided by NASA through an award issued by JPL/Caltech. Support for
K.A. is provided by NASA through Hubble Fellowship grant
#HST-HF2-51352.001 awarded by the Space Telescope Science Institute,
which is operated by the Association of Universities for Research in
Astronomy, Inc., for NASA, under contract NAS5-26555.; This work is
based in part on observations made with Herschel, a European Space
Agency Cornerstone Mission with significant participation by NASA. This
publication used observations made with the Spitzer Space Telescope,
which is operated by the Jet Propulsion Laboratory (JPL)/California
Institute of Technology (Caltech) under a contract with NASA.
Observations from the Wide-field Iqrared Survey Explorer, which is a
joint project of the University of California, Los Angeles, and
JPL/Caltech, funded by NASA, were also used. This publication makes use
of data products from the Two Micron All Sky Survey, which is a joint
project of the University of Massachusetts and the Infrared Processing
and Analysis Center (IPAC)/Caltech, funded by NASA and the NSF, as well
as from the Sloan Digital Sky Survey (Sloan-III),whose funding has been
provided by the Alfred P. Sloan Foundation, the Participating
Institutions, the NSF, and the U.S. DOE Office of Science, and which is
managed by the Astrophysical Research Consortium for the Participating
Institutions of the Sloan-III Collaboration. Finally, this publication
makes use of data from the Galaxy Evolution Explorer, retrieved from the
Mikulski Archive for Space Telescopes (MAST), part of the Space
Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract
NAS5-26555. Support for MAST for non-HST data is provided by the NASA
Office of Space Science via grant NNX09AF08G and by other grants and
contracts.
NR 132
TC 1
Z9 1
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 29
DI 10.3847/0004-637X/826/1/29
PG 40
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200029
ER
PT J
AU Lynch, BJ
Edmondson, JK
Kazachenko, MD
Guidoni, SE
AF Lynch, B. J.
Edmondson, J. K.
Kazachenko, M. D.
Guidoni, S. E.
TI RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL
MASS EJECTION ERUPTIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE magnetic reconnection; magnetohydrodynamics (MHD); Sun: corona; Sun:
coronal mass ejections (CMEs); Sun: flares; Sun: magnetic fields
ID COLLISIONLESS MAGNETIC RECONNECTION; SUPRA-ARCADE DOWNFLOWS;
SOLAR-FLARES; FLUX-ROPE; WAVELET ANALYSIS; 2-RIBBON FLARES; MODEL;
CHALLENGE; FIELD; ACCELERATION
AB We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch & Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to similar to 100:1), Lundquist number (similar to 10(3)), and reconnection rate (inflow-to-outflow ratios reaching similar to 0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs' formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.
C1 [Lynch, B. J.; Kazachenko, M. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Edmondson, J. K.] Univ Michigan, Climate & Space Sci & Engn Dept, Ann Arbor, MI 48109 USA.
[Guidoni, S. E.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Lynch, BJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
RI Lynch, Benjamin/B-1300-2013;
OI Lynch, Benjamin/0000-0001-6886-855X
FU AFOSR YIP [FA9550-11-1-0048]; NASA HTP [NNX11AJ65G]; NSF AGS [1249150];
Coronal Global Evolutionary Model (CGEM) project NSF AGS [1321474]; NASA
LWS [NNX10AQ616G]; NASA Postdoctoral Program at Goddard Space Flight
Center
FX The authors would like to thank the anonymous referee for valuable
suggestions during the review process and acknowledge Drs. George
Fisher, Spiro Antiochos, and Paul Cassak for helpful discussion during
the preparation of the manuscript. B. J.L. and M.D.K. acknowledge
support from AFOSR YIP FA9550-11-1-0048, NASA HTP NNX11AJ65G, NSF AGS
1249150, and the Coronal Global Evolutionary Model (CGEM) project NSF
AGS 1321474. J.K.E. acknowledges support from NASA LWS NNX10AQ616G.
S.E.G. acknowledges support from the NASA Postdoctoral Program at
Goddard Space Flight Center, administered by Oak Ridge Associated
Universities.
NR 93
TC 2
Z9 2
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 43
DI 10.3847/0004-637X/826/1/43
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200043
ER
PT J
AU Racusin, JL
Oates, SR
de Pasquale, M
Kocevski, D
AF Racusin, J. L.
Oates, S. R.
de Pasquale, M.
Kocevski, D.
TI A CORRELATION BETWEEN THE INTRINSIC BRIGHTNESS AND AVERAGE DECAY RATE OF
GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma-ray burst: general; X-rays: bursts
ID SWIFT XRT DATA; OFF-AXIS; COMPREHENSIVE ANALYSIS; TEMPORAL PROPERTIES;
OPTICAL AFTERGLOWS; EXTENDED EMISSION; PROMPT EMISSION; COMPLETE SAMPLE;
LOW-LUMINOSITY; PLATEAU-PHASE
AB We present a correlation between the average temporal decay (alpha(X,avg,> 200 s)) and early-time luminosity (L-X,L-200 (s)) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the gamma-ray trigger. The luminosity-average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.
C1 [Racusin, J. L.; Kocevski, D.] NASAs Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA.
[Oates, S. R.] CSIC, Inst Astrofis Andalucia IAA, Glorieta Astron S-N, E-18008 Granada, Spain.
[Oates, S. R.; de Pasquale, M.] Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England.
RP Racusin, JL (reprint author), NASAs Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA.
EM judith.racusin@nasa.gov
FU UK Space Agency; NASA Postdoctoral Program; [AYA2012-39727-C03-01]
FX The authors thank the anonymous referee for helpful comments, as well as
Brad Cenko and Raffaella Margutti for useful discussions. This work made
use of data supplied by the UK Swift Science Data Centre at the
University of Leicester. S.R.O. acknowledges the support of the Spanish
Ministry, Project Number AYA2012-39727-C03-01. M.D.P. acknowledges the
support of the UK Space Agency. D.K. acknowledges the support of the
NASA Postdoctoral Program.
NR 72
TC 0
Z9 0
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 45
DI 10.3847/0004-637X/826/1/45
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200045
ER
PT J
AU Sloan, GC
Kraemer, KE
McDonald, I
Groenewegen, MAT
Wood, PR
Zijlstra, AA
Lagadec, E
Boyer, ML
Kemper, F
Matsuura, M
Sahai, R
Sargent, BA
Srinivasan, S
van Loon, JT
Volk, K
AF Sloan, G. C.
Kraemer, K. E.
McDonald, I.
Groenewegen, M. A. T.
Wood, P. R.
Zijlstra, A. A.
Lagadec, E.
Boyer, M. L.
Kemper, F.
Matsuura, M.
Sahai, R.
Sargent, B. A.
Srinivasan, S.
van Loon, J. Th.
Volk, K.
TI THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE circumstellar matter; infrared: stars; stars: AGB and post-AGB; stars:
carbon
ID ASYMPTOTIC GIANT BRANCH; SPITZER-SPACE-TELESCOPE; LONG-PERIOD VARIABLES;
GRAVITATIONAL LENSING EXPERIMENT.; SHORT-WAVELENGTH SPECTROMETER;
AGE-METALLICITY RELATIONSHIP; CLOUDS PHOTOMETRIC SURVEY; POINT-SOURCE
CATALOG; OGLE-III CATALOG; PLANETARY-NEBULAE
AB The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C2H2 at 7.5 mu m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.
C1 [Sloan, G. C.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA.
[Sloan, G. C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA.
[Kraemer, K. E.] Boston Coll, Inst Sci Res, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA.
[McDonald, I.; Zijlstra, A. A.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Groenewegen, M. A. T.] Koninklijke Sterrenwacht Belgie, Ringlaan 3, B-1180 Brussels, Belgium.
[Wood, P. R.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Lagadec, E.] Observ Cote Azur, F-06300 Nice, France.
[Boyer, M. L.] NASA, CRESST, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.
[Boyer, M. L.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.
[Boyer, M. L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Kemper, F.; Srinivasan, S.] Acad Sinica, Inst Astron & Astrophys, 11F Astron Math Bldg,NTU AS,1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan.
[Matsuura, M.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.
[Sahai, R.] CALTECH, Jet Prop Lab, MS 183-900, Pasadena, CA 91109 USA.
[Sargent, B. A.] Rochester Inst Technol, Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA.
[Sargent, B. A.] Rochester Inst Technol, Lab Multiwavelength Astrophys, 54 Lomb Mem Dr, Rochester, NY 14623 USA.
[van Loon, J. Th.] Keele Univ, Lennard Jones Labs, Keele ST5 5BG, Staffs, England.
[Volk, K.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
RP Sloan, GC (reprint author), Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA.; Sloan, GC (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA.
EM sloan@isc.astro.cornell.edu
RI Kemper, Francisca/D-8688-2011;
OI Kemper, Francisca/0000-0003-2743-8240; Zijlstra,
Albert/0000-0002-3171-5469; Kraemer, Kathleen/0000-0002-2626-7155
FU NASA [1257184, 1407]; NSF [1108645]; Ministry of Science and Technology
(MoST) of Taiwan [MOST104-2628-M-001-004-MY3]
FX We thank the anonymous referee for helpful and constructive comments.
GCS was supported by NASA through Contract Number 1257184 issued by the
Jet Propulsion Laboratory, California Institute of Technology under NASA
contract 1407 and the NSF through Award 1108645. FK received support
from the Ministry of Science and Technology (MoST) of Taiwan, grant
MOST104-2628-M-001-004-MY3. This research relied on the following
resources: NASA's Astrophysics Data System, the Infrared Science Archive
at the Infrared Processing and Analysis Center, operated by JPL, and the
Simbad and VizieR databases, operated at the Centre de Donnees
astronomiques de Strasbourg.
NR 91
TC 2
Z9 2
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 44
DI 10.3847/0004-637X/826/1/44
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200044
ER
PT J
AU Ukwatta, TN
Hurley, K
MacGibbon, JH
Svinkin, DS
Aptekar, RL
Golenetskii, SV
Frederiks, DD
Pal'shin, VD
Goldsten, J
Boynton, W
Kozyrev, AS
Rau, A
von Kienlin, A
Zhang, X
Connaughton, V
Yamaoka, K
Ohno, M
Ohmori, N
Feroci, M
Frontera, F
Guidorzi, C
Cline, T
Gehrels, N
Krimm, HA
McTiernan, J
AF Ukwatta, T. N.
Hurley, K.
MacGibbon, J. H.
Svinkin, D. S.
Aptekar, R. L.
Golenetskii, S. V.
Frederiks, D. D.
Pal'shin, V. D.
Goldsten, J.
Boynton, W.
Kozyrev, A. S.
Rau, A.
von Kienlin, A.
Zhang, X.
Connaughton, V.
Yamaoka, K.
Ohno, M.
Ohmori, N.
Feroci, M.
Frontera, F.
Guidorzi, C.
Cline, T.
Gehrels, N.
Krimm, H. A.
McTiernan, J.
TI INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY
NETWORK GAMMA-RAY BURSTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE black hole physics; methods: observational
ID 1ST 2 YEARS; SPECTRAL CATALOG; SHORT-DURATION; UPPER LIMITS;
RATE-DENSITY; GIANT FLARE; SEARCH; EVAPORATION; EXPLOSIONS; BATSE
AB The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10(13)-10(18) cm (7-10(5) au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.
C1 [Ukwatta, T. N.] Los Alamos Natl Lab, Space & Remote Sensing ISR 2, Los Alamos, NM 87545 USA.
[Hurley, K.; McTiernan, J.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
[MacGibbon, J. H.] Univ North Florida, Dept Phys, Jacksonville, FL 32224 USA.
[Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'shin, V. D.] Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
[Goldsten, J.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
[Boynton, W.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA.
[Kozyrev, A. S.] Space Res Inst, 84-32 Profsoyuznaya, Moscow 117997, Russia.
[Rau, A.; von Kienlin, A.; Zhang, X.] Max Planck Inst Extraterr Phys, Giessenbachstr,Postfach 1312, D-85748 Garching, Germany.
[Connaughton, V.] Univ Alabama Huntsville, NSSTC, 320 Sparkman Dr, Huntsville, AL 35805 USA.
[Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2298558, Japan.
[Ohno, M.] Hiroshima Univ, Dept Phys, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan.
[Ohmori, N.] Miyazaki Univ, Dept Appl Phys, 1-1 Gakuen Kibanadai Nishi, Miyazaki, Miyazaki 8892192, Japan.
[Feroci, M.] IAPS Roma, INAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy.
[Frontera, F.; Guidorzi, C.] Univ Ferrara, Dept Phys & Earth Sci, Via Saragat 1, I-44122 Ferrara, Italy.
[Cline, T.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA.
[Krimm, H. A.] NASA, Goddard Space Flight Ctr, CRESST, USRA, Code 661, Greenbelt, MD 20771 USA.
[Frontera, F.] INAF, Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
[Krimm, H. A.] Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA.
RP Ukwatta, TN (reprint author), Los Alamos Natl Lab, Space & Remote Sensing ISR 2, Los Alamos, NM 87545 USA.
EM tilan@lanl.gov
FU NASA [NNX09AU03G, NNX10AU34G, NNX11AP96G, NNX13AP09G, NNG04GM50G,
NNG06GE69G, NNX07AQ22G, NNX08AC90G, NNX08AX95G, NNX09AR28G, NNX08AN23G,
NNX09AO97G, NNX12AD68G, NNX06AI36G, NNX08AB84G, NNX08AZ85G, NNX09AV61G,
NNX10AR12G, NNX07AR71G, NAG5-3500]; JPL [1282043, Y503559, NNX12AE41G,
NNX13AI54G, NNX15AE60G, NNX07AH52G, NAG5-13080, NAG5-7766, NAG5-9126,
NAG5-10710, NNG06GI89G]; Laboratory Directed Research and Development
program at the Los Alamos National Laboratory (LANL); Russian Space
Agency contract and RFBR [15-02-00532, 13-02-12017-ofi-m]
FX Support for the IPN was provided by NASA grants NNX09AU03G, NNX10AU34G,
NNX11AP96G, and NNX13AP09G (Fermi); NNG04GM50G, NNG06GE69G, NNX07AQ22G,
NNX08AC90G, NNX08AX95G, and NNX09AR28G (INTEGRAL); NNX08AN23G,
NNX09AO97G, and NNX12AD68G (Swift); NNX06AI36G, NNX08AB84G, NNX08AZ85G,
NNX09AV61G, and NNX10AR12G (Suzaku); NNX07AR71G (MESSENGER); NAG5-3500,
and JPL Contracts 1282043 and Y503559 (Odyssey); NNX12AE41G, NNX13AI54G,
and NNX15AE60G (ADA); NNX07AH52G (Konus); NAG5-13080 (RHESSI);
NAG5-7766, NAG5-9126, and NAG5-10710, (BeppoSAX); and NNG06GI89G. T. N.
U. acknowledges support from the Laboratory Directed Research and
Development program at the Los Alamos National Laboratory (LANL). The
Konus-Wind experiment is partially supported by a Russian Space Agency
contract and RFBR grants 15-02-00532 and 13-02-12017-ofi-m. We also
thank Jim Linnemann (MSU), Dan Stump (MSU), Brenda Dingus (LANL), and
Pat Harding (LANL) for useful conversations on the analysis.
NR 75
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 98
DI 10.3847/0004-637X/826/1/98
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200098
ER
PT J
AU Walton, DJ
Tomsick, JA
Madsen, KK
Grinberg, V
Barret, D
Boggs, SE
Christensen, FE
Clavel, M
Craig, WW
Fabian, AC
Fuerst, F
Hailey, CJ
Harrison, FA
Miller, JM
Parker, ML
Rahoui, F
Stern, D
Tao, L
Wilms, J
Zhang, W
AF Walton, D. J.
Tomsick, J. A.
Madsen, K. K.
Grinberg, V.
Barret, D.
Boggs, S. E.
Christensen, F. E.
Clavel, M.
Craig, W. W.
Fabian, A. C.
Fuerst, F.
Hailey, C. J.
Harrison, F. A.
Miller, J. M.
Parker, M. L.
Rahoui, F.
Stern, D.
Tao, L.
Wilms, J.
Zhang, W.
TI THE SOFT STATE OF CYGNUS X-1 OBSERVED WITH NuSTAR: A VARIABLE CORONA AND
A STABLE INNER DISK
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE black hole physics; X-rays: binaries; X-rays: individual (Cygnus X-1)
ID X-RAY REFLECTION; BLACK-HOLE SPIN; XMM-NEWTON OBSERVATIONS; ACTIVE
GALACTIC NUCLEI; LONG-TERM VARIABILITY; ACCRETION DISK; STELLAR WIND;
HARD STATE; SUZAKU OBSERVATIONS; SWIFT OBSERVATIONS
AB We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 less than or similar to a* less than or similar to 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be similar to 10 degrees-15 degrees. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at similar to 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
C1 [Walton, D. J.; Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Walton, D. J.; Madsen, K. K.; Fuerst, F.; Harrison, F. A.; Tao, L.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA.
[Tomsick, J. A.; Boggs, S. E.; Clavel, M.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Grinberg, V.] MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA.
[Barret, D.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France.
[Barret, D.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Fabian, A. C.; Parker, M. L.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Miller, J. M.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA.
[Rahoui, F.] European So Observ, K Schwarzschild Str 2, D-85748 Garching, Germany.
[Rahoui, F.] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA.
[Wilms, J.] ECAP Erlangen Ctr Astroparticle Phys, Sternwartstr 7, D-96049 Bamberg, Germany.
[Zhang, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Walton, DJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Walton, DJ (reprint author), CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA.
RI Wilms, Joern/C-8116-2013;
OI Wilms, Joern/0000-0003-2065-5410; Clavel, Maica/0000-0003-0724-2742
FU NASA through the Smithsonian Astrophysical Observatory (SAO)
[SV3-73016]; NASA [NAS8-03060]; French Space Agency (CNES)
FX The authors would like to thank the referee for prompt and useful
feedback. DB acknowledges financial support from the French Space Agency
(CNES). VG acknowledges financial support provided by NASA through the
Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT
for Support of the Chandra X-Ray Center (CXC) and Science Instruments;
CXC is operated by SAO for and on behalf of NASA under contract
NAS8-03060. This research made use of data obtained with NuSTAR, a
project led by Caltech, funded by NASA, and managed by NASA/JPL, and has
utilized the NUSTARDAS software package, jointly developed by the ASI
Science Data Center (ASDC, Italy) and Caltech (USA). Swift BAT transient
monitor results are provided by the Swift BAT team. This research has
also made use of MAXI data provided by RIKEN, JAXA, and the MAXI team.
NR 89
TC 5
Z9 5
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 87
DI 10.3847/0004-637X/826/1/87
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200087
ER
PT J
AU Yang, H
Apai, D
Marley, MS
Karalidi, T
Flateau, D
Showman, AP
Metchev, S
Buenzli, E
Radigan, J
Artigau, E
Lowrance, PJ
Burgasser, AJ
AF Yang, Hao
Apai, Daniel
Marley, Mark S.
Karalidi, Theodora
Flateau, Davin
Showman, Adam P.
Metchev, Stanimir
Buenzli, Esther
Radigan, Jacqueline
Artigau, Etienne
Lowrance, Patrick J.
Burgasser, Adam J.
TI EXTRASOLAR STORMS: PRESSURE-DEPENDENT CHANGES IN LIGHT-CURVE PHASE IN
BROWN DWARFS FROM SIMULTANEOUS HST AND SPITZER OBSERVATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE brown dwarfs; infrared: stars; stars: atmospheres; stars: low-mass
ID HUBBLE-SPACE-TELESCOPE; INFRARED ARRAY CAMERA; PROPER-MOTION SURVEY;
PECULIAR L DWARFS; ALL-SKY SURVEY; VERY-LOW MASS; T-DWARFS; PHOTOMETRIC
VARIABILITY; ABSOLUTE CALIBRATION; EVOLVING WEATHER
AB We present Spitzer/Infrared Array Camera Ch1 and Ch2 monitoring of six brown dwarfs during eight different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous Hubble Space Telescope (HST)/WFC3 G141 grism spectra during two epochs and derived light curves in five narrowband filters. Probing different pressure levels in the atmospheres, the multiwavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 to 13 hr. We compare the shapes of the light curves and estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. The phase differences between the two groups of light curves suggest that the modulations seen at lower and higher pressures may be introduced by different cloud layers.
C1 [Yang, Hao; Apai, Daniel; Karalidi, Theodora] Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA.
[Apai, Daniel; Flateau, Davin] Dept Planetary Sci, 1629 E Univ Blvd, Tucson, AZ 85721 USA.
[Marley, Mark S.] NASA, Ames Res Ctr, Naval Air Stn, Mountain View, CA 94035 USA.
[Showman, Adam P.] Univ Arizona, Dept Planetary Sci, 1629 Univ Blvd, Tucson, AZ 85721 USA.
[Metchev, Stanimir] Univ Western Ontario, Dept Phys & Astron, Ctr Planetary Sci & Explorat, 1151 Richmond St, London, ON N6A 3K7, Canada.
[Metchev, Stanimir] SUNY Stony Brook, Dept Phys & Astron, 100 Nicolls Rd, Stony Brook, NY 11794 USA.
[Buenzli, Esther] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
[Radigan, Jacqueline] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Artigau, Etienne] Univ Montreal, Dep Phys, CP 6128 Succ Ctr ville, Montreal, PQ H3C 3J7, Canada.
[Lowrance, Patrick J.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA.
[Burgasser, Adam J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
RP Yang, H (reprint author), Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA.
EM haoyang@email.arizona.edu; apai@arizona.edu
OI Yang, Hao/0000-0002-9423-2333; Metchev, Stanimir/0000-0003-3050-8203
FU NASA; Universities for Research in Astronomy, Inc. under NASA [13176,
NAS5-26555]
FX This work is part of the Spitzer Cycle-9 Exploration Program, Extrasolar
Storms. This work is based in part on observations made with the Spitzer
Space Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. Support
for this work was provided by NASA through an award issued by
JPL/Caltech.; Support for HST GO programs 13176 was provided by
Universities for Research in Astronomy, Inc., under NASA contract
NAS5-26555. We acknowledge the outstanding help of Patricia Royle
(STScI) and the Spitzer Science Center staff, especially Nancy
Silbermann, for coordinating the HST and Spitzer observations.
NR 54
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 8
DI 10.3847/0004-637X/826/1/8
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200008
ER
PT J
AU Zurbuchen, TH
Weberg, M
von Steiger, R
Mewaldt, RA
Lepri, ST
Antiochos, SK
AF Zurbuchen, T. H.
Weberg, M.
von Steiger, R.
Mewaldt, R. A.
Lepri, S. T.
Antiochos, S. K.
TI COMPOSITION OF CORONAL MASS EJECTIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE acceleration of particles; solar wind; Sun: abundances; Sun: coronal
mass ejections (CMEs)
ID SOLAR ENERGETIC PARTICLES; ELEMENT ABUNDANCES; HELIUM ABUNDANCE;
MAGNETIC-FIELD; ACTIVE-REGION; WIND; ACCELERATION; EVENTS; MODEL; SPEED
AB We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q(Fe) > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.
C1 [Zurbuchen, T. H.; Weberg, M.; Lepri, S. T.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
[von Steiger, R.] Int Space Sci Inst, Bern, Switzerland.
[von Steiger, R.] Univ Bern, Phys Inst, CH-3012 Bern, Switzerland.
[Mewaldt, R. A.] CALTECH, Pasadena, CA USA.
[Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD USA.
RP Zurbuchen, TH (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
FU NASA [NNX13AH66G, NNH13ZDA001N, NNX11A075G]; Catholic University of
America [362496-Sub1]
FX We acknowledge the work of the ACE SWICS team and particularly Paul
Shearer for their dedication to producing high-quality compositional
data. T.H.Z. acknowledges the hospitality of the staff of the
International Space Science Institute where much of this work was
performed. This work was supported, in part, by NASA grants NNX13AH66G,
NNH13ZDA001N, and NNX11A075G, and the Catholic University of America
contract 362496-Sub1.
NR 54
TC 0
Z9 0
U1 5
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2016
VL 826
IS 1
AR 10
DI 10.3847/0004-637X/826/1/10
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1IU
UT WOS:000381962200010
ER
PT J
AU Connaughton, V
Burns, E
Goldstein, A
Blackburn, L
Briggs, MS
Zhang, BB
Camp, J
Christensen, N
Hui, CM
Jenke, P
Littenberg, T
McEnery, JE
Racusin, J
Shawhan, P
Singer, L
Veitch, J
Wilson-Hodge, CA
Bhat, PN
Bissaldi, E
Cleveland, W
Fitzpatrick, G
Giles, MM
Gibby, MH
von Kienlin, A
Kippen, RM
McBreen, S
Mailyan, B
Meegan, CA
Paciesas, WS
Preece, RD
Roberts, OJ
Sparke, L
Stanbro, M
Toelge, K
Veres, P
AF Connaughton, V.
Burns, E.
Goldstein, A.
Blackburn, L.
Briggs, M. S.
Zhang, B. -B.
Camp, J.
Christensen, N.
Hui, C. M.
Jenke, P.
Littenberg, T.
McEnery, J. E.
Racusin, J.
Shawhan, P.
Singer, L.
Veitch, J.
Wilson-Hodge, C. A.
Bhat, P. N.
Bissaldi, E.
Cleveland, W.
Fitzpatrick, G.
Giles, M. M.
Gibby, M. H.
von Kienlin, A.
Kippen, R. M.
McBreen, S.
Mailyan, B.
Meegan, C. A.
Paciesas, W. S.
Preece, R. D.
Roberts, O. J.
Sparke, L.
Stanbro, M.
Toelge, K.
Veres, P.
TI FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE gamma-ray burst: general; gravitational waves
ID GAMMA-RAY BURSTS; COMPACT OBJECT MERGERS; ELECTROMAGNETIC COUNTERPARTS;
VIRGO; BATSE; CATALOG; MONITOR; GRBS; ERA
AB With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational-wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4 s after the GW event, with a false-alarm probability of 0.0022 (2.9 sigma). This weak transient lasting 1 s was not detected by any other instrument and does not appear to be connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short gamma-ray burst (GRB) arriving at a large angle to the direction in which Fermi was pointing where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, then this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1 keV and 10 MeV of 1.8(-1.0)(+1.5) x 10(49) erg s(-1). Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short GRBs.
C1 [Connaughton, V.; Littenberg, T.; Cleveland, W.; Paciesas, W. S.] Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA.
[Burns, E.] Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35805 USA.
[Goldstein, A.; Hui, C. M.; Wilson-Hodge, C. A.] NASA, Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA.
[Blackburn, L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Blackburn, L.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Briggs, M. S.; Preece, R. D.; Stanbro, M.] Univ Alabama, Dept Space Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA.
[Briggs, M. S.; Zhang, B. -B.; Jenke, P.; Bhat, P. N.; Fitzpatrick, G.; Mailyan, B.; Meegan, C. A.; Veres, P.] Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA.
[Zhang, B. -B.] IAA CSIC, POB 03004, E-18080 Granada, Spain.
[Camp, J.; McEnery, J. E.; Racusin, J.; Singer, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Christensen, N.] Carleton Coll, Phys & Astron, Northfield, MN 55057 USA.
[Shawhan, P.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Bissaldi, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bissaldi, E.; Toelge, K.] Politecn Bari, Dipartimento Fis, I-70125 Bari, Italy.
[Giles, M. M.; Gibby, M. H.] Jacobs Technol Inc, Huntsville, AL USA.
[von Kienlin, A.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany.
[Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[McBreen, S.; Roberts, O. J.] Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland.
[Sparke, L.] NASA Headquarters, Washington, DC USA.
RP Connaughton, V (reprint author), Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA.
EM valerie@nasa.gov
RI Roberts, Oliver/N-6284-2016
OI Roberts, Oliver/0000-0002-7150-9061
NR 56
TC 44
Z9 44
U1 5
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 20
PY 2016
VL 826
IS 1
AR L6
DI 10.3847/2041-8205/826/1/L6
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DS4GL
UT WOS:000380739300006
ER
PT J
AU El-Batal, AM
Miller, JM
Reynolds, MT
Boggs, SE
Chistensen, FE
Craig, WW
Fuerst, F
Hailey, CJ
Harrison, FA
Stern, DK
Tomsick, J
Walton, DJ
Zhang, WW
AF El-Batal, A. M.
Miller, J. M.
Reynolds, M. T.
Boggs, S. E.
Chistensen, F. E.
Craig, W. W.
Fuerst, F.
Hailey, C. J.
Harrison, F. A.
Stern, D. K.
Tomsick, J.
Walton, D. J.
Zhang, W. W.
TI NuSTAR OBSERVATIONS OF THE BLACK HOLE GS 1354-645: EVIDENCE OF RAPID
BLACK HOLE SPIN
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE accretion, accretion disks; black hole physics; X-rays: binaries
ID INNER ACCRETION FLOW; HARD-STATE; REFLECTION; DISK; SPECTROSCOPY;
OUTBURST; CONSTRAINTS; BINARIES; SPECTRA; SWIFT
AB We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cf/GM(2) >= 0.98 (1 sigma statistical limits only). The fits also require a high inclination: 0 similar or equal to 75 (2)degrees. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.
C1 [El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA.
[Boggs, S. E.; Craig, W. W.; Tomsick, J.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
[Chistensen, F. E.] Danish Tech Univ, Lungby, Denmark.
[Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Fuerst, F.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA.
[Hailey, C. J.] Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA.
[Stern, D. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Miller, JM (reprint author), Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA.
EM jonmm@umich.edu
FU NASA [NNG08FD60C]; NASA
FX We thank the anonymous referee for comments that improved this
manuscript. This work was supported under NASA contract No. NNG08FD60C,
and made use of data from the NuSTAR mission, a project led by the
California Institute of Technology, managed by the Jet Propulsion
Laboratory, and funded by NASA.
NR 40
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 20
PY 2016
VL 826
IS 1
AR L12
DI 10.3847/2041-8205/826/1/L12
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DS4GL
UT WOS:000380739300012
ER
PT J
AU Zhang, X
Sander, SP
Cheng, L
Thimmakondu, VS
Stanton, JF
AF Zhang, Xu
Sander, Stanley P.
Cheng, Lan
Thimmakondu, Venkatesan S.
Stanton, John F.
TI Matrix-isolated infrared absorption spectrum of CH2BrOO radical
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GAS-PHASE; ATMOSPHERIC CHEMISTRY; PEROXY-RADICALS; BASIS-SETS; KINETICS;
ATOMS; POTENTIALS; GRADIENTS; ELECTRON; 298-K
AB The bromomethylperoxy radical, CH2BrOO, has been generated in cryogenic matrices. Six fundamental bands for CH2BrOO have been observed in an argon matrix at 5 K. The experimental frequencies (cm (1)) are: v(4) = 1274.3, v(5) = 1229.4, v(6) = 1086.7, v(7) = 961.8, v(8) = 879.9, and v(10) = 515.4, two of which are detected for the first time. Ab initio calculations have been performed employing coupled-cluster methods. The experimental frequencies are shown to be in good agreement with the computation as well as the four bands (v(4), v(6), v(7) and v(8)) observed by Huang and Lee in the gas phase. (C) 2016 Elsevier B. V. All rights reserved.
C1 [Zhang, Xu; Sander, Stanley P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Cheng, Lan; Thimmakondu, Venkatesan S.; Stanton, John F.] Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA.
RP Zhang, X; Sander, SP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Stanton, JF (reprint author), Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA.
EM xzxuzhang@gmail.com
FU NASA; U.S. Department of Energy [DE-FG02-07ER15884]; Robert A. Welch
Foundation of Houston, TX [F-1284]; National Aeronautics and Space
Administration; California Institute of Technology
FX This work was supported by the NASA Tropospheric Chemistry and Upper
Atmosphere Research Programs. Additional support for this work to J.F.S.
comes from the U.S. Department of Energy (Contract Number
DE-FG02-07ER15884) and the Robert A. Welch Foundation of Houston, TX
(Grant F-1284). The authors would also like to thank Dr. Kyle Bayes and
Prof. Barney Ellison for their helpful discussions. The research was
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration. Copyright 2016 California Institute of Technology.
Government sponsorship is acknowledged.
NR 25
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
EI 1873-4448
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUL 16
PY 2016
VL 657
BP 131
EP 134
DI 10.1016/j.cplett.2016.05.060
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DW2AG
UT WOS:000383444700023
ER
PT J
AU Andre, M
Li, W
Toledo-Redondo, S
Khotyaintsev, YV
Vaivads, A
Graham, DB
Norgren, C
Burch, J
Lindqvist, PA
Marklund, G
Ergun, R
Torbert, R
Magnes, W
Russell, CT
Giles, B
Moore, TE
Chandler, MO
Pollock, C
Young, DT
Avanov, LA
Dorelli, JC
Gershman, DJ
Paterson, WR
Lavraud, B
Saito, Y
AF Andre, M.
Li, W.
Toledo-Redondo, S.
Khotyaintsev, Yu. V.
Vaivads, A.
Graham, D. B.
Norgren, C.
Burch, J.
Lindqvist, P. -A.
Marklund, G.
Ergun, R.
Torbert, R.
Magnes, W.
Russell, C. T.
Giles, B.
Moore, T. E.
Chandler, M. O.
Pollock, C.
Young, D. T.
Avanov, L. A.
Dorelli, J. C.
Gershman, D. J.
Paterson, W. R.
Lavraud, B.
Saito, Y.
TI Magnetic reconnection and modification of the Hall physics due to cold
ions at the magnetopause
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE magnetic reconnection; magnetopause; electric fields; Hall current
ID ART. NO. A03215; EARTHS MAGNETOSPHERE; OUTER MAGNETOSPHERE;
PLASMASPHERIC PLUME; PLASMA; WIND; MULTISCALE; OUTFLOW; SPACE; SOLAR
AB Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
C1 [Andre, M.; Li, W.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.] Swedish Inst Space Phys, Uppsala, Sweden.
[Toledo-Redondo, S.] European Space Agcy ESAC, Madrid, Spain.
[Norgren, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Burch, J.; Torbert, R.; Young, D. T.] Southwest Res Inst, San Antonio, TX USA.
[Lindqvist, P. -A.; Marklund, G.] KTH, Stockholm, Sweden.
[Ergun, R.] Univ Colorado, LASP, Boulder, CO 80309 USA.
[Torbert, R.] Univ New Hampshire, Durham, NH 03824 USA.
[Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria.
[Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
[Giles, B.; Moore, T. E.; Pollock, C.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Chandler, M. O.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA.
[Gershman, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.
[Lavraud, B.] CNRS, UMR 5277, Toulouse, France.
[Saito, Y.] Inst Space & Astronaut Sci, JAXA, Chofu, Tokyo, Japan.
RP Andre, M (reprint author), Swedish Inst Space Phys, Uppsala, Sweden.
EM mats.andre@irfu.se
RI NASA MMS, Science Team/J-5393-2013
OI NASA MMS, Science Team/0000-0002-9504-5214
FU Swedish National Space Board [SNSB 139/12, 164/14, 176/15]; CNES
FX We thank the entire MMS team and instrument PIs for data access and
support. MMS data are available at
https://lasp.colorado.edu/mms/sdc/public/. We acknowledge support from
the Swedish National Space Board contracts SNSB 139/12, 164/14, and
176/15. The IRAP contribution to MMS was supported by CNES.
NR 52
TC 1
Z9 1
U1 8
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 16
PY 2016
VL 43
IS 13
BP 6705
EP 6712
DI 10.1002/2016GL069665
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DS6ON
UT WOS:000380901600004
ER
PT J
AU Norgren, C
Graham, DB
Khotyaintsev, YV
Andre, M
Vaivads, A
Chen, LJ
Lindqvist, PA
Marklund, GT
Ergun, RE
Magnes, W
Strangeway, RJ
Russell, CT
Torbert, RB
Paterson, WR
Gershman, DJ
Dorelli, JC
Avanov, LA
Lavraud, B
Saito, Y
Giles, BL
Pollock, CJ
Burch, JL
AF Norgren, C.
Graham, D. B.
Khotyaintsev, Yu. V.
Andre, M.
Vaivads, A.
Chen, L. -J.
Lindqvist, P. -A.
Marklund, G. T.
Ergun, R. E.
Magnes, W.
Strangeway, R. J.
Russell, C. T.
Torbert, R. B.
Paterson, W. R.
Gershman, D. J.
Dorelli, J. C.
Avanov, L. A.
Lavraud, B.
Saito, Y.
Giles, B. L.
Pollock, C. J.
Burch, J. L.
TI Finite gyroradius effects in the electron outflow of asymmetric magnetic
reconnection
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE magnetic reconnection; electron demagnetization; finite gyroradius
effects; electron diffusion region
ID DIFFUSION REGION
AB We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by approximate to 15km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T-vertical bar>T and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet.
C1 [Norgren, C.; Graham, D. B.; Khotyaintsev, Yu. V.; Andre, M.; Vaivads, A.] Swedish Inst Space Phys, Uppsala, Sweden.
[Norgren, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Chen, L. -J.; Paterson, W. R.; Gershman, D. J.; Dorelli, J. C.; Avanov, L. A.; Giles, B. L.; Pollock, C. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Chen, L. -J.; Gershman, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Lindqvist, P. -A.; Marklund, G. T.] KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden.
[Ergun, R. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
[Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria.
[Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA.
[Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.
[Lavraud, B.] CNRS, UMR 5277, Toulouse, France.
[Saito, Y.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa, Japan.
[Burch, J. L.] Southwest Res Inst, San Antonio, TX USA.
RP Norgren, C (reprint author), Swedish Inst Space Phys, Uppsala, Sweden.; Norgren, C (reprint author), Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
EM cecilia.norgren@irfu.se
RI NASA MMS, Science Team/J-5393-2013
OI NASA MMS, Science Team/0000-0002-9504-5214
FU Swedish National Space Board [23/12:2, 175/15]; CNES; CNRS
FX We thank the entire MMS team and instrument PIs for data access and
support. MMS data are available at
https://lasp.colorado.edu/mms/sdc/public. This work was supported by the
Swedish National Space Board, grants 23/12:2 and 175/15. The IRAP
contribution was supported by CNES and CNRS. C.N. thanks the
International Space Science Institute (ISSI) for supporting the team
"from Cluster to MMS", from which this work was partly developed.
NR 26
TC 3
Z9 3
U1 4
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 16
PY 2016
VL 43
IS 13
BP 6724
EP 6733
DI 10.1002/2016GL069205
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA DS6ON
UT WOS:000380901600006
ER
PT J
AU Poppe, AR
Fillingim, MO
Halekas, JS
Raeder, J
Angelopoulos, V
AF Poppe, A. R.
Fillingim, M. O.
Halekas, J. S.
Raeder, J.
Angelopoulos, V.
TI ARTEMIS observations of terrestrial ionospheric molecular ion outflow at
the Moon
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE molecular ions; magnetotail; ion outflow; lunar volatiles; lunar
exosphere
ID INTERPLANETARY MAGNETIC-FIELD; COLD O+ BEAMS; ELECTRICAL-RESISTIVITY;
LOBE/MANTLE REGIONS; EARTHS MAGNETOPAUSE; PLASMA SHEET; MAGNETOSPHERE;
NITROGEN; OXYGEN; MODEL
AB The Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft observes outflowing molecular ionospheric ions at lunar distances in the terrestrial magnetotail. The heavy ion fluxes are observed during geomagnetically disturbed times and consist of mainly molecular species ( N2+, NO+, and O2+, approximately masses 28-32amu) on the order of 10(5)-10(6)cm(-2)s(-1) at nearly identical velocities as concurrently present protons. By performing backward particle tracing in time-dependent electromagnetic fields from the magnetohydrodynamic Open Global Geospace Circulation Model of the terrestrial magnetosphere, we show that the ions escape the inner magnetosphere through magnetopause shadowing near noon and are subsequently accelerated to common velocities down the low-latitude boundary layer to lunar distances. At the Moon, the observed molecular ion outflow can sputter significant fluxes of neutral species into the lunar exosphere while also delivering nitrogen and oxygen to the lunar volatile inventory.
C1 [Poppe, A. R.; Fillingim, M. O.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Poppe, A. R.; Halekas, J. S.] NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA.
[Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
[Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
RP Poppe, AR (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.; Poppe, AR (reprint author), NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA.
EM poppe@ssl.berkeley.edu
FU NASA's Solar System Exploration Research Virtual Institute (SSERVI)
[NNX14AG16A]; NASA LASER [NNX13AJ97G]; NSF [AGS-1143895]; NASA
[NAS5-02099]; German Ministry for Economy and Technology; German Center
for Aviation and Space (DLR) [50 OC 0302]
FX A.R.P. and J.S.H. gratefully acknowledge support from NASA's Solar
System Exploration Research Virtual Institute (SSERVI) grant NNX14AG16A
and NASA LASER grant NNX13AJ97G. Work at UNH was supported by NSF grant
AGS-1143895. The ARTEMIS mission is funded and operated under NASA grant
NAS5-02099, and we specifically acknowledge J.P. McFadden for the use of
ESA data and K.-H. Glassmeier, U. Auster, and W. Baumjohann for the use
of FGM data provided under the lead of the Technical University of
Braunschweig and with financial support through the German Ministry for
Economy and Technology and the German Center for Aviation and Space
(DLR) under contract 50 OC 0302. ARTEMIS data are publicly available at
http://artemis.ssl.berkeley.edu. We thank the NASA Coordinated Community
Modeling Center (CCMC) for use of the OpenGGCM model. Modeling results
can be accessed by contacting the lead author.
NR 49
TC 0
Z9 0
U1 3
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 16
PY 2016
VL 43
IS 13
BP 6749
EP 6758
DI 10.1002/2016GL069715
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA DS6ON
UT WOS:000380901600009
ER
PT J
AU Toledo-Redondo, S
Andre, M
Khotyaintsev, YV
Vaivads, A
Walsh, A
Li, WY
Graham, DB
Lavraud, B
Masson, A
Aunai, N
Divin, A
Dargent, J
Fuselier, S
Gershman, DJ
Dorelli, J
Giles, B
Avanov, L
Pollock, C
Saito, Y
Moore, TE
Coffey, V
Chandler, MO
Lindqvist, PA
Torbert, R
Russell, CT
AF Toledo-Redondo, Sergio
Andre, Mats
Khotyaintsev, Yuri V.
Vaivads, Andris
Walsh, Andrew
Li, Wenya
Graham, Daniel B.
Lavraud, Benoit
Masson, Arnaud
Aunai, Nicolas
Divin, Andrey
Dargent, Jeremy
Fuselier, Stephen
Gershman, Daniel J.
Dorelli, John
Giles, Barbara
Avanov, Levon
Pollock, Craig
Saito, Yoshifumi
Moore, Thomas E.
Coffey, Victoria
Chandler, Michael O.
Lindqvist, Per-Arne
Torbert, Roy
Russell, Christopher T.
TI Cold ion demagnetization near the X-line of magnetic reconnection
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE magnetic reconnection
ID ART. NO. A03215; DAYSIDE MAGNETOPAUSE; PLASMASPHERIC PLUMES;
STATISTICAL-ANALYSIS; OUTER MAGNETOSPHERE; EARTHS MAGNETOPAUSE;
SPACECRAFT
AB Although the effects of magnetic reconnection in magnetospheres can be observed at planetary scales, reconnection is initiated at electron scales in a plasma. Surrounding the electron diffusion region, there is an Ion-Decoupling Region (IDR) of the size of the ion length scales (inertial length and gyroradius). Reconnection at the Earth's magnetopause often includes cold magnetospheric (few tens of eV), hot magnetospheric (10keV), and magnetosheath (1keV) ions, with different gyroradius length scales. We report observations of a subregion inside the IDR of the size of the cold ion population gyroradius (approximate to 15km) where the cold ions are demagnetized and accelerated parallel to the Hall electric field. Outside the subregion, cold ions follow the E x B motion together with electrons, while hot ions are demagnetized. We observe a sharp cold ion density gradient separating the two regions, which we identify as the cold and hot IDRs.
C1 [Toledo-Redondo, Sergio; Walsh, Andrew; Masson, Arnaud] European Space Agcy, Sci Directorate, ESAC, Madrid, Spain.
[Andre, Mats; Khotyaintsev, Yuri V.; Vaivads, Andris; Li, Wenya; Graham, Daniel B.; Divin, Andrey] Swedish Inst Space Phys, Uppsala, Sweden.
[Lavraud, Benoit; Dargent, Jeremy] Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France.
[Lavraud, Benoit; Dargent, Jeremy] CNRS, Toulouse, France.
[Aunai, Nicolas; Dargent, Jeremy] Univ Paris 11, CNRS, Lab Plasma Phys, UPMC,Ecole Polytech, Paris, France.
[Divin, Andrey] St Petersburg State Univ, Earth Phys Dept, Fac Phys, St Petersburg, Russia.
[Fuselier, Stephen] Southwest Res Inst, San Antonio, TX USA.
[Fuselier, Stephen] Univ Texas San Antonio, Dept Space Sci, San Antonio, TX USA.
[Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Avanov, Levon; Pollock, Craig; Moore, Thomas E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Avanov, Levon] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Saito, Yoshifumi] Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan.
[Coffey, Victoria; Chandler, Michael O.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA.
[Lindqvist, Per-Arne] Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
[Torbert, Roy] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Russell, Christopher T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
RP Toledo-Redondo, S (reprint author), European Space Agcy, Sci Directorate, ESAC, Madrid, Spain.
EM sergiotr@ugr.es
RI NASA MMS, Science Team/J-5393-2013; Divin, Andrey/E-4501-2015
OI NASA MMS, Science Team/0000-0002-9504-5214; Divin,
Andrey/0000-0002-5579-3066
FU ESA Fellowship; science faculty of the European Space Astronomy Centre
(ESAC)
FX We would like to congratulate all the people involved in the MMS project
for all their efforts during this early stage of the mission and the
high quality achieved that will provide us great scientific return.
S.T.R. holds an ESA Fellowship and acknowledges support from the science
faculty of the European Space Astronomy Centre (ESAC). MMS data are
available to the public in the MMS Science Data Center
(https://lasp.colorado.edu/mms/sdc/public/).
NR 33
TC 1
Z9 1
U1 4
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 16
PY 2016
VL 43
IS 13
BP 6759
EP 6767
DI 10.1002/2016GL069877
PG 9
WC Geosciences, Multidisciplinary
SC Geology
GA DS6ON
UT WOS:000380901600010
ER
PT J
AU Schorghofer, N
Mazarico, E
Platz, T
Preusker, F
Schroder, SE
Raymond, CA
Russell, CT
AF Schorghofer, Norbert
Mazarico, Erwan
Platz, Thomas
Preusker, Frank
Schroeder, Stefan E.
Raymond, Carol A.
Russell, Christopher T.
TI The permanently shadowed regions of dwarf planet Ceres
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Ceres; cold traps; Dawn mission; planetary science
ID WATER ICE; SURFACE VOLATILES; POLAR-REGIONS; LUNAR-SURFACE; MERCURY;
CRATERS; FRACTIONATION; TEMPERATURE; STABILITY; MIGRATION
AB Ceres has only a small spin axis tilt (4 degrees), and craters near its rotational poles can experience permanent shadow and trap volatiles, as is the case on Mercury and on Earth's Moon. Topography derived from stereo imaging by the Dawn spacecraft is used to calculate direct solar irradiance that defines the extent of the permanently shadowed regions (PSRs). In the northern polar region, PSRs cover approximate to 1800km(2) or 0.13% of the hemisphere, and most of the PSRs are cold enough to trap water ice over geological time periods. Based on modeling of the water exosphere, water molecules seasonally reside around the winter pole and ultimately an estimated 0.14% of molecules get trapped. Even for the lowest estimates of the amount of available water, this predicts accumulation rates in excess of loss rates, and hence, there should be fresh ice deposits in the cold traps.
C1 [Schorghofer, Norbert] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA.
[Mazarico, Erwan] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Platz, Thomas] Max Planck Inst Solar Syst Res, Gottingen, Germany.
[Preusker, Frank; Schroeder, Stefan E.] Deutsch Zentrum Luft & Raumfahrt DLR, Berlin, Germany.
[Raymond, Carol A.] Jet Prop Lab, Pasadena, CA USA.
[Russell, Christopher T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA.
RP Schorghofer, N (reprint author), Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA.
EM norbert@hawaii.edu
RI Platz, Thomas/F-7539-2013; Schroder, Stefan/D-9709-2013
OI Platz, Thomas/0000-0002-1253-2034; Schroder, Stefan/0000-0003-0323-8324
FU National Aeronautics and Space Administration [NNX15AI38G]; DACGIP
FX We thank the Dawn team for the acquisition and processing of data used
in this work. N.S. was supported by the National Aeronautics and Space
Administration under grant NNX15AI38G issued through the Dawn at Ceres
Guest Investigator Program (DACGIP). E.M. also acknowledges support from
DACGIP.
NR 40
TC 3
Z9 3
U1 6
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 16
PY 2016
VL 43
IS 13
BP 6783
EP 6789
DI 10.1002/2016GL069368
PG 7
WC Geosciences, Multidisciplinary
SC Geology
GA DS6ON
UT WOS:000380901600013
ER
PT J
AU Hughes, CW
Williams, J
Hibbert, A
Boening, C
Oram, J
AF Hughes, Chris W.
Williams, Joanne
Hibbert, Angela
Boening, Carmen
Oram, James
TI A Rossby whistle: A resonant basin mode observed in the Caribbean Sea
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Caribbean Sea; sea level; bottom pressure; Rossby wave; basin mode
ID MESOSCALE VARIABILITY; OCEAN
AB We show that an important source of coastal sea level variability around the Caribbean Sea is a resonant basin mode. The mode consists of a baroclinic Rossby wave which propagates westward across the basin and is rapidly returned to the east along the southern boundary as coastal shelf waves. Almost two wavelengths of the Rossby wave fit across the basin, and it has a period of 120days. The porous boundary of the Caribbean Sea results in this mode exciting a mass exchange with the wider ocean, leading to a dominant mode of bottom pressure variability which is almost uniform over the Grenada, Venezuela, and Colombia basins and has a sharp spectral peak at 120day period. As the Rossby waves have been shown to be excited by instability of the Caribbean Current, this resonant mode is dynamically equivalent to the operation of a whistle.
C1 [Hughes, Chris W.; Oram, James] Univ Liverpool, Sch Environm Sci, Liverpool, Merseyside, England.
[Hughes, Chris W.; Williams, Joanne; Hibbert, Angela] Natl Oceanog Ctr, Liverpool, Merseyside, England.
[Boening, Carmen] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Hughes, CW (reprint author), Univ Liverpool, Sch Environm Sci, Liverpool, Merseyside, England.; Hughes, CW (reprint author), Natl Oceanog Ctr, Liverpool, Merseyside, England.
EM cwh@liv.ac.uk
FU National Oceanographic Partnership Program (NOPP); NERC through the
National Oceanography Centre; NERC [NE/I023384/1]
FX We thank the Permanent Service for Mean Sea Level for providing
quality-controlled tide gauge and bottom pressure data, which can be
found at http://www.psmsl.org/, and AVISO for provision of the ocean
dynamic topography product at http://www.aviso.altimetry.fr/. The ECCO
ocean state estimates were provided by the ECCO Consortium for
Estimating the Circulation and Climate of the Ocean funded by the
National Oceanographic Partnership Program (NOPP). NCEP Reanalysis data
were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from
http://www.esrl.noaa.gov/psd/. The JPL GRACE Mascon data can be
downloaded from http://grace.jpl.nasa.gov. Any other data used in this
paper will be supplied by C.W.H. on request by e-mail. This work has
been supported by NERC through the National Oceanography Centre, as well
as through grant NE/I023384/1. The OCCAM and NEMO models were run and
provided by the NOC Southampton modeling group. We thank them and
particularly Andrew Coward and Beverly de Cuevas for their help with
these data sets.
NR 25
TC 0
Z9 0
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 16
PY 2016
VL 43
IS 13
BP 7036
EP 7043
DI 10.1002/2016GL069573
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA DS6ON
UT WOS:000380901600043
ER
PT J
AU Dhomse, SS
Chipperfield, MP
Damadeo, RP
Zawodny, JM
Ball, WT
Feng, W
Hossaini, R
Mann, GW
Haigh, JD
AF Dhomse, S. S.
Chipperfield, M. P.
Damadeo, R. P.
Zawodny, J. M.
Ball, W. T.
Feng, W.
Hossaini, R.
Mann, G. W.
Haigh, J. D.
TI On the ambiguous nature of the 11year solar cycle signal in upper
stratospheric ozone
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE solar signal; stratosphere; modeling
ID CHEMICAL-TRANSPORT MODEL; QUASI-BIENNIAL OSCILLATION; MT. PINATUBO
ERUPTION; SPECTRAL IRRADIANCE; CLIMATE MODEL; SAGE II; SIMULATIONS;
VARIABILITY; CIRCULATION; VERSION
AB Up to now our understanding of the 11year ozone solar cycle signal (SCS) in the upper stratosphere has been largely based on the Stratospheric Aerosol and Gas Experiment (SAGE) II (v6.2) data record, which indicated a large positive signal which could not be reproduced by models, calling into question our understanding of the chemistry of the upper stratosphere. Here we present an analysis of new v7.0 SAGE II data which shows a smaller upper stratosphere ozone SCS, due to a more realistic ozone-temperature anticorrelation. New simulations from a state-of-art 3-D chemical transport model show a small SCS in the upper stratosphere, which is in agreement with SAGE v7.0 data and the shorter Halogen Occultation Experiment and Microwave Limb Sounder records. However, despite these improvements in the SAGE II data, there are still large uncertainties in current observational and meteorological reanalysis data sets, so accurate quantification of the influence of solar flux variability on the climate system remains an open scientific question.
C1 [Dhomse, S. S.; Chipperfield, M. P.; Feng, W.; Hossaini, R.; Mann, G. W.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England.
[Dhomse, S. S.; Chipperfield, M. P.] Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England.
[Damadeo, R. P.; Zawodny, J. M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Ball, W. T.] PMOD WRC, Davos, Switzerland.
[Feng, W.; Mann, G. W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England.
[Haigh, J. D.] Imperial Coll, Grantham Inst, London, England.
[Haigh, J. D.] Imperial Coll, Blackett Lab, London, England.
RP Dhomse, SS (reprint author), Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England.; Dhomse, SS (reprint author), Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England.
EM S.S.Dhomse@leeds.ac.uk
RI FENG, WUHU/B-8327-2008; Dhomse, Sandip/C-8198-2011
OI Ball, William/0000-0002-1005-3670; FENG, WUHU/0000-0002-9907-9120;
Dhomse, Sandip/0000-0003-3854-5383
FU NERC SOLCLI [NE/D002753/1]; MAPLE [NE/J008621/1]
FX This work was supported by the NERC SOLCLI (NE/D002753/1) and MAPLE
(NE/J008621/1) projects. We thank the NASA/NOAA for the MLS and HALOE
data. Model simulations were performed on the Archer and Leeds Arc1 HPC
systems.
NR 35
TC 2
Z9 2
U1 9
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUL 16
PY 2016
VL 43
IS 13
BP 7241
EP 7249
DI 10.1002/2016GL069958
PG 9
WC Geosciences, Multidisciplinary
SC Geology
GA DS6ON
UT WOS:000380901600067
ER
PT J
AU Sarangi, C
Tripathi, SN
Mishra, AK
Goel, A
Welton, EJ
AF Sarangi, Chandan
Tripathi, S. N.
Mishra, A. K.
Goel, A.
Welton, E. J.
TI Elevated aerosol layers and their radiative impact over Kanpur during
monsoon onset period
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE elevated aerosol layer; radiative forcing efficiency; daytime
variations; lower atmospheric cooling; atmospheric stability
ID ASIAN SUMMER MONSOON; INDO-GANGETIC BASIN; REGIONAL CLIMATE MODEL; BLACK
CARBON AEROSOLS; LONG-RANGE TRANSPORT; ENERGY SYSTEM CERES; MAJOR DUST
STORMS; VERTICAL-DISTRIBUTION; SEASONAL-VARIATION; PREMONSOON SEASON
AB Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximate to 2-3 degrees C) of lower troposphere (below 3km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high aerosol loading scenario could be understood as a dynamical feedback of EAL-induced stratification of lower troposphere. Further, the observed radiative effect of EALs increases the stability of the lower troposphere, which could modulate the large-scale atmospheric dynamics during monsoon onset period. These findings encourage follow-up studies on the implication of EALs to the Indian summer monsoon dynamics using numerical models.
C1 [Sarangi, Chandan; Tripathi, S. N.; Goel, A.] Indian Inst Technol, Dept Civil Engn, Kanpur, Uttar Pradesh, India.
[Mishra, A. K.] Indian Inst Technol, Ctr Environm Sci & Engn, Kanpur, Uttar Pradesh, India.
[Welton, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Tripathi, SN (reprint author), Indian Inst Technol, Dept Civil Engn, Kanpur, Uttar Pradesh, India.
EM snt@iitk.ac.in
RI Tripathi, Sachchida/J-4840-2016
FU Earth System Science Organization, Ministry of Earth Sciences,
Government of India [MM/NERC-MoES-03/2014/002]
FX The authors gratefully acknowledge the financial support given by the
Earth System Science Organization, Ministry of Earth Sciences,
Government of India (grant MM/NERC-MoES-03/2014/002) to conduct this
research under Monsoon Mission. The authors would like to thank B.N.
