FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Ferraz, A Saatchi, S Mallet, C Jacquemoud, S Goncalves, G Silva, CA Soares, P Tome, M Pereira, L AF Ferraz, Antonio Saatchi, Sassan Mallet, Clement Jacquemoud, Stephane Goncalves, Gil Silva, Carlos Alberto Soares, Paula Tome, Margarida Pereira, Luisa TI Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory SO REMOTE SENSING LA English DT Article DE airborne laser scanning; lidar; 3D point cloud clustering; multi-layered forest structure; biomass; carbon; individual tree extraction; crown delineation; vegetation cover ID CARBON STOCKS; TREES; COVER; MODEL AB The scientific community involved in the UN-REDD program is still reporting large uncertainties about the amount and spatial variability of CO2 stored in forests. The main limitation has been the lack of field samplings over space and time needed to calibrate and convert remote sensing measurements into aboveground biomass (AGB). As an alternative to costly field inventories, we examine the reliability of state-of-the-art lidar methods to provide direct retrieval of many forest metrics that are commonly collected through field sampling techniques (e.g., tree density, individual tree height, crown cover). AGB is estimated using existing allometric equations that are fed by lidar-derived metrics at either the individual tree-or forest layer-level (for the overstory or underneath layers, respectively). Results over 40 plots of a multilayered forest located in northwest Portugal show that the lidar method provides AGB estimates with a relatively small random error (RMSE = of 17.1%) and bias (of 4.6%). It provides local AGB baselines that meet the requirements in terms of accuracy to calibrate satellite remote sensing measurements (e.g., the upcoming lidar GEDI (Global Ecosystem Dynamics Investigation), and the Synthetic Aperture Radar (SAR) missions NISAR (National Aeronautics and Space Administration and Indian Space Research Organization SAR) and BIOMASS from the European Space Agency, ESA) for AGB mapping purposes. The development of similar techniques over a variety of forest types would be a significant improvement in quantifying CO2 stocks and changes to comply with the UN-REDD policies. C1 [Ferraz, Antonio; Saatchi, Sassan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mallet, Clement] Univ Paris Est, MATIS, Inst Natl Informat Geog & Forestiere IGN LaSTIG, F-94160 St Mande, France. [Jacquemoud, Stephane] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Inst Phys Globe Paris,UMR 7154, F-75013 Paris, France. [Goncalves, Gil] Univ Coimbra, INESC Coimbra, P-3001501 Coimbra, Portugal. [Goncalves, Gil] Univ Coimbra, Dept Math, P-3001501 Coimbra, Portugal. [Silva, Carlos Alberto] Univ Idaho, Coll Nat Resources, Dept Nat Resources & Soc, Moscow, ID 83843 USA. [Soares, Paula; Tome, Margarida] Univ Lisbon, Sch Agron, Forest Res Ctr, P-1349017 Lisbon, Portugal. [Pereira, Luisa] Univ Aveiro, Escola Super Tecnol & Gestao Agueda, P-3754909 Agueda, Portugal. RP Ferraz, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Antonio.A.Ferraz@jpl.nasa.gov; Sasan.S.Saatchi@jpl.nasa.gov; clement.mallet@ign.fr; jacquemoud@ipgp.fr; gil@mat.uc.pt; csilva@uidaho.edu; paulasoares@isa.ulisboa.pt; magatome@isa.ulisboa.pt; luisapereira@ua.pt RI Soares, Paula/F-8251-2010; Jacquemoud, Stephane/F-8842-2010; Tome, Margarida/F-5776-2010; Ferraz, Antonio/D-9662-2017; OI Soares, Paula/0000-0002-7603-5467; Tome, Margarida/0000-0002-6242-8593; Ferraz, Antonio/0000-0002-5328-5471; Mallet, Clement/0000-0002-2675-165X FU Portuguese Foundation for Science and Technology - European Fund of Regional Development (FEDER) through COMPETE-Operational Factors of Competitiveness Program (POFC) [PTDC/AGR-CFL/72380/2006]; Jet Propulsion Laboratory through the NASA; NASA; [Pest-OE/EEI/UI308/2014] FX This work was supported in part by the Portuguese Foundation for Science and Technology under Grant PTDC/AGR-CFL/72380/2006, co-financed by the European Fund of Regional Development (FEDER) through COMPETE-Operational Factors of Competitiveness Program (POFC) and the Grant Pest-OE/EEI/UI308/2014. The work of Antonio Ferraz was supported in part by the Jet Propulsion Laboratory through the NASA Postdoctoral Program, which was administrated by the Oak Ridge Associated Universities through a contract with NASA. NR 43 TC 0 Z9 0 U1 25 U2 25 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD AUG PY 2016 VL 8 IS 8 AR 653 DI 10.3390/rs8080653 PG 18 WC Remote Sensing SC Remote Sensing GA DU8JI UT WOS:000382458700040 ER PT J AU Hannon, A Lu, YJ Li, J Meyyappan, M AF Hannon, Ami Lu, Yijiang Li, Jing Meyyappan, M. TI A Sensor Array for the Detection and Discrimination of Methane and Other Environmental Pollutant Gases SO SENSORS LA English DT Article DE gas sensor; room temperature gas sensing; functionalized nanotubes; principal component analysis; electronic nose; selective methane sensor; smartphone based sensor ID WALLED CARBON NANOTUBES; CONDUCTING POLYMER; CHEMICAL SENSORS; MECHANOCHEMICAL REACTION; ACID CATALYST; THIN-FILMS; POLYANILINE; FABRICATION; ADSORPTION; OXIDATION AB We address the sensitive detection and discrimination of gases impacting the environment, such as CH4, NH3, SO2, and CO, using a sensor array and aided by principal component analysis (PCA). A 32-element chemiresistive sensor array consisting of nine different sensor materials including seven types of modified single-walled carbon nanotubes and two types of polymers has been constructed. PCA results demonstrate excellent discriminating ability of the chemiresistor sensor chip in the 1-30 ppm concentration range. The accuracy of the sensor was verified against data collected using cavity ring down spectroscopy. The sensor chip has also been integrated with a smartphone and has been shown to reproduce the sensing performance obtained with the laboratory measurement system. C1 [Hannon, Ami; Lu, Yijiang; Li, Jing; Meyyappan, M.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Hannon, Ami] NASA Ames Res Ctr, Analty Mech Associates Inc, Moffett Field, CA 94035 USA. [Lu, Yijiang] NASA Ames Res Ctr, ELORET Corp, Moffett Field, CA 94035 USA. RP Meyyappan, M (reprint author), NASA Ames Res Ctr, Moffett Field, CA 94035 USA. EM ami.m.hannon@nasa.gov; yijiang.lu-1@nasa.gov; jing.li-1@nasa.gov; m.meyyappan@nasa.gov FU US Department of Homeland Security, HSARPA Cell-All program via NASA-DHS [IAA: HSHQDC-08-X-00870]; AMA and ELORET Corporation FX The smartphone development was funded by the US Department of Homeland Security, HSARPA Cell-All program via a NASA-DHS interagency agreement (IAA: HSHQDC-08-X-00870). The work conducted by the employees of AMA and ELORET Corporation was supported through subcontracts to the respective organizations. The authors acknowledge George Yu and Chang Hsiung for their help with the smartphone sensor and Matt Fladeland for providing the Picarro Instrument. NR 52 TC 1 Z9 1 U1 31 U2 31 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD AUG PY 2016 VL 16 IS 8 AR 1163 DI 10.3390/s16081163 PG 11 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DU6KJ UT WOS:000382323200151 ER PT J AU Molter, EM Nixon, CA Cordiner, MA Serigano, J Irwin, PGJ Teanby, NA Charnley, SB Lindberg, JE AF Molter, Edward M. Nixon, C. A. Cordiner, M. A. Serigano, J. Irwin, P. G. J. Teanby, N. A. Charnley, S. B. Lindberg, J. E. TI ALMA OBSERVATIONS OF HCN AND ITS ISOTOPOLOGUES ON TITAN SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: individual (Titan) ID ISOTOPIC-RATIOS; HETERODYNE OBSERVATIONS; VERTICAL DISTRIBUTIONS; SUB-DOPPLER; ATMOSPHERE; SPECTROSCOPY; HC3N; ISOTOPOMERS; C-12/C-13; NITRILES AB We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, (HCN)-C-13-N-15, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, (HCN)-C-13, (HCN)-N-15, DCN, and (HCN)-C-13-N-15 to derive abundances and infer the following isotopic ratios: C-12/C-13 = 89.8 +/- 2.8, N-14/N-15 = 72.3 +/- 2.2, D/H = (2.5 +/- 0.2) x 10(-4), and HCN/(HCN)-C-13-N-15 = 5800 +/- 270 (1 sigma errors). The carbon and nitrogen ratios are consistent with and improve on the precision of previous results, confirming a factor of similar to 2.3 elevation in N-14/N-15 in HCN compared to N-2 and a lack of fractionation in C-12/C-13 from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of similar to 2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan's atmosphere. C1 [Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.; Charnley, S. B.; Lindberg, J. E.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Molter, Edward M.; Cordiner, M. A.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Serigano, J.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Irwin, P. G. J.] Univ Oxford, Clarendon Lab, Atmospher Ocean & Planetary Phys, Parks Rd, Oxford OX1 3PU, England. [Teanby, N. A.] Univ Bristol, Sch Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England. RP Molter, EM (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.; Molter, EM (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. EM edward.m.molter@nasa.gov RI Nixon, Conor/A-8531-2009; OI Nixon, Conor/0000-0001-9540-9121; Irwin, Patrick/0000-0002-6772-384X FU NASA's Planetary Atmospheres program; NASA's Planetary Astronomy program FX This research was supported by NASA's Planetary Atmospheres and Planetary Astronomy programs. NR 43 TC 0 Z9 0 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD AUG PY 2016 VL 152 IS 2 AR 42 DI 10.3847/0004-6256/152/2/42 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT9KG UT WOS:000381817500015 ER PT J AU Prsa, A Harmanec, P Torres, G Mamajek, E Asplund, M Capitaine, N Christensen-Dalsgaard, J Depagne, E Haberreiter, M Hekker, S Hilton, J Kopp, G Kostov, V Kurtz, DW Laskar, J Mason, BD Milone, EF Montgomery, M Richards, M Schmutz, W Schou, J Stewart, SG AF Prsa, Andrej Harmanec, Petr Torres, Guillermo Mamajek, Eric Asplund, Martin Capitaine, Nicole Christensen-Dalsgaard, Jorgen Depagne, Eric Haberreiter, Margit Hekker, Saskia Hilton, James Kopp, Greg Kostov, Veselin Kurtz, Donald W. Laskar, Jacques Mason, Brian D. Milone, Eugene F. Montgomery, Michele Richards, Mercedes Schmutz, Werner Schou, Jesper Stewart, Susan G. TI NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: fundamental parameters; standards; stars: fundamental parameters; stars: general; Sun: fundamental parameters ID STELLAR ASTROPHYSICS MESA; STARS; CONSTANTS; MODULES; PARAMETERS; ACCURACY; BINARIES; SET AB In this brief communication we provide the rationale for. and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards. fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion. C1 [Prsa, Andrej] Villanova Univ, Dept Astrophys & Planetary Sci, 800 Lancaster Ave, Villanova, PA 19085 USA. [Harmanec, Petr] Charles Univ Prague, Fac Math & Phys, Astron Inst, V Holesovickach 2, CZ-18000 Prague 8, Czech Republic. [Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Mamajek, Eric] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Asplund, Martin] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Capitaine, Nicole] Univ Paris 04, PSL Res Univ, Observ Paris, SYRTE,CNRS,UPMC,LNE, 61 Ave Observ, F-75014 Paris, France. [Christensen-Dalsgaard, Jorgen] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Depagne, Eric] South African Astron Observ, POB 9 Observ, Cape Town, South Africa. [Depagne, Eric] Southern African Large Telescope, POB 9 Observ, Cape Town, South Africa. [Haberreiter, Margit; Schmutz, Werner] World Radiat Ctr, Phys Meteorol Observ Davos, Dorfstr 33, Davos, Switzerland. [Hekker, Saskia] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [Hekker, Saskia] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Hilton, James; Mason, Brian D.; Stewart, Susan G.] US Naval Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA. [Kopp, Greg] Lab Atmospher & Space Phys, 1234 Innovat Dr, Boulder, CO 80303 USA. [Kostov, Veselin] NASA, Goddard Space Flight Ctr, Mail Code 665, Greenbelt, MD 20771 USA. [Kurtz, Donald W.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Laskar, Jacques] UPMC, Observ Paris, CNRS, ASD IMCCE,PSL,UMR8028, 77 Ave Denfert Rochereau, F-75014 Paris, France. [Milone, Eugene F.] Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. [Montgomery, Michele] Univ Cent Florida, Dept Phys, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. [Richards, Mercedes] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schou, Jesper] Max Planck Inst Solar Syst Res, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. RP Prsa, A (reprint author), Villanova Univ, Dept Astrophys & Planetary Sci, 800 Lancaster Ave, Villanova, PA 19085 USA. RI Schmutz, Werner/B-4153-2014; OI Schmutz, Werner/0000-0003-1159-5639; Christensen-Dalsgaard, Jorgen/0000-0001-5137-0966 FU Villanova University; Czech Science Foundation [P209/10/0715, GA15-02112S]; NSF [AST-1509375]; NSF AST award [1313029]; NASA's NExSS program; Danish National Research Foundation [DNRF106]; European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC [338251]; European Community [313188] FX We kindly acknowledge discussions with Philip Bennett, Wolfgang Finsterle, William Folkner, and Hugh Hudson. We further acknowledge remarkable work by Dr. Allen, Dr. Cox, and collaborators on "Astrophysical Quantities." A.P. acknowledges support by Villanova University's Summer Fellowship grant. The research of P.H. was supported by grants P209/10/0715 and GA15-02112S of the Czech Science Foundation. G. T. acknowledges partial support from NSF award AST-1509375. E.M. acknowledges support from NSF AST award 1313029 and NASA's NExSS program. J.C.-D. acknowledges funding for the Stellar Astrophysics Centre that is provided by The Danish National Research Foundation (Grant DNRF106). S.H. acknowledges funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 338251 (StellarAges). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 313188 (SOLID, http://projects.pmodwrc.ch/solid/). NR 29 TC 9 Z9 9 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD AUG PY 2016 VL 152 IS 2 AR 41 DI 10.3847/0004-6256/152/2/41 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT9KG UT WOS:000381817500014 ER PT J AU Rebull, LM Carlberg, JK Gibbs, JC Deeb, JE Larsen, E Black, DV Altepeter, S Bucksbee, E Cashen, S Clarke, M Datta, A Hodgson, E Lince, M AF Rebull, Luisa M. Carlberg, Joleen K. Gibbs, John C. Deeb, J. Elin Larsen, Estefania Black, David V. Altepeter, Shailyn Bucksbee, Ethan Cashen, Sarah Clarke, Matthew Datta, Ashwin Hodgson, Emily Lince, Megan TI ON INFRARED EXCESSES ASSOCIATED WITH LI-RICH K GIANTS (vol 150, 123, 2015) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Rebull, Luisa M.] CALTECH, SSC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Rebull, Luisa M.] CALTECH, Infrared Sci Arch IRSA, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Carlberg, Joleen K.] NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. [Gibbs, John C.; Cashen, Sarah; Datta, Ashwin; Hodgson, Emily; Lince, Megan] Glencoe High Sch, 2700 NW Glencoe Rd, Hillsboro, OR 97124 USA. [Deeb, J. Elin] Bear Creek High Sch, 9800 W Dartmouth Pl, Lakewood, CO 80227 USA. [Larsen, Estefania; Altepeter, Shailyn; Bucksbee, Ethan; Clarke, Matthew] Millard South High Sch, 14905 Q St, Omaha, NE 68137 USA. [Black, David V.] Walden Sch Liberal Arts, 4230 N Univ Ave, Provo, UT 84604 USA. RP Rebull, LM (reprint author), CALTECH, SSC, 1200 E Calif Blvd, Pasadena, CA 91125 USA.; Rebull, LM (reprint author), CALTECH, Infrared Sci Arch IRSA, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM rebull@ipac.caltech.edu OI Rebull, Luisa/0000-0001-6381-515X NR 1 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD AUG PY 2016 VL 152 IS 2 AR 52 DI 10.3847/0004-6256/152/2/52 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT9KG UT WOS:000381817500025 ER PT J AU Benner, DC Devi, VM Sung, K Brown, LR Miller, CE Payne, VH Drouin, BJ Yu, SS Crawford, TJ Mantz, AW Smith, MAH Gamache, RR AF Benner, D. Chris Devi, V. Malathy Sung, Keeyoon Brown, Linda R. Miller, Charles E. Payne, Vivienne H. Drouin, Brian J. Yu, Shanshan Crawford, Timothy J. Mantz, Arlan W. Smith, Mary Ann H. Gamache, Robert R. TI Line parameters including temperature dependences of air- and self-broadened line shapes of (CO2)-C-12-O-16: 2.06-mu m region SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE CO2; Lorentz widths; Pressure shifts; Temperature dependences; Spectral line shapes; Relaxation matrix element coefficients; Speed dependence ID MOLECULAR SPECTROSCOPIC DATABASE; PRESSURE SHIFT COEFFICIENTS; CO2 RETRIEVAL ALGORITHM; MU-M REGIONS; ATMOSPHERIC APPLICATIONS; SPEED DEPENDENCE; 4750-7000 CM(-1); HALF-WIDTH; DATA-BANK; INTENSITIES AB This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-mu m spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum non-linear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% C-13-enriched CO2 and fifteen spectra of mixtures of C-12-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two (CO2)-C-13 spectra the pressures were similar to 10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (X-co2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014. (C) 2016 Elsevier Inc. All rights reserved. C1 [Benner, D. Chris; Devi, V. Malathy] Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. [Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mantz, Arlan W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Smith, Mary Ann H.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Gamache, Robert R.] Univ Massachusetts, Off Acad Affairs, Student Affairs, Int Relat, One Beacon St, Boston, MA 02108 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM Malathy.d.venkataraman@nasa.gov RI Yu, Shanshan/D-8733-2016; Sung, Keeyoon/I-6533-2015 FU National Science Foundation [ATM-0338475, AGS-1156862]; JPL FX Part of the material related to Kitt Peak measurements applied in this investigation was based upon work supported by the National Science Foundation under Grant # ATM-0338475 to the College of William and Mary. The recent study involving the low temperature measurements was supported by a Research Grant to the College of William and Mary for the OCO-2 mission through JPL. The research at the Jet Propulsion Laboratory (JPL), California Institute of Technology, Connecticut College and NASA Langley Research Center was performed under contracts and cooperative agreements with the National Aeronautics and Space Administration.; One of the authors, RRG, was supported by the National Science Foundation through Grant # AGS-1156862. DCB and VMD acknowledge the help provided by Emily M. Nugent, a former student of the College of William and Mary. NR 70 TC 6 Z9 6 U1 5 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD AUG PY 2016 VL 326 BP 21 EP 47 DI 10.1016/j.jms.2016.02.012 PG 27 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA DT4KH UT WOS:000381448100005 ER PT J AU Chamberlin, PC AF Chamberlin, P. C. TI Measuring Solar Doppler Velocities in the He II 30.38 nm Emission Using the EUV Variability Experiment (EVE) SO SOLAR PHYSICS LA English DT Article DE Flares, dynamics; Flares, spectrum; Instrumentation and data management; Solar irradiance; Spectrum, ultraviolet ID IRRADIANCE; FLARES; MODELS; PLASMA; MARS AB The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has provided unprecedented measurements of the solar EUV irradiance at high temporal cadence with good spectral resolution and range since May 2010. The main purpose of EVE was to connect the Sun to the Earth by providing measurements of the EUV irradiance as a driver for space weather and Living With a Star studies, but after launch the instrument has demonstrated the significance of its measurements in contributing to studies looking at the sources of solar variability for pure solar physics purposes. This paper expands upon previous findings that EVE can in fact measure wavelength shifts during solar eruptive events and therefore provide Doppler velocities for plasma at all temperatures throughout the solar atmosphere from the chromosphere to hot flaring temperatures. This process is not straightforward as EVE was not designed or optimized for these types of measurements. In this paper we describe the many detailed instrumental characterizations needed to eliminate the optical effects in order to provide an absolute baseline for the Doppler shift studies. An example is given of a solar eruption on 7 September 2011 (SOL2011-09-07), associated with an X1.2 flare, where EVE Doppler analysis shows plasma ejected from the Sun in the He II 30.38 nm emission at a velocity of almost 120 kms(-1) along the line-of-sight. C1 [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Div, Greenbelt, MD 20771 USA. RP Chamberlin, PC (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Div, Greenbelt, MD 20771 USA. EM phillip.c.chamberlin@nasa.gov RI Chamberlin, Phillip/C-9531-2012 OI Chamberlin, Phillip/0000-0003-4372-7405 FU Solar Dynamics Observatory project at NASA's Goddard Space Flight Center FX This work is supported through Solar Dynamics Observatory project funding at NASA's Goddard Space Flight Center. The author would like to acknowledge the SDO and EVE operations teams that provided the maneuvers and calibration support necessary for this analysis. NR 22 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD AUG PY 2016 VL 291 IS 6 BP 1665 EP 1679 DI 10.1007/s11207-016-0931-0 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU3EP UT WOS:000382093900006 ER PT J AU Balakumar, P Kegerise, M AF Balakumar, P. Kegerise, Michael TI Roughness-Induced Transition in a Supersonic Boundary Layer SO AIAA JOURNAL LA English DT Article ID TOLLMIEN-SCHLICHTING WAVES; ELEMENT; INSTABILITY; EVOLUTION AB Direct numerical simulation is used to investigate the transition induced by three-dimensional isolated roughness elements in a supersonic boundary layer at a freestream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness element, and the other is a diamond planform roughness element. The mean flow calculations show that the roughness element induces counter-rotating streamwise vortices downstream of the roughness element. These vortices persist for a long distance downstream, lift the low-momentum fluid from the near-wall region, and place it near the outer part of the boundary layer. This forms highly inflectional boundary-layer profiles. These observations agree with recent experimental observations. The receptivity calculations show that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond-shaped roughness element are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square-shaped roughness element. C1 [Balakumar, P.; Kegerise, Michael] NASA, Langley Res Ctr, Flow Phys & Control Branch, Hampton, VA 23681 USA. RP Balakumar, P (reprint author), NASA, Langley Res Ctr, Flow Phys & Control Branch, Hampton, VA 23681 USA. NR 34 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD AUG PY 2016 VL 54 IS 8 BP 2322 EP 2337 DI 10.2514/1.J054632 PG 16 WC Engineering, Aerospace SC Engineering GA DT2EI UT WOS:000381293200011 ER PT J AU Busa, KM Rice, BE McDaniel, JC Goyne, CP Rockwell, RD Fulton, JA Edwards, JR Diskin, GS AF Busa, Kristin M. Rice, Brian E. McDaniel, James C. Goyne, Christopher P. Rockwell, Robert D. Fulton, Jesse A. Edwards, Jack R. Diskin, Glenn S. TI Scramjet Combustion Efficiency Measurement via Tomographic Absorption Spectroscopy and Particle Image Velocimetry SO AIAA JOURNAL LA English DT Article ID DUAL-MODE SCRAMJET; DIODE-LASER ABSORPTION; PERFORMANCE AB The combustion efficiency of a scramjet is a metric that evaluates the overall performance of the engine. Until recently, combustion efficiency was measured using indirect approaches such as a one-dimensional control volume calculation or a calorimeter and wall pressure tap measurements. A novel nonintrusive direct approach for the measurement of combustion efficiency is presented that combines the optical diagnostic techniques tunable diode laser absorption tomography and stereoscopic particle image velocimetry. Experimental results are presented for measurements of the University of Virginia's Supersonic Combustion Facility in both the scram and ram-modes of operation. The tunablediode-laser-absorption-tomography/stereoscopic-particle-image-velocimetry method directly measures the converted hydrogen (via water vapor) mass flow rate exiting the dual-mode scramjet and compares this to the facility-measured injected hydrogen fuel mass flow rate. A complementary computational fluid dynamics study was performed and results are available for the scram-mode operating condition. The results reported show excellent agreement between the tunable-diode-laser-absorption-tomography/stereoscopic-particle-image-velocimetry-measured combustion efficiency and the computational-fluid-dynamics-predicted combustion efficiency for the scram-mode of operation, which are both near 99%. The tunable-diode-laser-absorption-tomography/stereoscopic-particle-image-velocimetry-measured combustion efficiency for the ram-mode of operation is shown to be lower than that of the scram-mode operation: at 79%. C1 [Busa, Kristin M.] US Air Force, Res Lab, High Speed Syst Div, AFRL RQHF, 2130 Eighth Street, Wright Patterson AFB, OH 45433 USA. [Rice, Brian E.] US Air Force, Res Lab, AFRL RQHX, High Speed Syst Div, 676 Second Street, Arnold AFB, TN 37389 USA. [McDaniel, James C.; Goyne, Christopher P.; Rockwell, Robert D.] Univ Virginia, Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Fulton, Jesse A.] Sandia Natl Labs, Aerosp Syst Anal, Mail Stop 1162,1515 Eubank, Albuquerque, NM 87185 USA. [Edwards, Jack R.] North Carolina State Univ, Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Diskin, Glenn S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Mail Stop 483, Hampton, VA 23681 USA. RP Busa, KM (reprint author), US Air Force, Res Lab, High Speed Syst Div, AFRL RQHF, 2130 Eighth Street, Wright Patterson AFB, OH 45433 USA. FU National Center for Hypersonic Combined Cycle Propulsion grant [FA9550-09-1-0611]; U.S. Air Force Office of Scientific Research; NASA [NNL11AB32P]; National Science Foundation FX This research was supported by the National Center for Hypersonic Combined Cycle Propulsion grant FA9550-09-1-0611, which was supported by NASA and the U.S. Air Force Office of Scientific Research (Richard Gaffney, Aaron Auslender, and Chiping Li as Technical Monitors); and by NASA contract NNL11AB32P (Richard Gaffney as Technical Monitor). K.M. Busa would like to acknowledge fellowship support from the National Science Foundation. The authors also thank Roger Reynolds for operation of the University of Virginia's Supersonic Combustion Facility and fabrication of the tunable diode laser absorption tomography hardware. NR 24 TC 1 Z9 1 U1 3 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD AUG PY 2016 VL 54 IS 8 BP 2463 EP 2471 DI 10.2514/1.J054662 PG 9 WC Engineering, Aerospace SC Engineering GA DT2EI UT WOS:000381293200021 ER PT J AU Sirbu, D Kim, Y Kasdin, NJ Vanderbei, RJ AF Sirbu, Dan Kim, Yunjong Kasdin, N. Jeremy Vanderbei, Robert J. TI Diffraction-based sensitivity analysis for an external occulter laboratory demonstration SO APPLIED OPTICS LA English DT Article ID DENSITY-FUNCTION; PLANETS AB An external flower-shaped occulter flying in formation with a space telescope can theoretically provide sufficient starlight suppression to enable direct imaging of an Earth-like planet. Occulter shapes are scaled to enable experimental validation of their performance at laboratory dimensions. Previous experimental results have shown promising performance but have not realized the full theoretical potential of occulter designs. Here, we develop a two-dimensional diffraction model for optical propagations for occulters incorporating experimental errors. We perform a sensitivity analysis, and comparison with experimental results from a scaled-occulter testbed validates the optical model to the 10(-10) contrast level. The manufacturing accuracy along the edge of the occulter shape is identified as the limiting factor to achieving the theoretical potential of the occulter design. This hypothesis is experimentally validated using a second occulter mask manufactured with increased edge feature accuracy and resulting in a measured contrast level approaching the 10(-12) level-a better than one order of magnitude improvement in performance. (C) 2016 Optical Society of America. C1 [Sirbu, Dan; Kim, Yunjong; Kasdin, N. Jeremy; Vanderbei, Robert J.] Princeton Univ, High Contrast Imaging Lab, Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Sirbu, Dan] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. RP Sirbu, D (reprint author), Princeton Univ, High Contrast Imaging Lab, Mech & Aerosp Engn, Princeton, NJ 08544 USA.; Sirbu, D (reprint author), NASA, Ames Res Ctr, Mountain View, CA 94035 USA. EM dan.sirbu@nasa.gov FU National Aeronautics and Space Administration (NASA) [NNX09AB97G]; Technology Demonstration for Exoplanet Missions grant [NNX14AQ63G]; NASA Postdoctoral Program Fellowship; California Institute of Technology (Caltech) [1430187]; Natural Sciences and Engineering Research Council of Canada (NSERC); U.S. Office of Naval Research (ONR) [N000141612162] FX National Aeronautics and Space Administration (NASA) (NNX09AB97G, Earth & Space Science Fellowship), a Technology Demonstration for Exoplanet Missions grant (NNX14AQ63G), and a NASA Postdoctoral Program Fellowship; California Institute of Technology (Caltech) (1430187); Natural Sciences and Engineering Research Council of Canada (NSERC); U.S. Office of Naval Research (ONR) (N000141612162). NR 31 TC 0 Z9 0 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD AUG 1 PY 2016 VL 55 IS 22 BP 6083 EP 6094 DI 10.1364/AO.55.006083 PG 12 WC Optics SC Optics GA DS4HP UT WOS:000380742300036 PM 27505392 ER PT J AU Leon, JJD Norris, KJ Hartnett, RJ Garrett, MP Tompa, GS Kobayashi, NP AF Leon, Juan J. Diaz Norris, Kate J. Hartnett, Ryan J. Garrett, Matthew P. Tompa, Gary S. Kobayashi, Nobuhiko P. TI Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID INDIUM-PHOSPHIDE NANOWIRES; SILICON NANOWIRES; THERMAL-CONDUCTIVITY; SOLAR-CELLS; GROWTH; PERFORMANCE; EFFICIENCY; TRANSPORT; SHELL; CORE AB Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Delta T - T-hot - T-cold, T-hot: hot side temperature, T-cold: cold side temperature) with respect to the average temperature (T). While the resistance of TE devices changes as Delta T and/or T change, the current-voltage (I-V) characteristics have consistently been shown to remain linear, which clips generated electric power (P-gen) within the given open-circuit voltage (V-OC) and short-circuit current (I-SC). This P-gen clipping is altered when an appropriate nonlinearity is introduced to the I-V characteristics-increasing P-gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I-V characteristics. In this paper, the concept of a unique TE device with nonlinear I-V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I-V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P-gen that is more than 25 times larger than those of comparable devices with linear I-V characteristics. The plausible causes of the nonlinear I-V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P-gen of TE devices made of semiconductors. C1 [Leon, Juan J. Diaz; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Leon, Juan J. Diaz; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, NASA Ames Res Ctr, Nanostruct Energy Convers Technol & Res NECTAR, Adv Studies Labs, Moffett Field, CA 94035 USA. [Tompa, Gary S.] Struct Mat Ind Inc, Piscataway, NJ USA. RP Leon, JJD (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA.; Leon, JJD (reprint author), Univ Calif Santa Cruz, NASA Ames Res Ctr, Nanostruct Energy Convers Technol & Res NECTAR, Adv Studies Labs, Moffett Field, CA 94035 USA. EM jdiazleo@ucsc.edu FU NASA [SBIR NNX11CE14P]; National Science Foundation Graduate Research Fellowship [DGE-0809125]; Semiconductor Research Corporation CSR fund FX This work was supported by NASA SBIR NNX11CE14P. The authors are grateful to HP laboratories and the MACS facility (Moffett Field, California) at Advanced Studies Laboratories, University of California Santa Cruz, and NASA Ames Research Center for continuous support on analytical equipment. This material is based on work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0809125. Support by Semiconductor Research Corporation CSR fund (Dr. Victor Zhirnov) is also highly appreciated. NR 47 TC 0 Z9 0 U1 9 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD AUG PY 2016 VL 122 IS 8 AR 741 DI 10.1007/s00339-016-0260-z PG 9 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DS3FC UT WOS:000380667500027 ER PT J AU Cowperthwaite, PS Berger, E Soares-Santos, M Annis, J Brout, D Brown, DA Buckley-Geer, E Cenko, SB Chen, HY Chornock, R Diehl, HT Doctor, Z Drlica-Wagner, A Drout, MR Farr, B Finley, DA Foley, RJ Fong, W Fox, DB Frieman, J Garcia-Bellido, J Gill, MSS Gruendl, RA Herner, K Holz, DE Kasen, D Kessler, R Lin, H Margutti, R Marriner, J Matheson, T Metzger, BD Neilsen, EH Quataert, E Rest, A Sako, M Scolnic, D Smith, N Sobreira, F Strampelli, GM Villar, VA Walker, AR Wester, W Williams, PKG Yanny, B Abbott, TMC Abdalla, FB Allam, S Armstrong, R Bechtol, K Benoit-Levy, A Bertin, E Brooks, D Burke, DL Rosell, AC Kind, MC Carretero, J Castander, FJ Cunha, CE D'Andrea, CB da Costa, LN Desai, S Dietrich, JP Evrard, AE Neto, AF Fosalba, P Gerdes, DW Giannantonio, T Goldstein, DA Gruen, D Gutierrez, G Honscheid, K James, DJ Johnson, MWG Johnson, MD Krause, E Kuehn, K Kuropatkin, N Lima, M Maia, MAG Marshall, JL Menanteau, F Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Sanchez, E Scarpine, V Sevilla-Noarbe, I Smith, RC Suchyta, E Tarle, G Thomas, D Thomas, RC Tucker, DL Weller, J AF Cowperthwaite, P. S. Berger, E. Soares-Santos, M. Annis, J. Brout, D. Brown, D. A. Buckley-Geer, E. Cenko, S. B. Chen, H. Y. Chornock, R. Diehl, H. T. Doctor, Z. Drlica-Wagner, A. Drout, M. R. Farr, B. Finley, D. A. Foley, R. J. Fong, W. Fox, D. B. Frieman, J. Garcia-Bellido, J. Gill, M. S. S. Gruendl, R. A. Herner, K. Holz, D. E. Kasen, D. Kessler, R. Lin, H. Margutti, R. Marriner, J. Matheson, T. Metzger, B. D. Neilsen, E. H., Jr. Quataert, E. Rest, A. Sako, M. Scolnic, D. Smith, N. Sobreira, F. Strampelli, G. M. Villar, V. A. Walker, A. R. Wester, W. Williams, P. K. G. Yanny, B. Abbott, T. M. C. Abdalla, F. B. Allam, S. Armstrong, R. Bechtol, K. Benoit-Levy, A. Bertin, E. Brooks, D. Burke, D. L. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Castander, F. J. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Dietrich, J. P. Evrard, A. E. Fausti Neto, A. Fosalba, P. Gerdes, D. W. Giannantonio, T. Goldstein, D. A. Gruen, D. Gutierrez, G. Honscheid, K. James, D. J. Johnson, M. W. G. Johnson, M. D. Krause, E. Kuehn, K. Kuropatkin, N. Lima, M. Maia, M. A. G. Marshall, J. L. Menanteau, F. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Sanchez, E. Scarpine, V. Sevilla-Noarbe, I. Smith, R. C. Suchyta, E. Tarle, G. Thomas, D. Thomas, R. C. Tucker, D. L. Weller, J. CA DES Collaboration TI A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; catalogs; gravitational waves; stars: neutron; surveys ID ENERGY CAMERA SEARCH; FOLLOW-UP; SUPERNOVA RATES; IA SUPERNOVAE; GW150914; CURVES; PHOTOMETRY; PAN-STARRS1; AFTERGLOWS; LMC AB We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2-24 days after the GW detection. We achieve 5 sigma point-source limiting magnitudes of i approximate to 21.7 and z approximate to 21.5, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with greater than or similar to 3 sigma significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of i - z approximate to 0.3 mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations. C1 [Cowperthwaite, P. S.; Berger, E.; Drout, M. R.; Villar, V. A.; Williams, P. K. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Soares-Santos, M.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Drlica-Wagner, A.; Finley, D. A.; Frieman, J.; Herner, K.; Lin, H.; Marriner, J.; Neilsen, E. H., Jr.; Wester, W.; Yanny, B.; Allam, S.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Tucker, D. L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Brout, D.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Brown, D. A.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Chen, H. Y.; Doctor, Z.; Frieman, J.; Kessler, R.; Scolnic, D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Chornock, R.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Clippinger Lab 251B, Athens, OH 45701 USA. [Farr, B.; Holz, D. E.] Univ Chicago, Dept Astron & Astrophys, Dept Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Farr, B.; Holz, D. E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Foley, R. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Foley, R. J.; Gruendl, R. A.; Kind, M. Carrasco; Menanteau, F.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Fong, W.; Smith, N.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Fox, D. B.] Penn State Univ, Ctr Gravitat Wave & Particle Astrophys, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, 525 Davey Lab, University Pk, PA 16802 USA. [Garcia-Bellido, J.] Univ Autonoma Madrid, CSIC, Inst Fis Teor UAM, E-28049 Madrid, Spain. [Burke, D. L.; Cunha, C. E.; Gruen, D.; Krause, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Gill, M. S. S.; Burke, D. L.; Gruen, D.; Reil, K.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Gruendl, R. A.; Kind, M. Carrasco; Johnson, M. W. G.; Johnson, M. D.; Menanteau, F.] Natl Ctr Supercomputing Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94704 USA. [Kasen, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94704 USA. [Kasen, D.; Goldstein, D. A.; Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Margutti, R.] NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Metzger, B. D.] Columbia Univ, Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA. [Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Rest, A.; Strampelli, G. M.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Sobreira, F.] Univ Estadual Paulista, Fundamental Res Inst Fis Teor, ICTP South Amer Inst, Sao Paulo, Brazil. [Sobreira, F.; Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, Rio De Janeiro, RJ, Brazil. [Walker, A. R.; Abbott, T. M. C.; Brooks, D.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Benoit-Levy, A.; Carnero Rosell, A.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bechtol, K.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Benoit-Levy, A.; Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carretero, J.; Castander, F. J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Barcelona, Spain. [D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Evrard, A. E.; Gerdes, D. W.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Suchyta, E.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Giannantonio, T.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Honscheid, K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Cowperthwaite, P. S.; Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. RP Cowperthwaite, PS (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.; Cowperthwaite, PS (reprint author), Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. EM pcowpert@cfa.harvard.edu RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; OI Ogando, Ricardo/0000-0003-2120-1154; Cowperthwaite, Philip/0000-0002-2478-6939; Garcia-Bellido, Juan/0000-0002-9370-8360; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658; Neilsen, Eric/0000-0002-7357-0317 FU NSF through the Graduate Research Fellowship Program [DGE1144152]; NSF [AST-1518052, AST-1138766]; Alfred P. Sloan Foundation; NSF CAREER [PHY-1151836]; Kavli Institute for Cosmological Physics at the University of Chicago through NSF [PHY-1125897]; FAS Division of Science, Research Computing Group at Harvard University; National Aeronautics and Space Administration; DOE; NSF (USA); MEC/MICINN/MINECO (Spain); STFC (UK); HEFCE (UK); MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; ERC under the EU's 7th Framework Programme [ERC 240672, 291329, 306478] FX P.S.C. is grateful for support provided by the NSF through the Graduate Research Fellowship Program, grant DGE1144152. R. J.F. gratefully acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan Foundation. D.E.H. was supported by NSF CAREER grant PHY-1151836. He also acknowledges support from the Kavli Institute for Cosmological Physics at the University of Chicago through NSF grant PHY-1125897 as well as an endowment from the Kavli Foundation.r This research uses services or data provided by the NOAO Science Archive. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. The computations in this Letter were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Light curve data for PS15cdi were obtained from The Open Supernova Catalog (Guillochon et al. 2016). Some of the results in this Letter have been derived using the HEALPix package (Gorski et al. 2005).r Funding for the DES Projects has been provided by the DOE and NSF (USA), MEC/MICINN/MINECO (Spain), STFC (UK), HEFCE (UK). NCSA (UIUC), KICP (U. Chicago), CCAPP (Ohio State), MIFPA (Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), DFG (Germany) and the Collaborating Institutions in the Dark Energy Survey.r The DES Data Management System is supported by the NSF under grant number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the ERC under the EU's 7th Framework Programme including grants ERC 240672, 291329, and 306478. NR 45 TC 3 Z9 3 U1 5 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2016 VL 826 IS 2 AR L29 DI 10.3847/2041-8205/826/2/L29 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2TN UT WOS:000381334800013 ER PT J AU Skemer, AJ Morley, CV Allers, KN Geballe, TR Marley, MS Fortney, JJ Faherty, JK Bjoraker, GL Lupu, R AF Skemer, Andrew J. Morley, Caroline V. Allers, Katelyn N. Geballe, Thomas R. Marley, Mark S. Fortney, Jonathan J. Faherty, Jacqueline K. Bjoraker, Gordon L. Lupu, Roxana TI THE FIRST SPECTRUM OF THE COLDEST BROWN DWARF SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs ID EXTRASOLAR GIANT PLANETS; T-DWARFS; THERMAL STRUCTURE; WATER CLOUDS; ATMOSPHERES; JUPITERS; CHEMISTRY; DISCOVERY; DEUTERIUM; COLORS AB The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs-near-infrared spectroscopy-is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 mu m spectrum, the same bandpass long used to study Jupiter's deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter's. The spectrum quality is high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter's atmosphere, but now on an extrasolar world. C1 [Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. [Allers, Katelyn N.] Bucknell Univ, 701 Moore Ave, Lewisburg, PA 17837 USA. [Geballe, Thomas R.] Gemini Observ, 670 North Aohoku Pl, Hilo, HI 96720 USA. [Marley, Mark S.; Lupu, Roxana] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Faherty, Jacqueline K.] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. [Faherty, Jacqueline K.] Natl Museum Amer Hist, Cent Pk West & 79th St, New York, NY 10024 USA. [Bjoraker, Gordon L.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Skemer, AJ (reprint author), Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. OI Marley, Mark/0000-0002-5251-2943 NR 37 TC 2 Z9 2 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2016 VL 826 IS 2 AR L17 DI 10.3847/2041-8205/826/2/L17 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2TN UT WOS:000381334800001 ER PT J AU Walton, DJ Middleton, MJ Pinto, C Fabian, AC Bachetti, M Barret, D Brightman, M Fuerst, F Harrison, FA Miller, JM Stern, D AF Walton, D. J. Middleton, M. J. Pinto, C. Fabian, A. C. Bachetti, M. Barret, D. Brightman, M. Fuerst, F. Harrison, F. A. Miller, J. M. Stern, D. TI AN IRON K COMPONENT TO THE ULTRAFAST OUTFLOW IN NGC 1313 X-1 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE black hole physics; X-rays: binaries; X-rays: individual (NGC 1313 X-1) ID X-RAY SOURCES; XMM-NEWTON OBSERVATIONS; MASS BLACK-HOLES; HOLMBERG IX X-1; BROAD-BAND; DISK WIND; ACCRETION DISKS; EMISSION-LINE; NEUTRON-STAR; NUSTAR AB We present the detection of an absorption feature at E = 8.77(+0.06)(+0.05) keV in the combined X-ray spectrum of the ultraluminous X-ray source NGC 1313 X-1 observed with XMM-Newton and NuSTAR, significant at the 3 sigma level. If associated with blueshifted ionized iron, the implied outflow velocity is similar to 0.2c for Fe XXVI, or similar to 0.25c for Fe XXV. These velocities are similar to the ultrafast outflow seen in absorption recently discovered in this source at lower energies by XMM-Newton, and we therefore conclude that this is an iron component to the same outflow. Photoionization modeling marginally prefers the Fe XXV solution, but in either case the outflow properties appear to be extreme, potentially supporting a super-Eddington hypothesis for NGC 1313 X-1. C1 [Walton, D. J.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Walton, D. J.; Brightman, M.; Fuerst, F.; Harrison, F. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Middleton, M. J.; Pinto, C.; Fabian, A. C.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Bachetti, M.] INAF, Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, CA, Italy. [Barret, D.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Barret, D.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Miller, J. M.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 49109 USA. RP Walton, DJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.; Walton, DJ (reprint author), CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. OI Pinto, Ciro/0000-0003-2532-7379 FU STFC Ernest Rutherford fellowship; ERC Advanced Grant [340442]; French Space Agency (CNES); NASA; ESA Member States FX The authors would like to thank the anonymous referee for their extremely timely and positive feedback, which helped improve the final manuscript. M.J.M. acknowledges support from an STFC Ernest Rutherford fellowship, C.P. and A.C.F. acknowledge support from ERC Advanced Grant 340442, and D.B. acknowledges financial support from the French Space Agency (CNES). This research has made use of data obtained with NuSTAR, a project led by Caltech, funded by NASA, and managed by NASA/JPL, and has utilized the NUSTARDAS software package, jointly developed by the ASDC (Italy) and Caltech (USA). This research has also made use of data obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States. NR 43 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2016 VL 826 IS 2 AR L26 DI 10.3847/2041-8205/826/2/L26 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2TN UT WOS:000381334800010 ER PT J AU Chang, KE Hsiao, TC Hsu, NC Lin, NH Wang, SH Liu, GR Liu, CY Lin, TH AF Chang, Kuo-En Hsiao, Ta-Chih Hsu, N. Christina Lin, Neng-Huei Wang, Sheng-Hsiang Liu, Gin-Rong Liu, Chian-Yi Lin, Tang-Huang TI Mixing weight determination for retrieving optical properties of polluted dust with MODIS and AERONET data SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE mixing weight; dust-soot aerosols; MODIS; AOD; SSA; AERONET; spatial distribution ID AEROSOL PROPERTIES; SCATTERING PROPERTIES; SURFACE REFLECTIVITY; MISR AEROSOL; PARTICLES; EMISSIONS; PRODUCTS; EGYPT; RANGE; DEPTH AB In this study, an approach in determining effective mixing weight of soot aggregates from dust-soot aerosols is proposed to improve the accuracy of retrieving properties of polluted dusts by means of satellite remote sensing. Based on a pre-computed database containing several variables (such as wavelength, refractive index, soot mixing weight, surface reflectivity, observation geometries and aerosol optical depth (AOD)), the fan-shaped look-up tables can be drawn out accordingly for determining the mixing weights, AOD and single scattering albedo (SSA) of polluted dusts simultaneously with auxiliary regional dust properties and surface reflectivity. To validate the performance of the approach in this study, 6 cases study of polluted dusts (dust-soot aerosols) in Lower Egypt and Israel were examined with the ground-based measurements through AErosol RObotic NETwork (AERONET). The results show that the mean absolute differences could be reduced from 32.95% to 6.56% in AOD and from 2.67% to 0.83% in SSA retrievals for MODIS aerosol products when referenced to AERONET measurements, demonstrating the soundness of the proposed approach under different levels of dust loading, mixing weight and surface reflectivity. Furthermore, the developed algorithm is capable of providing the spatial distribution of the mixing weights and removing the requirement to assume that the dust plume properties are uniform. The case study further shows the spatially variant dust-soot mixing weight would improve the retrieval accuracy in AOD(mixture) and SSA(mixture) about 10.0% and 1.4% respectively. C1 [Chang, Kuo-En; Lin, Tang-Huang] Natl Cent Univ, Grad Inst Space Sci, Taoyuan 32001, Taiwan. [Hsiao, Ta-Chih] Natl Cent Univ, Grad Inst Environm Engn, Taoyuan 32001, Taiwan. [Hsu, N. Christina] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lin, Neng-Huei; Wang, Sheng-Hsiang; Liu, Gin-Rong; Liu, Chian-Yi] Natl Cent Univ, Dept Atmospher Sci, Taoyuan 32001, Taiwan. [Liu, Gin-Rong; Liu, Chian-Yi; Lin, Tang-Huang] Natl Cent Univ, Ctr Space & Remote Sensing Res, Taoyuan 32001, Taiwan. RP Lin, TH (reprint author), Natl Cent Univ, Grad Inst Space Sci, Taoyuan 32001, Taiwan.; Lin, TH (reprint author), Natl Cent Univ, Ctr Space & Remote Sensing Res, Taoyuan 32001, Taiwan. EM thlin@csrsr.ncu.edu.tw OI Liu, Chian-Yi/0000-0003-1725-4405; Hsiao, Ta-Chih/0000-0003-4103-6272 FU Taiwan Ministry of Science and Technology [MOST 103-2111-M-008-002, MOST 104-2111-M-008-007]; College of Geosciences at Texas AM University; NSF [ATM-0803779] FX This work was financially supported by the Taiwan Ministry of Science and Technology Grant MOST 103-2111-M-008-002 and MOST 104-2111-M-008-007. We are grateful to being partially supported by the College of Geosciences at Texas A&M University and NSF Grant ATM-0803779, as well as to Professor Ping Yang at Texas A&M University for providing the single-scattering properties of triaxial-ellipsoidal mineral dust in this study. NR 45 TC 0 Z9 0 U1 9 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD AUG PY 2016 VL 11 IS 8 AR 085002 DI 10.1088/1748-9326/11/8/085002 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DT9NH UT WOS:000381828300019 ER PT J AU Park, T Ganguly, S Tommervik, H Euskirchen, ES Hogda, KA Karlsen, SR Brovkin, V Nemani, RR Myneni, RB AF Park, Taejin Ganguly, Sangram Tommervik, Hans Euskirchen, Eugenie S. Hogda, Kjell-Arild Karlsen, Stein Rune Brovkin, Victor Nemani, Ramakrishna R. Myneni, Ranga B. TI Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE photosynthetically active growing season; gross primary productivity; boreal and arctic; remote sensing; climate change; AVHRR; MODIS ID GROSS PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; MONITORING VEGETATION; HIGH-LATITUDES; ECOLOGICAL RESPONSES; ARCTIC VEGETATION; DATA SET; PHENOLOGY; NDVI; AMERICA AB Monitoring and understanding climate-induced changes in the boreal and arctic vegetation is critical to aid in prognosticating their future. Weused a 33 year (1982-2014) long record of satellite observations to robustly assess changes in metrics of growing season (onset: SOS, end: EOS and length: LOS) and seasonal total gross primary productivity. Particular attention was paid to evaluating the accuracy of these metrics by comparing them to multiple independent direct and indirect growing season and productivity measures. These comparisons reveal that the derived metrics capture the spatio-temporal variations and trends with acceptable significance level (generally p < 0.05). We find that LOS has lengthened by 2.60 d dec(-1) (p < 0.05) due to an earlier onset of SOS (-1.61 d dec(-1), p < 0.05) and a delayed EOS (0.67 d dec(-1), p < 0.1) at the circumpolar scale over the past three decades. Relatively greater rates of changes in growing season were observed in Eurasia (EA) and in boreal regions than in North America (NA) and the arctic regions. However, this tendency of earlier SOS and delayed EOS was prominent only during the earlier part of the data record (1982-1999). During the later part (2000-2014), this tendency was reversed, i.e. delayed SOS and earlier EOS. As for seasonal total productivity, we find that 42.0% of northern vegetation shows a statistically significant (p < 0.1) greening trend over the last three decades. This greening translates to a 20.9% gain in productivity since 1982. In contrast, only 2.5% of northern vegetation shows browning, or a 1.2% loss of productivity. These trends in productivity were continuous through the period of record, unlike changes in growing season metrics. Similarly, we find relatively greater increasing rates of productivity in EA and in arctic regions than in NA and the boreal regions. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation during last three decades. C1 [Park, Taejin; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Ganguly, Sangram] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Tommervik, Hans] Norwegian Inst Nat Res, FRAM High North Ctr Climate & Environm, POB 6606, N-9296 Tromso, Norway. [Euskirchen, Eugenie S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA. [Hogda, Kjell-Arild; Karlsen, Stein Rune] Norut, POB 6434, N-9294 Tromso, Norway. [Brovkin, Victor] Max Planck Inst Meteorol, Hamburg, Germany. [Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Park, T (reprint author), Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. EM parktj@bu.edu RI Brovkin, Victor/C-2803-2016; Myneni, Ranga/F-5129-2012 OI Brovkin, Victor/0000-0001-6420-3198; FU NASA Earth Science Division [NNX14AP80A]; ArcticBiomass Project (Norway-USA network project - Research Council of Norway) [RCN 227064] FX This work was funded by the NASA Earth Science Division (Grant No. NNX14AP80A) and the ArcticBiomass (Grant No. RCN 227064) Project (Norway-USA network project funded by the Research Council of Norway). We gratefully acknowledge the NASA GIMMS group and FLUXNET community for sharing the invaluable datasets (i.e., NDVI3g and fair-use eddy covariance datasets, respectively) and thank Sungho Choi and Jian Bi for helpful comments and guides. NR 56 TC 1 Z9 1 U1 33 U2 42 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD AUG PY 2016 VL 11 IS 8 AR 084001 DI 10.1088/1748-9326/11/8/084001 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DT9NH UT WOS:000381828300002 ER PT J AU Sung, MK Kim, BM Baek, EH Lim, YK Kim, SJ AF Sung, Mi-Kyung Kim, Baek-Min Baek, Eun-Hyuk Lim, Young-Kwon Kim, Seong-Joong TI Arctic-North Pacific coupled impacts on the late autumn cold in North America SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE Pacific decadal oscillation; arctic warming; Arctic-midlatitude interaction ID EXTRATROPICAL SST ANOMALIES; DECADAL OSCILLATION; ATMOSPHERIC CIRCULATION; CLIMATE-CHANGE; UNITED-STATES; SEA-ICE; WINTER; HEMISPHERE; TEMPERATURE; VARIABILITY AB The Pacific decadal oscillation (PDO) is known to bring an anomalously cold (warm) period to southeastern (northwestern) North America during the cold season of its positive phase through a Rossby wave linkage. This study provides evidence that the remote connection between the North Pacific and the downstream temperature over central North America is strengthened by the warm arctic conditions over the Chukchi and East Siberian Sea, especially in the late autumn season. The modulation effect of the Arctic manifests itself as an altered Rossby wave response to a transient vorticity forcing that results from an equatorward storm track shift, which is induced collaboratively by the PDO and the warm Arctic. This observational finding is supported by two independent modeling experiments: (1) an idealized coupled GCM experiment being nudged toward the warm arctic surface condition and (2) a simple stationary wave model experiment forced by transient eddy forcing. C1 [Sung, Mi-Kyung; Kim, Baek-Min; Baek, Eun-Hyuk; Kim, Seong-Joong] Korea Polar Res Inst, Inchon, South Korea. [Lim, Young-Kwon] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Goddard Earth Sci Technol & Res,IM Syst Grp, Greenbelt, MD USA. RP Kim, BM (reprint author), Korea Polar Res Inst, Inchon, South Korea. EM bmkim@kopri.re.kr FU Korean government [KMIPA2015-2093 (PN16040)]; 'Development and Application of the Korea Polar Prediction System (KPOPS) for Climate Change and Weather Disaster' project [PE16100] FX This study was supported by KMIPA2015-2093 (PN16040) of the Korean government and 'Development and Application of the Korea Polar Prediction System (KPOPS) for Climate Change and Weather Disaster (PE16100)' project. NR 49 TC 0 Z9 0 U1 10 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD AUG PY 2016 VL 11 IS 8 AR 084016 DI 10.1088/1748-9326/11/8/084016 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DT9NH UT WOS:000381828300017 ER PT J AU Jungbluth, SP Bowers, RM Lin, HT Cowen, JP Rappe, MS AF Jungbluth, Sean P. Bowers, Robert M. Lin, Huei-Ting Cowen, James P. Rappe, Michael S. TI Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt SO ISME JOURNAL LA English DT Article ID DE-FUCA RIDGE; HYDROTHERMAL CIRCULATION; OCEANIC-CRUST; SEA-FLOOR; BASEMENT FLUIDS; EASTERN FLANK; BIOSPHERE; DIVERSITY; SEDIMENT; SUBSEAFLOOR AB Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. C1 [Jungbluth, Sean P.; Rappe, Michael S.] Univ Hawaii, Hawaii Inst Marine Biol, SOEST, POB 1346, Kaneohe, HI 96744 USA. [Jungbluth, Sean P.; Lin, Huei-Ting; Cowen, James P.] Univ Hawaii, Dept Oceanog, SOEST, Honolulu, HI 96822 USA. [Bowers, Robert M.] Univ Hawaii, NASA, Astrobiol Inst, IfA, Honolulu, HI 96822 USA. [Bowers, Robert M.] DOE Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. RP Rappe, MS (reprint author), Univ Hawaii, Hawaii Inst Marine Biol, SOEST, POB 1346, Kaneohe, HI 96744 USA. EM rappe@hawaii.edu RI Jungbluth, Sean/A-9054-2012 OI Jungbluth, Sean/0000-0001-9265-8341 FU National Science Foundation Microbial Observatories [MCB06-04014]; Schlanger Ocean Drilling Fellowship; National Science Foundation-funded Science and Technology Centers of Excellence; UH NASA Astrobiology Institute; Center for Dark Energy Biosphere Investigations (C-DEBI) [OCE-0939564]; NSF FX This study is dedicated to the memory of our friend, colleague, mentor and co-author, James P Cowen, whose determination and enthusiasm were driving forces in the adaptation of seafloor borehole observatories for microbiology. We thank the captain and crew, A Fisher, K Becker, CG Wheat and other members of the science teams on board R/V Atlantis cruises AT15-35, AT15-51, AT15-66 and AT18-07. We also thank the pilots and crew of human-occupied vehicle Alvin and remote-operated vehicle Jason II and Brian Glazer, Ryan Matsumoto, Michael Matzinger, Michelle Jungbluth, Alberto Robador, Jennifer Murphy, Chih-Chiang Hseih, Natalie Hamada, Karen Meech and Joshua Bninski for sampling, technical and other assistance. This research was supported by funding from National Science Foundation Microbial Observatories grant MCB06-04014 (to JC and MSR), a Schlanger Ocean Drilling Fellowship (to SPJ), which is part of the NSF-sponsored US Science Support Program for IODP that is administered by the Consortium for Ocean Leadership, the UH NASA Astrobiology Institute and the Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564), a National Science Foundation-funded Science and Technology Centers of Excellence. This study used samples and data provided by the Integrated Ocean Drilling Program. This is SOEST contribution 9539, HIMB contribution 1636 and C-DEBI contribution 289. NR 57 TC 1 Z9 1 U1 7 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD AUG PY 2016 VL 10 IS 8 BP 2033 EP 2047 DI 10.1038/ismej.2015.248 PG 15 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DS7JN UT WOS:000380959800020 PM 26872042 ER PT J AU Crucian, B Johnston, S Mehta, S Stowe, R Uchakin, P Quiriarte, H Pierson, D Laudenslager, ML Sams, C AF Crucian, Brian Johnston, Smith Mehta, Satish Stowe, Raymond Uchakin, Peter Quiriarte, Heather Pierson, Duane Laudenslager, Mark L. Sams, Clarence TI Acaseofpersistent skinrashandrhinitis with immune system dysregulation onboard the International Space Station SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE LA English DT Letter ID VARICELLA-ZOSTER-VIRUS; LONG-DURATION SPACEFLIGHT; EPSTEIN-BARR-VIRUS; CHRONIC STRESS; HERPES-ZOSTER; REACTIVATION; ASTRONAUTS; SALIVA; RESPONSES; FLIGHT C1 [Crucian, Brian; Pierson, Duane] NASA, Johnson Space Ctr, Biomed Res & Environm Sci, Houston, TX USA. [Johnston, Smith; Sams, Clarence] NASA, Johnson Space Ctr, Space & Clin Operat, Houston, TX USA. [Mehta, Satish; Quiriarte, Heather] JES Tech, Biomed Res & Environm Sci, Houston, TX USA. [Stowe, Raymond] Microgen Labs, Immunol Res, La Marque, TX USA. [Uchakin, Peter] Mercer Univ, Dept Internal Med, Macon, GA 31207 USA. [Laudenslager, Mark L.] Univ Colorado, Denver Anschutz Med Campus, Behav Immunol & Endocrinol Lab, Denver, CO 80202 USA. RP Crucian, B (reprint author), NASA, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM brian.crucian-1@nasa.gov OI Laudenslager, Mark/0000-0002-9815-3026 NR 23 TC 1 Z9 1 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-2198 EI 2213-2201 J9 J ALLER CL IMM-PRACT JI J. Allergy Clin. Immunol.-Pract. PD AUG PY 2016 VL 4 IS 4 BP 759 EP + DI 10.1016/j.jaip.2015.12.021 PG 12 WC Allergy; Immunology SC Allergy; Immunology GA DU0SZ UT WOS:000381916100033 PM 27036643 ER PT J AU Datiles, MB Ferris, F Ansari, RR Zigler, JS AF Datiles, Manuel B., III Ferris, Frederick, III Ansari, Rafat R. Zigler, J. Samuel, Jr. TI Re: Datiles et al.: Longitudinal study of age-related cataract using dynamic light scattering: loss of alpha-crystallin leads to nuclear cataract development (Ophthalmology 2016;123:248-54) REPLY SO OPHTHALMOLOGY LA English DT Letter C1 [Datiles, Manuel B., III; Ferris, Frederick, III] NEI, Off Clin Director, NIH, 10 Ctr Dr,Bldg 10,Room 1, Bethesda, MD 20892 USA. [Ansari, Rafat R.] NASA, Glenn Res Ctr, Cleveland, OH USA. [Zigler, J. Samuel, Jr.] Johns Hopkins Univ Hosp, Wilmer Eye Inst, Baltimore, MD 21287 USA. RP Datiles, MB (reprint author), NEI, Off Clin Director, NIH, 10 Ctr Dr,Bldg 10,Room 1, Bethesda, MD 20892 USA. EM Datilesm@nei.nih.gov NR 1 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 EI 1549-4713 J9 OPHTHALMOLOGY JI Ophthalmology PD AUG PY 2016 VL 123 IS 8 BP E48 EP E48 PG 1 WC Ophthalmology SC Ophthalmology GA DS4MC UT WOS:000380754200005 PM 27450826 ER PT J AU Naghipour, P Pineda, EJ Arnold, SM AF Naghipour, P. Pineda, E. J. Arnold, S. M. TI Simulation of Lightning-Induced Delamination in Un-protected CFRP Laminates SO APPLIED COMPOSITE MATERIALS LA English DT Article DE Lightning damage; Temperature-dependent delamination; Interlaminar damage ID COMPOSITES; MODELS AB Lightning is a major cause of damage in laminated composite aerospace structures during flight. The most significant failure mode induced by lightning is delamination, which might extend well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. Therefore, it is crucial to develop a numerical tool capable of predicting the damage zone induced from a lightning strike to minimize costly repair acreage and supplement extremely expensive lightning experiments. Herein, a detailed numerical study consisting of a multidirectional composite with user-defined, temperature-dependent, interlaminar elements subjected to a lightning strike is designed, and delamination/damage expansion is studied under specified conditions. It is observed both the size and shape of the delamination zone are strongly dependent on the assumed temperature-dependent fracture toughness; the primary parameter controlling lightning-induced delamination propagation. An accurate estimation of the fracture toughness profile is crucial in order to have a reliable prediction of the delamination zone and avoid sub-critical structural failures. C1 [Naghipour, P.] Ohio Aerosp Inst, 22800 Cedar Point Rd, Cleveland, OH 44142 USA. [Pineda, E. J.; Arnold, S. M.] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. RP Naghipour, P (reprint author), Ohio Aerosp Inst, 22800 Cedar Point Rd, Cleveland, OH 44142 USA. EM paria.naghipourghezeljeh@nasa.gov FU NASA Atmospheric Environment Safety Technologies (AEST) Project FX The authors would like to thank George Szatkowski and Kenneth Dudley from NASA LaRC for providing the experimental data used in this manuscript. This work was funded under the NASA Atmospheric Environment Safety Technologies (AEST) Project. NR 22 TC 0 Z9 0 U1 6 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-189X EI 1573-4897 J9 APPL COMPOS MATER JI Appl. Compos. Mater. PD AUG PY 2016 VL 23 IS 4 BP 523 EP 535 DI 10.1007/s10443-016-9472-9 PG 13 WC Materials Science, Composites SC Materials Science GA DS3DV UT WOS:000380664100001 ER PT J AU Galazka, JM Klocko, AD Uesaka, M Honda, S Selker, EU Freitag, M AF Galazka, Jonathan M. Klocko, Andrew D. Uesaka, Miki Honda, Shinji Selker, Eric U. Freitag, Michael TI Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3 SO GENOME RESEARCH LA English DT Article ID DNA METHYLATION; HISTONE H3; DROSOPHILA GENOME; FACULTATIVE HETEROCHROMATIN; NUCLEAR ARCHITECTURE; X-CHROMOSOME; CRASSA; CHROMATIN; GENE; YEAST AB Eukaryotic genomes are organized into chromatin domains with three-dimensional arrangements that presumably result from interactions between the chromatin constituents-proteins, DNA, and RNA-within the physical constraints of the nucleus. We used chromosome conformation capture (3C) followed by high-throughput sequencing (Hi-C) with wild-type and mutant strains of Neurospora crassa to gain insight into the role of heterochromatin in the organization and function of the genome. We tested the role of three proteins thought to be important for establishment of heterochromatin, namely, the histone H3 lysine 9 methyltransferase DIM-5, Heterochromatin Protein 1 (HP1), which specifically binds to the product of DIM-5 (trimethylated H3 lysine 9 [H3K9me3]), and DIM-3 (importin alpha), which is involved in DIM-5 localization. The average genome configuration of the wild-type strain revealed strong intra-and inter-chromosomal associations between both constitutive and facultative heterochromatic domains, with the strongest interactions among the centromeres, subtelomeres, and interspersed heterochromatin. Surprisingly, loss of either H3K9me3 or HP1 had only mild effects on heterochromatin compaction, whereas dim-3 caused more drastic changes, specifically decreasing interactions between constitutive heterochromatic domains. Thus, associations between heterochromatic regions are a major component of the chromosome conformation in Neurospora, but two widely studied key heterochromatin proteins are not necessary, implying that undefined protein factors play key roles in maintaining overall chromosome organization. C1 [Galazka, Jonathan M.; Freitag, Michael] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Klocko, Andrew D.; Selker, Eric U.] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA. [Uesaka, Miki; Honda, Shinji] Univ Fukui, Fac Med Sci, Dept Biochem & Bioinformat Sci, Fukui 9101193, Japan. [Galazka, Jonathan M.] NASA, Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA. RP Freitag, M (reprint author), Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. EM freitagm@cgrb.oregonstate.edu FU National Institute of General Medical Sciences (NIH) [GM097637, GM035690, GM093061, GM097821]; Competitive Funds in Program to Disseminate Tenure Tracking System grant, MEXT, Japan; NASA Postdoctoral Program fellowship FX We thank Tereza Ormsby for validating the Delta hpo::hph strain obtained from the Fungal Genetics Stock Center; Diana Libuda and Jackie Helm for assistance with deconvolution microscopy; Jordan Gessaman for assistance with nuclear membrane diameter statistics; and Ayumi Yokoyama for technical support. We also thank members of the Freitag and Selker laboratories for helpful comments and discussions. Funding was provided by grants from the National Institute of General Medical Sciences (NIH) to M.F. (GM097637), E.U.S. (GM035690 and GM093061), and A.D.K. (GM097821), and a Competitive Funds in Program to Disseminate Tenure Tracking System grant, MEXT, Japan, to S.H. J.M.G. was partly supported by a NASA Postdoctoral Program fellowship. NR 56 TC 3 Z9 3 U1 2 U2 3 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD AUG PY 2016 VL 26 IS 8 BP 1069 EP 1080 DI 10.1101/gr.203182.115 PG 12 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA DT8IH UT WOS:000381733000006 PM 27260477 ER PT J AU Williams, CA Gu, H MacLean, R Masek, JG Collatz, GJ AF Williams, Christopher A. Gu, Huan MacLean, Richard Masek, Jeffrey G. Collatz, G. James TI Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts SO GLOBAL AND PLANETARY CHANGE LA English DT Review DE Forest ecology and management; Carbon sequestration; Climate change; Global environmental change; Carbon balance and management ID MOUNTAIN PINE-BEETLE; WESTERN UNITED-STATES; CANADA BOREAL FORESTS; OLD-GROWTH FORESTS; CLIMATE-CHANGE; TREE MORTALITY; MANAGING FORESTS; LODGEPOLE PINE; INVENTORY DATA; HURRICANE IMPACTS AB Disturbances are a major determinant of forest carbon stocks and uptake. They generally reduce land carbon stocks but also initiate a regrowth legacy that contributes substantially to the contemporary rate of carbon stock increase in US forestlands. As managers and policy makers increasingly look to forests for climate protection and mitigation, and because of increasing concern about changes in disturbance intensity and frequency, there is a need for synthesis and integration of current understanding about the role of disturbances and other processes in governing forest carbon cycle dynamics, and the likely future of this and other sinks for atmospheric carbon. This paper aims to address that need by providing a quantitative review of the distribution, extent and carbon impacts of the major disturbances active in the US. We also review recent trends in disturbances, climate, and other global environmental changes and consider their individual and collective contributions to the US carbon budget now and in the likely future. Lastly, we identify some key challenges and opportunities for future research needed to improve current understanding, advance predictive capabilities, and inform forest management in the face of these pressures. Harvest is found to be the most extensive disturbance both in terms of area and carbon impacts, followed by fire, windthrow and bark beetles, and lastly droughts. Collectively these lead to the gross loss of about 200 Tg C y(-1) in live biomass annually across the conterminous US. At the same time, the net change in forest carbon stocks is positive (190 Tg C y(-1)), indicating not only forest resilience but also an apparently large response to growth enhancements such as fertilization by CO2 and nitrogen. Uncertainty about disturbance legacies, disturbance interactions, likely trends, and global change factors make the future of the US forest carbon sink unclear. While there is scope for management to enhance carbon sinks in US forests, tradeoffs with other values and uses are likely to significantly limit practical implementation. Continued and expanded remote sensing and field-based monitoring capabilities and manipulative experimentation are needed to improve understanding of the US forest carbon sink, and assess how disturbance processes are responding to the pressures of global environmental change. In addition, continued development and application of holistic, decision support tools that consider a range of forest values are needed to enable managers and policy makers to use the best available information for guiding forest resources now and into the future. (C) 2016 Elsevier B.V. All rights reserved. C1 [Williams, Christopher A.; Gu, Huan; MacLean, Richard] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA. [Masek, Jeffrey G.; Collatz, G. James] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA. RP Williams, CA (reprint author), Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA. RI collatz, george/D-5381-2012 FU NASA's Carbon Monitoring System program [NNH14ZDA001N-CMS, NNX14AR39G] FX We thank Timothy Horscroft and the editors of Global and Planetary Change for inviting this review. We also thank two anonymous reviewers for providing helpful critique that resulted in substantial improvements. This study was supported by NASA's Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. NR 157 TC 2 Z9 2 U1 62 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8181 EI 1872-6364 J9 GLOBAL PLANET CHANGE JI Glob. Planet. Change PD AUG PY 2016 VL 143 BP 66 EP 80 DI 10.1016/j.gloplacha.2016.06.002 PG 15 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA DS2IU UT WOS:000380594000007 ER PT J AU Hobbs, WR Massom, R Stammerjohn, S Reid, P Williams, G Meier, W AF Hobbs, William R. Massom, Rob Stammerjohn, Sharon Reid, Phillip Williams, Guy Meier, Walter TI A review of recent changes in Southern Ocean sea ice, their drivers and forcings SO GLOBAL AND PLANETARY CHANGE LA English DT Review ID WESTERN ANTARCTIC PENINSULA; LOW-FREQUENCY VARIABILITY; SURFACE MASS-BALANCE; NCEP-NCAR REANALYSES; EARTH SYSTEM MODEL; FRESH-WATER FLUX; CLIMATE-CHANGE; CMIP5 MODELS; ANNULAR MODE; WHALING RECORDS AB Over the past 37 years, satellite records show an increase in Antarctic sea ice cover that is most pronounced in the period of sea ice growth. This trend is dominated by increased sea ice coverage in the western Ross Sea, and is mitigated by a strong decrease in the Bellingshausen and Amundsen seas. The trends in sea ice areal coverage are accompanied by related trends in yearly duration. These changes have implications for ecosystems, as well as global and regional climate. In this review, we summarise the research to date on observing these trends, identifying their drivers, and assessing the role of anthropogenic climate change. Whilst the atmosphere is thought to be the primary driver, the ocean is also essential in explaining the seasonality of the trend patterns. Detecting an anthropogenic signal in Antarctic sea ice is particularly challenging for a number of reasons: the expected response is small compared to the very high natural variability of the system; the observational record is relatively short; and the ability of global coupled climate models to faithfully represent the complex Antarctic climate system is in doubt. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hobbs, William R.; Massom, Rob; Reid, Phillip] Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Private Bag 80, Hobart, Tas 7001, Australia. [Hobbs, William R.] Univ Tasmania, ARC Ctr Excellence Climate Syst Sci, IMAS, Private Bag 129, Hobart, Tas 7001, Australia. [Massom, Rob] Australian Antarctic Div, 203 Channel Highway, Kingston, Tas 7050, Australia. [Stammerjohn, Sharon] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Reid, Phillip] Australian Bur Meteorol, Ctr Australian Weather & Climate Res, Hobart, Tas, Australia. [Williams, Guy] Univ Tasmania, Inst Marine & Antarctic Studies, Private Bag 129, Hobart, Tas 7001, Australia. [Meier, Walter] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Hobbs, WR (reprint author), Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Private Bag 80, Hobart, Tas 7001, Australia. EM whobbs@utas.edu.au RI Hobbs, Will/G-5116-2014; OI Hobbs, Will/0000-0002-2061-0899; STAMMERJOHN, SHARON/0000-0002-1697-8244; Meier, Walter/0000-0003-2857-0550 FU Australian Government's Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Center (ACE CRC); National Science Foundation Office of Polar Programs Palmer Long-Term Ecological Project [ANT-1440435]; [4116] FX The authors are indebted to William de la Mare for providing his whale catch data, Kate Sinclair for the Whitehall Glacier excess deuterium record, and Holly Titchner for providing the HadISST2.2 sea ice concentration data. The authors express their gratitude to Paul Holland and an anonymous reviewer for their invaluable comments and help in improving this manuscript. Data analysis and visualisation was performed using NCL (http://dx.doi.org/10.5065/D6WD3XH5). We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Appendix A) for producing and making available their model output. For CMIP the U.S. Department of Energy's Programme for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work was supported by the Australian Government's Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Center (ACE CRC), and contributes to AAS Project 4116. SS acknowledges support and contributions from the National Science Foundation Office of Polar Programs Palmer Long-Term Ecological Project (ANT-1440435). NR 265 TC 7 Z9 7 U1 19 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8181 EI 1872-6364 J9 GLOBAL PLANET CHANGE JI Glob. Planet. Change PD AUG PY 2016 VL 143 BP 228 EP 250 DI 10.1016/j.gloplacha.2016.06.008 PG 23 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA DS2IU UT WOS:000380594000018 ER PT J AU Abbott, T Abdalla, FB Aleksic, J Allam, S Amara, A Bacon, D Balbinot, E Banerji, M Bechtol, K Benoit-Levy, A Bernstein, GM Bertin, E Blazek, J Bonnett, C Bridle, S Brooks, D Brunner, RJ Buckley-Geer, E Burke, DL Caminha, GB Capozzi, D Carlsen, J Carnero-Rosell, A Carollo, M Carrasco-Kind, M Carretero, J Castander, FJ Clerkin, L Collett, T Conselice, C Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Davis, TM Desai, S Diehl, HT Dietrich, JP Dodelson, S Doel, P Drlica-Wagner, A Estrada, J Etherington, J Evrard, AE Fabbri, J Finley, DA Flaugher, B Foley, RJ Fosalba, P Frieman, J Garcia-Bellido, J Gaztanaga, E Gerdes, DW Giannantonio, T Goldstein, DA Gruen, D Gruendl, RA Guarnieri, P Gutierrez, G Hartley, W Honscheid, K Jain, B James, DJ Jeltema, T Jouvel, S Kessler, R King, A Kirk, D Kron, R Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Lin, H Maia, MAG Makler, M Manera, M Maraston, C Marshall, JL Martini, P McMahon, RG Melchior, P Merson, A Miller, CJ Miquel, R Mohr, JJ Morice-Atkinson, X Naidoo, K Neilsen, E Nichol, RC Nord, B Ogando, R Ostrovski, F Palmese, A Papadopoulos, A Peiris, HV Peoples, J Percival, WJ Plazas, AA Reed, SL Refregier, A Romer, AK Roodman, A Ross, A Rozo, E Rykoff, ES Sadeh, I Sako, M Sanchez, C Sanchez, E Santiago, B Scarpine, V Schubnell, M Sevilla-Noarbe, I Sheldon, E Smith, M Smith, RC Soares-Santos, M Sobreira, F Soumagnac, M Suchyta, E Sullivan, M Swanson, M Tarle, G Thaler, J Thomas, D Thomas, RC Tucker, D Vieira, JD Vikram, V Walker, AR Wechsler, RH Weller, J Wester, W Whiteway, L Wilcox, H Yanny, B Zhang, Y Zuntz, J AF Abbott, T. Abdalla, F. B. Aleksic, J. Allam, S. Amara, A. Bacon, D. Balbinot, E. Banerji, M. Bechtol, K. Benoit-Levy, A. Bernstein, G. M. Bertin, E. Blazek, J. Bonnett, C. Bridle, S. Brooks, D. Brunner, R. J. Buckley-Geer, E. Burke, D. L. Caminha, G. B. Capozzi, D. Carlsen, J. Carnero-Rosell, A. Carollo, M. Carrasco-Kind, M. Carretero, J. Castander, F. J. Clerkin, L. Collett, T. Conselice, C. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Davis, T. M. Desai, S. Diehl, H. T. Dietrich, J. P. Dodelson, S. Doel, P. Drlica-Wagner, A. Estrada, J. Etherington, J. Evrard, A. E. Fabbri, J. Finley, D. A. Flaugher, B. Foley, R. J. Fosalba, P. Frieman, J. Garcia-Bellido, J. Gaztanaga, E. Gerdes, D. W. Giannantonio, T. Goldstein, D. A. Gruen, D. Gruendl, R. A. Guarnieri, P. Gutierrez, G. Hartley, W. Honscheid, K. Jain, B. James, D. J. Jeltema, T. Jouvel, S. Kessler, R. King, A. Kirk, D. Kron, R. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Lin, H. Maia, M. A. G. Makler, M. Manera, M. Maraston, C. Marshall, J. L. Martini, P. McMahon, R. G. Melchior, P. Merson, A. Miller, C. J. Miquel, R. Mohr, J. J. Morice-Atkinson, X. Naidoo, K. Neilsen, E. Nichol, R. C. Nord, B. Ogando, R. Ostrovski, F. Palmese, A. Papadopoulos, A. Peiris, H. V. Peoples, J. Percival, W. J. Plazas, A. A. Reed, S. L. Refregier, A. Romer, A. K. Roodman, A. Ross, A. Rozo, E. Rykoff, E. S. Sadeh, I. Sako, M. Sanchez, C. Sanchez, E. Santiago, B. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Sheldon, E. Smith, M. Smith, R. C. Soares-Santos, M. Sobreira, F. Soumagnac, M. Suchyta, E. Sullivan, M. Swanson, M. Tarle, G. Thaler, J. Thomas, D. Thomas, R. C. Tucker, D. Vieira, J. D. Vikram, V. Walker, A. R. Wechsler, R. H. Weller, J. Wester, W. Whiteway, L. Wilcox, H. Yanny, B. Zhang, Y. Zuntz, J. CA Dark Energy Survey Collaboration TI The Dark Energy Survey: more than dark energy - an overview SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; minor planets, asteroids: general; supernovae: general; Galaxy: general; galaxies: general; quasars: general ID LARGE-MAGELLANIC-CLOUD; DIGITAL-SKY-SURVEY; BRIGHTEST CLUSTER GALAXIES; ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; GRAVITATIONALLY LENSED QUASARS; SCIENCE VERIFICATION DATA; STAR-FORMING GALAXIES; STELLAR MASS FUNCTION; MILKY-WAY SATELLITES AB This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from 'Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be I >+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed). C1 [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Clerkin, L.; Doel, P.; Fabbri, J.; Jouvel, S.; Kirk, D.; Lahav, O.; Manera, M.; Merson, A.; Naidoo, K.; Palmese, A.; Peiris, H. V.; Sadeh, I.; Soumagnac, M.; Whiteway, L.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Aleksic, J.; Carretero, J.; Miquel, R.; Sanchez, C.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Dodelson, S.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Lin, H.; Neilsen, E.; Nord, B.; Peoples, J.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.; Wester, W.; Yanny, B.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Amara, A.; Hartley, W.; Refregier, A.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Bacon, D.; Capozzi, D.; Carlsen, J.; Collett, T.; D'Andrea, C. B.; Etherington, J.; Guarnieri, P.; Maraston, C.; Morice-Atkinson, X.; Nichol, R. C.; Papadopoulos, A.; Percival, W. J.; Thomas, D.; Wilcox, H.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Banerji, M.; Giannantonio, T.; McMahon, R. G.; Ostrovski, F.; Reed, S. L.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.; Giannantonio, T.; McMahon, R. G.; Ostrovski, F.; Reed, S. L.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Bechtol, K.] Wisconsin IceCube Particle Astrophys Ctr WIPAC, Madison, WI 53703 USA. [Bechtol, K.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bernstein, G. M.; Jain, B.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Blazek, J.; Honscheid, K.; Martini, P.; Ross, A.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonnett, C.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bridle, S.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Brunner, R. J.; Foley, R. J.; Thaler, J.; Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Brunner, R. J.; Carrasco-Kind, M.; Gruendl, R. A.; Vieira, J. D.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Figure, IL 61801 USA. [Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Caminha, G. B.; Makler, M.] Ctr Brasileiro Pesquisas Fis, ICRA, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil. [Caminha, G. B.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Carnero-Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero-Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carollo, M.] Swiss Fed Inst Technol, Inst Astron, CH-8093 Zurich, Switzerland. [Carrasco-Kind, M.; Foley, R. J.; Gruendl, R. A.; Sevilla-Noarbe, I.; Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Conselice, C.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Davis, T. M.; King, A.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Dodelson, S.; Kessler, R.; Kron, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Dodelson, S.; Frieman, J.; Kessler, R.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Garcia-Bellido, J.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain. [Goldstein, D. A.; Miquel, R.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Jeltema, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Jeltema, T.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dipartimento Fis Matemat, CP 66318, BR-05314970 Sao Paulo, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Papadopoulos, A.] European Univ Cyprus, Sch Sci, 6 Diogenis Str, CY-1516 Nicosia, Cyprus. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Rozo, E.] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85721 USA. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Smith, M.; Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Swanson, M.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Thomas, D.] South East Phys Network Www Sepnet Ac Uk, London, England. [Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. [Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. RP Abbott, T (reprint author), Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile.; Lahav, O (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM o.lahav@ucl.ac.uk RI Sobreira, Flavia/F-4168-2015; Lima, Marcos/E-8378-2010; Natarajan, Meena/J-9167-2012; Bartosch Caminha, Gabriel/C-8952-2013; Ogando, Ricardo/A-1747-2010; Davis, Tamara/A-4280-2008; Gaztanaga, Enrique/L-4894-2014; OI Sullivan, Mark/0000-0001-9053-4820; Garcia-Bellido, Juan/0000-0002-9370-8360; Sobreira, Flavia/0000-0002-7822-0658; Natarajan, Meena/0000-0001-5652-9681; Bartosch Caminha, Gabriel/0000-0001-6052-3274; Ogando, Ricardo/0000-0003-2120-1154; Davis, Tamara/0000-0002-4213-8783; Gaztanaga, Enrique/0000-0001-9632-0815; Tucker, Douglas/0000-0001-7211-5729; Weller, Jochen/0000-0002-8282-2010; Abdalla, Filipe/0000-0003-2063-4345 FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia; Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; University of California at Santa Cruz; University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago, University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; European Research Council [FP7/291329]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478] FX Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES Data Management system is supported by the National Science Foundation under Grant Number AST-1138766.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, the Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex and Texas A&M University.r OL acknowledges support from a European Research Council Advanced Grant FP7/291329. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478.r We are grateful for the extraordinary contributions of our CTIO colleagues and the DECam Construction, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management group.r The VISTA Hemisphere Survey (VHS) is based on observations obtained as part of ESO Programme 179.A-2010 (PI: McMahon).r This paper has gone through internal review by the DES Collaboration. NR 358 TC 19 Z9 19 U1 9 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2016 VL 460 IS 2 BP 1270 EP 1299 DI 10.1093/mnras/stw641 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3WH UT WOS:000379832800009 ER PT J AU Merson, AI Jasche, J Abdalla, FB Lahav, O Wandelt, B Jones, DH Colless, M AF Merson, Alexander I. Jasche, Jens Abdalla, Filipe B. Lahav, Ofer Wandelt, Benjamin Jones, D. Heath Colless, Matthew TI Halo detection via large-scale Bayesian inference SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; methods: statistical; galaxies: haloes; galaxies: clusters: general; dark matter; large-scale structure of Universe ID DIGITAL SKY SURVEY; 6DF GALAXY SURVEY; POWER-SPECTRUM INFERENCE; MASS ASSEMBLY GAMA; X-RAY-CLUSTERS; DATA RELEASE; DARK-MATTER; WIENER RECONSTRUCTION; LUMINOSITY FUNCTIONS; SPECTROSCOPY SYSTEM AB We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (hades), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of hades to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the hades density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations. C1 [Merson, Alexander I.; Abdalla, Filipe B.; Lahav, Ofer] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Merson, Alexander I.] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Jasche, Jens] Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Abdalla, Filipe B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Wandelt, Benjamin] Univ Paris 06, CNRS, UMR 7095, IAP, 98Bis Blvd Arago, F-75014 Paris, France. [Wandelt, Benjamin] Sorbonne Univ, ILP, 98Bis Blvd Arago, F-75014 Paris, France. [Wandelt, Benjamin] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Wandelt, Benjamin] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Jones, D. Heath] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia. [Colless, Matthew] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. RP Merson, AI (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.; Merson, AI (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM alex.i.merson@jpl.nasa.gov OI Abdalla, Filipe/0000-0003-2063-4345; Colless, Matthew/0000-0001-9552-8075 FU Royal Society; European Research Council [FP7/291329]; NSF [AST 07-08849, AST 09-08693 ARRA]; Chaire d'Excellence from the Agence Nationale de Recherche; DFG cluster of excellence 'Origin and Structure of the Universe' FX We thank the anonymous referee for many thorough and constructive comments. In addition, we also thank Sreekumar Thaithara Balan, Boris Leistedt, Michelle Lochner and Hiranya Peiris for several productive and insightful discussions and suggestions. FBA acknowledges the support of the Royal Society for a University Research Fellowship. OL acknowledges support from a European Research Council Advanced Grant FP7/291329. BDW acknowledges support from NSF grants AST 07-08849 and AST 09-08693 ARRA, and a Chaire d'Excellence from the Agence Nationale de Recherche. This research was supported by the DFG cluster of excellence 'Origin and Structure of the Universe' (www.universe-cluster.de). NR 87 TC 0 Z9 0 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2016 VL 460 IS 2 BP 1340 EP 1355 DI 10.1093/mnras/stw948 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3WH UT WOS:000379832800014 ER PT J AU Ruchayskiy, O Boyarsky, A Iakubovskyi, D Bulbul, E Eckert, D Franse, J Malyshev, D Markevitch, M Neronov, A AF Ruchayskiy, Oleg Boyarsky, Alexey Iakubovskyi, Dmytro Bulbul, Esra Eckert, Dominique Franse, Jeroen Malyshev, Denys Markevitch, Maxim Neronov, Andrii TI Searching for decaying dark matter in deep XMM-Newton observation of the Draco dwarf spheroidal SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE line: identification; galaxies: dwarf; dark matter; X-rays: general ID PHOTON IMAGING CAMERA; 3.5 KEV LINE; GALAXY CLUSTERS; EMISSION-LINE; MILKY-WAY; ORIGIN; HALO; CONSTRAINTS; SPECTRA; SUZAKU AB We present results of a search for the 3.5 keV emission line in our recent very long (similar to 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau > (7-9) x 10(27) s at 95 per cent CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modelled continuum) at E = 3.54 +/- A 0.06 keV with a 2.3 sigma significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1 sigma with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Centre within their 1 - 2 sigma uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects. C1 [Ruchayskiy, Oleg] Ecole Polytech Fed Lausanne, FSB ITP LPPC, BSP 720, CH-1015 Lausanne, Switzerland. [Ruchayskiy, Oleg; Iakubovskyi, Dmytro] Niels Bohr Inst & Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Boyarsky, Alexey; Franse, Jeroen] Leiden Univ, Inst Lorentz Theoret Phys, Niels Bohrweg 2, Leiden, Netherlands. [Iakubovskyi, Dmytro] Bogolyubov Inst Theoret Phys, Metrologichna Str 14-b, UA-03680 Kiev, Ukraine. [Bulbul, Esra] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Eckert, Dominique; Malyshev, Denys; Neronov, Andrii] Univ Geneva, Dept Astron, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Franse, Jeroen] Leiden Univ, Leiden Observ, Niels Bohrweg 2, Leiden, Netherlands. [Markevitch, Maxim] NASA, Goddard Space Flight Ctr, Code 662,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Ruchayskiy, O (reprint author), Ecole Polytech Fed Lausanne, FSB ITP LPPC, BSP 720, CH-1015 Lausanne, Switzerland.; Ruchayskiy, O (reprint author), Niels Bohr Inst & Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. EM oleg.ruchayskiy@epfl.ch RI Iakubovskyi, Dmytro/D-6418-2012; OI Iakubovskyi, Dmytro/0000-0002-6969-0738; Eckert, Dominique/0000-0001-7917-3892 FU NASA [NNX123AE77G]; Swiss National Science Foundation grant SCOPE [IZ7370-152581]; State Fund for Fundamental Research of Ukraine [F64/42-2015]; Program of Cosmic Research of the National Academy of Sciences of Ukraine; State Programme of Implementation of Grid Technology in Ukraine; ESA Member States; NASA FX We would like to thank K. Abazajian, G. Bertone, A. Geringer-Sameth, M. Lovell, M. Walker, C. Weniger for collaboration, discussion and useful comments. EB acknowledges support by NASA through grant no. NNX123AE77G. The work of DI has been partially supported from the Swiss National Science Foundation grant SCOPE IZ7370-152581, the grant no. F64/42-2015 of the State Fund for Fundamental Research of Ukraine, the Program of Cosmic Research of the National Academy of Sciences of Ukraine, and the State Programme of Implementation of Grid Technology in Ukraine. The Draco dSph observations were performed as a part of AO-14 Very Large Programme obtained with XMM Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. NR 49 TC 7 Z9 7 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2016 VL 460 IS 2 BP 1390 EP 1398 DI 10.1093/mnras/stw1026 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3WH UT WOS:000379832800018 ER PT J AU Guainazzi, M Risaliti, G Awaki, H Arevalo, P Bauer, FE Bianchi, S Boggs, SE Brandt, WN Brightman, M Christensen, FE Craig, WW Forster, K Hailey, CJ Harrison, F Koss, M Longinotti, A Markwardt, C Marinucci, A Matt, G Reynolds, CS Ricci, C Stern, D Svoboda, J Walton, D Zhang, W AF Guainazzi, M. Risaliti, G. Awaki, H. Arevalo, P. Bauer, F. E. Bianchi, S. Boggs, S. E. Brandt, W. N. Brightman, M. Christensen, F. E. Craig, W. W. Forster, K. Hailey, C. J. Harrison, F. Koss, M. Longinotti, A. Markwardt, C. Marinucci, A. Matt, G. Reynolds, C. S. Ricci, C. Stern, D. Svoboda, J. Walton, D. Zhang, W. TI The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: Seyfert; X-rays: galaxies; X-rays: individual: Markarian 3 ID ACTIVE GALACTIC NUCLEI; SEYFERT 2 GALAXY; XMM-NEWTON; NGC 1068; REVERBERATION MEASUREMENTS; ENERGY-DISTRIBUTIONS; CIRCINUS GALAXY; WARM ABSORBERS; INNER RADIUS; LINE REGION AB In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM-Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N-H similar to 0.8-1.1 x 10(24) cm(-2)). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle a parts per thousand integral 66A degrees, and is seen at a grazing angle through its upper rim (inclination angle a parts per thousand integral 70A degrees). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [a parts per thousand integral (4.9 +/- 1.5) x 10(22) cm(-2)]. The comparison of IR and X-ray spectroscopic results with state-of-the art 'torus' models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber. C1 [Guainazzi, M.] Inst Space & Astronat Sci JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525252, Japan. [Guainazzi, M.] ESA, European Space Astron Ctr, POB 78, E-28691 Madrid, Spain. [Risaliti, G.] Osservatorio Arcetri, INAF, Largo E Fermi 5, I-50125 Florence, Italy. [Risaliti, G.] Univ Florence, Dipartimento Fis & Astron, Via G Sansone 1, I-50019 Florence, Italy. [Awaki, H.] Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, Japan. [Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile. [Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Bauer, F. E.] Millennium Inst Astrophys MAS, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Bianchi, S.; Marinucci, A.; Matt, G.] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA. [Brightman, M.; Forster, K.; Harrison, F.; Walton, D.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Koss, M.] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Longinotti, A.] Inst Nacl Astrofis Opt & Electr, Catedrat CONACYT, Luis E Erro 1, Puebla 72840, Mexico. [Markwardt, C.; Zhang, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Stern, D.; Walton, D.] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Svoboda, J.] Acad Sci Czech Republic, Astron Inst, Bocni 2 1401, CZ-14100 Prague, Czech Republic. RP Guainazzi, M (reprint author), Inst Space & Astronat Sci JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525252, Japan.; Guainazzi, M (reprint author), ESA, European Space Astron Ctr, POB 78, E-28691 Madrid, Spain. EM Matteo.Guainazzi@sciops.esa.int RI Bianchi, Stefano/B-4804-2010; Svoboda, Jiri/G-9045-2014 OI Bianchi, Stefano/0000-0002-4622-4240; NR 87 TC 0 Z9 0 U1 2 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2016 VL 460 IS 2 BP 1954 EP 1969 DI 10.1093/mnras/stw1033 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3WH UT WOS:000379832800064 ER PT J AU Jarvis, M Sheldon, E Zuntz, J Kacprzak, T Bridle, SL Amara, A Armstrong, R Becker, MR Bernstein, GM Bonnett, C Chang, C Das, R Dietrich, JP Drlica-Wagner, A Eifler, TF Gangkofner, C Gruen, D Hirsch, M Huff, EM Jain, B Kent, S Kirk, D MacCrann, N Melchior, P Plazas, AA Refregier, A Rowe, B Rykoff, ES Samuroff, S Sanchez, C Suchyta, E Troxel, MA Vikram, V Abbott, T Abdalla, FB Allam, S Annis, J Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Castander, FJ Clampitt, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN DePoy, DL Desai, S Diehl, HT Doel, P Neto, AF Flaugher, B Fosalba, P Frieman, J Gaztanaga, E Gerdes, DW Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M March, M Martini, P Miquel, R Mohr, JJ Neilsen, E Nord, B Ogando, R Reil, K Romer, AK Roodman, A Sako, M Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Swanson, MEC Tarle, G Thaler, J Thomas, D Walker, AR Wechsler, RH AF Jarvis, M. Sheldon, E. Zuntz, J. Kacprzak, T. Bridle, S. L. Amara, A. Armstrong, R. Becker, M. R. Bernstein, G. M. Bonnett, C. Chang, C. Das, R. Dietrich, J. P. Drlica-Wagner, A. Eifler, T. F. Gangkofner, C. Gruen, D. Hirsch, M. Huff, E. M. Jain, B. Kent, S. Kirk, D. MacCrann, N. Melchior, P. Plazas, A. A. Refregier, A. Rowe, B. Rykoff, E. S. Samuroff, S. Sanchez, C. Suchyta, E. Troxel, M. A. Vikram, V. Abbott, T. Abdalla, F. B. Allam, S. Annis, J. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Rosell, A. Carnero Kind, M. Carrasco Carretero, J. Castander, F. J. Clampitt, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Neto, A. Fausti Flaugher, B. Fosalba, P. Frieman, J. Gaztanaga, E. Gerdes, D. W. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. March, M. Martini, P. Miquel, R. Mohr, J. J. Neilsen, E. Nord, B. Ogando, R. Reil, K. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Walker, A. R. Wechsler, R. H. TI The DES Science Verification weak lensing shear catalogues SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; techniques: image processing; catalogues; surveys; cosmology: observations ID IMAGE-ANALYSIS COMPETITION; GALAXY SHAPE MEASUREMENT; DARK ENERGY CAMERA; DIGITAL SKY SURVEY; COSMIC SHEAR; NOISE BIAS; CHALLENGE HANDBOOK; MAXIMUM-LIKELIHOOD; GREAT08 CHALLENGE; SYSTEMATIC-ERRORS AB We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, im3shape and ngmix, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees. C1 [Jarvis, M.; Bernstein, G. M.; Eifler, T. F.; Jain, B.; Clampitt, J.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Zuntz, J.; Bridle, S. L.; MacCrann, N.; Samuroff, S.; Troxel, M. A.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Kacprzak, T.; Amara, A.; Chang, C.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Becker, M. R.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Becker, M. R.; Rykoff, E. S.; Burke, D. L.; Cunha, C. E.; Roodman, A.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Bonnett, C.; Sanchez, C.; Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Dietrich, J. P.; Gangkofner, C.; Desai, S.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Dietrich, J. P.; Gangkofner, C.; Desai, S.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Amara, A.; Drlica-Wagner, A.; Kent, S.; Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [Hirsch, M.; Kirk, D.; Rowe, B.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Huff, E. M.; Melchior, P.; Suchyta, E.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Huff, E. M.; Melchior, P.; Suchyta, E.; Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Rykoff, E. S.; Burke, D. L.; Reil, K.; Roodman, A.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys, F-75014 Paris, France. [Capozzi, D.; D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Rosell, A. Carnero; da Costa, L. N.; Neto, A. Fausti; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, A. Carnero; da Costa, L. N.; Ogando, R.] Observ Nacl, Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans,S-N, E-08193 Barcelona, Spain. [DePoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenal, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Dept Fis Matemat, Inst Fis, CP 66318, BR-05314970 Sao Paulo, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Jarvis, M (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. EM michael@jarvis.net RI Sobreira, Flavia/F-4168-2015; Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Gaztanaga, Enrique/L-4894-2014; OI Sobreira, Flavia/0000-0002-7822-0658; Ogando, Ricardo/0000-0003-2120-1154; Gaztanaga, Enrique/0000-0001-9632-0815; Stern, Corvin/0000-0003-4406-6127; Rowe, Barnaby/0000-0002-7042-9174; Abdalla, Filipe/0000-0003-2063-4345 FU NSF [AST-0812790, AST-1138729]; DoE [DE-SC0007901, DE-AC02-98CH10886, DE-SC0007859, DE-FG02-91ER40690]; European Research Council [240672]; Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33]; DFG cluster of excellence 'Origin and Structure of the Universe'; JPL; FAPESP; CNPq; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the DES; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; LBNL; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe, the University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX Jarvis has been supported on this project by NSF grants AST-0812790 and AST-1138729. Jarvis, Bernstein, Clampitt, and Jain are partially supported by DoE grant DE-SC0007901. Sheldon is supported by DoE grant DE-AC02-98CH10886. Zuntz, Kacprzak, Bridle, and Troxel acknowledge support from the European Research Council in the form of a Starting Grant with number 240672. Das was funded by DoE Grant DE-SC0007859. Gruen was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence 'Origin and Structure of the Universe'. Gangkofner acknowledges the support by the DFG Cluster of Excellence 'Origin and Structure of the Universe'. Melchior was supported by DoE grant DE-FG02-91ER40690. Plazas was supported by DoE grant DE-AC02-98CH10886 and by JPL, run by Caltech under a contract for NASA. Lima is partially supported by FAPESP and CNPq.r Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES.r The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, LBNL, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 120 TC 17 Z9 17 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2016 VL 460 IS 2 BP 2245 EP 2281 DI 10.1093/mnras/stw990 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3WH UT WOS:000379832800087 ER PT J AU Leppert, KD Cecil, DJ AF Leppert, Kenneth D., II Cecil, Daniel J. TI Tropical Cyclone Diurnal Cycle as Observed by TRMM SO MONTHLY WEATHER REVIEW LA English DT Article ID PRECIPITATION RADAR; ICE SCATTERING; SATELLITE; RAINFALL; INTENSITY; RAINBANDS; OSCILLATION; IMAGERY; CLOUD AB Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone's clouds. The composite coverage by PR reflectivity >= 20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2-10-km height) of the troposphere using 1998-2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity >= 20 dBZ at radii 100-500 km peaks in the morning (0130-1030 LST) and reaches a minimum 1030-1930 LST. Radii between 300 and 500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0-100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8-10 km) with a maximumat 2230-0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130-0730 LST). C1 [Leppert, Kenneth D., II] Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35899 USA. [Cecil, Daniel J.] NASA Marshall Space Flight Ctr, Huntsville, AL USA. [Leppert, Kenneth D., II] Univ Louisiana Monroe, Monroe, LA USA. RP Leppert, KD (reprint author), Univ Louisiana Monroe, Sch Sci, Hanna Rm 306,700 Univ Ave, Monroe, LA 71209 USA. EM leppert@ulm.edu FU NASA [NNX12AK70G, NNM11AA01A] FX Funding for this research was generously provided through NASA Grants NNX12AK70G and NNM11AA01A. The authors thank Dr. Haiyan Jiang for her help in identifying TRMM orbits that passed over tropical cyclones and Dr. Jason Dunion for his helpful suggestions for conducting this work. The authors are also grateful to the University of Utah for providing the TRMM data, Colorado State University for providing the radius of maximum wind and wind shear data, and the helpful suggestions from Jon Zawislak and another anonymous reviewer that led to the improvement of the manuscript. NR 31 TC 0 Z9 0 U1 2 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD AUG PY 2016 VL 144 IS 8 BP 2793 EP 2808 DI 10.1175/MWR-D-15-0358.