Holben and staff at NASA GSFC for establishing and processing data of
the AERONET and SolRad-Net site at IIT Kanpur, used in this study. We
acknowledge the use of radiosonde data freely available from University
of Wyoming, the NCEP Reanalysis data provided by the NOAA/OAR/ESRL USA,
and use of HYSPLIT model of NOAA-ARL for back trajectory analysis.
MODIS, MISR, CERES, CALIPSO, and AIRS data sets were obtained from the
NASA Langley Research Centre Atmospheric Science Data Center. All data
measured at IITK are available on request from author (snt@iitk.ac.in).
We also appreciate help from V.P. Kanawade in Figure 3.
NR 111
TC 0
Z9 0
U1 6
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 16
PY 2016
VL 121
IS 13
BP 7936
EP 7957
DI 10.1002/2015JD024711
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS4DB
UT WOS:000380730500026
ER
PT J
AU Carey, LD
Koshak, W
Peterson, H
Mecikalski, RM
AF Carey, Lawrence D.
Koshak, William
Peterson, Harold
Mecikalski, Retha M.
TI The kinematic and microphysical control of lightning rate, extent, and
NOX production
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE lightning; flash rate; flash extent; NOx production; radar; LMA
ID PRECIPITATION DEVELOPMENT; POLARIMETRIC RADAR; TRANSPORT MODELS; MAPPING
ARRAY; STORM; ELECTRIFICATION; THUNDERSTORMS; CONVECTION; ALABAMA;
PARAMETERIZATION
AB This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX=NO+NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC+cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC+CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, 0.8) but are less correlated to total flash extent (0.6) and total LNOX production (0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.
C1 [Carey, Lawrence D.; Mecikalski, Retha M.] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA.
[Koshak, William] NASA, Earth Sci Off, Marshall Space Flight Ctr, Huntsville, AL USA.
[Peterson, Harold] Bur Indian Affairs, Eastern Region Off, Nashville, TN USA.
RP Carey, LD (reprint author), Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA.
EM larry.carey@nsstc.uah.edu
FU National Science Foundation's Physical and Dynamical Meteorology (NSF
PDM) Program [AGS-1063573]
FX We wish to recognize funding from the National Science Foundation's
Physical and Dynamical Meteorology (NSF PDM) Program (AGS-1063573),
which has supported the DC3 field experiment and associated research. We
want to acknowledge Lamont Bain for his time editing and gridding the
ARMOR and KHTX data and for creating the dual-Doppler fields used in
this and other manuscripts. We also wish to thank the many, many people
who made the collection of DC3 observations possible. The data used
herein can be obtained from the DC3 webpage located here:
http://data.eol.ucar.edu/master_list/?project=DC3. Finally, we wish to
thank three anonymous reviewers for comments that have substantially
improved the quality of this research paper.
NR 60
TC 2
Z9 2
U1 3
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 16
PY 2016
VL 121
IS 13
BP 7975
EP 7989
DI 10.1002/2015JD024703
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS4DB
UT WOS:000380730500028
ER
PT J
AU Collow, ABM
Miller, MA
Trabachino, LC
AF Collow, Allison B. Marquardt
Miller, Mark A.
Trabachino, Lynne C.
TI Cloudiness over the Amazon rainforest: Meteorology and thermodynamics
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE thermodynamics; lifting condensation level; GoAmazon
ID SOUTH-AMERICA; CLIMATE-CHANGE; WATER-VAPOR; DEFORESTATION; CONVECTION;
CIRCULATION; SURFACE; BASIN; VARIABILITY; DYNAMICS
AB Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5km during the dry season (R-2=0.42) but a weak relationship during the wet season (0.12).
C1 [Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.] Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ 08901 USA.
[Collow, Allison B. Marquardt] Univ Space Res Assoc, Columbia, MD 21046 USA.
[Collow, Allison B. Marquardt] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Collow, ABM (reprint author), Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ 08901 USA.; Collow, ABM (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA.; Collow, ABM (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM allison.collow@nasa.gov
FU Department of Energy's Atmospheric System Research program
[DE-FG02-08ER64531]; U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research, Climate and
Environmental Sciences Division; National Aeronautics and Space
Administration
FX This work is supported by the Department of Energy's Atmospheric System
Research program award DE-FG02-08ER64531. Data used in this study were
obtained from the Atmospheric Radiation Measurement Program sponsored by
the U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research, Climate and Environmental Sciences Division
(http://www.archive.arm.gov/), and the National Aeronautics and Space
Administration (http://ceres.larc.nasa.gov/order_data.php and
http://daac.gsfc.nasa.gov/). We would like to thank Kathleen Schiro for
sharing data quality concerns regarding the precipitation observations
at the AMF11 and Ben Lintner for providing guidance throughout the
study.
NR 51
TC 1
Z9 1
U1 12
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 16
PY 2016
VL 121
IS 13
BP 7990
EP 8005
DI 10.1002/2016JD024848
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS4DB
UT WOS:000380730500029
ER
PT J
AU Aquila, V
Swartz, WH
Waugh, DW
Colarco, PR
Pawson, S
Polvani, LM
Stolarski, RS
AF Aquila, V.
Swartz, W. H.
Waugh, D. W.
Colarco, P. R.
Pawson, S.
Polvani, L. M.
Stolarski, R. S.
TI Isolating the roles of different forcing agents in global stratospheric
temperature changes using model integrations with incrementally added
single forcings
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE stratospheric temperatures; ozone; volcanic eruptions; solar cycle; ODS;
greenhouse gases
ID OZONE-DEPLETING SUBSTANCES; CHEMISTRY-CLIMATE MODEL;
ATMOSPHERIC-TEMPERATURE; GREENHOUSE GASES; SPECTRAL IRRADIANCE;
VOLCANIC-ERUPTIONS; NATURAL INFLUENCES; SOLAR-CYCLE; IN-SITU; TRENDS
AB Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone-depleting substances (ODSs) and by the two major volcanic eruptions of El Chichon (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model with prescribed sea surface temperatures. We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely responsible for the step-like behavior of global temperature anomalies, together with volcanically induced ozone depletion and water vapor increases in the post-Pinatubo years.
C1 [Aquila, V.] Goddard Earth Sci Technol & Res GESTAR, Columbia, MD 21046 USA.
[Aquila, V.; Waugh, D. W.; Stolarski, R. S.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.
[Aquila, V.; Colarco, P. R.] NASA, Lab Atmospher Chem & Dynam Code 614, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Swartz, W. H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Pawson, S.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Polvani, L. M.] Columbia Univ, New York, NY USA.
RP Aquila, V (reprint author), Goddard Earth Sci Technol & Res GESTAR, Columbia, MD 21046 USA.; Aquila, V (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.; Aquila, V (reprint author), NASA, Lab Atmospher Chem & Dynam Code 614, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM valentina.aquila@jhu.edu
RI Pawson, Steven/I-1865-2014; Swartz, William/A-1965-2010; Colarco,
Peter/D-8637-2012
OI Pawson, Steven/0000-0003-0200-717X; Swartz, William/0000-0002-9172-7189;
Colarco, Peter/0000-0003-3525-1662
FU NASA; U.S. National Science Foundation
FX The authors would like to thank D. Seidel, L. Oman, and P. Newman for
useful discussions and C. McLandress for providing the AMSU/SSU
temperature data. We also thank the three reviewers for their comments.
The model simulations were performed at the NASA Center for Climate
Simulation. V.A. is funded, in part, by the NASA Model, Analysis, and
Prediction program. W.H.S. is funded for this work by a grant from
NASA's Living With a Star program. L.M.P. and D.W.W. are funded, in
part, by a grant from the U.S. National Science Foundation. The MSU data
record is available at
http://www.remss.com/measurements/upper-air-temperature. The simulated
temperature records are available upon request to the corresponding
author.
NR 61
TC 2
Z9 2
U1 7
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 16
PY 2016
VL 121
IS 13
BP 8067
EP 8082
DI 10.1002/2015JD023841
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS4DB
UT WOS:000380730500034
ER
PT J
AU Li, Y
Barth, MC
Chen, G
Patton, EG
Kim, SW
Wisthaler, A
Mikoviny, T
Fried, A
Clark, R
Steiner, AL
AF Li, Yang
Barth, Mary C.
Chen, Gao
Patton, Edward G.
Kim, Si-Wan
Wisthaler, Armin
Mikoviny, Tomas
Fried, Alan
Clark, Richard
Steiner, Allison L.
TI Large-eddy simulation of biogenic VOC chemistry during the DISCOVER-AQ
2011 campaign
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE isoprene; segregation; turbulence; OH reactivity
ID VOLATILE ORGANIC-COMPOUNDS; CONVECTIVE BOUNDARY-LAYER; MEXICO-CITY;
ATMOSPHERIC CHEMISTRY; PHOTOOXIDATION PRODUCTS; VERTICAL-DISTRIBUTION;
ISOPRENE OXIDATION; CHEMICAL-REACTIONS; SHALLOW CUMULUS; REGIONAL MODEL
AB Biogenic volatile organic compounds (BVOCs) are oxidized quickly in the atmosphere to form oxygenated VOC (OVOC) and play crucial roles in the formation of ozone and secondary organic aerosols. We use the National Center for Atmospheric Research's large-eddy simulation model and Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2011 flight data to understand the role of boundary layer turbulence on the atmospheric chemistry of key BVOC species and their oxidation products. We simulate three distinct convective environments during the campaign, representing fair weather conditions (case 1: 1 July), a convective event dominated by southwesterly flow (case 2: 11 July), and a polluted event with high temperature and convection (case 3: 29 July). Isoprene segregation is greatest in the lower boundary layer under warm and convective conditions, reaching up to a 10% reduction in the isoprene-OH reaction rate. Under warm and convective conditions, the BVOC lifetimes lengthen due to increased isoprene emission, elevated initial chemical concentrations, and OH competition. Although turbulence-driven segregation has less influence on the OVOC species, convection mixes more OVOC into the upper atmospheric boundary layer (ABL) and increases the total OH reactivity. Production and loss rates of ozone above 2km in all the three cases indicate in situ ozone formation in addition to vertical convective transport of ozone from the surface and aloft, consistent with the increased contribution of OH reactivity from OVOC. Together, these results show that total OH reactivity in the ABL increases under warmer and stronger convective conditions due to enhanced isoprene emission and the OVOC contribution to ozone formation.
C1 [Li, Yang; Steiner, Allison L.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
[Barth, Mary C.; Patton, Edward G.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
[Chen, Gao] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Kim, Si-Wan] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA.
[Kim, Si-Wan] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Wisthaler, Armin] Univ Innsbruck, Inst Ion Phys & Appl Phys, Innsbruck, Austria.
[Wisthaler, Armin; Mikoviny, Tomas] Univ Oslo, Dept Chem, Oslo, Norway.
[Mikoviny, Tomas] ORAU, Oak Ridge, TN USA.
[Fried, Alan] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.
[Clark, Richard] Millersville Univ Pennsylvania, Dept Earth Sci, Millersville, PA USA.
RP Li, Y (reprint author), Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
EM yanglibj@umich.edu
RI Manager, CSD Publications/B-2789-2015; Steiner, Allison/F-4942-2011;
OI Patton, Edward/0000-0001-5431-9541
FU NASA [NNX13AN76H]; National Science Foundation; NASA
FX This research is supported by NASA Earth and Space Science Fellowship
NNX13AN76H. The National Center for Atmospheric Research is sponsored by
the National Science Foundation. We gratefully acknowledge Kenneth
Davis, Chin-Hoh Moeng, and Peter Sullivan for their initiation of the
study and the development of the NCAR LES model. DISCOVER-AQ 2011
campaign data are obtained through DISCOVER-AQ
doi:10.5067/Aircraft/DISCOVER-AQ/Aerosol-TraceGas. The PTR-MS
measurements aboard the NASA P-3B were supported by the Austrian Federal
Ministry for Transport, Innovation, and Technology through the Austrian
Space Applications Programme of the Austrian Research Promotion Agency.
Tomas Mikoviny was supported by an appointment to the NASA Postdoctoral
Program at the Langley Research Center, administered by Oak Ridge
Associated Universities through a contract with NASA. We gratefully
acknowledge Si-Chee Tsay (NASA Goddard Space Flight Center) for
providing the NOx measurements and Edwin Gluth (Maryland
Department of the Environment) for providing the surface temperature in
the Fair Hill site. MERRA IC/BC data are obtained through the Modeling
and Assimilation Data and Information Services Center
(http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl). For data from
model runs in this paper, please contact Yang Li (University of
Michigan; yanglibj@umich.edu).
NR 74
TC 0
Z9 0
U1 8
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 16
PY 2016
VL 121
IS 13
BP 8083
EP 8105
DI 10.1002/2016JD024942
PG 23
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS4DB
UT WOS:000380730500035
ER
PT J
AU Barnes, EA
Parazoo, N
Orbe, C
Denning, AS
AF Barnes, Elizabeth A.
Parazoo, Nicholas
Orbe, Clara
Denning, A. Scott
TI Isentropic transport and the seasonal cycle amplitude of CO2
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE carbon dioxide; synoptic transport; isentropic transport; seasonal cycle
ID ATMOSPHERE-BIOSPHERE EXCHANGE; COLUMN CARBON-DIOXIDE; EARTH SYSTEM
MODELS; TERRESTRIAL BIOSPHERE; NORTHERN ECOSYSTEMS; CLIMATE-CHANGE;
PRODUCTIVITY; FOREST; VULNERABILITY; NITROGEN
AB Carbon-concentration feedbacks and carbon-climate feedbacks constitute one of the largest sources of uncertainty in future climate. Since the beginning of the modern atmospheric CO2 record, seasonal variations in CO2 have been recognized as a signal of the metabolism of land ecosystems, and quantitative attribution of changes in the seasonal cycle amplitude (SCA) of CO2 to ecosystem processes is critical for understanding and projecting carbon-climate feedbacks far into the 21st Century. Here the impact of surface carbon fluxes on the SCA of CO2 throughout the Northern Hemisphere troposphere is investigated, paying particular attention to isentropic transport across latitudes. The analysis includes both a chemical transport model GOES-Chem and an idealized tracer in a gray-radiation aquaplanet. The results of the study can be summarized by two main conclusions: (1) the SCA of CO2 roughly follows surfaces of constant potential temperature, which can explain the observed increase in SCA with latitude along pressure surfaces and (2) increasing seasonal fluxes in lower latitudes have a larger impact on the SCA of CO2 throughout most of the troposphere compared to increasing seasonal fluxes in higher latitudes. These results provide strong evidence that recently observed changes in the SCA of CO2 at high northern latitudes (poleward of 60 degrees N) are likely driven by changes in midlatitude surface fluxes, rather than changes in Arctic fluxes.
C1 [Barnes, Elizabeth A.; Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Parazoo, Nicholas] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Parazoo, Nicholas] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.
[Orbe, Clara] Johns Hopkins Univ, Dept Earth & Planetary Sci, Goddard Earth Sci Technol & Res GESTAR, Baltimore, MD 21218 USA.
[Orbe, Clara] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Barnes, EA (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
EM eabarnes@atmos.colostate.edu
RI Barnes, Elizabeth/O-1790-2014
OI Barnes, Elizabeth/0000-0003-4284-9320
FU National Science Foundation [1419818]; NASA's Science Mission
Directorate [NNX15AJ09G]; National Aeronautics and Space Administration
FX The authors would like to thank three anonymous reviewers for their
helpful comments on an earlier version of this manuscript. E.A.B. was
supported by the Climate and Large-scale Dynamics Program of the
National Science Foundation under grant 1419818. A.S.D. gratefully
acknowledges support from NASA's Science Mission Directorate under the
Atmospheric Carbon Transport project (NNX15AJ09G). Part of the research
in this study was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics
and Space Administration. We thank C. Koven for providing CLM4.5 CO2
surface flux fields, and the ODIAC fossil fuel CO2 emissions
were provided by T. Oda. The model output supporting the conclusions of
this article is available from the corresponding author upon request
(eabarnes@atmos.colostate.edu).
NR 66
TC 1
Z9 1
U1 7
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 16
PY 2016
VL 121
IS 13
BP 8106
EP 8124
DI 10.1002/2016JD025109
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DS4DB
UT WOS:000380730500036
ER
PT J
AU Cui, H
Xiao, SH
Zhou, CM
Peng, YB
Kaufman, AJ
Plummer, RE
AF Cui, Huan
Xiao, Shuhai
Zhou, Chuanming
Peng, Yongbo
Kaufman, Alan J.
Plummer, Rebecca E.
TI Phosphogenesis associated with the Shuram Excursion: Petrographic and
geochemical observations from the Ediacaran Doushantuo Formation of
South China
SO SEDIMENTARY GEOLOGY
LA English
DT Article
DE Phosphogenesis; Sulfate-methane transition zone; Microbial sulfate
reduction; Authigenic carbonates; Shuram Excursion; C-S-P-Fe cycles
ID PROTEROZOIC CYANOBACTERIAL BLOOMS; FOSSIL PRESERVATION; ATMOSPHERIC
OXYGEN; PHOSPHORUS CYCLE; BIOGENIC METHANE; YANGTZE PLATFORM; EARLY
EVOLUTION; TRACE FOSSIL; BLACK-SEA; OCEAN
AB The Ediacaran Period witnessed one of the largest phosphogenic events in Earth's history. Coincidently, some phosphorite deposits in South China are associated with the largest-known carbon isotope negative excursion (i.e., Shuram Excursion), suggesting an intimate coupling of the biogeochemical carbon and phosphorous cycles. However, the geomicrobiological linkage between these anomalies remain poorly understood. In this study, we investigated the phosphorite samples from the uppermost Doushantuo Formation in South China. Carbon isotope compositions of authigenic calcite cements and nodules in the phosphorites are as low as -34 parts per thousand (VPDB). Petrographic and geochemical investigations indicate that the C-13-depleted carbonates likely formed as the result of microbial sulfate and iron reduction that released phosphorous from iron oxyhydroxide, concentrating phosphorous in pore waters, and thereby promoting phosphate mineralization. The timing of this event appears to coincide with enhanced sulfate delivery to seawater through continental weathering. The basin-scale distribution of Doushantuo phosphorites suggests a redox control on the availability of iron oxyhydroxide and the recycling of pore water phosphorous. Both inner and outer shelf regions were likely characterized by an oxic water column, and were the main loci for phosphogenesis; on the contrary, intra-shelf and slope regions, which are lean in phosphorite, were subjected to euxinic or ferruginous water column conditions. The intimate coupling between Ediacaran phosphogenesis and the Shuram Excursion suggests strong links among seawater redox conditions, C-S-P-Fe cycling, and fossil phosphatization. Increased microbial sulfate reduction driven by enhanced sulfate reservoir in the Ediacaran ocean may have played an essential role on these biogeochemical events. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Cui, Huan] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.
[Cui, Huan] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA.
[Cui, Huan; Kaufman, Alan J.; Plummer, Rebecca E.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA.
[Xiao, Shuhai] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA.
[Zhou, Chuanming] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Nanjing 210008, Jiangsu, Peoples R China.
[Peng, Yongbo] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA.
[Kaufman, Alan J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Cui, H (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.; Cui, H (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA.
EM Huan.Cui@Wisc.EDU
RI Xiao, Shuhai/A-2190-2009; Zhou, Chuanming/E-5313-2010;
OI Xiao, Shuhai/0000-0003-4655-2663; Cui, Huan/0000-0003-0705-3423
FU NASA Exobiology [NNX12AR91G, NNX15AL27G]; NSF Sedimentary Geology and
Paleontology program [EAR-0844270, EAR-1528553]; Society of Economic
Geologists Student Research Grant; Explorers Club Exploration Fund
Grant; American Association of Petroleum Geologists; NASA Astrobiology
Institute in the University of Wisconsin Madison
FX We thank Mike Evans and Zhengting Wang for their assistance in the UMD
Paleoclimate Co-Laboratory, and Timothy Rose for the guidance on using
the Cathodoluminescence Microscope and Spectrometer in the Department of
Mineral Sciences, Smithsonian Institution, Washington, DC. We also thank
Drew Muscente, Xiao-Ming Liu and Zhenbing She for helpful comments. This
research is supported by grants from the NASA Exobiology (NNX12AR91G to
AJK and NNX15AL27G to SX), the NSF Sedimentary Geology and Paleontology
program (EAR-0844270 to AJK and EAR-1528553 to SX), the Society of
Economic Geologists Student Research Grant (to HC), the Explorers Club
Exploration Fund Grant (to HC), and the American Association of
Petroleum Geologists Grants-In-Aid Program (to HC). HC also thanks the
NASA Astrobiology Institute in the University of Wisconsin Madison for
support. The manuscript benefits from constructive reviews by James
Schiffbauer and an anonymous reviewer.
NR 121
TC 4
Z9 4
U1 13
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0037-0738
EI 1879-0968
J9 SEDIMENT GEOL
JI Sediment. Geol.
PD JUL 15
PY 2016
VL 341
BP 134
EP 146
DI 10.1016/j.sedgeo.2016.05.008
PG 13
WC Geology
SC Geology
GA DT5RL
UT WOS:000381540200009
ER
PT J
AU Han, JW
Meyyappan, M
AF Han, Jin-Woo
Meyyappan, M.
TI A Built-In Temperature Sensor in an Integrated Microheater
SO IEEE SENSORS JOURNAL
LA English
DT Article
DE Temperature sensing; built-in mechanism; microheater; Joule heating
ID GAS SENSOR; ARRAY; FILM
AB Chip-based microheaters have been widely used in many applications, including gas sensors, flow meters, mass sensors, and polymerase chain reaction chambers, where accurate monitoring of temperature is critical. The temperature measurement is conventionally done with the aid of a separate sensor, which may add to the cost and inaccuracy. In this paper, a built-in temperature sensing method is provided for the microheaters. The resistor-based microheater relies on Joule heating mechanism and its resistance is dependent upon its own body temperature, implying that the microheater has an inherent temperature sensing mechanism. It is found that an intermittent temperature sampling in the middle of the heating cycle does not disturb the body temperature if the temperature sampling voltage and pulsewidth are sufficiently low and short, respectively. The built-in temperature sensing is attributed to the electrical time constant being few orders of magnitude smaller than the thermal time constant. The temperature estimation results using the built-in method show excellent agreement with the benchmark measurements from an infrared pyrometer.
C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Han, JW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM jin-woo.han@nasa.gov; m.meyyappan@nasa.gov
NR 16
TC 1
Z9 1
U1 12
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1530-437X
EI 1558-1748
J9 IEEE SENS J
JI IEEE Sens. J.
PD JUL 15
PY 2016
VL 16
IS 14
BP 5543
EP 5547
DI 10.1109/JSEN.2016.2569445
PG 5
WC Engineering, Electrical & Electronic; Instruments & Instrumentation;
Physics, Applied
SC Engineering; Instruments & Instrumentation; Physics
GA DR0MM
UT WOS:000379601600007
ER
PT J
AU Sobel, AH
Camargo, SJ
Hall, TM
Lee, CY
Tippett, MK
Wing, AA
AF Sobel, Adam H.
Camargo, Suzana J.
Hall, Timothy M.
Lee, Chia-Ying
Tippett, Michael K.
Wing, Allison A.
TI Human influence on tropical cyclone intensity
SO SCIENCE
LA English
DT Review
ID GENESIS POTENTIAL INDEX; SEA-SURFACE TEMPERATURE; GLOBAL CLIMATE-CHANGE;
HURRICANE ACTIVITY; MAXIMUM INTENSITY; REANALYSIS DATA; FUTURE CHANGES;
CMIP5 MODELS; VARIABILITY; TRENDS
AB Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.
C1 [Sobel, Adam H.; Tippett, Michael K.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Sobel, Adam H.; Camargo, Suzana J.; Wing, Allison A.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
[Hall, Timothy M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Lee, Chia-Ying] Columbia Univ, Int Res Inst Climate & Soc, Palisades, NY 10964 USA.
[Tippett, Michael K.] King Abdulaziz Univ, Dept Meteorol, Ctr Excellence Climate Res, Jeddah, Saudi Arabia.
RP Sobel, AH (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Sobel, AH (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
EM ahs129@columbia.edu
RI Camargo, Suzana/C-6106-2009; Sobel, Adam/K-4014-2015; Tippett,
Michael/C-6286-2011;
OI Camargo, Suzana/0000-0002-0802-5160; Sobel, Adam/0000-0003-3602-0567;
Tippett, Michael/0000-0002-7790-5364; Wing, Allison/0000-0003-2194-8709
FU NSF [AGS-1143959]; Office of Naval Research [N00014-16-1-2073]; NSF
Atmospheric and Geospace Sciences postdoctoral research fellowship
[1433251]
FX A.H.S. thanks J. Kossin, G. Vecchi, and K. Emanuel for helpful
discussions. This work was supported by NSF grant AGS-1143959 and Office
of Naval Research grant N00014-16-1-2073. A.A.W. is supported by a NSF
Atmospheric and Geospace Sciences postdoctoral research fellowship under
award no. 1433251.
NR 83
TC 4
Z9 4
U1 41
U2 73
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD JUL 15
PY 2016
VL 353
IS 6296
BP 242
EP 246
DI 10.1126/science.aaf6574
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR0EM
UT WOS:000379580800038
PM 27418502
ER
PT J
AU Kulkarni, C
Peteet, D
Boger, R
Heusser, L
AF Kulkarni, Charuta
Peteet, Dorothy
Boger, Rebecca
Heusser, Linda
TI Exploring the role of humans and climate over the Balkan landscape: 500
years of vegetational history of Serbia
SO QUATERNARY SCIENCE REVIEWS
LA English
DT Article
DE Little Ice Age; Paleoecology; Human-environmental interactions; Serbia;
Central Balkans
ID TREE-RING WIDTHS; PALYNOLOGICAL RICHNESS; LAND-USE; FLORISTIC DIVERSITY;
LAST MILLENNIUM; PLANT DIVERSITY; POLLEN ANALYSIS; EASTERN EUROPE;
FOSSIL POLLEN; HUMAN IMPACT
AB We present the first, well-dated, high-resolution record of vegetation and landscape change from Serbia, which spans the past 500 years. Biological proxies (pollen, spores, and charcoal), geochemical analysis through X-ray Fluorescence (XRF), and a detailed chronology based on AMS C-14 dating from a western Serbian sinkhole core suggest complex woodland-grassland dynamics and strong erosional signals throughout the Little Ice Age (LIA). An open landscape with prominent steppe vegetation (e.g. Poaceae, Chenopodiaceae) and minor woodland exists during 1540-1720 CE (early LIA), while the late LIA (1720-1850 CE) in this record shows higher tree percentages possibly due to increased moisture availability. The post LIA Era (1850-2012 CE) brings a disturbed type of vegetation with the presence of weedy genera and an increase in regional woodland. Anthropogenic indicators for agricultural, pastoral and fire practices in the region together attest to the dominant role of humans in shaping this Balkan landscape throughout the interval. The changing nature of human interference, potentially as a response to underlying climatic transitions, is evident through large-scale soil depletion resulting from grazing and land clearance during the early LIA and stabilization of arable lands during the late and post-LIA eras. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Kulkarni, Charuta; Boger, Rebecca] CUNY, Grad Ctr, Dept Earth & Environm Sci, 365 Fifth Ave, New York, NY 10016 USA.
[Peteet, Dorothy] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
[Peteet, Dorothy; Heusser, Linda] Lamont Doherty Earth Observ, 61 Rte 9W, Palisades, NY 10964 USA.
[Boger, Rebecca] CUNY Brooklyn Coll, Dept Earth & Environm Sci, 2900 Bedford Ave, Brooklyn, NY 11210 USA.
RP Kulkarni, C (reprint author), CUNY, Grad Ctr, Dept Earth & Environm Sci, 365 Fifth Ave, New York, NY 10016 USA.
EM ckulkarni@gradcenter.cuny.edu
OI Kulkarni, Charuta/0000-0002-4952-7765
FU PSC CUNY [66575-00-44]
FX This research is funded by PSC CUNY Grant No. 66575-00-44. The authors
are grateful to Dr. Branko Sikoparia and Dr. Predrag Radisic from the
Laboratory of Palynology, University of Novi Sad, Serbia for providing
necessary reference pollen slides. We also thank Mr. Marko Rucando and
Ms. Tamara Dukic for their help in collecting detailed information on
local vegetation. Special thanks to Dr. Jonathan Nichols for his
insights into the age-depth modelling in this study. We are also
grateful to the two anonymous reviewers and the editor, Dr. Jose S
Carrion for constructive suggestions on earlier versions of the
manuscript. This is LDEO contribution no. 8017.
NR 119
TC 0
Z9 0
U1 10
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-3791
J9 QUATERNARY SCI REV
JI Quat. Sci. Rev.
PD JUL 15
PY 2016
VL 144
BP 83
EP 94
DI 10.1016/j.quascirev.2016.05.021
PG 12
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA DQ3LW
UT WOS:000379104800007
ER
PT J
AU Gupta, RK
Pandya, R
Sieffert, T
Meyyappan, M
Koehne, JE
AF Gupta, Rakesh K.
Pandya, Ruchi
Sieffert, Theodore
Meyyappan, M.
Koehne, Jessica E.
TI Multiplexed electrochemical immunosensor for label-free detection of
cardiac markers using a carbon nanofiber array chip
SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
LA English
DT Article
DE Biosensors; Vertically aligned carbon nanofibers; Cardiac proteins;
Nanoelectrode array; Differential pulse voltammetry; Electrochemical
multianalyte immunosensor
ID C-REACTIVE PROTEIN; ACUTE MYOCARDIAL-INFARCTION; ACUTE CORONARY
SYNDROMES; CREATINE-KINASE-MB; TROPONIN-I; NANOELECTRODE ARRAYS; RISK
STRATIFICATION; NATRIURETIC PEPTIDE; HUMAN SERUM; BIOMARKERS
AB We present an electrochemical multianalyte or multiplexed immunosensor for simultaneous label free detection of cardiac markers panel, comprising of C-reactive protein, cardiac troponin-I and myoglobin. The multi electrode biosensor chip contains nine identical but electrically isolated microelectrodes arranged in a 3 x 3 array configuration. Each electrode contains carbon nanofiber nanoelectrodes grown vertically using plasma enhanced chemical vapor deposition. A hydrophobic photoresist layer, lithographically etched on the chip, exposes the electrodes and helps to selectively immobilize the antibody probes for the three target cardiac biomarkers using carbodiimide chemistry. The real-time label free detection of the three cardiac markers from a mixture is demonstrated with high sensitivity and selectivity. Detection in complex protein mixtures in human blood serum does not show any false positives from non-specific protein adsorption. The results show that the present sensor can serve as a miniaturized, low cost lab-on-a-chip system for the detection of various biomarkers in healthcare, environmental monitoring and security applications. Published by Elsevier B.V.
C1 [Gupta, Rakesh K.; Pandya, Ruchi; Sieffert, Theodore; Meyyappan, M.; Koehne, Jessica E.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA.
[Gupta, Rakesh K.] Univ Manchester, Manchester M13 9PL, Lancs, England.
RP Koehne, JE (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA.
EM Jessica.e.koehne@nasa.gov
FU J&K Council for Science and Technology, Department of Higher Education,
JK, India; University Grants Commission (UGC), New-Delhi, India
FX JK acknowledges a Presidential Early Career Award. RKG acknowledges the
financial support from the J&K Council for Science and Technology,
Department of Higher Education, J&K, India and University Grants
Commission (UGC), New-Delhi, India. TS was a graduate student intern
from the Purdue University, School of Aeronautics and Astronautics and
RP was a high school student intern from Lynbrook High School, San Jose,
CA.
NR 48
TC 0
Z9 0
U1 21
U2 37
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 1572-6657
EI 1873-2569
J9 J ELECTROANAL CHEM
JI J. Electroanal. Chem.
PD JUL 15
PY 2016
VL 773
BP 53
EP 62
DI 10.1016/j.jelechem.2016.04.034
PG 10
WC Chemistry, Analytical; Electrochemistry
SC Chemistry; Electrochemistry
GA DP4JY
UT WOS:000378463400008
ER
PT J
AU Schmitt, MP
Harder, BJ
Wolfe, DE
AF Schmitt, Michael P.
Harder, Bryan J.
Wolfe, Douglas E.
TI Process-structure-property relations for the erosion durability of
plasma spray-physical vapor deposition (PS-PVD) thermal barrier coatings
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article
DE Thermal barrier coatings; Erosion; Low k; Rare earth; PS-PVD; TBC
ID YTTRIA-STABILIZED ZIRCONIA; MECHANICAL-PROPERTIES; TBC MORPHOLOGY;
CONDUCTIVITY; ARCHITECTURES; INFILTRATION; DEGRADATION; SYSTEMS
AB New thermal barrier coating (TBC) materials and microstructures are under development to increase gas turbine operating temperatures beyond the similar to 1200 degrees C threshold of standard 7 wt% yttria stabilized zirconia (7YSZ). To deposit these advanced coatings, a new thermal spray deposition technique is used: Plasma Spray - Physical Vapor Deposition (PS-PVD). PS-PVD is capable of depositing from the vapor phase to yield strain tolerant columnar microstructures similar to Electron Beam - Physical Vapor Deposition (EB-PVD) or, alternatively, the traditional splat-like lamellar microstructure common to Air Plasma Spray (APS). This study investigates the process-structure relationships and resulting erosion response for plasma gas flow, amperage, and feed rate. It was found that in the selected design space, porosity and surface roughness vary from similar to 12-26% and similar to 5-10 mu m, respectively. Erosion behavior is discussed and the mechanism is identified to be heavily dependent upon the intercolumnar spacing. The lowest erosion rates are similar to EB-PVD, while the highest erosion rates were closer to APS. This is attributed to the hybrid nature of the PS-PVD process and provides an opportunity to tailor coatings with a wide range of properties, and thus performance. Published by Elsevier B.V.
C1 [Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA.
[Schmitt, Michael P.; Harder, Bryan J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Wolfe, Douglas E.] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA.
RP Harder, BJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
EM bryan.harder@nasa.gov
FU NASA Graduate Student Researchers Program (GSRP) [NNX11AL02H]; Applied
Resarch Lab (ARL)-Walker Fellowship program
FX The authors would like to thank Dr. Rick Rogers and Dr. Brian Good for
their thoughtful discussion. This work was supported under the NASA
Graduate Student Researchers Program (GSRP) award No. NNX11AL02H and the
Applied Resarch Lab (ARL)-Walker Fellowship program. The opinions and
views expressed are those of the authors and do not necessarily reflect
NASA or the US Navy.
NR 35
TC 3
Z9 3
U1 18
U2 35
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD JUL 15
PY 2016
VL 297
BP 11
EP 18
DI 10.1016/j.surfcoat.2016.04.029
PG 8
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA DO5JS
UT WOS:000377820000002
ER
PT J
AU Keller, JW
Gaddis, L
Petro, NE
AF Keller, John W.
Gaddis, Lisa
Petro, Noah E.
TI Untitled
SO ICARUS
LA English
DT Editorial Material
C1 [Keller, John W.; Petro, Noah E.] NASA, Goddard Space Flight Ctr, Washington, DC 20010 USA.
[Gaddis, Lisa] USGS, Astrogeol Sci Ctr, San Francisco, CA USA.
RP Keller, JW (reprint author), NASA, Goddard Space Flight Ctr, Washington, DC 20010 USA.
NR 2
TC 0
Z9 0
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 1
EP 1
DI 10.1016/j.icarus.2016.04.016
PG 1
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900001
ER
PT J
AU Keller, JW
Petro, NE
Vondrak, RR
AF Keller, J. W.
Petro, N. E.
Vondrak, R. R.
CA LRO Team
TI The Lunar Reconnaissance Orbiter Mission - Six years of science and
exploration at the Moon
SO ICARUS
LA English
DT Article
DE Moon; Moon, surface; Geological processes
ID ALTIMETER LOLA DATA; LASER ALTIMETER; SOUTH-POLE; NEUTRON DETECTOR;
RADIOMETER OBSERVATIONS; RADIATION ENVIRONMENT; COHERENT BACKSCATTER;
COMPTON-BELKOVICH; SHACKLETON CRATER; SILICIC VOLCANISM
AB Since entering lunar orbit on June 23, 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. These measurements provide new information regarding the physical properties of the lunar surface, the lunar environment, and the location of volatiles and other resources. Scientific interpretation of these observations improves our understanding of the geologic history of the Moon, its current state, and what its history can tell us about the evolution of the Solar System. Scientific results from LRO observations overturned existing paradigms and deepened our appreciation of the complex nature of our nearest neighbor. This paper summarizes the capabilities, measurements, and some of the science and exploration results of the first six years of the LRO mission. Published by Elsevier Inc.
C1 [Keller, J. W.; Petro, N. E.; Vondrak, R. R.; LRO Team] NASA, Goddard Space Flight Ctr, Code 691,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
RP Keller, JW (reprint author), NASA, Goddard Space Flight Ctr, Code 691,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM John.W.Keller@nasa.gov
NR 161
TC 3
Z9 3
U1 4
U2 14
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 2
EP 24
DI 10.1016/j.icarus.2015.11.024
PG 23
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900002
ER
PT J
AU Schwadron, NA
Wilson, JK
Looper, MD
Jordan, AP
Spence, HE
Blake, JB
Case, AW
Iwata, Y
Kasper, JC
Farrell, WM
Lawrence, DJ
Livadiotis, G
Mazur, J
Petro, N
Pieters, C
Robinson, MS
Smith, S
Townsend, LW
Zeitlin, C
AF Schwadron, N. A.
Wilson, J. K.
Looper, M. D.
Jordan, A. P.
Spence, H. E.
Blake, J. B.
Case, A. W.
Iwata, Y.
Kasper, J. C.
Farrell, W. M.
Lawrence, D. J.
Livadiotis, G.
Mazur, J.
Petro, N.
Pieters, C.
Robinson, M. S.
Smith, S.
Townsend, L. W.
Zeitlin, C.
TI Signatures of volatiles in the lunar proton albedo
SO ICARUS
LA English
DT Article
DE Moon, surface; Cosmic rays; Ices; Moon
ID PROSPECTOR GAMMA-RAY; NEUTRON SPECTROMETERS; SPATIAL-DISTRIBUTION;
EPITHERMAL NEUTRONS; WATER ICE; MOON; SURFACE; RADIATION; POLES
AB We find evidence for hydrated material in the lunar regolith using "albedo protons" measured with the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and are inconsistent with the latitude trends of heavy element enrichment (e.g., enhanced Fe abundance). The latitudinal distribution of albedo protons anti-correlates with that of epithermal or high energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in hydrated regolith that is more prevalent near the poles. The CRaTER instrument may thus provide important measurements of volatile distributions within regolith at the Moon and potentially, with similar sensors and observations, at other bodies within the Solar System. (C) 2016 Published by Elsevier Inc.
C1 [Schwadron, N. A.; Wilson, J. K.; Jordan, A. P.; Spence, H. E.; Smith, S.] Univ New Hampshire, Ctr Space Sci, Morse Hall,8 Coll Rd, Durham, NH 03824 USA.
[Schwadron, N. A.; Wilson, J. K.; Jordan, A. P.; Spence, H. E.; Smith, S.] Univ New Hampshire, Inst Earth Oceans & Space, Morse Hall,8 Coll Rd, Durham, NH 03824 USA.
[Looper, M. D.; Blake, J. B.; Mazur, J.] Aerosp Corp, El Segundo, CA 90245 USA.
[Case, A. W.; Kasper, J. C.] Harvard Smithsonian Ctr Astrophys, Div High Energy Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Kasper, J. C.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
[Iwata, Y.] NIRS, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan.
[Lawrence, D. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Farrell, W. M.; Petro, N.] Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Pieters, C.] Brown Univ, Planetary Geosciences Grp, Dept Earth Environm & Planetary Sci, 324 Brook St, Providence, RI 02912 USA.
[Robinson, M. S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Townsend, L. W.] Univ Tennessee, Knoxville, TN 37996 USA.
[Livadiotis, G.; Zeitlin, C.] Univ New Hampshire, SW Res Inst, Earth Oceans & Space Sci, Durham, NH 03824 USA.
RP Schwadron, NA (reprint author), Univ New Hampshire, Ctr Space Sci, Morse Hall,8 Coll Rd, Durham, NH 03824 USA.; Schwadron, NA (reprint author), Univ New Hampshire, Inst Earth Oceans & Space, Morse Hall,8 Coll Rd, Durham, NH 03824 USA.
RI Farrell, William/I-4865-2013
FU LRO program [NNG11PA03C]; SSERVI; DREAM2 (NASA) [NNX14AG13A]
FX We thank all those who made CRaTER possible. CRaTER is primarily funded
by the LRO program (contract NNG11PA03C). This work was also funded by
SSERVI and DREAM2 (NASA Grant NNX14AG13A). CRaTER data are available at
http://crater-web.sr.unh.edu.
NR 42
TC 0
Z9 0
U1 6
U2 14
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 25
EP 35
DI 10.1016/j.icarus.2015.12.003
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900003
ER
PT J
AU Hurley, DM
Cook, JC
Benna, M
Halekas, JS
Feldman, PD
Retherford, KD
Hodges, RR
Grava, C
Mahaffy, P
Gladstone, GR
Greathouse, T
Kaufmann, DE
Elphic, RC
Stern, SA
AF Hurley, Dana M.
Cook, Jason C.
Benna, Mehdi
Halekas, Jasper S.
Feldman, Paul D.
Retherford, Kurt D.
Hodges, R. Richard
Grava, Cesare
Mahaffy, Paul
Gladstone, G. Randall
Greathouse, Thomas
Kaufmann, David E.
Elphic, Richard C.
Stern, S. Alan
TI Understanding temporal and spatial variability of the lunar helium
atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS
SO ICARUS
LA English
DT Article
DE Moon; Atmospheres, evolution; Spectroscopy; Solar wind
ID SOLAR-WIND; MERCURY; MOON; INSTRUMENT; HYDROGEN; MISSION; ARGON; LAMP
AB Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 +/- 5% of the helium to the lunar exosphere. The remaining 36 +/- 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 +/- 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Hurley, Dana M.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
[Cook, Jason C.; Stern, S. Alan] SW Res Inst, Boulder, CO 80302 USA.
[Benna, Mehdi; Mahaffy, Paul] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Halekas, Jasper S.] Univ Iowa, Iowa City, IA 52242 USA.
[Feldman, Paul D.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Retherford, Kurt D.; Grava, Cesare; Gladstone, G. Randall; Greathouse, Thomas] SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA.
[Hodges, R. Richard] Univ Colorado, Boulder, CO 80303 USA.
[Elphic, Richard C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Hurley, DM (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
RI Hurley, Dana/F-4488-2015;
OI Hurley, Dana/0000-0003-1052-1494; Halekas, Jasper/0000-0001-5258-6128
FU NASA through the LADEE mission; NASA through LADEE Guest Investigator
Program [NNX13AO70G]; NASA through LRO LAMP mission [NNG05EC87C]; NASA
through ARTEMIS mission
FX We acknowledge NASA for support through the LADEE mission, LADEE Guest
Investigator Program (NNX13AO70G), LRO LAMP mission (NNG05EC87C), and
ARTEMIS mission. We are grateful to the many operations folks involved
in all three of these mission teams that helped facilitate our campaigns
to coordinate investigations during the LADEE era.
NR 29
TC 0
Z9 0
U1 6
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 45
EP 52
DI 10.1016/j.icarus.2015.09.011
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900005
ER
PT J
AU Barker, MK
Sun, X
Mazarico, E
Neumann, GA
Zuber, MT
Smith, DE
AF Barker, M. K.
Sun, X.
Mazarico, E.
Neumann, G. A.
Zuber, M. T.
Smith, D. E.
TI Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter
passive and active radiometry
SO ICARUS
LA English
DT Article
DE Photometry; Moon; surface; Regoliths
ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; PHOTOMETRIC PROPERTIES;
MAGNETIC-ANOMALIES; CLEMENTINE DATA; ONE MOON; SURFACE; REGOLITH;
MISSION; ALBEDO; MODEL
AB We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be similar to 5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with GMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at 300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (GE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and GMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and GMAT, suggesting the visible-to-near-infrared spectrum and phase function respond differently to the unusual regolith evolution and properties at this location. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Barker, M. K.] Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA.
[Sun, X.; Mazarico, E.; Neumann, G. A.] Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Zuber, M. T.; Smith, D. E.] MIT, Deptartment Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RP Barker, MK (reprint author), Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA.
EM michael.k.barker@nasa.gov
RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014
OI Neumann, Gregory/0000-0003-0644-9944; Mazarico,
Erwan/0000-0003-3456-427X
NR 74
TC 1
Z9 1
U1 1
U2 3
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 96
EP 113
DI 10.1016/j.icarus.2016.02.008
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900010
ER
PT J
AU Baker, DMH
Head, JW
Collins, GS
Potter, RWK
AF Baker, David M. H.
Head, James W.
Collins, Gareth S.
Potter, Ross W. K.
TI The formation of peak-ring basins: Working hypotheses and path forward
in using observations to constrain models of impact-basin formation
SO ICARUS
LA English
DT Article
DE Moon; Moon, surface; Impact processes; Cratering
ID COMPLEX CRATER FORMATION; LUNAR MASCON BASINS; SCHRODINGER-BASIN;
ACOUSTIC FLUIDIZATION; CHICXULUB CRATER; MOON; ORIGIN; MELT; CRUST;
SIMULATIONS
AB Impact basins provide windows into the crustal structure and stratigraphy of planetary bodies; however, interpreting the stratigraphic origin of basin materials requires an understanding of the processes controlling basin formation and morphology. Peak-ring basins (exhibiting a rim crest and single interior ring of peaks) provide important insight into the basin-formation process, as they are transitional between complex craters with central peaks and larger multi-ring basins. New image and altimetry data from the Lunar Reconnaissance Orbiter as well as a suite of remote sensing datasets have permitted a reassessment of the origin of lunar peak-ring basins. We synthesize morphometric, spectroscopic, and gravity observations of lunar peak-ring basins and describe two working hypotheses for the formation of peak rings that involve interactions between inward collapsing walls of the transient cavity and large central uplifts of the crust and mantle. Major facets of our observations are then compared and discussed in the context of numerical simulations of peak-ring basin formation in order to plot a course for future model refinement and development. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Baker, David M. H.; Head, James W.; Potter, Ross W. K.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA.
[Baker, David M. H.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 698, Greenbelt, MD 20771 USA.
[Collins, Gareth S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England.
RP Baker, DMH (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 698, Greenbelt, MD 20771 USA.
EM david.m.hollibaughbaker@nasa.gov
OI Collins, Gareth/0000-0002-6087-6149
FU NASA Lunar Reconnaissance Orbiter (LRO) Mission, Lunar Orbiter Laser
Altimeter (LOLA) Experiment Team [NNX11AK29G, NNX13AO77G]; NASA Gravity
Recovery and Interior Laboratory (GRAIL) Mission Guest Scientist Program
[NNX12AL07G]; NASA Solar System Exploration Research Virtual Institute
(SSERVI) grant for Evolution and Environment of Exploration Destinations
[NNA14AB01A]; Science and Facilities Research Council (STFC)
[ST/J001260/1]
FX Thank you to an anonymous reviewer and to Mark Cintala for their
comprehensive reviews that greatly improved the quality of the
manuscript. We gratefully acknowledge financial support from the NASA
Lunar Reconnaissance Orbiter (LRO) Mission, Lunar Orbiter Laser
Altimeter (LOLA) Experiment Team (Grants NNX11AK29G and NNX13AO77G), the
NASA Gravity Recovery and Interior Laboratory (GRAIL) Mission Guest
Scientist Program (Grant NNX12AL07G) and the NASA Solar System
Exploration Research Virtual Institute (SSERVI) grant for Evolution and
Environment of Exploration Destinations under cooperative agreement
number NNA14AB01A at Brown University. We gratefully acknowledge the
developers of the iSALE shock physics code (www.isale-code.de). GSC was
funded by Science and Facilities Research Council (STFC) grant
ST/J001260/1.
NR 116
TC 5
Z9 5
U1 6
U2 11
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 146
EP 163
DI 10.1016/j.icarus.2015.11.033
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900014
ER
PT J
AU Ghent, RR
Carter, LM
Bandfield, JL
Udovicic, CJT
Campbell, BA
AF Ghent, R. R.
Carter, L. M.
Bandfield, J. L.
Udovicic, C. J. Tai
Campbell, B. A.
TI Lunar crater ejecta: Physical properties revealed by radar and thermal
infrared observations
SO ICARUS
LA English
DT Article
DE Moon; Regoliths; Radar observations; Infrared observations; Cratering
ID IMPACT CRATERS; 70-CM WAVELENGTH; MOON; AGES; CONSTRAINTS; REGOLITH;
DEPOSITS; BASIN; MARS
AB We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Ghent, R. R.; Udovicic, C. J. Tai] Univ Toronto, Dept Earth Sci, 22 Russell St, Toronto, ON M5S 3B1, Canada.
[Ghent, R. R.] Planetary Sci Inst, Tucson, AZ 85719 USA.
[Carter, L. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bandfield, J. L.] Space Sci Inst, Boulder, CO 80301 USA.
[Campbell, B. A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA.
RP Ghent, RR (reprint author), Univ Toronto, Dept Earth Sci, 22 Russell St, Toronto, ON M5S 3B1, Canada.
RI Carter, Lynn/D-2937-2012
NR 53
TC 2
Z9 2
U1 5
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 182
EP 195
DI 10.1016/j.icarus.2015.12.014
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900016
ER
PT J
AU Greenhagen, BT
Neish, CD
Williams, JP
Cahill, JTS
Ghent, RR
Hayne, PO
Lawrence, SJ
Petro, NE
Bandfield, JL
AF Greenhagen, Benjamin T.
Neish, Catherine D.
Williams, Jean-Pierre
Cahill, Joshua T. S.
Ghent, Rebecca R.
Hayne, Paul O.
Lawrence, Samuel J.
Petro, Noah E.
Bandfield, Joshua L.
TI Origin of the anomalously rocky appearance of Tsiolkovskiy crater
SO ICARUS
LA English
DT Article
DE Moon, surface; Cratering; Impact processes; Geological processes;
Regoliths
ID LUNAR FARSIDE; GIORDANO BRUNO; IMPACT MELT; AGE; FLOWS; MOON; MARE
AB Rock abundance maps derived from the Diviner Lunar Radiometer instrument on the Lunar Reconnaissance Orbiter (LRO) show Tsiolkovskiy crater to have high surface rock abundance and relatively low regolith thickness. The location of the enhanced rock abundance to the southeast of the crater is consistent with a massive, well-preserved impact melt deposit apparent in LRO Miniature Radio Frequency instrument circular polarization ratio data. A new model crater age using LRO Lunar Reconnaissance Orbiter Camera imagery suggests that while it originated in the Late Imbrian, Tsiolkovskiy may be the youngest lunar crater of its size (similar to 180 km diameter). Together these data show that Tsiolkovskiy has a unique surface rock population and regolith properties for a crater of its size and age. Explanation of these observations requires mechanisms that produce more large blocks, preserve boulders and large blocks from degradation to regolith, and/or uncover buried rocks. These processes have important implications for formation of regolith on the Moon. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Greenhagen, Benjamin T.; Cahill, Joshua T. S.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA.
[Neish, Catherine D.] Univ Western Ontario, Dept Earth Sci, Biol & Geol Sci Bldg,Room 1026 1151 Richmond St N, London, ON N6A 5B7, Canada.
[Williams, Jean-Pierre] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, 595 Charles Young Dr East,Box 951567, Los Angeles, CA 90095 USA.
[Ghent, Rebecca R.] Ctr Earth Sci, Dept Earth Sci, 22 Russell St, Toronto, ON M5S 3B1, Canada.
[Ghent, Rebecca R.] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA.
[Hayne, Paul O.] CALTECH, Jet Prop Lab, ASU, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Lawrence, Samuel J.] Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA.
[Petro, Noah E.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Bandfield, Joshua L.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA.
RP Greenhagen, BT (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA.
EM benjamin.greenhagen@jhuapl.edu
RI Williams, Jean-Pierre/C-3531-2009
OI Williams, Jean-Pierre/0000-0003-4163-2760
FU LRO project; Diviner science investigation; NASA
FX We thank the LRO, Diviner, Mini-RF, and LROC operations teams for their
effort in returning the data presented here. We also wish to thank the
Diviner and Mini-RF science teams for helpful discussion in the early
stages of this work. This work was supported by the LRO project and the
Diviner science investigation, under contract with NASA.
NR 39
TC 1
Z9 1
U1 4
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 237
EP 247
DI 10.1016/j.icarus.2016.02.041
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900021
ER
PT J
AU Ashley, JW
Robinson, MS
Stopar, JD
Glotch, TD
Hawke, BR
van der Bogert, CH
Hiesinger, H
Lawrence, SJ
Jolliff, BL
Greenhagen, BT
Giguere, TA
Paige, DA
AF Ashley, J. W.
Robinson, M. S.
Stopar, J. D.
Glotch, T. D.
Hawke, B. Ray
van der Bogert, C. H.
Hiesinger, H.
Lawrence, S. J.
Jolliff, B. L.
Greenhagen, B. T.
Giguere, T. A.
Paige, D. A.
TI The Lassell massif-A silicic lunar volcano
SO ICARUS
LA English
DT Article
DE Moon, surface; Moon, interior; Volcanism; Infrared observations; Image
processing
ID COMPOSITIONAL ANALYSES; PYROCLASTIC DEPOSITS; MAIRAN DOMES; MARE
BASALTS; MARIUS HILLS; RED SPOTS; MOON; SURFACE; GRUITHUISEN;
EMPLACEMENT
AB Lunar surface volcanic processes are dominated by mare-producing basaltic extrusions. However, spectral anomalies, landform morphology, and granitic or rhyolitic components found in the Apollo sample suites indicate limited occurrences of non-mare, geochemically evolved (Si-enriched) volcanic deposits. Recent thermal infrared spectroscopy, high-resolution imagery, and topographic data from the Lunar Reconnaissance Orbiter (LRO) show that most of the historic "red spots" and other, less well-known locations on the Moon, are indeed silica rich (relative to basalt). Here we present a geologic investigation of the Lassell massif (14.65 degrees S, 350.96 degrees E) near the center of Alphonsus A basin in Mare Nubium, where high silica thermal emission signals correspond with morphological indications of viscous (possibly also explosive) extrusion, and small-scale, low-reflectance deposits occur in a variety of stratigraphic relationships. Multiple layers with stair-step lobate forms suggest different eruption events or pulsing within a single eruption. Absolute model ages derived from crater size-frequency distributions (CSFDs) indicate that the northern parts of the massif were emplaced at similar to 4 Ga, before the surrounding mare. However, CSFDs also indicate the possibility of more recent resurfacing events. The complex resurfacing history might be explained by either continuous resurfacing due to mass wasting and/or the emplacement of pyroclastics. Relatively low-reflectance deposits are visible at meter-scale resolutions (below detection limits for compositional analysis) at multiple locations across the massif, suggestive of pyroclastic activity, a quenched flow surface, or late-stage mafic materials. Compositional evidence from 7-band UV/VIS spectral data at the kilometer-scale and morphologic evidence for possible caldera collapse and/or explosive venting support the interpretation of a complex volcanic history for the Lassell massif. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Ashley, J. W.; Robinson, M. S.; Stopar, J. D.; Lawrence, S. J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA.
[Ashley, J. W.] CALTECH, Jet Prop Lab, Mail Stop 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Glotch, T. D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.
[Hawke, B. Ray; Giguere, T. A.] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[van der Bogert, C. H.; Hiesinger, H.] Univ Munster, Inst Planetol, D-48149 Munster, Germany.
[Jolliff, B. L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63105 USA.
[Greenhagen, B. T.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA.
[Paige, D. A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA.
RP Ashley, JW (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM james.w.ashley@jpl.nasa.gov
OI Ashley, James/0000-0003-0723-0987; Stopar, Julie/0000-0003-1578-3688
FU Lunar Reconnaissance Orbiter Camera (LROC) project; German Space Agency
(DLR)
FX We would like to thank Dr. Debra Hurwitz and Dr. Briony Horgan, who
provided insightful reviews. This work was supported by the Lunar
Reconnaissance Orbiter Camera (LROC) project. The authors gratefully
acknowledge the contributions of the Lunar Reconnaissance Orbiter and
LROC Teams. H. Hiesinger and C.H. van der Bogert were funded by the
German Space Agency (DLR). The final draft of this paper is submitted in
fond memory of co-author Dr. Bernard Ray Hawke.
NR 70
TC 2
Z9 2
U1 3
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 248
EP 261
DI 10.1016/j.icarus.2015.12.036
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900022
ER
PT J
AU Bennett, KA
Horgan, BHN
Gaddis, LR
Greenhagen, BT
Allen, CC
Hayne, PO
Bell, JF
Paige, DA
AF Bennett, Kristen A.
Horgan, Briony H. N.
Gaddis, Lisa R.
Greenhagen, Benjamin T.
Allen, Carlton C.
Hayne, Paul O.
Bell, James F., III
Paige, David A.
TI Complex explosive volcanic activity on the Moon within Oppenheimer
crater
SO ICARUS
LA English
DT Article
DE Volcanism; Spectroscopy; Infrared observations; Mineralogy; Moon; Moon,
surface
ID LUNAR PYROCLASTIC DEPOSITS; NEAR-INFRARED SPECTRA; MINERALOGY MAPPER
M-3; COMPOSITIONAL ANALYSES; SURFACE LAYER; GLASS-BEADS; IDENTIFICATION;
CLEMENTINE; THICKNESS; MIXTURES
AB Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire fountaining eruption, and in some cases may have included an effusive component. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Bennett, Kristen A.; Bell, James F., III] Arizona State Univ, Sch Earth & Space Explorat, ISTB4 Room 795,781 Terrace Mall, Tempe, AZ 85287 USA.
[Horgan, Briony H. N.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA.
[Gaddis, Lisa R.] US Geol Survey, Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA.
[Greenhagen, Benjamin T.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA.
[Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, 2101 NASA Rd 1, Houston, TX 77058 USA.
[Hayne, Paul O.] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Paige, David A.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, 595 Charles E Young Dr E, Los Angeles, CA 90095 USA.
RP Bennett, KA (reprint author), Arizona State Univ, Sch Earth & Space Explorat, ISTB4 Room 795,781 Terrace Mall, Tempe, AZ 85287 USA.
EM kristen.a.bennett@asu.edu
NR 63
TC 0
Z9 0
U1 3
U2 7
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 296
EP 314
DI 10.1016/j.icarus.2016.02.007
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900025
ER
PT J
AU Lemelin, M
Lucey, PG
Neumann, GA
Mazarico, EM
Barker, MK
Kakazu, A
Trang, D
Smith, DE
Zuber, MT
AF Lemelin, M.
Lucey, P. G.
Neumann, G. A.
Mazarico, E. M.
Barker, M. K.
Kakazu, A.
Trang, D.
Smith, D. E.
Zuber, M. T.
TI Improved calibration of reflectance data from the LRO Lunar Orbiter
Laser Altimeter (LOLA) and implications for space weathering
SO ICARUS
LA English
DT Article
DE Moon; Moon, surface; Image processing; Infrared observations; Solar wind
ID KAGUYA MULTIBAND IMAGER; PROSPECTOR; NEUTRONS; SURFACE; MOON
AB The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric models and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Lemelin, M.; Lucey, P. G.; Kakazu, A.; Trang, D.] Univ Hawaii Manoa, Dept Geol & Geophys, Hawaii Inst Geophys & Planetol, 1680 East West Rd,Post 602, Honolulu, HI 96822 USA.
[Neumann, G. A.; Mazarico, E. M.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Barker, M. K.] Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA.
[Smith, D. E.; Zuber, M. T.] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RP Lemelin, M (reprint author), Univ Hawaii Manoa, Dept Geol & Geophys, Hawaii Inst Geophys & Planetol, 1680 East West Rd,Post 602, Honolulu, HI 96822 USA.
EM mlemelin@hawaii.edu
RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014
OI Neumann, Gregory/0000-0003-0644-9944; Mazarico,
Erwan/0000-0003-3456-427X
FU Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter Experiment;
Hawaii Institute of Geophysics and Planetology [2185, 9582]; Natural
Sciences and Engineering Research Council of Canada (NSERC) through the
Alexander Graham Bell Graduate Scholarship (PGS D)
FX This work was supported in part by the Lunar Reconnaissance Orbiter
Lunar Orbiter Laser Altimeter Experiment, David E. Smith Principal
Investigator, by the Hawaii Institute of Geophysics and Planetology
(HIGP Publication 2185, SOEST Publication 9582), and by the Natural
Sciences and Engineering Research Council of Canada (NSERC) through the
Alexander Graham Bell Graduate Scholarship (PGS D).
NR 27
TC 2
Z9 2
U1 1
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 315
EP 328
DI 10.1016/j.icarus.2016.02.006
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900026
ER
PT J
AU Barker, MK
Mazarico, E
Neumann, GA
Zuber, MT
Haruyama, J
Smith, DE
AF Barker, M. K.
Mazarico, E.
Neumann, G. A.
Zuber, M. T.
Haruyama, J.
Smith, D. E.
TI A new lunar digital elevation model from the Lunar Orbiter Laser
Altimeter and SELENE Terrain Camera
SO ICARUS
LA English
DT Article
DE Moon; Moon, interior; Moon, surface
ID GRAIL; MISSION; CRUST; MOON; DIMENSIONS; TOPOGRAPHY
AB We present an improved lunar digital elevation model (DEM) covering latitudes within 60, at a horizontal resolution of 512 pixels per degree (similar to 60 m at the equator) and a typical vertical accuracy similar to 3 to 4 m. This DEM is constructed from similar to 4.5 x 10(9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 degrees x 1 degrees) from the SELENE Terrain Camera (TC) (similar to 10(10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of <5 m compared to similar to 50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to <10 m horizontally and <1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors. (C) 2015 The Authors. Published by Elsevier Inc.
C1 [Barker, M. K.] Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA.
[Mazarico, E.; Neumann, G. A.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Zuber, M. T.; Smith, D. E.] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Haruyama, J.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Tokyo, Japan.
RP Barker, MK (reprint author), Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA.
EM michael.k.barker@nasa.gov
RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014
OI Neumann, Gregory/0000-0003-0644-9944; Mazarico,
Erwan/0000-0003-3456-427X
FU NASA's Lunar Reconnaissance Orbiter Project; NASA's Planetary Geology
and Geophysics Program
FX This work was supported by NASA's Lunar Reconnaissance Orbiter Project
and Planetary Geology and Geophysics Program. We thank the SELENE
(Kaguya) TC team and the SELENE Data Archive for providing the SELENE
(Kaguya) data. SELENE is a Japanese mission developed and operated by
JAXA. We also thank the LRO Mission Operations Center and LOLA science
teams for their hard work in producing the LOLA data used in this study.
We are grateful to the anonymous reviewers for constructive feedback
which improved the quality of this paper.
NR 39
TC 2
Z9 2
U1 4
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUL 15
PY 2016
VL 273
SI SI
BP 346
EP 355
DI 10.1016/j.icarus.2015.07.039
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DL6FK
UT WOS:000375734900029
ER
PT J
AU Rizzardi, LF
Kunz, H
Rubins, K
Chouker, A
Quiriarte, H
Sams, C
Crucian, BE
Feinberg, AP
AF Rizzardi, Lindsay F.
Kunz, Hawley
Rubins, Kathleen
Chouker, Alexander
Quiriarte, Heather
Sams, Clarence
Crucian, Brian E.
Feinberg, Andrew P.
TI Evaluation of techniques for performing cellular isolation and
preservation during microgravity conditions
SO NPJ MICROGRAVITY
LA English
DT Article
ID BUBBLE FORMATION; GRAVITY
AB Genomic and epigenomic studies require the precise transfer of microliter volumes among different types of tubes in order to purify DNA, RNA, or protein from biological samples and subsequently perform analyses of DNA methylation, RNA expression, and chromatin modifications on a genome-wide scale. Epigenomic and transcriptional analyses of human blood cells, for example, require separation of purified cell types to avoid confounding contributions of altered cellular proportions, and long-term preservation of these cells requires their isolation and transfer into appropriate freezing media. There are currently no protocols for these cellular isolation procedures on the International Space Station (ISS). Currently human blood samples are either frozen as mixed cell populations (within the CPT collection tubes) with poor yield of viable cells required for cell-type isolations, or returned under ambient conditions, which requires timing with Soyuz missions. Here we evaluate the feasibility of translating terrestrial cell purification techniques to the ISS. Our evaluations were performed in microgravity conditions during parabolic atmospheric flight. The pipetting of open liquids in microgravity was evaluated using analog-blood fluids and several types of pipette hardware. The best-performing pipettors were used to evaluate the pipetting steps required for peripheral blood mononuclear cell (PBMC) isolation following terrestrial density-gradient centrifugation. Evaluation of actual blood products was performed for both the overlay of diluted blood, and the transfer of isolated PBMCs. We also validated magnetic purification of cells. We found that positive-displacement pipettors avoided air bubbles, and the tips allowed the strong surface tension of water, glycerol, and blood to maintain a patent meniscus and withstand robust pipetting in microgravity. These procedures will greatly increase the breadth of research that can be performed on board the ISS, and allow improvised experimentation by astronauts on extraterrestrial missions.
C1 [Rizzardi, Lindsay F.; Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Ctr Epigenet, Baltimore, MD 21218 USA.
[Kunz, Hawley] Wyle, Sci Technol & Engn Grp, Houston, TX USA.
[Rubins, Kathleen] NASA, Johnson Space Ctr, Astronaut Off, Houston, TX USA.
[Chouker, Alexander] Hosp Ludwig Maximilians Univ, Dept Anesthesiol, Munich, Germany.
[Quiriarte, Heather] JES Tech, Houston, TX USA.
[Sams, Clarence] NASA, Johnson Space Ctr, Space & Clin Operat Div, Houston, TX USA.
[Crucian, Brian E.] NASA, Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX 77058 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Dept Mental Hlth, Baltimore, MD 21218 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Dept Med, Sch Engn, Baltimore, MD 21218 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Dept Biomed Engn, Sch Engn, Baltimore, MD 21218 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Dept Mental Hlth, Sch Engn, Baltimore, MD 21218 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Sch Publ Hlth, Dept Med, Baltimore, MD 21218 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Sch Publ Hlth, Dept Biomed Engn, Baltimore, MD 21218 USA.
[Feinberg, Andrew P.] Johns Hopkins Univ, Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD 21218 USA.
RP Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Ctr Epigenet, Baltimore, MD 21218 USA.; Crucian, BE (reprint author), NASA, Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX 77058 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Dept Mental Hlth, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Dept Med, Sch Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Dept Biomed Engn, Sch Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Dept Mental Hlth, Sch Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Publ Hlth, Dept Med, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Publ Hlth, Dept Biomed Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD 21218 USA.
EM brian.crucian-1@nasa.gov; afeinberg@jhu.edu
NR 4
TC 1
Z9 1
U1 5
U2 5
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 2373-8065
J9 NPJ MICROGRAVITY
JI NPJ Microgravity
PD JUL 14
PY 2016
VL 2
AR 16025
DI 10.1038/npjmgrav.2016.25
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR9IT
UT WOS:000380211000001
ER
PT J
AU Hajra, R
Chakraborty, SK
Tsurutani, BT
DasGupta, A
Echer, E
Brum, CGM
Gonzalez, WD
Sobral, JHA
AF Hajra, Rajkumar
Chakraborty, Shyamal Kumar
Tsurutani, Bruce T.
DasGupta, Ashish
Echer, Ezequiel
Brum, Christiano G. M.
Gonzalez, Walter D.
Andrade Sobral, Jose Humberto
TI An empirical model of ionospheric total electron content (TEC) near the
crest of the equatorial ionization anomaly (EIA)
SO JOURNAL OF SPACE WEATHER AND SPACE CLIMATE
LA English
DT Article
DE Ionosphere (equatorial); Solar activity; Solar cycle; Total electron
content; Forecasting
ID LOW-LATITUDE; SOLAR MINIMUM; SEMIANNUAL VARIATIONS; AMBIENT IONIZATION;
SUNSPOT MINIMUM; INDIAN ZONE; REGION; IRI; PREDICTIONS; SATELLITE
AB We present a geomagnetic quiet time (Dst > -50 nT) empirical model of ionospheric total electron content (TEC) for the northern equatorial ionization anomaly (EIA) crest over Calcutta, India. The model is based on the 1980-1990 TEC measurements from the geostationary Engineering Test Satellite-2 (ETS-2) at the Haringhata (University of Calcutta, India: 22.58 degrees N, 88.38 degrees E geographic; 12.09 degrees N, 160.46 degrees E geomagnetic) ionospheric field station using the technique of Faraday rotation of plane polarized VHF (136.11 MHz) signals. The ground station is situated virtually underneath the northern EIA crest. The monthly mean TEC increases linearly with F-10.7 solar ionizing flux, with a significantly high correlation coefficient (r - 0.89-0.99) between the two. For the same solar flux level, the TEC values are found to be significantly different between the descending and ascending phases of the solar cycle. This ionospheric hysteresis effect depends on the local time as well as on the solar flux level. On an annual scale, TEC exhibits semiannual variations with maximum TEC values occurring during the two equinoxes and minimum at summer solstice. The semiannual variation is strongest during local noon with a summer-to-equinox variability of similar to 50-100 TEC units. The diurnal pattern of TEC is characterized by a pre-sunrise (0400-0500 LT) minimum and near-noon (1300-1400 LT) maximum. Equatorial electrodynamics is dominated by the equatorial electrojet which in turn controls the daytime TEC variation and its maximum. We combine these long-term analyses to develop an empirical model of monthly mean TEC. The model is validated using both ETS-2 measurements and recent GNSS measurements. It is found that the present model efficiently estimates the TEC values within a 1-sigma range from the observed mean values.
C1 [Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Andrade Sobral, Jose Humberto] Inst Nacl Pesquisas Espaciais, Av Astronautas, BR-12227010 Sao Jose Dos Campos, SP, Brazil.
[Hajra, Rajkumar; Brum, Christiano G. M.] SRI Int, Natl Astron & Ionosphere Ctr, Space & Atmospher Sci Dept, Arecibo Observ, HC3 Box 53995, Arecibo, PR 00612 USA.
[Hajra, Rajkumar] CNRS, Lab Phys & Chim Environm & Espace LPC2E, F-45100 Orleans, France.
[Chakraborty, Shyamal Kumar] Raja Peary Mohan Coll, Dept Phys, Uttarpara 712258, Hooghly, India.
[Tsurutani, Bruce T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr Pasadena, Pasadena, CA 91109 USA.
[DasGupta, Ashish] Univ Calcutta, SK Mitra Ctr Res Space Environm, Kolkata 700009, W Bengal, India.
RP Hajra, R (reprint author), Inst Nacl Pesquisas Espaciais, Av Astronautas, BR-12227010 Sao Jose Dos Campos, SP, Brazil.; Hajra, R (reprint author), SRI Int, Natl Astron & Ionosphere Ctr, Space & Atmospher Sci Dept, Arecibo Observ, HC3 Box 53995, Arecibo, PR 00612 USA.; Hajra, R (reprint author), CNRS, Lab Phys & Chim Environm & Espace LPC2E, F-45100 Orleans, France.
EM rajkumarhajra@yahoo.co.in
OI Hajra, Rajkumar/0000-0003-0447-1531
FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) through
post-doctoral research fellowship at INPE; DST SERB Project, Govt. of
India; Brazilian CNPq agency [302583/2015-7]; NASA; National Science
Foundation (NSF) [1160876]
FX The work of R.H. is financially supported by Fundacao de Amparo a
Pesquisa do Estado de Sao Paulo (FAPESP) through post-doctoral research
fellowship at INPE. The work of S.K.C. is supported by DST SERB Project,
Govt. of India. E.E. would like to thank the Brazilian CNPq
(302583/2015-7) agency for financial support. Portions of this research
were performed at the Jet Propulsion Laboratory, California Institute of
Technology under contract with NASA. The Arecibo Observatory is operated
by SRI International in collaboration with the Universities Space
Research Association (USRA) and the Universidad Metropolitana (UMET)
under a cooperative agreement with the National Science Foundation
(NSF), Award Number 1160876. We would like to thank the referees and the
editors for valuable suggestions leading to substantial improvement of
the manuscript. The editor thanks three anonymous referees for their
assistance in evaluating this paper.
NR 69
TC 0
Z9 0
U1 3
U2 6
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 2115-7251
J9 J SPACE WEATHER SPAC
JI J. Space Weather Space Clim.
PD JUL 14
PY 2016
VL 6
AR A29
DI 10.1051/swsc/2016023
PG 9
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA DR9CM
UT WOS:000380194700001
ER
PT J
AU Wang, J
Kaseman, D
Lee, K
Sen, S
Kovnir, K
AF Wang, Jian
Kaseman, Derrick
Lee, Kathleen
Sen, Sabyasachi
Kovnir, Kirin
TI Enclathration of X@La-4 Tetrahedra in Channels of Zn-P Frameworks in
La3Zn4P6X (X = Cl, Br)
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID MATPASS/CPMG NMR-SPECTROSCOPY; STRUCTURAL CHEMISTRY; CRYSTAL-STRUCTURES;
ELECTRON LOCALIZATION; PHYSICAL-PROPERTIES; PHOSPHIDES; POLYPHOSPHIDES;
ANIONS; PHOSPHORUS; LANTHANUM
AB Two new quaternary lanthanum zinc phosphide-halides were synthesized via high-temperature solid-state reactions. Their complex crystal structures were determined by a combination of X-ray diffraction and advanced solid-state 31P NMR spectroscopy. La3Zn4P6Cl and La3Zn4P6.6Br0.8 share a common structural feature: a polyanionic Zn-P framework with large channels hosting complex one-dimensional cations. The cations are built from X@La4 tetrahedral chains with X = Cl (La3Zn4P6Cl) or Br0.8P0.2 (La3Zn4P6.6Br0.8). The X@La4 tetrahedra share two vertices forming one-dimensional chains. To accommodate larger bromine-containing cations the Zn-P framework is rearranged by breaking and forming several Zn-P and P-P bonds. This results in the formation of a unique [P3]3- cycle, which is isoelectronic to cyclopropane. Analysis of the electron localization and orbital overlaps confirmed the presence of different chemical bonding in the Zn-P networks in the Cl- and Br-containing compounds. La3Zn4P6Cl was predicted to be a narrow bandgap semiconductor, while the formation of the [P3]3- units in the structure of La3Zn4P6.6Br0.8 was shown to lead to a narrowing of the bandgap. Characterization of the transport properties confirmed both La3Zn4P6Cl and La3Zn4P6.6Br0.8 to be narrow bandgap semiconductors with electrons as dominating charge carriers at low temperatures. La3Zn4P6Cl exhibits a n-p transition around 250 K. Due to the complex crystal structure and segregation of the areas of different chemical bonding, both title compounds exhibit ultralow thermal conductivities of 0.7 Wm(-1) K-1 and 1.5 Wm(-1) K-1 at 400 K for La3Zn4P6Cl and La3Zn4P6.6Br0.8, respectively.
C1 [Wang, Jian; Lee, Kathleen; Kovnir, Kirin] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA.
[Kaseman, Derrick; Sen, Sabyasachi] Univ Calif Davis, Dept Mat Sci, One Shields Ave, Davis, CA 95616 USA.
[Lee, Kathleen] Jet Prop Lab, Thermal Energy Convers Technol Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
RP Kovnir, K (reprint author), Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA.
EM kkovnir@ucdavis.edu
OI Wang, Jian/0000-0003-1326-4470
FU GAANN; ARCS; U.S. Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering [DE-SC0008931]
FX The authors would like to thank Prof. S. M. Kauzlarich for access to the
SPS. K.L. acknowledges the GAANN and ARCS fellowships. This research is
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under Award
DE-SC0008931.
NR 70
TC 2
Z9 2
U1 4
U2 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD JUL 12
PY 2016
VL 28
IS 13
BP 4741
EP 4750
DI 10.1021/acs.chemmater.6b01752
PG 10
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA DR1ZJ
UT WOS:000379704100026
ER
PT J
AU Parazoo, NC
Commane, R
Wofsy, SC
Koven, CD
Sweeney, C
Lawrence, DM
Lindaas, J
Chang, RYW
Miller, CE
AF Parazoo, Nicholas C.
Commane, Roisin
Wofsy, Steven C.
Koven, Charles D.
Sweeney, Colm
Lawrence, David M.
Lindaas, Jakob
Chang, Rachel Y. -W.
Miller, Charles E.
TI Detecting regional patterns of changing CO2 flux in Alaska
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE carbon cycle; permafrost thaw; climate; Earth system models; remote
sensing
ID NORTHERN ECOSYSTEMS; SATELLITE-OBSERVATIONS; CARBON-DIOXIDE; PERMAFROST;
CLIMATE; CYCLE; AIRCRAFT; DYNAMICS; EXCHANGE; FEEDBACK
AB With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.
C1 [Parazoo, Nicholas C.; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Parazoo, Nicholas C.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.
[Commane, Roisin; Wofsy, Steven C.; Lindaas, Jakob] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Commane, Roisin; Wofsy, Steven C.] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Koven, Charles D.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA.
[Sweeney, Colm] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Sweeney, Colm] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Lawrence, David M.] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO 80302 USA.
[Lindaas, Jakob] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Chang, Rachel Y. -W.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada.
RP Parazoo, NC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.; Parazoo, NC (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.
EM nicholas.c.parazoo@jpl.nasa.gov
RI Koven, Charles/N-8888-2014;
OI Koven, Charles/0000-0002-3367-0065; Lindaas, Jakob/0000-0003-1872-3162;
Commane, Roisin/0000-0003-1373-1550
FU NASA; Office of Science, Office of Biological and Environmental Research
(BER) of the US Department of Energy (DOE) [DE-AC02-05CH11231]; US DOE,
BER [DE-FC03-97ER62402/A010]; NSF [PLR-1304220]
FX Some of the research described was performed for CARVE, an Earth
Ventures (EV-1) investigation, under contract with NASA. A portion of
this research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. C.D.K.
was supported by the Director, Office of Science, Office of Biological
and Environmental Research (BER) of the US Department of Energy (DOE)
Contract DE-AC02-05CH11231 as part of their Regional and Global Climate
Modeling (BGC-Feedbacks SFA) and Terrestrial Ecosystem Science
(NGEE-Arctic) Programs. D.M.L. was supported by the US DOE, BER as part
of Climate Change Prediction Program Cooperative Agreement
DE-FC03-97ER62402/A010 and by NSF Grant PLR-1304220.
NR 36
TC 0
Z9 0
U1 13
U2 20
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 12
PY 2016
VL 113
IS 28
BP 7733
EP 7738
DI 10.1073/pnas.1601085113
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR1VX
UT WOS:000379694100032
PM 27354511
ER
PT J
AU McKinna, LIW
Werdell, PJ
Proctor, CW
AF McKinna, Lachlan I. W.
Werdell, P. Jeremy
Proctor, Christopher W.
TI Implementation of an analytical Raman scattering correction for
satellite ocean-color processing
SO OPTICS EXPRESS
LA English
DT Article
ID INHERENT OPTICAL-PROPERTIES; RADIANCE MODEL; NATURAL-WATERS;
CHLOROPHYLL-A; TIME-SERIES; PURE WATER; ABSORPTION; INVERSION; SURFACE;
BACKSCATTERING
AB Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a time-series study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs. (C) 2016 Optical Society of America
C1 [McKinna, Lachlan I. W.] Sci Applicat Int Corp, 1710 SAIC Dr, Mclean, VA 22102 USA.
[McKinna, Lachlan I. W.; Werdell, P. Jeremy; Proctor, Christopher W.] NASA, Goddard Space Flight Ctr, Code 616, Greenbelt, MD 20771 USA.
[Proctor, Christopher W.] Sci Syst & Applicat Inc, 10210 Greenbelt Rd,Suite 600, Lanham, MD 20706 USA.
RP McKinna, LIW (reprint author), Sci Applicat Int Corp, 1710 SAIC Dr, Mclean, VA 22102 USA.; McKinna, LIW (reprint author), NASA, Goddard Space Flight Ctr, Code 616, Greenbelt, MD 20771 USA.
EM lachlan.i.mckinna@nasa.gov
FU NASA Ocean Biology and Biogeochemistry Program
FX A NASA Ocean Biology and Biogeochemistry Program award for the Science
of Terra and Aqua supported this work. We thank Tommy Owens for
time-series data processing support. Ivona Cetinic, Amir Ibrahim and
other members of the NASA OBPG are also duly acknowledged for providing
valuable scientific advice. We also wish to recognize the efforts of
Emmanuel Boss who kindly reviewed this paper.
NR 46
TC 0
Z9 0
U1 1
U2 1
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD JUL 11
PY 2016
VL 24
IS 14
BP A1123
EP A1137
DI 10.1364/OE.24.0A1123
PG 15
WC Optics
SC Optics
GA DT8UF
UT WOS:000381770500011
PM 27410899
ER
PT J
AU Underwood, DS
Tennyson, J
Yurchenko, SN
Huang, XC
Schwenke, DW
Lee, TJ
Clausen, S
Fateev, A
AF Underwood, Daniel S.
Tennyson, Jonathan
Yurchenko, Sergei N.
Huang, Xinchuan
Schwenke, David W.
Lee, Timothy J.
Clausen, Sonnik
Fateev, Alexander
TI ExoMol molecular line lists - XIV. The rotation-vibration spectrum of
hot SO2
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE molecular data; opacity; astronomical data bases: miscellaneous; planets
and satellites: atmospheres
ID CROSS-SECTION MEASUREMENTS; ROVIBRATIONAL BOUND-STATES; POTENTIAL-ENERGY
SURFACE; HIGH-RESOLUTION; SULFUR-DIOXIDE; TRIATOMIC-MOLECULES;
WAVELENGTH REGION; ORION-KL; INTENSITIES; ABSORPTION
AB Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion (SO2)-S-32-O-16 vibration-rotation transitions computed using an empirically adjusted potential energy surface and an ab initio dipole moment surface. The list gives complete coverage up to 8000 cm(-1) (wavelengths longer than 1.25 mu m) for temperatures below 2000 K. Infrared absorption cross-sections are recorded at 300 and 500 C are used to validated the resulting ExoAmes line list. The line list is made available in electronic form as supplementary data to this article and at www.exomol.com.
C1 [Underwood, Daniel S.; Tennyson, Jonathan; Yurchenko, Sergei N.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Huang, Xinchuan] SETI Inst, Mountain View, CA 94043 USA.
[Schwenke, David W.] NASA, Ames Res Ctr, NAS Facil, Moffett Field, CA 94035 USA.
[Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
[Clausen, Sonnik; Fateev, Alexander] Tech Univ Denmark, Dept Chem & Biochem Engn, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
RP Tennyson, J (reprint author), UCL, Dept Phys & Astron, London WC1E 6BT, England.
EM j.tennyson@ucl.ac.uk
RI Tennyson, Jonathan/I-2222-2012; Yurchenko, Sergey/G-9929-2012; Lee,
Timothy/K-2838-2012; HUANG, XINCHUAN/A-3266-2013
OI Tennyson, Jonathan/0000-0002-4994-5238; Yurchenko,
Sergey/0000-0001-9286-9501;
FU Energinet.dk project [2010-1-10442]; ERC [267219]; STFC; BIS; NASA
[12-APRA12-0107]; NASA/SETI Institute Cooperative Agreement [NNX15AF45A]
FX This work was supported by Energinet.dk project 2010-1-10442 'Sulfur
trioxide measurement technique for energy systems' and the ERC under the
Advanced Investigator Project 267219. It made use of the DiRAC@Darwin
HPC cluster which is part of the DiRAC UK HPC facility for particle
physics, astrophysics and cosmology and is supported by STFC and BIS.
XH, DWS, and TJL gratefully acknowledge funding support from the NASA
Grant 12-APRA12-0107. XH also acknowledges support from the NASA/SETI
Institute Cooperative Agreement NNX15AF45A.
NR 89
TC 8
Z9 8
U1 5
U2 8
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 11
PY 2016
VL 459
IS 4
BP 3890
EP 3899
DI 10.1093/mnras/stw849
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3VM
UT WOS:000379830700038
ER
PT J
AU Knowles, K
Intema, HT
Baker, AJ
Bharadwaj, V
Bond, JR
Cress, C
Gupta, N
Hajian, A
Hilton, M
Hincks, AD
Hlozek, R
Hughes, JP
Lindner, RR
Marriage, TA
Menanteau, F
Moodley, K
Niemack, MD
Reese, ED
Sievers, J
Sifon, C
Srianand, R
Wollack, EJ
AF Knowles, K.
Intema, H. T.
Baker, A. J.
Bharadwaj, V.
Bond, J. R.
Cress, C.
Gupta, N.
Hajian, A.
Hilton, M.
Hincks, A. D.
Hlozek, R.
Hughes, J. P.
Lindner, R. R.
Marriage, T. A.
Menanteau, F.
Moodley, K.
Niemack, M. D.
Reese, E. D.
Sievers, J.
Sifon, C.
Srianand, R.
Wollack, E. J.
TI A giant radio halo in a low-mass SZ-selected galaxy cluster: ACT-CL
J0256.5+0006
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: clusters: individual: (ACT-CL J0256.5+0006); galaxies:
clusters: intracluster medium; radio continuum: general; X-rays:
individual: ACT-CL J0256.5+0006
ID X-RAY-CLUSTERS; SUNYAEV-ZELDOVICH; SIMULATED CLUSTERS; SCALING
RELATIONS; MERGING CLUSTER; ABELL CLUSTERS; SKY SURVEY; FOLLOW-UP;
EMISSION; SUBSTRUCTURE
AB We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 (z = 0.363), observed with the Giant Metrewave Radio Telescope at 325 and 610 MHz. We find this cluster to host a faint (S-610 = 5.6 +/- 1.4 mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest mass systems, M-500,M- SZ = (5.0 +/- 1.2) x 10(14) M-aS (TM), found to host a GRH. We measure the GRH at lower significance at 325 MHz (S-325 = 10.3 +/- 5.3 mJy), obtaining a spectral index measurement of $\alpha <^>{610}_{325} = 1.0<^>{+0.7}_{-0.9}$. This result is consistent with the mean spectral index of the population of typical radio haloes, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P-1.4 GHz = (1.0 +/- 0.3) x 10(24) W Hz(-1), placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the intracluster medium morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of v(aSyen) = 1880 +/- 210 km s(-1). We construct a simple merger model to infer relevant time-scales in the merger. From its location on the P-1.4 GHz-L-X scaling relation, we infer that we observe ACT-CL J0256.5+0006 just before first core crossing.
C1 [Knowles, K.; Bharadwaj, V.; Hilton, M.; Moodley, K.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4041 Durban, South Africa.
[Intema, H. T.] Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA.
[Baker, A. J.; Hughes, J. P.; Lindner, R. R.] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA.
[Bond, J. R.; Hajian, A.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cress, C.] Ctr High Performance Comp, CSIR Campus,15 Lower Hope Rd, Cape Town, South Africa.
[Cress, C.] Univ Western Cape, Dept Phys, Modderdam Rd, ZA-7535 Bellville, South Africa.
[Gupta, N.; Srianand, R.] IUCAA, Post Bag 4, Pune 411007, Maharashtra, India.
[Hincks, A. D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada.
[Hlozek, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Lindner, R. R.] Univ Wisconsin, Dept Astron, 475 N Charter St, Madison, WI 53706 USA.
[Marriage, T. A.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.
[Menanteau, F.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 W Clark St, Urbana, IL 61801 USA.
[Menanteau, F.] Univ Illinois, Dept Astron, W Green St, Urbana, IL 61801 USA.
[Niemack, M. D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Reese, E. D.] Moorpk Coll, Dept Phys Astron & Engn, 7075 Campus Rd, Moorpark, CA 93021 USA.
[Sievers, J.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Chem & Phys, ZA-4041 Durban, South Africa.
[Sievers, J.] Univ KwaZulu Natal, Natl Inst Theoret Phys NITheP, Private Bag X54001, ZA-4000 Durban, South Africa.
[Sifon, C.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands.
[Wollack, E. J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
RP Knowles, K (reprint author), Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4041 Durban, South Africa.
EM kendaknowles.astro@gmail.com
RI Wollack, Edward/D-4467-2012;
OI Wollack, Edward/0000-0002-7567-4451; Menanteau,
Felipe/0000-0002-1372-2534; Sifon, Cristobal/0000-0002-8149-1352
FU NRF/SKA South Africa Project; National Radio Astronomy Observatory, a
facility of the National Science Foundation; National Science Foundation
[AST 0955810]
FX KK acknowledges post-graduate support from the NRF/SKA South Africa
Project. HTI is financially supported by the National Radio Astronomy
Observatory, a facility of the National Science Foundation operated
under Associated Universities Inc. AJB acknowledges support from
National Science Foundation grant AST 0955810.
NR 73
TC 1
Z9 1
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 11
PY 2016
VL 459
IS 4
BP 4240
EP 4258
DI 10.1093/mnras/stw795
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3VM
UT WOS:000379830700065
ER
PT J
AU Kuhn, RB
Rodriguez, JE
Collins, KA
Lund, MB
Siverd, RJ
Colon, KD
Pepper, J
Stassun, KG
Cargile, PA
James, DJ
Penev, K
Zhou, G
BaylisS, D
Tan, TG
Curtis, IA
Udry, S
Segransan, D
Mawet, D
Dhita, S
Soutter, J
Hart, R
Carter, B
Gaudi, BS
Myers, G
Beatty, TG
Eastman, JD
Reichart, DE
Haislip, JB
Kielkopf, J
Bieryla, A
Latham, DW
Jensen, ELN
Oberst, TE
StevensI, DJ
AF Kuhn, Rudolf B.
Rodriguez, Joseph E.
Collins, Karen A.
Lund, Michael B.
Siverd, Robert J.
Colon, Knicole D.
Pepper, Joshua
Stassun, Keivan G.
Cargile, Phillip A.
James, David J.
Penev, Kaloyan
Zhou, George
Bayliss, Daniel
Tan, T. G.
Curtis, Ivan A.
Udry, Stephane
Segransan, Damien
Mawet, Dimitri
Dhital, Saurav
Soutter, Jack
Hart, Rhodes
Carter, Brad
Gaudi, B. Scott
Myers, Gordon
Beatty, Thomas G.
Eastman, Jason D.
Reichart, Daniel E.
Haislip, Joshua B.
Kielkopf, John
Bieryla, Allyson
Latham, David W.
Jensen, Eric L. N.
Oberst, Thomas E.
Stevens, Daniel J.
TI KELT-10b: the first transiting exoplanet from the KELT-South survey -a
hot sub-Jupiter transiting a V=10.7 early G-star
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: photometric; techniques: radial velocities; techniques:
spectroscopic; stars: individual: KELT-10; planetary systems
ID SPECTRAL-LINE BISECTORS; IMAGE SUBTRACTION; EXTRASOLAR PLANET; STELLAR
PHOTOMETRY; RADIAL-VELOCITIES; VARIABLE-STARS; LIGHT CURVES;
SHORT-PERIOD; SPACED DATA; COOL STARS
AB We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with T-eff = 5948 +/- 74 K, log g = $4.319_{-0.030}<^>{+0.020}$ and [Fe/H] = $0.09_{-0.10}<^>{+0.11}$, an inferred mass M-* = $1.112_{-0.061}<^>{+0.055}$ M-aS (TM) and radius R-* = $1.209_{-0.035}<^>{+0.047}$ R-aS (TM). The planet has a radius R-p = $1.399_{-0.049}<^>{+0.069}$ R-J and mass M-p = $0.679_{-0.038}<^>{+0.039}$ M-J. The planet has an eccentricity consistent with zero and a semimajor axis a = $0.052\,50_{-0.000\,97}<^>{+0.000\,86}$ au. The best-fitting linear ephemeris is T-0 = 2457 066.720 45 +/- 0.000 27 BJD(TDB) and P = 4.166 2739 +/- 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of T-eq = $1377_{-23}<^>{+28}$ K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of $0.817_{-0.054}<^>{+0.068}$ x 10(9) erg s(-1) cm(-2), which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies.
C1 [Kuhn, Rudolf B.] S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa.
[Rodriguez, Joseph E.; Collins, Karen A.; Lund, Michael B.; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, 6301 Stevenson Ctr, Nashville, TN 37235 USA.
[Collins, Karen A.; Kielkopf, John] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA.
[Siverd, Robert J.] Las Cumbres Observ, Global Telescope Network, 6740 Cortona Dr,Suite 102, Santa Barbara, CA 93117 USA.
[Colon, Knicole D.; Pepper, Joshua] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA.
[Colon, Knicole D.] NASA Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA.
[Colon, Knicole D.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA.
[Stassun, Keivan G.] Fisk Univ, Dept Phys, 1000 17thAve North, Nashville, TN 37208 USA.
[Cargile, Phillip A.; Eastman, Jason D.; Bieryla, Allyson; Latham, David W.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[James, David J.] Cerro Tololo Interamer Observ, Colina El Pino S-N,Casilla 603, La Serena, Chile.
[Penev, Kaloyan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Zhou, George] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Bayliss, Daniel; Udry, Stephane; Segransan, Damien] Univ Geneva, Astron Observ, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland.
[Bayliss, Daniel] Australia Telescope Natl Facil, Acton, ACT 2601, Australia.
[Tan, T. G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia.
[Curtis, Ivan A.] 2 Yandra St,Vale Pk, Adelaide, SA 5081, Australia.
[Mawet, Dimitri] CALTECH, Dept Astron, Mail Code 249-17,1200 E Calif Blvd, Pasadena, CA 91125 USA.
[Mawet, Dimitri] European So Observ, Alonso Coniova 3107, Santiago, Chile.
[Dhital, Saurav] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA.
[Soutter, Jack; Hart, Rhodes; Carter, Brad] Univ So Queensland, Computat Engn & Sci Res Ctr, Toowoomba, Qld 4350, Australia.
[Gaudi, B. Scott; Stevens, Daniel J.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA.
[Myers, Gordon] 5 Inverness Way, Hillsborough, CA 94010 USA.
[Myers, Gordon] AAVSO, 49 Bay State Rd, Cambridge, MA 02138 USA.
[Beatty, Thomas G.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
[Beatty, Thomas G.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, 525 Davey Lab, University Pk, PA 16802 USA.
[Reichart, Daniel E.; Haislip, Joshua B.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA.
[Jensen, Eric L. N.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA.
[Oberst, Thomas E.] Westminster Coll, Dept Phys, Wilmington, PA 16172 USA.
RP Kuhn, RB (reprint author), S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa.; Rodriguez, JE (reprint author), Vanderbilt Univ, Dept Phys & Astron, 6301 Stevenson Ctr, Nashville, TN 37235 USA.; Pepper, J (reprint author), Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA.
EM rudi@saao.ac.za; rodriguez.jr.joey@gmail.com; joshua.pepper@lehigh.edu
OI Jensen, Eric/0000-0002-4625-7333; Tan, Thiam-Guan/0000-0001-5603-6895;
Pepper, Joshua/0000-0002-3827-8417
FU NASA [NNX13AQ62G]; NSF CAREER [AST-1056524]
FX KELT-South is hosted by the South African Astronomical Observatory and
we are grateful for their ongoing support and assistance. KP
acknowledges support from NASA grant NNX13AQ62G. Work by BSG and DJS was
partially supported by NSF CAREER Grant AST-1056524.
NR 103
TC 5
Z9 5
U1 3
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 11
PY 2016
VL 459
IS 4
BP 4281
EP 4298
DI 10.1093/mnras/stw880
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3VM
UT WOS:000379830700067
ER
PT J
AU Kromer, M
Fremling, C
Pakmor, R
Taubenberger, S
Amanullah, R
Cenko, SB
Fransson, C
Goobar, A
Leloudas, G
Taddia, F
Ropke, FK
Seitenzahl, IR
Sim, SA
Sollerman, J
AF Kromer, M.
Fremling, C.
Pakmor, R.
Taubenberger, S.
Amanullah, R.
Cenko, S. B.
Fransson, C.
Goobar, A.
Leloudas, G.
Taddia, F.
Roepke, F. K.
Seitenzahl, I. R.
Sim, S. A.
Sollerman, J.
TI The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion
or violent merger?
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances; radiative
transfer; methods: numerical; supernovae: individual: iPTF14atg
ID WHITE-DWARF MODELS; LATE-TIME SPECTROSCOPY; SN 2011FE; PROGENITOR
SYSTEM; LIGHT CURVES; SYNTHETIC OBSERVABLES; SPECTRUM SYNTHESIS; STELLAR
COMPANION; NEBULAR SPECTRA; SHOCK BREAKOUT
AB iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system, where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multidimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M-aS (TM), respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circumstellar medium and surface radioactivity from an He-ignited merger that may be able to account for the early UV emission in violent merger models.
C1 [Kromer, M.; Fremling, C.; Fransson, C.; Taddia, F.; Sollerman, J.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden.
[Pakmor, R.; Roepke, F. K.] Heidelberger Inst Theoret Studien, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany.
[Taubenberger, S.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
[Taubenberger, S.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany.
[Amanullah, R.; Goobar, A.] Stockholm Univ, Dept Phys, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden.
[Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA.
[Leloudas, G.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel.
[Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark.
[Roepke, F. K.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany.
[Seitenzahl, I. R.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Seitenzahl, I. R.; Sim, S. A.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW, Australia.
[Sim, S. A.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland.
RP Kromer, M (reprint author), Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden.
EM markus.kromer@astro.su.se
OI Sollerman, Jesper/0000-0003-1546-6615
FU Knut and Alice Wallenberg Foundation; Swedish Research Council; Klaus
Tschira Foundation; European Research Council under ERC-StG
[EXAGAL-308037]; Deutsche Forschungsgemeinschaft via the Transregional
Collaborative Research Center [TRR 33]; Swedish National Space Board;
Australian Research Council [FL0992131]; German Federal Ministry of
Education and Research (BMBF); German State Ministries for Research of
Baden-Wurttemberg (MWK); Bayern (StMWFK); Nordrhein-Westfalen (MIWF)
FX We gratefully acknowledge support from the Knut and Alice Wallenberg
Foundation. The Oskar Klein Centre is funded by the Swedish Research
Council. The work of RP and FKR is supported by the Klaus Tschira
Foundation. RP also acknowledges support by the European Research
Council under ERC-StG grant EXAGAL-308037. ST is supported by the
Deutsche Forschungsgemeinschaft via the Transregional Collaborative
Research Center TRR 33 'The Dark Universe'. AG and RA acknowledge
support from the Swedish Research Council and the Swedish National Space
Board. IRS was supported by the Australian Research Council Laureate
Grant FL0992131.; The authors gratefully acknowledge the Gauss Centre
for Super computing (GCS) for providing computing time through the John
von Neumann Institute for Computing (NIC) on the GCS share of the
supercomputer JUQUEEN (Stephan & Docter 2015) at Julich Supercomputing
Centre (JSC). GCS is the alliance of the three national supercomputing
centres HLRS (Universitat Stuttgart), JSC (Forschungszentrum Julich),
and LRZ (Bayerische Akademie der Wissenschaften), funded by the German
Federal Ministry of Education and Research (BMBF) and the German State
Ministries for Research of Baden-Wurttemberg (MWK), Bayern (StMWFK), and
Nordrhein-Westfalen (MIWF). This research has made use of the NASA/IPAC
Extragalactic Database (NED) which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration.
NR 94
TC 2
Z9 2
U1 1
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 11
PY 2016
VL 459
IS 4
BP 4428
EP 4439
DI 10.1093/mnras/stw962
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3VM
UT WOS:000379830700077
ER
PT J
AU Gacesa, M
Montgomery, JA
Michels, HH
Cote, R
AF Gacesa, Marko
Montgomery, John A., Jr.
Michels, H. Harvey
Cote, Robin
TI Production of NaCa+ molecular ions in the ground state from cold
atom-ion mixtures by photoassociation via an intermediate state
SO PHYSICAL REVIEW A
LA English
DT Article
ID LONG-RANGE MOLECULES; CHARGE-EXCHANGE; COLLISIONS; ELECTRON; EQUATION;
CURVES; TRAP
AB We present a theoretical analysis of optical pathways for formation of cold ground-state (NaCa)(+) molecular ions via an intermediate state. The formation schemes are based on ab initio potential energy curves and transition dipole moments calculated using effective-core-potential methods of quantum chemistry. In the proposed approach, starting from a mixture of cold trapped Ca+ ions immersed into an ultracold gas of Na atoms, (NaCa)(+) molecular ions are photoassociated in the excited E-1 Sigma(+) electronic state and allowed to spontaneously decay either to the ground electronic state or an intermediate state from which the population is transferred to the ground state via an additional optical excitation. By analyzing all possible pathways, we find that the efficiency of a two-photon scheme, via either the B-1 Sigma(+) or C-1 Sigma(+) potential, is sufficient to produce significant quantities of ground-state (NaCa)(+) molecular ions. A single-step process results in lower formation rates that would require either a high-density sample or a very intense photoassociation laser to be viable.
C1 [Gacesa, Marko] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Gacesa, Marko; Montgomery, John A., Jr.; Michels, H. Harvey; Cote, Robin] Univ Connecticut, Dept Phys, Storrs, CT 06268 USA.
RP Gacesa, M (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Gacesa, M (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06268 USA.
EM marko.gacesa@nasa.gov
FU MURI US Army Research Office [W911NF-14-1-0378]; National Science
Foundation [PHY-1415560]
FX The authors wish to thank W. W. Smith for useful discussions and an
anonymous reviewer for suggestions that led to significant improvements
of the manuscript. This work was partially supported by the MURI US Army
Research Office Grant No. W911NF-14-1-0378 (MG) and by the PIF program
of the National Science Foundation Grant No. PHY-1415560 (RC).
NR 66
TC 1
Z9 1
U1 9
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9926
EI 2469-9934
J9 PHYS REV A
JI Phys. Rev. A
PD JUL 11
PY 2016
VL 94
IS 1
AR 013407
DI 10.1103/PhysRevA.94.013407
PG 12
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA DQ8XV
UT WOS:000379495900006
ER
PT J
AU Hitlin, DG
Kim, JH
Trevor, J
Hoenk, M
Hennessy, J
Jewell, A
Farrell, R
McClish, M
AF Hitlin, D. G.
Kim, J. H.
Trevor, J.
Hoenk, M.
Hennessy, J.
Jewell, A.
Farrell, R.
McClish, M.
TI An APD for the efficient detection of the fast scintillation component
of BaF2
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Barium fluoride; Photosensors; APD; Solar blind; Superlattice; Atomic
layer deposition
AB Barium fluoride crystals are the baseline choice for the calorimeter of the Mu2e experiment at Fermilab. By the fast (decay time 0.9 ns) 220 nm scintillation component and discriminating against the larger slow (decay time 630 ns) 300 nm component, it is possible to build a radiation-hard calorimeter with good energy and time resolution and high rate capability. This requires a solid state photosensor with high quantum efficiency at 220 nm, discrimination against the 300 nm component and good rise and decay times. Progress on the development of such a sensor is presented. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Hitlin, D. G.; Kim, J. H.; Trevor, J.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA.
[Hoenk, M.; Hennessy, J.; Jewell, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Farrell, R.; McClish, M.] RMD Inc, Watertown, MA USA.
RP Hitlin, DG (reprint author), CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA.
EM hitlin@caltech.edu
OI Jung, Kyuhyun/0000-0001-8631-610X
FU SBIR grant [DE-SC0011316]
FX The development of this UV sensitive, solar-blind APD a collaborative
effort of Caltech, Jet Propulsion Laboratory and RMD Inc., under SBIR
grant DE-SC0011316 and with NASA and DOE funds.
NR 10
TC 0
Z9 0
U1 3
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 11
PY 2016
VL 824
BP 119
EP 122
DI 10.1016/j.nima.2015.11.074
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DL1RD
UT WOS:000375408700042
ER
PT J
AU Barlis, A
Aguirre, J
Stevenson, T
AF Barlis, A.
Aguirre, J.
Stevenson, T.
TI Kinetic inductance detectors for far-infrared spectroscopy
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Kinetic inductance detectors; Superconducting detectors; Applied
superconductivity
AB The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Barlis, A.; Aguirre, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Stevenson, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Barlis, A (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
EM abarlis@physics.upenn.edu
FU NASA Space Technology Research Fellowship [NNX13AL68H]
FX This work was supported by a NASA Space Technology Research Fellowship
(grant #NNX13AL68H). The authors thank the members of the Detector
Development Laboratory at NASA Goddard Space Flight Center for sharing
their expertise on the KID fabrication process.
NR 2
TC 0
Z9 0
U1 3
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 11
PY 2016
VL 824
BP 165
EP 167
DI 10.1016/j.nima.2015.12.022
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DL1RD
UT WOS:000375408700057
ER
PT J
AU Nucciotti, A
Alpert, B
Becker, D
Bennett, D
Biasotti, M
Brofferio, C
Ceriale, V
Ceruti, G
Corsini, D
Day, P
De Gerone, M
Dressler, R
Faverzani, M
Ferri, E
Fowler, J
Fumagalli, E
Gard, J
Gatti, F
Giachero, A
Hays-Wehle, J
Heinitz, S
Hilton, G
Koester, U
Lusignoli, M
Maino, M
Mates, J
Nisi, S
Nizzolo, R
Orlando, A
Parodi, L
Pessina, G
Pizzigoni, G
Puiu, A
Ragazzi, S
Reintsema, C
Ribeiro-Gomes, M
Schmidt, D
Schumann, D
Siccardi, F
Sisti, M
Swetz, D
Terranova, F
Ullom, J
Vale, L
AF Nucciotti, A.
Alpert, B.
Becker, D.
Bennett, D.
Biasotti, M.
Brofferio, C.
Ceriale, V.
Ceruti, G.
Corsini, D.
Day, P.
De Gerone, M.
Dressler, R.
Faverzani, M.
Ferri, E.
Fowler, J.
Fumagalli, E.
Gard, J.
Gatti, F.
Giachero, A.
Hays-Wehle, J.
Heinitz, S.
Hilton, G.
Koester, U.
Lusignoli, M.
Maino, M.
Mates, J.
Nisi, S.
Nizzolo, R.
Orlando, A.
Parodi, L.
Pessina, G.
Pizzigoni, G.
Puiu, A.
Ragazzi, S.
Reintsema, C.
Ribeiro-Gomes, M.
Schmidt, D.
Schumann, D.
Siccardi, F.
Sisti, M.
Swetz, D.
Terranova, F.
Ullom, J.
Vale, L.
TI Status of the HOLMES detector development
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutrino mass; Ho-163; Electron capture; Low temperature detectors
ID ELECTRON NEUTRINO MASS; HO-163; DECAY
AB HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 0.4 eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of Ho-163. HOLMES will deploy a large array of low temperature microcalorimeters with implanted Ho-163 nuclei. HOLMES baseline detector is an array of 1000 microcalorimeters each with an implanted Ho-163 activity of about 300 Bq, an energy resolution FVVHM of about 1 eV at the spectrum end-point (Q approximate to 2.5 keV), and a time resolution of about 1 mu s. Matching these performances requires a careful optimization of all components, from the microcalorimeters to the signal processing algorithms. We outline here the project technical challenges and the present status of the development. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Nucciotti, A.; Brofferio, C.; Faverzani, M.; Ferri, E.; Nizzolo, R.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy.
[Nucciotti, A.; Brofferio, C.; Ceruti, G.; Faverzani, M.; Ferri, E.; Giachero, A.; Maino, M.; Pessina, G.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Ist Nazl Fis Nucl, Sezi Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy.
[Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Fumagalli, E.; Gatti, F.; Orlando, A.; Parodi, L.; Pizzigoni, G.; Schumann, D.; Siccardi, F.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy.
[Day, P.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Dressler, R.; Heinitz, S.] Paul Scherrer Inst, Villigen, Switzerland.
[Alpert, B.; Becker, D.; Bennett, D.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Mates, J.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.] NIST, Boulder, CO USA.
[Koester, U.] Inst Laue Langevin, Grenoble, France.
[Nisi, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, AQ, Italy.
[Lusignoli, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Ribeiro-Gomes, M.] Univ Lisbon, Multidisciplinary Ctr Astrophysics CENTRA IST, P-1699 Lisbon, Portugal.
RP Nucciotti, A (reprint author), Univ Milano Bicocca, Dipartimento Fis, Milan, Italy.
EM angelo.nucciotti@mib.infn.it
RI Giachero, Andrea/I-1081-2013; Sisti, Monica/B-7550-2013; Ferri,
Elena/L-8531-2014; Biasotti, Michele/C-7890-2017
OI Giachero, Andrea/0000-0003-0493-695X; Sisti, Monica/0000-0003-2517-1909;
De Gerone, Matteo/0000-0002-5489-6581; Ferri, Elena/0000-0003-1425-3669;
Pessina, Gianluigi Ezio/0000-0003-3700-9757; Biasotti,
Michele/0000-0002-7241-8479
FU European Research Council under the European Union's Seventh Framework
Programme (FP7)/ERC [340321]; NIST Innovations in Measurement Science
program for the TES detector development
FX The HOLMES experiment is funded by the European Research Council under
the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC
Grant Agreement no. 340321. We also acknowledge support from the NIST
Innovations in Measurement Science program for the TES detector
development.
NR 6
TC 0
Z9 0
U1 3
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 11
PY 2016
VL 824
BP 182
EP 183
DI 10.1016/j.nima.2015.09.066
PG 2
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DL1RD
UT WOS:000375408700062
ER
PT J
AU Pizzigoni, G
Alpert, B
Balata, M
Bennett, D
Biasotti, M
Boragno, C
Brofferio, C
De Gerone, M
Dressler, R
Faverazani, M
Ferri, E
Folwer, J
Gatti, F
Giachero, A
Heinitz, S
Hilton, G
Koster, U
Lusignoli, M
Maino, M
Mates, J
Nisi, S
Nizzolo, R
Nucciotti, A
Pessina, G
Puiu, A
Ragazzi, S
Reintsema, C
Gomes, MR
Shmidt, D
Schumann, D
Sisti, M
Swetz, D
Terranova, F
Ullom, J
Day, PK
AF Pizzigoni, G.
Alpert, B.
Balata, M.
Bennett, D.
Biasotti, M.
Boragno, C.
Brofferio, C.
De Gerone, M.
Dressler, R.
Faverazani, M.
Ferri, E.
Folwer, J.
Gatti, F.
Giachero, A.
Heinitz, S.
Hilton, G.
Koster, U.
Lusignoli, M.
Maino, M.
Mates, J.
Nisi, S.
Nizzolo, R.
Nucciotti, A.
Pessina, G.
Puiu, A.
Ragazzi, S.
Reintsema, C.
Ribeiro Gomes, M.
Shmidt, D.
Schumann, D.
Sisti, M.
Swetz, D.
Terranova, F.
Ullom, J.
Day, P. K.
TI Inside HOLMES experiment: Ho-163 metallic target production for the
micro-calorimeter absorber
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutrino mass; Holmes experiment; Reduction and distillation process
AB The main goal in the HOLMES experiment is the neutrino mass measurement using an array of 1000 micro-calorimeters with standard metallic absorber. A good isotope for such measurement is the Ho-163, those isotopes embedded in the metallic absorber will be 10(11)-10(13). Since Ho-163 is not available in nature, a dedicated process must be set up to produce the amount needed for this neutrino mass experiment. The process with the highest born-up cross-section is the neutron irradiation of Er2O3 enriched in Er-162: Er-162(n,gamma)Er-163 -> Ho-163 +v(e), where the decay is an EC with half-life of about 75 min and the (n,gamma) is about 20 barns for thermal neutron. After the neutron irradiation in the oxide powder there are several radioactive isotopes which are potentially disturbing because of the background that they cause below 5 keV. The chemical separation of holmium from the irradiation enriched Er2O3 powder is therefore mandatory and will be performed by means of ion exchange chromatography. On the end of those processes the oxide powder enriched in 162Er will have the 163Ho isotope number required. The holmium chemical state influences the end point of the EC spectrum, in order to avoid such effect it is necessary to embed in the absorber only the metallic isotope. Reduction and distillation technique allowed us to obtain a pure metallic holmium, starting from natural oxide holmium. This technique will be applied on the irradiated oxide powder to obtain the metallic Ho-163, ready to be embedded in the micro-calorimeter absorber. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Pizzigoni, G.; Biasotti, M.; Boragno, C.; De Gerone, M.; Gatti, F.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Pizzigoni, G.; Biasotti, M.; Boragno, C.; De Gerone, M.; Gatti, F.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy.
[Alpert, B.; Bennett, D.; Folwer, J.; Mates, J.; Reintsema, C.; Shmidt, D.; Swetz, D.; Ullom, J.] NIST, Boulder, CO USA.
[Balata, M.; Nisi, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, AQ, Italy.
[Brofferio, C.; Faverazani, M.; Ferri, E.; Giachero, A.; Maino, M.; Nizzolo, R.; Nucciotti, A.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy.
[Brofferio, C.; Faverazani, M.; Ferri, E.; Giachero, A.; Maino, M.; Nizzolo, R.; Nucciotti, A.; Pessina, G.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Ist Nazl Fis Nucl, Sez Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy.
[Day, P. K.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Dressler, R.; Heinitz, S.; Hilton, G.; Schumann, D.] Paul Scherrer Inst, Villigen, Switzerland.
[Lusignoli, M.] Inst Laue Langevin, Grenoble, France.
[Koster, U.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Ribeiro Gomes, M.] Univ Lisbon, Multidisciplinary Ctr Astrophys CENTRA IST, P-1699 Lisbon, Portugal.
RP Pizzigoni, G (reprint author), Univ Genoa, Dipartimento Fis, Genoa, Italy.
EM giulio.pizzigoni@ge.infn.it
RI Giachero, Andrea/I-1081-2013; Ferri, Elena/L-8531-2014; Biasotti,
Michele/C-7890-2017; Sisti, Monica/B-7550-2013
OI Giachero, Andrea/0000-0003-0493-695X; Ferri, Elena/0000-0003-1425-3669;
Biasotti, Michele/0000-0002-7241-8479; Sisti, Monica/0000-0003-2517-1909
FU European Research Council under the European Union's Seventh Framework
Programme (FP7)/ERC Grant [340321]
FX The HOLMES experiment is funded by the European Research Council under
the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC
Grant Agreement no. 340321. We would like to thank Professor P.
Manfrinetti for his useful contributions.
NR 6
TC 2
Z9 2
U1 3
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 11
PY 2016
VL 824
BP 223
EP 225
DI 10.1016/j.nima.2015.11.020
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DL1RD
UT WOS:000375408700078
ER
PT J
AU Benford, JN
Benford, DJ
AF Benford, James N.