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS5BT UT WOS:000380796200002 ER PT J AU Carletta, ND Mullendore, GL Starzec, M Xi, BK Feng, Z Dong, XQ AF Carletta, Nicholas D. Mullendore, Gretchen L. Starzec, Mariusz Xi, Baike Feng, Zhe Dong, Xiquan TI Determining the Best Method for Estimating the Observed Level of Maximum Detrainment Based on Radar Reflectivity SO MONTHLY WEATHER REVIEW LA English DT Article ID LIGHTNING OBSERVATIONS; DEEP CONVECTION; STORM; STEPS; PRECIPITATION; KINEMATICS; TRANSPORT AB Convective mass transport is the transport of mass from near the surface up to the upper troposphere and lower stratosphere (UTLS) by a deep convective updraft. This transport can alter the chemical makeup and water vapor balance of the UTLS, which affects cloud formation and the radiative properties of the atmosphere. It is, therefore, important to understand the exact altitudes at which mass is detrained from convection. The purpose of this study was to improve upon previously published methodologies for estimating the level of maximum detrainment (LMD) within convection using data from a single ground-based radar. Four methods were used to identify the LMD and validated against dual-Doppler-derived vertical mass divergence fields for six cases with a variety of storm types. The best method for locating the LMD was determined to be the method that used a reflectivity texture technique to determine convective cores and a multilayer echo identification to determine anvil locations. Although an improvement over previously published methods, the new methodology still produced unreliable results in certain regimes. The methodology worked best when applied to mature updrafts, as the anvil needs time to grow to a detectable size. Thus, radar reflectivity is found to be valuable in estimating the LMD, but storm maturity must also be considered for best results. C1 [Carletta, Nicholas D.; Mullendore, Gretchen L.; Starzec, Mariusz; Xi, Baike; Dong, Xiquan] Univ North Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA. [Carletta, Nicholas D.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Carletta, Nicholas D.] Sci Syst & Applicat Inc, Lanham, MD USA. [Feng, Zhe] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Mullendore, GL (reprint author), Univ North Dakota, Clifford Hall,Room 400,4149 Univ Ave,Stop 9006, Grand Forks, ND 58202 USA. EM gretchen@atmos.und.edu FU NSF [ATM-0918010, ATM-1432930]; U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX The authors would like to acknowledge the support from NSF Grants ATM-0918010 and ATM-1432930. The authors thank Timothy Lang for providing access to the STEPS and CHILL dual-Doppler data. The authors would also like to thank Mark Askelson for his advice as a graduate committee member. The authors also thank the three anonymous reviewers for taking the time to provide thoughtful and constructive feedback. Dr. Zhe Feng at the Pacific Northwest National Laboratory is supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research as part of the Atmospheric System Research Program and the Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by the Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 22 TC 0 Z9 0 U1 3 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD AUG PY 2016 VL 144 IS 8 BP 2915 EP 2926 DI 10.1175/MWR-D-15-0427.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS5BT UT WOS:000380796200008 ER PT J AU Lavraud, B Liu, Y Segura, K He, J Qin, G Temmer, M Vial, JC Xiong, M Davies, JA Rouillard, AP Pinto, R Auchere, F Harrison, RA Eyles, C Gan, W Lamy, P Xia, L Eastwood, JP Kong, L Wang, J Wimmer-Schweingruber, RF Zhang, S Zong, Q Soucek, J An, J Prech, L Zhang, A Rochus, P Bothmer, V Janvier, M Maksimovic, M Escoubet, CP Kilpua, EKJ Tappin, J Vainio, R Poedts, S Dunlop, MW Savani, N Gopalswamy, N Bale, SD Li, G Howard, T DeForest, C Webb, D Lugaz, N Fuselier, SA Dalmasse, K Tallineau, J Vranken, D Fernandez, JG AF Lavraud, B. Liu, Y. Segura, K. He, J. Qin, G. Temmer, M. Vial, J-C Xiong, M. Davies, J. A. Rouillard, A. P. Pinto, R. Auchere, F. Harrison, R. A. Eyles, C. Gan, W. Lamy, P. Xia, L. Eastwood, J. P. Kong, L. Wang, J. Wimmer-Schweingruber, R. F. Zhang, S. Zong, Q. Soucek, J. An, J. Prech, L. Zhang, A. Rochus, P. Bothmer, V. Janvier, M. Maksimovic, M. Escoubet, C. P. Kilpua, E. K. J. Tappin, J. Vainio, R. Poedts, S. Dunlop, M. W. Savani, N. Gopalswamy, N. Bale, S. D. Li, G. Howard, T. DeForest, C. Webb, D. Lugaz, N. Fuselier, S. A. Dalmasse, K. Tallineau, J. Vranken, D. Fernandez, J. G. TI A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Space mission; Coronal mass ejections; Instrumentation; Space weather ID CORONAL MASS EJECTIONS; IN-SITU OBSERVATIONS; L-ALPHA-LINE; MAGNETIC-FIELD; STEREO MISSION; 1 AU; INTERPLANETARY SHOCKS; ENERGETIC PARTICLES; RADIATION BELT; DRIVEN SHOCK AB We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lavraud, B.; Segura, K.; Rouillard, A. P.; Pinto, R.] Univ Toulouse 3, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.; Segura, K.; Rouillard, A. P.; Pinto, R.] CNRS, UMR 5277, Toulouse, France. [Liu, Y.; Qin, G.; Xiong, M.; Kong, L.; Wang, J.; Zhang, S.; An, J.; Zhang, A.] Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China. [He, J.; Zong, Q.] Peking Univ, Beijing 100871, Peoples R China. [Temmer, M.] Graz Univ, Inst Phys, Graz, Austria. [Vial, J-C; Auchere, F.; Janvier, M.] Inst Astrophys Spatiale, Orsay, France. [Davies, J. A.; Harrison, R. A.; Eyles, C.; Tappin, J.; Dunlop, M. W.] RAL Space, Didcot, Oxon, England. [Gan, W.] Purple Mt Observ, Nanjing, Jiangsu, Peoples R China. [Lamy, P.] CNRS, Lab Astrophys Marseille, Marseille, France. [Lamy, P.] Aix Marseille Univ, Marseille, France. [Xia, L.] Shandong Univ, Weihai, Peoples R China. [Eastwood, J. P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Wimmer-Schweingruber, R. F.] Univ Kiel, Kiel, Germany. [Soucek, J.] Inst Atmospher Phys, Prague, Czech Republic. [Prech, L.] Charles Univ Prague, Prague, Czech Republic. [Rochus, P.] Ctr Spatial Liege, Liege, Belgium. [Bothmer, V.] Univ Gottingen, Gottingen, Germany. [Janvier, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Paris, France. [Maksimovic, M.] Observ Paris, Meudon, France. [Escoubet, C. P.] European Space Agcy, Noordwijk, Netherlands. [Kilpua, E. K. J.] Univ Helsinki, Helsinki, Finland. [Vainio, R.] Univ Turku, Turku, Finland. [Poedts, S.] Katholieke Univ Leuven, Leuven, Belgium. [Dunlop, M. W.] Beihang Univ, Beijing, Peoples R China. [Savani, N.] Univ Maryland, UMBC, GPHI, Baltimore, MD USA. [Savani, N.; Gopalswamy, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Bale, S. D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Li, G.] Univ Alabama, Huntsville, AL 35899 USA. [Howard, T.; DeForest, C.] Southwest Res Inst, Boulder, CO USA. [Webb, D.] Boston Coll, ISR, Chestnut Hill, MA USA. [Lugaz, N.] Univ New Hampshire, Durham, NH 03824 USA. [Fuselier, S. A.] Southwest Res Inst, San Antonio, TX USA. [Dalmasse, K.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Tallineau, J.; Vranken, D.] Qinetiq Space, Kruibeke, Belgium. [Fernandez, J. G.] GMV, Tres Cantos, Spain. RP Lavraud, B (reprint author), Univ Toulouse 3, Inst Rech Astrophys & Planetol, Toulouse, France. RI Bale, Stuart/E-7533-2011; Vainio, Rami/A-5590-2009; Soucek, Jan/G-3424-2014; Kilpua, Emilia/G-8994-2012; Qin, Gang/B-2250-2009; Lugaz, Noe/C-1284-2008 OI Bale, Stuart/0000-0002-1989-3596; Vainio, Rami/0000-0002-3298-2067; Soucek, Jan/0000-0003-0462-6804; Qin, Gang/0000-0002-3437-3716; Lugaz, Noe/0000-0002-1890-6156 FU CNES; CNRS FX The authors acknowledge the inputs and support from more than 180 collaborators to the INSTANT mission proposal submitted to the ESA and CAS call for small missions in 2015. Although INSTANT was not selected in that call, the concept will be proposed in future opportunities at ESA or other agencies. Work at IRAP was supported by CNES and CNRS. BL wishes to thank D. Lario for providing the figure from which Fig. 5 is adapted. NR 79 TC 0 Z9 0 U1 4 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD AUG PY 2016 VL 146 BP 171 EP 185 DI 10.1016/j.jastp.2016.06.004 PG 15 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DS2IN UT WOS:000380593300017 ER PT J AU Knysh, S AF Knysh, Sergey TI Zero-temperature quantum annealing bottlenecks in the spin-glass phase SO Nature Communications LA English DT Article ID CRITICAL-BEHAVIOR; TRANSVERSE-FIELD; NEURAL-NETWORKS; MODEL; COMPUTATION; ROTORS AB A promising approach to solving hard binary optimization problems is quantum adiabatic annealing in a transverse magnetic field. An instantaneous ground state-initially a symmetric superposition of all possible assignments of N qubits-is closely tracked as it becomes more and more localized near the global minimum of the classical energy. Regions where the energy gap to excited states is small (for instance at the phase transition) are the algorithm's bottlenecks. Here I show how for large problems the complexity becomes dominated by O(log N) bottlenecks inside the spin-glass phase, where the gap scales as a stretched exponential. For smaller N, only the gap at the critical point is relevant, where it scales polynomially, as long as the phase transition is second order. This phenomenon is demonstrated rigorously for the two-pattern Gaussian Hopfield model. Qualitative comparison with the Sherrington-Kirkpatrick model leads to similar conclusions. C1 [Knysh, Sergey] NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA. [Knysh, Sergey] SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. RP Knysh, S (reprint author), NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA.; Knysh, S (reprint author), SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. EM Sergey.I.Knysh@nasa.gov FU Office of the Director of National Intelligence (ODNI); Intelligence Advanced Research Projects Activity (IARPA) [IAA 145483]; Air Force Research Laboratory (AFRL) Information Directorate [F4HBKC4162G001] FX I would like to thank Vadim Smelyanskiy for useful discussions. This work was supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IAA 145483, and by the Air Force Research Laboratory (AFRL) Information Directorate under grant F4HBKC4162G001. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, AFRL or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright annotation thereon. NR 51 TC 2 Z9 2 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2016 VL 7 AR 12370 DI 10.1038/ncomms12370 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DS5ZA UT WOS:000380860300001 PM 27491338 ER PT J AU Harvey, N AF Harvey, Nate TI GRACE star camera noise SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Low Earth orbit satellites; Attitude; Star cameras; GRACE AB Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Harvey, Nate] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Harvey, Nate] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Harvey, N (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.; Harvey, N (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM nathaniel.e.harvey@jpl.nasa.gov FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 9 TC 1 Z9 1 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 1 PY 2016 VL 58 IS 3 BP 408 EP 414 DI 10.1016/j.asr.2016.04.025 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DQ9WW UT WOS:000379561000012 ER PT J AU Armellin, R Di Lizia, P Zanetti, R AF Armellin, Roberto Di Lizia, Pierluigi Zanetti, Renato TI Dealing with uncertainties in angles-only initial orbit determination SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Initial orbit determination (IOD); Optical observations; Uncertainties mapping; Differential algebra (DA) ID DOMAIN AB A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map uncertainties from the observation space to the state space. When a minimum set of observations is available, DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available, high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology. C1 [Armellin, Roberto] Univ La Rioja, Dept Matemat & Comp, Logrono 26006, Spain. [Di Lizia, Pierluigi] Politecn Milan, Dept Aerosp Sci & Technol, I-20156 Milan, Italy. [Zanetti, Renato] NASA, Johnson Space Ctr, 2101 NASA Rd 1, Houston, TX 77058 USA. RP Armellin, R (reprint author), Univ La Rioja, Dept Matemat & Comp, Logrono 26006, Spain. EM roberto.armellin@unirioja.es; pierluigi.dilizia@polimi.it; renato.zanetti@nasa.gov OI Armellin, Roberto/0000-0002-3516-6428 FU Sklodowska-Curie Grant [627111] FX R. Armellin acknowledges the support received by the Sklodowska-Curie Grant 627111 (HOPT -Merging Lie perturbation theory and Taylor Differential algebra to address space debris challenges). The authors are grateful to Monica Valli, who implemented a preliminary version of the DA-based IOD update. R. Armellin is thankful to Cristina Parigini for her help in the visualization of the results. NR 22 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 EI 1572-9478 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD AUG PY 2016 VL 125 IS 4 BP 435 EP 450 DI 10.1007/s10569-016-9694-z PG 16 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA DR0VJ UT WOS:000379624700003 ER PT J AU Potter, C AF Potter, Christopher TI Measurements of fog water interception by shrubs on the California central coast SO JOURNAL OF COASTAL CONSERVATION LA English DT Article DE Fog; Deposition; Coastal shrub; Central California; Water budget ID STOMATAL CONDUCTANCE; ESTABLISHMENT; AVAILABILITY; VEGETATION; GRASSLAND; STRATUS; DRIP AB Fog water deposition may be an important component of the water budget of herbaceous-shrub ecosystems on the central and southern coastal regions of California. This paper presents the first analysis of measured fog water drip rates and meteorological controls in shrublands of Big Sur, California. Seasonal totals of 1255 mm and 306 mm of fog water drip were recorded in 2014 and 2015 (respectively), for averaged fog deposition rates of 0.02-0.08 l m(2) hr.(-1) to the soil under shrub canopy cover. The diurnal patterns of fog water drip showed that the majority of all trough water collected under shrubs on no-rain days occurred between the hours of 11 PM and 9 AM. During the study period from June 1 to October 31 of both 2014 and 2015, soil water content decreased significantly from average levels of 4-6 % at the shrub canopy center and middle locations, through 2-3 % VWC at the shrub edge locations, to levels at or below 2 % at 2-m distance locations from the shrub edge in open grass cover. Based on these results, we conclude that detectable rates of shrub canopy fog interception help sustain elevated soil water levels under shrubs and aid woody vegetation survival through periods of low rainfall. C1 [Potter, Christopher] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Potter, C (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM chris.potter@nasa.gov NR 26 TC 0 Z9 0 U1 10 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1400-0350 EI 1874-7841 J9 J COAST CONSERV JI J. Coast. Conserv. PD AUG PY 2016 VL 20 IS 4 BP 315 EP 325 DI 10.1007/s11852-016-0443-y PG 11 WC Biodiversity Conservation; Environmental Sciences; Marine & Freshwater Biology; Water Resources SC Biodiversity & Conservation; Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DR0FW UT WOS:000379584400006 ER PT J AU Haddad, EE Tuite, ML Martinez, AM Williford, K Boyer, DL Droser, ML Love, GD AF Haddad, Emily E. Tuite, Michael L. Martinez, Aaron M. Williford, Kenneth Boyer, Diana L. Droser, Mary L. Love, Gordon D. TI Lipid biomarker stratigraphic records through the Late Devonian Frasnian/Famennian boundary: Comparison of high-and low-latitude epicontinental marine settings SO ORGANIC GEOCHEMISTRY LA English DT Article DE Upper Kellwasser; Black shale; Mass extinctions; Appalachian Basin; Madre de Dios Basin; Lipid biomarkers; Redox; Nitrogen isotopes ID HOLY-CROSS MOUNTAINS; SEDIMENTARY ORGANIC-MATTER; OCEANIC ANOXIC EVENT; PHOTIC ZONE EUXINIA; BLACK SHALES; MASS EXTINCTION; BIOGEOCHEMICAL CYCLES; NITROGEN LIMITATION; BIOLOGICAL MARKERS; APPALACHIAN BASIN AB The pervasiveness of black shale preservation in association with Late Devonian biological crises suggests marine anoxia played a major role in driving ecological perturbations. However, Devonian black shale deposition is still mechanistically poorly understood. We have compiled detailed biomarker lipid chemostratigraphic records for 83 different rock samples using molecular constituents of bitumens of Upper Kellwasser equivalent black shales from two foreland basins: from the low paleolatitude Appalachian Basin (New York State) and from the high paleolatitude Madre de Dios Basin (Bolivia), in order to better understand local environmental conditions and organic source inputs during this depositional event. Despite strong indications from stable nitrogen isotopic signatures for fixed nitrogen nutrient limitation, the biomarker assemblages with consistently low-moderate hopane/sterane ratios (< 0.8) indicate that algae were major marine primary producers in both basins throughout the Frasnian/Famennian (F/F) stratigraphic coverage. Consistently higher C-28/C-29 sterane ratios at higher paleolatitude in the more nutrient-replete Madre de Dios Basin suggest prasinophyte microalgae flourished in this setting in accordance with palynological evidence for high contributions of Tasmanites cysts in these strata. All samples contain only very low absolute amounts of aryl isoprenoids (with 2,3,6-trimethyl substitution) and other aromatic carotenoids, up to several orders of magnitude lower than concentrations reported from other Phanerozoic euxinic basins. These data are consistent with local marine paleoredox models for both basins lacking a persistently shallow sulfidic aquatic zone and demonstrate that temporally persistent or spatially pervasive photic zone euxinia is not necessarily associated with all black shale sequences in the Late Devonian. (C) 2016 Published by Elsevier Ltd. C1 [Haddad, Emily E.; Martinez, Aaron M.; Droser, Mary L.; Love, Gordon D.] Univ Calif Riverside, Dept Earth Sci, 900 Univ Ave, Riverside, CA 92521 USA. [Tuite, Michael L.; Williford, Kenneth] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Boyer, Diana L.] SUNY Coll Oswego, Shineman Sci Ctr 241, Dept Earth Sci, Oswego, NY 13126 USA. RP Haddad, EE (reprint author), Univ Calif Riverside, Dept Earth Sci, 900 Univ Ave, Riverside, CA 92521 USA. EM emily.haddad@email.ucr.edu FU National Science Foundation Earth Sciences Program [NSF-EAR 1348988, NSF-EAR 1348981]; Agouron Institute; NSF GRFP; AAPG; SEPM; Gulf Coast Section of SEPM; Paleontological Society FX This work was funded principally by a National Science Foundation Earth Sciences Program grants to GDL (NSF-EAR 1348988) and DLB (NSF-EAR 1348981). GDL also thanks the Agouron Institute for grant support. EEH acknowledges graduate student support from the NSF GRFP, AAPG, SEPM, the Gulf Coast Section of SEPM, and the Paleontological Society. The authors are indebted to Sarah de la Rue for providing Pando X-1 core samples for geochemical analysis. NR 107 TC 0 Z9 0 U1 5 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0146-6380 J9 ORG GEOCHEM JI Org. Geochem. PD AUG PY 2016 VL 98 BP 38 EP 53 DI 10.1016/j.orggeochem.2016.05.007 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR3DH UT WOS:000379782300004 ER PT J AU Chen, TL Primiero, G Raimondi, F Rungta, N AF Chen, Taolue Primiero, Giuseppe Raimondi, Franco Rungta, Neha TI A Computationally Grounded, Weighted Doxastic Logic SO STUDIA LOGICA LA English DT Article; Proceedings Paper CT 7th Workshop on Logical Aspects of Multi-Agent Systems (LAMAS) Co-Located with 15th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS) CY 2014 CL Paris, FRANCE DE Multi-agent systems; Doxastic logic; Model checking ID MODEL CHECKING; VERIFICATION; SYSTEMS AB Modelling, reasoning and verifying complex situations involving a system of agents is crucial in all phases of the development of a number of safety-critical systems. In particular, it is of fundamental importance to have tools and techniques to reason about the doxastic and epistemic states of agents, to make sure that the agents behave as intended. In this paper we introduce a computationally grounded logic called COGWED and we present two types of semantics that support a range of practical situations. We provide model checking algorithms, complexity characterisations and a prototype implementation. We validate our proposal against a case study from the avionic domain: we assess and verify the situational awareness of pilots flying an aircraft with several automated components in off-nominal conditions. C1 [Chen, Taolue; Primiero, Giuseppe; Raimondi, Franco] Middlesex Univ, Dept Comp Sci, London, England. [Rungta, Neha] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. RP Chen, TL (reprint author), Middlesex Univ, Dept Comp Sci, London, England. EM t.chen@mdx.ac.uk; g.primiero@mdx.ac.uk; f.raimondi@mdx.ac.uk; neha.s.rungta@nasa.gov OI Primiero, Giuseppe/0000-0003-3264-7100 NR 27 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0039-3215 J9 STUD LOGICA JI Stud. Log. PD AUG PY 2016 VL 104 IS 4 SI SI BP 679 EP 703 DI 10.1007/s11225-015-9621-4 PG 25 WC Mathematics; Logic; Philosophy SC Mathematics; Science & Technology - Other Topics; Philosophy GA DQ9KW UT WOS:000379529800004 ER PT J AU Ho, SP Pappas, CG Austermann, J Beall, JA Becker, D Choi, SK Datta, R Duff, SM Gallardo, PA Grace, E Hasselfield, M Henderson, SW Hilton, GC Hubmayr, J Koopman, BJ Lanen, JV Li, D McMahon, J Nati, F Niemack, MD Niraula, P Salatino, M Schillaci, A Schmitt, BL Simon, SM Staggs, ST Stevens, JR Ward, JT Wollack, EJ Vavagiakis, EM AF Ho, S. P. Pappas, C. G. Austermann, J. Beall, J. A. Becker, D. Choi, S. K. Datta, R. Duff, S. M. Gallardo, P. A. Grace, E. Hasselfield, M. Henderson, S. W. Hilton, G. C. Hubmayr, J. Koopman, B. J. Lanen, J. V. Li, D. McMahon, J. Nati, F. Niemack, M. D. Niraula, P. Salatino, M. Schillaci, A. Schmitt, B. L. Simon, S. M. Staggs, S. T. Stevens, J. R. Ward, J. T. Wollack, E. J. Vavagiakis, E. M. TI The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE ACTPol; Cosmic microwave background; Multichroic; Polarization; Transition edge sensors; SQUID AB The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 K, and detector time constants and saturation powers suitable for ACT CMB observations. C1 [Ho, S. P.; Pappas, C. G.; Choi, S. K.; Grace, E.; Hasselfield, M.; Niraula, P.; Salatino, M.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Austermann, J.; Beall, J. A.; Becker, D.; Duff, S. M.; Hilton, G. C.; Hubmayr, J.; Lanen, J. V.; Li, D.] NIST Quantum Devices Grp, 325 Broadway,Mailcode 817-03, Boulder, CO 80305 USA. [Datta, R.; McMahon, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Gallardo, P. A.; Henderson, S. W.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Wollack, E. J.] Natl Aeronaut & Space Adm, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ho, SP (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. EM spho@princeton.edu RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016 OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088 FU U.S. National Science Foundation [AST-0965625, PHY-1214379]; NIST Quantum Initiative; NASA [NNX13AE56G, NNX14AB58G]; NASA Space Technology Research Fellowship awards FX This work was supported by the U.S. National Science Foundation through awards AST-0965625 and PHY-1214379. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA Grants s NNX13AE56G and NNX14AB58G. The work of KPC, KTC, EG, BJK, CM, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards. NR 11 TC 2 Z9 2 U1 4 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 559 EP 567 DI 10.1007/s10909-016-1573-1 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700006 ER PT J AU Datta, R Austermann, J Beall, JA Becker, D Coughlin, KP Duff, SM Gallardo, PA Grace, E Hasselfield, M Henderson, SW Hilton, GC Ho, SP Hubmayr, J Koopman, BJ Lanen, JV Li, D McMahon, J Munson, CD Nati, F Niemack, MD Page, L Pappas, CG Salatino, M Schmitt, BL Schillaci, A Simon, SM Staggs, ST Stevens, JR Vavagiakis, EM Ward, JT Wollack, EJ AF Datta, R. Austermann, J. Beall, J. A. Becker, D. Coughlin, K. P. Duff, S. M. Gallardo, P. A. Grace, E. Hasselfield, M. Henderson, S. W. Hilton, G. C. Ho, S. P. Hubmayr, J. Koopman, B. J. Lanen, J. V. Li, D. McMahon, J. Munson, C. D. Nati, F. Niemack, M. D. Page, L. Pappas, C. G. Salatino, M. Schmitt, B. L. Schillaci, A. Simon, S. M. Staggs, S. T. Stevens, J. R. Vavagiakis, E. M. Ward, J. T. Wollack, E. J. TI Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Anti-reflection coating; Cosmic microwave background; Feedhorn; Millimeter wave; Polarimeter; Silicon lenses; Superconducting detectors; TES ID OPTICAL DESIGN; POLARIZATION AB We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments. C1 [Datta, R.; Coughlin, K. P.; McMahon, J.; Munson, C. D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Austermann, J.; Beall, J. A.; Becker, D.; Duff, S. M.; Hilton, G. C.; Hubmayr, J.; Lanen, J. V.; Li, D.] NIST, Quantum Devices Grp, 325 Broadway Mailcode 817-03, Boulder, CO 80305 USA. [Gallardo, P. A.; Henderson, S. W.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Grace, E.; Ho, S. P.; Page, L.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Hasselfield, M.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Li, D.] SLAC Natl Accelerator Lab, 2575 Sandy Hill Rd, Menlo Pk, CA 94025 USA. [Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Schillaci, A.] Soc Radiosky Asesorias Ingn Ltd, Dept 805, Lincoya 54, Concepcion, Chile. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Datta, R (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM dattar@umich.edu RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016 OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088 FU NASA [NNX13AE56G, NNX14AB58G]; U.S. National Science Foundation [AST-0965625, PHY-1214379]; NIST Quantum Initiative; NASA Office of the Chief Technologists Space Technology Research Fellowship awards FX This work was supported by NASA through awards NNX13AE56G and NNX14AB58G and by the U.S. National Science Foundation through awards AST-0965625 and PHY-1214379. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The work of KPC, EG, BJK, BLS, CDM, JTW, and SMS were supported by NASA Office of the Chief Technologists Space Technology Research Fellowship awards. NR 25 TC 3 Z9 3 U1 2 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 568 EP 575 DI 10.1007/s10909-016-1553-5 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700007 ER PT J AU Jhabvala, CA Benford, DJ Brekosky, RP Costen, NP Datesman, AM Hilton, GC Irwin, KD Maher, SF Manos, G Miller, TM Moseley, SH Sharp, EH Staguhn, JG Wang, F Wollack, EJ AF Jhabvala, C. A. Benford, D. J. Brekosky, R. P. Costen, N. P. Datesman, A. M. Hilton, G. C. Irwin, K. D. Maher, S. F. Manos, G. Miller, T. M. Moseley, S. H. Sharp, E. H. Staguhn, J. G. Wang, F. Wollack, E. J. TI Superconducting Pathways Through Kilopixel Backshort-Under-Grid Arrays SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Backshort-Under-Grid; Bolometer; HAWC; Through wafer via; Transition edge sensor; Indium bump bonding; Atomic layer deposition ID INFRARED ASTRONOMY; BOLOMETER ARRAYS AB We have demonstrated in the laboratory multiple, fully functional, kilopixel, bolometer arrays for the upgraded instrument, the High-resolution airborne wideband camera plus (HAWC+), for the stratospheric observatory for infrared astronomy (SOFIA). Each kilopixel array consists of three individual components assembled into a single working unit: (1) a filled, Transition Edge Sensor (TES) bolometer array, (2) an infrared, back-termination, and (3) an integrated, two-dimensional superconducting quantum interference device (SQUID) multiplexer readout. Kilopixel TES arrays are directly indium-bump-bonded to a 32 40 SQUID multiplexer (MUX) circuit. In order to provide a fully superconducting pathway from the TES to the SQUID readout, numerous superconductor-to-superconductor interfaces must be made. This paper focuses on the fabrication techniques needed to create the superconducting path from the TES, out of the detector membrane, through the wafer, and to the SQUID readout. C1 [Jhabvala, C. A.; Benford, D. J.; Manos, G.; Miller, T. M.; Moseley, S. H.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brekosky, R. P.; Costen, N. P.; Datesman, A. M.] Stinger Ghaffarian Technol Inc, Seabrook, MD USA. [Hilton, G. C.] NIST, Boulder, CO USA. [Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Sharp, E. H.] Global Sci & Technol Inc, Greenbelt, MD USA. [Maher, S. F.] Sci Syst & Applicat Inc, Greenbelt, MD USA. [Staguhn, J. G.] Johns Hopkins Univ, Baltimore, MD USA. [Wang, F.] ASRC Fed Space & Def, Greenbelt, MD USA. RP Jhabvala, CA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM christine.a.jhabvala@nasa.gov RI Wollack, Edward/D-4467-2012; Benford, Dominic/D-4760-2012 OI Wollack, Edward/0000-0002-7567-4451; Benford, Dominic/0000-0002-9884-4206 FU NASA FX This work was supported through a series of NASA awards, including the High resolution Airborne Wideband Camera Plus (HAWC+/SOFIA, Dr. Darren Dowell, Principal Investigator) and the Primordial Inflation Polarization Explorer (PIPER, Dr. Alan Kogut, Principal Investigator). The authors also wish to thank the work of Dr. James A. Chervenak, NASA Goddard Space Flight Center, Detector Systems Branch, for cryogenic test support. NR 10 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 615 EP 620 DI 10.1007/s10909-016-1487-y PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700014 ER PT J AU Lowitz, AE Brown, AD Mikula, V Stevenson, TR Timbie, PT Wollack, EJ AF Lowitz, A. E. Brown, A. D. Mikula, V. Stevenson, T. R. Timbie, P. T. Wollack, E. J. TI Design, Fabrication, and Testing of a TiN/Ti/TiN Trilayer KID Array for 3 mm CMB Observations SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Kinetic inductance detector; CMB; Titanium nitride; Trilayer AB Kinetic inductance detectors (KIDs) are a promising technology for astronomical observations over a wide range of wavelengths in the mm and sub-mm regime. Simple fabrication, in as little as one lithographic layer, and passive frequency-domain multiplexing, with readout of up to 1000 pixels on a single line with a single cold amplifier, make KIDs an attractive solution for high-pixel-count detector arrays. We are developing an array that optimizes KIDs for optical frequencies near 100 GHz to expand their usefulness in mm-wave applications, with a particular focus on CMB B-mode measurement efforts in association with the QUBIC telescope. We have designed, fabricated, and tested a 20-pixel prototype array using a simple quasi-lumped microstrip design and pulsed DC reactive magnetron-sputtered TiN/Ti/TiN trilayer resonators, optimized for detecting 100 GHz (3 mm) signals. Here we present a discussion of design considerations for the array, as well as preliminary detector characterization measurements and results from a study of TiN trilayer properties. C1 [Lowitz, A. E.; Timbie, P. T.] Univ Wisconsin, Madison, WI 53706 USA. [Brown, A. D.; Stevenson, T. R.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Mikula, V.] Catholic Univ Amer, Washington, DC 20064 USA. RP Lowitz, AE (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM lowitz@wisc.edu RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU NASA Space Technology Research Fellowship FX This work was supported by a NASA Space Technology Research Fellowship. NR 6 TC 0 Z9 0 U1 4 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 627 EP 633 DI 10.1007/s10909-016-1584-y PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700016 ER PT J AU Duff, SM Austermann, J Beall, JA Becker, D Datta, R Gallardo, PA Henderson, SW Hilton, GC Ho, SP Hubmayr, J Koopman, BJ Li, D McMahon, J Nati, F Niemack, MD Pappas, CG Salatino, M Schmitt, BL Simon, SM Staggs, ST Stevens, JR Van Lanen, J Vavagiakis, EM Ward, JT Wollack, EJ AF Duff, S. M. Austermann, J. Beall, J. A. Becker, D. Datta, R. Gallardo, P. A. Henderson, S. W. Hilton, G. C. Ho, S. P. Hubmayr, J. Koopman, B. J. Li, D. McMahon, J. Nati, F. Niemack, M. D. Pappas, C. G. Salatino, M. Schmitt, B. L. Simon, S. M. Staggs, S. T. Stevens, J. R. Van Lanen, J. Vavagiakis, E. M. Ward, J. T. Wollack, E. J. TI Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE AlMn; Multichroic; Polarimeter; SiNx; Transition-edge sensor ID POLARIZATION AB Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN) materials and microwave structures, and the resulting performance improvements. C1 [Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Hilton, G. C.; Hubmayr, J.; Van Lanen, J.] NIST, 325 Broadway, Boulder, CO 80305 USA. [Datta, R.; McMahon, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Gallardo, P. A.; Henderson, S. W.