Benford, Dominic J.
TI POWER BEAMING LEAKAGE RADIATION AS A SETI OBSERVABLE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE extraterrestrial intelligence; space vehicles; stars: individual (KIC
8462852)
ID DEEP SPACE EXPLORATION; INTERSTELLAR COMMUNICATION; ENERGY; EARTH
AB The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.
C1 [Benford, James N.] Microwave Sci, 1041 Los Arabis Lane, Lafayette, CA 94549 USA.
[Benford, Dominic J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
RP Benford, JN (reprint author), Microwave Sci, 1041 Los Arabis Lane, Lafayette, CA 94549 USA.
EM jimbenford@gmail.com
RI Benford, Dominic/D-4760-2012
OI Benford, Dominic/0000-0002-9884-4206
NR 28
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 101
DI 10.3847/0004-637X/825/2/101
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800019
ER
PT J
AU Dwek, E
AF Dwek, Eli
TI IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF
INTERSTELLAR DUST
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; Galaxy: abundances; ISM: abundances; nuclear
reactions, nucleosynthesis, abundances; supernovae: general; solar
neighborhood
ID KEPLERS SUPERNOVA REMNANT; CORE-COLLAPSE SUPERNOVAE;
SPITZER-SPACE-TELESCOPE; IA SUPERNOVAE; SOLAR NEIGHBORHOOD; CHEMICAL
EVOLUTION; NUMERICAL SIMULATIONS; INFRARED-EMISSION; GALACTIC-CENTER;
MASSIVE SINGLE
AB The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB stars. Only the latter two are observed to be sources of interstellar dust since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65% of the iron is injected into the ISM in gaseous form. Yet ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase as compared to expected solar abundances. The missing iron, comprising about 90% of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by a cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.
C1 [Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.
RP Dwek, E (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA.
EM eli.dwek@nasa.gov
FU NASA's research grants [12-ADP12-0145, 13-ADAP13-0094]
FX In writing this paper I have benefited from many enlightening
conversations with Joe Nuth, and useful references provided by Steven
Rodney. J.N. and Rick Arendt provided useful comments on an early
version of the manuscript. I thank the referees, Xander Tielens and
Anthony Jones, for their critical comments, which led to improvements in
the manuscript. This work was supported by NASA's 12-ADP12-0145 and
13-ADAP13-0094 research grants.
NR 74
TC 3
Z9 3
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 136
DI 10.3847/0004-637X/825/2/136
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800054
ER
PT J
AU Eingorn, M
AF Eingorn, Maxim
TI FIRST-ORDER COSMOLOGICAL PERTURBATIONS ENGENDERED BY POINT-LIKE MASSES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmological parameters; cosmology: theory; dark energy; dark matter;
gravitation; large-scale structure of universe
ID UNIVERSE; SIMULATIONS; HOMOGENEITY; SCALE
AB In the framework of the concordance cosmological model, the first-order scalar and vector perturbations of the homogeneous background are derived in the weak gravitational field limit without any supplementary approximations. The sources of these perturbations (inhomogeneities) are presented in the discrete form of a system of separate point-like gravitating masses. The expressions found for the metric corrections are valid at all (sub-horizon and super-horizon) scales and converge at all points except at the locations of the sources. The average values of these metric corrections are zero (thus, first-order backreaction effects are absent). Both the Minkowski background limit and the Newtonian cosmological approximation are reached under certain well-defined conditions. An important feature of the velocity-independent part of the scalar perturbation is revealed: up to an additive constant, this part represents a sum of Yukawa potentials produced by inhomogeneities with the same finite time-dependent Yukawa interaction range. The suggested connection between this range and the homogeneity scale is briefly discussed along with other possible physical implications.
C1 [Eingorn, Maxim] North Carolina Cent Univ, CREST, Fayetteville St 1801, Durham, NC 27707 USA.
[Eingorn, Maxim] NASA, Res Ctr, Fayetteville St 1801, Durham, NC 27707 USA.
RP Eingorn, M (reprint author), North Carolina Cent Univ, CREST, Fayetteville St 1801, Durham, NC 27707 USA.; Eingorn, M (reprint author), NASA, Res Ctr, Fayetteville St 1801, Durham, NC 27707 USA.
EM maxim.eingorn@gmail.com
RI Eingorn, Maxim/L-1543-2014
OI Eingorn, Maxim/0000-0002-1545-7818
FU NSF CREST award [HRD-1345219]; NASA grant [NNX09AV07A]
FX This work was supported by NSF CREST award HRD-1345219 and NASA grant
NNX09AV07A. I would like to thank the anonymous referee for valuable
comments that have considerably improved the discussion of the derived
results. I am also grateful to my colleague Prof. Diane Markoff for the
careful review of their presentation.
NR 46
TC 5
Z9 5
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 84
DI 10.3847/0004-637X/825/2/84
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800002
ER
PT J
AU Elmegreen, DM
Elmegreen, BG
Almeida, JS
Munoz-Tunon, C
Mendez-Abreu, J
Gallagher, JS
Rafelski, M
Filho, M
Ceverino, D
AF Elmegreen, Debra Meloy
Elmegreen, Bruce G.
Sanchez Almeida, Jorge
Munoz-Tunon, Casiana
Mendez-Abreu, Jairo
Gallagher, John S.
Rafelski, Marc
Filho, Mercedes
Ceverino, Daniel
TI HUBBLE SPACE TELESCOPE OBSERVATIONS OF ACCRETION-INDUCED STAR FORMATION
IN THE TADPOLE GALAXY KISO 5639
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: dwarf; galaxies: individual (Kiso 5639); galaxies: photometry;
galaxies: star clusters: general; galaxies: star formation; H II regions
ID COMPACT DWARF GALAXIES; ULTRA DEEP FIELD; ALPHA ESCAPE FRACTION;
METAL-POOR GALAXIES; I ZW 18; FORMING GALAXIES; NEARBY GALAXIES;
FORMATION LAW; INTEGRATED PHOTOMETRY; IRREGULAR GALAXIES
AB The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength Hubble Space Telescope Wide Field Camera 3 images of UV through I band plus H alpha to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of similar to 10(6) M-circle dot and an ionization rate of 6.4 x 10(51) s(-1), equivalent to similar to 2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of similar to 1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of -1.73 +/- 0.51. Fourteen young clusters in the head are more massive than 10(4) M-circle dot, suggesting a clustering fraction of 30%-45%. Wispy filaments of Ha emission and young stars extend away from the galaxy. Shells and holes in the head H II region could be from winds and supernovae. Gravity from the disk should limit the expansion of the H II region, although hot gas might escape through the holes. The star formation surface density determined from Ha in the head is compared to that expected from likely pre-existing and accreted gas. Unless the surface density of the accreted gas is a factor of similar to 3 or more larger than what was in the galaxy before, the star formation rate has to exceed the usual Kennicutt-Schmidt rate by a factor of >= 5.
C1 [Elmegreen, Debra Meloy] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA.
[Elmegreen, Bruce G.] IBM Res Div, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA.
[Sanchez Almeida, Jorge; Munoz-Tunon, Casiana; Filho, Mercedes] Inst Astrofis Canarias, C Via Lactea S-N, E-38205 Tenerife, Spain.
[Sanchez Almeida, Jorge; Munoz-Tunon, Casiana; Filho, Mercedes] Univ La Laguna, Dept Astrofis, E-38207 San Cristobal la Laguna, Spain.
[Mendez-Abreu, Jairo] Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.
[Gallagher, John S.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Rafelski, Marc] Goddard Space Flight Ctr, Astrophys Sci Div, Code 665, Greenbelt, MD 20771 USA.
[Ceverino, Daniel] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany.
RP Elmegreen, DM (reprint author), Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA.
OI Elmegreen, Debra/0000-0002-1392-3520; Mendez Abreu,
Jairo/0000-0002-8766-2597
FU NASA; STScI; Spanish Ministry of Economy and Competitiveness
[AYA2013-47742-C4-2-P]; European Research Council Starting Grant
(SEDmorph); European Research Council Advanced Grant (STARLIGHT);
National Aeronautics and Space Administration; Jesus Serra Foundation;
[HST-GO-13723.002-A]; [HST-GO-13723.001-A]
FX We thank NASA and STScI for observing time and grant support. DME is
supported by HST-GO-13723.002-A and BGE is supported by
HST-GO-13723.001-A; both are grateful to the Severo Ochoa and Jesus
Serra Foundation for support during a visit to the Instituto de
Astrofisica de Canarias. The work of JSA, CMT, and MF has been partly
funded by the Spanish Ministry of Economy and Competitiveness, project
AYA2013-47742-C4-2-P. JMA acknowledges support from the European
Research Council Starting Grant (SEDmorph; P. I. V. Wild). MR
acknowledges support from an appointment to the NASA Postdoctoral
Program at Goddard Space Flight Center. DC acknowledges support from the
European Research Council Advanced Grant (STARLIGHT; P. I. Ralf Klessen)
This research has made use of the NASA/IPAC Extragalactic Database (NED)
which is operated by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics and Space
Administration.
NR 74
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 145
DI 10.3847/0004-637X/825/2/145
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800063
ER
PT J
AU Farr, B
Berry, CPL
Farr, WM
Haster, CJ
Middleton, H
Cannon, K
Graff, PB
Hanna, C
Mandel, I
Pankow, C
Price, LR
Sidery, T
Singer, LP
Urban, AL
Vecchio, A
Veitch, J
Vitale, S
AF Farr, Ben
Berry, Christopher P. L.
Farr, Will M.
Haster, Carl-Johan
Middleton, Hannah
Cannon, Kipp
Graff, Philip B.
Hanna, Chad
Mandel, Ilya
Pankow, Chris
Price, Larry R.
Sidery, Trevor
Singer, Leo P.
Urban, Alex L.
Vecchio, Alberto
Veitch, John
Vitale, Salvatore
TI PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES
WITH SPINNING COMPONENTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gravitational waves; methods: data analysis; stars: neutron; surveys
ID COMPACT-OBJECT BINARIES; BLACK-HOLES; MASS-DISTRIBUTION; ADVANCED LIGO;
FOLLOW-UP; RADIATION; MERGERS; VIRGO; COALESCENCE; TRANSIENTS
AB Inspiraling binary neutron stars (BNSs) are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses 1.2 M-circle dot-1.6 M-circle dot and spins of less than 0.05) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential BNS sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of similar to 16%, with little constraint on spins (the median 90% upper limit on the spin of the more massive component is similar to 0.7). Stronger prior constraints on neutron-star spins can further constrain mass estimates but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up.
C1 [Farr, Ben] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Farr, Ben] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Berry, Christopher P. L.; Farr, Will M.; Haster, Carl-Johan; Middleton, Hannah; Mandel, Ilya; Sidery, Trevor; Vecchio, Alberto; Veitch, John] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
[Cannon, Kipp] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Graff, Philip B.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Graff, Philip B.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA.
[Hanna, Chad] Penn State Univ, University Pk, PA 16802 USA.
[Pankow, Chris; Urban, Alex L.] Univ Wisconsin, Leonard E Parker Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53201 USA.
[Price, Larry R.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA.
[Singer, Leo P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA.
[Vitale, Salvatore] MIT, 185 Albany St, Cambridge, MA 02139 USA.
RP Farr, B (reprint author), Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.; Farr, B (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
EM farr@uchicago.edu
RI Vecchio, Alberto/F-8310-2015;
OI Vecchio, Alberto/0000-0002-6254-1617; Farr, Will/0000-0003-1540-8562;
Berry, Christopher/0000-0003-3870-7215; Mandel,
Ilya/0000-0002-6134-8946; Veitch, John/0000-0002-6508-0713
FU Enrico Fermi Institute at the University of Chicago as a McCormick
Fellow; Science and Technology Facilities Council; NASA [NNX12AN10G];
National Science Foundation; LIGO Laboratory; STFC [ST/K005014/1];
National Science Foundation [PHY-0757058]; NSF [PHY-1126812]; LIGO Data
Grid including: the Nemo computing cluster at the Center for Gravitation
and Cosmology at the University of Wisconsin-Milwaukee under NSF
[PHY-0923409, PHY-0600953]; Atlas computing cluster at the Albert
Einstein Institute, Hannover; LIGO computing clusters at Caltech
FX B.F. was supported by the Enrico Fermi Institute at the University of
Chicago as a McCormick Fellow. This work was supported in part by the
Science and Technology Facilities Council. P.B.G. acknowledges NASA
grant NNX12AN10G. S.V. acknowledges the support of the National Science
Foundation and the LIGO Laboratory. J.V. was supported by STFC grant
ST/K005014/1. LIGO was constructed by the California Institute of
Technology and Massachusetts Institute of Technology with funding from
the National Science Foundation and operates under cooperative agreement
PHY-0757058.; This work used computing resources at CIERA funded by NSF
PHY-1126812, as well as the computing facilities of the LIGO Data Grid
including: the Nemo computing cluster at the Center for Gravitation and
Cosmology at the University of Wisconsin-Milwaukee under NSF Grants
PHY-0923409 and PHY-0600953; the Atlas computing cluster at the Albert
Einstein Institute, Hannover; the LIGO computing clusters at Caltech,
and the facilities of the Advanced Research Computing @ Cardiff (ARCCA)
Cluster at Cardiff University.
NR 63
TC 3
Z9 3
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 116
DI 10.3847/0004-637X/825/2/116
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800034
ER
PT J
AU Hong, J
Mori, K
Hailey, CJ
Nynka, M
Zhang, S
Gotthelf, E
Fornasini, FM
Krivonos, R
Bauer, F
Perez, K
Tomsick, JA
Bodaghee, A
Chiu, JL
Clavel, M
Stern, D
Grindlay, JE
Alexander, DM
Aramaki, T
Baganoff, FK
Barret, D
Barriere, N
Boggs, SE
Canipe, AM
Christensen, FE
Craig, WW
Desai, MA
Forster, K
Giommi, P
Grefenstette, BW
Harrison, FA
Hong, D
Hornstrup, A
Kitaguchi, T
Koglin, JE
Madsen, KK
Mao, PH
Miyasaka, H
Perri, M
Pivovaroff, MJ
Puccetti, S
Rana, V
Westergaard, NJ
Zhang, WW
Zoglauer, A
AF Hong, JaeSub
Mori, Kaya
Hailey, Charles J.
Nynka, Melania
Zhang, Shuo
Gotthelf, Eric
Fornasini, Francesca M.
Krivonos, Roman
Bauer, Franz
Perez, Kerstin
Tomsick, John A.
Bodaghee, Arash
Chiu, Jeng-Lun
Clavel, Maica
Stern, Daniel
Grindlay, Jonathan E.
Alexander, David M.
Aramaki, Tsuguo
Baganoff, Frederick K.
Barret, Didier
Barriere, Nicolas
Boggs, Steven E.
Canipe, Alicia M.
Christensen, Finn E.
Craig, William W.
Desai, Meera A.
Forster, Karl
Giommi, Paolo
Grefenstette, Brian W.
Harrison, Fiona A.
Hong, Dooran
Hornstrup, Allan
Kitaguchi, Takao
Koglin, Jason E.
Madsen, Kristen K.
Mao, Peter H.
Miyasaka, Hiromasa
Perri, Matteo
Pivovaroff, Michael J.
Puccetti, Simonetta
Rana, Vikram
Westergaard, Niels J.
Zhang, William W.
Zoglauer, Andreas
TI NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. II. X-RAY POINT
SOURCES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Galaxy: center; X-rays: binaries; X-rays: diffuse background; X-rays:
general
ID MAGNETIC CATACLYSMIC VARIABLES; SUPERNOVA-REMNANT SAGITTARIUS;
XMM-NEWTON OBSERVATIONS; BURSTING PULSAR; CHANDRA CATALOG; LIMITING
WINDOW; GRS 1741.9-2853; NUMBER COUNTS; V404 CYGNI; A-ASTERISK
AB We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(2) region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of similar to 4x and similar to 8 x 10(32) erg s(-1) at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Gamma = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.
C1 [Hong, JaeSub; Grindlay, Jonathan E.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Canipe, Alicia M.; Desai, Meera A.; Hong, Dooran] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Gotthelf, Eric] Univ Barcelona, Dept Fis Quant & Astrofis, Inst Ciencies Cosmos, IEEC UB, Marti & Franques 1, Barcelona 08028, Spain.
[Fornasini, Francesca M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Krivonos, Roman] Russian Acad Sci, Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia.
[Bauer, Franz] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile.
[Bauer, Franz] Millennium Inst Astrophys, Santiago, Chile.
[Bauer, Franz] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA.
[Perez, Kerstin] Haverford Coll, 370 Lancaster Ave,KINSC L109, Haverford, PA 19041 USA.
[Tomsick, John A.; Chiu, Jeng-Lun; Clavel, Maica; Barriere, Nicolas; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Bodaghee, Arash] Georgia Coll, 231 W Hancock St, Milledgeville, GA 31061 USA.
[Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Alexander, David M.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Aramaki, Tsuguo] Standford Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Baganoff, Frederick K.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Barret, Didier; Christensen, Finn E.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France.
[Barret, Didier] Inst Rech Astrophys & Planetol, CNRS, 9Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Craig, William W.; Pivovaroff, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Forster, Karl; Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Giommi, Paolo; Perri, Matteo; Puccetti, Simonetta] ASI Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Hornstrup, Allan; Westergaard, Niels J.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Kitaguchi, Takao] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan.
[Kitaguchi, Takao] Hiroshima Univ, Core Res Energet Universe, Higashihiroshima, Hiroshima 7398526, Japan.
[Koglin, Jason E.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Perri, Matteo; Puccetti, Simonetta] INAF Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
[Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Hong, J (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM jaesub@head.cfa.harvard.edu
OI Clavel, Maica/0000-0003-0724-2742; Krivonos, Roman/0000-0003-2737-5673
FU NASA [NASA Contract No. NNG08FD60C]; National Aeronautics and Space
Administration; NASA/APRA grant [NNX14AD59G]; Russian Science Foundation
[14-22-00271]; CONICYT-Chile (Basal-CATA) [PFB-06/2007]; CONICYT-Chile
(FONDECYT) [1141218]; CONICYT-Chile ("EMBIGGEN" Anillo) [ACT1101];
Ministry of Economy, Development, and Tourism's Millennium Science
Initiative [IC120009]; NASA Headquarters under the NASA Earth and Space
Science Fellowship Program-Grant [NNX13AM31]; French Space Agency (CNES)
FX This work was supported under NASA Contract No. NNG08FD60C, and made use
of data from the NuSTAR mission, a project led by the California
Institute of Technology, managed by the Jet Propulsion Laboratory, and
funded by the National Aeronautics and Space Administration. We thank
the NuSTAR Operations, Software and Calibration teams for support with
the execution and analysis of these observations. We thank G. Ponti for
careful reading and suggestions of the manuscript. This research has
made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly
developed by the ASI Science Data Center (ASDC, Italy) and the
California Institute of Technology (USA). J. Hong acknowledges support
from NASA/APRA grant NNX14AD59G. R. Krivonos acknowledges support from
Russian Science Foundation through grant 14-22-00271. F.E. Bauer
acknowledges support from CONICYT-Chile (Basal-CATA PFB-06/2007,
FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101), and the Ministry of
Economy, Development, and Tourism's Millennium Science Initiative
through grant IC120009, awarded to The Millennium Institute of
Astrophysics, MAS. S. Zhang is supported by NASA Headquarters under the
NASA Earth and Space Science Fellowship Program-Grant NNX13AM31. D.
Barret acknowledges support from the French Space Agency (CNES).
NR 89
TC 3
Z9 3
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 132
DI 10.3847/0004-637X/825/2/132
PG 31
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800050
ER
PT J
AU Karalidi, T
Apai, D
Marley, MS
Buenzli, E
AF Karalidi, Theodora
Apai, Daniel
Marley, Mark S.
Buenzli, Esther
TI MAPS OF EVOLVING CLOUD STRUCTURES IN LUHMAN 16AB FROM HST TIME-RESOLVED
SPECTROSCOPY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE methods: statistical; stars: individual (WISE J104915.57-531906.1);
techniques: photometric
ID BINARY BROWN DWARF; 2 PC; WISE J104915.57-531906.1AB; AMPLITUDE
VARIABILITY; L/T TRANSITION; T DWARFS; ATMOSPHERE; WEATHER; DISCOVERY;
ROTATION
AB WISE J104915.57-531906.1 is the nearest brown dwarf binary to our solar system, consisting of two brown dwarfs in the L/T transition: Luhman 16A and B. In this paper, we present the first map of Luhman 16A, and maps of Luhman 16B for two epochs. Our maps were created by applying Aeolus, a Markov-Chain Monte Carlo code that maps the top-of-the-atmosphere (TOA) structure of brown dwarf and other ultracool atmospheres, to light curves of Luhman 16A and B using the Hubble Space Telescope's G141 and G102 grisms. Aeolus retrieved three or four spots in the TOA of Luhman 16A and B, with a surface coverage of 19%-32% (depending on an assumed rotational period of 5 hr or 8 hr) or 21%-38.5% (depending on the observational epoch), respectively. The brightness temperature of the spots of the best-fit models was similar to 200 K hotter than the background TOA. We compared our Luhman 16B map with the only previously published map. Interestingly, our map contained a large TOA spot that was cooler (Delta T similar to 51 K) than the background, which lay at low latitudes, in agreement with the previous Luhman 16B map. Finally, we report the detection of a feature reappearing in Luhman 16B light curves that are separated by tens of hundreds of rotations from each other. We speculate that this feature is related to TOA structures of Luhman 16B.
C1 [Karalidi, Theodora; Apai, Daniel] Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA.
[Apai, Daniel] Univ Arizona, Lunar & Planetary Lab, 1629 East Univ Blvd, Tucson, AZ 85721 USA.
[Marley, Mark S.] NASA, Ames Res Ctr, MS-245-3, Moffett Field, CA 94035 USA.
[Buenzli, Esther] ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
RP Karalidi, T (reprint author), Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA.
EM tkaralidi@email.arizona.edu
OI Marley, Mark/0000-0002-5251-2943
FU Spitzer Cycle-9 Exploration Program Extrasolar Storms [90063]; NASA by
JPL/Caltech; NASA from the Space Telescope Science Institute [12314];
NASA [NAS5-26555, NAS 526555]; National Aeronautics and Space
Administration [NNX15AD94G]
FX This work is part of the Spitzer Cycle-9 Exploration Program Extrasolar
Storms (program No. 90063). Support for this work was provided by NASA
through an award issued by JPL/Caltech. Support for Program number 12314
was provided by NASA through a grant from the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Incorporated, under NASA contract NAS5-26555. An
allocation of computer time from the UA Research Computing High
Performance Computing (HTC) and High Throughput Computing (HTC) at the
University of Arizona is gratefully acknowledged. This study, in part,
is based on observations made with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by
the Association of Universities for Research in Astronomy, Inc., under
NASA contract NAS 526555. D. Apai acknowledges support by the National
Aeronautics and Space Administration under agreement No. NNX15AD94G for
the program Earths in Other Solar Systems. We thank I.J.M. Crossfield
for providing us with the previously published Luhman 16B map data set.
We thank Ben W.P. Lew for providing us with a best-fit exoplanet period
for the PPCS-1 in Luhman 16B light curves. We thank the anonymous
referee for a helpful report.
NR 32
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 90
DI 10.3847/0004-637X/825/2/90
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800008
ER
PT J
AU Koss, MJ
Assef, R
Balokovic, M
Stern, D
Gandhi, P
Lamperti, I
Alexander, DM
Ballantyne, DR
Bauer, FE
Berney, S
Brandt, WN
Comastri, A
Gehrels, N
Harrison, FA
Lansbury, G
Markwardt, C
Ricci, C
Rivers, E
Schawinski, K
Trakhtenbrot, B
Treister, E
Urry, CM
AF Koss, Michael J.
Assef, R.
Balokovic, M.
Stern, D.
Gandhi, P.
Lamperti, I.
Alexander, D. M.
Ballantyne, D. R.
Bauer, F. E.
Berney, S.
Brandt, W. N.
Comastri, A.
Gehrels, N.
Harrison, F. A.
Lansbury, G.
Markwardt, C.
Ricci, C.
Rivers, E.
Schawinski, K.
Trakhtenbrot, B.
Treister, E.
Urry, C. Megan
TI A NEW POPULATION OF COMPTON-THICK AGNs IDENTIFIED USING THE SPECTRAL
CURVATURE ABOVE 10 keV
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: Seyfert; X-rays: galaxies
ID ACTIVE GALACTIC NUCLEI; SEYFERT 2 GALAXIES; SUPERMASSIVE BLACK-HOLES;
X-RAY SPECTROSCOPY; SWIFT-BAT SURVEY; DEEP FIELD-SOUTH; XMM-NEWTON;
MIDINFRARED SELECTION; MU-M; NUSTAR
AB We present a new metric that uses the spectral curvature (SC) above 10 keV to identify Compton-thick active galactic nuclei (AGNs) in low-quality Swift/Burst Alert Telescope (BAT) X-ray data. Using NuSTAR, we observe nine high SC-selected AGNs. We find that high-sensitivity spectra show that the majority are Compton-thick (78% or 7/9) and the remaining two are nearly Compton-thick (NH similar or equal to (5-8) x 10(23) cm(-2)). We find that the SCBAT and SCNuSTAR measurements are consistent, suggesting that this technique can be applied to future telescopes. We tested the SC method on well-known Compton-thick AGNs and found that it is much more effective than broadband ratios (e.g., 100% using SC versus 20% using 8-24 keV/3-8 keV). Our results suggest that using the > 10 keV emission may be the only way to identify this population since only two sources show Compton-thick levels of excess in the Balmer decrement corrected [O III] to observed X-ray emission ratio (F-[O III]/F-2-10(obs) keV > 1) and WISE colors do not identify most of them as AGNs. Based on this small sample, we find that a higher fraction of these AGNs are in the final merger stage (< 10 kpc) than typical BAT AGNs. Additionally, these nine obscured AGNs have, on average, approximate to 4 x higher accretion rates than other BAT-detected AGNs ( = 0.068 +/- 0.023 compared to = 0.016 +/- 0.004). The robustness of SC at identifying Compton-thick AGNs implies that a higher fraction of nearby AGNs may be Compton-thick (approximate to 22%) and the sum of black hole growth in Compton-thick AGNs (Eddington ratio times population percentage) is nearly as large as mildly obscured and unobscured AGNs.
C1 [Koss, Michael J.; Lamperti, I.; Berney, S.; Schawinski, K.; Trakhtenbrot, B.] Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
[Koss, Michael J.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA.
[Assef, R.] Univ Diego Portales, Nucleo Astron Fac Ingn, Av Ejercito 441, Santiago, Chile.
[Balokovic, M.; Harrison, F. A.; Rivers, E.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Gandhi, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Alexander, D. M.] Univ Durham, Dept Phys, S Rd, Durham DH1 3LE, England.
[Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Inst Astrofis, Fac Fis, Casilla 306, Santiago 22, Chile.
[Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA.
[Brandt, W. N.] Penn State Univ, Davey Lab 525, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Brandt, W. N.] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA.
[Comastri, A.] INAF, Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy.
[Gehrels, N.; Markwardt, C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD USA.
[Treister, E.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile.
[Urry, C. Megan] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, POB 208120, New Haven, CT 06520 USA.
RP Koss, MJ (reprint author), Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.; Koss, MJ (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA.
EM mkoss@phys.ethz.ch
OI Koss, Michael/0000-0002-7998-9581; Trakhtenbrot,
Benny/0000-0002-3683-7297
FU Ambizione fellowship grant [PZ00P2_154799/1]; Swiss National Science
Foundation (NSF) grant [PP00P2 138979/1]; Center of Excellence in
Astrophysics and Associated Technologies [PFB 06]; FONDECYT regular
grant [1120061]; CONICYT Anillo project [ACT1101]; NASA Headquarters
under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H];
NSF award [AST 1008067]; Caltech NuSTAR sub-contract [44A-1092750]; NASA
ADP grant [NNX10AC99G]; ASI/INAF grant [I/037/12/0011/13]; Caltech
Kingsley visitor program; National Aeronautics and Space Administration
through Chandra Award [AR3-14010X]; National Aeronautics Space
Administration [NAS8-03060]; NASA [NNG08FD60C]; ESA Member States
FX We acknowledge financial support from Ambizione fellowship grant
PZ00P2_154799/1 (M.K.), the Swiss National Science Foundation (NSF)
grant PP00P2 138979/1 (M.K. and K.S.), the Center of Excellence in
Astrophysics and Associated Technologies (PFB 06), by the FONDECYT
regular grant 1120061 and by the CONICYT Anillo project ACT1101 (E.T.),
NASA Headquarters under the NASA Earth and Space Science Fellowship
Program, grant NNX14AQ07H (M.B.), NSF award AST 1008067 (D.B.), Caltech
NuSTAR sub-contract 44A-1092750 and NASA ADP grant NNX10AC99G (W. N.B.),
and the ASI/INAF grant I/037/12/0011/13 and the Caltech Kingsley visitor
program (A.C.). M.K. also acknowledges that support for this work was
provided by the National Aeronautics and Space Administration through
Chandra Award Number AR3-14010X issued by the Chandra X-ray Center,
which is operated by the Smithsonian Astrophysical Observatory for and
on behalf of the National Aeronautics Space Administration under
contract NAS8-03060. This work was supported under NASA Contract No.
NNG08FD60C and made use of data from the NuSTAR mission, a project led
by the California Institute of Technology, managed by the Jet Propulsion
Laboratory, and funded by the National Aeronautics and Space
Administration. We thank the NuSTAR Operations, Software and Calibration
teams for support with the execution and analysis of these observations.
This research has made use of the NuSTAR Data Analysis Software
(NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC,
Italy) and the California Institute of Technology (USA). This research
made use of the XRT Data Analysis Software (XRTDAS), archival data,
software, and online services provided by the ASDC. This work made use
of data supplied by the UK Swift Science Data Centre at the University
of Leicester. The scientific results reported in this article are based
on data obtained from the Chandra Data Archive (Obs ID = 4078, 4868,
12290, 13895). This work is based on observations obtained with
XMM-Newton (Obs ID = 0110930201, 0147760101, 0200430201), an ESA science
mission with instruments and contributions directly funded by ESA Member
States and NASA.
NR 87
TC 3
Z9 3
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 85
DI 10.3847/0004-637X/825/2/85
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800003
ER
PT J
AU Rafelski, M
Gardner, JP
Fumagalli, M
Neeleman, M
Teplitz, HI
Grogin, N
Koekemoer, AM
Scarlata, C
AF Rafelski, Marc
Gardner, Jonathan P.
Fumagalli, Michele
Neeleman, Marcel
Teplitz, Harry I.
Grogin, Norman
Koekemoer, Anton M.
Scarlata, Claudia
TI THE STAR FORMATION RATE EFFICIENCY OF NEUTRAL ATOMIC-DOMINATED HYDROGEN
GAS IN THE OUTSKIRTS OF STAR-FORMING GALAXIES FROM z similar to 1 TO z
similar to 3
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: evolution; galaxies: high-redshift; galaxies: photometry;
galaxies: star formation; galaxies: structure; quasars: absorption lines
ID LY-ALPHA SYSTEMS; DAMPED LYMAN-ALPHA; ULTRA-DEEP FIELD; CO-TO-H-2
CONVERSION FACTOR; KENNICUTT-SCHMIDT RELATION; DWARF IRREGULAR GALAXIES;
SURFACE BRIGHTNESS GALAXIES; EXTRAGALACTIC LEGACY SURVEY; II-ASTERISK
ABSORPTION; DARK-MATTER UNIVERSE
AB Current observational evidence suggests that the star formation rate (SFR) efficiency of neutral atomic hydrogen gas measured in damped Lya systems (DLAs) at z similar to 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS) relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z similar to 1, z similar to 2, and z similar to 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is similar to 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.
C1 [Rafelski, Marc; Gardner, Jonathan P.] Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.
[Fumagalli, Michele] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England.
[Fumagalli, Michele] Univ Durham, Ctr Extragalact Astron, Dept Phys, South Rd, Durham DH1 3LE, England.
[Neeleman, Marcel] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA.
[Teplitz, Harry I.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA.
[Grogin, Norman; Koekemoer, Anton M.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Scarlata, Claudia] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, Minneapolis, MN 55455 USA.
RP Rafelski, M (reprint author), Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA.
EM marc.a.rafelski@nasa.gov
RI Fumagalli, Michele/K-9510-2015;
OI Fumagalli, Michele/0000-0001-6676-3842; Koekemoer,
Anton/0000-0002-6610-2048
FU Science and Technology Facilities Council [ST/L00075X/1]; NASA from the
Space Telescope Science Institute [GO-12534]; NASA [NAS5-26555]; NASA
Postdoctoral Program at Goddard Space Flight Center
FX We would like to thank Rachel Somerville, Mark Krumholz, and Bruce
Elmegreen for useful discussions on interpreting the results. We also
thank the referee for useful comments that improved the clarity of the
paper. M.R. acknowledges support from an appointment to the NASA
Postdoctoral Program at Goddard Space Flight Center. M.F. acknowledges
support by the Science and Technology Facilities Council (grant number
ST/L00075X/1). Support for HST Program GO-12534 was provided by NASA
through grants from the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy,
Inc., under NASA contract NAS5-26555.
NR 140
TC 3
Z9 3
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 87
DI 10.3847/0004-637X/825/2/87
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800005
ER
PT J
AU Ryu, T
Sato, B
Kuzuhara, M
Narita, N
Takahashi, YH
Uyama, T
Kudo, T
Kusakabe, N
Hashimoto, J
Omiya, M
Harakawa, H
Abe, L
Ando, H
Brandner, W
Brandt, TD
Carson, JC
Currie, T
Egner, S
Feldt, M
Goto, M
Grady, CA
Guyon, O
Hayano, Y
Hayashi, M
Hayashi, SS
Helminiak, KG
Henning, T
Hodapp, KW
Ida, S
Ishii, M
Itoh, Y
Iye, M
Izumiura, H
Janson, M
Kambe, E
Kandori, R
Knapp, GR
Kokubo, E
Kwon, J
Matsuo, T
Mayama, S
McElwain, MW
Mede, K
Miyama, S
Morino, JI
Moro-Martin, A
Nishimura, T
Pyo, TS
Serabyn, E
Suenaga, T
Suto, H
Suzuki, R
Takami, M
Takato, N
Takeda, Y
Terada, H
Thalmann, C
Turner, EL
Watanabe, M
Wisniewski, J
Yamada, T
Yoshida, M
Takami, H
Usuda, T
Tamura, M
AF Ryu, Tsuguru
Sato, Bun'ei
Kuzuhara, Masayuki
Narita, Norio
Takahashi, Yasuhiro H.
Uyama, Taichi
Kudo, Tomoyuki
Kusakabe, Nobuhiko
Hashimoto, Jun
Omiya, Masashi
Harakawa, Hiroki
Abe, Lyu
Ando, Hiroyasu
Brandner, Wolfgang
Brandt, Timothy D.
Carson, Joseph C.
Currie, Thayne
Egner, Sebastian
Feldt, Markus
Goto, Miwa
Grady, Carol A.
Guyon, Olivier
Hayano, Yutaka
Hayashi, Masahiko
Hayashi, Saeko S.
Helminiak, Krzysztof G.
Henning, Thomas
Hodapp, Klaus W.
Ida, Shigeru
Ishii, Miki
Itoh, Yoichi
Iye, Masanori
Izumiura, Hideyuki
Janson, Markus
Kambe, Eiji
Kandori, Ryo
Knapp, Gillian R.
Kokubo, Eiichiro
Kwon, Jungmi
Matsuo, Taro
Mayama, Satoshi
McElwain, Michael W.
Mede, Kyle
Miyama, Shoken
Morino, Jun-Ichi
Moro-Martin, Amaya
Nishimura, Tetsuo
Pyo, Tae-Soo
Serabyn, Eugene
Suenaga, Takuya
Suto, Hiroshi
Suzuki, Ryuji
Takami, Michihiro
Takato, Naruhisa
Takeda, Yoichi
Terada, Hiroshi
Thalmann, Christian
Turner, Edwin L.
Watanabe, Makoto
Wisniewski, John
Yamada, Toru
Yoshida, Michitoshi
Takami, Hideki
Usuda, Tomonori
Tamura, Motohide
TI HIGH-CONTRAST IMAGING OF INTERMEDIATE-MASS GIANTS WITH LONG-TERM RADIAL
VELOCITY TRENDS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: general; methods: observational; planetary systems;
techniques: high angular resolution; techniques: radial velocities
ID EXOPLANET HOST STARS; EVOLUTIONARY MODELS; STELLAR COMPANIONS; K-GIANT;
SUBSTELLAR COMPANION; PLANETARY COMPANIONS; DWARF COMPANION; IOTA
DRACONIS; OKAYAMA HIDES; BROWN DWARFS
AB A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to gamma Hya B (0.61(-0.14)(+0.12)M(circle dot)), HD 5608 B (0.10 +/- 0.01M(circle dot)), and HD 109272 B (0.28 +/- 0.06M(circle dot)). For the remaining targets (iota Dra, 18 Del, and HD 14067), we exclude companions more massive than 30-60 M-Jup at projected separations of 1 ''-7 ''. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets iota Dra b, HD 5608 b, and HD 14067 b.
C1 [Ryu, Tsuguru; Narita, Norio; Izumiura, Hideyuki; Kokubo, Eiichiro; Mayama, Satoshi; Suenaga, Takuya; Takeda, Yoichi] Grad Univ Adv Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Ryu, Tsuguru; Narita, Norio; Omiya, Masashi; Harakawa, Hiroki; Ando, Hiroyasu; Hayashi, Masahiko; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Kokubo, Eiichiro; Morino, Jun-Ichi; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takeda, Yoichi; Terada, Hiroshi; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Sato, Bun'ei; Kuzuhara, Masayuki; Ida, Shigeru] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan.
[Narita, Norio; Kusakabe, Nobuhiko; Hashimoto, Jun; Suto, Hiroshi; Tamura, Motohide] Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Takahashi, Yasuhiro H.; Uyama, Taichi; Kwon, Jungmi; Mede, Kyle; Tamura, Motohide] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan.
[Kudo, Tomoyuki; Currie, Thayne; Egner, Sebastian; Guyon, Olivier; Hayano, Yutaka; Hayashi, Saeko S.; Helminiak, Krzysztof G.; Nishimura, Tetsuo; Pyo, Tae-Soo; Takato, Naruhisa] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA.
[Abe, Lyu] Univ Nice Sophia Antipolis, Observ Cote Azur, CNRS, Lab Lagrange UMR 7293, 28 Ave Valrose, F-06108 Nice 2, France.
[Brandner, Wolfgang; Carson, Joseph C.; Feldt, Markus; Henning, Thomas] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
[Brandt, Timothy D.] Inst Adv Study, Dept Astrophys, Olden Lane, Princeton, NJ 08540 USA.
[Carson, Joseph C.] Coll Charleston, Dept Phys & Astron, 58 Coming St, Charleston, SC 29424 USA.
[Goto, Miwa] Univ Munich, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.
[Grady, Carol A.; McElwain, Michael W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA.
[Grady, Carol A.] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA.
[Grady, Carol A.] Goddard Ctr Astrobiol, Washington, DC USA.
[Hodapp, Klaus W.] Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA.
[Itoh, Yoichi] Univ Hyogo, Ctr Astron, Nishi Harima Astron Observ, 407-2 Nishigaichi, Sayo, Hyogo 6795313, Japan.
[Izumiura, Hideyuki; Kambe, Eiji] Natl Astron Observ Japan, Okayama Astrophys Observ, Kamogata, Okayama 7190232, Japan.
[Janson, Markus; Knapp, Gillian R.] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden.
[Matsuo, Taro; Turner, Edwin L.] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto, Kyoto 6068502, Japan.
[Miyama, Shoken] Hiroshima Univ, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 7398511, Japan.
[Moro-Martin, Amaya] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Moro-Martin, Amaya] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA.
[Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Takami, Michihiro] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan.
[Thalmann, Christian] ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
[Turner, Edwin L.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan.
[Watanabe, Makoto] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan.
[Wisniewski, John] Univ Oklahoma, HL Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA.
[Yamada, Toru] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan.
[Yoshida, Michitoshi] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan.
RP Ryu, T (reprint author), Grad Univ Adv Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.; Ryu, T (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
EM tsuguru.ryu@nao.ac.jp
RI MIYAMA, Shoken/A-3598-2015
FU NAOJ Fellowship; Inoue Science Research Award; JSPS KAKENHI [25247026];
U.S. National Science Foundation [1009203]; Center for the Promotion of
Integrated Sciences (CPIS) of SOKENDAI; [25-8826]
FX The data analysis was carried out using a common use data analysis
computer system at the Astronomy Data Center of the National
Astronomical Observatory of Japan. This research made use of the SIMBAD
database, operated at CDS, Strasbourg, France. Our analysis is also
based on observations made with the NASA/ESA Hubble Space Telescope, and
obtained from the Hubble Legacy Archive, which is a collaboration
between the Space Telescope Science Institute, the Space Telescope
European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy
Data Centre (CADC/NRC/CSA). N.N. acknowledges support from the NAOJ
Fellowship, Inoue Science Research Award, and a Grant-in-Aid for
Scientific Research (A) (JSPS KAKENHI Grant Number 25247026). J.C.C.
acknowledges support from the U.S. National Science Foundation under
Award No. 1009203. This work was partially supported by a Grant-in-Aid
for JSPS Fellows (Grant Number 25-8826). This work was supported in part
by the Center for the Promotion of Integrated Sciences (CPIS) of
SOKENDAI.
NR 65
TC 1
Z9 1
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 127
DI 10.3847/0004-637X/825/2/127
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800045
ER
PT J
AU Sumi, T
Udalski, A
Bennett, DP
Gould, A
Poleski, R
Bond, IA
Skowron, J
Rattenbury, N
Pogge, RW
Bensby, T
Beaulieu, JP
Marquette, JB
Batista, V
Brillant, S
Abe, F
Asakura, Y
Bhattacharya, A
Donachie, M
Freeman, M
Fukui, A
Hirao, Y
Itow, Y
Koshimoto, N
Li, MCA
Ling, CH
Masuda, K
Matsubara, Y
Muraki, Y
Nagakane, M
Ohnishi, K
Oyokawa, H
Saito, T
Sharan, A
Sullivan, DJ
Suzuki, D
Tristram, PJ
Yonehara, A
Szymanski, MK
Ulaczyk, K
Kozlowski, S
Wyrzykowski, L
Kubiak, M
Pietrukowicz, P
Pietrzynski, G
Soszynski, I
Han, C
Jung, YK
Shin, IG
Lee, CU
AF Sumi, T.
Udalski, A.
Bennett, D. P.
Gould, A.
Poleski, R.
Bond, I. A.
Skowron, J.
Rattenbury, N.
Pogge, R. W.
Bensby, T.
Beaulieu, J. P.
Marquette, J. B.
Batista, V.
Brillant, S.
Abe, F.
Asakura, Y.
Bhattacharya, A.
Donachie, M.
Freeman, M.
Fukui, A.
Hirao, Y.
Itow, Y.
Koshimoto, N.
Li, M. C. A.
Ling, C. H.
Masuda, K.
Matsubara, Y.
Muraki, Y.
Nagakane, M.
Ohnishi, K.
Oyokawa, H.
Saito, To.
Sharan, A.
Sullivan, D. J.
Suzuki, D.
Tristram, P. J.
Yonehara, A.
Szymanski, M. K.
Ulaczyk, K.
Kozlowski, S.
Wyrzykowski, L.
Kubiak, M.
Pietrukowicz, P.
Pietrzynski, G.
Soszynski, I.
Han, C.
Jung, Y-K.
Shin, I-G
Lee, C-U.
CA MOA Collaboration
OGLE Collaboration
TI THE FIRST NEPTUNE ANALOG OR SUPER-EARTH WITH A NEPTUNE-LIKE ORBIT:
MOA-2013-BLG-605LB
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Galaxy: bulge; gravitational lensing: micro; planetary systems
ID GRAVITATIONAL LENSING EXPERIMENT; PARALLAX MICROLENS DEGENERACY;
DIFFERENCE IMAGE-ANALYSIS; SAGITTARIUS-A-ASTERISK; LOW-MASS STARS;
GALACTIC BULGE; GIANT PLANETS; PROPER MOTION; SNOW LINE; JUPITER/SATURN
ANALOG
AB We present the discovery of the first Neptune analog exoplanet or super-Earth with a Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9 similar to 14 times the expected position of the snow line, a(snow), which is similar to Neptune's separation of 11 a(snow) from the Sun. The planet/host-star mass ratio is q = (3.6 +/- 0.7) x 10(-4) and the projected separation normalized by the Einstein radius is s = 2.39 +/- 0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy." The three models have (i) a Neptune-mass planet with a mass of M-p = 21(-7)(+6)M(circle plus) orbiting a low-mass M-dwarf with a mass of M-h = 0.19(-0.06)(+0.05)M(circle dot), (ii) a mini-Neptune with M-p = 7.9(-1.2)(+1.8)M(circle plus) orbiting a brown dwarf host with M-h = 0.068(-0.011)(+0.019)M(circle dot), and (iii) a super-Earth with M-p = 3.2(-0.3)(+0.5)M(circle plus) orbiting a low-mass brown dwarf host with M-h = 0.025(-0.004)(+0.005)M(circle dot), which is slightly favored. The 3D planet-host separations are 4.6(-1.2)(+4.7) au, 2.1(-0.2) (+1.0) au, and 0.94(-0.02)(+0.67) au, which are 8.9(-1.4)(+10.5), 12(-1)(+7), or 14(-1)(+11) times larger than a(snow) for these models, respectively. Keck adaptive optics observations confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbits are common. Therefore processes similar to the one that formed Neptune in our own solar system or cold super-Earths may be common in other solar systems.
C1 [Sumi, T.; Hirao, Y.; Koshimoto, N.; Nagakane, M.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan.
[Udalski, A.; Poleski, R.; Skowron, J.; Szymanski, M. K.; Ulaczyk, K.; Kozlowski, S.; Wyrzykowski, L.; Kubiak, M.; Pietrukowicz, P.; Pietrzynski, G.; Soszynski, I.] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland.
[Bennett, D. P.; Bhattacharya, A.; Suzuki, D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Bennett, D. P.] NASA, Goddard Space Flight Ctr, Lab Exoplanets & Stellar Astrophys, Greenbelt, MD 20771 USA.
[Gould, A.; Poleski, R.; Pogge, R. W.] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA.
[Bond, I. A.; Ling, C. H.] Massey Univ, Inst Informat & Math Sci, Private Bag 102-904,North Shore Mail Ctr, Auckland, New Zealand.
[Rattenbury, N.; Donachie, M.; Freeman, M.; Li, M. C. A.; Sharan, A.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland, New Zealand.
[Bensby, T.] Lund Observ, Dept Astron & Theoret Phys, Box 43, SE-22100 Lund, Sweden.
[Beaulieu, J. P.; Marquette, J. B.; Batista, V.] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France.
[Brillant, S.] ESO, Karl Schwarzschildst 2, D-85748 Garching, Germany.
[Abe, F.; Asakura, Y.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Oyokawa, H.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan.
[Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, 3037-5 Honjo, Asakuchi, Okayama 7190232, Japan.
[Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan.
[Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan.
[Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand.
[Tristram, P. J.] Mt John Univ Observ, POB 56, Lake Tekapo 8770, New Zealand.
[Yonehara, A.] Kyoto Sangyo Univ, Dept Phys, Fac Sci, Kyoto 6038555, Japan.
[Han, C.; Jung, Y-K.; Shin, I-G] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea.
[Lee, C-U.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea.
RP Sumi, T (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan.
EM sumi@ess.sci.osaka-u.ac.jp; udalski@astrouw.edu.pl; bennett@nd.edu;
i.a.bond@massey.ac.nz; n.rattenbury@auckland.ac.nz;
mdon849@aucklanduni.ac.nz; mli351@auckland.ac.nz; c.h.ling@massey.ac.nz;
asha583@aucklanduni.ac.nz; msz@astrouw.edu.pl; kulaczyk@astrouw.edu.pl;
mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl
RI Kozlowski, Szymon/G-4799-2013; Skowron, Jan/M-5186-2014;
OI Kozlowski, Szymon/0000-0003-4084-880X; Skowron, Jan/0000-0002-2335-1730;
Pogge, Richard/0000-0003-1435-3053
FU JSPS [JSPS23103002, JSPS24253004, JSPS26247023]; National Science
Centre, Poland [MAESTRO 2014/14/A/ST9/00121]; NSF grants [AST-1009621,
AST-1211875, AST 1103471]; NASA grants [NNX12AF54G, NNX13AF64G,
NNX12AB99G]; Marsden Fund of the Royal Society of New Zealand [MAU1104];
ESO's DGDF; Programme National de Planetologie, CNRS; PERSU Sorbonne
Universite; Creative Research Initiative Program of National Research
Foundation of Korea [2009-0081561]; [JSPS25103508]; [23340064]
FX T.S. acknowledges financial support from the JSPS, JSPS23103002,
JSPS24253004, and JSPS26247023. The MOA project is supported by the
grant JSPS25103508 and 23340064. The OGLE project has received funding
from the National Science Centre, Poland, grant MAESTRO
2014/14/A/ST9/00121 to A.U.. D.P.B. acknowledges support from NSF grants
AST-1009621 and AST-1211875, as well as NASA grants NNX12AF54G and
NNX13AF64G. Work by I.A.B. and P.Y. was supported by the Marsden Fund of
the Royal Society of New Zealand, contract no. MAU1104. N.J.R. is a
Royal Society of New Zealand Rutherford Discovery Fellow. A.S., M.L. and
M.D. acknowledge support from the Royal Society of New Zealand. A.S. is
a University of Auckland Doctoral Scholar. A.G. was supported by NSF
grant AST 1103471 and NASA grant NNX12AB99G. J.P.B., S.B., and J.B.M.
gratefully acknowledge support from ESO's DGDF 2014. J.P.B. and J.B.
acknowledge the support of the Programme National de Planetologie, CNRS,
and from PERSU Sorbonne Universite. The work by C.H. was supported by
the Creative Research Initiative Program (2009-0081561) of National
Research Foundation of Korea.
NR 95
TC 3
Z9 3
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 112
DI 10.3847/0004-637X/825/2/112
PG 23
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800030
ER
PT J
AU Tsuge, M
Bahou, M
Wu, YJ
Allamandola, L
Lee, YP
AF Tsuge, Masashi
Bahou, Mohammed
Wu, Yu-Jong
Allamandola, Louis
Lee, Yuan-Pern
TI THE INFRARED SPECTRUM OF PROTONATED OVALENE IN SOLID PARA-HYDROGEN AND
ITS POSSIBLE CONTRIBUTION TO INTERSTELLAR UNIDENTIFIED INFRARED EMISSION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrochemistry; infrared: ISM; ISM: lines and bands; ISM: molecules
ID POLYCYCLIC AROMATIC-HYDROCARBONS; ELECTRONIC-ABSORPTION-SPECTRA; PHASE
PAH MOLECULES; GAS-PHASE; ASTROPHYSICAL IMPLICATIONS; NEUTRAL
COUNTERPART; DETAILED MODEL; BANDS; SPECTROSCOPY; CATIONS
AB The mid-infrared emission from galactic objects, including reflection nebulae, planetary nebulae, proto-planetary nebulae, molecular clouds, etc, as well as external galaxies, is dominated by the unidentified infrared (UIR) emission bands. Large protonated polycyclic aromatic hydrocarbons (H(+)PAHs) were proposed as possible carriers, but no spectrum of an H(+)PAH has been shown to exactly match the UIR bands. Here, we report the IR spectrum of protonated ovalene (7-C32H15+) measured in a para-hydrogen (p-H-2) matrix at 3.2 K, generated by bombarding a mixture of ovalene and p-H-2 with electrons during matrix deposition. Spectral assignments were made based on the expected chemistry and on the spectra simulated with the wavenumbers and infrared intensities predicted with the B3PW91/6-311++G(2d, 2p) method. The close resemblance of the observed spectral pattern to that of the UIR bands suggests that protonated ovalene may contribute to the UIR emission, particularly from objects that emit Class A spectra, such as the IRIS reflection nebula, NGC 7023.
C1 [Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern] Natl Chiao Tung Univ, Dept Appl Chem, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan.
[Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern] Natl Chiao Tung Univ, Inst Mol Sci, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan.
[Wu, Yu-Jong] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd, Hsinchu 30076, Taiwan.
[Allamandola, Louis] NASA, Ames Res Ctr, Astrophys & Astrochem Lab, Moffett Field, CA 94035 USA.
[Lee, Yuan-Pern] Acad Sinica, Inst Mol Sci, Taipei 10617, Taiwan.
RP Tsuge, M (reprint author), Natl Chiao Tung Univ, Dept Appl Chem, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan.; Tsuge, M (reprint author), Natl Chiao Tung Univ, Inst Mol Sci, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan.
EM tsuge@nctu.edu.tw; yplee@mail.nctu.edu.tw
RI Lee, Yuan-Pern/F-7938-2012;
OI Lee, Yuan-Pern/0000-0001-6418-7378; Tsuge, Masashi/0000-0001-9669-1288
FU Ministry of Science and Technology, Taiwan [MOST104-2745-M009-001-ASP,
MOST104-2113-M-213-004]; Ministry of Education, Taiwan ("ATU Plan" of
National Chiao Tung University); NASA's Astrophysics Data Analysis
Program
FX The Ministry of Science and Technology, Taiwan (grants
MOST104-2745-M009-001-ASP and MOST104-2113-M-213-004), and Ministry of
Education, Taiwan ("ATU Plan" of National Chiao Tung University)
supported this work. The National Center for High-Performance Computing
provided the computer time. L.A. gratefully acknowledges support from
NASA's Astrophysics Data Analysis Program. We thank Christiaan Boersma
for providing the Red Rectangle spectrum.
NR 53
TC 4
Z9 4
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2016
VL 825
IS 2
AR 96
DI 10.3847/0004-637X/825/2/96
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DU1BM
UT WOS:000381940800014
ER
PT J
AU Folatelli, G
Van Dyk, SD
Kuncarayakti, H
Maeda, K
Bersten, MC
Nomoto, K
Pignata, G
Hamuy, M
Quimby, RM
Zheng, WK
Filippenko, AV
Clubb, KI
Smith, N
Elias-Rosa, N
Foley, RJ
Miller, AA
AF Folatelli, Gaston
Van Dyk, Schuyler D.
Kuncarayakti, Hanindyo
Maeda, Keiichi
Bersten, Melina C.
Nomoto, Ken'ichi
Pignata, Giuliano
Hamuy, Mario
Quimby, Robert M.
Zheng, WeiKang
Filippenko, Alexei V.
Clubb, Kelsey I.
Smith, Nathan
Elias-Rosa, Nancy
Foley, Ryan J.
Miller, Adam A.
TI DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE galaxies: individual (NGC 5806); stars: evolution; supernovae: general;
supernovae: individual (iPTF13bvn)
ID CORE-COLLAPSE SUPERNOVA; BINARY PROGENITOR; LIGHT CURVES; IB SUPERNOVA;
SN 2011DH; SUPERGIANT PROGENITOR; STELLAR PHOTOMETRY; DUST EXTINCTION;
IA SUPERNOVAE; COMPANION
AB Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site similar to 740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.
C1 [Folatelli, Gaston; Bersten, Melina C.] Univ Nacl La Plata, IALP, Fac Ciencias Astron & Geofis, CONICET, Paseo Bosque S-N,B1900FWA, La Plata, Buenos Aires, Argentina.
[Folatelli, Gaston; Maeda, Keiichi; Bersten, Melina C.; Nomoto, Ken'ichi; Quimby, Robert M.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan.
[Van Dyk, Schuyler D.] CALTECH, IPAC, Mailcode 100-22, Pasadena, CA 91125 USA.
[Kuncarayakti, Hanindyo; Pignata, Giuliano; Hamuy, Mario] Millennium Inst Astrophys MAS, Santiago, Chile.
[Kuncarayakti, Hanindyo; Hamuy, Mario] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile.
[Maeda, Keiichi] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan.
[Pignata, Giuliano] Univ Andres Bello, Dept Ciencias Fis, Avda Republ 252, Santiago, Chile.
[Quimby, Robert M.] San Diego State Univ, Dept Astron, 5500 Campanile Dr, San Diego, CA 92182 USA.
[Zheng, WeiKang; Filippenko, Alexei V.; Clubb, Kelsey I.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
[Smith, Nathan] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA.
[Elias-Rosa, Nancy] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy.
[Foley, Ryan J.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Foley, Ryan J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Miller, Adam A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 169-506, Pasadena, CA 91109 USA.
RP Folatelli, G (reprint author), Univ Nacl La Plata, IALP, Fac Ciencias Astron & Geofis, CONICET, Paseo Bosque S-N,B1900FWA, La Plata, Buenos Aires, Argentina.; Folatelli, G (reprint author), Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan.
EM gaston.folatelli@ipmu.jp
RI Elias-Rosa, Nancy/D-3759-2014;
OI Elias-Rosa, Nancy/0000-0002-1381-9125; Van Dyk,
Schuyler/0000-0001-9038-9950
FU STScI [GO-13684, GO-13822, AR-14295]; NASA [NAS5-26555, HST-HF-51325.01,
NAS 5-26555]; NSF [AST-1211916, AST-1518052]; TABASGO Foundation (KAIT
and research support); Sylvia & Jim Katzman Foundation; Clark and Sharon
Winslow; Christopher R. Redlich Fund; WPI Initiative MEXT (Japan); Japan
Society for the Promotion of Science (JSPS) KAKENHI [26800100, 23224004,
26400222]; JSPS Open Partnership Bilateral Joint Research Project
between Japan and Chile; Millennium Institute of Astrophysics
[IC120009]; FONDECYT [3140563]; PRIN-INAF; Alfred P. Sloan Foundation
FX This research is supported by grants GO-13684, GO-13822, and AR-14295
from STScI, which is operated by AURA, Inc., under NASA contract
NAS5-26555. A.V.F.'s group is also grateful for funding through NSF
grant AST-1211916, the TABASGO Foundation (KAIT and research support),
the Sylvia & Jim Katzman Foundation, Clark and Sharon Winslow, and the
Christopher R. Redlich Fund. This research is supported by the WPI
Initiative MEXT (Japan), the Japan Society for the Promotion of Science
(JSPS) KAKENHI grants 26800100 (K.M.) 23224004, and 26400222 (K.N.), and
by the JSPS Open Partnership Bilateral Joint Research Project between
Japan and Chile (K.M.). M.H., G.P., and H.K. acknowledge support from
the Millennium Institute of Astrophysics (grant IC120009). H.K. also
acknowledges FONDECYT grant 3140563. N.E.R. is supported by PRIN-INAF
2014. R.J.F. acknowledges support from NSF grant AST-1518052 and the
Alfred P. Sloan Foundation. A.A.M. acknowledges support by NASA (Hubble
Fellowship grant HST-HF-51325.01, under contract NAS 5-26555). Many UC
Berkeley undergraduate students helped obtain Lick/Nickel data. Research
at Lick Observatory is partially supported by a generous gift from
Google.
NR 38
TC 4
Z9 4
U1 4
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 10
PY 2016
VL 825
IS 2
AR L22
DI 10.3847/2041-8205/825/2/L22
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DS4GG
UT WOS:000380738800006
ER
PT J
AU Parks, GK
Lee, E
Fu, SY
Kim, HE
Ma, YQ
Yang, ZW
Liu, Y
Lin, N
Hong, J
Canu, P
Dandouras, I
Reme, H
Goldstein, ML
AF Parks, G. K.
Lee, E.
Fu, S. Y.
Kim, H. E.
Ma, Y. Q.
Yang, Z. W.
Liu, Y.
Lin, N.
Hong, J.
Canu, P.
Dandouras, I.
Reme, H.
Goldstein, M. L.
TI TRANSPORT OF SOLAR WIND H+ AND He++ IONS ACROSS EARTH'S BOW SHOCK
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE shock waves; solar wind
ID QUASI-PERPENDICULAR SHOCKS; HEAT-CONDUCTION; MAGNETIC-FIELD; MACH
NUMBER; TEMPERATURE; MODEL; MAGNETOSHEATH; REFORMATION; ANISOTROPY
AB We have investigated the dependence of mass, energy, and charge of solar wind ( SW) transport across Earth's bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s(-1). The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is similar to 50 Volts. We find that the temperatures of H+ and He++ beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.
C1 [Parks, G. K.; Lin, N.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Lee, E.] Kyung Hee Univ, Sch Space Res, Yongin, South Korea.
[Lee, E.] Kyung Hee Univ, Inst Nat Sci, Yongin, South Korea.
[Fu, S. Y.; Ma, Y. Q.] Peking Univ, Inst Space Sci, Beijing, Peoples R China.
[Kim, H. E.; Hong, J.] Kyung Hee Univ, Sch Space Res, Yongin, South Korea.
[Yang, Z. W.; Liu, Y.] Chinese Acad Sci, Key Lab Space Weather, Beijing, Peoples R China.
[Canu, P.] Ecole Polytech, Plasma Phys Lab, Paris, France.
[Dandouras, I.; Reme, H.] Univ Toulouse 3, IRAP, Toulouse, France.
[Dandouras, I.; Reme, H.] CNRS, Toulouse, France.
[Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Parks, GK (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
EM parks@ssl.berkeley.edu
FU NASA [NNX07AP96G]; National Research Foundation - Ministry of Education
of Korea [NRF-2013R1A1A2010711]
FX The research at UC Berkeley was performed under NASA Grant No.
NNX07AP96G. Cluster is a joint project of the ESA and NASA. The research
work by E. Lee was supported in part by the BK21 Plus Program and the
Basic Science Research Program (NRF-2013R1A1A2010711) through the
National Research Foundation funded by the Ministry of Education of
Korea.
NR 35
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 10
PY 2016
VL 825
IS 2
AR L27
DI 10.3847/2041-8205/825/2/L27
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DS4GG
UT WOS:000380738800011
ER
PT J
AU Kuleshov, MV
Jones, MR
Rouillard, AD
Fernandez, NF
Duan, QN
Wang, ZC
Koplev, S
Jenkins, SL
Jagodnik, KM
Lachmann, A
McDermott, MG
Monteiro, CD
Gundersen, GW
Ma'ayan, A
AF Kuleshov, Maxim V.
Jones, Matthew R.
Rouillard, Andrew D.
Fernandez, Nicolas F.
Duan, Qiaonan
Wang, Zichen
Koplev, Simon
Jenkins, Sherry L.
Jagodnik, Kathleen M.
Lachmann, Alexander
McDermott, Michael G.
Monteiro, Caroline D.
Gundersen, Gregory W.
Ma'ayan, Avi
TI Enrichr: a comprehensive gene set enrichment analysis web server 2016
update
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID FUNCTIONAL INTERPRETATION; ONTOLOGY TERMS; HUMAN PROTEOME; TOOL;
DATABASE; PATHWAY; LIST; INFORMATION; BIOLOGY; SYSTEM
AB Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr.
C1 [Kuleshov, Maxim V.; Jones, Matthew R.; Rouillard, Andrew D.; Fernandez, Nicolas F.; Duan, Qiaonan; Wang, Zichen; Koplev, Simon; Jenkins, Sherry L.; Lachmann, Alexander; McDermott, Michael G.; Monteiro, Caroline D.; Gundersen, Gregory W.; Ma'ayan, Avi] Icahn Sch Med Mt Sinai, Dept Pharmacol & Syst Therapeut, LINCS Data Coordinat & Integrat Ctr BD2K, One Gustave L Levy Pl,Box 1215, New York, NY 10029 USA.
[Jagodnik, Kathleen M.] NASA Glenn Res Ctr, Fluid Phys & Transport Proc Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
RP Ma'ayan, A (reprint author), Icahn Sch Med Mt Sinai, Dept Pharmacol & Syst Therapeut, LINCS Data Coordinat & Integrat Ctr BD2K, One Gustave L Levy Pl,Box 1215, New York, NY 10029 USA.
EM avi.maayan@mssm.edu
FU NIH [R01GM098316, U54HL127624, U54CA189201]
FX NIH [R01GM098316, U54HL127624 and U54CA189201 to A.M.]. Funding for open
access charge: Institutional funds.
NR 43
TC 32
Z9 32
U1 6
U2 8
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
EI 1362-4962
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD JUL 8
PY 2016
VL 44
IS W1
BP W90
EP W97
DI 10.1093/nar/gkw377
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DR3FA
UT WOS:000379786800016
PM 27141961
ER
PT J
AU Xu, LT
Dunning, TH
AF Xu, Lu T.
Dunning, Thom H., Jr.
TI Variations in the Nature of Triple Bonds: The N-2, HCN, and HC2H Series
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID CASSCF WAVE-FUNCTIONS; SPACE SCF METHOD; POLYATOMIC-MOLECULES;
ELECTRONIC-STRUCTURES; QUANTUM-THEORY; VALENCE; BENT; C-2;
REPRESENTATIONS; OPTIMIZATION
AB The inertness of molecular nitrogen and the reactivity of acetylene suggest there are significant variations in the nature of triple bonds. To understand these differences, we performed generalized valence bond as well as more accurate electronic structure calculations on three molecules with putative triple bonds: N-2, HCN, and HC2H. The calculations predict that the triple bond in HC2H is quite different from the triple bond in N-2 with HCN being an intermediate case but closer to N-2 than HC2H. The triple bond in N-2 is a traditional triple bond with the spins of the electrons in the bonding orbital pairs predominantly singlet coupled in the GVB wave function (92%). In HC2H, however, there is a substantial amount of residual CH(a(4)Sigma(-)) fragment coupling in the triple bond at its equilibrium geometry with the contribution of the perfect pairing spin function dropping to 82% (77% in a full valence GVB calculation). This difference in the nature of the triple bond in N-2 and HC2H may well be responsible for the differences in the reactivities of N-2 and HC2H.
C1 [Xu, Lu T.; Dunning, Thom H., Jr.] Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA.
[Xu, Lu T.] Univ Illinois, Dept Aerosp Engn, 104 S Wright St, Urbana, IL 61801 USA.
[Xu, Lu T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Dunning, Thom H., Jr.] Univ Washington, NIAC, Pacific Northwest Natl Lab, Sieg Hall,3960 Benton Lane NE, Seattle, WA 98195 USA.
[Dunning, Thom H., Jr.] Univ Washington, Dept Chem, Seattle, WA 98195 USA.
RP Dunning, TH (reprint author), Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA.; Dunning, TH (reprint author), Univ Washington, NIAC, Pacific Northwest Natl Lab, Sieg Hall,3960 Benton Lane NE, Seattle, WA 98195 USA.; Dunning, TH (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA.
EM thdjr@illinois.edu
FU Distinguished Chair for Research Excellence in Chemistry at the
University of Illinois at Urbana-Champaign
FX This work was supported by funding from the Distinguished Chair for
Research Excellence in Chemistry at the University of Illinois at
Urbana-Champaign.
NR 39
TC 1
Z9 1
U1 3
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 7
PY 2016
VL 120
IS 26
BP 4526
EP 4533
DI 10.1021/acs.jpca.6b03631
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DQ8JM
UT WOS:000379457100011
PM 27299373
ER
PT J
AU Aharonian, F
Akamatsu, H
Akimoto, F
Allen, SW
Anabuki, N
Angelini, L
Arnaud, K
Audard, M
Awaki, H
Axelsson, M
Bamba, A
Bautz, M
Blandford, R
Brenneman, L
Brown, GV
Bulbul, E
Cackett, E
Chernyakova, M
Chiao, M
Coppi, P
Costantini, E
de Plaa, J
den Herder, JW
Done, C
Dotani, T
Ebisawa, K
Eckart, M
Enoto, T
Ezoe, Y
Fabian, AC
Ferrigno, C
Foster, A
Fujimoto, R
Fukazawa, Y
Furuzawa, A
Galeazzi, M
Gallo, L
Gandhi, P
Giustini, M
Goldwurm, A
Gu, L
Guainazzi, M
Haba, Y
Hagino, K
Hamaguchi, K
Harrus, I
Hatsukade, I
Hayashi, K
Hayashi, T
Hayashida, K
Hiraga, J
Hornschemeier, A
Hoshino, A
Hughes, J
Iizuka, R
Inoue, H
Inoue, Y
Ishibashi, K
Ishida, M
Ishikawa, K
Ishisaki, Y
Itoh, M
Iyomoto, N
Kaastra, J
Kallman, T
Kamae, T
Kara, E
Kataoka, J
Katsuda, S
Katsuta, J
Kawaharada, M
Kawai, N
Kelley, R
Khangulyan, D
Kilbourne, C
King, A
Kitaguchi, T
Kitamoto, S
Kitayama, T
Kohmura, T
Kokubun, M
Koyama, S
Koyama, K
Kretschmar, P
Krimm, H
Kubota, A
Kunieda, H
Laurent, P
Lebrun, F
Lee, SH
Leutenegger, M
Limousin, O
Loewenstein, M
Long, KS
Lumb, D
Madejski, G
Maeda, Y
Maier, D
Makishima, K
Markevitch, M
Matsumoto, H
Matsushita, K
McCammon, D
McNamara, B
Mehdipour, M
Miller, E
Miller, J
Mineshige, S
Mitsuda, K
Mitsuishi, I
Miyazawa, T
Mizuno, T
Mori, H
Mori, K
Moseley, H
Mukai, K
Murakami, H
Murakami, T
Mushotzky, R
Nagino, R
Nakagawa, T
Nakajima, H
Nakamori, T
Nakano, T
Nakashima, S
Nakazawa, K
Nobukawa, M
Noda, H
Nomachi, M
O'Dell, S
Odaka, H
Ohashi, T
Ohno, M
Okajima, T
Ota, N
Ozaki, M
Paerels, F
Paltani, S
Parmar, A
Petre, R
Pinto, C
Pohl, M
Porter, FS
Pottschmidt, K
Ramsey, B
Reynolds, C
Russell, H
Safi-Harb, S
Saito, S
Sakai, K
Sameshima, H
Sato, G
Sato, K
Sato, R
Sawada, M
Schartel, N
Serlemitsos, P
Seta, H
Shidatsu, M
Simionescu, A
Smith, R
Soong, Y
Stawarz, L
Sugawara, Y
Sugita, S
Szymkowiak, A
Tajima, H
Takahashi, H
Takahashi, T
Takeda, S
Takei, Y
Tamagawa, T
Tamura, K
Tamura, T
Tanaka, T
Tanaka, Y
Tanaka, Y
Tashiro, M
Tawara, Y
Terada, Y
Terashima, Y
Tombesi, F
Tomida, H
Tsuboi, Y
Tsujimoto, M
Tsunemi, H
Tsuru, T
Uchida, H
Uchiyama, H
Uchiyama, Y
Ueda, S
Ueda, Y
Ueno, S
Uno, S
Urry, M
Ursino, E
De Vries, C
Watanabe, S
Werner, N
Wik, D
Wilkins, D
Williams, B
Yamada, S
Yamaguchi, H
Yamaoka, K
Yamasaki, NY
Yamauchi, M
Yamauchi, S
Yaqoob, T
Yatsu, Y
Yonetoku, D
Yoshida, A
Yuasa, T
Zhuravleva, I
Zoghbi, A
AF Aharonian, Felix
Akamatsu, Hiroki
Akimoto, Fumie
Allen, Steven W.
Anabuki, Naohisa
Angelini, Lorella
Arnaud, Keith
Audard, Marc
Awaki, Hisamitsu
Axelsson, Magnus
Bamba, Aya
Bautz, Marshall
Blandford, Roger
Brenneman, Laura
Brown, Gregory V.
Bulbul, Esra
Cackett, Edward
Chernyakova, Maria
Chiao, Meng
Coppi, Paolo
Costantini, Elisa
de Plaa, Jelle
den Herder, Jan-Willem
Done, Chris
Dotani, Tadayasu
Ebisawa, Ken
Eckart, Megan
Enoto, Teruaki
Ezoe, Yuichiro
Fabian, Andrew C.
Ferrigno, Carlo
Foster, Adam
Fujimoto, Ryuichi
Fukazawa, Yasushi
Furuzawa, Akihiro
Galeazzi, Massimiliano
Gallo, Luigi
Gandhi, Poshak
Giustini, Margherita
Goldwurm, Andrea
Gu, Liyi
Guainazzi, Matteo
Haba, Yoshito
Hagino, Kouichi
Hamaguchi, Kenji
Harrus, Ilana
Hatsukade, Isamu
Hayashi, Katsuhiro
Hayashi, Takayuki
Hayashida, Kiyoshi
Hiraga, Junko
Hornschemeier, Ann
Hoshino, Akio
Hughes, John
Iizuka, Ryo
Inoue, Hajime
Inoue, Yoshiyuki
Ishibashi, Kazunori
Ishida, Manabu
Ishikawa, Kumi
Ishisaki, Yoshitaka
Itoh, Masayuki
Iyomoto, Naoko
Kaastra, Jelle
Kallman, Timothy
Kamae, Tuneyoshi
Kara, Erin
Kataoka, Jun
Katsuda, Satoru
Katsuta, Junichiro
Kawaharada, Madoka
Kawai, Nobuyuki
Kelley, Richard
Khangulyan, Dmitry
Kilbourne, Caroline
King, Ashley
Kitaguchi, Takao
Kitamoto, Shunji
Kitayama, Tetsu
Kohmura, Takayoshi
Kokubun, Motohide
Koyama, Shu
Koyama, Katsuji
Kretschmar, Peter
Krimm, Hans
Kubota, Aya
Kunieda, Hideyo
Laurent, Philippe
Lebrun, Francois
Lee, Shiu-Hang
Leutenegger, Maurice
Limousin, Olivier
Loewenstein, Michael
Long, Knox S.
Lumb, David
Madejski, Grzegorz
Maeda, Yoshitomo
Maier, Daniel
Makishima, Kazuo
Markevitch, Maxim
Matsumoto, Hironori
Matsushita, Kyoko
McCammon, Dan
McNamara, Brian
Mehdipour, Missagh
Miller, Eric
Miller, Jon
Mineshige, Shin
Mitsuda, Kazuhisa
Mitsuishi, Ikuyuki
Miyazawa, Takuya
Mizuno, Tsunefumi
Mori, Hideyuki
Mori, Koji
Moseley, Harvey
Mukai, Koji
Murakami, Hiroshi
Murakami, Toshio
Mushotzky, Richard
Nagino, Ryo
Nakagawa, Takao
Nakajima, Hiroshi
Nakamori, Takeshi
Nakano, Toshio
Nakashima, Shinya
Nakazawa, Kazuhiro
Nobukawa, Masayoshi
Noda, Hirofumi
Nomachi, Masaharu
O'Dell, Steve
Odaka, Hirokazu
Ohashi, Takaya
Ohno, Masanori
Okajima, Takashi
Ota, Naomi
Ozaki, Masanobu
Paerels, Frits
Paltani, Stephane
Parmar, Arvind
Petre, Robert
Pinto, Ciro
Pohl, Martin
Porter, F. Scott
Pottschmidt, Katja
Ramsey, Brian
Reynolds, Christopher
Russell, Helen
Safi-Harb, Samar
Saito, Shinya
Sakai, Kazuhiro
Sameshima, Hiroaki
Sato, Goro
Sato, Kosuke
Sato, Rie
Sawada, Makoto
Schartel, Norbert
Serlemitsos, Peter
Seta, Hiromi
Shidatsu, Megumi
Simionescu, Aurora
Smith, Randall
Soong, Yang
Stawarz, Lukasz
Sugawara, Yasuharu
Sugita, Satoshi
Szymkowiak, Andrew
Tajima, Hiroyasu
Takahashi, Hiromitsu
Takahashi, Tadayuki
Takeda, Shin'ichiro
Takei, Yoh
Tamagawa, Toru
Tamura, Keisuke
Tamura, Takayuki
Tanaka, Takaaki
Tanaka, Yasuo
Tanaka, Yasuyuki
Tashiro, Makoto
Tawara, Yuzuru
Terada, Yukikatsu
Terashima, Yuichi
Tombesi, Francesco
Tomida, Hiroshi
Tsuboi, Yohko
Tsujimoto, Masahiro
Tsunemi, Hiroshi
Tsuru, Takeshi
Uchida, Hiroyuki
Uchiyama, Hideki
Uchiyama, Yasunobu
Ueda, Shutaro
Ueda, Yoshihiro
Ueno, Shiro
Uno, Shin'ichiro
Urry, Meg
Ursino, Eugenio
De Vries, Cor
Watanabe, Shin
Werner, Norbert
Wik, Daniel
Wilkins, Dan
Williams, Brian
Yamada, Shinya
Yamaguchi, Hiroya
Yamaoka, Kazutaka
Yamasaki, Noriko Y.
Yamauchi, Makoto
Yamauchi, Shigeo
Yaqoob, Tahir
Yatsu, Yoichi
Yonetoku, Daisuke
Yoshida, Atsumasa
Yuasa, Takayuki
Zhuravleva, Irina
Zoghbi, Abderahmen
CA Hitomi Collaboration
TI The quiescent intracluster medium in the core of the Perseus cluster
SO NATURE
LA English
DT Article
ID X-RAY SPECTROSCOPY; GALAXY CLUSTERS; XMM-NEWTON; TURBULENT VELOCITY; NGC
1275; NGC-1275; LINE; CONSTRAINTS; FEEDBACK; PLASMAS
AB Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes(1) of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling-a process known as active galactic nucleus feedback(2-6). Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 +/- 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 +/- 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.
C1 [Aharonian, Felix; Chernyakova, Maria] Dublin Inst Adv Studies, Astron & Astrophys Sect, Dublin 2, Ireland.
[Aharonian, Felix] Natl Res Nucl Univ MEPHI, Moscow 115409, Russia.
[Akamatsu, Hiroki; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; Giustini, Margherita; Gu, Liyi; Kaastra, Jelle; Mehdipour, Missagh; De Vries, Cor] SRON Netherlands Inst Space Res, Utrecht, Netherlands.
[Akimoto, Fumie; Furuzawa, Akihiro; Hayashi, Takayuki; Ishibashi, Kazunori; Kunieda, Hideyo; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Tamura, Keisuke; Tawara, Yuzuru; Yamaoka, Kazutaka] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan.
[Allen, Steven W.; Blandford, Roger; Kamae, Tuneyoshi; King, Ashley; Madejski, Grzegorz; Werner, Norbert; Zhuravleva, Irina] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[Allen, Steven W.; Blandford, Roger; King, Ashley; Werner, Norbert; Zhuravleva, Irina] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Allen, Steven W.; Blandford, Roger; Madejski, Grzegorz] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Anabuki, Naohisa; Hayashida, Kiyoshi; Nagino, Ryo; Nakajima, Hiroshi; Tsunemi, Hiroshi] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan.
[Angelini, Lorella; Arnaud, Keith; Chiao, Meng; Eckart, Megan; Hamaguchi, Kenji; Harrus, Ilana; Hornschemeier, Ann; Kallman, Timothy; Kelley, Richard; Kilbourne, Caroline; Krimm, Hans; Leutenegger, Maurice; Loewenstein, Michael; Markevitch, Maxim; Mori, Hideyuki; Moseley, Harvey; Mukai, Koji; Okajima, Takashi; Petre, Robert; Porter, F. Scott; Pottschmidt, Katja; Sakai, Kazuhiro; Serlemitsos, Peter; Soong, Yang; Tombesi, Francesco; Wik, Daniel; Williams, Brian; Yamaguchi, Hiroya; Yaqoob, Tahir] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Arnaud, Keith; Kara, Erin; Loewenstein, Michael; Mushotzky, Richard; Reynolds, Christopher] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Audard, Marc; Ferrigno, Carlo; Paltani, Stephane; Pohl, Martin] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Awaki, Hisamitsu; Terashima, Yuichi] Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, Japan.
[Axelsson, Magnus; Ezoe, Yuichiro; Ishisaki, Yoshitaka; Ohashi, Takaya; Seta, Hiromi; Yamada, Shinya] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan.
[Bamba, Aya; Nakazawa, Kazuhiro] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Bautz, Marshall; Bulbul, Esra; Miller, Eric] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Brenneman, Laura; Foster, Adam; Smith, Randall] Smithsonian Astrophys Observ, 60 Garden St,MS-4, Cambridge, MA 02138 USA.
[Brown, Gregory V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Cackett, Edward; Fabian, Andrew C.; Pinto, Ciro; Russell, Helen] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Coppi, Paolo; Szymkowiak, Andrew; Urry, Meg] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Done, Chris] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Dotani, Tadayasu; Ebisawa, Ken; Guainazzi, Matteo; Hagino, Kouichi; Hayashi, Katsuhiro; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Kokubun, Motohide; Koyama, Shu; Lee, Shiu-Hang; Maeda, Yoshitomo; Mitsuda, Kazuhisa; Nakagawa, Takao; Nakashima, Shinya; Odaka, Hirokazu; Ozaki, Masanobu; Sameshima, Hiroaki; Sato, Goro; Sato, Rie; Simionescu, Aurora; Takahashi, Tadayuki; Takei, Yoh; Tamura, Takayuki; Tanaka, Yasuo; Tomida, Hiroshi; Tsujimoto, Masahiro; Ueda, Shutaro; Ueno, Shiro; Watanabe, Shin; Yamasaki, Noriko Y.] Japan Aerosp Explorat Agcy JAXA, ISAS, Sagamihara, Kanagawa 2525210, Japan.
[Enoto, Teruaki; Mineshige, Shin; Ueda, Yoshihiro] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan.
[Enoto, Teruaki] Kyoto Univ, Hakubi Ctr Adv Res, Kyoto 6068302, Japan.
[Fujimoto, Ryuichi; Murakami, Toshio; Yonetoku, Daisuke] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan.
[Fukazawa, Yasushi; Katsuta, Junichiro; Kitaguchi, Takao; Mizuno, Tsunefumi; Ohno, Masanori; Takahashi, Hiromitsu; Tanaka, Yasuyuki] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Galeazzi, Massimiliano; Ursino, Eugenio] Univ Miami, Dept Phys, Miami, FL 33124 USA.
[Gallo, Luigi; Wilkins, Dan] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada.
[Gandhi, Poshak] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Goldwurm, Andrea; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel] CEA Saclay, IRFU Serv Astrophys, F-91191 Gif Sur Yvette, France.
[Guainazzi, Matteo; Kretschmar, Peter; Schartel, Norbert] ESAC, ESA, Madrid, Spain.
[Haba, Yoshito] Aichi Univ Educ, Dept Phys & Astron, Kariya, Aichi 4488543, Japan.
[Hamaguchi, Kenji; Harrus, Ilana; Mukai, Koji; Pottschmidt, Katja; Yaqoob, Tahir] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA.
[Hatsukade, Isamu; Mori, Koji; Yamauchi, Makoto] Miyazaki Univ, Dept Appl Phys & Elect Engn, Miyazaki 8892192, Japan.
[Hiraga, Junko] Kwansei Gakuin Univ, Sch Sci & Technol, Dept Phys, Nishinomiya, Hyogo 6691337, Japan.
[Hoshino, Akio; Khangulyan, Dmitry; Kitamoto, Shunji; Saito, Shinya; Uchiyama, Yasunobu] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan.
[Hughes, John] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Ishikawa, Kumi; Nakano, Toshio; Noda, Hirofumi; Tamagawa, Toru; Yuasa, Takayuki] RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
[Itoh, Masayuki] Kobe Univ, Fac Human Dev, Kobe, Hyogo 6578501, Japan.
[Iyomoto, Naoko] Kyushu Univ, Fukuoka 8190395, Japan.
[Kataoka, Jun] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan.
[Katsuda, Satoru; Sugawara, Yasuharu; Tsuboi, Yohko] Chuo Univ, Dept Phys, Tokyo 1128551, Japan.
[Kawaharada, Madoka] Japan Aerosp Explorat Agcy JAXA, Tsukuba Space Ctr TKSC, Tsukuba, Ibaraki 3058505, Japan.
[Kawai, Nobuyuki; Sugita, Satoshi; Yatsu, Yoichi] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan.
[Kitayama, Tetsu] Toho Univ, Dept Phys, Chiba 2748510, Japan.
[Kohmura, Takayoshi] Tokyo Univ Sci, Dept Phys, Chiba 2788510, Japan.
[Koyama, Katsuji; Tanaka, Takaaki; Tsuru, Takeshi; Uchida, Hiroyuki] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan.
[Krimm, Hans] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA.
[Kubota, Aya] Shibaura Inst Technol, Dept Elect Informat Syst, Saitama 3378570, Japan.
[Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Lumb, David; Parmar, Arvind] ESTEC, ESA, NL-2200 AG Noordwijk, Netherlands.
[Makishima, Kazuo; Shidatsu, Megumi] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
[Matsumoto, Hironori] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan.
[Matsushita, Kyoko; Sato, Kosuke] Tokyo Univ Sci, Dept Phys, Tokyo 1628601, Japan.
[McCammon, Dan] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[McNamara, Brian] Univ Waterloo, Waterloo, ON N2L 3G1, Canada.
[Miller, Jon; Zoghbi, Abderahmen] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Murakami, Hiroshi] Tohoku Gakuin Univ, Fac Liberal Arts, Dept Informat Sci, Sendai, Miyagi 9813193, Japan.
[Nakamori, Takeshi] Yamagata Univ, Dept Phys, Fac Sci, Yamagata 9908560, Japan.
[Nobukawa, Masayoshi] Nara Univ Educ, Dept Teacher Training, Takabatake Cho, Nara 6308528, Japan.
[Nobukawa, Masayoshi] Nara Univ Educ, Sch Educ, Takabatake Cho, Nara 6308528, Japan.
[Nomachi, Masaharu] Osaka Univ, Res Ctr Nucl Phys Toyonaka, 1-1 Machikaneyama Machi, Toyonaka, Osaka 5600043, Japan.
[O'Dell, Steve; Ramsey, Brian] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Ota, Naomi; Yamauchi, Shigeo] Nara Womens Univ, Fac Sci, Dept Phys, Nara 6308506, Japan.
[Paerels, Frits] Columbia Univ, Dept Astron, New York, NY 10027 USA.
[Safi-Harb, Samar] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada.
[Sawada, Makoto; Yoshida, Atsumasa] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2525258, Japan.
[Stawarz, Lukasz] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland.
[Tajima, Hiroyasu] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan.
[Takeda, Shin'ichiro] Grad Univ OIST, Okinawa Inst Sci & Technol, Adv Med Instrumentat Unit, Okinawa 9040495, Japan.
[Tashiro, Makoto; Terada, Yukikatsu] Saitama Univ, Dept Phys, Saitama 3388570, Japan.
[Uchiyama, Hideki] Shizuoka Univ, Fac Educ, Sci Educ, Shizuoka 4228529, Japan.
[Uno, Shin'ichiro] Nihon Fukushi Univ, Fac Hlth Sci, Mihama, Aichi 4750012, Japan.
[Wik, Daniel] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
RP Fabian, AC (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
EM acf@ast.cam.ac.uk
RI Yamasaki, Noriko/C-2252-2008; Porter, Frederick/D-3501-2012; Zoghbi,
Abderahmen/A-8445-2017; Shidatsu, Megumi/C-5742-2017;
OI Porter, Frederick/0000-0002-6374-1119; Zoghbi,
Abderahmen/0000-0002-0572-9613; Kretschmar, Peter/0000-0001-9840-2048; ,
kouichi/0000-0003-4235-5304; De Coppi, Paolo/0000-0002-1659-0207
FU NASA Science Mission Directorate; DoE [DE-AC3-76SF00515]; NASA
[NNX15AM19G]; US DoE by LLNL [DE-AC52-07NA27344]; NASA; European Space
Agency; CNES; Centre National d'Etudes Spatiales; NWO, the Netherlands
Organization for Scientific Research; Swiss Secretariat for Education,
Research and Innovation SERI; ESA's PRODEX programme; Canadian Space
Agency; JSPS/MEXT KAKENHI [15H02070, 15K05107, 23340071, 26109506,
24103002, 25400236, 25800119, 25400237, 25287042, 24540229, 25105516,
23540280, 25400235, 25247028, 26800095, 25400231, 26220703, 24105007,
23340055, 15H00773, 23000004, 15H02090, 15K17610, 15H05438, 15H00785,
24540232]; NWO via a Veni grant; JSPS; STFC [ST/L00075X/1]; JAXA; UK
Science and Technology Funding Council (STFC) [ST/J003697/2]; ERC
[340442]; JAXA/ISAS; JAXA/TKSC; NASA/GSFC; Noqsi Aerospace Ltd; Stanford
U/KIPAC; ESA (Netherlands); SRON; CSA
FX We acknowledge all the JAXA members who have contributed to the ASTRO-H
(Hitomi) project. All US members gratefully acknowledge support through
the NASA Science Mission Directorate. Stanford and SLAC members
acknowledge support via DoE contract to SLAC National Accelerator
Laboratory DE-AC3-76SF00515 and NASA grant NNX15AM19G. Part of this work
was performed under the auspices of the US DoE by LLNL under contract
DE-AC52-07NA27344 and also supported by NASA grants to LLNL. Support
from the European Space Agency is gratefully acknowledged. French
members acknowledge support from CNES, the Centre National d'Etudes
Spatiales. SRON is supported by NWO, the Netherlands Organization for
Scientific Research. The Swiss team acknowledges support of the Swiss
Secretariat for Education, Research and Innovation SERI and ESA's PRODEX
programme. The Canadian Space Agency is acknowledged for the support of
Canadian members. We acknowledge support from JSPS/MEXT KAKENHI grant
numbers 15H02070, 15K05107, 23340071, 26109506, 24103002, 25400236,
25800119, 25400237, 25287042, 24540229, 25105516, 23540280, 25400235,
25247028, 26800095, 25400231, 25247028, 26220703, 24105007, 23340055,
15H00773, 23000004, 15H02090, 15K17610, 15H05438, 15H00785 and 24540232.
H. Akamatsu acknowledges support of NWO via a Veni grant. M. Axelsson
acknowledges a JSPS International Research Fellowship. C. Done
acknowledges STFC funding under grant ST/L00075X/1. P. Gandhi
acknowledges a JAXA International Top Young Fellowship and UK Science
and Technology Funding Council (STFC) grant ST/J003697/2. H. Russell, A.
C. Fabian and C. Pinto acknowledge support from ERC Advanced Grant
Feedback 340442. We thank contributions by many companies, including, in
particular, NEC, Mitsubishi Heavy Industries, Sumitomo Heavy Industries
and Japan Aviation Electronics Industry. Finally, we acknowledge strong
support from the following engineers. JAXA/ISAS: C. Baluta, N. Bando, A.
Harayama, K. Hirose, K. Ishimura, N. Iwata, T. Kawano, S. Kawasaki, K.
Minesugi, C. Natsukari, H. Ogawa, M. Ogawa, M. Ohta, T. Okazaki, S.-i.
Sakai, Y. Shibano, M. Shida, T. Shimada, A. Wada, T. Yamada; JAXA/TKSC:
A. Okamoto, Y. Sato, K. Shinozaki, H. Sugita; Chubu U: Y. Namba; Ehime
U: K. Ogi; Kochi U of Technology: T. Kosaka; Miyazaki U: Y. Nishioka;
Nagoya U: H. Nagano; NASA/GSFC: T. Bialas, K. Boyce, E. Canavan, M.
DiPirro, M. Kimball, C. Masters, D. Mcguinness, J. Miko, T. Muench, J.
Pontius, P. Shirron, C. Simmons, G. Sneiderman, T. Watanabe; Noqsi
Aerospace Ltd: J. Doty; Stanford U/KIPAC: M. Asai, K. Gilmore; ESA
(Netherlands): C. Jewell; SRON: D. Haas, M. Frericks, P. Laubert, P.
Lowes; U of Geneva: P. Azzarello; CSA: A. Koujelev, F. Moroso.
NR 37
TC 7
Z9 7
U1 11
U2 19
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD JUL 7
PY 2016
VL 535
IS 7610
BP 117
EP +
DI 10.1038/nature18627
PG 15
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DQ2EU
UT WOS:000379015600035
ER
PT J
AU Abbott, BP
Abbott, R
Abbott, TD
Abernathy, MR
Acernese, F
Ackley, K
Adamo, M
Adams, C
Adams, T
Addesso, P
Adhikari, RX
Adya, VB
Affeldt, C
Agathos, M
Agatsuma, K
Aggarwal, N
Aguiar, OD
Aiello, L
Ain, A
Ajith, P
Allen, B
Allocca, A
Altin, PA
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Arceneaux, CC
Areeda, JS
Arnaud, N
Arun, KG
Ascenzi, S
Ashton, G
Ast, M
Aston, SM
Astone, P
Aufmuth, P
Aulbert, C
Babak, S
Bacon, P
Bader, MKM
Baker, PT
Baldaccini, F
Ballardin, G
Ballmer, SW
Barayoga, JC
Barclay, SE
Barish, BC
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Barta, D
Bartlett, J
Bartos, I
Bassiri, R
Basti, A
Batch, JC
Baune, C
Bavigadda, V
Bazzan, M
Behnke, B
Bejger, M
Bell, AS
Bell, CJ
Berger, BK
Bergman, J
Bergmann, G
Berry, CPL
Bersanetti, D
Bertolini, A
Betzwieser, J
Bhagwat, S
Bhandare, R
Bilenko, IA
Billingsley, G
Birch, J
Birney, R
Biscans, S
Bisht, A
Bitossi, M
Biwer, C
Bizouard, MA
Blackburn, JK
Blackburn, L
Blair, CD
Blair, DG
Blair, RM
Bloemen, S
Bock, O
Bodiya, TP
Boer, M
Bogaert, G
Bogan, C
Bohe, A
Bojtos, P
Bond, C
Bondu, F
Bonnand, R
Boom, BA
Bork, R
Boschi, V
Bose, S
Bouffanais, Y
Bozzi, A
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Brau, JE
Briant, T
Brillet, A
Brinkmann, M
Brisson, V
Brockill, P
Brooks, AF
Brown, DA
Brown, DD
Brown, NM
Buchanan, CC
Buikema, A
Bulik, T
Bulten, HJ
Buonanno, A
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Cahillane, C
Bustillo, JC
Callister, T
Calloni, E
Camp, JB
Cannon, KC
Cao, J
Capano, CD
Capocasa, E
Carbognani, F
Caride, S
Diaz, JC
Casentini, C
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Cella, G
Cepeda, CB
Baiardi, LC
Cerretani, G
Cesarini, E
Chakraborty, R
Chalermsongsak, T
Chamberlin, SJ
Chan, M
Chao, S
Charlton, P
Charlton, P
Chassande-Mottin, E
Chatterji, S
Chen, HY
Chen, Y
Cheng, C
Chincarini, A
Chiummo, A
Cho, HS
Cho, M
Chow, JH
Christensen, N
Chu, Q
Chua, S
Chung, S
Ciani, G
Clara, F
Clark, JA
Cleva, F
Coccia, E
Cohadon, PF
Colla, A
Collette, CG
Cominsky, L
Conte, A
Conti, L
Cook, D
Corbitt, TR
Cornish, N
Corsi, A
Cortese, S
Costa, CA
Coughlin, MW
Coughlin, SB
Coulon, JP
Countryman, ST
Couvares, P
Cowan, EE
Coward, DM
Cowart, MJ
Coyne, DC
Coyne, R
Craig, K
Creighton, JDE
Cripe, J
Crowder, SG
Cumming, A
Cunningham, L
Cuoco, E
Dal Canton, T
Danilishin, SL
D'Antonio, S
Danzmann, K
Darman, NS
Dattilo, V
Dave, I
Daveloza, HP
Davier, M
Davies, GS
Daw, EJ
Day, R
Debra, D
Debreczeni, G
Degallaix, J
De Laurentis, M
Deleglise, S
Del Pozzo, W
Denker, T
Dent, T
Dereli, H
Dergachev, V
DeRosa, RT
De Rosa, R
DeSalvo, R
Dhurandhar, S
Diaz, MC
Di Fiore, L
Di Giovanni, M
Di Lieto, A
Di Pace, S
Di Palma, I
Di Virgilio, A
Dojcinoski, G
Dolique, V
Donovan, F
Dooley, KL
Doravari, S
Douglas, R
Downes, TP
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Ducrot, M
Dwyer, SE
Edo, TB
Edwards, MC
Effler, A
Eggenstein, HB
Ehrens, P
Eichholz, J
Eikenberry, SS
Engels, W
Essick, RC
Etzel, T
Evans, M
Evans, TM
Everett, R
Factourovich, M
Fafone, V
Fair, H
Fairhurst, S
Fan, X
Fang, Q
Farinon, S
Farr, B
Farr, WM
Favata, M
Fays, M
Fehrmann, H
Fejer, MM
Ferrante, I
Ferreira, EC
Ferrini, F
Fidecaro, F
Fiori, I
Fiorucci, D
Fisher, RP
Flaminio, R
Fletcher, M
Fournier, JD
Franco, S
Frasca, S
Frasconi, F
Frei, Z
Freise, A
Frey, R
Frey, V
Fricke, TT
Fritschel, P
Frolov, VV
Fulda, P
Fyffe, M
Gabbard, HAG
Gair, JR
Gammaitoni, L
Gaonkar, SG
Garufi, F
Gatto, A
Gaur, G
Gehrels, N
Gemme, G
Gendre, B
Genin, E
Gennai, A
George, J
Gergely, L
Ghosh, VGA
Ghosh, S
Giaime, JA
Giardina, KD
Giazotto, A
Gill, K
Glaefke, A
Goetz, E
Goetz, R
Gondan, L
Gonzlez, G
Castro, JMG
Gopakumar, A
Gordon, NA
Gorodetsky, ML
Gossan, SE
Gosselin, M
Gouaty, R
Graef, C
Graff, PB
Granata, M
Grant, A
Gras, S
Gray, C
Greco, G
Green, AC
Groot, P
Grote, H
Grunewald, S
Guidi, GM
Guo, X
Gupta, A
Gupta, MK
Gushwa, KE
Gustafson, EK
Gustafson, R
Hacker, JJ
Hall, BR
Hall, ED
Hammond, G
Haney, M
Hanke, MM
Hanks, J
Hanna, C
Hannam, MD
Hanson, J
Hardwick, T
Harms, J
Harry, GM
Harry, IW
Hart, MJ
Hartman, MT
Haster, CJ
Haughian, K
Heidmann, A
Heintze, MC
Heitmann, H
Hello, P
Hemming, G
Hendry, M
Heng, IS
Hennig, J
Heptonstall, AW
Heurs, M
Hild, S
Hoak, D
Hodge, KA
Hofman, D
Hollitt, SE
Holt, K
Holz, DE
Hopkins, P
Hosken, DJ
Hough, J
Houston, EA
Howell, EJ
Hu, YM
Huang, S
Huerta, EA
Huet, D
Hughey, B
Husa, S
Huttner, SH
Huynh-Dinh, T
Idrisy, A
Indik, N
Ingram, DR
Inta, R
Isa, HN
Isac, JM
Isi, M
Islas, G
Isogai, T
Iyer, BR
Izumi, K
Jacqmin, T
Jang, H
Jani, K
Jaranowski, P
Jawahar, S
Jimenez-Forteza, F
Johnson, WW
Jones, DI
Jones, R
Jonker, RJG
Ju, L
Haris, K
Kalaghatgi, CV
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, JB
Karki, S
Kasprzack, M
Katsavounidis, E
Katzman, W
Kaufer, S
Kaur, T
Kawabe, K
Kawazoe, F
Kefelian, F
Kehl, MS
Keitel, D
Kelley, DB
Kells, W
Kennedy, R
Key, JS
Khalaidovski, A
Khalili, FY
Khan, I
Khan, S
Khan, Z
Khazanov, EA
Kijbunchoo, N
Kim, C
Kim, J
Kim, K
Kim, NG
Kim, N
Kim, YM
King, EJ
King, PJ
Kinzel, DL
Kissel, JS
Kleybolte, L
Klimenko, S
Koehlenbeck, SM
Kokeyama, K
Koley, S
Kondrashov, V
Kontos, A
Korobko, M
Korth, WZ
Kowalska, I
Kozak, DB
Kringel, V
Krishnan, B
Krolak, A
Krueger, C
Kuehn, G
Kumar, P
Kuo, L
Kutynia, A
Lackey, BD
Landry, M
Lange, J
Lantz, B
Lasky, PD
Lazzarini, A
Lazzaro, C
Leaci, P
Leavey, S
Lebigot, EO
Lee, CH
Lee, HK
Lee, HM
Lee, K
Lenon, A
Leonardi, M
Leong, JR
Leroy, N
Letendre, N
Levin, Y
Levine, BM
Li, TGF
Libson, A
Littenberg, TB
Lockerbie, NA
Logue, J
Lombardi, AL
Lord, JE
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, JD
Luck, H
Lundgren, AP
Luo, J
Lynch, R
Ma, Y
MacDonald, T
Machenschalk, B
MacInnis, M
Macleod, DM
Magana-Sandoval, F
Magee, RM
Mageswaran, M
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mangano, V
Mansell, GL
Manske, M
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Markosyan, AS
Maros, E
Martelli, F
Martellini, L
Martin, IW
Martin, RM
Martynov, DV
Marx, JN
Mason, K
Masserot, A
Massinger, TJ
Masso-Reid, M
Matichard, F
Matone, L
Mavalvala, N
Mazumder, N
Mazzolo, G
McCarthy, R
McClelland, DE
McCormick, S
McGuire, SC
McIntyre, G
McIver, J
McManus, DJ
McWilliams, ST
Meacher, D
Meadors, GD
Meidam, J
Melatos, A
Mendell, G
Mendoza-Gandara, D
Mercer, RA
Merilh, E
Merzougui, M
Meshkov, S
Messenger, C
Messick, C
Meyers, PM
Mezzani, F
Miao, H
Michel, C
Middleton, H
Mikhailov, EE
Milano, L
Miller, J
Millhouse, M
Minenkov, Y
Ming, J
Mirshekari, S
Mishra, C
Mitra, S
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moggi, A
Mohan, M
Mohapatra, SRP
Montani, M
Moore, BC
Moore, CJ
Moraru, D
Moreno, G
Morriss, SR
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Muir, AW
Mukherjee, A
Mukherjee, D
Mukherjee, S
Mukund, N
Mullavey, A
Munch, J
Murphy, DJ
Murray, PG
Mytidis, A
Nardecchia, I
Naticchioni, L
Nayak, RK
Necula, V
Nedkova, K
Nelemans, G
Neri, M
Neunzert, A
Newton, G
Nguyen, TT
Nielsen, AB
Nissanke, S
Nitz, A
Nocera, F
Nolting, D
Normandin, ME
Nuttall, LK
Oberling, J
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Ohme, F
Oliver, M
Oppermann, P
Oram, RJ
O'Reilly, B
O'Shaughnessy, R
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Pai, A
Pai, SA
Palamos, JR
Palashov, O
Palomba, C
Pal-Singh, A
Pan, H
Pankow, C
Pannarale, F
Pant, BC
Paoletti, F
Paoli, A
Papa, MA
Paris, HR
Parker, W
Pascucci, D
Pasqualetti, A
Passaquieti, R
Passuello, D
Patricelli, B
Patrick, Z
Pearlstone, BL
Pedraza, M
Pedurand, R
Pekowsky, L
Pele, A
Penn, S
Perreca, A
Phelps, M
Piccinni, O
Pichot, M
Piergiovanni, F
Pierro, V
Pillant, G
Pinard, L
Pinto, IM
Pitkin, M
Poggiani, R
Popolizio, P
Post, A
Powell, J
Prasad, J
Predoi, V
Premachandra, SS
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prodi, GA
Prokhorov, L
Puncken, O
Punturo, M
Puppo, P
Purrer, M
Qi, H
Qin, J
Quetschke, V
Quintero, EA
Quitzow-James, R
Raab, FJ
Rabeling, DS
Radkins, H
Raffai, P
Raja, S
Rakhmanov, M
Rapagnani, P
Raymond, V
Razzano, M
Re, V
Read, J
Reed, CM
Regimbau, T
Rei, L
Reid, S
Reitze, DH
Rew, H
Reyes, SD
Ricci, F
Riles, K
Robertson, NA
Robie, R
Robinet, F
Rocchi, A
Rolland, L
Rollins, JG
Roma, VJ
Romano, R
Romanov, G
Romie, JH
Rosinska, D
Rowan, S
Rudiger, A
Ruggi, P
Ryan, K
Sachdev, S
Sadecki, T
Sadeghian, L
Salconi, L
Saleem, M
Salemi, F
Samajdar, A
Sammut, L
Sanchez, EJ
Sandberg, V
Sandeen, B
Sanders, JR
Sassolas, B
Sathyaprakash, BS
Saulson, PR
Sauter, O
Savage, RL
Sawadsky, A
Schale, P
Schilling, R
Schmidt, J
Schmidt, P
Schnabel, R
Schofield, RMS
Schonbeck, A
Schreiber, E
Schuette, D
Schutz, BF
Scott, J
Scott, SM
Sellers, D
Sengupta, AS
Sentenac, D
Sequino, V
Sergeev, A
Serna, G
Setyawati, Y
Sevigny, A
Shaddock, DA
Shah, S
Shahriar, MS
Shaltev, M
Shao, Z
Shapiro, B
Shawhan, P
Sheperd, A
Shoemaker, DH
Shoemaker, DM
Siellez, K
Siemens, X
Sigg, D
Silva, AD
Simakov, D
Singer, A
Singer, LP
Singh, A
Singh, R
Singhal, A
Sintes, AM
Slagmolen, BJJ
Slutsky, J
Smith, JR
Smith, ND
Smith, RJE
Son, EJ
Sorazu, B
Sorrentino, F
Souradeep, T
Srivastava, AK
Staley, A
Steinke, M
Steinlechner, J
Steinlechner, S
Steinmeyer, D
Stephens, BC
Stone, R
Strain, KA
Straniero, N
Stratta, G
Strauss, NA
Strigin, S
Sturani, R
Stuver, AL
Summerscales, TZ
Sun, L
Sutton, PJ
Swinkels, BL
Szczepanczyk, MJ
Tacca, M
Talukder, D
Tanner, DB
Tapai, M
Tarabrin, SP
Taracchini, A
Taylor, R
Theeg, T
Thirugnanasambandam, MP
Thomas, EG
Thomas, M
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Tiwari, S
Tiwari, V
Tokmakov, KV
Tomlinson, C
Tonelli, M
Torres, CV
Torrie, CI
Toyra, D
Travasso, F
Traylor, G
Trifiro, D
Tringali, MC
Trozzo, L
Tse, M
Turconi, M
Tuyenbayev, D
Ugolini, D
Unnikrishnan, CS
Urban, AL
Usman, SA
Vahlbruch, H
Vajente, G
Valdes, G
van Bakel, N
van Beuzekom, M
van den Brand, JFJ
Van den Broeck, C
Vander-Hyde, DC
van der Schaaf, L
van Heijningen, JV
van Veggel, AA
Vardaro, M
Vass, S
Vasuth, M
Vaulin, R
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Venkateswara, K
Verkindt, D
Vetrano, F
Vicere, A
Vinciguerra, S
Vine, DJ
Vinet, JY
Vitale, S
Vo, T
Vocca, H
Vorvick, C
Voss, D
Vousden, WD
Vyatchanin, SP
Wade, AR
Wade, LE
Wade, M
Walker, M
Wallace, L
Walsh, S
Wang, G
Wang, H
Wang, M
Wang, X
Wang, Y
Ward, RL
Warner, J
Was, M
Weaver, B
Wei, LW
Weinert, M
Weinstein, AJ
Weiss, R
Welborn, T
Wen, L
Wessels, P
Westphal, T
Wette, K
Whelan, JT
Whitcomb, S
White, DJ
Whiting, BF
Williams, RD
Williamson, AR
Willis, JL
Willke, B
Wimmer, MH
Winkler, W
Wipf, CC
Wittel, H
Woan, G
Worden, J
Wright, JL
Wu, G
Yablon, J
Yam, W
Yamamoto, H
Yancey, CC
Yap, MJ
Yu, H
Yvert, M
Zadrozny, A
Zangrando, L
Zanolin, M
Zendri, JP
Zevin, M
Zhang, F
Zhang, L
Zhang, M
Zhang, Y
Zhao, C
Zhou, M
Zhou, Z
Zhu, XJ
Zotov, N
Zucker, ME
Zuraw, SE
Zweizig, J
AF Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M. R.
Acernese, F.
Ackley, K.
Adamo, M.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R. X.
Adya, V. B.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O. D.
Aiello, L.
Ain, A.
Ajith, P.
Allen, B.
Allocca, A.
Altin, P. A.
Anderson, S. B.
Anderson, W. G.
Arai, K.
Araya, M. C.
Arceneaux, C. C.
Areeda, J. S.
Arnaud, N.
Arun, K. G.
Ascenzi, S.
Ashton, G.
Ast, M.
Aston, S. M.
Astone, P.
Aufmuth, P.
Aulbert, C.
Babak, S.
Bacon, P.
Bader, M. K. M.
Baker, P. T.
Baldaccini, F.
Ballardin, G.
Ballmer, S. W.
Barayoga, J. C.
Barclay, S. E.
Barish, B. C.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Barta, D.
Bartlett, J.
Bartos, I.
Bassiri, R.
Basti, A.
Batch, J. C.
Baune, C.
Bavigadda, V.
Bazzan, M.
Behnke, B.
Bejger, M.
Bell, A. S.
Bell, C. J.
Berger, B. K.
Bergman, J.
Bergmann, G.
Berry, C. P. L.
Bersanetti, D.
Bertolini, A.
Betzwieser, J.
Bhagwat, S.
Bhandare, R.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Birney, R.
Biscans, S.
Bisht, A.
Bitossi, M.
Biwer, C.
Bizouard, M. A.
Blackburn, J. K.
Blackburn, L.
Blair, C. D.
Blair, D. G.
Blair, R. M.
Bloemen, S.
Bock, O.
Bodiya, T. P.
Boer, M.
Bogaert, G.
Bogan, C.
Bohe, A.
Bojtos, P.
Bond, C.
Bondu, F.
Bonnand, R.
Boom, B. A.
Bork, R.
Boschi, V.
Bose, S.
Bouffanais, Y.
Bozzi, A.
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Branchesi, M.
Brau, J. E.
Briant, T.
Brillet, A.
Brinkmann, M.
Brisson, V.
Brockill, P.
Brooks, A. F.
Brown, D. A.
Brown, D. D.
Brown, N. M.
Buchanan, C. C.
Buikema, A.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Buskulic, D.
Buy, C.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Cahillane, C.
Calderon Bustillo, J.
Callister, T.
Calloni, E.
Camp, J. B.
Cannon, K. C.
Cao, J.
Capano, C. D.
Capocasa, E.
Carbognani, F.
Caride, S.
Diaz, J. Casanueva
Casentini, C.
Caudill, S.
Cavaglia, M.
Cavalier, F.
Cavalieri, R.
Cella, G.
Cepeda, C. B.
Baiardi, L. Cerboni
Cerretani, G.
Cesarini, E.
Chakraborty, R.
Chalermsongsak, T.
Chamberlin, S. J.
Chan, M.
Chao, S.
Charlton, P.
Charlton, P.
Chassande-Mottin, E.
Chatterji, S.
Chen, H. Y.
Chen, Y.
Cheng, C.
Chincarini, A.
Chiummo, A.
Cho, H. S.
Cho, M.
Chow, J. H.
Christensen, N.
Chu, Q.
Chua, S.
Chung, S.
Ciani, G.
Clara, F.
Clark, J. A.
Cleva, F.
Coccia, E.
Cohadon, P-F
Colla, A.
Collette, C. G.
Cominsky, L.
Conte, A.
Conti, L.
Cook, D.
Corbitt, T. R.
Cornish, N.
Corsi, A.
Cortese, S.
Costa, C. A.
Coughlin, M. W.
Coughlin, S. B.
Coulon, J-P
Countryman, S. T.
Couvares, P.
Cowan, E. E.
Coward, D. M.
Cowart, M. J.
Coyne, D. C.
Coyne, R.
Craig, K.
Creighton, J. D. E.
Cripe, J.
Crowder, S. G.
Cumming, A.
Cunningham, L.
Cuoco, E.
Dal Canton, T.
Danilishin, S. L.
D'Antonio, S.
Danzmann, K.
Darman, N. S.
Dattilo, V.
Dave, I.
Daveloza, H. P.
Davier, M.
Davies, G. S.
Daw, E. J.
Day, R.
Debra, D.
Debreczeni, G.
Degallaix, J.
De laurentis, M.
Deleglise, S.
Del Pozzo, W.
Denker, T.
Dent, T.
Dereli, H.
Dergachev, V.
DeRosa, R. T.
De Rosa, R.
DeSalvo, R.
Dhurandhar, S.
Diaz, M. C.
Di Fiore, L.
Di Giovanni, M.
Di Lieto, A.
Di Pace, S.
Di Palma, I.
Di Virgilio, A.
Dojcinoski, G.
Dolique, V.
Donovan, F.
Dooley, K. L.
Doravari, S.
Douglas, R.
Downes, T. P.
Drago, M.
Drever, R. W. P.
Driggers, J. C.
Du, Z.
Ducrot, M.
Dwyer, S. E.
Edo, T. B.
Edwards, M. C.
Effler, A.
Eggenstein, H-B
Ehrens, P.
Eichholz, J.
Eikenberry, S. S.
Engels, W.
Essick, R. C.
Etzel, T.
Evans, M.
Evans, T. M.
Everett, R.
Factourovich, M.
Fafone, V.
Fair, H.
Fairhurst, S.
Fan, X.
Fang, Q.
Farinon, S.
Farr, B.
Farr, W. M.
Favata, M.
Fays, M.
Fehrmann, H.
Fejer, M. M.
Ferrante, I.
Ferreira, E. C.
Ferrini, F.
Fidecaro, F.
Fiori, I.
Fiorucci, D.
Fisher, R. P.
Flaminio, R.
Fletcher, M.
Fournier, J-D
Franco, S.
Frasca, S.
Frasconi, F.
Frei, Z.
Freise, A.
Frey, R.
Frey, V.
Fricke, T. T.
Fritschel, P.
Frolov, V. V.
Fulda, P.
Fyffe, M.
Gabbard, H. A. G.
Gair, J. R.
Gammaitoni, L.
Gaonkar, S. G.
Garufi, F.
Gatto, A.
Gaur, G.
Gehrels, N.
Gemme, G.
Gendre, B.
Genin, E.
Gennai, A.
George, J.
Gergely, L.
Ghosh, V. Germain Archisman
Ghosh, S.
Giaime, J. A.
Giardina, K. D.
Giazotto, A.
Gill, K.
Glaefke, A.
Goetz, E.
Goetz, R.
Gondan, L.
Gonzlez, G.
Castro, J. M. Gonzalez
Gopakumar, A.
Gordon, N. A.
Gorodetsky, M. L.
Gossan, S. E.
Gosselin, M.
Gouaty, R.
Graef, C.
Graff, P. B.
Granata, M.
Grant, A.
Gras, S.
Gray, C.
Greco, G.
Green, A. C.
Groot, P.
Grote, H.
Grunewald, S.
Guidi, G. M.
Guo, X.
Gupta, A.
Gupta, M. K.
Gushwa, K. E.
Gustafson, E. K.
Gustafson, R.
Hacker, J. J.
Hall, B. R.
Hall, E. D.
Hammond, G.
Haney, M.
Hanke, M. M.
Hanks, J.
Hanna, C.
Hannam, M. D.
Hanson, J.
Hardwick, T.
Harms, J.
Harry, G. M.
Harry, I. W.
Hart, M. J.
Hartman, M. T.
Haster, C-J
Haughian, K.
Heidmann, A.
Heintze, M. C.
Heitmann, H.
Hello, P.
Hemming, G.
Hendry, M.
Heng, I. S.
Hennig, J.
Heptonstall, A. W.
Heurs, M.
Hild, S.
Hoak, D.
Hodge, K. A.
Hofman, D.
Hollitt, S. E.
Holt, K.
Holz, D. E.
Hopkins, P.
Hosken, D. J.
Hough, J.
Houston, E. A.
Howell, E. J.
Hu, Y. M.
Huang, S.
Huerta, E. A.
Huet, D.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh-Dinh, T.
Idrisy, A.
Indik, N.
Ingram, D. R.
Inta, R.
Isa, H. N.
Isac, J-M
Isi, M.
Islas, G.
Isogai, T.
Iyer, B. R.
Izumi, K.
Jacqmin, T.
Jang, H.
Jani, K.
Jaranowski, P.
Jawahar, S.
Jimenez-Forteza, F.
Johnson, W. W.
Jones, D. I.
Jones, R.
Jonker, R. J. G.
Ju, L.
Haris, K.
Kalaghatgi, C. V.
Kalogera, V.
Kandhasamy, S.
Kang, G.
Kanner, J. B.
Karki, S.
Kasprzack, M.
Katsavounidis, E.
Katzman, W.
Kaufer, S.
Kaur, T.
Kawabe, K.
Kawazoe, F.
Kefelian, F.
Kehl, M. S.
Keitel, D.
Kelley, D. B.
Kells, W.
Kennedy, R.
Key, J. S.
Khalaidovski, A.
Khalili, F. Y.
Khan, I.
Khan, S.
Khan, Z.
Khazanov, E. A.
Kijbunchoo, N.
Kim, C.
Kim, J.
Kim, K.
Kim, Nam-Gyu
Kim, Namjun
Kim, Y-M
King, E. J.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Kleybolte, L.
Klimenko, S.
Koehlenbeck, S. M.
Kokeyama, K.
Koley, S.
Kondrashov, V.
Kontos, A.
Korobko, M.
Korth, W. Z.
Kowalska, I.
Kozak, D. B.
Kringel, V.
Krishnan, B.
Krolak, A.
Krueger, C.
Kuehn, G.
Kumar, P.
Kuo, L.
Kutynia, A.
Lackey, B. D.
Landry, M.
Lange, J.
Lantz, B.
Lasky, P. D.
Lazzarini, A.
Lazzaro, C.
Leaci, P.
Leavey, S.
Lebigot, E. O.
Lee, C. H.
Lee, H. K.
Lee, H. M.
Lee, K.
Lenon, A.
Leonardi, M.
Leong, J. R.
Leroy, N.
Letendre, N.
Levin, Y.
Levine, B. M.
Li, T. G. F.
Libson, A.
Littenberg, T. B.
Lockerbie, N. A.
Logue, J.
Lombardi, A. L.
Lord, J. E.
Lorenzini, M.
Loriette, V.
Lormand, M.
Losurdo, G.
Lough, J. D.
Lueck, H.
Lundgren, A. P.
Luo, J.
Lynch, R.
Ma, Y.
MacDonald, T.
Machenschalk, B.
MacInnis, M.
Macleod, D. M.
Magana-Sandoval, F.
Magee, R. M.
Mageswaran, M.
Majorana, E.
Maksimovic, I.
Malvezzi, V.
Man, N.
Mandel, I.
Mandic, V.
Mangano, V.
Mansell, G. L.
Manske, M.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Marka, Z.
Markosyan, A. S.
Maros, E.
Martelli, F.
Martellini, L.
Martin, I. W.
Martin, R. M.
Martynov, D. V.
Marx, J. N.
Mason, K.
Masserot, A.
Massinger, T. J.
Masso-Reid, M.
Matichard, F.
Matone, L.
Mavalvala, N.
Mazumder, N.
Mazzolo, G.
McCarthy, R.
McClelland, D. E.
McCormick, S.
McGuire, S. C.
McIntyre, G.
McIver, J.
McManus, D. J.
McWilliams, S. T.
Meacher, D.
Meadors, G. D.
Meidam, J.
Melatos, A.
Mendell, G.
Mendoza-Gandara, D.
Mercer, R. A.
Merilh, E.
Merzougui, M.
Meshkov, S.
Messenger, C.
Messick, C.
Meyers, P. M.
Mezzani, F.
Miao, H.
Michel, C.
Middleton, H.
Mikhailov, E. E.
Milano, L.
Miller, J.
Millhouse, M.
Minenkov, Y.
Ming, J.
Mirshekari, S.
Mishra, C.
Mitra, S.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moggi, A.
Mohan, M.
Mohapatra, S. R. P.
Montani, M.
Moore, B. C.
Moore, C. J.
Moraru, D.
Moreno, G.
Morriss, S. R.
Mossavi, K.
Mours, B.
Mow-Lowry, C. M.
Mueller, C. L.
Mueller, G.
Muir, A. W.
Mukherjee, Arunava
Mukherjee, D.
Mukherjee, S.
Mukund, N.
Mullavey, A.
Munch, J.
Murphy, D. J.
Murray, P. G.
Mytidis, A.
Nardecchia, I.
Naticchioni, L.
Nayak, R. K.
Necula, V.
Nedkova, K.
Nelemans, G.
Neri, M.
Neunzert, A.
Newton, G.
Nguyen, T. T.
Nielsen, A. B.
Nissanke, S.
Nitz, A.
Nocera, F.
Nolting, D.
Normandin, M. E.
Nuttall, L. K.
Oberling, J.
Ochsner, E.
O'Dell, J.
Oelker, E.
Ogin, G. H.
Oh, J. J.
Oh, S. H.
Ohme, F.
Oliver, M.
Oppermann, P.
Oram, Richard J.
O'Reilly, B.
O'Shaughnessy, R.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Pai, A.
Pai, S. A.
Palamos, J. R.
Palashov, O.
Palomba, C.
Pal-Singh, A.
Pan, H.
Pankow, C.
Pannarale, F.
Pant, B. C.
Paoletti, F.
Paoli, A.
Papa, M. A.
Paris, H. R.
Parker, W.
Pascucci, D.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Patricelli, B.
Patrick, Z.
Pearlstone, B. L.
Pedraza, M.
Pedurand, R.
Pekowsky, L.
Pele, A.
Penn, S.
Perreca, A.
Phelps, M.
Piccinni, O.
Pichot, M.
Piergiovanni, F.
Pierro, V.
Pillant, G.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Poggiani, R.
Popolizio, P.
Post, A.
Powell, J.
Prasad, J.
Predoi, V.
Premachandra, S. S.
Prestegard, T.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prodi, G. A.
Prokhorov, L.
Puncken, O.
Punturo, M.
Puppo, P.
Puerrer, M.
Qi, H.
Qin, J.
Quetschke, V.
Quintero, E. A.
Quitzow-James, R.
Raab, F. J.
Rabeling, D. S.
Radkins, H.
Raffai, P.
Raja, S.
Rakhmanov, M.
Rapagnani, P.
Raymond, V.
Razzano, M.
Re, V.
Read, J.
Reed, C. M.
Regimbau, T.
Rei, L.
Reid, S.
Reitze, D. H.
Rew, H.
Reyes, S. D.
Ricci, F.
Riles, K.
Robertson, N. A.
Robie, R.
Robinet, F.
Rocchi, A.
Rolland, L.
Rollins, J. G.
Roma, V. J.
Romano, R.
Romanov, G.
Romie, J. H.
Rosinska, D.
Rowan, S.
Ruediger, A.
Ruggi, P.
Ryan, K.
Sachdev, S.
Sadecki, T.
Sadeghian, L.
Salconi, L.
Saleem, M.
Salemi, F.
Samajdar, A.
Sammut, L.
Sanchez, E. J.
Sandberg, V.
Sandeen, B.
Sanders, J. R.
Sassolas, B.
Sathyaprakash, B. S.
Saulson, P. R.
Sauter, O.
Savage, R. L.
Sawadsky, A.
Schale, P.
Schilling, R.
Schmidt, J.
Schmidt, P.
Schnabel, R.
Schofield, R. M. S.
Schoenbeck, A.
Schreiber, E.
Schuette, D.
Schutz, B. F.
Scott, J.
Scott, S. M.
Sellers, D.
Sengupta, A. S.
Sentenac, D.
Sequino, V.
Sergeev, A.
Serna, G.
Setyawati, Y.
Sevigny, A.
Shaddock, D. A.
Shah, S.
Shahriar, M. S.
Shaltev, M.
Shao, Z.
Shapiro, B.
Shawhan, P.
Sheperd, A.
Shoemaker, D. H.
Shoemaker, D. M.
Siellez, K.
Siemens, X.
Sigg, D.
Silva, A. D.
Simakov, D.
Singer, A.
Singer, L. P.
Singh, A.
Singh, R.
Singhal, A.
Sintes, A. M.
Slagmolen, B. J. J.
Slutsky, J.
Smith, J. R.
Smith, N. D.
Smith, R. J. E.
Son, E. J.
Sorazu, B.
Sorrentino, F.
Souradeep, T.
Srivastava, A. K.
Staley, A.
Steinke, M.
Steinlechner, J.
Steinlechner, S.
Steinmeyer, D.
Stephens, B. C.
Stone, R.
Strain, K. A.
Straniero, N.
Stratta, G.
Strauss, N. A.
Strigin, S.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sun, L.
Sutton, P. J.
Swinkels, B. L.
Szczepanczyk, M. J.
Tacca, M.
Talukder, D.
Tanner, D. B.
Tapai, M.
Tarabrin, S. P.
Taracchini, A.
Taylor, R.
Theeg, T.
Thirugnanasambandam, M. P.
Thomas, E. G.
Thomas, M.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Tiwari, S.
Tiwari, V.
Tokmakov, K. V.
Tomlinson, C.
Tonelli, M.
Torres, C. V.
Torrie, C. I.
Toyra, D.
Travasso, F.
Traylor, G.
Trifiro, D.
Tringali, M. C.
Trozzo, L.
Tse, M.
Turconi, M.
Tuyenbayev, D.
Ugolini, D.
Unnikrishnan, C. S.
Urban, A. L.
Usman, S. A.
Vahlbruch, H.
Vajente, G.
Valdes, G.
van Bakel, N.
van Beuzekom, M.
van den Brand, J. F. J.
Van den Broeck, C.
Vander-Hyde, D. C.
van der Schaaf, L.
van Heijningen, J. V.
van Veggel, A. A.
Vardaro, M.
Vass, S.
Vasuth, M.
Vaulin, R.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Venkateswara, K.
Verkindt, D.
Vetrano, F.
Vicere, A.
Vinciguerra, S.
Vine, D. J.
Vinet, J-Y
Vitale, S.
Vo, T.
Vocca, H.
Vorvick, C.
Voss, D.
Vousden, W. D.
Vyatchanin, S. P.
Wade, A. R.
Wade, L. E.
Wade, M.
Walker, M.
Wallace, L.
Walsh, S.
Wang, G.
Wang, H.
Wang, M.
Wang, X.
Wang, Y.
Ward, R. L.
Warner, J.
Was, M.
Weaver, B.
Wei, L-W
Weinert, M.
Weinstein, A. J.
Weiss, R.
Welborn, T.
Wen, L.
Wessels, P.
Westphal, T.
Wette, K.
Whelan, J. T.
Whitcomb, S.
White, D. J.
Whiting, B. F.
Williams, R. D.
Williamson, A. R.
Willis, J. L.
Willke, B.
Wimmer, M. H.
Winkler, W.
Wipf, C. C.
Wittel, H.
Woan, G.
Worden, J.
Wright, J. L.
Wu, G.
Yablon, J.
Yam, W.
Yamamoto, H.
Yancey, C. C.
Yap, M. J.
Yu, H.
Yvert, M.
Zadrozny, A.
Zangrando, L.
Zanolin, M.
Zendri, J-P
Zevin, M.
Zhang, F.
Zhang, L.
Zhang, M.
Zhang, Y.
Zhao, C.
Zhou, M.
Zhou, Z.
Zhu, X. J.
Zotov, N.
Zucker, M. E.
Zuraw, S. E.
Zweizig, J.
CA LIGO Sci Collaboration
Virgo Collaboration
TI Characterization of transient noise in Advanced LIGO relevant to
gravitational wave signal GW150914
SO CLASSICAL AND QUANTUM GRAVITY
LA English
DT Article
DE gravitational waves; detector characterization; GW150914
AB On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.
C1 [Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA.
[Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzlez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy.
[Acernese, F.; Adamo, M.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA.
[Adamo, M.; Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA.
[Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA.
[Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Ghosh, V. Germain Archisman; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, Lab Annecy Le Vieux Phys Particules, CNRS IN2P3, F-74941 Annecy Le Vieux, France.
[Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H-B; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Slutsky, J.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands.
[Aggarwal, N.; Barsotti, L.; Biscans, S.; Blackburn, L.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Chatterji, S.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA.
[Aguiar, O. D.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil.
[Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Ajith, P.; Ghosh, V. Germain Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India.
[Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA.
[Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy.
[Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia.
[Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS IN2P3, Univ Paris Saclay, LAL, F-91400 Orsay, France.
[Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Madras 603103, Tamil Nadu, India.
[Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany.
[Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany.
[Bacon, P.; Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, CNRS, CEA Irfu,IN2P3, Observ Paris,Sorbonne Paris Cite,APC,AstroParticu, F-75205 Paris 13, France.
[Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA.
[Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy.
[Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] European Gravitat Observ, I-56021 Pisa, Italy.
[Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Bozzi, A.; Brown, D. A.; Chincarini, A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA.
[Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA.
[Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary.
[Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA.
[Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA.
[Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy.
[Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J-P] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland.
[Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C-J; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy.
[Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India.
[Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia.
[Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland.
[Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia.
[Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J-D; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L-W] Univ Cote Azur, CNRS, Observ Cote Azur, Artemis, F-34229 Nice 4, France.
[Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary.
[Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France.
[Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy.
[Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy.
[Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA.
[Briant, T.; Chua, S.; Cohadon, P-F; Deleglise, S.; Heidmann, A.; Isac, J-M; Jacqmin, T.] Univ Paris 06, Sorbonne Univ, CNRS, ENS PSL Res Univ,Coll France,Lab Kastler Brossel, F-75005 Paris, France.
[Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
[Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA.
[Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Cagnoli, G.] Univ Lyon 1, Inst Lumiere Matiere, UMR CNRS 5306, F-69622 Villeurbanne, France.
[Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon 1, CNRS, IN2P3, Lab Materiaux Avances, F-69622 Villeurbanne, France.
[Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3, IEEC, E-07122 Palma de Mallorca, Spain.
[Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy.
[Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA.
[Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan.
[Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia.
[Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA.
[Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] Caltech CaRT, Pasadena, CA 91125 USA.
[Cho, H. S.; Jang, H.; Kang, G.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea.
[Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Kuo, L.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA.
[Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium.
[Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA.
[Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA.
[Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia.
[Buonanno, A.; Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA.
[Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy.
[Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales.
[Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland.
[Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India.
[Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India.
[Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary.
[Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Goetz, E.; Gustafson, R.; Neunzert, A.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India.
[Harry, G. M.] Amer Univ, Washington, DC 20016 USA.
[Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA.
[Hollitt, S. E.; Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA.
[Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland.
[Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland.
[Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India.
[Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, J.; Kim, Y-M; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea.
[Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea.
[Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia.
[Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea.
[Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA.
[Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France.
[Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy.
[McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA.
[Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil.
[Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England.
[Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India.
[O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England.
[Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA.
[Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea.
[Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland.
[Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy.
[Bozzi, A.; Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
[Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA.
[Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA.
[Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA.
[Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA.
RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA.
RI Zhu, Xingjiang/E-1501-2016; Pinto, Innocenzo/L-3520-2016; Conti,
Livia/F-8565-2013; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015;
Rocchi, Alessio/O-9499-2015; Costa, Cesar/G-7588-2012; Gemme,
Gianluca/C-7233-2008; Strain, Kenneth/D-5236-2011; Kumar,
Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria
Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016; Chow,
Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov,
Leonid/I-2953-2012; Di Virgilio, Angela Dora Vittoria/E-9078-2015;
Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; McClelland,
David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Iyer, Bala
R./E-2894-2012; Travasso, Flavio/J-9595-2016; Tiwari,
Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo,
Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi,
Matteo/G-9694-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin,
Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner,
Sebastian/D-5781-2013; Groot, Paul/K-4391-2016; Vecchio,
Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi,
Marica/P-2296-2015; prodi, giovanni/B-4398-2010; Ciani,
Giacomo/G-1036-2011; Gammaitoni, Luca/B-5375-2009; Ferrante,
Isidoro/F-1017-2012; Sorrentino, Fiodor/M-6662-2016; Bell,
Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni,
Fabio/A-1920-2008; Strigin, Sergey/I-8337-2012
OI Zhu, Xingjiang/0000-0001-7049-6468; Conti, Livia/0000-0003-2731-2656;
Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526;
Rocchi, Alessio/0000-0002-1382-9016; Gemme,
Gianluca/0000-0002-1127-7406; Strain, Kenneth/0000-0002-2066-5355;
Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria
Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078;
Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X;
Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713;
Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628;
Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186;
Berry, Christopher/0000-0003-3870-7215; Kanner,
Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901;
Nelemans, Gijs/0000-0002-0752-2974; Naticchioni,
Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Scott,
Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X;
Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197;
Zweizig, John/0000-0002-1521-3397; Del Pozzo,
Walter/0000-0003-3978-2030; Chow, Jong/0000-0002-2414-5402; Frey,
Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora
Vittoria/0000-0002-2237-7533; O'Shaughnessy,
Richard/0000-0001-5832-8517; Dolique, Vincent/0000-0001-5644-9905;
Boschi, Valerio/0000-0001-8665-2293; Papa,
M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917;
Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870;
McClelland, David/0000-0001-6210-5842; Losurdo,
Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179;
Travasso, Flavio/0000-0002-4653-6156; Tiwari,
Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485;
Cella, Giancarlo/0000-0002-0752-0338; Cesarini,
Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493;
Steinlechner, Sebastian/0000-0003-4710-8548; Groot,
Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef,
Christian/0000-0002-4535-2603; prodi, giovanni/0000-0001-5256-915X;
Ciani, Giacomo/0000-0003-4258-9338; Gammaitoni,
Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228;
Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821;
Garufi, Fabio/0000-0003-1391-6168; Marchesoni,
Fabio/0000-0001-9240-6793;
FU Australian Research Council; Council of Scientific and Industrial
Research of India; Department of Science and Technology, India; Science
AMP; Engineering Research Board (SERB), India; Ministry of Human
Resource Development, India; Spanish Ministerio de Economia y
Competitividad; Conselleria d'Economia i Competitivitat of the Govern de
les Illes Balears; Conselleria d'Educacio Cultura i Universitats of the
Govern de les Illes Balears; National Science Centre of Poland; European
Commission; Royal Society; Scottish Funding Council; Scottish
Universities Physics Alliance; Hungarian Scientific Research Fund
(OTKA); Lyon Institute of Origins (LIO); National Research Foundation of
Korea; Industry Canada; Province of Ontario through the Ministry of
Economic Development and Innovation; Natural Science and Engineering
Research Council Canada; Canadian Institute for Advanced Research;
Brazilian Ministry of Science, Technology, and Innovation; Fundacao de
Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Russian Foundation
for Basic Research; Leverhulme Trust; Research Corporation; Ministry of
Science and Technology (MOST), Taiwan; Kavli Foundation
FX The authors gratefully acknowledge the support of the United States
National Science Foundation (NSF) for the construction and operation of
the LIGO Laboratory and Advanced LIGO as well as the Science and
Technology Facilities Council (STFC) of the United Kingdom, the
Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for
support of the construction of Advanced LIGO and construction and
operation of the GEO600 detector. Additional support for Advanced LIGO
was provided by the Australian Research Council. The authors gratefully
acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN),
the French Centre National de la Recherche Scientifique (CNRS) and the
Foundation for Fundamental Research on Matter supported by the
Netherlands Organisation for Scientific Research, for the construction
and operation of the Virgo detector and the creation and support of the
EGO consortium. The authors also gratefully acknowledge research support
from these agencies as well as by the Council of Scientific and
Industrial Research of India, Department of Science and Technology,
India, Science & Engineering Research Board (SERB), India, Ministry of
Human Resource Development, India, the Spanish Ministerio de Economia y
Competitividad, the Conselleria d'Economia i Competitivitat and
Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes
Balears, the National Science Centre of Poland, the European Commission,
the Royal Society, the Scottish Funding Council, the Scottish
Universities Physics Alliance, the Hungarian Scientific Research Fund
(OTKA), the Lyon Institute of Origins (LIO), the National Research
Foundation of Korea, Industry Canada and the Province of Ontario through
the Ministry of Economic Development and Innovation, the Natural Science
and Engineering Research Council Canada, Canadian Institute for Advanced
Research, the Brazilian Ministry of Science, Technology, and Innovation,
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Russian
Foundation for Basic Research, the Leverhulme Trust, the Research
Corporation, Ministry of Science and Technology (MOST), Taiwan and the
Kavli Foundation. The authors gratefully acknowledge the support of the
NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for
provision of computational resources.
NR 43
TC 12
Z9 12
U1 28
U2 54
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0264-9381
EI 1361-6382
J9 CLASSICAL QUANT GRAV
JI Class. Quantum Gravity
PD JUL 7
PY 2016
VL 33
IS 13
AR 134001
DI 10.1088/0264-9381/33/13/134001
PG 34
WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles
& Fields
SC Astronomy & Astrophysics; Physics
GA DP2QM
UT WOS:000378334600003
ER
PT J
AU Abbott, T
Abdalla, FB
Allam, S
Amara, A
Annis, J
Armstrong, R
Bacon, D
Banerji, M
Bauer, AH
Baxter, E
Becker, MR
Benoit-Levy, A
Bernstein, RA
Bernstein, GM
Bertin, E
Blazek, J
Bonnett, C
Bridle, SL
Brooks, D
Bruderer, C
Buckley-Geer, E
Burke, DL
Busha, MT
Capozzi, D
Rosell, AC
Kind, MC
Carretero, J
Castander, FJ
Chang, C
Clampitt, J
Crocce, M
Cunha, CE
D'Andrea, CB
da Costa, LN
Das, R
DePoy, DL
Desai, S
Diehl, HT
Dietrich, JP
Dodelson, S
Doel, P
Drlica-Wagner, A
Efstathiou, G
Eifler, TF
Erickson, B
Estrada, J
Evrard, AE
Neto, AF
Fernandez, E
Finley, DA
Flaugher, B
Fosalba, P
Friedrich, O
Frieman, J
Gangkofner, C
Garcia-Bellido, J
Gaztanaga, E
Gerdes, DW
Gruen, D
Gruendl, RA
Gutierrez, G
Hartley, W
Hirsch, M
Honscheid, K
Huff, EM
Jain, B
James, DJ
Jarvis, M
Kacprzak, T
Kent, S
Kirk, D
Krause, E
Kravtsov, A
Kuehn, K
Kuropatkin, N
Kwan, J
Lahav, O
Leistedt, B
Li, TS
Lima, M
Lin, H
MacCrann, N
March, M
Marshall, JL
Martini, P
McMahon, RG
Melchior, P
Miller, CJ
Miquel, R
Mohr, JJ
Neilsen, E
Nichol, RC
Nicola, A
Nord, B
Ogando, R
Palmese, A
Peiris, HV
Plazas, AA
Refregier, A
Roe, N
Romer, AK
Roodman, A
Rowe, B
Rykoff, ES
Sabiu, C
Sadeh, I
Sako, M
Samuroff, S
Sanchez, E
Sanchez, C
Seo, H
Sevilla-Noarbe, I
Sheldon, E
Smith, RC
Soares-Santos, M
Sobreira, F
Suchyta, E
Swanson, MEC
Tarle, G
Thaler, J
Thomas, D
Troxel, MA
Vikram, V
Walker, AR
Wechsler, RH
Weller, J
Zhang, Y
Zuntz, J
AF Abbott, T.
Abdalla, F. B.
Allam, S.
Amara, A.
Annis, J.
Armstrong, R.
Bacon, D.
Banerji, M.
Bauer, A. H.
Baxter, E.
Becker, M. R.
Benoit-Levy, A.
Bernstein, R. A.
Bernstein, G. M.
Bertin, E.
Blazek, J.
Bonnett, C.
Bridle, S. L.
Brooks, D.
Bruderer, C.
Buckley-Geer, E.
Burke, D. L.
Busha, M. T.
Capozzi, D.
Rosell, A. Carnero
Kind, M. Carrasco
Carretero, J.
Castander, F. J.
Chang, C.
Clampitt, J.
Crocce, M.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
Das, R.
DePoy, D. L.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Dodelson, S.
Doel, P.
Drlica-Wagner, A.
Efstathiou, G.
Eifler, T. F.
Erickson, B.
Estrada, J.
Evrard, A. E.
Fausti Neto, A.
Fernandez, E.
Finley, D. A.
Flaugher, B.
Fosalba, P.
Friedrich, O.
Frieman, J.
Gangkofner, C.
Garcia-Bellido, J.
Gaztanaga, E.
Gerdes, D. W.
Gruen, D.
Gruendl, R. A.
Gutierrez, G.
Hartley, W.
Hirsch, M.
Honscheid, K.
Huff, E. M.
Jain, B.
James, D. J.
Jarvis, M.
Kacprzak, T.
Kent, S.
Kirk, D.
Krause, E.
Kravtsov, A.
Kuehn, K.
Kuropatkin, N.
Kwan, J.
Lahav, O.
Leistedt, B.
Li, T. S.
Lima, M.
Lin, H.
MacCrann, N.
March, M.
Marshall, J. L.
Martini, P.
McMahon, R. G.
Melchior, P.
Miller, C. J.
Miquel, R.
Mohr, J. J.
Neilsen, E.
Nichol, R. C.
Nicola, A.
Nord, B.
Ogando, R.
Palmese, A.
Peiris, H. V.
Plazas, A. A.
Refregier, A.
Roe, N.
Romer, A. K.
Roodman, A.
Rowe, B.
Rykoff, E. S.
Sabiu, C.
Sadeh, I.
Sako, M.
Samuroff, S.
Sanchez, E.
Sanchez, C.
Seo, H.
Sevilla-Noarbe, I.
Sheldon, E.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Suchyta, E.
Swanson, M. E. C.
Tarle, G.
Thaler, J.
Thomas, D.
Troxel, M. A.
Vikram, V.
Walker, A. R.
Wechsler, R. H.
Weller, J.
Zhang, Y.
Zuntz, J.
CA Dark Energy Survey Collaboration
TI Cosmology from cosmic shear with Dark Energy Survey Science Verification
data
SO PHYSICAL REVIEW D
LA English
DT Article
ID MATTER POWER SPECTRUM; WEAK-LENSING TOMOGRAPHY; LARGE-SCALE STRUCTURE;
BARYON ACOUSTIC-OSCILLATIONS; INTRINSIC ALIGNMENTS; PARAMETER
CONSTRAINTS; GALAXY ELLIPTICITIES; PRECISION COSMOLOGY;
COVARIANCE-MATRIX; HUBBLE CONSTANT
AB We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma(8)(Omega(m)/0.3)(0.5) = 0.81 +/- 0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are similar to 30% larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma(8)(Omega(m)/0.3)(0.5) is present regardless of the value of w.
C1 [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile.
[Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Hirsch, M.; Kirk, D.; Lahav, O.; Leistedt, B.; Palmese, A.; Peiris, H. V.; Rowe, B.; Sadeh, I.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Dodelson, S.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Lin, H.; Neilsen, E.; Nord, B.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Amara, A.; Bruderer, C.; Chang, C.; Hartley, W.; Kacprzak, T.; Nicola, A.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
[Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Banerji, M.; Efstathiou, G.; McMahon, R. G.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Banerji, M.; Efstathiou, G.; McMahon, R. G.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England.
[Bauer, A. H.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain.
[Baxter, E.; Bernstein, G. M.; Clampitt, J.; Eifler, T. F.; Jain, B.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Becker, M. R.; Burke, D. L.; Busha, M. T.; Cunha, C. E.; Krause, E.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Becker, M. R.; Busha, M. T.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA.
[Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Blazek, J.; Honscheid, K.; Huff, E. M.; Martini, P.; Melchior, P.; Seo, H.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Bonnett, C.; Carretero, J.; Fernandez, E.; Miquel, R.; Sanchez, C.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Bridle, S. L.; MacCrann, N.; Samuroff, S.; Troxel, M. A.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Burke, D. L.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Rosell, A. Carnero; da Costa, L. N.; Jarvis, M.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Rosell, A. Carnero; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Das, R.; Erickson, B.; Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Desai, S.; Dietrich, J. P.; Gangkofner, C.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Desai, S.; Dietrich, J. P.; Gangkofner, C.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Dodelson, S.; Frieman, J.; Kravtsov, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Friedrich, O.; Gruen, D.; Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Friedrich, O.; Gruen, D.; Weller, J.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.
[Garcia-Bellido, J.] Univ Autonoma Madrid, Inst Fis Teor IFT UAM CSIC, E-28049 Madrid, Spain.
[Honscheid, K.; Huff, E. M.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Kwan, J.; Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, Brazil.
[Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Roe, N.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Sabiu, C.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea.
[Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain.
[Seo, H.] Ohio Univ, Dept Phys & Astron, 251B Clippinger Labs, Athens, OH 45701 USA.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
RP MacCrann, N (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
EM niall.maccrann@postgrad.manchester.ac.uk; joseph.zuntz@manchester.ac.uk
RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Sobreira,
Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; Gaztanaga,
Enrique/L-4894-2014;
OI Garcia-Bellido, Juan/0000-0002-9370-8360; Ogando,
Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658;
Fernandez, Enrique/0000-0002-6405-9488; Gaztanaga,
Enrique/0000-0001-9632-0815; McMahon, Richard/0000-0001-8447-8869;
Stern, Corvin/0000-0003-4406-6127; Rowe, Barnaby/0000-0002-7042-9174;
Abdalla, Filipe/0000-0003-2063-4345
FU DoE [DE-AC02-98CH10886, DE-SC0007901, DE-FG02-91ER40690]; SFB-Transregio
33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG); DFG
cluster of excellence 'Origin and Structure of the Universe'; NSF
[AST-0812790, AST-1138729]; JPL; U.S. Department of Energy; U.S.
National Science Foundation; Ministry of Science and Education of Spain;
Science and Technology Facilities Council of the United Kingdom; Higher
Education Funding Council for England; National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign; Kavli Institute of Cosmological Physics at the
University of Chicago; Center for Cosmology and Astro-Particle Physics
at the Ohio State University; Mitchell Institute for Fundamental Physics
and Astronomy at Texas AM University; Financiadora de Estudos e
Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do
Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche
Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy
Survey; National Science Foundation [AST-1138766]; MINECO
[AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia
Severo Ochoa [SEV-2012-0234, SEV-2012-0249]; European Research Council
under European Union Seventh Framework Programme; ERC grant [240672,
291329, 306478]
FX We are grateful for the extraordinary contributions of our CTIO
colleagues and the DECam Construction, Commissioning and Science
Verification teams in achieving the excellent instrument and telescope
conditions that have made this work possible. The success of this
project also relies critically on the expertise and dedication of the
DES Data Management group. We are very grateful to Iain Murray for
advice on importance sampling. We thank Catherine Heymans, Martin
Kilbinger, Antony Lewis and Adam Moss for helpful discussion. This paper
is DES paper DES-2015-0076 and FermiLab preprint number
FERMILAB-PUB-15-285-AE. Sheldon is supported by DoE Grant No.
DE-AC02-98CH10886. Gruen was supported by SFB-Transregio 33 'The Dark
Universe' by the Deutsche Forschungsgemeinschaft (DFG) and the DFG
cluster of excellence 'Origin and Structure of the Universe'. Gangkofner
acknowledges the support by the DFG Cluster of Excellence 'Origin and
Structure of the Universe'. Jarvis has been supported on this project by
NSF Grants No. AST-0812790 and AST-1138729. Jarvis, Bernstein, and Jain
are partially supported by DoE Grant No. DE-SC0007901. Melchior was
supported by DoE Grant No. DE-FG02-91ER40690. Plazas was supported by
DoE Grant No. DE-AC02-98CH10886 and by JPL, run by Caltech under a
contract for NASA. Funding for the DES Projects has been provided by the
U.S. Department of Energy, the U.S. National Science Foundation, the
Ministry of Science and Education of Spain, the Science and Technology
Facilities Council of the United Kingdom, the Higher Education Funding
Council for England, the National Center for Supercomputing Applications
at the University of Illinois at Urbana-Champaign, the Kavli Institute
of Cosmological Physics at the University of Chicago, the Center for
Cosmology and Astro-Particle Physics at the Ohio State University, the
Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M
University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas
Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio
da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft
and the Collaborating Institutions in the Dark Energy Survey. The DES
data management system is supported by the National Science Foundation
under Grant No. AST-1138766. The Collaborating Institutions are Argonne
National Laboratory, the University of California at Santa Cruz, the
University of Cambridge, Centro de Investigaciones Energeticas,
Medioambientales y Tecnologicas-Madrid, the University of Chicago,
University College London, the DES-Brazil Consortium, the University of
Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi
National Accelerator Laboratory, the University of Illinois at
Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the
Institut de Fisica d'Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universitat Munchen and the
associated Excellence Cluster Universe, the University of Michigan, the
National Optical Astronomy Observatory, the University of Nottingham,
The Ohio State University, the University of Pennsylvania, the
University of Portsmouth, SLAC National Accelerator Laboratory, Stanford
University, the University of Sussex, and Texas A&M University. The DES
participants from Spanish institutions are partially supported by MINECO
under Grants No. AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro
de Excelencia Severo Ochoa SEV-2012-0234 and SEV-2012-0249.; r Research
leading to these results has received funding from the European Research
Council under the European Union Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329, and
306478. This paper has gone through internal review by the DES
collaboration.
NR 118
TC 8
Z9 8
U1 1
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 6
PY 2016
VL 94
IS 2
AR 022001
DI 10.1103/PhysRevD.94.022001
PG 22
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DR1RJ
UT WOS:000379682300001
ER
PT J
AU Becker, MR
Troxel, MA
MacCrann, N
Krause, E
Eifler, TF
Friedrich, O
Nicola, A
Refregier, A
Amara, A
Bacon, D
Bernstein, GM
Bonnett, C
Bridle, SL
Busha, MT
Chang, C
Dodelson, S
Erickson, B
Evrard, AE
Frieman, J
Gaztanaga, E
Gruen, D
Hartley, W
Jain, B
Jarvis, M
Kacprzak, T
Kirk, D
Kravtsov, A
Leistedt, B
Peiris, HV
Rykoff, ES
Sabiu, C
Sanchez, C
Seo, H
Sheldon, E
Wechsler, RH
Zuntz, J
Abbott, T
Abdalla, FB
Allam, S
Armstrong, R
Banerji, M
Bauer, AH
Benoit-Levy, A
Bertin, E
Brooks, D
Buckley-Geer, E
Burke, DL
Capozzi, D
Rosell, AC
Kind, MC
Carretero, J
Castander, FJ
Crocce, M
Cunha, CE
D'Andrea, CB
da Costa, LN
DePoy, DL
Desai, S
Diehl, HT
Dietrich, JP
Doel, P
Neto, AF
Fernandez, E
Finley, DA
Flaugher, B
Fosalba, P
Gerdes, DW
Gruendl, RA
Gutierrez, G
Honscheid, K
James, DJ
Kuehn, K
Kuropatkin, N
Lahav, O
Li, TS
Lima, M
Maia, MAG
March, M
Martini, P
Melchior, P
Miller, CJ
Miquel, R
Mohr, JJ
Nichol, RC
Nord, B
Ogando, R
Plazas, AA
Reil, K
Romer, AK
Roodman, A
Sako, M
Sanchez, E
Scarpine, V
Schubnell, M
Sevilla-Noarbe, I
Smith, RC
Soares-Santos, M
Sobreira, F
Suchyta, E
Swanson, MEC
Tarle, G
Thaler, J
Thomas, D
Vikram, V
Walker, AR
AF Becker, M. R.
Troxel, M. A.
MacCrann, N.
Krause, E.
Eifler, T. F.
Friedrich, O.
Nicola, A.
Refregier, A.
Amara, A.
Bacon, D.
Bernstein, G. M.
Bonnett, C.
Bridle, S. L.
Busha, M. T.
Chang, C.
Dodelson, S.
Erickson, B.
Evrard, A. E.
Frieman, J.
Gaztanaga, E.
Gruen, D.
Hartley, W.
Jain, B.
Jarvis, M.
Kacprzak, T.
Kirk, D.
Kravtsov, A.
Leistedt, B.
Peiris, H. V.
Rykoff, E. S.
Sabiu, C.
Sanchez, C.
Seo, H.
Sheldon, E.
Wechsler, R. H.
Zuntz, J.
Abbott, T.
Abdalla, F. B.
Allam, S.
Armstrong, R.
Banerji, M.
Bauer, A. H.
Benoit-Levy, A.
Bertin, E.
Brooks, D.
Buckley-Geer, E.
Burke, D. L.
Capozzi, D.
Carnero Rosell, A.
Kind, M. Carrasco
Carretero, J.
Castander, F. J.
Crocce, M.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
DePoy, D. L.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Doel, P.
Fausti Neto, A.
Fernandez, E.
Finley, D. A.
Flaugher, B.
Fosalba, P.
Gerdes, D. W.
Gruendl, R. A.
Gutierrez, G.
Honscheid, K.
James, D. J.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Li, T. S.
Lima, M.
Maia, M. A. G.
March, M.
Martini, P.
Melchior, P.
Miller, C. J.
Miquel, R.
Mohr, J. J.
Nichol, R. C.
Nord, B.
Ogando, R.
Plazas, A. A.
Reil, K.
Romer, A. K.
Roodman, A.
Sako, M.
Sanchez, E.
Scarpine, V.
Schubnell, M.
Sevilla-Noarbe, I.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Suchyta, E.
Swanson, M. E. C.
Tarle, G.
Thaler, J.
Thomas, D.
Vikram, V.
Walker, A. R.
CA Dark Energy Survey Collaboration
TI Cosmic shear measurements with Dark Energy Survey Science Verification
data
SO PHYSICAL REVIEW D
LA English
DT Article
ID WEAK LENSING SURVEYS; POLARIZATION POWER SPECTRA; GALAXY SHAPE
MEASUREMENT; LARGE-SCALE STRUCTURE; COVARIANCE-MATRIX; DISTANT GALAXIES;
NOISE BIAS; STATISTICS; IMPACT; SIMULATIONS
AB We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either NGMIX or IM3SHAPE, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We furthermore use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7 sigma. Cosmological constraints from the measurements in this work are presented in a companion paper.
C1 [Becker, M. R.; Busha, M. T.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Becker, M. R.; Krause, E.; Busha, M. T.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.; Reil, K.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Troxel, M. A.; MacCrann, N.; Bridle, S. L.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Eifler, T. F.; Bernstein, G. M.; Jain, B.; Jarvis, M.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Eifler, T. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Friedrich, O.; Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Friedrich, O.; Gruen, D.; Dietrich, J. P.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.
[Nicola, A.; Refregier, A.; Amara, A.; Chang, C.; Hartley, W.; Kacprzak, T.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
[Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Bonnett, C.; Sanchez, C.; Carretero, J.; Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Dodelson, S.; Frieman, J.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Dodelson, S.; Frieman, J.; Kravtsov, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Erickson, B.; Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Gaztanaga, E.; Bauer, A. H.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain.
[Kirk, D.; Leistedt, B.; Peiris, H. V.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Sabiu, C.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea.
[Seo, H.; Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile.
[Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Banerji, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England.
[Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[DePoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[DePoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Desai, S.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil.
[Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain.
[Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Thomas, D.] Www Sepnet Ac Uk, South East Phys Network, SEPnet, Southampton, Hants, England.
[Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
RP Becker, MR (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.; Becker, MR (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
EM beckermr@stanford.edu
RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Sobreira,
Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; Gaztanaga,
Enrique/L-4894-2014;
OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira,
Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488;
Gaztanaga, Enrique/0000-0001-9632-0815; Abdalla,
Filipe/0000-0003-2063-4345
FU University of Chicago Research Computing Center; National Science
Foundation [ACI-1053575, AST-1138766]; European Research Council
[240672]; DOE SciDAC grant; SFB-Transregio 33 "The Dark Universe" by the
Deutsche Forschungsgemeinaft (DFG); DFG cluster of excellence "Origin
and Structure of the Universe"; Swiss National Foundation [20021_14944,
20021_1439606]; NSF [AST-0812790, AST-1138729]; DoE [DE-SC0007901];
FAPESP; CNPq; NASA Astrophysics Data System; U.S. Department of Energy;
U.S. National Science Foundation; Ministry of Science and Education of
Spain; Science and Technology Facilities Council of the United Kingdom;
Higher Education Funding Council for England; National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign; Kavli Institute of Cosmological Physics at the
University of Chicago; Center for Cosmology and Astro-Particle Physics
at the Ohio State University; Mitchell Institute for Fundamental Physics
and Astronomy at Texas AM University; Financiadora de Estudos e
Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do
Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche
Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy
Survey; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de
Excelencia Severo Ochoa [SEV-2012-0234]; ERDF funds from European Union;
[NSF-AST-1211838]
FX We are grateful for the extraordinary contributions of our CTIO
colleagues and the DECam Construction, Commissioning and Science
Verification teams in achieving the excellent instrument and telescope
conditions that have made this work possible. The success of this
project also relies critically on the expertise and dedication of the
DES Data Management group. M. R. B. is grateful for the support of the
University of Chicago Research Computing Center, and especially Doug
Rudd, for the time used to carry out the N-body simulations carried out
in this work. M. R. B. would also like to thank Stewart Marshall for his
ongoing assistance in using SLAC computing resources. This work used the
Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-1053575. J. A.
Z., M. A. T., S. L. B. acknowledge support from the European Research
Council in the form of a Starting Grant with number 240672. M. R. B. and
R. H. W. received partial support from NSF-AST-1211838 and from a DOE
SciDAC grant. O. F. and D. G. were supported by SFB-Transregio 33 "The
Dark Universe" by the Deutsche Forschungsgemeinaft (DFG) and the DFG
cluster of excellence "Origin and Structure of the Universe." A.A.,
A.R., A.N. are supported in part by Grants No. 20021_14944 and No.
20021_1439606 from the Swiss National Foundation. Jarvis has been
supported on this project by NSF Grants No. AST-0812790 and No.
AST-1138729. Jarvis, Bernstein, and Jain are partially supported by DoE
grant DE-SC0007901. M. L. is partially supported by FAPESP and CNPq.
This work made extensive use of the NASA Astrophysics Data System and
arXiv.org preprint server. Funding for the DES Projects has been
provided by the U.S. Department of Energy, the U.S. National Science
Foundation, the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the Higher
Education Funding Council for England, the National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign, the Kavli Institute of Cosmological Physics at the
University of Chicago, the Center for Cosmology and Astro-Particle
Physics at the Ohio State University, the Mitchell Institute for
Fundamental Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa
do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the
Deutsche Forschungsgemeinschaft and the Collaborating Institutions in
the Dark Energy Survey. The DES data management system is supported by
the National Science Foundation under Grant Number AST-1138766. The DES
participants from Spanish institutions are partially supported by MINECO
under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de
Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds
from the European Union.; r The Collaborating Institutions are Argonne
National Laboratory, the University of California at Santa Cruz, the
University of Cambridge, Centro de Investigaciones Energeticas,
Medioambientales y Tecnologicas-Madrid, the University of Chicago,
University College London, the DES-Brazil Consortium, the Eidgenossische
Technische Hochschule (ETH) Zurich, Fermi National Accelerator
Laboratory, the University of Edinburgh, the University of Illinois at
Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the
Institut de Fisica d'Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universitat and the associated
Excellence Cluster Universe, the University of Michigan, the National
Optical Astronomy Observatory, the University of Nottingham, The Ohio
State University, the University of Pennsylvania, the University of
Portsmouth, SLAC National Accelerator Laboratory, Stanford University,
the University of Sussex, and Texas A&M University. This paper is
Fermilab publication FERMILAB-PUB-15-303-AE and DES publication
DES-2015-0061. This paper has gone through internal review by the DES
collaboration.
NR 78
TC 16
Z9 16
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 6
PY 2016
VL 94
IS 2
AR 022002
DI 10.1103/PhysRevD.94.022002
PG 24
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DR1RJ
UT WOS:000379682300002
ER
PT J
AU Leonard, CD
Bull, P
Allison, R
AF Leonard, C. Danielle
Bull, Philip
Allison, Rupert
TI Spatial curvature endgame: Reaching the limit of curvature determination
SO PHYSICAL REVIEW D
LA English
DT Article
ID BARYON ACOUSTIC-OSCILLATION; MATTER POWER SPECTRUM; DARK ENERGY;
DISTANCE MEASUREMENTS; CROSS-CORRELATION; COSMIC SHEAR; UNIVERSE;
COSMOLOGY; SCALE; RECONSTRUCTION
AB Current constraints on spatial curvature show that it is dynamically negligible: vertical bar Omega(K)vertical bar less than or similar to 5 x 10(-3) (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on Omega(K) at around the 10(-4) level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable-by an order of magnitude-even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Lambda CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like Omega(K) with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses.
C1 [Leonard, C. Danielle; Allison, Rupert] Univ Oxford, Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England.
[Bull, Philip] CALTECH, Pasadena, CA 91125 USA.
[Bull, Philip] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA.
RP Leonard, CD (reprint author), Univ Oxford, Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England.
EM danielle.leonard@physics.ox.ac.uk
FU Natural Sciences and Engineering Research Council of Canada; NASA; ERC
[259505]
FX We would like to thank Pedro Ferreira and Jo Dunkley for helpful
discussions. We also thank the authors of CAMB, which was used in this
work. C. D. L. is supported by the Natural Sciences and Engineering
Research Council of Canada. P. B.'s research was supported by an
appointment to the NASA Postdoctoral Program at the Jet Propulsion
Laboratory, California Institute of Technology, administered by
Universities Space Research Association under contract with NASA. R. A.
is supported by ERC Grant No. 259505.
NR 91
TC 0
Z9 0
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 5
PY 2016
VL 94
IS 2
AR 023502
DI 10.1103/PhysRevD.94.023502
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DR2GK
UT WOS:000379722800005
ER
PT J
AU Chakraborty, S
Fu, R
Massie, ST
Stephens, G
AF Chakraborty, Sudip
Fu, Rong
Massie, Steven T.
Stephens, Graeme
TI Relative influence of meteorological conditions and aerosols on the
lifetime of mesoscale convective systems
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE mesoscale convective systems; aerosols; meteorological parameters
ID LIGHTNING ACTIVITY; CLOUDS; PRECIPITATION; INVIGORATION; RETRIEVAL;
IMPACTS; LIQUID; AMAZON; RADAR; FLOOD
AB Using collocated measurements from geostationary and polar-orbital satellites over tropical continents, we provide a large-scale statistical assessment of the relative influence of aerosols and meteorological conditions on the lifetime of mesoscale convective systems (MCSs). Our results show that MCSs' lifetime increases by 3-24 h when vertical wind shear (VWS) and convective available potential energy (CAPE) are moderate to high and ambient aerosol optical depth (AOD) increases by 1 SD (1s). However, this influence is not as strong as that of CAPE, relative humidity, and VWS, which increase MCSs' lifetime by 3-30 h, 3-27 h, and 3-30 h per 1s of these variables and explain up to 36%, 45%, and 34%, respectively, of the variance of the MCSs' lifetime. AOD explains up to 24% of the total variance of MCSs' lifetime during the decay phase. This result is physically consistent with that of the variation of the MCSs' ice water content (IWC) with aerosols, which accounts for 35% and 27% of the total variance of the IWC in convective cores and anvil, respectively, during the decay phase. The effect of aerosols on MCSs' lifetime varies between different continents. AOD appears to explain up to 20-22% of the total variance of MCSs' lifetime over equatorial South America compared with 8% over equatorial Africa. Aerosols over the Indian Ocean can explain 20% of total variance of MCSs' lifetime over South Asia because such MCSs form and develop over the ocean. These regional differences of aerosol impacts may be linked to different meteorological conditions.
C1 [Chakraborty, Sudip; Fu, Rong] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA.
[Massie, Steven T.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
[Stephens, Graeme] Jet Prop Lab, Pasadena, CA 91109 USA.
RP Chakraborty, S (reprint author), Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA.
EM sudipm@utexas.edu
FU NASA [NNX1172G]; Office of Biological & Environmental Research within
Department of Energy, Office of Science [DE-SC0011117]; NASA
CALIPSO/CLOUDSAT [NNX14AO85G]
FX We acknowledge the providers of the ISCCP, CloudSat, TRMM, Aura MLS,
Aqua MODIS, and MERRA datasets. S.C. and R.F. were supported by NASA
Aura Science Team Grant (NNX1172G) and the Office of Biological &
Environmental Research within the Department of Energy, Office of
Science Grant (DE-SC0011117). S.T.M. and S.C. are supported by NASA
CALIPSO/CLOUDSAT Grant NNX14AO85G. The supercomputer at the University
of Texas has been used to store and analyze the data.
NR 43
TC 2
Z9 2
U1 5
U2 9
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 5
PY 2016
VL 113
IS 27
BP 7426
EP 7431
DI 10.1073/pnas.1601935113
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DQ2GW
UT WOS:000379021700050
PM 27313203
ER
PT J
AU Saghaian, SM
Karaca, HE
Souri, M
Turabi, AS
Noebe, RD
AF Saghaian, S. M.
Karaca, H. E.
Souri, M.
Turabi, A. S.
Noebe, R. D.
TI Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape
memory alloys
SO MATERIALS & DESIGN
LA English
DT Article
DE Shape memory alloys; NiTiHf; Tensile testing; Heat treatments
ID INDUCED MARTENSITIC-TRANSFORMATION; SINGLE-CRYSTALS; COMPRESSION
ASYMMETRY; POLYCRYSTALLINE NITI; PSEUDOELASTIC NITI; DAMPING CAPACITY;
STRESS; STATE; SHEAR
AB The effects of heat treatment on the shape memory characteristics of a polycrystalline Ni50.3Ti29.7Hf20 alloy were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. It was revealed that transformation temperatures could be increased above 100 degrees C with aging at temperature above 500 degrees C and in particular were stabilized against stress-free thermal cycling after aging at 500 degrees C. Recoverable strain of similar to 5% was observed for the as-extruded samples and decreased to similar to 4% after aging due to the formation of non-transformable precipitates. The aged alloys demonstrated near perfect shape memory effect under tensile stresses as high as 700 MPa and perfect superelasticity at temperatures up to 230 degrees C. Finally, the tension-compression asymmetry observed in NiTiHf alloys was discussed. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Saghaian, S. M.; Karaca, H. E.; Souri, M.; Turabi, A. S.] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA.
[Noebe, R. D.] NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH USA.
RP Karaca, HE (reprint author), Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA.
EM karacahaluk@uky.edu
FU NASA EPSCoR [NNX11AQ31A]; NSF [CMMI-1538665]; NASA Transformative
Aeronautics Concepts Program (TACP), Transformational Tools &
Technologies Project; [KSEF-148-502-15-355]
FX This work was supported in part by the NASA EPSCoR NNX11AQ31A,
KSEF-148-502-15-355, NSF CMMI-1538665 programs and NASA Transformative
Aeronautics Concepts Program (TACP), Transformational Tools &
Technologies Project (Dale Hopkins, Technical Lead for Structures &
Materials Discipline).
NR 30
TC 2
Z9 2
U1 10
U2 33
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-1275
EI 1873-4197
J9 MATER DESIGN
JI Mater. Des.
PD JUL 5
PY 2016
VL 101
BP 340
EP 345
DI 10.1016/j.matdes.2016.03.163
PG 6
WC Materials Science, Multidisciplinary
SC Materials Science
GA DL1SS
UT WOS:000375413100043
ER
PT J
AU Zuidema, P
Redemann, J
Haywood, J
Wood, R
Piketh, S
Hipondoka, M
Formenti, P
AF Zuidema, Paquita
Redemann, Jens
Haywood, James
Wood, Robert
Piketh, Stuart
Hipondoka, Martin
Formenti, Paola
TI Smoke and Clouds above the Southeast Atlantic Upcoming Field Campaigns
Probe Absorbing Aerosol's Impact on Climate
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Editorial Material
C1 [Zuidema, Paquita] Univ Miami, Miami, FL USA.
[Redemann, Jens] NASA, Ames Res Ctr, Mountain View, CA USA.
[Haywood, James] Univ Exeter, Exeter, Devon, England.
[Wood, Robert] Univ Washington, Seattle, WA 98195 USA.
[Piketh, Stuart] North West Univ, Potchefstroom, South Africa.
[Hipondoka, Martin] Univ Namibia, Windhoek, Namibia.
[Formenti, Paola] Lab Interuniv Syst Atmospher, Creteil, France.
RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
EM pzuidema@rsmas.miami.edu
RI Zuidema, Paquita/C-9659-2013; Wood, Robert/A-2989-2008
OI Zuidema, Paquita/0000-0003-4719-372X; Wood, Robert/0000-0002-1401-3828
NR 2
TC 2
Z9 2
U1 1
U2 1
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD JUL
PY 2016
VL 97
IS 7
BP 1131
EP 1135
DI 10.1175/BAMS-D-15-00082.1
PG 5
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DT7GF
UT WOS:000381654400006
ER
PT J
AU Shui, JL
Lin, Y
Connell, JW
Xu, JT
Fan, XL
Dai, LM
AF Shui, Jianglan
Lin, Yi
Connell, John W.
Xu, Jiantie
Fan, Xueliu
Dai, Liming
TI Nitrogen-Doped Holey Graphene for High-Performance Rechargeable Li-O-2
Batteries
SO ACS ENERGY LETTERS
LA English
DT Article
ID LITHIUM-OXYGEN BATTERIES; LI-AIR BATTERIES; CATHODE CATALYSTS; POROUS
GRAPHENE; REDUCTION; NANOPARTICLES; COMPOSITE; ELECTRODE; OXIDE;
ELECTROCATALYST
AB Li-air batteries represent cutting edge electrochemical energy storage devices, but their practical applications have been precluded by the high cathode cost, the low discharge/charge efficiency, and/or the short battery lifetime. Here, we developed a low-cost, but very efficient, air electrode from porous nitrogen-doped holey graphene for rechargeable nonaqueous Li-O-2 cells. The resultant Li-O-2 cell can deliver a high round-trip efficiency (85%) and a long cycling life (>100 cycles) under controlled discharge/charge depths or a high capacity of 17 000 mAh/g under the full discharge/charge condition, superior to most other carbonaceous air cathodes. The observed superb performance for the air electrode based on the nitrogen-doped holey graphene can be attributed to its efficient metal-free catalytic activity and three-dimensional mass transport pathway. Therefore, this work represents a new approach to low-cost, efficient, metal-free, binder-free, and hierarchically porous air electrodes useful for energy conversion and storage from N-doped holey graphene.
C1 [Shui, Jianglan; Xu, Jiantie; Fan, Xueliu; Dai, Liming] Case Western Reserve Univ, Case Sch Engn, Dept Macromol Sci & Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA.
[Lin, Yi] Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA.
[Lin, Yi] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA.
[Connell, John W.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Mail Stop 226, Hampton, VA 23681 USA.
[Shui, Jianglan] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.
RP Dai, LM (reprint author), Case Western Reserve Univ, Case Sch Engn, Dept Macromol Sci & Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA.; Lin, Y (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA.; Lin, Y (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA.; Connell, JW (reprint author), NASA, Langley Res Ctr, Adv Mat & Proc Branch, Mail Stop 226, Hampton, VA 23681 USA.
EM yi.lin@nianet.org; john.w.connell@nasa.gov; liming.dai@case.edu
FU AFOSR [FA9550-12-1-0037]; NSF-AIR [HP-1343270]; NSF [CMMI-1400274];
Internal Research and Development (IRAD) funds at NASA Langley Research
Center
FX We acknowledge support from AFOSR (FA9550-12-1-0037), NSF-AIR
(HP-1343270), and NSF (CMMI-1400274). Y.L. and J.W.C are grateful for
support from Internal Research and Development (IRAD) funds at NASA
Langley Research Center.
NR 45
TC 1
Z9 1
U1 29
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2380-8195
J9 ACS ENERGY LETT
JI ACS Energy Lett.
PD JUL
PY 2016
VL 1
IS 1
BP 260
EP 265
DI 10.1021/acsenergylett.6b00128
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology -
Other Topics; Materials Science
GA EE5AS
UT WOS:000389617700042
ER
PT J
AU Fang, K
Shen, C
Fisher, JB
Niu, J
AF Fang, Kuai
Shen, Chaopeng
Fisher, Joshua B.
Niu, Jie
TI Improving Budyko curve-based estimates of long-term water partitioning
using hydrologic signatures from GRACE
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID SURFACE PROCESSES MODEL; GROUNDWATER DEPLETION; CLIMATE-CHANGE; ANNUAL
RUNOFF; EVAPOTRANSPIRATION; FRAMEWORK; BALANCES; CONSTRAINTS;
VARIABILITY; SATELLITES
AB The Budyko hypothesis provides a first-order estimate of water partitioning into runoff (Q) and evapotranspiration (E). Observations, however, often show significant departures from the Budyko curve; moreover, past improvements to Budyko curve tend to lose predictive power when migrated between regions or to small scales. Here to estimate departures from the Budyko curve, we use hydrologic signatures extracted from Gravity Recovery And Climate Experiment (GRACE) terrestrial water storage anomalies. The signatures include GRACE amplitude as a fraction of precipitation (A/P), interannual variability, and 1-month lag autocorrelation. We created a group of linear models embodying two alternate hypotheses that departures can be predicted by (a) Taylor series expansion based on the deviation of physical characteristics (seasonality, snow fraction, and vegetation index) from reference conditions and (b) surrogate indicators covarying with E, e.g., A/P. These models are fitted using a mesoscale USA data set (HUC4) and then evaluated using world data sets and USA basins <1 x 10(5) km(2). The model with A/P could reduce error by 50% compared to Budyko itself. We found that seasonality and fraction of precipitation as snow account for a major portion of the predictive power of A/P, while the remainder is attributed to unexplained basin characteristics. When migrated to a global data set, type b models performed better than type a. This contrast in transferability is argued to be due to data set limitations and catchment coevolution. The GRACE-based correction performs well for USA basins >1000 km(2) and, according to comparison with other global data sets, is suitable for data fusion purposes, with GRACE error as estimates of uncertainty.
C1 [Fang, Kuai; Shen, Chaopeng] Penn State Univ, Dept Civil & Environm Engn, State Coll, PA 16801 USA.
[Fisher, Joshua B.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Niu, Jie] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Niu, Jie] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
RP Shen, C (reprint author), Penn State Univ, Dept Civil & Environm Engn, State Coll, PA 16801 USA.
EM cshen@engr.psu.edu
OI Fisher, Joshua/0000-0003-4734-9085; Shen, Chaopeng/0000-0002-0685-1901
FU Office of Biological and Environmental Research of the US Department of
Energy [DE-SC0010620]
FX This work was supported by Office of Biological and Environmental
Research of the US Department of Energy under contract DE-SC0010620. We
thank David Wolock from USGS for providing shapefiles for the USGS
basins. Data generated from this study are presented in figure format in
the paper, and the data sets can be requested from the corresponding
author. We thank Murugesu Sivapalan for some useful discussion about
incomplete coevolution. J.B.F. contributed to this work from the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.
Constructive comments from anonymous reviewers and the Associate Editor
have helped to improve the manuscript.
NR 77
TC 1
Z9 1
U1 10
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD JUL
PY 2016
VL 52
IS 7
BP 5537
EP 5554
DI 10.1002/2016WR018748
PG 18
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA DW5KO
UT WOS:000383683800035
ER
PT J
AU Tenenbaum, LF
AF Tenenbaum, Laura Faye
TI Between a rock and a cold place
SO PHYSICS WORLD
LA English
DT Editorial Material
C1 [Tenenbaum, Laura Faye] NASA, Jet Prop Lab, Washington, DC 20546 USA.
RP Tenenbaum, LF (reprint author), NASA, Jet Prop Lab, Washington, DC 20546 USA.
EM laura.f.tenenbaum@jpl.nasa.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8585
J9 PHYS WORLD
JI Phys. World
PD JUL
PY 2016
VL 29
IS 7
BP 32
EP 35
PG 4
WC Physics, Multidisciplinary
SC Physics
GA EB7MD
UT WOS:000387570800025
ER
PT J
AU Olkin, C
AF Olkin, Cathy
TI Our new view of Pluto
SO PHYSICS WORLD
LA English
DT Editorial Material
C1 [Olkin, Cathy] Southwest Res Inst, Boulder, CO 80302 USA.
[Olkin, Cathy] NASA, New Horizons Mission, Washington, DC 20546 USA.
RP Olkin, C (reprint author), Southwest Res Inst, Boulder, CO 80302 USA.; Olkin, C (reprint author), NASA, New Horizons Mission, Washington, DC 20546 USA.
EM colkin@boulder.swri.edu
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8585
J9 PHYS WORLD
JI Phys. World
PD JUL
PY 2016
VL 29
IS 7
BP 40
EP 43
PG 4
WC Physics, Multidisciplinary
SC Physics
GA EB7MD
UT WOS:000387570800027
ER
PT J
AU Bottom, M
Shelton, JC
Wallace, JK
Bartos, R
Kuhn, J
Mawet, D
Mennesson, B
Burruss, R
Serabyn, E
AF Bottom, Michael
Shelton, J. Chris
Wallace, James K.
Bartos, Randall
Kuhn, Jonas
Mawet, Dimitri
Mennesson, Bertrand
Burruss, Rick
Serabyn, Eugene
TI Stellar Double Coronagraph: A Multistage Coronagraphic Platform at
Palomar Observatory
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
DE instrumentation: adaptive optics; instrumentation: high angular
resolution; planets and satellites: detection
ID VORTEX CORONAGRAPH; LABORATORY DEMONSTRATION; MASK; ASTROMETRY; IMAGE
AB We present a new instrument, the "Stellar Double Coronagraph," a flexible coronagraphic platform. Designed for Palomar Observatory's 200 '' Hale telescope, its two focal and pupil planes allow for a number of different observing configurations, including multiple vortex coronagraphs in series for improved contrast at small angles. We describe the motivation, design, observing modes, wavefront control approaches, data reduction pipeline, and early science results. We also discuss future directions for the instrument.
C1 [Bottom, Michael; Mawet, Dimitri] CALTECH, MC 249-17, Pasadena, CA 91125 USA.
[Shelton, J. Chris; Wallace, James K.; Bartos, Randall; Kuhn, Jonas; Mawet, Dimitri; Mennesson, Bertrand; Burruss, Rick; Serabyn, Eugene] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Kuhn, Jonas] ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
RP Bottom, M (reprint author), CALTECH, MC 249-17, Pasadena, CA 91125 USA.
EM mbottom@caltech.edu
FU NASA [NNX13AN42H]; National Aeronautics and Space Administration (NASA)
FX We are pleased to acknowledge the Palomar Observatory staff for their
enthusiastic and excellent support. We thank the referee for a careful
and thorough read, and comments which improved the paper. MB is
supported by a NASA Space Technology Research Fellowship, grant
NNX13AN42H. Part of this work was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration (NASA).
NR 30
TC 3
Z9 3
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD JUL
PY 2016
VL 128
IS 965
AR 075003
DI 10.1088/1538-3873/128/965/075003
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EB1LD
UT WOS:000387112300010
ER
PT J
AU Mullally, F
Coughlin, JL
Thompson, SE
Christiansen, J
Burke, C
Clarke, BD
Haas, MR
AF Mullally, F.
Coughlin, Jeffery L.
Thompson, Susan E.
Christiansen, Jessie
Burke, Christopher
Clarke, Bruce D.
Haas, Michael R.
TI Identifying False Alarms in the Kepler Planet Candidate Catalog
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
DE methods: data analysis; planets and satellites: detection; binaries:
eclipsing
ID SYSTEMATIC-ERROR CORRECTION; LIGHT CURVES; VALIDATION; POSITIVES;
SAMPLE; IDENTIFICATION; SIGNALS
AB We present a new automated method to identify instrumental features masquerading as small, long-period planets in the Kepler planet candidate catalog. These systematics, mistakenly identified as planet transits, can have a strong impact on occurrence rate calculations because they cluster in a region of parameter space where Kepler's sensitivity to planets is poor. We compare individual transit-like events to a variety of models of real transits and systematic events and use a Bayesian information criterion to evaluate the likelihood that each event is real. We describe our technique and test its performance on simulated data. Results from this technique are incorporated in the Kepler Q1-Q17 DR24 planet candidate catalog of Coughlin et al.
C1 [Mullally, F.; Coughlin, Jeffery L.; Thompson, Susan E.; Burke, Christopher; Clarke, Bruce D.] NASA, Ames Res Ctr, SETI, Moffett Field, CA 94035 USA.
[Christiansen, Jessie] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Haas, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Mullally, F (reprint author), NASA, Ames Res Ctr, SETI, Moffett Field, CA 94035 USA.
EM fergal.mullally@nasa.gov
FU NASA's Science Mission Directorate; NASA [NAS5-26555]; NASA Office of
Space Science [NNX13AC07G]; National Aeronautics and Space
Administration
FX Funding for this Discovery mission is provided by NASA's Science Mission
Directorate. All of the data presented in this paper were obtained from
the Mikulski Archive for Space Telescopes (MAST). STScI is operated by
the Association of Universities for Research in Astronomy, Inc., under
NASA contract NAS5-26555. Support for MAST for non-HST data is provided
by the NASA Office of Space Science via grant NNX13AC07G and by other
grants and contracts. This research has made use of the NASA Exoplanet
Archive, which is operated by the California Institute of Technology,
under contract with the National Aeronautics and Space Administration
under the Exoplanet Exploration Program.
NR 27
TC 6
Z9 6
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD JUL
PY 2016
VL 128
IS 965
AR 074502
DI 10.1088/1538-3873/128/965/074502
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EB1LD
UT WOS:000387112300006
ER
PT J
AU Placek, B
Knuth, KH
Angerhausen, D
AF Placek, Ben
Knuth, Kevin H.
Angerhausen, Daniel
TI Combining Photometry from Kepler and TESS to Improve Short-period
Exoplanet Characterization
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
DE methods: data analysis; techniques: photometric
ID EXTRASOLAR GIANT PLANETS; LIGHT CURVES; ELLIPSOIDAL VARIATIONS; PHASE
CURVES; HOT JUPITER; ORBIT; CONFIRMATION; COMPANIONS; EFFICIENT; EXONEST
AB Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission.
C1 [Placek, Ben; Knuth, Kevin H.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Angerhausen, Daniel] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA.
[Placek, Ben] Schenectady Cty Community Coll, Ctr Sci & Technol, Schenectady, NY 12305 USA.
[Knuth, Kevin H.] SUNY Albany, Dept Informat, Albany, NY 12222 USA.
RP Placek, B (reprint author), SUNY Albany, Dept Phys, Albany, NY 12222 USA.; Placek, B (reprint author), Schenectady Cty Community Coll, Ctr Sci & Technol, Schenectady, NY 12305 USA.
EM placekbh@sunysccc.edu; kknuth@albany.edu; daniel.angerhausen@nasa.gov
FU National Aeronautics and Space Administration
FX This research has made use of the Exoplanet Orbit Database and the
Exoplanet Data Explorer at exoplanets.org. This research has also made
use of the NASA Exoplanet Archive, which is operated by the California
Institute of Technology, under contract with the National Aeronautics
and Space Administration under the Exoplanet Exploration Program.
Finally, the authors would like to thank the anonymous reviewer for the
very constructive comments on the paper.
NR 37
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD JUL
PY 2016
VL 128
IS 965
AR 074503
DI 10.1088/1538-3873/128/965/074503
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EB1LD
UT WOS:000387112300007
ER
PT J
AU Van Cleve, JE
Howell, SB
Smith, JC
Clarke, BD
Thompson, SE
Bryson, ST
Lund, MN
Handberg, R
Chaplin, WJ
AF Van Cleve, Jeffrey E.
Howell, Steve B.
Smith, Jeffrey C.
Clarke, Bruce D.
Thompson, Susan E.
Bryson, Stephen T.
Lund, Mikkel N.
Handberg, Rasmus
Chaplin, William J.
TI That's How We Roll: The NASA K2 Mission Science Products and Their
Performance Metrics
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
DE asteroseismology; instrumentation: photometers; methods: data analysis;
planetary systems; stars: variables: general
ID SYSTEMATIC-ERROR CORRECTION; INSTRUMENT NOISE PROPERTIES; SOLAR-TYPE
STARS; KEPLER MISSION; PLANETARY CANDIDATES; STELLAR; PHOTOMETRY;
CATALOG; ASTEROSEISMOLOGY; CLASSIFICATION
AB NASA's exoplanet Discovery mission Kepler was reconstituted as the K2 mission a year after the failure of the second of Kepler's four. reaction wheels in 2013 May. Fine control of the spacecraft pointing is now accomplished through the use of the two remaining well-functioning reaction wheels and balancing the pressure of sunlight on the solar panels, which constrains K2 observations to fields in the ecliptic for up to approximately 80 days each. This pseudo-stable mechanism gives typical roll motion in the focal plane of 1.0 pixels peak-to-peak over 6 hr at the edges of the field, two orders of magnitude greater than typical 6 hr pointing errors in the Kepler primary mission. Despite these roll errors, the joint performance of the flight system and its modified science data processing pipeline restores much of the photometric precision of the primary mission while viewing a wide variety of targets, thus turning adversity into diversity. We define K2 performance metrics for data compression and pixel budget available in each campaign; the photometric noise on exoplanet transit and stellar activity timescales; residual correlations in corrected long-cadence light curves; and the protection of test sinusoidal signals from overfitting in the systematic error removal process. We find that data compression and noise both increase linearly with radial distance from the center of the field of view, with the data compression proportional to star count as well. At the center, where roll motion is nearly negligible, the limiting 6 hr photometric precision for a quiet 12th magnitude star can be as low as 30 ppm, only 25% higher than that of Kepler. This noise performance is achieved without sacrificing signal fidelity; test sinusoids injected into the data are attenuated by less than 10% for signals with periods upto 15 days, so that a wide range of stellar rotation and variability signatures are preserved by the K2 pipeline. At timescales relevant to asteroseismology, light curves derived from K2 archive calibrated pixels have high-frequency noise amplitude within 40% of that achieved by Kepler. The improvements in K2 operations and science data analysis resulting from 1.5 years of experience with this new mission concept, and quantified by the metrics in this paper, will support continuation of K2's already high level of scientific productivity in an extended K2 mission.
C1 [Van Cleve, Jeffrey E.; Howell, Steve B.; Smith, Jeffrey C.; Clarke, Bruce D.; Thompson, Susan E.; Bryson, Stephen T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Van Cleve, Jeffrey E.; Smith, Jeffrey C.; Clarke, Bruce D.; Thompson, Susan E.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
[Lund, Mikkel N.; Chaplin, William J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
[Lund, Mikkel N.; Handberg, Rasmus; Chaplin, William J.] Aarhus Univ, Dept Phys & Astron, SAC, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.
RP Van Cleve, JE (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Van Cleve, JE (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM jeffrey.vancleve@nasa.gov
OI Handberg, Rasmus/0000-0001-8725-4502
FU NASA's Science Mission Directorate; NASA [NNX13AD01A]
FX Funding for this Discovery Mission is provided by NASA's Science Mission
Directorate. We thank the Kepler Science Operation Center and Science
Office staff whose efforts led to the data products discussed in this
work. We thank in particular Tom Barclay and Fergal Mullally for reading
early drafts and making helpful comments; Wendy Stenzel for Figure 1;
Mike Haas and Charlie Sobeck for K2 project support of the preparation
of this manuscript; Daniel Huber for the EPIC stellar properties in
advance of publication; and Ball Aerospace and LASP for making the
operational improvements that led to these results. This work was
supported by NASA grant NNX13AD01A.
NR 37
TC 6
Z9 6
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD JUL
PY 2016
VL 128
IS 965
AR 075002
DI 10.1088/1538-3873/128/965/075002
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EB1LD
UT WOS:000387112300009
ER
PT J
AU Shen, Y
Fichot, CG
Liang, SK
Benner, R
AF Shen, Yuan
Fichot, Cedric G.
Liang, Sheng-Kang
Benner, Ronald
TI Biological hot spots and the accumulation of marine dissolved organic
matter in a highly productive ocean margin
SO LIMNOLOGY AND OCEANOGRAPHY
LA English
DT Article
ID GULF-OF-MEXICO; MISSISSIPPI RIVER PLUME; WESTERN ARCTIC-OCEAN;
PHYTOPLANKTON GROWTH; INTERMEDIATE SALINITIES; AQUATIC ECOSYSTEMS;
COASTAL ECOSYSTEM; SURFACE WATERS; AMINO-ACIDS; FRESH-WATER
AB Concentrations of dissolved organic carbon (DOC) and major biochemicals (amino acids and carbohydrates) were measured during five cruises (2009-2010) to the Louisiana margin in the northern Gulf of Mexico. Concentrations of amino acids and carbohydrates were elevated at mid-salinities and were indicative of plankton production of dissolved organic matter (DOM) in surface waters. Hot spots of two compositionally distinct types of labile DOM were identified based on the relative abundances of amino acids and carbohydrates. Amino acid-rich hot spots occurred sporadically in regions of high phytoplankton biomass and were mostly observed between dusk and dawn, reflecting a grazing source. In contrast, carbohydrate-rich hot spots were more widespread and were often found in nutrient-poor waters, indicating the production of carbon-rich DOM associated with nutrient limitation. Major biochemical indicators and bioassay experiments indicated labile DOM comprised a relatively small fraction of the DOC. Most DOM was degraded and had a semi-labile nature. Substantial accumulations of marine (plankton-derived) DOC were observed in surface waters, particularly at mid-salinities during the summer. Microbial alteration of marine DOC and nutrient limitation of microbial utilization of carbon-rich DOM appeared largely responsible for the accumulation of DOC. The reservoir of accumulated marine DOC in the shelf surface mixed layer ranged from 0.11 Tg C to 0.23 Tg C, with the lowest and highest values occurring during winter and summer. Substantial cross-shelf export of semi-labile marine DOM occurred during the summer and provided a major carbon and energy subsidy to microbial food webs in offshore waters.
C1 [Shen, Yuan; Fichot, Cedric G.; Liang, Sheng-Kang; Benner, Ronald] Univ South Carolina, Marine Sci Program, Columbia, SC 29208 USA.
[Liang, Sheng-Kang] Minist Educ, Key Lab Marine Chem Theory & Technol, Qingdao, Peoples R China.
[Benner, Ronald] Univ South Carolina, Dept Biol Sci, Columbia, SC 29208 USA.
[Fichot, Cedric G.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Shen, Y (reprint author), Univ South Carolina, Marine Sci Program, Columbia, SC 29208 USA.
EM shen2@email.sc.edu
OI Shen, Yuan/0000-0001-6618-4226
FU U.S. National Science Foundation [0850653]; 111 Project of China
[B13030]
FX l We are grateful to Steven E. Lohrenz and Wei-Jun Cai for providing the
opportunity to participate in the GulfCarbon cruises. We appreciate the
sampling assistance by Leanne Powers and the crews of the R/V Cape
Hatteras and the R/V Hugh Sharp. We thank the anonymous reviewers for
their comments and suggestions. This research was funded by a grant from
the U.S. National Science Foundation (0850653 to RB) and by the 111
Project of China (B13030 to SKL).
NR 66
TC 1
Z9 1
U1 4
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0024-3590
EI 1939-5590
J9 LIMNOL OCEANOGR
JI Limnol. Oceanogr.
PD JUL
PY 2016
VL 61
IS 4
BP 1287
EP 1300
DI 10.1002/lno.10290
PG 14
WC Limnology; Oceanography
SC Marine & Freshwater Biology; Oceanography
GA DW4OO
UT WOS:000383622900011
ER
PT J
AU Rademacher, KR
Campbell, MD
Gledhill, CT
Fitzhugh, G
Driggers, WB
Caillouet, R
Switzer, TS
AF Rademacher, Kevin R.
Campbell, Matthew D.
Gledhill, Christopher T.
Fitzhugh, Gary
Driggers, William B.
Caillouet, Ryan
Switzer, Theodore S.
TI Male color phase in gag: implications for monitoring sex ratio via
visual underwater surveys and port sample observations
SO BULLETIN OF MARINE SCIENCE
LA English
DT Article
ID GULF-OF-MEXICO; MYCTEROPERCA-MICROLEPIS SERRANIDAE; SOUTHEASTERN
UNITED-STATES; SOCIAL-CONTROL; REPRODUCTIVE-BIOLOGY; BLUEHEAD WRASSE;
GROUPER; PISCES; FISHES; REEF
AB Fishing of gag (Mycteroperca microlepis Goode and Bean, 1879) spawning aggregations in the northern Gulf of Mexico has reduced the percentage of males in the population from approximately 17% to 2% since the 1970s. This is critical as gag are monandric, protogynous hermaphrodites, and accurate estimation of size-attransition and sex ratio is necessary for proper management. Presence of darkened pigmentation on the abdomen was thought to indicate transition from female to male, and thus, video observations of gag with dark pigmentation were used to estimate sex ratios and indices of abundance. Recent video observations of gag demonstrate that they can change pigmentation patterns within seconds, which could be leading to misidentification of males in those surveys. Results of our investigation showed that males observed in the video survey, as determined by pigmentation only, are significantly shorter than males observed in the commercial fishery, which were determined using both pigmentation and histological examination. Significant differences were detected between pigmented and non-pigmented gag in the commercial data, but not in the video survey data. Additionally, size at which 50% of females had transitioned to male was significantly larger when estimated using commercial fishery data vs the video survey data. Due to significant differences in length distributions and estimates of size-at-transition, and evidence of rapid changes in pigmentation patterns, it is inadvisable to estimate sex ratios or relative indices of abundance by sex for gag from video observations. To address potential shifts in size- and age-at-transition, continued monitoring of sex ratios using histological techniques is recommended.
C1 [Rademacher, Kevin R.; Campbell, Matthew D.; Driggers, William B.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, 3209 Freder St, Pascagoula, MS 39567 USA.
[Gledhill, Christopher T.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Stennis Branch, Mississippi Labs, Stennis Space Ctr, MS 39529 USA.
[Fitzhugh, Gary] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Panama City Lab, Panama City, FL 32408 USA.
[Caillouet, Ryan; Switzer, Theodore S.] Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, St Petersburg, FL 33701 USA.
RP Campbell, MD (reprint author), Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, 3209 Freder St, Pascagoula, MS 39567 USA.
EM matthew.d.campbell@noaa.gov
NR 45
TC 0
Z9 0
U1 2
U2 2
PU ROSENSTIEL SCH MAR ATMOS SCI
PI MIAMI
PA 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA
SN 0007-4977
EI 1553-6955
J9 B MAR SCI
JI Bull. Mar. Sci.
PD JUL
PY 2016
VL 92
IS 3
BP 305
EP 319
DI 10.5343/bms.2015.1060
PG 15
WC Marine & Freshwater Biology; Oceanography
SC Marine & Freshwater Biology; Oceanography
GA DZ4CB
UT WOS:000385804300002
ER
PT J
AU Norris, PM
da Silva, AM
AF Norris, Peter M.
da Silva, Arlindo M.
TI Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn
moisture variability using high-resolution cloud observations. Part 1:
Method
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE cloud data assimilation; statistical cloud parametrizations; Bayesian
inference; Markov chain Monte Carlo
ID SATELLITE CLOUD; WATER-VAPOR; FIELDS; MODIS; ASSIMILATION
AB A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.
C1 [Norris, Peter M.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA.
[Norris, Peter M.; da Silva, Arlindo M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA.
RP Norris, PM (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA.
EM peter.m.norris@nasa.gov
FU NASA [NNH08ZDA001N-MAP]
FX This work was supported by a NASA grant from the Modeling, Analysis, and
Prediction program (solicitation NNH08ZDA001N-MAP, proposal title:
'Assimilation of A-Train satellite data for constraining a new PDF-based
cloud parametrization in GEOS-5', PI: Arlindo da Silva). The authors
thank Steven Platnick and Gala Wind for much useful information on the
inner workings of the MODIS cloud algorithms and the characteristics of
their retrievals. The authors also thank Dr Chris Snyder and an
anonymous reviewer for their reviews, which helped to improve this
article substantially. Resources supporting this work were provided by
the NASA High-End Computing (HEC) Program through the NASA Center for
Climate Simulation (NCCS) at Goddard Space Flight Center.
NR 23
TC 0
Z9 0
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-9009
EI 1477-870X
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD JUL
PY 2016
VL 142
IS 699
BP 2505
EP 2527
DI 10.1002/qj.2843
PN B
PG 23
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DY8GL
UT WOS:000385367000025
ER
PT J
AU Norris, PM
da Silva, AM
AF Norris, Peter M.
da Silva, Arlindo M.
TI Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn
moisture variability using high-resolution cloud observations. Part 2:
Sensitivity tests and results
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE cloud data assimilation; Monte Carlo Bayesian inference; correlation
models
ID DENSITY-FUNCTIONS; ARAKAWA-SCHUBERT; WATER; PARAMETERIZATION; SCHEME;
SCALE; CONVECTION; AGCM
AB Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
C1 [Norris, Peter M.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA.
[Norris, Peter M.; da Silva, Arlindo M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA.
RP Norris, PM (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA.
EM peter.m.norris@nasa.gov
FU NASA [NNH08ZDA001N-MAP, NNH12ZDA001N-MAP]
FX This work was supported by NASA grants from the Modeling, Analysis, and
Prediction program (solicitation NNH08ZDA001N-MAP, proposal title:
'Assimilation of A-Train satellite data for constraining a new PDF-based
cloud parametrization in GEOS-5', PI: Arlindo da Silva, and solicitation
NNH12ZDA001N-MAP, proposal title: 'Using Near-Real Time Satellite
Retrieved Cloud and Surface Properties to Validate and Improve GEOS-5
Analyses and Forecasts', PIs: P. Minnis and M. Rienecker).
NR 17
TC 0
Z9 0
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-9009
EI 1477-870X
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD JUL
PY 2016
VL 142
IS 699
BP 2528
EP 2540
DI 10.1002/qj.2844
PN B
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DY8GL
UT WOS:000385367000026
ER
PT J
AU Abbott, BP
Abbott, R
Abbott, TD
Abernathy, MR
Acernese, F
Ackley, K
Adams, C
Adams, T
Addesso, P
Adhikari, RX
Adya, VB
Affeldt, C
Agathos, M
Agatsuma, K
Aggarwal, N
Aguiar, OD
Aiello, L
Ain, A
Ajith, P
Allen, B
Allocca, A
Altin, PA
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Arceneaux, CC
Areeda, JS
Arnaud, N
Arun, KG
Ascenzi, S
Ashton, G
Ast, M
Aston, SM
Astone, P
Aufmuth, P
Aulbert, C
Babak, S
Bacon, P
Bader, MKM
Baker, PT
Baldaccini, F
Ballardin, G
Ballmer, SW
Barayoga, JC
Barclay, SE
Barish, BC
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Barta, D
Barthelmy, S
Bartlett, J
Bartos, I
Bassiri, R
Basti, A
Batch, JC
Baune, C
Bavigadda, V
Bazzan, M
Behnke, B
Bejger, M
Bell, AS
Bell, CJ
Berger, BK
Bergman, J
Bergmann, G
Berry, CPL
Bersanetti, D
Bertolini, A
Betzwieser, J
Bhagwat, S
Bhandare, R
Bilenko, IA
Billingsley, G
Birch, J
Birney, R
Biscans, S
Bisht, A
Bitossi, M
Biwer, C
Bizouard, MA
Blackburn, JK
Blair, CD
Blair, DG
Blair, RM
Bloemen, S
Bock, O
Bodiya, TP
Boer, M
Bogaert, G
Bogan, C
Bohe, A
Bojtos, P
Bond, C
Bondu, F
Bonnand, R
Boom, BA
Bork, R
Boschi, V
Bose, S
Bouffanais, Y
Bozzi, A
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Brau, JE
Briant, T
Brillet, A
Brinkmann, M
Brisson, V
Brockill, P
Brooks, AF
Brown, DA
Brown, DD
Brown, NM
Buchanan, CC
Buikema, A
Bulik, T
Bulten, HJ
Buonanno, A
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Cahillane, C
Bustillo, JC
Callister, T
Calloni, E
Camp, JB
Cannon, KC
Cao, J
Capano, CD
Capocasa, E
Carbognani, F
Caride, S
Diaz, JC
Casentini, C
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Cella, G
Cepeda, CB
Baiardi, LC
Cerretani, G
Cesarini, E
Chakraborty, R
Chalermsongsak, T
Chamberlin, SJ
Chan, M
Chao, S
Charlton, P
Chassande-Mottin, E
Chen, HY
Chen, Y
Cheng, C
Chincarini, A
Chiummo, A
Cho, HS
Cho, M
Chow, JH
Christensen, N
Chu, Q
Chua, S
Chung, S
Ciani, G
Clara, F
Clark, JA
Cleva, F
Coccia, E
Cohadon, PF
Colla, A
Collette, CG
Cominsky, L
Constancio, M
Conte, A
Conti, L
Cook, D
Corbitt, TR
Cornish, N
Corsi, A
Cortese, S
Costa, CA
Coughlin, MW
Coughlin, SB
Coulon, JP
Countryman, ST
Couvares, P
Cowan, EE
Coward, DM
Cowart, MJ
Coyne, DC
Coyne, R
Craig, K
Creighton, JDE
Cripe, J
Crowder, SG
Cumming, A
Cunningham, L
Cuoco, E
Dal Canton, T
Danilishin, SL
D'Antonio, S
Danzmann, K
Darman, NS
Dattilo, V
Dave, I
Daveloza, HP
Davier, M
Davies, GS
Daw, EJ
Day, R
DeBra, D
Debreczeni, G
Degallaix, J
De Laurentis, M
Deleglise, S
Del Pozzo, W
Denker, T
Dent, T
Dereli, H
Dergachev, V
DeRosa, RT
De Rosa, R
DeSalvo, R
Dhurandhar, S
Diaz, MC
Di Fiore, L
Di Giovanni, M
Di Lieto, A
Di Pace, S
Di Palma, I
Di Virgilio, A
Dojcinoski, G
Dolique, V
Donovan, F
Dooley, KL
Doravari, S
Douglas, R
Downes, TP
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Ducrot, M
Dwyer, SE
Edo, TB
Edwards, MC
Effler, A
Eggenstein, HB
Ehrens, P
Eichholz, J
Eikenberry, SS
Engels, W
Essick, RC
Etzel, T
Evans, M
Evans, TM
Everett, R
Factourovich, M
Fafone, V
Fair, H
Fairhurst, S
Fan, X
Fang, Q
Farinon, S
Farr, B
Farr, WM
Favata, M
Fays, M
Fehrmann, H
Fejer, MM
Ferrante, I
Ferreira, EC
Ferrini, F
Fidecaro, F
Fiori, I
Fiorucci, D
Fisher, RP
Flaminio, R
Fletcher, M
Fournier, JD
Franco, S
Frasca, S
Frasconi, F
Frei, Z
Freise, A
Frey, R
Frey, V
Fricke, TT
Fritschel, P
Frolov, VV
Fulda, P
Fyffe, M
Gabbard, HAG
Gair, JR
Gammaitoni, L
Gaonkar, SG
Garufi, F
Gatto, A
Gaur, G
Gehrels, N
Gemme, G
Gendre, B
Genin, E
Gennai, A
George, J
Gergely, L
Germain, V
Ghosh, A
Ghosh, S
Giaime, JA
Giardina, KD
Giazotto, A
Gill, K
Glaefke, A
Goetz, E
Goetz, R
Gondan, L
Gonzalez, G
Castro, JMG
Gopakumar, A
Gordon, NA
Gorodetsky, ML
Gossan, SE
Gosselin, M
Gouaty, R
Graef, C
Graff, PB
Granata, M
Grant, A
Gras, S
Gray, C
Greco, G
Green, AC
Groot, P
Grote, H
Grunewald, S
Guidi, GM
Guo, X
Gupta, A
Gupta, MK
Gushwa, KE
Gustafson, EK
Gustafson, R
Hacker, JJ
Hall, BR
Hall, ED
Hammond, G
Haney, M
Hanke, MM
Hanks, J
Hanna, C
Hannam, MD
Hanson, J
Hardwick, T
Haris, K
Harms, J
Harry, GM
Harry, IW
Hart, MJ
Hartman, MT
Haster, CJ
Haughian, K
Heidmann, A
Heintze, MC
Heitmann, H
Hello, P
Hemming, G
Hendry, M
Heng, IS
Hennig, J
Heptonstall, AW
Heurs, M
Hild, S
Hoak, D
Hodge, KA
Hofman, D
Hollitt, SE
Holt, K
Holz, DE
Hopkins, P
Hosken, DJ
Hough, J
Houston, EA
Howell, EJ
Hu, YM
Huang, S
Huerta, EA
Huet, D
Hughey, B
Husa, S
Huttner, SH
Huynh-Dinh, T
Idrisy, A
Indik, N
Ingram, DR
Inta, R
Isa, HN
Isac, JM
Isi, M
Islas, G
Isogai, T
Iyer, BR
Izumi, K
Jacqmin, T
Jang, H
Jani, K
Jaranowski, P
Jawahar, S
Jimenez-Forteza, F
Johnson, WW
Jones, DI
Jones, R
Jonker, RJG
Ju, L
Kalaghatgi, CV
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, JB
Karki, S
Kasprzack, M
Katsavounidis, E
Katzman, W
Kaufer, S
Kaur, T
Kawabe, K
Kawazoe, F
Kefelian, F
Kehl, MS
Keitel, D
Kelley, DB
Kells, W
Kennedy, R
Key, JS
Khalaidovski, A
Khalili, FY
Khan, I
Khan, S
Khan, Z
Khazanov, EA
Kijbunchoo, N
Kim, C
Kim, J
Kim, K
Kim, N
Kim, N
Kim, YM
King, EJ
King, PJ
Kinzel, DL
Kissel, JS
Kleybolte, L
Klimenko, S
Koehlenbeck, SM
Kokeyama, K
Koley, S
Kondrashov, V
Kontos, A
Korobko, M
Korth, WZ
Kowalska, I
Kozak, DB
Kringel, V
Krolak, A
Krueger, C
Kuehn, G
Kumar, P
Kuo, L
Kutynia, A
Lackey, BD
Landry, M
Lange, J
Lantz, B
Lasky, PD
Lazzarini, A
Lazzaro, C
Leaci, P
Leavey, S
Lebigot, EO
Lee, CH
Lee, HK
Lee, HM
Lee, K
Lenon, A
Leonardi, M
Leong, JR
Leroy, N
Letendre, N
Levin, Y
Levine, BM
Li, TGF
Libson, A
Littenberg, TB
Lockerbie, NA
Logue, J
Lombardi, AL
Lord, JE
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, JD
Luck, H
Lundgren, P
Luo, J
Lynch, R
Ma, Y
MacDonald, T
Machenschalk, B
MacInnis, M
Macleod, DM
Magana-Sandoval, F
Magee, RM
Mageswaran, M
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mangano, V
Mansell, GL
Manske, M
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Markosyan, AS
Maros, E
Martelli, F
Martellini, L
Martin, IW
Martin, RM
Martynov, DV
Marx, JN
Mason, K
Masserot, A
Massinger, TJ
Masso-Reid, M
Matichard, F
Matone, L
Mavalvala, N
Mazumder, N
Mazzolo, G
McCarthy, R
McClelland, DE
McCormick, S
McGuire, SC
McIntyre, G
McIver, J
McManus, DJ
McWilliams, ST
Meacher, D
Meadors, GD
Meidam, J
Melatos, A
Mendell, G
Mendoza-Gandara, D
Mercer, RA
Merilh, E
Merzougui, M
Meshkov, S
Messenger, C
Messick, C
Meyers, PM
Mezzani, F
Miao, H
Michel, C
Middleton, H
Mikhailov, EE
Milano, L
Miller, J
Millhouse, M
Minenkov, Y
Ming, J
Mirshekari, S
Mishra, C
Mitra, S
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moggi, A
Mohan, M
Mohapatra, SRP
Montani, M
Moore, BC
Moore, CJ
Moraru, D
Moreno, G
Morriss, SR
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Muir, AW
Mukherjee, A
Mukherjee, D
Mukherjee, S
Mukund, N
Mullavey, A
Munch, J
Murphy, DJ
Murray, PG
Mytidis, A
Nardecchia, I
Naticchioni, L
Nayak, RK
Necula, V
Nedkova, K
Nelemans, G
Neri, M
Neunzert, A
Newton, G
Nguyen, TT
Nielsen, AB
Nissanke, S
Nitz, A
Nocera, F
Nolting, D
Normandin, MEN
Nuttall, LK
Oberling, J
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Ohme, F
Oliver, M
Oppermann, P
Oram, RJ
O'Reilly, B
O'Shaughnessy, R
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Pai, A
Pai, SA
Palamos, JR
Palashov, O
Palliyaguru, N
Palomba, C
Pal-Singh, A
Pan, H
Pankow, C
Pannarale, F
Pant, BC
Paoletti, F
Paoli, A
Papa, MA
Paris, HR
Parker, W
Pascucci, D
Pasqualetti, A
Passaquieti, R
Passuello, D
Patricelli, B
Patrick, Z
Pearlstone, BL
Pedraza, M
Pedurand, R
Pekowsky, L
Pele, A
Penn, S
Perreca, A
Phelps, M
Piccinni, O
Pichot, M
Piergiovanni, F
Pierro, V
Pillant, G
Pinard, L
Pinto, IM
Pitkin, M
Poggiani, R
Popolizio, P
Post, A
Powell, J
Prasad, J
Predoi, V
Premachandra, SS
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prodi, GA
Prokhorov, L
Puncken, O
Punturo, M
Puppo, P
Purrer, M
Qi, H
Qin, J
Quetschke, V
Quintero, EA
Quitzow-James, R
Raab, FJ
Rabeling, DS
Radkins, H
Raffai, P
Raja, S
Rakhmanov, M
Rapagnani, P
Raymond, V
Razzano, M
Re, V
Read, J
Reed, CM
Regimbau, T
Rei, L
Reid, S
Reitze, DH
Rew, H
Reyes, SD
Ricci, F
Riles, K
Robertson, NA
Robie, R
Robinet, F
Rocchi, A
Rolland, L
Rollins, JG
Roma, VJ
Romano, R
Romanov, G
Romie, JH
Rosinska, D
Rowan, S
Rudiger, A
Ruggi, P
Ryan, K
Sachdev, S
Sadecki, T
Sadeghian, L
Salconi, L
Saleem, M
Salemi, F
Samajdar, A
Sammut, L
Sanchez, EJ
Sandberg, V
Sandeen, B
Sanders, JR
Sassolas, B
Sathyaprakash, BS
Saulson, PR
Sauter, O
Savage, RL
Sawadsky, A
Schale, P
Schilling, R
Schmidt, J
Schmidt, P
Schnabel, R
Schofield, RMS
Schonbeck, A
Schreiber, E
Schuette, D
Schutz, BF
Scott, J
Scott, SM
Sellers, D
Sentenac, D
Sequino, V
Sergeev, A
Serna, G
Setyawati, Y
Sevigny, A
Shaddock, DA
Shah, S
Shahriar, MS
Shaltev, M
Shao, Z
Shapiro, B
Shawhan, P
Sheperd, A
Shoemaker, DH
Shoemaker, DM
Siellez, K
Siemens, X
Sigg, D
Silva, AD
Simakov, D
Singer, A
Singh, A
Singh, R
Singhal, A
Sintes, AM
Slagmolen, BJJ
Smith, JR
Smith, ND
Smith, RJE
Son, EJ
Sorazu, B
Sorrentino, F
Souradeep, T
Srivastava, AK
Staley, A
Steinke, M
Steinlechner, J
Steinlechner, S
Steinmeyer, D
Stephens, BC
Stone, R
Strain, KA
Straniero, N
Stratta, G
Strauss, NA
Strigin, S
Sturani, R
Stuver, AL
Summerscales, TZ
Sun, L
Sutton, PJ
Swinkels, BL
SzczepaNczyk, MJ
Tacca, M
Talukder, D
Tanner, DB
Tpai, M
Tarabrin, SP
Taracchini, A
Taylor, R
Theeg, T
Thirugnanasambandam, P
Thomas, EG
Thomas, M
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Tiwari, S
Tiwari, V
Tokmakov, KV
Tomlinson, C
Tonelli, M
Torres, CV
Torrie, CI
Tyr, D
Travasso, F
Traylor, G
Trifiro, D
Tringali, MC
Trozzo, L
Tse, M
Turconi, M
Tuyenbayev, D
Ugolini, D
Unnikrishnan, CS
Urban, AL
Usman, SA
Vahlbruch, H
Vajente, G
Valdes, G
van Bakel, N
van Beuzekom, M
van den Brand, JFJ
Van den Broeck, C
Vander-Hyde, DC
van der Schaaf, L
van Heijningen, JV
van Veggel, AA
Vardaro, M
Vass, S
Vasuth, M
Vaulin, R
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Venkateswara, K
Verkindt, D
Vetrano, F
Vicere, A
Vinciguerra, S
Vine, DJ
Vinet, JY
Vitale, S
Vo, T
Vocca, H
Vorvick, C
Voss, D
Vousden, WD
Vyatchanin, SP
Wade, AR
Wade, LE
Wade, M
Walker, M
Wallace, L
Walsh, S
Wang, G
Wang, H
Wang, M
Wang, X
Wang, Y
Ward, RL
Warner, J
Was, M
Weaver, B
Wei, LW
Weinert, M
Weinstein, AJ
Weiss, R
Welborn, T
Wen, L
Wessels, P
Westphal, T
Wette, K
Whelan, JT
White, DJ
Whiting, BF
Williams, RD
Williamson, AR
Willis, JL
Willke, B
Wimmer, MH
Winkler, W
Wipf, CC
Wittel, H
Woan, G
Worden, J
Wright, JL
Wu, G
Yablon, J
Yam, W
Yamamoto, H
Yancey, CC
Yap, MJ
Yu, H
Yvert, M
Zadrozny, A
Zangrando, L
Zanolin, M
Zendri, JP
Zevin, M
Zhang, F
Zhang, L
Zhang, M
Zhang, Y
Zhao, C
Zhou, M
Zhou, Z
Zhu, XJ
Zucker, ME
Zuraw, SE
Zweizig, J
Allison, J
Bannister, K
Bell, ME
Chatterjee, S
Chippendale, AP
Edwards, PG
Harvey-Smith, L
Heywood, I
Hotan, A
Indermuehle, B
Marvil, J
McConnell, D
Murphy, T
Popping, A
Reynolds, J
Sault, RJ
Voronkov, MA
Whiting, MT
Castro-Tirado, AJ
Cunniffe, R
Jelinek, M
Tello, JC
Oates, SR
Hu, YD
Kubanek, P
Guziy, S
Castellon, A
Garcia-Cerezo, A
Munoz, VF
del Pulgar, CP
Castillo-Carrion, S
Ceron, JMC
Hudec, R
Caballero-Garcia, MD
Pata, P
Vitek, S
Adame, JA
Konig, S
Rendon, F
Sanguino, TDM
Fernandez-Munoz, R
Yock, PC
Rattenbury, N
Allen, WH
Querel, R
Jeong, S
Park, IH
Bai, J
Cui, C
Fan, Y
Wang, C
Hiriart, D
Lee, WH
Claret, A
Sanchez-Ramirez, R
Pandey, SB
Mediavilla, T
Sabau-Graziati, L
Abbott, TMC
Abdalla, FB
Allam, S
Annis, J
Armstrong, R
Benoit-Levy, A
Berger, E
Bernstein, RA
Bertin, E
Brout, D
Buckley-Geer, E
Burke, DL
Capozzi, D
Carretero, J
Castander, FJ
Chornock, R
Cowperthwaite, PS
Crocce, M
Cunha, CE
D'Andrea, CB
da Costa, LN
Desai, S
Diehl, HT
Dietrich, JP
Doctor, Z
Drlica-Wagner, A
Drout, MR
Eifler, TF
Estrada, J
Evrard, AE
Fernandez, E
Finley, DA
Flaugher, B
Foley, RJ
Fong, WF
Fosalba, P
Fox, DB
Frieman, J
Fryer, CL
Gaztanaga, E
Gerdes, DW
Goldstein, DA
Gruen, D
Gruendl, RA
Gutierrez, G
Herner, K
Honscheid, K
James, DJ
Johnson, MD
Johnson, MWG
Karliner, I
Kasen, D
Kent, S
Kessler, R
Kim, AG
Kind, MC
Kuehn, K
Kuropatkin, N
Lahav, O
Li, TS
Lima, M
Lin, H
Maia, MAG
Margutti, R
Marriner, J
Martini, P
Matheson, T
Melchior, P
Metzger, BD
Miller, CJ
Miquel, R
Neilsen, E
Nichol, RC
Nord, B
Nugent, P
Ogando, R
Petravick, D
Plazas, AA
Quataert, E
Roe, N
Romer, AK
Roodman, A
Rosell, AC
Rykoff, ES
Sako, M
Sanchez, E
Scarpine, V
Schindler, R
Schubnell, M
Scolnic, D
Sevilla-Noarbe, I
Sheldon, E
Smith, N
Smith, RC
Soares-Santos, M
Sobreira, F
Stebbins, A
Suchyta, E
Swanson, MEC
Tarle, G
Thaler, J
Thomas, D
Thomas, RC
Tucker, DL
Vikram, V
Walker, AR
Wechsler, RH
Wester, W
Yanny, B
Zhang, Y
Zuntz, J
Connaughton, V
Burns, E
Goldstein, A
Briggs, MS
Zhang, BB
Hui, CM
Jenke, P
Wilson-Hodge, CA
Bhat, PN
Bissaldi, E
Cleveland, W
Fitzpatrick, G
Giles, MM
Gibby, MH
Greiner, J
von Kienlin, A
Kippen, RM
McBreen, S
Mailyan, B
Meegan, CA
Paciesas, WS
Preece, RD
Roberts, O
Sparke, L
Stanbro, M
Toelge, K
Veres, P
Yu, HF
Blackburn, L
Ackermann, M
Ajello, M
Albert, A
Anderson, B
Atwood, WB
Axelsson, M
Baldini, L
Barbiellini, G
Bastieri, D
Bellazzini, R
Bissaldi, E
Blandford, RD
Bloom, ED
Bonino, R
Bottacini, E
Brandt, TJ
Bruel, P
Buson, S
Caliandro, GA
Cameron, RA
Caragiulo, M
Caraveo, PA
Cavazzuti, E
Charles, E
Chekhtman, A
Chiang, J
Chiaro, G
Ciprini, S
Cohen-Tanugi, J
Cominsky, LR
Costanza, F
Cuoco, A
D'Ammando, F
de Palma, F
Desiante, R
Digel, SW
Di Lalla, N
Di Mauro, M
Di Venere, L
Dominguez, A
Drell, PS
Dubois, R
Favuzzi, C
Ferrara, EC
Franckowiak, A
Fukazawa, Y
Funk, S
Fusco, P
Gargano, F
Gasparrini, D
Giglietto, N
Giommi, P
Giordano, F
Giroletti, M
Glanzman, T
Godfrey, G
Gomez-Vargas, GA
Green, D
Grenier, IA
Grove, JE
Guiriec, S
Hadasch, D
Harding, AK
Hays, E
Hewitt, JW
Hill, AB
Horan, D
Jogler, T
Johannesson, G
Johnson, AS
Kensei, S
Kocevski, D
Kuss, M
La Mura, G
Larsson, S
Latronico, L
Li, J
Li, L
Longo, F
Loparco, F
Lovellette, MN
Lubrano, P
Magill, J
Maldera, S
Manfreda, A
Marelli, M
Mayer, M
Mazziotta, MN
McEnery, JE
Meyer, M
Michelson, PF
Mirabal, N
Mizuno, T
Moiseev, AA
Monzani, ME
Moretti, E
Morselli, A
Moskalenko, IV
Negro, M
Nuss, E
Ohsugi, T
Omodei, N
Orienti, M
Orlando, E
Ormes, JF
Paneque, D
Perkins, JS
Pesce-Rollins, M
Piron, F
Pivato, G
Porter, TA
Racusin, JL
Raino, S
Rando, R
Razzaque, S
Reimer, A
Reimer, O
Salvetti, D
Parkinson, PMS
Sgro, C
Simone, D
Siskind, EJ
Spada, F
Spandre, G
Spinelli, P
Suson, DJ
Tajima, H
Thayer, JB
Thompson, DJ
Tibaldo, L
Torres, DF
Troja, E
Uchiyama, Y
Venters, TM
Vianello, G
Wood, KS
Wood, M
Zhu, S
Zimmer, S
Brocato, E
Cappellaro, E
Covino, S
Grado, A
Nicastro, L
Palazzi, E
Pian, E
Amati, L
Antonelli, LA
Capaccioli, M
D'Avanzo, P
D'Elia, V
Getman, F
Giuffrida, G
Iannicola, G
Limatola, L
Lisi, M
Marinoni, S
Marrese, P
Melandri, A
Piranomonte, S
Possenti, A
Pulone, L
Rossi, A
Stamerra, A
Stella, L
Testa, V
Tomasella, L
Yang, S
Bazzano, A
Bozzo, E
Brandt, S
Courvoisier, TJL
Ferrigno, C
Hanlon, L
Kuulkers, E
Laurent, P
Mereghetti, S
Roques, JP
Savchenko, V
Ubertini, P
Kasliwal, MM
Singer, LP
Cao, Y
Duggan, G
Kulkarni, SR
Bhalerao, V
Miller, AA
Barlow, T
Bellm, E
Manulis, I
Rana, J
Laher, R
Masci, F
Surace, J
Rebbapragada, U
Cook, D
Van Sistine, A
Sesar, B
Perley, D
Ferreti, R
Prince, T
Kendrick, R
Horesh, A
Hurley, K
Golenetskii, SV
Aptekar, RL
Frederiks, DD
Svinkin, DS
Rau, A
von Kienlin, A
Zhang, X
Smith, DM
Cline, T
Krimm, H
Abe, F
Doi, M
Fujisawa, K
Kawabata, KS
Morokuma, T
Motohara, K
Tanaka, M
Ohta, K
Yanagisawa, K
Yoshida, M
Baltay, C
Rabinowitz, D
Ellman, N
Rostami, S
Bersier, DF
Bode, MF
Collins, CA
Copperwheat, CM
Darnley, MJ
Galloway, DK
Gomboc, A
Kobayashi, S
Mazzali, P
Mundell, CG
Piascik, AS
Pollacco, D
Steele, IA
Ulaczyk, K
Broderick, JW
Fender, RP
Jonker, PG
Rowlinson, A
Stappers, BW
Wijers, RAMJ
Lipunov, V
Gorbovskoy, E
Tyurina, N
Kornilov, V
Balanutsa, P
Kuznetsov, A
Buckley, D
Rebolo, R
Serra-Ricart, M
Israelian, G
Budnev, NM
Gress, O
Ivanov, K
Poleshuk, V
Tlatov, A
Yurkov, V
Kawai, N
Serino, M
Negoro, H
Nakahira, S
Mihara, T
Tomida, H
Ueno, S
Tsunemi, H
Matsuoka, M
Croft, S
Feng, L
Franzen, TMO
Gaensler, BM
Johnston-Hollitt, M
Kaplan, DL
Morales, MF
Tingay, SJ
Wayth, RB
Williams, A
Smartt, SJ
Chambers, KC
Smith, KW
Huber, ME
Young, DR
Wright, DE
Schultz, A
Denneau, L
Flewelling, H
Magnier, EA
Primak, N
Rest, A
Sherstyuk, A
Stalder, B
Stubbs, CW
Tonry, J
Waters, C
Willman, M
Olivares, F
Campbell, H
Kotak, R
Sollerman, J
Smith, M
Dennefeld, M
Anderson, JP
Botticella, MT
Chen, TW
Valle, MD
Elias-Rosa, N
Fraser, M
Inserra, C
Kankare, E
Kupfer, T
Harmanen, J
Galbany, L
Le Guillou, L
Lyman, JD
Maguire, K
Mitra, A
Nicholl, M
Razza, A
Terreran, G
Valenti, S
Gal-Yam, A
Cwiek, A
Cwiok, M
Mankiewicz, L
Opiela, R
Zaremba, M
Zarnecki, AF
Onken, CA
Scalzo, RA
Schmidt, BP
Wolf, C
Yuan, F
Evans, PA
Kennea, JA
Burrows, DN
Campana, S
Cenko, SB
Giommi, P
Marshall, FE
Nousek, J
O'Brien, P
Osborne, JP
Palmer, D
Perri, M
Siegel, M
Tagliaferri, G
Klotz, A
Turpin, D
Laugier, R
Beroiz, M
Penuela, T
Macri, LM
Oelkers, RJ
Lambas, DG
Vrech, R
Cabral, J
Colazo, C
Dominguez, M
Sanchez, B
Gurovich, S
Lares, M
Marshall, JL
Depoy, DL
Padilla, N
Pereyra, NA
Benacquista, M
Tanvir, NR
Wiersema, K
Levan, AJ
Steeghs, D
Hjorth, J
Fynbo, JPU
Malesani, D
Milvang-Jensen, B
Watson, D
Irwin, M
Fernandez, CG
McMahon, RG
Banerji, M
Gonzalez-Solares, E
Schulze, S
Postigo, AD
Thoene, CC
Cano, Z
Rosswog, S
AF Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M. R.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R. X.
Adya, V. B.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O. D.
Aiello, L.
Ain, A.
Ajith, P.
Allen, B.
Allocca, A.
Altin, P. A.
Anderson, S. B.
Anderson, W. G.
Arai, K.
Araya, M. C.
Arceneaux, C. C.
Areeda, J. S.
Arnaud, N.
Arun, K. G.
Ascenzi, S.
Ashton, G.
Ast, M.
Aston, S. M.
Astone, P.
Aufmuth, P.
Aulbert, C.
Babak, S.
Bacon, P.
Bader, M. K. M.
Baker, P. T.
Baldaccini, F.
Ballardin, G.
Ballmer, S. W.
Barayoga, J. C.
Barclay, S. E.
Barish, B. C.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Barta, D.
Barthelmy, S.
Bartlett, J.
Bartos, I.
Bassiri, R.
Basti, A.
Batch, J. C.
Baune, C.
Bavigadda, V.
Bazzan, M.
Behnke, B.
Bejger, M.
Bell, A. S.
Bell, C. J.
Berger, B. K.
Bergman, J.
Bergmann, G.
Berry, C. P. L.
Bersanetti, D.
Bertolini, A.
Betzwieser, J.
Bhagwat, S.
Bhandare, R.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Birney, R.
Biscans, S.
Bisht, A.
Bitossi, M.
Biwer, C.
Bizouard, M. A.
Blackburn, J. K.
Blair, C. D.
Blair, D. G.
Blair, R. M.
Bloemen, S.
Bock, O.
Bodiya, T. P.
Boer, M.
Bogaert, G.
Bogan, C.
Bohe, A.
Bojtos, P.
Bond, C.
Bondu, F.
Bonnand, R.
Boom, B. A.
Bork, R.
Boschi, V.
Bose, S.
Bouffanais, Y.
Bozzi, A.
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Branchesi, M.
Brau, J. E.
Briant, T.
Brillet, A.
Brinkmann, M.
Brisson, V.
Brockill, P.
Brooks, A. F.
Brown, D. A.
Brown, D. D.
Brown, N. M.
Buchanan, C. C.
Buikema, A.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Buskulic, D.
Buy, C.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Cahillane, C.
Bustillo, J. C.
Callister, T.
Calloni, E.
Camp, J. B.
Cannon, K. C.
Cao, J.
Capano, C. D.
Capocasa, E.
Carbognani, F.
Caride, S.
Diaz, J. C.
Casentini, C.
Caudill, S.
Cavaglia, M.
Cavalier, F.
Cavalieri, R.
Cella, G.
Cepeda, C. B.
Baiardi, L. C.
Cerretani, G.
Cesarini, E.
Chakraborty, R.
Chalermsongsak, T.
Chamberlin, S. J.
Chan, M.
Chao, S.
Charlton, P.
Chassande-Mottin, E.
Chen, H. Y.
Chen, Y.
Cheng, C.
Chincarini, A.
Chiummo, A.
Cho, H. S.
Cho, M.
Chow, J. H.
Christensen, N.
Chu, Q.
Chua, S.
Chung, S.
Ciani, G.
Clara, F.
Clark, J. A.
Cleva, F.
Coccia, E.
Cohadon, P. -F.
Colla, A.
Collette, C. G.
Cominsky, L.
Constancio, M., Jr.
Conte, A.
Conti, L.
Cook, D.
Corbitt, T. R.
Cornish, N.
Corsi, A.
Cortese, S.
Costa, C. A.
Coughlin, M. W.
Coughlin, S. B.
Coulon, J. -P.
Countryman, S. T.
Couvares, P.
Cowan, E. E.
Coward, D. M.
Cowart, M. J.
Coyne, D. C.
Coyne, R.
Craig, K.
Creighton, J. D. E.
Cripe, J.
Crowder, S. G.
Cumming, A.
Cunningham, L.
Cuoco, E.
Dal Canton, T.
Danilishin, S. L.
D'Antonio, S.
Danzmann, K.
Darman, N. S.
Dattilo, V.
Dave, I.
Daveloza, H. P.
Davier, M.
Davies, G. S.
Daw, E. J.
Day, R.
DeBra, D.
Debreczeni, G.
Degallaix, J.
De Laurentis, M.
Deleglise, S.
Del Pozzo, W.
Denker, T.
Dent, T.
Dereli, H.
Dergachev, V.
DeRosa, R. T.
De Rosa, R.
DeSalvo, R.
Dhurandhar, S.
Diaz, M. C.
Di Fiore, L.
Di Giovanni, M.
Di Lieto, A.
Di Pace, S.
Di Palma, I.
Di Virgilio, A.
Dojcinoski, G.
Dolique, V.
Donovan, F.
Dooley, K. L.
Doravari, S.
Douglas, R.
Downes, T. P.
Drago, M.
Drever, R. W. P.
Driggers, J. C.
Du, Z.
Ducrot, M.
Dwyer, S. E.
Edo, T. B.
Edwards, M. C.
Effler, A.
Eggenstein, H. -B.
Ehrens, P.
Eichholz, J.
Eikenberry, S. S.
Engels, W.
Essick, R. C.
Etzel, T.
Evans, M.
Evans, T. M.
Everett, R.
Factourovich, M.
Fafone, V.
Fair, H.
Fairhurst, S.
Fan, X.
Fang, Q.
Farinon, S.
Farr, B.
Farr, W. M.
Favata, M.
Fays, M.
Fehrmann, H.
Fejer, M. M.
Ferrante, I.
Ferreira, E. C.
Ferrini, F.
Fidecaro, F.
Fiori, I.
Fiorucci, D.
Fisher, R. P.
Flaminio, R.
Fletcher, M.
Fournier, J. -D.
Franco, S.
Frasca, S.
Frasconi, F.
Frei, Z.
Freise, A.
Frey, R.
Frey, V.
Fricke, T. T.
Fritschel, P.
Frolov, V. V.
Fulda, P.
Fyffe, M.
Gabbard, H. A. G.
Gair, J. R.
Gammaitoni, L.
Gaonkar, S. G.
Garufi, F.
Gatto, A.
Gaur, G.
Gehrels, N.
Gemme, G.
Gendre, B.
Genin, E.
Gennai, A.
George, J.
Gergely, L.
Germain, V.
Ghosh, A.
Ghosh, S.
Giaime, J. A.
Giardina, K. D.
Giazotto, A.
Gill, K.
Glaefke, A.
Goetz, E.
Goetz, R.
Gondan, L.
Gonzalez, G.
Castro, J. M. G.
Gopakumar, A.
Gordon, N. A.
Gorodetsky, M. L.
Gossan, S. E.
Gosselin, M.
Gouaty, R.
Graef, C.
Graff, P. B.
Granata, M.
Grant, A.
Gras, S.
Gray, C.
Greco, G.
Green, A. C.
Groot, P.
Grote, H.
Grunewald, S.
Guidi, G. M.
Guo, X.
Gupta, A.
Gupta, M. K.
Gushwa, K. E.
Gustafson, E. K.
Gustafson, R.
Hacker, J. J.
Hall, B. R.
Hall, E. D.
Hammond, G.
Haney, M.
Hanke, M. M.
Hanks, J.
Hanna, C.
Hannam, M. D.
Hanson, J.
Hardwick, T.
Haris, K.
Harms, J.
Harry, G. M.
Harry, I. W.
Hart, M. J.
Hartman, M. T.
Haster, C. -J.
Haughian, K.
Heidmann, A.
Heintze, M. C.
Heitmann, H.
Hello, P.
Hemming, G.
Hendry, M.
Heng, I. S.
Hennig, J.
Heptonstall, A. W.
Heurs, M.
Hild, S.
Hoak, D.
Hodge, K. A.
Hofman, D.
Hollitt, S. E.
Holt, K.
Holz, D. E.
Hopkins, P.
Hosken, D. J.
Hough, J.
Houston, E. A.
Howell, E. J.
Hu, Y. M.
Huang, S.
Huerta, E. A.
Huet, D.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh-Dinh, T.
Idrisy, A.
Indik, N.
Ingram, D. R.
Inta, R.
Isa, H. N.
Isac, J. -M.
Isi, M.
Islas, G.
Isogai, T.
Iyer, B. R.
Izumi, K.
Jacqmin, T.
Jang, H.
Jani, K.
Jaranowski, P.
Jawahar, S.
Jimenez-Forteza, F.
Johnson, W. W.
Jones, D. I.
Jones, R.
Jonker, R. J. G.
Ju, L.
Kalaghatgi, C. V.
Kalogera, V.
Kandhasamy, S.
Kang, G.
Kanner, J. B.
Karki, S.
Kasprzack, M.
Katsavounidis, E.
Katzman, W.
Kaufer, S.
Kaur, T.
Kawabe, K.
Kawazoe, F.
Kefelian, F.
Kehl, M. S.
Keitel, D.
Kelley, D. B.
Kells, W.
Kennedy, R.
Key, J. S.
Khalaidovski, A.
Khalili, F. Y.
Khan, I.
Khan, S.
Khan, Z.
Khazanov, E. A.
Kijbunchoo, N.
Kim, C.
Kim, J.
Kim, K.
Kim, N.
Kim, N.
Kim, Y. -M.
King, E. J.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Kleybolte, L.
Klimenko, S.
Koehlenbeck, S. M.
Kokeyama, K.
Koley, S.
Kondrashov, V.
Kontos, A.
Korobko, M.
Korth, W. Z.
Kowalska, I.
Kozak, D. B.
Kringel, V.
Krolak, A.
Krueger, C.
Kuehn, G.
Kumar, P.
Kuo, L.
Kutynia, A.
Lackey, B. D.
Landry, M.
Lange, J.
Lantz, B.
Lasky, P. D.
Lazzarini, A.
Lazzaro, C.
Leaci, P.
Leavey, S.
Lebigot, E. O.
Lee, C. H.
Lee, H. K.
Lee, H. M.
Lee, K.
Lenon, A.
Leonardi, M.
Leong, J. R.
Leroy, N.
Letendre, N.
Levin, Y.
Levine, B. M.
Li, T. G. F.
Libson, A.
Littenberg, T. B.
Lockerbie, N. A.
Logue, J.
Lombardi, A. L.
Lord, J. E.
Lorenzini, M.
Loriette, V.
Lormand, M.
Losurdo, G.
Lough, J. D.
Lueck, H.
Lundgren, P.
Luo, J.
Lynch, R.
Ma, Y.
MacDonald, T.
Machenschalk, B.
MacInnis, M.
Macleod, D. M.
Magana-Sandoval, F.
Magee, R. M.
Mageswaran, M.
Majorana, E.
Maksimovic, I.
Malvezzi, V.
Man, N.
Mandel, I.
Mandic, V.
Mangano, V.
Mansell, G. L.
Manske, M.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Marka, Z.
Markosyan, A. S.
Maros, E.
Martelli, F.
Martellini, L.
Martin, I. W.
Martin, R. M.
Martynov, D. V.
Marx, J. N.
Mason, K.
Masserot, A.
Massinger, T. J.
Masso-Reid, M.
Matichard, F.
Matone, L.
Mavalvala, N.
Mazumder, N.
Mazzolo, G.
McCarthy, R.
McClelland, D. E.
McCormick, S.
McGuire, S. C.
McIntyre, G.
McIver, J.
McManus, D. J.
McWilliams, S. T.
Meacher, D.
Meadors, G. D.
Meidam, J.
Melatos, A.
Mendell, G.
Mendoza-Gandara, D.
Mercer, R. A.
Merilh, E.
Merzougui, M.
Meshkov, S.
Messenger, C.
Messick, C.
Meyers, P. M.
Mezzani, F.
Miao, H.
Michel, C.
Middleton, H.
Mikhailov, E. E.
Milano, L.
Miller, J.
Millhouse, M.
Minenkov, Y.
Ming, J.
Mirshekari, S.
Mishra, C.
Mitra, S.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moggi, A.
Mohan, M.
Mohapatra, S. R. P.
Montani, M.
Moore, B. C.
Moore, C. J.
Moraru, D.
Moreno, G.
Morriss, S. R.
Mossavi, K.
Mours, B.
Mow-Lowry, C. M.
Mueller, C. L.
Mueller, G.
Muir, A. W.
Mukherjee, A.
Mukherjee, D.
Mukherjee, S.
Mukund, N.
Mullavey, A.
Munch, J.
Murphy, D. J.
Murray, P. G.
Mytidis, A.
Nardecchia, I.
Naticchioni, L.
Nayak, R. K.
Necula, V.
Nedkova, K.
Nelemans, G.
Neri, M.
Neunzert, A.
Newton, G.
Nguyen, T. T.
Nielsen, A. B.
Nissanke, S.
Nitz, A.
Nocera, F.
Nolting, D.
Normandin, M. E. N.
Nuttall, L. K.
Oberling, J.
Ochsner, E.
O'Dell, J.
Oelker, E.
Ogin, G. H.
Oh, J. J.
Oh, S. H.
Ohme, F.
Oliver, M.
Oppermann, P.
Oram, R. J.
O'Reilly, B.
O'Shaughnessy, R.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Pai, A.
Pai, S. A.
Palamos, J. R.
Palashov, O.
Palliyaguru, N.
Palomba, C.
Pal-Singh, A.
Pan, H.
Pankow, C.
Pannarale, F.
Pant, B. C.
Paoletti, F.
Paoli, A.
Papa, M. A.
Paris, H. R.
Parker, W.
Pascucci, D.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Patricelli, B.
Patrick, Z.
Pearlstone, B. L.
Pedraza, M.
Pedurand, R.
Pekowsky, L.
Pele, A.
Penn, S.
Perreca, A.
Phelps, M.
Piccinni, O.
Pichot, M.
Piergiovanni, F.
Pierro, V.
Pillant, G.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Poggiani, R.
Popolizio, P.
Post, A.
Powell, J.
Prasad, J.
Predoi, V.
Premachandra, S. S.
Prestegard, T.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prodi, G. A.
Prokhorov, L.
Puncken, O.
Punturo, M.
Puppo, P.
Puerrer, M.
Qi, H.
Qin, J.
Quetschke, V.
Quintero, E. A.
Quitzow-James, R.
Raab, F. J.
Rabeling, D. S.
Radkins, H.
Raffai, P.
Raja, S.
Rakhmanov, M.
Rapagnani, P.
Raymond, V.
Razzano, M.
Re, V.
Read, J.
Reed, C. M.
Regimbau, T.
Rei, L.
Reid, S.
Reitze, D. H.
Rew, H.
Reyes, S. D.
Ricci, F.
Riles, K.
Robertson, N. A.
Robie, R.
Robinet, F.
Rocchi, A.
Rolland, L.
Rollins, J. G.
Roma, V. J.
Romano, R.
Romanov, G.
Romie, J. H.
Rosinska, D.
Rowan, S.
Ruediger, A.
Ruggi, P.
Ryan, K.
Sachdev, S.
Sadecki, T.
Sadeghian, L.
Salconi, L.
Saleem, M.
Salemi, F.
Samajdar, A.
Sammut, L.
Sanchez, E. J.
Sandberg, V.
Sandeen, B.
Sanders, J. R.
Sassolas, B.
Sathyaprakash, B. S.
Saulson, P. R.
Sauter, O.
Savage, R. L.
Sawadsky, A.
Schale, P.
Schilling, R.
Schmidt, J.
Schmidt, P.
Schnabel, R.
Schofield, R. M. S.
Schoenbeck, A.
Schreiber, E.
Schuette, D.
Schutz, B. F.
Scott, J.
Scott, S. M.
Sellers, D.
Sentenac, D.
Sequino, V.
Sergeev, A.
Serna, G.
Setyawati, Y.
Sevigny, A.
Shaddock, D. A.
Shah, S.
Shahriar, M. S.
Shaltev, M.
Shao, Z.
Shapiro, B.
Shawhan, P.
Sheperd, A.
Shoemaker, D. H.
Shoemaker, D. M.
Siellez, K.
Siemens, X.
Sigg, D.
Silva, A. D.
Simakov, D.
Singer, A.
Singh, A.
Singh, R.
Singhal, A.
Sintes, A. M.
Slagmolen, B. J. J.
Smith, J. R.
Smith, N. D.
Smith, R. J. E.
Son, E. J.
Sorazu, B.
Sorrentino, F.
Souradeep, T.
Srivastava, A. K.
Staley, A.
Steinke, M.
Steinlechner, J.
Steinlechner, S.
Steinmeyer, D.
Stephens, B. C.
Stone, R.
Strain, K. A.
Straniero, N.
Stratta, G.
Strauss, N. A.
Strigin, S.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sun, L.
Sutton, P. J.
Swinkels, B. L.
SzczepaNczyk, M. J.
Tacca, M.
Talukder, D.
Tanner, D. B.
Tpai, M.
Tarabrin, S. P.
Taracchini, A.
Taylor, R.
Theeg, T.
Thirugnanasambandam, P.
Thomas, E. G.
Thomas, M.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Tiwari, S.
Tiwari, V.
Tokmakov, K. V.
Tomlinson, C.
Tonelli, M.
Torres, C. V.
Torrie, C. I.
Tyr, D.
Travasso, F.
Traylor, G.
Trifiro, D.
Tringali, M. C.
Trozzo, L.
Tse, M.
Turconi, M.
Tuyenbayev, D.
Ugolini, D.
Unnikrishnan, C. S.
Urban, A. L.
Usman, S. A.
Vahlbruch, H.
Vajente, G.
Valdes, G.
van Bakel, N.
van Beuzekom, M.
van den Brand, J. F. J.
Van den Broeck, C.
Vander-Hyde, D. C.
van der Schaaf, L.
van Heijningen, J. V.
van Veggel, A. A.
Vardaro, M.
Vass, S.
Vasuth, M.
Vaulin, R.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Venkateswara, K.
Verkindt, D.
Vetrano, F.
Vicere, A.
Vinciguerra, S.
Vine, D. J.
Vinet, J. -Y.
Vitale, S.
Vo, T.
Vocca, H.
Vorvick, C.
Voss, D.
Vousden, W. D.
Vyatchanin, S. P.
Wade, A. R.
Wade, L. E.
Wade, M.
Walker, M.
Wallace, L.
Walsh, S.
Wang, G.
Wang, H.
Wang, M.
Wang, X.
Wang, Y.
Ward, R. L.
Warner, J.
Was, M.
Weaver, B.
Wei, L. -W.
Weinert, M.
Weinstein, A. J.
Weiss, R.
Welborn, T.
Wen, L.
Wessels, P.
Westphal, T.
Wette, K.
Whelan, J. T.
White, D. J.
Whiting, B. F.
Williams, R. D.
Williamson, A. R.
Willis, J. L.
Willke, B.
Wimmer, M. H.
Winkler, W.
Wipf, C. C.
Wittel, H.
Woan, G.
Worden, J.
Wright, J. L.
Wu, G.
Yablon, J.
Yam, W.
Yamamoto, H.
Yancey, C. C.
Yap, M. J.
Yu, H.
Yvert, M.
Zadrozny, A.
Zangrando, L.
Zanolin, M.
Zendri, J. -P.
Zevin, M.
Zhang, F.
Zhang, L.
Zhang, M.
Zhang, Y.
Zhao, C.
Zhou, M.
Zhou, Z.
Zhu, X. J.
Zucker, M. E.
Zuraw, S. E.
Zweizig, J.
Allison, J.
Bannister, K.
Bell, M. E.
Chatterjee, S.
Chippendale, A. P.
Edwards, P. G.
Harvey-Smith, L.
Heywood, Ian
Hotan, A.
Indermuehle, B.
Marvil, J.
McConnell, D.
Murphy, T.
Popping, A.
Reynolds, J.
Sault, R. J.
Voronkov, M. A.
Whiting, M. T.
Castro-Tirado, A. J.
Cunniffe, R.
Jelinek, M.
Tello, J. C.
Oates, S. R.
Hu, Y. -D.
Kubanek, P.
Guziy, S.
Castellon, A.
Garcia-Cerezo, A.
Munoz, V. F.
Perez del Pulgar, C.
Castillo-Carrion, S.
Castro Ceron, J. M.
Hudec, R.
Caballero-Garcia, M. D.
Pata, P.
Vitek, S.
Adame, J. A.
Konig, S.
Rendon, F.
Mateo Sanguino, T. de J.
Fernandez-Munoz, R.
Yock, P. C.
Rattenbury, N.
Allen, W. H.
Querel, R.
Jeong, S.
Park, I. H.
Bai, J.
Cui, Ch.
Fan, Y.
Wang, Ch.
Hiriart, D.
Lee, W. H.
Claret, A.
Sanchez-Ramirez, R.
Pandey, S. B.
Mediavilla, T.
Sabau-Graziati, L.
Abbott, T. M. C.
Abdalla, F. B.
Allam, S.
Annis, J.
Armstrong, R.
Benoit-Levy, A.
Berger, E.
Bernstein, R. A.
Bertin, E.
Brout, D.
Buckley-Geer, E.
Burke, D. L.
Capozzi, D.
Carretero, J.
Castander, F. J.
Chornock, R.
Cowperthwaite, P. S.
Crocce, M.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Doctor, Z.
Drlica-Wagner, A.
Drout, M. R.
Eifler, T. F.
Estrada, J.
Evrard, A. E.
Fernandez, E.
Finley, D. A.
Flaugher, B.
Foley, R. J.
Fong, W. -F.
Fosalba, P.
Fox, D. B.
Frieman, J.
Fryer, C. L.
Gaztanaga, E.
Gerdes, D. W.
Goldstein, D. A.
Gruen, D.
Gruendl, R. A.
Gutierrez, G.
Herner, K.
Honscheid, K.
James, D. J.
Johnson, M. D.
Johnson, M. W. G.
Karliner, I.
Kasen, D.
Kent, S.
Kessler, R.
Kim, A. G.
Kind, M. C.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Li, T. S.
Lima, M.
Lin, H.
Maia, M. A. G.
Margutti, R.
Marriner, J.
Martini, P.
Matheson, T.
Melchior, P.
Metzger, B. D.
Miller, C. J.
Miquel, R.
Neilsen, E.
Nichol, R. C.
Nord, B.
Nugent, P.
Ogando, R.
Petravick, D.
Plazas, A. A.
Quataert, E.
Roe, N.
Romer, A. K.
Roodman, A.
Rosell, A. C.
Rykoff, E. S.
Sako, M.
Sanchez, E.
Scarpine, V.
Schindler, R.
Schubnell, M.
Scolnic, D.
Sevilla-Noarbe, I.
Sheldon, E.
Smith, N.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Stebbins, A.
Suchyta, E.
Swanson, M. E. C.
Tarle, G.
Thaler, J.
Thomas, D.
Thomas, R. C.
Tucker, D. L.
Vikram, V.
Walker, A. R.
Wechsler, R. H.
Wester, W.
Yanny, B.
Zhang, Y.
Zuntz, J.
Connaughton, V.
Burns, E.
Goldstein, A.
Briggs, M. S.
Zhang, B. -B.
Hui, C. M.
Jenke, P.
Wilson-Hodge, C. A.
Bhat, P. N.
Bissaldi, E.
Cleveland, W.
Fitzpatrick, G.
Giles, M. M.
Gibby, M. H.
Greiner, J.
von Kienlin, A.
Kippen, R. M.
McBreen, S.
Mailyan, B.
Meegan, C. A.
Paciesas, W. S.
Preece, R. D.
Roberts, O.
Sparke, L.
Stanbro, M.
Toelge, K.
Veres, P.
Yu, H. -F.
Blackburn, L.
Ackermann, M.
Ajello, M.
Albert, A.
Anderson, B.
Atwood, W. B.
Axelsson, M.
Baldini, L.
Barbiellini, G.
Bastieri, D.
Bellazzini, R.
Bissaldi, E.
Blandford, R. D.
Bloom, E. D.
Bonino, R.
Bottacini, E.
Brandt, T. J.
Bruel, P.
Buson, S.
Caliandro, G. A.
Cameron, R. A.
Caragiulo, M.
Caraveo, P. A.
Cavazzuti, E.
Charles, E.
Chekhtman, A.
Chiang, J.
Chiaro, G.
Ciprini, S.
Cohen-Tanugi, J.
Cominsky, L. R.
Costanza, F.
Cuoco, A.
D'Ammando, F.
de Palma, F.
Desiante, R.
Digel, S. W.
Di Lalla, N.
Di Mauro, M.
Di Venere, L.
Dominguez, A.
Drell, P. S.
Dubois, R.
Favuzzi, C.
Ferrara, E. C.
Franckowiak, A.
Fukazawa, Y.
Funk, S.
Fusco, P.
Gargano, F.
Gasparrini, D.
Giglietto, N.
Giommi, P.
Giordano, F.
Giroletti, M.
Glanzman, T.
Godfrey, G.
Gomez-Vargas, G. A.
Green, D.
Grenier, I. A.
Grove, J. E.
Guiriec, S.
Hadasch, D.
Harding, A. K.
Hays, E.
Hewitt, J. W.
Hill, A. B.
Horan, D.
Jogler, T.
Johannesson, G.
Johnson, A. S.
Kensei, S.
Kocevski, D.
Kuss, M.
La Mura, G.
Larsson, S.
Latronico, L.
Li, J.
Li, L.
Longo, F.
Loparco, F.
Lovellette, M. N.
Lubrano, P.
Magill, J.
Maldera, S.
Manfreda, A.
Marelli, M.
Mayer, M.
Mazziotta, M. N.
McEnery, J. E.
Meyer, M.
Michelson, P. F.
Mirabal, N.
Mizuno, T.
Moiseev, A. A.
Monzani, M. E.
Moretti, E.
Morselli, A.
Moskalenko, I. V.
Negro, M.
Nuss, E.
Ohsugi, T.
Omodei, N.
Orienti, M.
Orlando, E.
Ormes, J. F.
Paneque, D.
Perkins, J. S.
Pesce-Rollins, M.
Piron, F.
Pivato, G.
Porter, T. A.
Racusin, J. L.
Raino, S.
Rando, R.
Razzaque, S.
Reimer, A.
Reimer, O.
Salvetti, D.
Parkinson, P. M. Saz
Sgro, C.
Simone, D.
Siskind, E. J.
Spada, F.
Spandre, G.
Spinelli, P.
Suson, D. J.
Tajima, H.
Thayer, J. B.
Thompson, D. J.
Tibaldo, L.
Torres, D. F.
Troja, E.
Uchiyama, Y.
Venters, T. M.
Vianello, G.
Wood, K. S.
Wood, M.
Zhu, S.
Zimmer, S.
Brocato, E.
Cappellaro, E.
Covino, S.
Grado, A.
Nicastro, L.
Palazzi, E.
Pian, E.
Amati, L.
Antonelli, L. A.
Capaccioli, M.
D'Avanzo, P.
D'Elia, V.
Getman, F.
Giuffrida, G.
Iannicola, G.
Limatola, L.
Lisi, M.
Marinoni, S.
Marrese, P.
Melandri, A.
Piranomonte, S.
Possenti, A.
Pulone, L.
Rossi, A.
Stamerra, A.
Stella, L.
Testa, V.
Tomasella, L.
Yang, S.
Bazzano, A.
Bozzo, E.
Brandt, S.
Courvoisier, T. J. -L.
Ferrigno, C.
Hanlon, L.
Kuulkers, E.
Laurent, P.
Mereghetti, S.
Roques, J. P.
Savchenko, V.
Ubertini, P.
Kasliwal, M. M.
Singer, L. P.
Cao, Y.
Duggan, G.
Kulkarni, S. R.
Bhalerao, V.
Miller, A. A.
Barlow, T.
Bellm, E.
Manulis, I.
Rana, J.
Laher, R.
Masci, F.
Surace, J.
Rebbapragada, U.
Cook, D.
Van Sistine, A.
Sesar, B.
Perley, D.
Ferreti, R.
Prince, T.
Kendrick, R.
Horesh, A.
Hurley, K.
Golenetskii, S. V.
Aptekar, R. L.
Frederiks, D. D.
Svinkin, D. S.
Rau, A.
von Kienlin, A.
Zhang, X.
Smith, D. M.
Cline, T.
Krimm, H.
Abe, F.
Doi, M.
Fujisawa, K.
Kawabata, K. S.
Morokuma, T.
Motohara, K.
Tanaka, M.
Ohta, K.
Yanagisawa, K.
Yoshida, M.
Baltay, C.
Rabinowitz, D.
Ellman, N.
Rostami, S.
Bersier, D. F.
Bode, M. F.
Collins, C. A.
Copperwheat, C. M.
Darnley, M. J.
Galloway, D. K.
Gomboc, A.
Kobayashi, S.
Mazzali, P.
Mundell, C. G.
Piascik, A. S.
Pollacco, Don
Steele, I. A.
Ulaczyk, K.
Broderick, J. W.
Fender, R. P.
Jonker, P. G.
Rowlinson, A.
Stappers, B. W.
Wijers, R. A. M. J.
Lipunov, V.
Gorbovskoy, E.
Tyurina, N.
Kornilov, V.
Balanutsa, P.
Kuznetsov, A.
Buckley, D.
Rebolo, R.
Serra-Ricart, M.
Israelian, G.
Budnev, N. M.
Gress, O.
Ivanov, K.
Poleshuk, V.
Tlatov, A.
Yurkov, V.
Kawai, N.
Serino, M.
Negoro, H.
Nakahira, S.
Mihara, T.
Tomida, H.
Ueno, S.
Tsunemi, H.
Matsuoka, M.
Croft, S.
Feng, L.
Franzen, T. M. O.
Gaensler, B. M.
Johnston-Hollitt, M.
Kaplan, D. L.
Morales, M. F.
Tingay, S. J.
Wayth, R. B.
Williams, A.
Smartt, S. J.
Chambers, K. C.
Smith, K. W.
Huber, M. E.
Young, D. R.
Wright, D. E.
Schultz, A.
Denneau, L.
Flewelling, H.
Magnier, E. A.
Primak, N.
Rest, A.
Sherstyuk, A.
Stalder, B.
Stubbs, C. W.
Tonry, J.
Waters, C.
Willman, M.
Olivares E, F.
Campbell, H.
Kotak, R.
Sollerman, J.
Smith, M.
Dennefeld, M.
Anderson, J. P.
Botticella, M. T.
Chen, T. -W.
Valle, M. D.
Elias-Rosa, N.
Fraser, M.
Inserra, C.
Kankare, E.
Kupfer, T.
Harmanen, J.
Galbany, L.
Le Guillou, L.
Lyman, J. D.
Maguire, K.
Mitra, A.
Nicholl, M.
Razza, A.
Terreran, G.
Valenti, S.
Gal-Yam, A.
Cwiek, A.
Cwiok, M.
Mankiewicz, L.
Opiela, R.
Zaremba, M.
Zarnecki, A. F.
Onken, C. A.
Scalzo, R. A.
Schmidt, B. P.
Wolf, C.
Yuan, F.
Evans, P. A.
Kennea, J. A.
Burrows, D. N.
Campana, S.
Cenko, S. B.
Giommi, P.
Marshall, F. E.
Nousek, J.
O'Brien, P.
Osborne, J. P.
Palmer, D.
Perri, M.
Siegel, M.
Tagliaferri, G.
Klotz, A.
Turpin, D.
Laugier, R.
Beroiz, M.
Penuela, T.
Macri, L. M.
Oelkers, R. J.
Lambas, D. G.
Vrech, R.
Cabral, J.
Colazo, C.
Dominguez, M.
Sanchez, B.
Gurovich, S.
Lares, M.
Marshall, J. L.
Depoy, D. L.
Padilla, N.
Pereyra, N. A.
Benacquista, M.
Tanvir, N. R.
Wiersema, K.
Levan, A. J.
Steeghs, D.
Hjorth, J.
Fynbo, J. P. U.
Malesani, D.
Milvang-Jensen, B.
Watson, D.
Irwin, M.
Fernandez, C. G.
McMahon, R. G.
Banerji, M.
Gonzalez-Solares, E.
Schulze, S.
Postigo, A. de U.
Thoene, C. C.
Cano, Z.
Rosswog, S.
CA LIGO Sci Collaboration Virgo Colla
ASKAP Collaboration
BOOTES Collaboration
Dark Energy Survey Collaboration
Dark Energy Camera GW-EM Collabor
Fermi GBM Collaboration
FERMI LAT Collaboration
GRAvitational Wave Inaf TeAm GRAWI
INTEGRAL Collaboration
IPTF Collaboration
InterPlanetary Network
J-GEM Collaboration
LA Silla-QUEST Survey
Liverpool Telescope Collaboration
Low Frequency Array LOFAR Collabo
MASTER Collaboration
MAXI Collaboration
MWA Collaboration
Pan-STARRS Collaboration
PESSTO Collaboration
Pi Sky Collaboration
SkyMapper Collaboration
Swift Collaboration
Tarot Zadko Algerian Natl Observ C
TOROS Collaboration
VISTA Collaboration
TI SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE
GRAVITATIONAL-WAVE TRANSIENT GW150914" (2016, ApJL, 826, L13)
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE gravitational waves; methods: observational
ID ADVANCED LIGO; ELECTROMAGNETIC COUNTERPARTS; DARK ENERGY; TELESCOPE;
MISSION; VIRGO; EVENTS; SEARCH; CAMERA
AB This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.
C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA.
[Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy.
[Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy.
[Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA.
[Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R. J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA.
[Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France.
[Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands.
[Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.; Albert, A.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil.
[Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.; Bhalerao, V.; Rana, J.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India.
[Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.; Van Sistine, A.; Kaplan, D. L.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA.
[Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. G.; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy.
[Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. G.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia.
[Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA.
[Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. C.; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, Univ Paris Saclay, CNRS, LAL,IN2P3, Orsay, France.
[Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Chennai, Tamil Nadu, India.
[Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Ashton, G.; Jones, D. I.; D'Andrea, C. B.; Smith, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany.
[Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy.
[Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany.
[Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,CNRS,IN2P3,CEA,Irfu, F-75205 Paris 13, France.
[Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA.
[Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy.
[Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy.
[Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA.
[Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA.
[Barta, D.; Debreczeni, G.; Vasuth, M.] Wigner RCP, RMKI, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary.
[Barthelmy, S.; Camp, J. B.; Gehrels, N.; Singer, L. P.; Cline, T.; Cenko, S. B.; Marshall, F. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA.
[Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.; Wechsler, R. H.] Stanford Univ, Stanford, CA 94305 USA.
[Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy.
[Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] INFN, Sez Padova, I-35131 Padua, Italy.
[Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland.
[Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Tyr, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy.
[Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] INFN, Sez Genova, I-16146 Genoa, Italy.
[Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, MP, India.
[Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia.
[Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland.
[Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia.
[Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; Jonker, P. G.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.; Laugier, R.] Univ Cote dAzur, CNRS, Observ Cote dAzur, Artemis, CS 34229, Nice 4, France.
[Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary.
[Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France.
[Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA.
[Branchesi, M.; Baiardi, L. C.; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy.
[Branchesi, M.; Baiardi, L. C.; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Florence, Italy.
[Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA.
[Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.] UPMC, Sorbonne Univ, PSL Res Univ, CNRS,ENS,Coll France,Lab Kastler Brossel, F-75005 Paris, France.
[Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
[Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA.
[Cadonati, L.; Bustillo, J. C.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Cadonati, L.; Bustillo, J. C.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Cagnoli, G.] Univ Lyon 1, UMR CNRS 5306, Inst Lumiere Mat, F-69622 Villeurbanne, France.
[Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, IN2P3 CNRS, LMA, F-69622 Villeurbanne, France.
[Bustillo, J. C.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC IAC3, E-07122 Palma De Mallorca, Spain.
[Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy.
[Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.; Palliyaguru, N.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.; Kennea, J. A.; Burrows, D. N.; Nousek, J.; Siegel, M.] Penn State Univ, University Pk, PA 16802 USA.
[Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan.
[Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia.
[Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA.
[Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] Caltech CaRT, Pasadena, CA 91125 USA.
[Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, N.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea.
[Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA.
[Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium.
[Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA.
[Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA.
[Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.; Sault, R. J.] Univ Melbourne, Parkville, Vic 3010, Australia.
[Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy.
[Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales.
[Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland.
[Gaur, G.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India.
[Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India.
[Gergely, L.; Tpai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary.
[Gill, K.; Hughey, B.; SzczepaNczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.; Evrard, A. E.; Zhang, Y.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Harry, G. M.] Amer Univ, Washington, DC 20016 USA.
[Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts Amherst, Amherst, MA 01003 USA.
[Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Huerta, E. A.; McWilliams, S. T.] West Virginia Univ, Morgantown, WV 26506 USA.
[Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland.
[Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland.
[Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India.
[Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea.
[Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea.
[Krolak, A.; Kutynia, A.; Zadrozny, A.; Cwiek, A.] NCBJ, PL-05400 Otwock, Poland.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia.
[Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea.
[Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA.
[Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France.
[Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy.
[McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA.
[McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA.
[Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil.
[Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England.
[Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India.
[O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England.
[Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA.
[Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea.
[Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland.
[Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Trozzo, L.] Univ Siena, I-53100 Siena, Italy.
[Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
[Venkateswara, K.; Morales, M. F.] Univ Washington, Seattle, WA 98195 USA.
[Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA.
[Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA.
[Allison, J.; Bannister, K.; Bell, M. E.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Indermuehle, B.; Marvil, J.; McConnell, D.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.] CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia.
[Allison, J.; Bannister, K.; Bell, M. E.; Murphy, T.; Popping, A.; Rowlinson, A.; Gaensler, B. M.; Tingay, S. J.; Wayth, R. B.; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia.
[Chatterjee, S.] Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA.
[Heywood, Ian; Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Hotan, A.] CSIRO Astron & Space Sci, 26 Dick Perry Ave,Technol Pk, Kensington, WA 6151, Australia.
[Murphy, T.; Gaensler, B. M.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia.
[Popping, A.] Univ Western Australia, ICRAR, M468,35 Stirling Highway, Perth, WA 6009, Australia.
[Castro-Tirado, A. J.; Cunniffe, R.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Rendon, F.; Jeong, S.; Claret, A.; Sanchez-Ramirez, R.] CSIC, IAA, POB 03004, E-18080 Granada, Spain.
[Castro-Tirado, A. J.; Garcia-Cerezo, A.; Munoz, V. F.; Perez del Pulgar, C.] Univ Malaga, Unidad Asociada CSIC, Escuela Ingn, Dept Ingn Sistemas & Automat, E-29071 Malaga, Spain.
[Jelinek, M.; Hudec, R.] Acad Sci Czech Republic, Inst Astron, CS-25165 Ondrejov, Czech Republic.
[Kubanek, P.] Acad Sci Czech Republic, Inst Phys, Slovance 1999-2, Prague 18221 8, Czech Republic.
[Guziy, S.] Nikolaev Natl Univ, Nikolska Str 24, UA-54030 Nikolayev, Ukraine.
[Castellon, A.] Univ Malaga, Fac Ciencias, Blvd Louis Pasteur, E-29010 Malaga, Spain.
[Castillo-Carrion, S.] Univ Malaga, Ensenanza Virtual & Labs Tecnol, Jimenez Fraud 10, E-29071 Malaga, Spain.
[Castro Ceron, J. M.] ISDEFE SMOS FOS ESA ESAC, E-28692 Villanueva De La Canada, Madrid, Spain.
[Hudec, R.; Pata, P.; Vitek, S.] Czech Tech Univ, Fac Elect Engn, Dept Radioelect, Tech 2, Prague 16627, Czech Republic.
[Caballero-Garcia, M. D.] Acad Sci Czech Republic, Inst Astron, Bocni 2 1401, CZ-14100 Prague 4, Czech Republic.
[Adame, J. A.; Konig, S.; Rendon, F.] Estn Sondeos Atmosfer ESAt) El Arenosillo CEDEA I, E-21130 Mazagon, Huelva, Spain.
[Mateo Sanguino, T. de J.] Univ Huelva, ETSI La Rabida, Dept Ingn Elect Sistemas Informat & Automat, E-21819 Palos De La Frontera, Huelva, Spain.
[Fernandez-Munoz, R.] IHSM UMA CSIC, Inst Hortofruticultura Subtrop & Mediterranea La, E-29750 Algarrobo Costa, Malaga, Spain.
[Yock, P. C.; Rattenbury, N.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland 1, New Zealand.
[Allen, W. H.] Vintage Lane Observ, RD3, Blenheim 7273, New Zealand.
[Querel, R.] Natl Inst Water & Atmospher Res NIWA, Lauder, New Zealand.
[Jeong, S.; Park, I. H.] Sungkyunkwan Univ SKKU, Dept Phys, Suwon, South Korea.
[Bai, J.; Fan, Y.; Wang, Ch.] Chinese Acad Sci, Yunnan Astron Observ, Kunming 650011, Yunnan, Peoples R China.
[Cui, Ch.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
[Hiriart, D.] Univ Nacl Autonoma Mexico, Inst Astron, Ensenada 22800, Baja California, Mexico.
[Lee, W. H.] Univ Nacl Autonoma Mexico, Inst Astron, Apdo Postal 70-264, Mexico City 04510, DF, Mexico.
[Pandey, S. B.] Aryabhatta Res Inst Observat Sci, Manora Peak 263002, Nainital, India.
[Mediavilla, T.] Univ Cadiz, Escuela Politecn Super, Avda Ramon Puyol, E-11202 Algeciras, Cadiz, Spain.
[Sabau-Graziati, L.] INTA, Div Ciencias Espacio, E-28850 Torrejon De Ardoz, Madrid, Spain.
[Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile.
[Abdalla, F. B.; Benoit-Levy, A.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Herner, K.; Kent, S.; Kuropatkin, N.; Lin, H.; Marriner, J.; Neilsen, E.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Stebbins, A.; Tucker, D. L.; Wester, W.; Yanny, B.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Armstrong, R.; Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Benoit-Levy, A.; Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Berger, E.; Cowperthwaite, P. S.; Drout, M. R.; Blackburn, L.; Nicholl, M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA.
[Brout, D.; Eifler, T. F.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Schindler, R.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain.
[Carretero, J.; Fernandez, E.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain.
[Chornock, R.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Clippinger Lab 251B, Athens, OH 45701 USA.
[da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Rosell, A. C.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Desai, S.; Dietrich, J. P.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Garching, Germany.
[Desai, S.; Dietrich, J. P.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Doctor, Z.; Frieman, J.; Kessler, R.; Scolnic, D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Eifler, T. F.; Plazas, A. A.; Miller, A. A.; Rebbapragada, U.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Foley, R. J.; Gruendl, R. A.; Kind, M. C.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Foley, R. J.; Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Fong, W. -F.; Smith, N.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA.
[Fox, D. B.] Penn State Univ, Ctr Particle & Gravitat Astrophys, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, University Pk, PA 16802 USA.
[Fryer, C. L.] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA.
[Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
[Goldstein, D. A.; Kasen, D.; Kim, A. G.; Nugent, P.; Roe, N.; Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Gruendl, R. A.; Johnson, M. D.; Johnson, M. W. G.; Kind, M. C.; Petravick, D.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Kasen, D.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil.
[Margutti, R.] NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA.
[Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA.
[Metzger, B. D.] Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA.
[Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, Madrid, Spain.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Zuntz, J.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Connaughton, V.; Cleveland, W.; Paciesas, W. S.] Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA.
[Burns, E.; Stanbro, M.] Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35899 USA.
[Goldstein, A.; Hui, C. M.; Wilson-Hodge, C. A.] NASA, Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA.
[Briggs, M. S.; Preece, R. D.] Univ Alabama, Dept Space Sci, 320 Sparkman Dr, Huntsville, AL 35899 USA.
[Zhang, B. -B.; Jenke, P.; Bhat, P. N.; Fitzpatrick, G.; Mailyan, B.; Meegan, C. A.; Veres, P.] Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35899 USA.
[Zhang, B. -B.] CSIC, IAA, POB 03004, E-18080 Granada, Spain.
[Bissaldi, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Giles, M. M.; Gibby, M. H.] Jacobs Technol Inc, Huntsville, AL USA.
[Greiner, J.; von Kienlin, A.; Toelge, K.; Yu, H. -F.; Rau, A.; Zhang, X.; Chen, T. -W.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany.
[Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[McBreen, S.; Roberts, O.] Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland.
[Sparke, L.] NASA Headquarters, Washington, DC USA.
[Yu, H. -F.] Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Ackermann, M.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
[Ajello, M.; Dominguez, A.] Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA.
[Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Anderson, B.; Meyer, M.; Zimmer, S.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden.
[Anderson, B.; Larsson, S.; Li, L.; Meyer, M.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.
[Atwood, W. B.; Parkinson, P. M. Saz; Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Atwood, W. B.; Parkinson, P. M. Saz; Smith, D. M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Axelsson, M.; Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Axelsson, M.] Tokyo Metropolitan Univ, Dept Phys, Minami Osawa 1-1, Hachioji, Tokyo 1920397, Japan.
[Baldini, L.] Univ Pisa, I-56127 Pisa, Italy.
[Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Chiaro, G.; La Mura, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Bellazzini, R.; Di Lalla, N.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Bissaldi, E.; Caragiulo, M.; Costanza, F.; de Palma, F.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Simone, D.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bonino, R.; Cuoco, A.; Desiante, R.; Latronico, L.; Maldera, S.; Negro, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bonino, R.; Cuoco, A.; Negro, M.] Univ Torino, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy.
[Brandt, T. J.; Buson, S.; Ferrara, E. C.; Green, D.; Guiriec, S.; Harding, A. K.; Hays, E.; Kocevski, D.; McEnery, J. E.; Mirabal, N.; Perkins, J. S.; Racusin, J. L.; Thompson, D. J.; Troja, E.; Venters, T. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bruel, P.; Horan, D.] CNRS IN2P3, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France.
[Buson, S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Buson, S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Buson, S.; Moiseev, A. A.; Krimm, H.] CRESST, Greenbelt, MD 20771 USA.
[Buson, S.; Moiseev, A. A.; Krimm, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Caliandro, G. A.] CIFS, I-10133 Turin, Italy.
[Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Caraveo, P. A.; Marelli, M.; Salvetti, D.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Cavazzuti, E.; Ciprini, S.; Gasparrini, D.; Giommi, P.] ASI, Sci Data Ctr, I-00133 Rome, Italy.
[Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA.
[Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA.
[Ciprini, S.; Gasparrini, D.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, Montpellier, France.
[Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA.
[D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy.
[de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy.
[Desiante, R.] Univ Udine, I-33100 Udine, Italy.
[Fukazawa, Y.; Kensei, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.
[Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Green, D.; Magill, J.; McEnery, J. E.; Moiseev, A. A.; Troja, E.; Zhu, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Green, D.; Magill, J.; McEnery, J. E.; Moiseev, A. A.; Troja, E.; Zhu, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Grenier, I. A.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France.
[Grove, J. E.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Hadasch, D.; La Mura, G.; Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Hadasch, D.; La Mura, G.; Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
[Hewitt, J. W.] Univ North Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA.
[Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland.
[Li, J.; Torres, D. F.] IEEC CSIC, Inst Space Sci, Campus UAB, E-08193 Barcelona, Spain.
[Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Moretti, E.; Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Razzaque, S.] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa.
[Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China.
[Parkinson, P. M. Saz] Univ Hong Kong, Lab Space Res, Hong Kong, Hong Kong, Peoples R China.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Tibaldo, L.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany.
[Torres, D. F.] ICREA, Barcelona, Spain.
[Uchiyama, Y.] Dept Phys, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan.
[Brocato, E.; Antonelli, L. A.; D'Elia, V.; Giuffrida, G.; Iannicola, G.; Lisi, M.; Marinoni, S.; Marrese, P.; Piranomonte, S.; Pulone, L.; Stella, L.; Testa, V.; Perri, M.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, RM, Italy.
[Cappellaro, E.; Marrese, P.; Tomasella, L.; Yang, S.; Elias-Rosa, N.; Terreran, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy.
[Covino, S.; D'Avanzo, P.; Melandri, A.; Campana, S.; Tagliaferri, G.] INAF Osservatorio Astron Brera, Via E Bianchi 46, I-23807 Merate, Italy.
[Grado, A.; Getman, F.; Limatola, L.; Botticella, M. T.; Valle, M. D.] INAF Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy.
[Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Rossi, A.] INAF Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
[Pian, E.; Stamerra, A.] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy.
[Antonelli, L. A.; D'Elia, V.; Giuffrida, G.; Marinoni, S.; Giommi, P.; Perri, M.] ASI Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Capaccioli, M.] Univ Naples Federico II, CU Monte St Angelo, Dip Fis Ettore Pancini, Via Cinthia, I-80126 Naples, Italy.
[Possenti, A.] INAF ORA Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, CA, Italy.
[Stamerra, A.] INAF Osservatorio Astron Torino, Str Osservatorio 20, I-10025 Pino Torinese, To, Italy.
[Bazzano, A.; Ubertini, P.] INAF Inst Space Astrophys & Planetol, Via Fosso del Cavaliere 100, I-00133 Rome, Italy.
[Bazzano, A.; Bozzo, E.; Courvoisier, T. J. -L.; Ferrigno, C.] Univ Geneva, Dept Astron, ISDC, Chemin Ecogia 16, CH-1290 Versoix, Switzerland.
[Brandt, S.] Natl Space Inst Elektrovej, DTU Space, Bldg 327, DK-2800 Lyngby, Denmark.
[Hanlon, L.] Univ Coll Dublin, Sch Phys, Space Sci Grp, Dublin 4, Ireland.
[Kuulkers, E.] ESAC, ESA, Sci Operat Dept, E-28691 Madrid, Spain.
[Laurent, P.] Univ Paris Diderot, CNRS IN2P3, Sorbonne Paris Cite, APC,CEA Irfu,Observ Paris, 10 Rue Alice Domont & Leonie Duquet, F-75205 Paris 13, France.
[Mereghetti, S.] INAF, IASF Milano, Via E Bassini 15, I-20133 Milan, Italy.
[Roques, J. P.] Univ Toulouse, 9 Ave Roche,BP 44346, F-31028 Toulouse, France.
[Roques, J. P.] UPS OMP, 9 Ave Roche,BP 44346, F-31028 Toulouse, France.
[Roques, J. P.] CNRS, 9 Ave Roche,BP 44346, F-31028 Toulouse, France.
[Roques, J. P.] IRAP, 9 Ave Roche,BP 44346, F-31028 Toulouse, France.
[Savchenko, V.] Univ Paris Diderot, CNRS IN2P3, Sorbonne Paris Cite, Francois Arago Ctr,APC,CEA Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Kasliwal, M. M.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Miller, A. A.; Barlow, T.; Bellm, E.; Cook, D.; Prince, T.; Kupfer, T.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA.
[Manulis, I.; Horesh, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel.
[Laher, R.; Masci, F.; Surace, J.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Sesar, B.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
[Perley, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Postigo, A. de U.] Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark.
[Ferreti, R.; Sollerman, J.; Rosswog, S.] Stockholm Univ, AlbaNova, Dept Astron, SE-10691 Stockholm, Sweden.
[Ferreti, R.; Sollerman, J.; Rosswog, S.] Stockholm Univ, AlbaNova, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Kendrick, R.] Lockheed Martin Space Syst Co, Palo Alto, CA 94304 USA.
[Hurley, K.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
[Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.] Ioffe Phys Tech Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia.
[Krimm, H.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA.
[Abe, F.] Nagoya Univ, Inst Space Earth Environm Res, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan.
[Doi, M.; Morokuma, T.; Motohara, K.] Univ Tokyo, Inst Astron, Grad Sch Sci, Mitaka, Tokyo 1810015, Japan.
[Fujisawa, K.] Yamaguchi Univ, Res Inst Time Studies, Yamaguchi, Yamaguchi 7538511, Japan.
[Kawabata, K. S.; Yoshida, M.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Tanaka, M.] Natl Astron Observ Japan, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan.
[Ohta, K.] Kyoto Univ, Dept Astron, Kyoto, Kyoto 6068502, Japan.
[Yanagisawa, K.] Natl Astron Observ Japan, Okayama Astrophys Observ, Okayama 7190232, Japan.
[Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Kobayashi, S.; Mazzali, P.; Piascik, A. S.; Steele, I. A.] Liverpool JMU, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England.
[Galloway, D. K.] Monash Univ, Monash Ctr Astrophys MoCA, Clayton, Vic 3800, Australia.
[Galloway, D. K.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia.
[Gomboc, A.] Univ Nova Gorica, Vipavska 13, Nova Gorica 5000, Slovenia.
[Gomboc, A.] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia.
[Mundell, C. G.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England.
[Pollacco, Don; Ulaczyk, K.; Lyman, J. D.; Levan, A. J.; Steeghs, D.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England.
[Broderick, J. W.; Rowlinson, A.] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands.
[Fender, R. P.] Univ Oxford, Dept Phys, Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Jonker, P. G.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands.
[Rowlinson, A.; Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands.
[Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.] Lomonosov Moscow State Univ, Sternberg Astron Inst, 13 Univ Skiy Prospekt, Moscow 119234, Russia.
[Buckley, D.] South African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa.
[Rebolo, R.; Serra-Ricart, M.; Israelian, G.] Inst Astrofis Canarias, Calle Via Lactea S-N, E-38200 Tenerife, Spain.
[Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.] Irkutsk State Univ, Inst Appl Phys, 20 Gagarin Blvd, Irkutsk 664003, Russia.
[Tlatov, A.] RAS, Kislovodsk Solar Stn Main Pulkovo Observ, POB 45,Ul Gagarina 100, Kislovodsk 357700, Russia.
[Yurkov, V.] Blagoveschensk State Pedag Univ, Lenin Str 104, Blagoveshchensk 675000, Amur Region, Russia.
[Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528851, Japan.
[Serino, M.; Mihara, T.; Matsuoka, M.] RIKEN, MAXI Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
[Negoro, H.] Nihon Univ, Dept Phys, Chiyoda Ku, 1-8-14 Kanda Surugadai, Tokyo 1018308, Japan.
[Nakahira, S.] Japan Aerosp Explorat Agcy, Human Spaceflight Technol Directorate, JEM Mission Operat & Integrat Ctr, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan.
[Tomida, H.; Ueno, S.] Japan Aerosp Explorat Agcy JAXA, ISAS, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan.
[Tsunemi, H.] Osaka Univ, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan.
[Croft, S.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA.
[Croft, S.] Eureka Sci Inc, 2452 Delmer St Suite 100, Oakland, CA 94602 USA.
[Feng, L.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Franzen, T. M. O.; Tingay, S. J.; Wayth, R. B.; Williams, A.] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia.
[Gaensler, B. M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Johnston-Hollitt, M.] Victoria Univ Wellington, Sch Chem & Phys Sci, POB 600, Wellington 6140, New Zealand.
[Tingay, S. J.] Ist Nazl Astrofis, Osservatorio Radio Astron, I-40123 Bologna, Italy.
[Smartt, S. J.; Smith, K. W.; Young, D. R.; Wright, D. E.; Kotak, R.; Inserra, C.; Kankare, E.; Maguire, K.; Terreran, G.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland.
[Chambers, K. C.; Huber, M. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Sherstyuk, A.; Stalder, B.; Tonry, J.; Waters, C.; Willman, M.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA.
[Rest, A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Olivares E, F.; Galbany, L.; Razza, A.; Schulze, S.] Millennium Inst Astrophys, Casilla 36-D, Santiago, Chile.
[Olivares E, F.] Univ Andres Bello, Dept Ciencias Fis, Avda Republ 252, Santiago, Chile.
[Campbell, H.; Fraser, M.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Dennefeld, M.] CNRS, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France.
[Dennefeld, M.] Univ Paris 06, 98 Bis Blvd Arago, F-75014 Paris, France.
[Anderson, J. P.] European Southern Observ, Alonso de Cordova 3107, Santiago, Chile.
[Harmanen, J.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Vaialantie 20, FI-21500 Piikkio, Finland.
[Galbany, L.; Razza, A.] Univ Chile, Dept Astron, Camino El Observ 1515, Santiago, Chile.
[Le Guillou, L.] Univ Paris 06, Sorbonne Univ, UMR 7585, LPNHE, F-75005 Paris, France.
[Le Guillou, L.; Mitra, A.] CNRS, UMR 7585, Lab Phys Nucl & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France.
[Valenti, S.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA.
[Valenti, S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel.
[Cwiok, M.; Zaremba, M.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland.
[Mankiewicz, L.; Opiela, R.] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland.
[Evans, P. A.; O'Brien, P.; Osborne, J. P.; Tanvir, N. R.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Palmer, D.] Los Alamos Natl Lab, B244, Los Alamos, NM 87545 USA.
[Klotz, A.; Turpin, D.] CNRS UMR 5277 UPS, Inst Rech Astrophys & Planetol, 14 Ave Edouard Belin, F-31400 Toulouse, France.
[Beroiz, M.] Univ Texas San Antonio, San Antonio, TX USA.
[Penuela, T.] Univ Munich, Fac Phys, Schellingstr 4, D-80799 Munich, Germany.
[Macri, L. M.; Oelkers, R. J.; Marshall, J. L.; Depoy, D. L.] Texas A&M Univ, Dept Phys & Astron, Mitchell Inst Fundamental Phys & Astron, 4242 TAMU, College Stn, TX 77843 USA.
[Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.] Univ Nacl Cordoba, IATE, Laprida 854, Cordoba, Argentina.
[Padilla, N.; Schulze, S.] Pontificia Univ Catolica Chile, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago, Chile.
[Postigo, A. de U.; Thoene, C. C.] CSIC, Inst Astrofis Andalucia, Glorieta Astron S-N, E-18008 Granada, Spain.
[Cano, Z.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland.
RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA.
EM lsc-spokesperson@ligo.org
RI Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ciani,
Giacomo/G-1036-2011; Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora
Vittoria/E-9078-2015; Garufi, Fabio/K-3263-2015; Sergeev,
Alexander/F-3027-2017; Vitek, Stanislav/B-3332-2015; Harms,
Jan/J-4359-2012; Jelinek, Martin/E-5290-2016; Marchesoni,
Fabio/A-1920-2008; Cesarini, Elisabetta/C-4507-2017; Costa,
Cesar/G-7588-2012; Hild, Stefan/A-3864-2010; Roberts,
Oliver/N-6284-2016; Mihara, Tatehiro/C-5536-2017; Di Venere,
Leonardo/C-7619-2017; Chow, Jong/A-3183-2008; Hudec, Rene/G-9018-2014;
Frey, Raymond/E-2830-2016; Serino, Motoko/D-3890-2017; Caballero-Garcia,
Maria/D-5659-2017; Bartos, Imre/A-2592-2017; Punturo,
Michele/I-3995-2012; Gaztanaga, Enrique/L-4894-2014; zhou,
hua/A-6862-2017; Cella, Giancarlo/A-9946-2012; prodi,
giovanni/B-4398-2010; Ogando, Ricardo/A-1747-2010; Leonardi,
Matteo/G-9694-2015; Galbany, Lluis/A-8963-2017; Elias-Rosa,
Nancy/D-3759-2014; Reimer, Olaf/A-3117-2013; Ferrante,
Isidoro/F-1017-2012; Pata, Petr/D-5817-2013; Gemme,
Gianluca/C-7233-2008; Vecchio, Alberto/F-8310-2015; Losurdo,
Giovanni/K-1241-2014; Lima, Marcos/E-8378-2010; Strigin,
Sergey/I-8337-2012; Iyer, Bala R./E-2894-2012; Sorrentino,
Fiodor/M-6662-2016; Orlando, E/R-5594-2016; Wayth, Randall/B-2444-2013;
Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Funk,
Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016
OI Gammaitoni, Luca/0000-0002-4972-7062; Ciani,
Giacomo/0000-0003-4258-9338; Sigg, Daniel/0000-0003-4606-6526; Di
Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi,
Fabio/0000-0003-1391-6168; Vitek, Stanislav/0000-0002-3185-1495;
Jelinek, Martin/0000-0003-3922-7416; Gorbovskoy,
Evgeny/0000-0002-4368-9237; Bondu, Francois/0000-0001-6487-5197;
Marchesoni, Fabio/0000-0001-9240-6793; Cesarini,
Elisabetta/0000-0001-9127-3167; Roberts, Oliver/0000-0002-7150-9061;
Mihara, Tatehiro/0000-0002-6337-7943; Di Venere,
Leonardo/0000-0003-0703-824X; Chow, Jong/0000-0002-2414-5402; Frey,
Raymond/0000-0003-0341-2636; Caballero-Garcia,
Maria/0000-0001-7920-4564; Scalzo, Richard/0000-0003-3740-1214; Kotak,
Rubina/0000-0001-5455-3653; Abdalla, Filipe/0000-0003-2063-4345;
Piccinni, Ornella Juliana/0000-0001-5478-3950; Nelemans,
Gijs/0000-0002-0752-2974; Pitkin, Matthew/0000-0003-4548-526X; Croft,
Steve/0000-0003-4823-129X; Principe, Maria/0000-0002-6327-0628; Macri,
Lucas/0000-0002-1775-4859; Lares, Marcelo/0000-0001-8180-5780; Getman,
Fedor/0000-0003-1550-0182; Zweizig, John/0000-0002-1521-3397; Horesh,
Assaf/0000-0002-5936-1156; Schmidt, Brian/0000-0001-6589-1287; Hill,
Adam/0000-0003-3470-4834; Onken, Christopher/0000-0003-0017-349X;
Gendre, Bruce/0000-0002-9077-2025; McMahon, Richard/0000-0001-8447-8869;
orienti, monica/0000-0003-4470-7094; Granata,
Massimo/0000-0003-3275-1186; Axelsson, Magnus/0000-000