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Ho, S. P.; Pappas, C. G.; Salatino, M.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Li, D.] SLAC Natl Accelerator Lab, 2575 Sandy Hill Rd, Menlo Pk, CA 94025 USA. [Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Duff, SM (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA. EM shannon.duff@nist.gov RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016 OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088 FU U.S. National Science Foundation [1440226]; NIST Quantum Initiative; NASA [NNX13AE56G, NNX14AB58G]; NASA Space Technology Research Fellowship awards FX This work was supported by the U.S. National Science Foundation through award 1440226. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. The work of BJK, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards. NR 15 TC 2 Z9 2 U1 1 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 634 EP 641 DI 10.1007/s10909-016-1576-y PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700017 ER PT J AU Denis, KL Ali, A Appel, J Bennett, CL Chang, MP Chuss, DT Colazo, FA Costen, N Essinger-Hileman, T Hu, R Marriage, T Rostem, K U-Yen, K Wollack, EJ AF Denis, K. L. Ali, A. Appel, J. Bennett, C. L. Chang, M. P. Chuss, D. T. Colazo, F. A. Costen, N. Essinger-Hileman, T. Hu, R. Marriage, T. Rostem, K. U-Yen, K. Wollack, E. J. TI Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE TES; CMB; Wafer bonding; Micro-machining; Polarization ID BOLOMETER AB Characterization of the minute cosmic microwave background polarization signature requires multi-frequency, high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of detector modules for measurement of the CMB at 90 GHz. The 90 GHz detectors are a scaled version of the 40 GHz architecture where, due to smaller size detectors, we have implemented a modular (wafer level) rather than the chip-level architecture. The new fabrication process utilizes the same design rules with the added challenge of increased wiring density to the 74 TES's as well as a new wafer level hybridization procedure. The hexagonally shaped modules are tile-able, and as such can be used to form the large focal planes required for a space-based CMB polarimeter. The detectors described here will be deployed in two focal planes with seven modules each in the Johns Hopkins University led ground-based Cosmology Large Angular Scale Surveyor (CLASS) telescope. C1 [Denis, K. L.; Chang, M. P.; Colazo, F. A.; Costen, N.; Hu, R.; U-Yen, K.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ali, A.; Appel, J.; Bennett, C. L.; Essinger-Hileman, T.; Marriage, T.; Rostem, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chang, M. P.; Costen, N.; Hu, R.] Stinger Ghaffarian Technol Greenbelt, Greenbelt, MD 20770 USA. [Chuss, D. T.] Villanova Univ, Villanova, PA 19085 USA. RP Denis, KL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM kevin.l.denis@nasa.gov RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Denis, Kevin/0000-0002-3592-5703 FU NASA ROSES/APRA grant; National Science Foundation [0959349, 1429236] FX NASA ROSES/APRA grant provided support for the detector technology development. We acknowledge the National Science Foundation for their support of CLASS under Grants numbered 0959349 and 1429236. NR 10 TC 1 Z9 1 U1 2 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 668 EP 673 DI 10.1007/s10909-015-1366-y PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700022 ER PT J AU Fyhrie, A Glenn, J Wheeler, J Day, P Eom, BH Leduc, H Skrutskie, M AF Fyhrie, A. Glenn, J. Wheeler, J. Day, P. Eom, B. H. Leduc, H. Skrutskie, M. TI Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Kinetic inductance detector; Far-infrared; Low NEP AB Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3 W/. We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 m optically loaded by cold blackbody radiation. C1 [Fyhrie, A.; Glenn, J.; Wheeler, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Day, P.; Eom, B. H.; Leduc, H.] Jet Prop Lab, Pasadena, CA USA. [Skrutskie, M.] Univ Virginia, Charlottesville, VA USA. RP Fyhrie, A (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. EM adalyn.fyhrie@colorado.edu NR 10 TC 1 Z9 1 U1 3 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 712 EP 717 DI 10.1007/s10909-016-1539-3 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700029 ER PT J AU Hunacek, J Bock, J Bradford, CM Bumble, B Chang, TC Cheng, YT Cooray, A Crites, A Hailey-Dunsheath, S Gong, Y Kenyon, M Koch, P Li, CT O'Brient, R Shirokoff, E Shiu, C Staniszewski, Z Uzgil, B Zemcov, M AF Hunacek, J. Bock, J. Bradford, C. M. Bumble, B. Chang, T-C. Cheng, Y-T. Cooray, A. Crites, A. Hailey-Dunsheath, S. Gong, Y. Kenyon, M. Koch, P. Li, C-T. O'Brient, R. Shirokoff, E. Shiu, C. Staniszewski, Z. Uzgil, B. Zemcov, M. TI Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Reionization; Intensity mapping; Bolometers; Transition edge sensors ID POWER SPECTRUM; REIONIZATION; SPECTROMETER; CONSTRAINTS; GALAXIES; UNIVERSE; EPOCH AB We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 m emission line of singly ionized carbon ([CII]) from redshift to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of . The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of . This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown. C1 [Hunacek, J.; Bock, J.; Bradford, C. M.; Cheng, Y-T.; Crites, A.; Hailey-Dunsheath, S.; O'Brient, R.; Shiu, C.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Bradford, C. M.; Bumble, B.; Kenyon, M.; O'Brient, R.; Staniszewski, Z.] Jet Prop Lab, Pasadena, CA USA. [Chang, T-C.; Koch, P.; Li, C-T.] Acad Sinica, Inst Astron & Astrophys, Taipei, Taiwan. [Cooray, A.] Univ Calif Irvine, Irvine, CA USA. [Shirokoff, E.] Univ Chicago, Chicago, IL 60637 USA. [Uzgil, B.] Univ Penn, Philadelphia, PA 19104 USA. [Gong, Y.] Natl Astron Observ China, Beijing, Peoples R China. [Zemcov, M.] Rochester Inst Technol, Rochester, NY 14623 USA. RP Hunacek, J (reprint author), CALTECH, Pasadena, CA 91125 USA. EM jhunacek@caltech.edu FU National Science Foundation Graduate Research Fellowship [DGE1144469] FX This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1144469. NR 14 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 733 EP 738 DI 10.1007/s10909-015-1359-x PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700032 ER PT J AU Chuss, DT Ali, A Amiri, M Appel, J Bennett, CL Colazo, F Denis, KL Dunner, R Essinger-Hileman, T Eimer, J Fluxa, P Gothe, D Halpern, M Harrington, K Hilton, G Hinshaw, G Hubmayr, J Iuliano, J Marriage, TA Miller, N Moseley, SH Mumby, G Petroff, M Reintsema, C Rostem, K U-Yen, K Watts, D Wagner, E Wollack, EJ Xu, Z Zeng, L AF Chuss, D. T. Ali, A. Amiri, M. Appel, J. Bennett, C. L. Colazo, F. Denis, K. L. Dunner, R. Essinger-Hileman, T. Eimer, J. Fluxa, P. Gothe, D. Halpern, M. Harrington, K. Hilton, G. Hinshaw, G. Hubmayr, J. Iuliano, J. Marriage, T. A. Miller, N. Moseley, S. H. Mumby, G. Petroff, M. Reintsema, C. Rostem, K. U-Yen, K. Watts, D. Wagner, E. Wollack, E. J. Xu, Z. Zeng, L. TI Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE CMB; TES ID MICROWAVE BACKGROUND POLARIMETRY; BANDWIDTH AB The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at 10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors. C1 [Chuss, D. T.] Villanova Univ, Dept Phys, Villanova, PA 19085 USA. [Ali, A.; Appel, J.; Bennett, C. L.; Essinger-Hileman, T.; Eimer, J.; Gothe, D.; Harrington, K.; Iuliano, J.; Marriage, T. A.; Miller, N.; Mumby, G.; Petroff, M.; Rostem, K.; Watts, D.; Wagner, E.; Xu, Z.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Colazo, F.; Miller, N.; Moseley, S. H.; Rostem, K.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Denis, K. L.] NASA, Goddard Space Flight Ctr, Code 553, Greenbelt, MD 20771 USA. [U-Yen, K.] NASA, Goddard Space Flight Ctr, Code 555, Greenbelt, MD 20771 USA. [Amiri, M.; Halpern, M.; Hinshaw, G.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hilton, G.; Hubmayr, J.; Reintsema, C.] NIST, 325 Broadway, Boulder, CO 80305 USA. [Zeng, L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Dunner, R.; Fluxa, P.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago, Chile. RP Chuss, DT (reprint author), Villanova Univ, Dept Phys, Villanova, PA 19085 USA. EM david.chuss@villanova.edu RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Watts, Duncan/0000-0002-5437-6121 FU National Science Foundation [0959349, 1429236]; NASA ROSES/APRA program; NASA Space Technology Research Fellowship [NNX14AM49H]; Maryland Space Grant Consortium FX Support for CLASS has been provided by the National Science Foundation through Grant Numbers 0959349 and 1429236. The NASA ROSES/APRA program has provided funding for the development of the detectors. K. Harrington was supported by a NASA Space Technology Research Fellowship (NNX14AM49H). D Watts is funded by the Maryland Space Grant Consortium. NR 18 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 759 EP 764 DI 10.1007/s10909-015-1368-9 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700036 ER PT J AU Wu, WLK Ade, PAR Ahmed, Z Alexander, KD Amiri, M Barkats, D Benton, SJ Bischoff, CA Bock, JJ Bowens-Rubin, R Buder, I Bullock, E Buza, V Connors, JA Filippini, JP Fliescher, S Grayson, JA Halpern, M Harrison, SA Hilton, GC Hristov, VV Hui, H Irwin, KD Kang, J Karkare, KS Karpel, E Kefeli, S Kernasovskiy, SA Kovac, JM Kuo, CL Megerian, KG Netterfield, CB Nguyen, HT O'Brient, R Ogburn, RW Pryke, C Reintsema, CD Richter, S Sorensen, C Staniszewski, ZK Steinbach, B Sudiwala, RV Teply, GP Thompson, KL Tolan, JE Tucker, CE Turner, AD Vieregg, AG Weber, AC Wiebe, DV Willmert, J Yoon, KW AF Wu, W. L. K. Ade, P. A. R. Ahmed, Z. Alexander, K. D. Amiri, M. Barkats, D. Benton, S. J. Bischoff, C. A. Bock, J. J. Bowens-Rubin, R. Buder, I. Bullock, E. Buza, V. Connors, J. A. Filippini, J. P. Fliescher, S. Grayson, J. A. Halpern, M. Harrison, S. A. Hilton, G. C. Hristov, V. V. Hui, H. Irwin, K. D. Kang, J. Karkare, K. S. Karpel, E. Kefeli, S. Kernasovskiy, S. A. Kovac, J. M. Kuo, C. L. Megerian, K. G. Netterfield, C. B. Nguyen, H. T. O'Brient, R. Ogburn, R. W. Pryke, C. Reintsema, C. D. Richter, S. Sorensen, C. Staniszewski, Z. K. Steinbach, B. Sudiwala, R. V. Teply, G. P. Thompson, K. L. Tolan, J. E. Tucker, C. E. Turner, A. D. Vieregg, A. G. Weber, A. C. Wiebe, D. V. Willmert, J. Yoon, K. W. TI Initial Performance of Bicep3: A Degree Angular Scale 95 GHz Band Polarimeter SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Cosmic microwave background; Primordial gravitational waves; Inflation; Instrumentation: polarimetry; Telescopes AB Bicep3 is a 550-mm aperture telescope with cold, on-axis, refractive optics designed to observe at the 95-GHz band from the South Pole. It is the newest member of the Bicep/Keck family of inflationary probes specifically designed to measure the polarization of the cosmic microwave background (CMB) at degree angular scales. Bicep3 is designed to house 1280 dual-polarization pixels, which, when fully populated, totals to 9 the number of pixels in a single Keck 95-GHz receiver, thus further advancing the Bicep/Keck program's 95 GHz mapping speed. Bicep3 was deployed during the austral summer of 2014-2015 with nine detector tiles, to be increased to its full capacity of 20 in the second season. After instrument characterization, measurements were taken, and CMB observation commenced in April 2015. Together with multi-frequency observation data from Planck, Bicep2, and the Keck Array, Bicep3 is projected to set upper limits on the tensor-to-scalar ratio to at 95 % C.L. C1 [Wu, W. L. K.; Ahmed, Z.; Grayson, J. A.; Irwin, K. D.; Kang, J.; Karpel, E.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Wu, W. L. K.; Ahmed, Z.; Grayson, J. A.; Irwin, K. D.; Kang, J.; Karpel, E.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Ade, P. A. R.; Sudiwala, R. V.; Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Alexander, K. D.; Barkats, D.; Bischoff, C. A.; Bowens-Rubin, R.; Buder, I.; Buza, V.; Connors, J. A.; Harrison, S. A.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Sorensen, C.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Amiri, M.; Halpern, M.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Benton, S. J.; Netterfield, C. B.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Bock, J. J.; Hristov, V. V.; Hui, H.; Kefeli, S.; O'Brient, R.; Staniszewski, Z. K.; Steinbach, B.; Teply, G. P.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Megerian, K. G.; Nguyen, H. T.; O'Brient, R.; Staniszewski, Z. K.; Turner, A. D.; Weber, A. C.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bullock, E.; Fliescher, S.; Pryke, C.; Willmert, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Filippini, J. P.] Univ Illinois, Dept Phys, Urbana, IL 61820 USA. [Hilton, G. C.; Reintsema, C. D.] NIST, Boulder, CO 80305 USA. [Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. RP Wu, WLK (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM wlwu@stanford.edu OI Barkats, Denis/0000-0002-8971-1954 FU National Science Foundation [1313158, 1313010, 1313062, 1313287, 1056465, 0960243]; SLAC Laboratory Directed Research and Development Fund; Canada Foundation for Innovation, Science and Technology Facilities Council Consolidated Grant [ST/K000926/1]; British Columbia Development Fund; JPL Research and Technology Development Fund; NASA APRA program [06-ARPA206-0040, 10-SAT10-0017, 12-SAT12-0031]; NASA SAT program [06-ARPA206-0040, 10-SAT10-0017, 12-SAT12-0031] FX This work is supported by the National Science Foundation (Grant Nos. 1313158, 1313010, 1313062, 1313287, 1056465, 0960243), the SLAC Laboratory Directed Research and Development Fund, the Canada Foundation for Innovation, Science and Technology Facilities Council Consolidated Grant (ST/K000926/1), and the British Columbia Development Fund. The development of detector technology was supported by the JPL Research and Technology Development Fund and Grants 06-ARPA206-0040, 10-SAT10-0017, and 12-SAT12-0031 from the NASA APRA and SAT programs. The development and testing of detector modules were supported by the Gordon and Betty Moore Foundation. NR 12 TC 1 Z9 1 U1 4 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 765 EP 771 DI 10.1007/s10909-015-1403-x PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700037 ER PT J AU Henderson, SW Allison, R Austermann, J Baildon, T Battaglia, N Beall, JA Becker, D De Bernardis, F Bond, JR Calabrese, E Choi, SK Coughlin, KP Crowley, KT Datta, R Devlin, MJ Duff, SM Dunkley, J Dunner, R van Engelen, A Gallardo, PA Grace, E Hasselfield, M Hills, F Hilton, GC Hincks, AD Hlozek, R Ho, SP Hubmayr, J Huffenberger, K Hughes, JP Irwin, KD Koopman, BJ Kosowsky, AB Li, D McMahon, J Munson, C Nati, F Newburgh, L Niemack, M Niraula, P Page, LA Pappas, CG Salatino, M Schillaci, A Schmitt, BL Sehgal, N Sherwin, BD Sievers, JL Simon, SM Spergel, DN Staggs, ST Stevens, JR Thornton, R Van Lanen, J Vavagiakis, EM Ward, JT Wollack, EJ AF Henderson, S. W. Allison, R. Austermann, J. Baildon, T. Battaglia, N. Beall, J. A. Becker, D. De Bernardis, F. Bond, J. R. Calabrese, E. Choi, S. K. Coughlin, K. P. Crowley, K. T. Datta, R. Devlin, M. J. Duff, S. M. Dunkley, J. Dunner, R. van Engelen, A. Gallardo, P. A. Grace, E. Hasselfield, M. Hills, F. Hilton, G. C. Hincks, A. D. Hlozek, R. Ho, S. P. Hubmayr, J. Huffenberger, K. Hughes, J. P. Irwin, K. D. Koopman, B. J. Kosowsky, A. B. Li, D. McMahon, J. Munson, C. Nati, F. Newburgh, L. Niemack, M. D. Niraula, P. Page, L. A. Pappas, C. G. Salatino, M. Schillaci, A. Schmitt, B. L. Sehgal, N. Sherwin, B. D. Sievers, J. L. Simon, S. M. Spergel, D. N. Staggs, S. T. Stevens, J. R. Thornton, R. Van Lanen, J. Vavagiakis, E. M. Ward, J. T. Wollack, E. J. TI Advanced ACTPol Cryogenic Detector Arrays and Readout SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Bolometers; Cosmic microwave background; Millimeter-wave; Polarimetry; Superconducting detectors; Transition edge sensors ID TELESCOPE; COSMOLOGY; MILLIMETER; CAMERA AB Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays. C1 [Henderson, S. W.; De Bernardis, F.; Gallardo, P. A.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Keble Rd, Ithaca, NY 14853 USA. [Allison, R.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Austermann, J.; Beall, J. A.; Becker, D.; Duff, S. M.; Hilton, G. C.; Hubmayr, J.; Li, D.; Van Lanen, J.] NIST, Quantum Devices Grp, 325 Broadway Mailcode 817-03, Boulder, CO 80305 USA. [Baildon, T.; Coughlin, K. P.; Datta, R.; Hills, F.; McMahon, J.; Munson, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Battaglia, N.; Calabrese, E.; Hasselfield, M.; Hlozek, R.; Spergel, D. N.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Bond, J. R.; van Engelen, A.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Choi, S. K.; Crowley, K. T.; Grace, E.; Ho, S. P.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Devlin, M. J.; Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Dunner, R.] Ponticia Univ Catolica, Dept Astron & Astrofis, Casilla 306, Santiago 22, Chile. [Hincks, A. D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Huffenberger, K.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Hughes, J. P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kosowsky, A. B.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Li, D.] SLAC Natl Accelerator Lab, 2575 Sandy Hill Rd, Menlo Pk, CA 94025 USA. [Newburgh, L.] Univ Toronto, Dunlap Inst, 50 St George St, Toronto, ON M5S 3H4, Canada. [Sehgal, N.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Sherwin, B. D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Sievers, J. L.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4041 Durban, South Africa. [Thornton, R.] West Chester Univ Penns, Dept Phys, W Chester, PA 19383 USA. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schillaci, A.] Soc Radiosky Asesorias Ingn Ltd, Lincoyan 54, Concepcion, Chile. RP Henderson, SW (reprint author), Cornell Univ, Dept Phys, Keble Rd, Ithaca, NY 14853 USA. EM swh76@cornell.edu RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016; OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088; Huffenberger, Kevin/0000-0001-7109-0099 FU U.S. National Science Foundation [1312380, 1440226]; NIST Quantum Initiative; NASA [NNX13AE56G, NNX14AB58G]; NASA Space Technology Research Fellowship awards FX This work was supported by the U.S. National Science Foundation through Awards 1312380 and 1440226. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G. The work of KPC, KTC, EG, BJK, CM, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards. NR 37 TC 14 Z9 14 U1 2 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 772 EP 779 DI 10.1007/s10909-016-1575-z PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700038 ER PT J AU Suzuki, A Ade, P Akiba, Y Aleman, C Arnold, K Baccigalupi, C Barch, B Barron, D Bender, A Boettger, D Borrill, J Chapman, S Chinone, Y Cukierman, A Dobbs, M Ducout, A Dunner, R Elleflot, T Errard, J Fabbian, G Feeney, S Feng, C Fujino, T Fuller, G Gilbert, A Goeckner-Wald, N Groh, J Haan, T Hall, G Halverson, N Hamada, T Hasegawa, M Hattori, K Hazumi, M Hill, C Holzapfel, W Hori, Y Howe, L Inoue, Y Irie, F Jaehnig, G Jaffe, A Jeong, O Katayama, N Kaufman, J Kazemzadeh, K Keating, B Kermish, Z Keskitalo, R Kisner, T Kusaka, A Jeune, M Lee, A Leon, D Linder, E Lowry, L Matsuda, F Matsumura, T Miller, N Mizukami, K Montgomery, J Navaroli, M Nishino, H Peloton, J Poletti, D Puglisi, G Rebeiz, G Raum, C Reichardt, C Richards, P Ross, C Rotermund, K Segawa, Y Sherwin, B Shirley, I Siritanasak, P Stebor, N Stompor, R Suzuki, J Tajima, O Takada, S Takakura, S Takatori, S Tikhomirov, A Tomaru, T Westbrook, B Whitehorn, N Yamashita, T Zahn, A Zahn, O AF Suzuki, A. Ade, P. Akiba, Y. Aleman, C. Arnold, K. Baccigalupi, C. Barch, B. Barron, D. Bender, A. Boettger, D. Borrill, J. Chapman, S. Chinone, Y. Cukierman, A. Dobbs, M. Ducout, A. Dunner, R. Elleflot, T. Errard, J. Fabbian, G. Feeney, S. Feng, C. Fujino, T. Fuller, G. Gilbert, A. Goeckner-Wald, N. Groh, J. Haan, T. De Hall, G. Halverson, N. Hamada, T. Hasegawa, M. Hattori, K. Hazumi, M. Hill, C. Holzapfel, W. Hori, Y. Howe, L. Inoue, Y. Irie, F. Jaehnig, G. Jaffe, A. Jeong, O. Katayama, N. Kaufman, J. Kazemzadeh, K. Keating, B. Kermish, Z. Keskitalo, R. Kisner, T. Kusaka, A. Jeune, M. Le Lee, A. Leon, D. Linder, E. Lowry, L. Matsuda, F. Matsumura, T. Miller, N. Mizukami, K. Montgomery, J. Navaroli, M. Nishino, H. Peloton, J. Poletti, D. Puglisi, G. Rebeiz, G. Raum, C. Reichardt, C. Richards, P. Ross, C. Rotermund, K. Segawa, Y. Sherwin, B. Shirley, I. Siritanasak, P. Stebor, N. Stompor, R. Suzuki, J. Tajima, O. Takada, S. Takakura, S. Takatori, S. Tikhomirov, A. Tomaru, T. Westbrook, B. Whitehorn, N. Yamashita, T. Zahn, A. Zahn, O. TI The POLARBEAR-2 and the Simons Array Experiments SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Cosmic microwave background; Inflation; Gravitational weak lensing; Polarization; B-mode ID B-MODE POLARIZATION; SCALES AB We present an overview of the design and status of the Polarbear-2 and the Simons Array experiments. Polarbear-2 is a cosmic microwave background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic lenslet-antenna-coupled polarization sensitive transition edge sensor (TES) bolometric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high-purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 K in each frequency band. Polarbear-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three Polarbear-2 type receivers. The Simons Array will cover 95, 150, and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to at and to 40 meV. C1 [Barch, B.; Barron, D.; Chinone, Y.; Cukierman, A.; Goeckner-Wald, N.; Groh, J.; Haan, T. De; Hall, G.; Hill, C.; Holzapfel, W.; Hori, Y.; Jeong, O.; Lee, A.; Raum, C.; Richards, P.; Shirley, I.; Westbrook, B.; Whitehorn, N.; Zahn, O.] Univ Calif, Dept Phys, Berkeley, CA 94720 USA. [Suzuki, A.] Univ Calif, Radio Astron Lab, Berkeley, CA 94720 USA. [Fujino, T.; Irie, F.; Katayama, N.; Mizukami, K.; Yamashita, T.] Univ Tokyo, Kavli IPMU WPI, UTIAS, Chiba 2778583, Japan. [Ade, P.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, Wales. [Hamada, T.; Hasegawa, M.; Hattori, K.; Nishino, H.; Segawa, Y.; Suzuki, J.; Tajima, O.; Takatori, S.; Tomaru, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Aleman, C.; Elleflot, T.; Fuller, G.; Howe, L.; Kaufman, J.; Kazemzadeh, K.; Keating, B.; Leon, D.; Lowry, L.; Matsuda, F.; Navaroli, M.; Siritanasak, P.; Stebor, N.; Zahn, A.] Univ Calif, Dept Phys, San Diego, CA 92093 USA. [Baccigalupi, C.; Fabbian, G.; Puglisi, G.] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy. [Bender, A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Borrill, J.; Keskitalo, R.; Kisner, T.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chapman, S.; Ross, C.; Rotermund, K.; Tikhomirov, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. [Dobbs, M.; Gilbert, A.; Montgomery, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada. [Ducout, A.; Feeney, S.; Jaffe, A.] Imperial Coll London, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Boettger, D.; Dunner, R.] Pontif Univ Catol, Dept Astron, Santiago, Chile. [Feng, C.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Halverson, N.; Jaehnig, G.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Kermish, Z.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Kusaka, A.; Linder, E.; Sherwin, B.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Jeune, M. Le; Peloton, J.; Poletti, D.; Stompor, R.] Univ Paris Diderot, AstroParticule & Cosmol, CEA Irfu, Obs Paris, Paris, France. [Matsumura, T.] Inst Space & Astronaut Studies ISAS, Tokyo, Japan. [Miller, N.] NASA Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Rebeiz, G.] Univ Calif, Dept Elect & Comp Engn, San Diego, CA 92093 USA. [Reichardt, C.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Takada, S.] Natl Inst Fusion Sci, Toki, Gifu, Japan. [Akiba, Y.; Hazumi, M.; Inoue, Y.] SOKENDAI Kamiyamaguchi, Hayama, Miura, Kanagawa 2400115, Japan. [Arnold, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Takakura, S.] Osaka Univ, Dept Phys, Osaka, Japan. [Errard, J.] Inst Lagrange Paris ILP, Univ Sorbonne, F-75014 Paris, France. EM asuzuki@berkeley.edu OI Fabbian, Giulio/0000-0002-3255-4695; Reichardt, Christian/0000-0003-2226-9169 FU MEXT Kahenhi [21111002]; NSF [AST-0618398]; NASA [NNG06GJ08G]; Simons Foundation; Natural Sciences and Engineering Research Council; Canadian Institute for Advanced Research; Japan Society for the Promotion of Science; CONICYT FX We acknowledge the support from the MEXT Kahenhi Grant 21111002, NSF Grant AST-0618398, NASA Grant NNG06GJ08G, The Simons Foundation, Natural Sciences and Engineering Research Council, Canadian Institute for Advanced Research, and Japan Society for the Promotion of Science, and the CONICYT provided invaluable funding and support. Detectors were fabricated at the Berkeley Marvell Nanofabrication laboratory. NR 22 TC 7 Z9 7 U1 7 U2 12 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 805 EP 810 DI 10.1007/s10909-015-1425-4 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700043 ER PT J AU Staguhn, JG Benford, DJ Dowell, CD Fixsen, DJ Hilton, GC Irwin, KD Jhabvala, CA Maher, SF Miller, TM Moseley, SH Sharp, EH Runyan, MC Wollack, EJ AF Staguhn, J. G. Benford, D. J. Dowell, C. D. Fixsen, D. J. Hilton, G. C. Irwin, K. D. Jhabvala, C. A. Maher, S. F. Miller, T. M. Moseley, S. H. Sharp, E. H. Runyan, M. C. Wollack, E. J. TI Performance of Backshort-Under-Grid Kilopixel TES Arrays for HAWC SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Transition edge sensor; Backshort-Under-Grid; Bolometer; HAWC; Far-infrared astronomy; Polarimetry AB We present results from laboratory detector characterizations of the first kilopixel BUG arrays for the High- resolution Wideband Camera Plus (HAWC+) which is the imaging far-infrared polarimeter camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our tests demonstrate that the array performance is consistent with the predicted properties. Here, we highlight results obtained for the thermal conductivity, noise performance, detector speed, and first optical results demonstrating the pixel yield of the arrays. C1 [Staguhn, J. G.] Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA. [Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Jhabvala, C. A.; Maher, S. F.; Miller, T. M.; Moseley, S. H.; Sharp, E. H.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dowell, C. D.; Runyan, M. C.] Jet Prop Lab, Pasadena, CA 91109 USA. [Hilton, G. C.] NIST, Boulder, CO 80305 USA. [Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Maher, S. F.] Sci Syst & Applicat Inc, Greenbelt, MD 20770 USA. [Sharp, E. H.] Global Sci & Technol Inc, Greenbelt, MD 20770 USA. RP Staguhn, JG (reprint author), Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA. EM johannes.staguhn@nasa.gov RI Wollack, Edward/D-4467-2012; Benford, Dominic/D-4760-2012 OI Wollack, Edward/0000-0002-7567-4451; Benford, Dominic/0000-0002-9884-4206 NR 3 TC 0 Z9 0 U1 2 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 811 EP 815 DI 10.1007/s10909-016-1509-9 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700044 ER PT J AU Faverzani, M Alpert, B Backer, D Bennet, D Biasotti, M Brofferio, C Ceriale, V Ceruti, G Corsini, D Day, PK De Gerone, M Dressler, R Ferri, E Fowler, J Fumagalli, E Gard, J Gatti, F Giachero, A Hays-Wehle, J Heinitz, S Hilton, G Koster, U Lusignoli, M Maino, M Mates, J Nisi, S Nizzolo, R Nucciotti, A Orlando, A Parodi, L Pessina, G Pizzigoni, G Puiu, A Ragazzi, S Reintsema, C Ribeiro-Gomez, M Schmidt, D Schuman, D Siccardi, F Sisti, M Swetz, D Terranova, F Ullom, J Vale, L AF Faverzani, M. Alpert, B. Backer, D. Bennet, D. Biasotti, M. Brofferio, C. Ceriale, V. Ceruti, G. Corsini, D. Day, P. K. De Gerone, M. Dressler, R. Ferri, E. Fowler, J. Fumagalli, E. Gard, J. Gatti, F. Giachero, A. Hays-Wehle, J. Heinitz, S. Hilton, G. Koster, U. Lusignoli, M. Maino, M. Mates, J. Nisi, S. Nizzolo, R. Nucciotti, A. Orlando, A. Parodi, L. Pessina, G. Pizzigoni, G. Puiu, A. Ragazzi, S. Reintsema, C. Ribeiro-Gomez, M. Schmidt, D. Schuman, D. Siccardi, F. Sisti, M. Swetz, D. Terranova, F. Ullom, J. Vale, L. TI The HOLMES Experiment SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Neutrino mass measurement; Electron capture; Holmium; Transition edge sensors ID ELECTRON NEUTRINO MASS; CAPTURE; HO-163 AB The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment will measure the end-point energy of the electron capture decay of Ho, aiming at a statistical sensitivity on the neutrino mass around 1 eV/c. In order to acquire the large needed statistics by keeping the pile-up contribution as low as possible, 1000 transition edge sensors will be readout simultaneously with the frequency domain readout, a multiplexing technique where the multiplex factor is only limited by the bandwidth of the available commercial fast digitizers. We outline here the HOLMES project with its technical challenges, and its status and perspectives. C1 [Alpert, B.; Backer, D.; Bennet, D.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Mates, J.; Reintsema, C.; Schmidt, D.; Schuman, D.; Swetz, D.; Ullom, J.; Vale, L.] NIST, Boulder, CO USA. [Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Fumagalli, E.; Gatti, F.; Orlando, A.; Parodi, L.; Pizzigoni, G.; Siccardi, F.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Fumagalli, E.; Gatti, F.; Orlando, A.; Parodi, L.; Pizzigoni, G.; Siccardi, F.] Ist Nazl Fis Nuc, Sez Genova, Genoa, Italy. [Faverzani, M.; Brofferio, C.; Ferri, E.; Nizzolo, R.; Nucciotti, A.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy. [Faverzani, M.; Brofferio, C.; Ceruti, G.; Ferri, E.; Giachero, A.; Maino, M.; Nizzolo, R.; Nucciotti, A.; Pessina, G.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Day, P. K.] Jet Prop Lab, Pasadena, CA USA. [Dressler, R.; Heinitz, S.] Paul Scherrer Inst, Villigen, Switzerland. [Koster, U.] Inst Laue Langeving, Grenoble, France. [Lusignoli, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Nisi, S.] INFN, Lab Nazl Gran Sasso, Assergi, AQ, Italy. [Ribeiro-Gomez, M.] Univ Lisbon, Multidisciplinary Ctr Astrophys CENTRA IST, Lisbon, Portugal. RP Nucciotti, A (reprint author), Univ Milano Bicocca, Dipartimento Fis, Milan, Italy.; Nucciotti, A (reprint author), Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. EM angelo.nucciotti@mib.infn.it RI Ferri, Elena/L-8531-2014; Biasotti, Michele/C-7890-2017; Giachero, Andrea/I-1081-2013; OI Ferri, Elena/0000-0003-1425-3669; Biasotti, Michele/0000-0002-7241-8479; Giachero, Andrea/0000-0003-0493-695X; De Gerone, Matteo/0000-0002-5489-6581; Pessina, Gianluigi Ezio/0000-0003-3700-9757 FU European Research Council under the European Union/ERC [340321]; INFN; Fundacao para a Ciencia e a Tecnologia [PTDC/FIS/116719/2010] FX The HOLMES experiment is funded by the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 340321. We also acknowledge support from INFN for the MARE project, from the NIST Innovations in Measurement Science program for the TES detector development, and from Fundacao para a Ciencia e a Tecnologia (PTDC/FIS/116719/2010) for providing the enriched Er2O3 used in preliminary 163Ho production by means of neutron irradiation. NR 15 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD AUG PY 2016 VL 184 IS 3-4 BP 922 EP 929 DI 10.1007/s10909-016-1540-x PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DQ2HF UT WOS:000379022700060 ER PT J AU Simon, JI Matzel, JEP Simon, SB Hutcheon, ID Ross, DK Weber, PK Grossman, L AF Simon, Justin I. Matzel, Jennifer E. P. Simon, Steven B. Hutcheon, Ian D. Ross, D. Kent Weber, Peter K. Grossman, Lawrence TI Oxygen isotopic variations in the outer margins and Wark-Lovering rims of refractory inclusions SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Oxygen isotopes; CAIs; Wark-Lovering rims; NanoSIMS; Protoplanetary disk ID AL-RICH INCLUSIONS; EARLY SOLAR-SYSTEM; COARSE-GRAINED CA; CARBONACEOUS CHONDRITES; PROTOPLANETARY DISK; ALLENDE METEORITE; CV3 CHONDRITES; INITIAL AL-26/AL-27; SELF-DIFFUSION; NEBULA GAS AB Oxygen isotopic variations across the outer margins and Wark-Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a O-16-rich protosolar gas reservoir and were later exposed to both relatively O-17,O-18-rich and O-16-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles as diffusion gradients between inclusion interiors and edges establishes a range of permissible time-temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 x 10(3) to 3 x 10(5) years. Assuming CAIs originated with a relatively O-16-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. Evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively O-16-rich but subtly distinct among different CAIs. Melilite is often relatively O-16-poor, but rare relatively O-16-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward O-16-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively, these results support numerical protoplanetary disk models in which CAIs were transported between several distinct nebular reservoirs multiple times prior to accretion onto a parent body. Published by Elsevier Ltd. C1 [Simon, Justin I.; Ross, D. Kent] NASA, Ctr Isotope Cosmochem & Geochronol, Astromat Res & Explorat Sci Div Explorat Integrat, Johnson Space Ctr, Houston, TX 77058 USA. [Matzel, Jennifer E. P.; Hutcheon, Ian D.; Weber, Peter K.] Lawrence Livermore Natl Lab, Livermore, CA 94451 USA. [Simon, Steven B.; Grossman, Lawrence] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. [Ross, D. Kent] Univ Texas El Paso, Jacobs Technol, Houston, TX 77058 USA. [Grossman, Lawrence] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RP Simon, JI (reprint author), NASA, Ctr Isotope Cosmochem & Geochronol, Astromat Res & Explorat Sci Div Explorat Integrat, Johnson Space Ctr, Houston, TX 77058 USA. EM justin.i.simon@nasa.gov FU NASA Cosmochemistry and Origins Programs [NNH11ZDA66N, NNH10AO48I, NNH10AO05I, NNX13AE73G]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is dedicated to Dr. Ian Douglass Hutcheon (1947-2015), an exceptional scientist, mentor, and friend. He made significant contributions to this work, masterfully integrating intuition, open-mindedness, and skepticism. The remaining authors and many others in our community will sorely miss him. We are grateful to Journal Editor D. Papanastassiou and three anonymous reviewers for their careful and constructive reviews of this paper. The work was supported by NASA Cosmochemistry and Origins Programs: Grants NNH11ZDA66N to JIS, NNH10AO48I and NNH10AO05I to IDH, and NNX13AE73G to LG. Repolishing of several 'well-used' samples by Roger Harrington is gratefully appreciated. This work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 92 TC 2 Z9 2 U1 5 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD AUG 1 PY 2016 VL 186 BP 242 EP 276 DI 10.1016/j.gca.2016.04.025 PG 35 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DP9SF UT WOS:000378836600015 ER PT J AU Barnes, JJ Tartese, R Anand, M McCubbin, FM Neal, CR Franchi, IA AF Barnes, Jessica J. Tartese, Romain Anand, Mahesh McCubbin, Francis M. Neal, Clive R. Franchi, Ian A. TI Early degassing of lunar urKREEP by crust-breaching impact(s) SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Moon; apatite; volatiles; NanoSIMS; chlorine; magma ocean ID CHLORINE ISOTOPE COMPOSITION; FORMING GIANT IMPACT; NOBLE-GAS-ANALYSES; MAGMATIC VOLATILES; VOLCANIC GLASSES; MARE BASALTS; MG-SUITE; MOON; WATER; HYDROGEN AB Current models for the Moon's formation have yet to fully account for the thermal evolution of the Moon in the presence of H2O and other volatiles. Of particular importance is chlorine, since most lunar samples are characterised by unique heavy delta Cl-37 values, significantly deviating from those of other planetary materials, including Earth, for which delta Cl-37 values cluster around similar to 0 parts per thousand. In order to unravel the cause(s) of the Moon's unique chlorine isotope signature, we performed a comprehensive study of high-precision in situ Cl isotope measurements of apatite from a suite of Apollo samples with a range of geochemical characteristics and petrologic types. The Cl-isotopic compositions measured in lunar apatite in the studied samples display a wide range of delta Cl-37 values (reaching a maximum value of +36 parts per thousand), which are positively correlated with the amount of potassium (K), Rare Earth Element (REE) and phosphorous (P) (CREEP) component in each sample. Using these new data, integrated with existing H-isotope data obtained for the same samples, we are able to place these findings in the context of the canonical lunar magma ocean (LMO) model. The results are consistent with the urKREEP reservoir being characterised by a delta Cl-37 similar to+30%o. Such a heavy Cl isotope signature requires metal-chloride degassing from a Cl-enriched urKREEP LMO residue, a process likely to have been triggered by at least one large crust-breaching impact event that facilitated the transport and exposure of urKREEP liquid to the lunar surface. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Barnes, Jessica J.; Tartese, Romain; Anand, Mahesh; Franchi, Ian A.] Open Univ, Planetary & Space Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. [Tartese, Romain] UPMC, Univ Paris 04, Museum Natl Hist Nat, Inst Mineral Phys Mat & Cosmochim,CNRS, F-75005 Paris, France. [Tartese, Romain] IRD, F-75005 Paris, France. [Anand, Mahesh] Nat Hist Museum, Dept Earth Sci, Cromwell Rd, London SW7 5BD, England. [McCubbin, Francis M.] NASA, Johnson Space Ctr, Mailcode X12,2101 NASA Pkwy, Houston, TX 77058 USA. [Neal, Clive R.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. RP Barnes, JJ (reprint author), Open Univ, Planetary & Space Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. EM jessica.bames@open.ac.uk OI Tartese, Romain/0000-0002-3490-9875 FU UK Science and Technology Facilities Council [ST/L000776/1]; NASA's LASER program [NNX13AK32G] FX We thank NASA CAPTEM for allocation of lunar samples (to MA and CRN). This research was supported by a grant from the UK Science and Technology Facilities Council (grant # ST/L000776/1 to M.A. and I.A.F.). FMM acknowledges support from NASA's LASER program during this study through grant NNX13AK32G. We thank Erik Hauri and Evelyn Furl for their insightful reviews which helped to improve this manuscript, and we thank the editor Bernard Marty for his handling of this manuscript. NR 59 TC 3 Z9 3 U1 6 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD AUG 1 PY 2016 VL 447 BP 84 EP 94 DI 10.1016/j.epsl.2016.04.036 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DP4AS UT WOS:000378438400008 ER PT J AU Daigle, MJ Bregon, A Koutsoukos, X Biswas, G Pulido, B AF Daigle, Matthew J. Bregon, Anibal Koutsoukos, Xenofon Biswas, Gautam Pulido, Belarmino TI A qualitative event-based approach to multiple fault diagnosis in continuous systems using structural model decomposition SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE LA English DT Article DE Fault diagnosis; Model-based diagnosis; Multiple faults; Diagnosability; Structural model decomposition; Discrete-event systems ID ANALYTICAL REDUNDANCY RELATIONS; DIAGNOSABILITY; CONFLICTS AB Multiple fault diagnosis is a difficult problem for dynamic systems, and, as a result, most multiple fault diagnosis approaches are restricted to static systems, and most dynamic system diagnosis approaches make the single fault assumption. Within the framework of consistency-based diagnosis, the challenge is to generate conflicts from dynamic signals. For multiple faults, this becomes difficult due to the possibility of fault masking and different relative times of fault occurrence, resulting in many different ways that any given combination of faults can manifest in the observations. In order to address these challenges, we develop a novel multiple fault diagnosis framework for continuous dynamic systems. We construct a qualitative event-based framework, in which discrete qualitative symbols are generated from residual signals. Within this framework, we formulate an online diagnosis approach and establish definitions of multiple fault diagnosability. Residual generators are constructed based on structural model decomposition, which, as we demonstrate, has the effect of reducing the impact of fault masking by decoupling faults from residuals, thus improving diagnosability and fault isolation performance. Through simulation-based multiple fault diagnosis experiments, we demonstrate and validate the concepts developed here, using a multi-tank system as a case study. Published by Elsevier Ltd. C1 [Daigle, Matthew J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bregon, Anibal; Pulido, Belarmino] Univ Valladolid, Dept Informat, E-47011 Valladolid, Spain. [Koutsoukos, Xenofon; Biswas, Gautam] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Inst Software Integrated Syst, Nashville, TN 37235 USA. RP Daigle, MJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM matthew.j.daigle@nasa.gov; anibal@infor.uva.es; xenofon.koutsoukos@vanderbilt.edu; gautam.biswas@vanderbilt.edu; belar@infor.uva.es OI Daigle, Matthew/0000-0002-4616-3302 FU NASA System-Wide Safety and Assurance Technologies (SSAT) project; Spanish MINECO Grant [DPI2013-45414-R] FX The author's work has been partially supported by the NASA System-Wide Safety and Assurance Technologies (SSAT) project.; The authors work has been supported by the Spanish MINECO Grant DPI2013-45414-R. NR 40 TC 1 Z9 1 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0952-1976 EI 1873-6769 J9 ENG APPL ARTIF INTEL JI Eng. Appl. Artif. Intell. PD AUG PY 2016 VL 53 BP 190 EP 206 DI 10.1016/j.engappai.2016.04.002 PG 17 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Automation & Control Systems; Computer Science; Engineering GA DP0LH UT WOS:000378180800014 ER PT J AU Gwenzi, D Lefsky, MA Suchdeo, VP Harding, DJ AF Gwenzi, David Lefsky, Michael A. Suchdeo, Vijay P. Harding, David J. TI Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING LA English DT Article DE Photon counting lidar; ICESat-2; MABEL; MATLAS; Savanna; Canopy height ID LIDAR; VEGETATION; FOREST AB The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics (r(2) and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices (r(2) ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the simulated data, there is reason to believe that the ability of ICESat-2 to estimate height in savannas will be comparable to the original ICESat mission although the respective sensors have different measurement principles. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). C1 [Gwenzi, David; Lefsky, Michael A.] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Nat Resource Ecol Lab, NESB 108,1499 Campus Delivery, Ft Collins, CO 80523 USA. [Suchdeo, Vijay P.; Harding, David J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gwenzi, D (reprint author), Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Nat Resource Ecol Lab, NESB 108,1499 Campus Delivery, Ft Collins, CO 80523 USA. EM dgwenzi@rams.colostate.edu RI Harding, David/F-5913-2012 FU NASA [NNH11ZDA001N-ICESAT2] FX We are grateful to NASA, Grant number NNH11ZDA001N-ICESAT2 for funding this project. Anita Brenner (Sigma Space Corporation) is thanked for providing the MABEL photons classification algorithm. We also thank the 2 anonymous reviewers whose valuable criticism of our first draft greatly improved the manuscript. NR 20 TC 1 Z9 1 U1 9 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2716 EI 1872-8235 J9 ISPRS J PHOTOGRAMM JI ISPRS-J. Photogramm. Remote Sens. PD AUG PY 2016 VL 118 BP 68 EP 82 DI 10.1016/j.isprsjprs.2016.04.009 PG 15 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA DP4FI UT WOS:000378451300006 ER PT J AU Patzold, M Hausler, B Tyler, GL Andert, T Asmar, SW Bird, MK Dehant, V Hinson, DP Rosenblatt, P Simpson, RA Tellmann, S Withers, P Beuthe, M Efimov, AI Hahn, M Kahan, D Le Maistre, S Oschlisniok, J Peter, K Remus, S AF Paetzold, M. Haeusler, B. Tyler, G. L. Andert, T. Asmar, S. W. Bird, M. K. Dehant, V. Hinson, D. P. Rosenblatt, P. Simpson, R. A. Tellmann, S. Withers, P. Beuthe, M. Efimov, A. I. Hahn, M. Kahan, D. Le Maistre, S. Oschlisniok, J. Peter, K. Remus, S. TI Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS) SO PLANETARY AND SPACE SCIENCE LA English DT Review DE Mars Express; Mars; Atmosphere; Ionosphere; Radio science; Radio occultation ID MARTIAN DAYSIDE IONOSPHERE; CONVECTIVE BOUNDARY-LAYER; ORBITER LASER ALTIMETER; GLOBAL SURVEYOR; OCCULTATION MEASUREMENTS; BISTATIC RADAR; ATMOSPHERIC PROFILES; SOLAR CONJUNCTION; VENUS-EXPRESS; SCATTERING OBSERVATIONS AB The Mars Express spacecraft is operating in Mars orbit since early 2004. The Mars Express Radio Science Experiment (MaRS) employs the spacecraft and ground station radio systems (i) to conduct radio occultations of the atmosphere and ionosphere to obtain vertical profiles of temperature, pressure, neutral number densities and electron density, (ii) to conduct bistatic radar experiments to obtain information on the dielectric and scattering properties of the surface, (iii) to investigate the structure and variation of the crust and lithosphere in selected target areas, (iv) to determine the mass, bulk and internal structure of the moon Phobos, and (v) to track the MEX radio signals during superior solar conjunction to study the morphology of coronal mass ejections (CMEs). Here we report observations, results and discoveries made in the Mars environment between 2004 and 2014 over almost an entire solar cycle. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Paetzold, M.; Bird, M. K.; Tellmann, S.; Hahn, M.; Oschlisniok, J.; Peter, K.] Univ Cologne, Abt Planetenforsch, Rhein Inst Umweltforsch, D-50931 Cologne, Germany. [Haeusler, B.; Andert, T.] Univ Bundeswehr Munchen, Inst Raumfahrttech & Weltraumnutzung, Neubiberg, Germany. [Tyler, G. L.; Hinson, D. P.; Simpson, R. A.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Asmar, S. W.; Kahan, D.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dehant, V.; Rosenblatt, P.; Beuthe, M.; Le Maistre, S.] Observ Royal Belgique, B-1180 Brussels, Belgium. [Withers, P.] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. [Efimov, A. I.] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Moscow 125009, Russia. [Remus, S.] ESA ESTEC, Noordwijk, Netherlands. RP Patzold, M (reprint author), Univ Cologne, Abt Planetenforsch, Rhein Inst Umweltforsch, D-50931 Cologne, Germany. EM martin.paetzold@uni-koeln.de FU Bundesministerium fur Wirtschaft BMWi, Berlin via German Space Agency DLR, Bonn [50QM1004, 50QM1401, 50QM1002]; NASA [1217744]; NASA/JPL FX The Mars Express Radio Science experiment (MaRS) is funded by the Bundesministerium fur Wirtschaft BMWi, Berlin, via the German Space Agency DLR, Bonn, under grants 50QM1004, 50QM1401 and 50QM1002 (UniBw). Support for MaRS at Stanford University is provided by NASA through JPL contract 1217744. Support for the Multimission Radio Science Support Team is provided by NASA/JPL. We thank everyone involved with the Mars Express mission at ESTEC, ESOC, ESAC, JPL and in particular at the ESTRACK and DSN ground stations. The MaRS team expresses deep appreciation for the critical support provided by the MEX SGS at ESAC during the planning and the data acquisition periods. We are deeply indebted to Padma Varanasi and Tommy Thompson, both at JPL, for their dedicated support. NR 164 TC 3 Z9 3 U1 11 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD AUG PY 2016 VL 127 BP 44 EP 90 DI 10.1016/j.pss.2016.02.013 PG 47 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DP0MS UT WOS:000378184500004 ER PT J AU Mokhtarishirazabad, M Lopez-Crespo, P Moreno, B -Moreno, AL Zanganeh, M AF Mokhtarishirazabad, M. Lopez-Crespo, P. Moreno, B. -Moreno, A. Lopez Zanganeh, M. TI Evaluation of crack-tip fields from DIC data: A parametric study SO INTERNATIONAL JOURNAL OF FATIGUE LA English DT Article; Proceedings Paper CT 3rd International Conference on Characterisation of Crack Tip Fields CY APR 20-22, 2015 CL Urbino, ITALY SP Italian Grp Fracture DE Linear elastic fracture mechanics; Digital image correlation; Stress intensity factor; K-dominance; Crack-tip displacement field ID DIGITAL IMAGE CORRELATION; STRESS INTENSITY FACTORS; DISPLACEMENT-FIELDS; SYSTEMATIC-ERRORS; FATIGUE; CLOSURE; PATTERNS; SIZE AB In the past two decades, crack-tip mechanics has been studied increasingly using full-field techniques. Within these techniques, Digital Image Correlation (DIC) has been most widely used due to its many advantages, to extract important crack-tip information, including Stress Intensity Factor (SIF), crack opening displacement, J-integral, T-stress, closure level, plastic zone size, etc. However, little information is given in the literature about the experimental setup that provides best estimations for the different parameters. The current work aims at understanding how the experimental conditions used in DIC influence the crack-tip information extracted experimentally. The influence of parameters such as magnification factor, the position of the images with respect the crack-tip and size of the subset used in the correlation is studied. The influence is studied in terms of SIF by using Williams' model. In this regard, cyclic loading on a fatigue crack in a compact tension (CT) specimen, made of aluminium 2024-T351 alloy, has been applied and the surface deformation around the crack-tip has been examined. The comparison between nominal and experimental values of K-I showed that the effect of subset size on the measured K-I is negligible compared to the effect of the field of view and the position of the area of interest. (C) 2016 Published by Elsevier Ltd. C1 [Mokhtarishirazabad, M.; Lopez-Crespo, P.; Moreno, B.] Univ Malaga, Dept Civil & Mat Engn, C Dr Ortiz Ramos S-N, E-29071 Malaga, Spain. [-Moreno, A. Lopez] Univ Jaen, Dept Mat Sci & Met Engn, Campus Las Lagunillas, Jaen 23071, Spain. [Zanganeh, M.] NASA, Lyndon B Johnson Space Ctr, Jacobs Technol, Houston, TX 77058 USA. RP Lopez-Crespo, P (reprint author), Univ Malaga, Dept Civil & Mat Engn, C Dr Ortiz Ramos S-N, E-29071 Malaga, Spain. EM plopezcrespo@uma.es NR 49 TC 3 Z9 3 U1 12 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-1123 EI 1879-3452 J9 INT J FATIGUE JI Int. J. Fatigue PD AUG PY 2016 VL 89 SI SI BP 11 EP 19 DI 10.1016/j.ijfatigue.2016.03.006 PG 9 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DO5QY UT WOS:000377839100003 ER PT J AU Pahlevan, N Sarkar, S Franz, BA AF Pahlevan, Nima Sarkar, Sudipta Franz, Bryan A. TI Uncertainties in coastal ocean color products: Impacts of spatial sampling SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Coastal ocean color; Spatial sampling; Uncertainty; Intercomparison ID RESOLUTION IMAGING SPECTRORADIOMETER; INHERENT OPTICAL-PROPERTIES; REMOTE-SENSING REFLECTANCE; ATMOSPHERIC CORRECTION; CLIMATE-CHANGE; VICARIOUS CALIBRATION; SATELLITE DATA; BIOOPTICAL MODEL; LANDSAT 8; DATA SETS AB With increasing demands for ocean color (OC) products with improved accuracy and well characterizdd, per retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R-rs products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R-rs(443), R-rs(482), R-rs(561), R-rs(655), Chla, K-d (482), and b(bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km x 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in situ coastal stations provides an optimal sampling size for validation efforts. These findings will have implications for enhancing our understanding of uncertainties in ocean color retrievals and for planning of future ocean color missions and the associated calibration/validation exercises. (C) 2016 Elsevier Inc. All rights reserved. C1 [Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.] NASA, Goddard Space Flight Ctr, Code 619 8800 Greenbelt Rd,Greenbelt Bldg 32, Greenbelt, MD 20771 USA. [Pahlevan, Nima; Sarkar, Sudipta] Sci Syst & Applicat Inc, 10210 Greenbelt Rd,Suite 600, Lanham, MD 20706 USA. RP Pahlevan, N (reprint author), NASA, Goddard Space Flight Ctr, Code 619 8800 Greenbelt Rd,Greenbelt Bldg 32, Greenbelt, MD 20771 USA. RI Franz, Bryan/D-6284-2012; OI Franz, Bryan/0000-0003-0293-2082; Pahlevan, Nima/0000-0002-5454-5212 FU NASA [NNG15HQ01C]; Geo-CAPE mission pre-fomulation studies FX Financial support by the NASA contract (award # NNG15HQ01C) and the Geo-CAPE mission pre-fomulation studies is acknowledged. We are also grateful to Robert E. Wolfe and Gary Lin with NASA GSFC's Terrestrial Information Systems Lab for the discussions of spatial performance of VIIRS and MODIS instruments. The computing support at the Terrestrial Information Systems Lab by Miguel O. Roman and Ed Masuoka is acknowledged. We are also grateful to the anonymous reviewers for their thoughtful comments that help improve this manuscript. NR 77 TC 2 Z9 2 U1 7 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG PY 2016 VL 181 BP 14 EP 26 DI 10.1016/j.rse.2016.03.022 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DO4CU UT WOS:000377730200002 ER PT J AU Alexandrov, MD Cairns, B van Diedenhoven, B Ackerman, AS Wasilewski, AP McGill, MJ Yorks, JE Hlavka, DL Platnick, SE Arnold, GT AF Alexandrov, Mikhail D. Cairns, Brian van Diedenhoven, Bastiaan Ackerman, Andrew S. Wasilewski, Andrzej P. McGill, Matthew J. Yorks, John E. Hlavka, Dennis L. Platnick, Steven E. Arnold, G. Thomas TI Polarized view of supercooled liquid water clouds SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Clouds; Supercooled water; Electromagnetic scattering; Polarization; Mie theory; Rainbow; Remote sensing ID RESEARCH SCANNING POLARIMETER; AIRCRAFT ICING ENVIRONMENTS; THERMODYNAMIC PHASE; SOUTHERN-OCEAN; LARGE DROPS; AEROSOLS; SIMULATIONS; INSTRUMENT; MISSION; PHYSICS AB Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 degrees C present a wellknown aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8 degrees intervals within 60 degrees from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 degrees and 165 degrees. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features varying between glaciated and liquid phases at altitudes as high as 10 km, which correspond to temperatures close to the homogeneous freezing temperature of pure water drops (about-35 degrees C or colder). The multimodal droplet size distributions retrieved from RSP data in these cases are consistent with the multi-layer cloud structure observed by correlative Cloud Physics Lidar (CPL) measurements. (C) 2016 Elsevier Inc. All rights reserved. C1 [Alexandrov, Mikhail D.] Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. [Alexandrov, Mikhail D.; Cairns, Brian; van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.] NASA Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [van Diedenhoven, Bastiaan] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. [Wasilewski, Andrzej P.] Trinnovim LLC, 2880 Broadway, New York, NY 10025 USA. [Hlavka, Dennis L.; Arnold, G. Thomas] Sci Syst & Applicat Inc, Lanham, MD USA. [McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Alexandrov, MD (reprint author), NASA Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mda14@columbia.edu RI Platnick, Steven/J-9982-2014; OI Platnick, Steven/0000-0003-3964-3567; Cairns, Brian/0000-0002-1980-1022 FU NASA Radiation Sciences Program; NASA Earth Science Division; NASA ROSES program [NNX15AD44G] FX This research was funded by the NASA Radiation Sciences Program managed by Hal Maring and by the NASA ROSES program under grant NNX15AD44G. This work was also funded by the NASA Earth Science Division as part of the pre-formulation study for the Aerosol, Cloud, and ocean Ecosystem (ACE) Mission. We would like to thank David Starr, Richard Ferrare and Jens Redeman for providing the leadership needed to get the best possible observations from the available flight hours during PODEX. We are tremendously grateful to the SEAC4RS leadership team that allowed us to obtain such a comprehensive cloud remote sensing dataset. The NASA ER-2 pilots, crew and management were immensely supportive and we thank them for all the help they so generously provided. NR 55 TC 0 Z9 0 U1 12 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG PY 2016 VL 181 BP 96 EP 110 DI 10.1016/j.rse.2016.04.002 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DO4CU UT WOS:000377730200008 ER PT J AU Sharma, P Jones, CE Dudas, J Bawden, GW Deverel, S AF Sharma, Priyanka Jones, Cathleen E. Dudas, Joel Bawden, Gerald W. Deverel, Steven TI Monitoring of subsidence with UAVSAR on Sherman Island in California's Sacramento-San Joaquin Delta SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Deltas; Subsidence; Synthetic aperture radar; Interferometry; InSAR; Land use; UAVSAR ID RADAR INTERFEROMETRY; SOILS; FAULT AB Sherman Island, the westernmost island in the Sacramento-San Joaquin Delta in California, plays a crucial role in maintaining the water flux between saline ocean water from the San Francisco Bay to its west and the rest of the Delta to its east. Land elevation below mean sea level and continuous subsidence over the past century has made this island a high priority area for investigations of subsidence and restoration in the Delta. This study reports the results of successful application of Interferometric Synthetic Aperture Radar (InSAR) data and technique to measure subsidence in the Delta, which is a coherence-challenged non-urban area. We carried out a time series interferometric analysis of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band (23.8 cm) data, collected from July 2009-August 2014, to assess both the spatial and temporal variation of subsidence on Sherman Island. We report both large-scale (island-wide) subsidence trends and small-scale (levee/ farm scale) subsidence features in Sherman Island. Assuming the subsidence is linear during the five years of UAVSAR data acquisition, subsidence rates across the island range from 0-5 cm/yr, with an average of 1.3 +/- 0.2 cm/yr. We estimate our systematic uncertainty to be 03 cm/yr. Overall, the central region in the island has subsided at a faster rate than the rest of the island. We find our results to be consistent with previous measurements of subsidence rates at electric transmission line towers scattered throughout the island. The results of this study provide insights into several factors influencing subsidence, including soil type, water table depth, land use, land elevation and the location and time of levee repairs. Subsidence monitoring on Sherman Island is essential for maintaining a reliable water supply for the state of California and for protecting the Delta ecosystem. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sharma, Priyanka; Jones, Cathleen E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S T1721-220, Pasadena, CA 91109 USA. [Dudas, Joel] Calif Dept Water Resources, 1416 9th St, Sacramento, CA 95814 USA. [Bawden, Gerald W.] NASA Headquarters, 300 E St SW, Washington, DC 20546 USA. [Deverel, Steven] HydroFocus Inc, 2827 Spafford St, Davis, CA 95618 USA. RP Sharma, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S T1721-220, Pasadena, CA 91109 USA. EM Priyanka.Sharma@jpl.nasa.gov; Cathleen.E.Jones@jpl.nasa.gov; Joel.Dudas@water.ca.gov; Gerald.W.Bawden@nasa.gov; sdeverel@hydrofocus.com FU Delta Science Program; California Sea Grant; NASA [NASA DEC08-0019]; Department of Homeland Security (DHS) [HSHPM-15-X-00023]; Department of Land, Air and Water Resources at UC Davis (NIFA) [2011-67003-30371]; US Department of Agriculture [201015552-06]; National Aeronautics and Space Administration FX The authors gratefully acknowledge those who designed, developed and operate the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). We are grateful to the Delta Science Program and the California Sea Grant for awarding the Delta Science Sea Grant Postdoctoral Fellowship to the lead author of this study, which enabled the research described here to be conducted. We thank Mike Gunson and Duane Waliser for their mentorship and financial support during this study. This work was also supported through grants from NASA (NASA DEC08-0019), Department of Homeland Security (DHS HSHPM-15-X-00023), Department of Land, Air and Water Resources at UC Davis (NIFA # 2011-67003-30371) and US Department of Agriculture (Sub award No. 201015552-06). The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The UAVSAR data are provided courtesy of NASA/JPL-Caltech. Copyright 2015. All rights reserved. NR 62 TC 0 Z9 0 U1 6 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG PY 2016 VL 181 BP 218 EP 236 DI 10.1016/j.rse.2016.04.012 PG 19 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DO4CU UT WOS:000377730200018 ER PT J AU Nghiem, SV Rigor, IG Clemente-Colon, P Neumann, G Li, PP AF Nghiem, S. V. Rigor, I. G. Clemente-Colon, P. Neumann, G. Li, P. P. TI Geophysical constraints on the Antarctic sea ice cover SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Antarctic sea ice; Passive and active microwave remote sensing; Frontal ice zone; Wind patterns; Antarctic Circumpolar Current front; GEBCO bathymetry ID SOUTHERN-OCEAN FRONTS; THICKNESS DISTRIBUTION; CIRCUMPOLAR CURRENT; SHIP OBSERVATIONS; CLIMATE-CHANGE; SATELLITE DATA; AMUNDSEN SEAS; SNOW COVER; VARIABILITY; MICROWAVE AB The contrast between the slight increase of Antarctic sea ice and the drastic reduction of Arctic sea ice since the 1970s has been a conundrum to be resolved. Sea ice trajectory tracking with satellite scatterometer data in 2008 shows that ice around Antarctica is pushed offshore by katabatic winds influenced by the continental topography. The ice trajectories reveal that sea ice, grown earlier in the ice season, drifts northward away from the Antarctic continent forming a circumpolar frontal ice zone (FIZ) behind the ice edge. The FIZ thereby consists of sea ice that becomes rougher due to a longer exposure to wind and wave actions, and thicker over time by more ice growth and greater snow accumulation. In the Antarctic circumpolar sea ice zone adjacent to the sea ice edge, satellite data in 1999-2009 exhibit a band of strong radar backscatter, which is consistent with the signature of older, thicker, and rougher sea ice with more snow in the FIZ. This sea ice band, as wide as 1000 km, serves as a 'Great Shield,' encapsulating and protecting younger and thinner ice in the internal ice pack. In the young and thin ice region behind the FIZ, ice can grow rapidly as winds continue opening interior areas thereby creating effective "ice factories." In addition, ridging can enhance ice thickness by convergence toward the circumpolar FIZ that is recirculated by westerly winds and currents. During the ice growth season, the FIZ advances until reaching lower-latitude warm waters at a boundary determined by the southern Antarctic Circumpolar Current front that is constrained by seafloor features. These persistent topographical and bathymetric geological factors help sustain the Antarctic sea ice cover. As such, the behavior of Antarctic sea ice is not a paradox as some have suggested, but instead is consistent with the geophysical characteristics in the southern polar region that starkly contrast to those in the Arctic. (C) 2016 Elsevier Inc. All rights reserved. C1 [Nghiem, S. V.; Neumann, G.; Li, P. P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Nghiem, S. V.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Rigor, I. G.] Univ Washington, Appl Phys Lab, 1013 NE 40th St,Box 355640, Seattle, WA 98105 USA. [Clemente-Colon, P.] NOAA Satellite Operat Facil, US Natl Naval Ice Ctr, 4251 Suitland Rd, Washington, DC 20395 USA. RP Nghiem, SV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Son.V.Nghiem@jpl.nasa.gov RI Clemente-Colon, Pablo/F-5581-2010 FU National Aeronautics and Space Administration (NASA) Cryospheric Sciences Program; National Oceanic and Atmospheric Administration (NOAA); National Science Foundation FX The research carried out at the Jet Propulsion Laboratory, California. Institute of Technology, was supported by the National Aeronautics and Space Administration (NASA) Cryospheric Sciences Program. This research was also carried out in part under the support of the National Oceanic and Atmospheric Administration (NOAA) via a subcontract to the Joint Institute for Regional Earth System Science and Engineering of the University of California at Los Angeles. Rigor is funded by NASA, National Science Foundation, and NOAA. The statements, findings, conclusions, and recommendations in this paper are those of the authors and do not necessarily reflect the views of NOAA or the Department of Commerce. We thank S. Helfrich of NIC for preparing NIC SIE data, L. Kaleschke of the University of Hamburg for helping in the ICDC SIE data access, D.T. Nguyen of JPL for assisting in GEBCO bathymetry representation, and J. Vazquez and T.M. Chin of JPL for the MUR SST data access and documentation. We thank the reviewers, all having positive and constructive comments and suggestions in the review process by Remote Sensing of Environment. In particular, we highly appreciate the excellent and thorough review by Claire Parkinson of the NASA Goddard Space Flight Center. NR 76 TC 3 Z9 3 U1 12 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG PY 2016 VL 181 BP 281 EP 292 DI 10.1016/j.rse.2016.04.005 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DO4CU UT WOS:000377730200022 ER PT J AU Yao, WG Liou, MS AF Yao, Weigang Liou, Meng-Sing TI A nonlinear modeling approach using weighted piecewise series and its applications to predict unsteady flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Modeling of nonlinear dynamics with parametric inputs; Weighted piecewise linear (WPL) model; Unsteady flow; Limited cycle oscillations ID PROPER ORTHOGONAL DECOMPOSITION; REDUCTION; COMPUTATION; SIMULATION; DYNAMICS; SYSTEMS AB To preserve nonlinearity of a full-order system over a range of parameters of interest, we propose an accurate and robust nonlinear modeling approach by assembling a set of piecewise linear local solutions expanded about some sampling states. The work by Rewienski and White [1] on micromachined devices inspired our use of piecewise linear local solutions to study nonlinear unsteady aerodynamics. These local approximations are assembled via nonlinear weights of radial basis functions. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving with different pitching motions, specifically AGARD's CT2 and CT5 problems [27], in which the flows exhibit different nonlinear behaviors. Furthermore, application of the developed aerodynamic model to a two-dimensional aero-elastic system proves the approach is capable of predicting limit cycle oscillations (LCOs) by using AGARD's CT6 [28] as a benchmark test. All results, based on inviscid solutions, confirm that our nonlinear model is stable and accurate, against the full model solutions and measurements, and for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robust for inputs that considerably depart from the base trajectory in form and magnitude. This modeling provides a very efficient way for predicting unsteady flowfields with varying parameters because it needs only a tiny fraction of the cost of a full-order modeling for each new condition-the more cases studied, the more savings rendered. Hence, the present approach is especially useful for parametric studies, such as in the case of design optimization and exploration of flow phenomena. Published by Elsevier Inc. C1 [Yao, Weigang; Liou, Meng-Sing] NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. [Yao, Weigang] NASA Postdoc Program, Washington, DC USA. [Yao, Weigang] Queens Univ Belfast, Sch Mech & Aerosp Engn, Belfast, Antrim, North Ireland. RP Liou, MS (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. EM meng-sing.liou@nasa.gov FU Subsonic Fixed Wing Project under NASA's Fundamental Aeronautics Program; Aero Sciences Project under NASA's Fundamental Aeronautics Program FX Weigang Yao was a NASA Postdoc Fellow supported by the Subsonic Fixed Wing Project, under NASA's Fundamental Aeronautics Program; Mr. William Haller is the Technical Lead of the task. Meng-Sing Liou has been supported by the Subsonic Fixed Wing and Aero Sciences Projects, under NASA's Fundamental Aeronautics Program and Dr. Jeffery Moder is the task Technical Lead for the Aero Sciences Project. The authors thank the reviewers for several useful suggestions and comments that have contributed to improvement of the paper. NR 36 TC 1 Z9 1 U1 3 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 1 PY 2016 VL 318 BP 58 EP 84 DI 10.1016/j.jcp.2016.04.052 PG 27 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DN4NF UT WOS:000377043400004 ER PT J AU Laguna, AA Lani, A Deconinck, H Mansour, NN Poedts, S AF Laguna, A. Alvarez Lani, A. Deconinck, H. Mansour, N. N. Poedts, S. TI A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Plasma; Finite volume method; Magnetohydrodynamics (MHD); Multi-fluid ID IDEAL MAGNETOHYDRODYNAMICS; RIEMANN SOLVER; EQUATIONS; MODEL; SIMULATIONS; SCHEME; RECONNECTION; MAXWELL; SEQUEL; AUSM AB We present a Finite Volume scheme for solving Maxwell's equations coupled to magnetized multi-fluid plasma equations for reactive and collisional partially ionized flows on unstructured meshes. The inclusion of the displacement current allows for studying electromagnetic wave propagation in a plasma as well as charge separation effects beyond the standard magnetohydrodynamics (MHD) description, however, it leads to a very stiff system with characteristic velocities ranging from the speed of sound of the fluids up to the speed of light. In order to control the fulfillment of the elliptical constraints of the Maxwell's equations, we use the hyperbolic divergence cleaning method. In this paper, we extend the latter method applying the CIR scheme with scaled numerical diffusion in order to balance those terms with the Maxwell flux vectors. For the fluids, we generalize the AUSM+-up to multiple fluids of different species within the plasma. The fully implicit second-order method is first verified on the Hartmann flow (including comparison with its analytical solution), two ideal MHD cases with strong shocks, namely, Orszag-Tang and the MHD rotor, then validated on a much more challenging case, representing a two-fluid magnetic reconnection under solar chromospheric conditions. For the latter case, a comparison with pioneering results available in literature is provided. (C) 2016 Elsevier Inc. All rights reserved. C1 [Laguna, A. Alvarez; Lani, A.; Deconinck, H.] Von Karman Inst Fluid Dynam, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium. [Laguna, A. Alvarez; Poedts, S.] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Celestijnenlaan 200B, B-3001 Leuven, Belgium. [Mansour, N. N.] NASA, Ames Res Ctr, MS 230-3, Moffett Field, CA 94035 USA. RP Laguna, AA (reprint author), Von Karman Inst Fluid Dynam, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium.; Laguna, AA (reprint author), Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Celestijnenlaan 200B, B-3001 Leuven, Belgium. EM alejandro.alvarez.laguna@vki.ac.be; alani@vki.ac.be; deconinck@vki.ac.be; Nagi.N.Mansour@nasa.gov; Stefaan.Poedts@wis.kuleuven.be RI Poedts, Stefaan/C-9775-2012; OI Poedts, Stefaan/0000-0002-1743-0651; Lani, Andrea/0000-0003-4017-215X FU Agency for Innovation by Science and Technology in Flanders (IWT); Research Foundation of Flanders [FWO G.0729.11N]; KU Leuven [GOA/2015-014]; FWO-Vlaanderen [G.0A23.16N]; ESA Prodex [C90347] FX The first author's contribution was supported by a Ph.D. grant from the Agency for Innovation by Science and Technology in Flanders (IWT). The second author's contribution was supported by the FWO G.0729.11N grant from the Research Foundation of Flanders. Some magnetic reconnection simulations whose results have been discussed in this work were run on Pleiades, NASA's supercomputer at the NASA Ames Research Center. These results were obtained in the framework of the projects GOA/2015-014 (KU Leuven), G.0A23.16N (FWO-Vlaanderen) and C90347 (ESA Prodex). NR 61 TC 2 Z9 2 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 1 PY 2016 VL 318 BP 252 EP 276 DI 10.1016/j.jcp.2016.04.058 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DN4NF UT WOS:000377043400012 ER PT J AU Tsafack, T Alred, JM Wise, KE Jensen, B Siochi, E Yakobson, BI AF Tsafack, Thierry Alred, John M. Wise, Kristopher E. Jensen, Benjamin Siochi, Emilie Yakobson, Boris I. TI Exploring the interface between single-walled carbon nanotubes and epoxy resin SO CARBON LA English DT Article ID MOLECULAR-DYNAMICS; MECHANICAL-PROPERTIES; NANOCOMPOSITES; COMPOSITES; RUBBER; STATES AB A significant mechanical reinforcement of epoxy matrices with carbon nanotubes (CNTs) requires a very strong covalent interfacial bonding between the tube and the resin, diglycidylether of bisphenol A (DGEBA). Using classical molecular dynamics (MD) and density functional theory (DFT), various methods of improving covalent binding to CNTs are applied on four major categories: CNT diameters, dopants, defects, and functional groups. The diameter category includes (n, 0) CNTs with n = 5, 7, 9,11, 13, 15; the dopant category includes B-, N-, and Si-doped CNTs; the defect category includes CNTs with monovacancies, Stone-Wales, and more complex nitrogen terminated monovacancies and divacancies; the functional group category includes CNTs with atomic oxygen, hydroxyl, amine, carboxyl, and a combination of oxygen and hydroxyl. The computation of binding energies (BE), affinity indices (AI), and shear fracture forces on all configurations converged to the conclusion that smaller tubes, Si-doped CNTs, CNTs functionalized with a combination of oxygen and hydroxyl, and CNTs with monovacancies show the strongest indication for mechanical reinforcement in their respective categories. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Tsafack, Thierry; Alred, John M.; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & Nanoengn, 6100 Main St MS-325, Houston, TX USA. [Wise, Kristopher E.; Jensen, Benjamin; Siochi, Emilie] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23665 USA. RP Yakobson, BI (reprint author), Rice Univ, Dept Mat Sci & Nanoengn, 6100 Main St MS-325, Houston, TX USA.; Wise, KE (reprint author), NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23665 USA. EM Kristopher.E.Wise@nasa.gov; biy@rice.edu RI Jensen, Benjamin/B-1297-2013 OI Jensen, Benjamin/0000-0002-7982-0663 FU NASA under the NASA Langley Research Center Nano Incubator Project [NNX13AN37G] FX The authors appreciate the useful discussions with Dr. Adri van Duin. This research was funded by NASA under the NASA Langley Research Center Nano Incubator Project (Grant NNX13AN37G). NR 44 TC 0 Z9 0 U1 23 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD AUG PY 2016 VL 105 BP 600 EP 606 DI 10.1016/j.carbon.2016.04.066 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DM8JB UT WOS:000376607200069 ER PT J AU Stephan, K Wagner, R Jaumann, R Clark, RN Cruikshank, DP Brown, RH Giese, B Roatsch, T Filacchione, G Matson, D Ore, CD Capaccioni, F Baines, KH Rodriguez, S Krupp, N Buratti, BJ Nicholson, PD AF Stephan, Katrin Wagner, Roland Jaumann, Ralf Clark, Roger N. Cruikshank, Dale P. Brown, Robert H. Giese, Bernd Roatsch, Thomas Filacchione, Gianrico Matson, Dennis Ore, Cristina Dalle Capaccioni, Fabrizio Baines, Kevin H. Rodriguez, Sebastien Krupp, Norbert Buratti, Bonnie J. Nicholson, Phil D. TI Cassini's geological and compositional view of Tethys SO ICARUS LA English DT Article DE Saturn; Satellites surfaces; Geological processes; Ices; IR spectroscopy ID SATURNS ICY SATELLITES; SURFACE-COMPOSITION; CRATERING HISTORY; IMAGING SCIENCE; VIMS; MIMAS; RHEA; ENCELADUS; DIONE; SYSTEM AB The Saturnian satellite Tethys exhibits geological and spectral properties, whose appearance, nature and spatial distribution partly mirror those identified on the neighboring satellites Dione and Rhea or fit to the picture how spectral surface properties are expected to change from one satellite to the other within the inner Saturnian system. However, we also identified spectral variations that are unique in the Saturnian system. Whereas geologically young surface features are characterized by pure H2O-ice composition with relatively large particles, which match the particle sizes measured for fresh surface features also on Dione and Rhea, geologically old weathered regions are dominated by submicron-sized ice particles. Our investigations confirm that the Odysseus impact event did not cause the formation of Tethys' extended graben system Ithaca Chasma. On the contrary, Odysseus might be responsible for the N-S trending 'icy' bands that mark Tethys' surface in the center of its leading and trailing hemisphere. (C) 2016 Elsevier Inc. All rights reserved. C1 [Stephan, Katrin; Wagner, Roland; Jaumann, Ralf; Giese, Bernd; Roatsch, Thomas] DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Jaumann, Ralf] Free Univ Berlin, Dept Earth Sci, Inst Geosci, Berlin, Germany. [Clark, Roger N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Cruikshank, Dale P.; Ore, Cristina Dalle] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Filacchione, Gianrico; Capaccioni, Fabrizio; Buratti, Bonnie J.] INAF IAPS, I-00133 Rome, Italy. [Matson, Dennis] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Baines, Kevin H.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA. [Rodriguez, Sebastien] Univ Paris 07, CEA Saclay, Lab AIM, CNRS,DSM,IRFU,SAp, F-91191 Gif Sur Yvette, France. [Krupp, Norbert] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Nicholson, Phil D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Stephan, K (reprint author), DLR, Inst Planetary Res, D-12489 Berlin, Germany. EM Katrin.Stephan@dlr.de RI Rodriguez, Sebastien/H-5902-2016; OI Rodriguez, Sebastien/0000-0003-1219-0641; Filacchione, Gianrico/0000-0001-9567-0055 NR 64 TC 0 Z9 0 U1 3 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 1 EP 22 DI 10.1016/j.icarus.2016.03.002 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700001 ER PT J AU Davies, AG Sotin, C Choukroun, M Matson, DL Johnson, TV AF Davies, Ashley Gerard Sotin, Christophe Choukroun, Mathieu Matson, Dennis L. Johnson, Torrence V. TI Cryolava flow destabilization of crustal methane clathrate hydrate on Titan SO ICARUS LA English DT Article DE Titan; Volcanism; Titan, atmosphere; Titan, surface ID POSSIBLE ORIGIN; ICY SATELLITES; CRYOVOLCANISM; ENCELADUS; FEATURES; SURFACE; ETHANE; SYSTEM; RADAR; SPOT AB To date, there has been no conclusive observation of ongoing endogenous volcanic activity on Saturn's moon Titan. However, with time, Titan's atmospheric methane is lost and must be replenished. We have modeled one possible mechanism for the replenishment of Titan's methane loss. Cryolavas can supply enough heat to release large amounts of methane from methane clathrate hydrates (MCH). The volume of methane released is controlled by the flow thickness and its areal extent. The depth of the destabilisation layer is typically approximate to 30% of the thickness of the lava flow (approximate to 3 m for a 10-m thick flow). For this flow example, a maximum of 372 kg of methane is released per m(2) of flow area. Such an event would release methane for nearly a year. One or two events per year covering similar to 20 km(2) would be sufficient to resupply atmospheric methane. A much larger effusive event covering an area of approximate to 9000 km(2) with flows 200 m thick would release enough methane to sustain current methane concentrations for 10,000 years. The minimum size of "cryo-flows" sufficient to maintain the current atmospheric methane is small enough that their detection with current instruments (e.g., Cassini) could be challenging. We do not suggest that Titan's original atmosphere was generated by this mechanism. It is unlikely that small-scale surface MCH destabilisation is solely responsible for long-term (> a few Myr) sustenance of Titan's atmospheric methane, but rather we present it as a possible contributor to Titan's past and current atmospheric methane. (C) 2016 Published by Elsevier Inc. C1 [Davies, Ashley Gerard; Sotin, Christophe; Choukroun, Mathieu; Johnson, Torrence V.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Matson, Dennis L.] Bear Fight Inst, Winthrop, WA 98862 USA. RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ashley.Davies@jpl.nasa.gov RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU NASA Outer Planets Research Program [NMO710931] FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. (c) 2016 Caltech. We thank the NASA Outer Planets Research Program for support through award NMO710931. We thank a number of reviewers, including Christopher McKay and Ralph Lorenz, for their input. NR 56 TC 1 Z9 1 U1 7 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 23 EP 32 DI 10.1016/j.icarus.2016.02.046 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700002 ER PT J AU Craddock, RA Golombek, MP AF Craddock, Robert A. Golombek, Matthew P. TI Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety SO ICARUS LA English DT Article DE Mars; Mars, surface; Terrestrial planets ID PATHFINDER LANDING SITE; MARTIAN SURFACE; GROUND ICE; SOUTHWEST ICELAND; VIKING LANDERS; BRITTLE SOLIDS; FRAGMENT SIZE; DEBRIS FLOWS; GRAIN SHAPE; GALE CRATER AB We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt. Published by Elsevier Inc. C1 [Craddock, Robert A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, Washington, DC 20560 USA. [Golombek, Matthew P.] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA. RP Craddock, RA (reprint author), Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, Washington, DC 20560 USA. EM craddockb@si.edu FU Smithsonian Institution's George F. Becker endowment fund; Smithsonian Institution's George F. Becker Endowment FX This research was supported by the Smithsonian Institution's George F. Becker endowment fund. We thank Scott Eaton, Carolyn Russo, and Alan Howard for assistance in the field. We also thank Aileen Yingst for her constructive comments on the initial draft of this manuscript. Scott Rowland and an anonymous reviewer provided many valuable and insightful comments that improved the final version of the manuscript. This research was partially supported by a grant from the Smithsonian Institution's George F. Becker Endowment. Part of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 156 TC 0 Z9 0 U1 7 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 50 EP 72 DI 10.1016/j.icarus.2016.02.042 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700005 ER PT J AU Kollmann, P Brandt, PC Collinson, G Rong, ZJ Futaana, Y Zhang, TL AF Kollmann, P. Brandt, P. C. Collinson, G. Rong, Z. J. Futaana, Y. Zhang, T. L. TI Properties of planetward ion flows in Venus' magnetotail SO ICARUS LA English DT Article DE Venus; Magnetospheres; Reconnection; Venus Express; Plasma ID EXPRESS OBSERVATIONS; MAGNETIC-FIELD; SOLAR-WIND; PLASMA ENVIRONMENT; FLAPPING MOTIONS; MARS-EXPRESS; ESCAPE RATE; PRECIPITATION; DISTRIBUTIONS; CONSEQUENCES AB Venus is gradually losing some of its atmosphere in the form of ions through its induced magnetotail. Some of these ions have been reported previously to flow back to the planet. Proposed drivers are magnetic reconnection and deflection of pickup ions in the magnetic field. We analyze protons and oxygen ions with eV to keV energies acquired by the ASPERA-4/IMA instrument throughout the entire Venus Express mission. We find that venusward flowing ions are important in the sense that their density and deposition rate into the atmosphere is of the same order of magnitude as the density and escape rate of downtail flowing ions. Our analysis shows that during strong EUV irradiance, which occurs during solar maximum, the flux of venusward flowing protons is weaker and of oxygen ions is stronger than during weak irradiance. Since such a behavior was observed when tracing oxygen ions through a MHD model, the ultimate driver of the venusward flowing ions may simply be the magnetic field configuration around Venus. Although the pure downtail oxygen flux stays mostly unchanged for all observed EUV conditions, the increase in venusward oxygen flux for high irradiance results in a lower net atmospheric escape rate. Venusward bulk flows are mostly found in locations where the magnetic field is weak relative to the interplanetary conditions. Although a weak field is generally an indicator of proximity to the magnetotail current sheet, these flows do not cluster around current sheet crossings, as one may expect if they would be driven by magnetic reconnection. (C) 2016 The Authors. Published by Elsevier Inc. C1 [Kollmann, P.; Brandt, P. C.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Collinson, G.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Futaana, Y.] Swedish Inst Space Phys IRF, S-98128 Kiruna, Sweden. [Rong, Z. J.] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Earth & Planetary Phys, Beijing 100029, Peoples R China. [Zhang, T. L.] Austrian Acad Sci, Space Res Inst IWF, A-8042 Graz, Austria. RP Kollmann, P (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM peter.kollmann@jhuapl.edu RI Kollmann, Peter/C-2583-2016; Brandt, Pontus/N-1218-2016; OI Kollmann, Peter/0000-0002-4274-9760; Brandt, Pontus/0000-0002-4644-0306; Futaana, Yoshifumi/0000-0002-7056-3517 FU NASA [NNX10AI17G] FX Venus Express/ASPERA-4 and MAG data are available online through ESA's planetary science archive (PSA). Timed/SEE data is available through the LASP Interactive Solar Irradiance Data Center (LISIRD) at lasp.colorado.edu/lisird. JHU/APL authors were supported by NASA grant NNX10AI17G for Venus Express Participating Scientists. The authors like to thank M. Fraenz (MPS) and A. Fedorov (IRAP) for analysis software and data processing. NR 50 TC 0 Z9 0 U1 4 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 73 EP 82 DI 10.1016/j.icarus.2016.02.053 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700006 ER PT J AU Carlson, RW Baines, KH Anderson, MS Filacchione, G Simon, AA AF Carlson, R. W. Baines, K. H. Anderson, M. S. Filacchione, G. Simon, A. A. TI Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot SO ICARUS LA English DT Article DE Jupiter, atmosphere; Photochemistry; Atmospheres, chemistry; Atmospheres, composition; Organic chemistry ID INFRARED MAPPING SPECTROMETER; SIMULATED JOVIAN ATMOSPHERE; ORGANIC SYNTHESIS; PHOSPHINE PHOTOLYSIS; MASS-SPECTROMETER; UPPER TROPOSPHERE; CROSS-SECTIONS; IMAGING DATA; NH3; PHOTOCHEMISTRY AB The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using. ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds. (C) 2016 Elsevier Inc. All rights reserved. C1 [Carlson, R. W.; Baines, K. H.; Anderson, M. S.] CALTECH, Jet Prop Lab, Mail Stop 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Filacchione, G.] Ist Astrofis & Planetol Spaziali, Rome, Italy. [Simon, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Carlson, RW (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.W.Carlson@jpl.nasa.gov RI Simon, Amy/C-8020-2012; OI Simon, Amy/0000-0003-4641-6186; Filacchione, Gianrico/0000-0001-9567-0055 FU NASA's Planetary Atmospheres Program; Association of Universities for Research in Astronomy, Inc., under NASA [NAS 5-26555]; [GO6009]; [GO6452]; [GO11498]; [GO13937] FX We thank the two anonymous reviewers for their careful reading and thoughtful comments that have greatly improved the paper. RWC and KHB gratefully acknowledge funding from NASA's Planetary Atmospheres Program. Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Space and Aeronautics Administration. Some results were based on observations made with the NASA/ESA Cassini spacecraft and the Hubble Space Telescope. Data from the latter were obtained from the Data Archive at the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. These observations are associated with programs GO6009, GO6452, GO11498 and GO13937. NR 78 TC 0 Z9 0 U1 7 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 106 EP 115 DI 10.1016/j.icarus.2016.03.008 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700009 ER PT J AU Konopliv, AS Park, RS Folkner, WM AF Konopliv, Alex S. Park, Ryan S. Folkner, William M. TI An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data SO ICARUS LA English DT Article DE Mars, interior; Rotational dynamics; Mars ID GLOBAL SURVEYOR; ORDER MODEL; PHOBOS AB The Mars gravity field resolution is mostly determined by the lower altitude Mars Reconnaissance Orbiter (MRO) tracking data. With nearly four years of additional MRO and Mars Odyssey tracking data since the last JPL released gravity field MRO110C and lander tracking from the MER Opportunity Rover, the gravity field and orientation of Mars have been improved. The new field, MRO120D, extends the maximum spherical harmonic degree slightly to 120, improves the determination of the higher degree coefficients as demonstrated by improved correlation with topography and reduces the uncertainty in the corresponding Mars orientation parameters by up to a factor of two versus previously combined gravity and orientation solutions. The new precession solution is (psi) over dot = -7608.3 +/- 2.1 mas/yr and is consistent with previous results but with a reduced uncertainty by 40%. The Love number solution, k(2) = 0.169 +/- 0.006, also shows a similar result to previous studies. (C) 2016 Elsevier Inc. All rights reserved. C1 [Konopliv, Alex S.; Park, Ryan S.; Folkner, William M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Konopliv, AS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alex.Konopliv@jpl.nasa.gov NR 28 TC 1 Z9 1 U1 10 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 253 EP 260 DI 10.1016/j.icarus.2016.02.052 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700018 ER PT J AU de Pater, I Davies, AG Marchis, F AF de Pater, Imke Davies, Ashley Gerard Marchis, Franck TI Keck observations of eruptions on Io in 2003-2005 SO ICARUS LA English DT Article DE Io; Infrared observations; Volcanism ID GALILEO NIMS DATA; VOLCANIC ACTIVITY; HEAT-FLOW; THERMAL SIGNATURE; STANDARD STARS; LOKI PATERA; MU-M; MISSION; TELESCOPE; EVOLUTION AB We report observations of four energetic volcanic eruptions on Io: at Tupan Patera on UT 8 March 2003; Tung Yo Patera on UT 28 May 2004; Sui Jen Patera on UT 30 May 2004; and south of Babbar Patera on UT 31 May 2005. The Tung Yo, Sui Jen and south of Babbar Paterae eruptions are in locations where no activity had been seen before. Our observations were obtained at near-infrared wavelengths (1.2-4.7 mu m) with the 10-m Keck telescope equipped with adaptive optics. We report single and two-temperature blackbody fits, as well as single-component and dual-component Io Flow Model (IFM) fits (Davies, 1996, Icarus, 124, 45-61) to all four eruptions where applicable. We use 2-mu m and 5-mu m radiant fluxes, the 2:5-mu m radiant flux ratio, and radiant flux density of each thermal source to constrain the likely style of volcanic eruption. All eruptions are characterized by a high temperature IFM component (ranging from 1475 to similar to 900 K) from a relatively small area (<1 km(2) to several tens of km(2)), and a lower temperature component with a more extensive surface area. The relationship of the areas at the highest temperatures to the cooler, more extensive area is of particular importance in deriving eruption style. Model fits to the Sui Jen Patera data are strongly suggestive of lava fountaining, although not at a level consistent with a large "outburst" eruption. Activity at Tupan Patera suggests that the entire floor of the patera may have been resurfaced with silicate lava in 2003. (C) 2016 Elsevier Inc. All rights reserved. C1 [de Pater, Imke] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [de Pater, Imke] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands. [de Pater, Imke] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Davies, Ashley Gerard] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Marchis, Franck] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Marchis, Franck] IMCCE Obs Paris, F-75014 Paris, France. RP de Pater, I (reprint author), Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. EM imke@berkeley.edu FU W.M. Keck Foundation; National Science Foundation, NSF [AST-1313485]; NASA Outer Planets Research and Planetary Geology and Geophysics Program FX We thank Alfred McEwen and an anonymous referee for valuable comments on the paper, which helped improve the paper substantially. The data presented in this paper were obtained at the W.M. Keck Observatories. The Keck Telescopes are operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Our research was partially supported by the National Science Foundation, NSF grant AST-1313485 to UC Berkeley. Ashley Davies thanks the NASA Outer Planets Research and Planetary Geology and Geophysics Program for support. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations of Ionian volcanoes from this Hawaiian volcano. NR 42 TC 1 Z9 1 U1 4 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 284 EP 296 DI 10.1016/j.icarus.2015.12.054 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700021 ER PT J AU Farnocchia, D Chesley, SR Brown, PG Chodas, PW AF Farnocchia, Davide Chesley, Steven R. Brown, Peter G. Chodas, Paul W. TI The trajectory and atmospheric impact of asteroid 2014 AA SO ICARUS LA English DT Article DE Asteroids; Asteroids; Dynamics; Astrometry; Near-Earth objects; Orbit determination AB Near-Earth asteroid 2014 AA entered the Earth's atmosphere on 2014 January 2, only 21 h after being discovered by the Catalina Sky Survey. In this paper we compute the trajectory of 2014 AA by combining the available optical astrometry, seven ground-based observations over 69 min, and the International Monitoring System detection of the atmospheric impact infrasonic airwaves in a least-squares orbit estimation filter. The combination of these two sources of observations results in a tremendous improvement in the orbit uncertainties. The impact time is 3:05 UT with a 1 sigma uncertainty of 6 min, while the impact location corresponds to a west longitude of 44.2 degrees and a latitude of 13.1 degrees with a 1 sigma uncertainty of 140 km. The minimum impact energy estimated from the infrasound data and the impact velocity result in an estimated minimum mass of 22.6 t. By propagating the trajectory of 2014 AA backwards we find that the only window for finding precovery observations is for the three days before its discovery. (C) 2016 Elsevier Inc. All rights reserved. C1 [Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Brown, Peter G.] Univ Western Ontario, London, ON N6A 3K7, Canada. RP Farnocchia, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Davide.Farnocchia@jpl.nasa.gov FU NASA [NNX11AB76A] FX We thank J. D. Giorgini and the reviewers, P. Jenniskens and an anonymous one, for useful comments that helped improve the paper. D. Farnocchia, S. R., Chesley, and P. W. Chodas conducted this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. P. G. Brown received support for this study from NASA Cooperative agreement NNX11AB76A. P. G. Brown thanks the Canadian Hazard Information Service of Natural Resources Canada for technical support and IDC access as part of the Canadian National Data Center. NR 25 TC 1 Z9 1 U1 4 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 327 EP 333 DI 10.1016/j.icarus.2016.02.056 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700024 ER PT J AU Filacchione, G Capaccioni, F Ciarniello, M Raponi, A Tosi, F De Sanctis, MC Erard, S Morvan, DB Leyrat, C Arnold, G Schmitt, B Quirico, E Piccioni, G Migliorini, A Capria, MT Palomba, E Cerroni, P Longobardo, A Barucci, A Fornasier, S Carlson, RW Jaumann, R Stephan, K Moroz, LV Kappel, D Rousseau, B Fonti, S Mancarella, F Despan, D Faure, M AF Filacchione, Gianrico Capaccioni, Fabrizio Ciarniello, Mauro Raponi, Andrea Tosi, Federico De Sanctis, Maria Cristina Erard, Stephane Morvan, Dominique Bockelee Leyrat, Cedric Arnold, Gabriele Schmitt, Bernard Quirico, Eric Piccioni, Giuseppe Migliorini, Alessandra Capria, Maria Teresa Palomba, Ernesto Cerroni, Priscilla Longobardo, Andrea Barucci, Antonella Fornasier, Sonia Carlson, Robert W. Jaumann, Ralf Stephan, Katrin Moroz, Lyuba V. Kappel, David Rousseau, Batiste Fonti, Sergio Mancarella, Francesca Despan, Daniela Faure, Mathilde TI The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase SO ICARUS LA English DT Article DE Comets, composition; Comets, nucleus; Spectroscopy ID EXPOSED WATER ICE; COMET 67P/CHURYUMOV-GERASIMENKO; PHOTOMETRIC PROPERTIES; IMAGING SPECTROMETER; OSIRIS OBSERVATIONS; ONBOARD ROSETTA; IMHOTEP REGION; VIRTIS; SHAPE; H2O AB From August to November 2014 the Rosetta orbiter has performed an extensive observation campaign aimed at the characterization of 67P/CG nucleus properties and to the selection of the Philae landing site. The campaign led to the production of a global map of the illuminated portion of 67P/CG nucleus. During this prelanding phase the comet's heliocentric distance decreased from 3.62 to 2.93 AU while Rosetta was orbiting around the nucleus at distances between 100 to 10 km. VIRTIS-M, the Visible and InfraRed Thermal Imaging Spectrometer - Mapping channel (Coradini et al., [2007] Space Sci. Rev., 128, 529-559) onboard the orbiter, has acquired 0.25-5.1 mu m hyperspectral data of the entire illuminated surface, e.g. the north hemisphere and the equatorial regions, with spatial resolution between 2.5 and 25 m/pixel. I/F spectra have been corrected for thermal emission removal in the 3.5-5.1 mu m range and for surface's photometric response. The resulting reflectance spectra have been used to compute several Cometary Spectral Indicators (CSI): single scattering albedo at 0.55 mu m, 0.5-0.8 mu m and 1.0-2.5 mu m spectral slopes, 3.2 mu m organic material and 2.0 mu m water ice band parameters (center, depth) with the aim to map their spatial distribution on the surface and to study their temporal variability as the nucleus moved towards the Sun. Indeed, throughout the investigated period, the nucleus surface shows a significant increase of the single scattering albedo along with a decrease of the 0.5-0.8 and 1.0-2.5 mu m spectral slopes, indicating a flattening of the reflectance. We attribute the origin of this effect to the partial removal of the dust layer caused by the increased contribution of water sublimation to the gaseous activity as comet crossed the frost-line. The regions more active at the time of these observations, like Hapi in the neck/north pole area, appear brighter, bluer and richer in organic material than the rest of the large and small lobe of the nucleus. The parallel coordinates method (Inselberg [1985] Vis. Comput., 1, 69-91) has been used to identify associations between average values of the spectral indicators and the properties of the geomorphological units as defined by (Thomas et al., [2015] Science, 347, 6220) and (El-Maarr et al., [2015] Astron. Astrophys., 583, A26). Three classes have been identified (smooth/active areas, dust covered areas and depressions), which can be clustered on the basis of the 3.2 mu m organic material's band depth, while consolidated terrains show a high variability of the spectral properties resulting being distributed across all three classes. These results show how the spectral variability of the nucleus surface is more variegated than the morphological classes and that 67P/CG surface properties are dynamical, changing with the heliocentric distance and with activity processes. (C) 2016 Elsevier Inc. All rights reserved. C1 [Filacchione, Gianrico; Capaccioni, Fabrizio; Ciarniello, Mauro; Raponi, Andrea; Tosi, Federico; De Sanctis, Maria Cristina; Piccioni, Giuseppe; Migliorini, Alessandra; Capria, Maria Teresa; Palomba, Ernesto; Cerroni, Priscilla; Longobardo, Andrea] Ist Astrofis & Planetol Spaziali, INAF IAPS, Area Ric Tor Vergata, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. [Erard, Stephane; Morvan, Dominique Bockelee; Leyrat, Cedric; Barucci, Antonella; Fornasier, Sonia; Rousseau, Batiste; Despan, Daniela] Univ Paris Diderot, UPMC, Observ Paris, LESIA,CNRS, F-92195 Meudon, France. [Arnold, Gabriele; Jaumann, Ralf; Stephan, Katrin; Moroz, Lyuba V.; Kappel, David] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Planetary Res, Berlin, Germany. [Schmitt, Bernard; Quirico, Eric; Faure, Mathilde] Univ Grenoble Alpes, CNRS, IPAG, Grenoble, France. [Carlson, Robert W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Fonti, Sergio; Mancarella, Francesca] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Lecce, Italy. RP Filacchione, G (reprint author), Ist Astrofis & Planetol Spaziali, INAF IAPS, Area Ric Tor Vergata, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. EM gianrico.filacchione@iaps.inaf.it RI Schmitt, Bernard/A-1064-2009; quirico, eric/K-9650-2013; OI Schmitt, Bernard/0000-0002-1230-6627; quirico, eric/0000-0003-2768-0694; Migliorini, Alessandra/0000-0001-7386-9215; Filacchione, Gianrico/0000-0001-9567-0055; Rousseau, Batiste/0000-0001-9247-7890; Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434 FU Italian Space Agency (ASI - Italy); Centre National d'Etudes Spatiales (CNES- France); Deutsches Zentrum fur Luft- and Raumfahrt (DLR-Germany); National Aeronautic and Space Administration (NASA-USA); ASI; CNES; DLR FX The authors would like to thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI - Italy), Centre National d'Etudes Spatiales (CNES- France), Deutsches Zentrum fur Luft- and Raumfahrt (DLR-Germany), National Aeronautic and Space Administration (NASA-USA). VIRTIS was built by a consortium from Italy, France and Germany, under the scientific responsibility of IAPS, Istituto di Astrofisica e Planetologia Spaziali of INAF, Rome (IT), which lead also the scientific operations. The VIRTIS instrument development for ESA has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES and from DLR. The VIRTIS instrument industrial prime contractor was former Officine Galileo, now Selex ES (Finmeccanica Group) in Campi Bisenzio, Florence, IT. The authors wish to thank the Rosetta Liaison Scientists, the Rosetta Science Ground Segment and the Rosetta Mission Operations Centre for their support in planning the VIRTIS observations. The VIRTIS calibrated data will be available through the ESA's Planetary Science Archive (PSA) web site. This research has made use of NASA's Astrophysics Data System. NR 42 TC 5 Z9 5 U1 5 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2016 VL 274 BP 334 EP 349 DI 10.1016/j.icarus.2016.02.055 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL8IM UT WOS:000375885700025 ER PT J AU Chyba, CF Hand, KP AF Chyba, Christopher F. Hand, Kevin P. TI Electric Power Generation from Earth's Rotation through its Own Magnetic Field SO PHYSICAL REVIEW APPLIED LA English DT Article ID AT-A-DISTANCE; UNIPOLAR INDUCTION; STATIC SITUATION; LINES; GAUGE; SHIELDS; COULOMB; THEOREM; MOTION AB We examine electric power generation from Earth's rotation through its own nonrotating magnetic field (that component of the field symmetric about Earth's rotation axis). There is a simple general proof that this is impossible. However, we identify a loophole in that proof and show that voltage can be continuously generated in a low-magnetic-Reynolds-number conductor rotating with Earth, provided magnetically permeable material is used to ensure curl (v x B-0) not equal 0 within the conductor, where B-0 derives from the axially symmetric component of Earth's magnetic flux density, and v is Earth's rotation velocity at the conductor's location. We solve the relevant equations for one laboratory realization, and from this solution, we predict the voltage magnitude and sign dependence on system dimensions and orientation relative to Earth's rotation. The effect, which would be available nearly globally with no intermittency, requires testing and further examination to see if it can be scaled to practical emission-free power generation. C1 [Chyba, Christopher F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Chyba, Christopher F.] Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Princeton, NJ 08544 USA. [Hand, Kevin P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Chyba, CF (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Chyba, CF (reprint author), Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Princeton, NJ 08544 USA. EM cchyba@princeton.edu; Kevin.P.Hand@jpl.nasa.gov FU Woodrow Wilson School; Department of Astrophysical Sciences at Princeton University; Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; National Aeronautics and Space Administration Exobiology Program [NNH09ZDA001N] FX We thank three anonymous referees for their reviews, and we are grateful for helpful discussions with T. H. Chyba, R. L. Garwin, M. J. Rees, P. J. Thomas, E. L. Turner, and three anonymous colleagues. We thank G. Z. McDermott and G. Cooper for administrative support, B. A. Lin for reference assistance, and M. Northrup of National Magnetics Group Inc. for help with materials. C. F. C. acknowledges research funds from the Woodrow Wilson School and the Department of Astrophysical Sciences at Princeton University. K. P. H. acknowledges support through the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and through the National Aeronautics and Space Administration Exobiology Program (Grant No. NNH09ZDA001N). NR 67 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2331-7019 J9 PHYS REV APPL JI Phys. Rev. Appl. PD JUL 29 PY 2016 VL 6 IS 1 AR 014017 DI 10.1103/PhysRevApplied.6.014017 PG 18 WC Physics, Applied SC Physics GA DT5CV UT WOS:000381499200002 ER PT J AU Breuillard, H Le Contel, O Retino, A Chasapis, A Chust, T Mirioni, L Graham, DB Wilder, FD Cohen, I Vaivads, A Khotyaintsev, YV Lindqvist, PA Marklund, GT Burch, JL Torbert, RB Ergun, RE Goodrich, KA Macri, J Needell, J Chutter, M Rau, D Dors, I Russell, CT Magnes, W Strangeway, RJ Bromund, KR Plaschke, F Fischer, D Leinweber, HK Anderson, BJ Le, G Slavin, JA Kepko, EL Baumjohann, W Mauk, B Fuselier, SA Nakamura, R AF Breuillard, H. Le Contel, O. Retino, A. Chasapis, A. Chust, T. Mirioni, L. Graham, D. B. Wilder, F. D. Cohen, I. Vaivads, A. Khotyaintsev, Yu V. Lindqvist, P. -A. Marklund, G. T. Burch, J. L. Torbert, R. B. Ergun, R. E. Goodrich, K. A. Macri, J. Needell, J. Chutter, M. Rau, D. Dors, I. Russell, C. T. Magnes, W. Strangeway, R. J. Bromund, K. R. Plaschke, F. Fischer, D. Leinweber, H. K. Anderson, B. J. Le, G. Slavin, J. A. Kepko, E. L. Baumjohann, W. Mauk, B. Fuselier, S. A. Nakamura, R. TI Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Earth magnetotail; dipolarization fronts ID KINETIC BALLOONING/INTERCHANGE INSTABILITY; ELECTROMAGNETIC ENERGY-CONVERSION; PLASMA SHEET; RECONNECTION; MAGNETOTAIL; SIMULATIONS; TURBULENCE; DRIVEN; FLOW AB Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales. C1 [Breuillard, H.; Le Contel, O.; Retino, A.; Chust, T.; Mirioni, L.] CNRS, LPP, UMR, Paris, France. [Chasapis, A.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Graham, D. B.; Vaivads, A.; Khotyaintsev, Yu V.; Mauk, B.] Swedish Inst Space Phys, Uppsala, Sweden. [Wilder, F. D.; Ergun, R. E.; Goodrich, K. A.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Cohen, I.; Anderson, B. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Lindqvist, P. -A.; Marklund, G. T.] Royal Inst Technol, Alfven Lab, Stockholm, Sweden. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. [Torbert, R. B.; Macri, J.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Torbert, R. B.; Macri, J.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Magnes, W.; Plaschke, F.; Fischer, D.; Baumjohann, W.; Nakamura, R.] Austrian Acad Sci, Space Res Inst IWF, Graz, Austria. [Bromund, K. R.; Le, G.; Kepko, E. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Slavin, J. A.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Fuselier, S. A.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. RP Breuillard, H (reprint author), CNRS, LPP, UMR, Paris, France. EM hugo.breuillard@lpp.polytechnique.fr RI NASA MMS, Science Team/J-5393-2013; Cohen, Ian/K-3038-2015; Le, Guan/C-9524-2012; Slavin, James/H-3170-2012; Mauk, Barry/E-8420-2017 OI NASA MMS, Science Team/0000-0002-9504-5214; Cohen, Ian/0000-0002-9163-6009; Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X; Mauk, Barry/0000-0001-9789-3797 FU CNES; CNRS-INSIS; CNRS-INSU FX H.B.'s work has been supported by CNES through the grant "Allocations de recherche post-doctorale." The French involment (SCM) on MMS is supported by CNES, CNRS-INSIS, and CNRS-INSU. Used data are available at https://lasp.colorado.edu/mms/sdc. NR 56 TC 4 Z9 4 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7279 EP 7286 DI 10.1002/2016GL069188 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200001 ER PT J AU Lee, SH Sibeck, DG Hwang, KJ Wang, Y Silveira, MVD Fok, MC Mauk, BH Cohen, IJ Ruohoniemi, JM Kitamura, N Burch, JL Giles, BL Torbert, RB Russell, CT Lester, M AF Lee, S. H. Sibeck, D. G. Hwang, K. -J. Wang, Y. Silveira, M. V. D. Fok, M. -C. Mauk, B. H. Cohen, I. J. Ruohoniemi, J. M. Kitamura, N. Burch, J. L. Giles, B. L. Torbert, R. B. Russell, C. T. Lester, M. TI Inverse energy dispersion of energetic ions observed in the magnetosheath SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE particle escape; energetic ions; magnetosheath; magnetic reconnection; solar wind-magnetosphere interaction ID UPSTREAM PRESSURE VARIATIONS; OXYGEN IONS; DAYSIDE MAGNETOPAUSE; MAGNETOSPHERIC IONS; BOW SHOCK; ACCELERATION; SIGNATURES; RECONNECTION; LATITUDES; LEAKAGE AB We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximate to 50-1000keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5R(E) using combined Super Dual Auroral Radar Network radar and EPD observations. C1 [Lee, S. H.; Sibeck, D. G.; Hwang, K. -J.; Silveira, M. V. D.; Fok, M. -C.; Giles, B. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hwang, K. -J.] Univ Maryland, Goddard Planetary & Heliophys Inst, Baltimore, MD 21201 USA. [Wang, Y.] Peking Univ, Sch Earth & Space Sci, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. [Mauk, B. H.; Cohen, I. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Ruohoniemi, J. M.] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Kitamura, N.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Lester, M.] Univ Leicester, Dept Phys & Astron, Leicester, Leics, England. RP Lee, SH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM sun.h.lee@nasa.gov RI NASA MMS, Science Team/J-5393-2013; Cohen, Ian/K-3038-2015; Lester, Mark/C-9657-2016; Mauk, Barry/E-8420-2017 OI NASA MMS, Science Team/0000-0002-9504-5214; Cohen, Ian/0000-0002-9163-6009; Lester, Mark/0000-0001-7353-5549; Mauk, Barry/0000-0001-9789-3797 FU NASA; MMS project; NSF [AGS-1341918]; NERC [NE/K011766/1]; national scientific agency of Australia; national scientific agency of Canada; national scientific agency of China; national scientific agency of France; national scientific agency of Japan; national scientific agency of South Africa; national scientific agency of United Kingdom; national scientific agency of United States; AFOSR FX We thank the FGM, FPI, and EPD instrument teams of MMS mission and ARTEMIS mission for the successful spacecraft operation and for providing plasma and magnetic field data. This research was supported by an appointment to the NASA Postdoctoral Program appointment at the NASA/GSFC, administered by Universities Space Research Association through a contract with NASA. Some of the work conducted at NASA/GSFC was supported by the MMS project. J.M.R. acknowledges the support of NSF under AGS-1341918. M.L. is supported by NERC grant NE/K011766/1. The SuperDARN radars are funded by the national scientific agencies of Australia, Canada, China, France, Japan, South Africa, United Kingdom, and the United States. We thank the team of Katie Herlingshaw, Suzie Imber, Hammed Lawal, Tim Yeoman, Jasmine Sandhu, Rosie Johnson, and Timothy David at the University of Leicester who collected the Hankasalmi radar data used in this paper which supported the CAPER rocket campaign. We thank the national institutes that support them and INTERMAGNET for promoting high standards of magnetic observatory practice. We also thank E. Yizengaw, E. Zesta, M.B. Moldwin, and the rest of the AMBER team for the data. AMBER is operated by Boston College and funded by NASA and AFOSR. The Kp and Dst indices were provided by the website (http://wdc.kugi.kyoto-u.ac.jp/). NR 31 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7338 EP 7347 DI 10.1002/2016GL069840 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200008 ER PT J AU Jaynes, AN Turner, DL Wilder, FD Osmane, A Baker, DN Blake, JB Fennell, JF Cohen, IJ Mauk, BH Reeves, GD Ergun, RE Giles, BL Gershman, DJ Torbert, RB Burch, JL AF Jaynes, A. N. Turner, D. L. Wilder, F. D. Osmane, A. Baker, D. N. Blake, J. B. Fennell, J. F. Cohen, I. J. Mauk, B. H. Reeves, G. D. Ergun, R. E. Giles, B. L. Gershman, D. J. Torbert, R. B. Burch, J. L. TI Energetic electron acceleration observed by MMS in the vicinity of an X-line crossing SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE electron acceleration; wave-particle interactions; VLF waves; magnetopause; dayside reconnection; MMS ID MAGNETIC RECONNECTION; LATITUDE MAGNETOPAUSE; WAVES; LAYER AB During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to >100keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line, whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments. C1 [Jaynes, A. N.; Wilder, F. D.; Baker, D. N.; Ergun, R. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Turner, D. L.; Blake, J. B.; Fennell, J. F.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. [Osmane, A.] Aalto Univ, Dept Radio Sci & Engn, Helsinki, Finland. [Cohen, I. J.; Mauk, B. H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Giles, B. L.; Gershman, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. RP Jaynes, AN (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM allison.jaynes@lasp.colorado.edu RI NASA MMS, Science Team/J-5393-2013; Cohen, Ian/K-3038-2015; Mauk, Barry/E-8420-2017; OI NASA MMS, Science Team/0000-0002-9504-5214; Cohen, Ian/0000-0002-9163-6009; Mauk, Barry/0000-0001-9789-3797; Reeves, Geoffrey/0000-0002-7985-8098 FU MMS mission, under NASA [NNG04EB99C] FX This work was supported by funding from the MMS mission, under NASA contract NNG04EB99C. The data presented here are publicly available on the MMS Science Data Center website: https://lasp.colorado.edu/mms/sdc/ or by request for dates earlier than 1 September 2015. Solar wind OMNI data from ACE and Wind are available via the Space Physics Data Facility at http://cdaweb.gsfc.nasa.gov/istp_public/. NR 32 TC 2 Z9 2 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7356 EP 7363 DI 10.1002/2016GL069206 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200010 ER PT J AU Yizengaw, E Moldwin, MB Zesta, E Magoun, M Pradipta, R Biouele, CM Rabiu, AB Obrou, OK Bamba, Z de Paula, ER AF Yizengaw, E. Moldwin, M. B. Zesta, E. Magoun, M. Pradipta, R. Biouele, C. M. Rabiu, A. B. Obrou, O. K. Bamba, Z. de Paula, E. R. TI Response of the equatorial ionosphere to the geomagnetic DP 2 current system SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE DP 2 current; equatorial electrodynamics ID ELECTRIC-FIELD; PENETRATION; SUBSTORMS AB The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and magnetosphere generates a convection electric field that can penetrate to the ionosphere and cause the DP 2 current system. The quasiperiodic DP 2 current system, which fluctuates coherently with fluctuations of the interplanetary magnetic field (IMF) B-z, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF B-z component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF B-z. C1 [Yizengaw, E.; Magoun, M.; Pradipta, R.] Boston Coll, Inst Sci Res, Boston, MA USA. [Moldwin, M. B.] Univ Michigan, Dept Climate Space Sci & Engn, Ann Arbor, MI 48109 USA. [Zesta, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Biouele, C. M.] Univ Yaounde, Dept Phys, Yaounde, Cameroon. [Rabiu, A. B.] Natl Space Res & Dev Agcy, Abuja, Nigeria. [Obrou, O. K.] Univ Felix Houphouet Boigny FHB, Lab Phys Atmosphere, Abidjan, Cote Ivoire. [Bamba, Z.] Ctr Rech Sci Conakry Rogbane, Conakry, Guinea. [de Paula, E. R.] Inst Nacl Pesquisas Espaciais, Sao Jose Dos Campos, Brazil. RP Yizengaw, E (reprint author), Boston Coll, Inst Sci Res, Boston, MA USA. EM Kassie@bc.edu FU AFOSR [FA9550-12-1-0437, FA9550-15-1-0399]; NSF [AGS145136, AGS1450512] FX This work has been partially supported by AFOSR (FA9550-12-1-0437 and FA9550-15-1-0399) and NSF (AGS145136 and AGS1450512) grants. The authors are indebted to the Jicamarca Radio Observatory and INTERMAGNET team for the magnetometer data resources they made available to the public. We also thank the Global Ionospheric Radio Observatory team for the ionosonde data. The solar wind data were obtained from the CDAWeb database. NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7364 EP 7372 DI 10.1002/2016GL070090 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200011 ER PT J AU Plaschke, F Kahr, N Fischer, D Nakamura, R Baumjohann, W Magnes, W Burch, JL Torbert, RB Russell, CT Giles, BL Strangeway, RJ Leinweber, HK Bromund, KR Anderson, BJ Le, G Chutter, M Slavin, JA Kepko, EL AF Plaschke, F. Kahr, N. Fischer, D. Nakamura, R. Baumjohann, W. Magnes, W. Burch, J. L. Torbert, R. B. Russell, C. T. Giles, B. L. Strangeway, R. J. Leinweber, H. K. Bromund, K. R. Anderson, B. J. Le, G. Chutter, M. Slavin, J. A. Kepko, E. L. TI Steepening of waves at the duskside magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetopause; surface wave; steepening; Kelvin-Helmholtz instability; plasma depletion layer; Magnetospheric Multiscale ID INTERPLANETARY MAGNETIC-FIELD; KELVIN-HELMHOLTZ INSTABILITY; SOLAR-WIND; MAGNETOSPHERE; BOUNDARY; PLASMA; LAYER; SHAPE; FLOW AB Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous/inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular/inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath. C1 [Plaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Burch, J. L.; Torbert, R. B.] Southwest Res Inst, San Antonio, TX USA. [Torbert, R. B.; Chutter, M.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Giles, B. L.; Bromund, K. R.; Le, G.; Kepko, E. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Anderson, B. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Slavin, J. A.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. RP Plaschke, F (reprint author), Austrian Acad Sci, Space Res Inst, Graz, Austria. EM Ferdinand.Plaschke@oeaw.ac.at RI NASA MMS, Science Team/J-5393-2013; Le, Guan/C-9524-2012; Slavin, James/H-3170-2012 OI NASA MMS, Science Team/0000-0002-9504-5214; Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X FU NASA [NNG04EB99C]; Austrian Academy of Sciences; Austrian Space Applications Programme [FFG/ASAP-844377] FX The dedication and expertise of the Magnetopheric MultiScale (MMS) development and operations teams are greatly appreciated. Work at JHU/APL, UCLA, UNH, and SwRI was supported by NASA contract NNG04EB99C. We acknowledge the use of merged magnetic field measurements that are based on burst FluxGate Magnetometer (FGM) data from the Digital Flux-Gate (DFG) magnetometers and burst Search Coil Magnetometer (SCM) data. Furthermore, we acknowledge the use of fast survey Fast Plasma Investigation (FPI) data. The FPI data are stored at the MMS Science Data Center https://lasp.colorado.edu/mms/sdc/ and are publicly available. The merged magnetic field data are available upon request. The Austrian part of the development, operation, and calibration of the DFG was financially supported by rolling grant of the Austrian Academy of Sciences and the Austrian Space Applications Programme with the contract FFG/ASAP-844377. NR 33 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7373 EP 7380 DI 10.1002/2016GL070003 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200012 ER PT J AU Lanza, NL Wiens, RC Arvidson, RE Clark, BC Fischer, WW Gellert, R Grotzinger, JP Hurowitz, JA McLennan, SM Morris, RV Rice, MS Bell, JF Berger, JA Blaney, DL Bridges, NT Calef, F Campbell, JL Clegg, SM Cousin, A Edgett, KS Fabre, C Fisk, MR Forni, O Frydenvang, J Hardy, KR Hardgrove, C Johnson, JR Lasue, J Le Mouelic, S Malin, MC Mangold, N Martin-Torres, J Maurice, S McBride, MJ Ming, DW Newsom, HE Ollila, AM Sautter, V Schroder, S Thompson, LM Treiman, AH VanBommel, S Vaniman, DT Zorzano, MP AF Lanza, Nina L. Wiens, Roger C. Arvidson, Raymond E. Clark, Benton C. Fischer, Woodward W. Gellert, Ralf Grotzinger, John P. Hurowitz, Joel A. McLennan, Scott M. Morris, Richard V. Rice, Melissa S. Bell, James F., III Berger, Jeffrey A. Blaney, Diana L. Bridges, Nathan T. Calef, Fred, III Campbell, John L. Clegg, Samuel M. Cousin, Agnes Edgett, Kenneth S. Fabre, Cecile Fisk, Martin R. Forni, Olivier Frydenvang, Jens Hardy, Keian R. Hardgrove, Craig Johnson, Jeffrey R. Lasue, Jeremie Le Mouelic, Stephane Malin, Michael C. Mangold, Nicolas Martin-Torres, Javier Maurice, Sylvestre McBride, Marie J. Ming, Douglas W. Newsom, Horton E. Ollila, Ann M. Sautter, Violaine Schroder, Susanne Thompson, Lucy M. Treiman, Allan H. VanBommel, Scott Vaniman, David T. Zorzano, Maria-Paz TI Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Mars; manganese; oxidation; MSL; ChemCam ID ATMOSPHERE; MINERALOGY; CHEMISTRY; EVOLUTION; ORIGIN; DIFFRACTION; DIAGENESIS; ROCKNEST; COATINGS; SULFUR AB The Curiosity rover observed high Mn abundances (>25wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day. C1 [Lanza, Nina L.; Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Arvidson, Raymond E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Clark, Benton C.] Space Sci Inst, Boulder, CO USA. [Fischer, Woodward W.; Grotzinger, John P.] CALTECH, Pasadena, CA 91125 USA. [Gellert, Ralf; Campbell, John L.; VanBommel, Scott] Univ Guelph, Guelph, ON, Canada. [Hurowitz, Joel A.; McLennan, Scott M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Morris, Richard V.; Ming, Douglas W.] NASA, Johnson Space Ctr, Houston, TX USA. [Rice, Melissa S.] Western Washington Univ, Dept Geol, Bellingham, WA 98225 USA. [Bell, James F., III; Hardgrove, Craig] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Berger, Jeffrey A.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada. [Blaney, Diana L.; Calef, Fred, III] Jet Prop Lab, Pasadena, CA USA. [Bridges, Nathan T.; Johnson, Jeffrey R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Cousin, Agnes; Forni, Olivier; Lasue, Jeremie; Maurice, Sylvestre; Schroder, Susanne] Inst Rech Astrophys & Planetol, Toulouse, France. [Edgett, Kenneth S.; Malin, Michael C.] Malin Space Sci Syst, San Diego, CA USA. [Fabre, Cecile] Univ Lorraine, GeoRessources Lab, Nancy, France. [Fisk, Martin R.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Frydenvang, Jens] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Hardy, Keian R.] US Naval Acad, Aerosp Engn, Annapolis, MD 21402 USA. [Le Mouelic, Stephane; Mangold, Nicolas] Univ Nantes, CNRS, LPGNantes, UMR 6112, Nantes, France. [Martin-Torres, Javier; Zorzano, Maria-Paz] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Kiruna, Sweden. [Martin-Torres, Javier] Inst Andaluz Ciencias Tierra CSIC UGR, Granada, Spain. [McBride, Marie J.] Purdue Univ, Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Newsom, Horton E.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Sautter, Violaine] Museum Hist Nat, IMPMC, Paris, France. [Thompson, Lucy M.] Univ New Brunswick, Planetary & Space Sci Ctr, Fredericton, NB, Canada. [Treiman, Allan H.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Vaniman, David T.] Planetary Sci Inst, Tucson, AZ USA. [Zorzano, Maria-Paz] Ctr Astrobiol INTA CSIC, Madrid, Spain. RP Lanza, NL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM nlanza@lanl.gov RI Frydenvang, Jens/D-4781-2013; Zorzano, Maria-Paz/F-2184-2015; OI Frydenvang, Jens/0000-0001-9294-1227; Zorzano, Maria-Paz/0000-0002-4492-9650; Clegg, Sam/0000-0002-0338-0948 FU NASA's Mars Program Office; Centre National d'Etude Spatiale; Canadian Space Agency FX We gratefully acknowledge the very helpful comments of M. Osterloo and N. Tosca. This research was carried out in the U.S. under contract from NASA's Mars Program Office. Work in France was carried out with funding from the Centre National d'Etude Spatiale and in Canada by the Canadian Space Agency. This team acknowledges the Jet Propulsion Laboratory for developing and leading the Mars Science Laboratory (MSL) Curiosity rover mission. The data reported in this paper are archived at the Planetary Data System, accessible at http://pds-geosciences.wustl.edu/missions/msl/index.htm. Additional data are available as supporting information. NR 50 TC 3 Z9 3 U1 17 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7398 EP 7407 DI 10.1002/2016GL069109 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200015 ER PT J AU Byrne, PK Ostrach, LR Fassett, CI Chapman, CR Denevi, BW Evans, AJ Klimczak, C Banks, ME Head, JW Solomon, SC AF Byrne, Paul K. Ostrach, Lillian R. Fassett, Caleb I. Chapman, Clark R. Denevi, Brett W. Evans, Alexander J. Klimczak, Christian Banks, Maria E. Head, James W. Solomon, Sean C. TI Widespread effusive volcanism on Mercury likely ended by about 3.5Ga SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Mercury; volcanism; crater size-frequency distributions; global contraction; impact cratering ID 1ST MESSENGER FLYBY; INNER SOLAR-SYSTEM; SMOOTH PLAINS; GLOBAL CONTRACTION; CRATER CHRONOLOGY; EVOLUTION; ERUPTIONS; ORIGIN; STRATIGRAPHY; INTERIOR AB Crater size-frequency analyses have shown that the largest volcanic plains deposits on Mercury were emplaced around 3.7Ga, as determined with recent model production function chronologies for impact crater formation on that planet. To test the hypothesis that all major smooth plains on Mercury were emplaced by about that time, we determined crater size-frequency distributions for the nine next-largest deposits, which we interpret also as volcanic. Our crater density measurements are consistent with those of the largest areas of smooth plains on the planet. Model ages based on recent crater production rate estimates for Mercury imply that the main phase of plains volcanism on Mercury had ended by similar to 3.5Ga, with only small-scale volcanism enduring beyond that time. Cessation of widespread effusive volcanism is attributable to interior cooling and contraction of the innermost planet. C1 [Byrne, Paul K.] North Carolina State Univ, Dept Marine Earth & Atmospher Sci, Planetary Res Grp, Raleigh, NC 27695 USA. [Byrne, Paul K.; Klimczak, Christian; Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DE USA. [Ostrach, Lillian R.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD USA. [Fassett, Caleb I.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Chapman, Clark R.; Evans, Alexander J.] Southwest Res Inst, Dept Space Studies, Boulder, CO USA. [Denevi, Brett W.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Evans, Alexander J.; Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Klimczak, Christian] Univ Georgia, Dept Geol, Athens, GA 30602 USA. [Banks, Maria E.] Smithsonian Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DE USA. [Banks, Maria E.] Planetary Sci Inst, Tucson, AZ USA. [Head, James W.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. RP Byrne, PK (reprint author), North Carolina State Univ, Dept Marine Earth & Atmospher Sci, Planetary Res Grp, Raleigh, NC 27695 USA. EM paul.byrne@ncsu.edu RI Denevi, Brett/I-6502-2012 OI Denevi, Brett/0000-0001-7837-6663 FU NASA Discovery Program [NASW-00002, NAS5-97271]; North Carolina State University; NASA [NNX14AR88G] FX We thank David A. Rothery and an anonymous reviewer for their comments that helped improve the paper. We also thank Greg Michael for his help with the application of Poisson timing analysis with Craterstats to this study. The MESSENGER project is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory. P.K.B. acknowledges support from North Carolina State University faculty start-up funds. C.I.F. is supported on this study by NASA grant NNX14AR88G. All MESSENGER data used in this paper are publicly available at the NASA Planetary Data System (PDS). This research made use of NASA's PDS and Astrophysics Data System. NR 61 TC 5 Z9 5 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7408 EP 7416 DI 10.1002/2016GL069412 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200016 ER PT J AU Huang, MH Tung, H Fielding, EJ Huang, HH Liang, CR Huang, C Hu, JC AF Huang, Mong-Han Tung, Hsin Fielding, Eric J. Huang, Hsin-Hua Liang, Cunren Huang, Chung Hu, Jyr-Ching TI Multiple fault slip triggered above the 2016 M-w 6.4 MeiNong earthquake in Taiwan SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE coseismic deformation; finite source inversion; stress triggering; SW Taiwan tectonics ID JOINT INVERSION; WAVEFORM DATA; GEODETIC DATA; DEFORMATION; CALIFORNIA; RUPTURE; SEISMICITY; THRUST AB Rapid shortening in convergent mountain belts is often accommodated by slip on faults at multiple levels in upper crust, but no geodetic observation of slip at multiple levels within hours of a moderate earthquake has been shown before. Here we show clear evidence of fault slip within a shallower thrust at 5-10km depth in SW Taiwan triggered by the 2016 M-w 6.4 MeiNong earthquake at 15-20km depth. We constrain the primary coseismic fault slip with kinematic modeling of seismic and geodetic measurements and constrain the triggered slip and fault geometry using synthetic aperture radar interferometry. The shallower thrust coincides with a proposed duplex located in a region of high fluid pressure and high interseismic uplift rate, and may be sensitive to stress perturbations. Our results imply that under tectonic conditions such as high-background stress level and high fluid pressure, a moderate lower crustal earthquake can trigger faults at shallower depth. C1 [Huang, Mong-Han; Fielding, Eric J.; Liang, Cunren] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Tung, Hsin; Huang, Chung; Hu, Jyr-Ching] Natl Taiwan Univ, Dept Geosci, Taipei, Taiwan. [Huang, Hsin-Hua] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Huang, Hsin-Hua] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. RP Huang, MH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM mong@seismo.berkeley.edu RI Fielding, Eric/A-1288-2007; OI Fielding, Eric/0000-0002-6648-8067; Huang, Mong-Han/0000-0003-2331-3766 FU NASA Earth Surface and Interior focus area; NASA FX We thank D. Dreger for providing the codes for computing data weighting, smoothing, and inversions. The Central Weather Bureau, Taiwan and C.-H. Chang provided the aftershock relocations based on Shin et al. [2013]. We thank IRIS/DMC for data services and management. Discussion with M. Simons, Y.-R. Hsu, J. Suppe, R. Burgmann, C. Johnson, A. Freed, L.-H. Chung, M. Le Beon, and K.-M. Yang significantly improved this manuscript. K. Johnson and an anonymous reviewer gave insightful feedback that improved the original manuscript. Original ALOS-2 data are copyright by Japanese Aerospace Exploration Agency (JAXA) and were provided under JAXA ALOS RA-4 projects P1385 (S. Owen) and P1372 (E. Fielding). The Sentinel-1 interferograms contain Copernicus data. Part of this research was supported by the NASA Earth Surface and Interior focus area and performed at the Jet Propulsion Laboratory, California Institute of Technology. M.-H. Huang is supported by an appointment to the NASA Postdoctoral Programat the Jet Propulsion Laboratory, administered by the University of Space and Research Association through a contract with NASA. NR 37 TC 2 Z9 2 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2016 VL 43 IS 14 BP 7459 EP 7467 DI 10.1002/2016GL069351 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DV9VL UT WOS:000383290200022 ER PT J AU Lehnert, H Stone, RP AF Lehnert, Helmut Stone, Robert P. TI A comprehensive inventory of the Gulf of Alaska sponge fauna with the description of two new species and geographic range extensions SO ZOOTAXA LA English DT Article DE new demosponges; Gulf of Alaska; North Pacific Ocean ID ALEUTIAN ISLANDS; BRITISH-COLUMBIA; ADJACENT WATERS; PORIFERA; DEMOSPONGIAE; NOV AB Two new species, Hamacantha (Vomerula) cassanoi n. sp. and Prosuberites salgadoi n. sp., are described from the eastern Gulf of Alaska in the North Pacific Ocean. These are the first records of the genera Hamacantha and Prosuberites from Alaska. We also report two geographic range extensions for the region. Geodia japonica Sollas, 1888 was previously known only from Japan and is now recorded from the Gulf of Alaska. We also document the first record of Rhizaxinella cervicornis Thiele, 1898 from the Gulf of Alaska. Our comprehensive inventory of the sponge fauna of the Gulf of Alaska confirms the presence of 52 taxa with an additional 38 taxa suspected of occurring in the region. This is a much lower number of species than that recorded from neighbouring regions like the Aleutian Islands and British Columbia. C1 [Lehnert, Helmut] Eichenstr 14, D-86507 Oberottmarshausen, Germany. [Lehnert, Helmut] GeoBioctr LMU Munchen, Richard Wagner Str 10, D-80333 Munich, Germany. [Stone, Robert P.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop, Juneau, AK 99801 USA. RP Lehnert, H (reprint author), Eichenstr 14, D-86507 Oberottmarshausen, Germany. EM Lehnert@spongetaxonomics.de FU Alaska Fisheries Science Center FX We thank Pelagic Research Services and the captain and crew of the RV Dorado Discovery for their assistance with the research cruise that made these collections possible. Special thanks to ROV team leader Edward Cassano for going the extra league. We thank Michele Masuda (Auke Bay Laboratories) for providing Figure 1 and Bruce Ott (Khoyatan Marine Laboratory) for providing distributional data for several species in the Gulf of Alaska. Thanks to the Zoologische Staatssammlung, Munchen, for providing access to the scanning electron microscope (SEM), especially to Enrico Schwabe for help operating the SEM. Thanks to Hjalmar Kunz for advice on Latin. Helmut Lehnert was supported by a contract from the Alaska Fisheries Science Center. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. NR 62 TC 0 Z9 0 U1 1 U2 1 PU MAGNOLIA PRESS PI AUCKLAND PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND SN 1175-5326 EI 1175-5334 J9 ZOOTAXA JI Zootaxa PD JUL 28 PY 2016 VL 4144 IS 3 BP 365 EP 382 DI 10.11646/zootaxa.4144.3.5 PG 18 WC Zoology SC Zoology GA DS1LL UT WOS:000380357000005 PM 27470862 ER PT J AU Delp, MD Charvat, JM Limoli, CL Globus, RK Ghosh, P AF Delp, Michael D. Charvat, Jacqueline M. Limoli, Charles L. Globus, Ruth K. Ghosh, Payal TI Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium SO SCIENTIFIC REPORTS LA English DT Article ID IONIZING-RADIATION; CIRCULATORY DISEASE; CANCELLOUS BONE; RISK; EXPOSURE; HEALTH; MICE; CANCER; VASODILATION; EXPLORATION AB As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation. C1 [Delp, Michael D.; Ghosh, Payal] Florida State Univ, Dept Nutr Food & Exercise Sci, Tallahassee, FL 32306 USA. [Charvat, Jacqueline M.] Johnson Space Ctr, Wyle Sci Technol & Engn Grp, Houston, TX 77058 USA. [Limoli, Charles L.] Univ Calif Irvine, Dept Radiat Oncol, Irvine, CA 92697 USA. [Globus, Ruth K.] NASA Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA. RP Delp, MD (reprint author), Florida State Univ, Dept Nutr Food & Exercise Sci, Tallahassee, FL 32306 USA. EM mdelp@fsu.edu FU National Space and Biomedical Research Institute under NASA [MA02501, NCC 9-58]; National Space and Biomedical Research Institute under NASA Space Biology [NNX14AQ57G, NNX16AC28G] FX We would like to thank Candice Tahimic, Yasaman Shirazi-Fard, Ann-Sofie Schreurs, Masahira Terada and Joshua Alwood for their help with the animal husbandry radiation exposures, Drs David Goukassian, Matthew Coleman and Leif Peterson for their assistance with the initial astronaut mortality analysis, and Dr. Judy Muller-Delp for her dissection of the mouse coronary arteries. This study was supported by grants from the National Space and Biomedical Research Institute (MA02501) under the NASA Cooperative Agreement NCC 9-58 and NASA Space Biology (NNX14AQ57G and NNX16AC28G). NR 42 TC 3 Z9 3 U1 17 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 28 PY 2016 VL 6 AR 29901 DI 10.1038/srep29901 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DS2YO UT WOS:000380650100001 PM 27467019 ER PT J AU Funatsu, BM Claud, C Keckhut, P Hauchecorne, A Leblanc, T AF Funatsu, Beatriz M. Claud, Chantal Keckhut, Philippe Hauchecorne, Alain Leblanc, Thierry TI Regional and seasonal stratospheric temperature trends in the last decade (2002-2014) from AMSU observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID UPPER TROPOSPHERE; CLIMATE-CHANGE; DATA RECORDS; OZONE; LIDAR; SYSTEM; SSU AB Stratospheric temperature trends for the period 2002-2014 have been estimated using NOAA's Integrated Microwave Inter-calibration Approach (IMICA) version of advanced microwave sounding unit (AMSU) on AQUA satellite. In this period the stratosphere continued cooling over most of the globe with a rate ranging from -0.4 0.3 to -0.5 0.4K/decade above 25km. Considering specific latitude bands, trends are highly variable with height. In the tropical region, trends vary from -0.5 0.3K/decade for channel 12 (approximate to 30km) to -0.7 0.3K/decade for higher channels and present small seasonal variability in the intensity of cooling. In the polar regions and in the midlatitudes, trends for all channels are negative but not significant; uncertainties are large due to the high dynamical variability particularly in high latitudes. There is also large seasonal variability, with southern midlatitudes seasonal trends significant during summer (December, January, February) and autumn (March, April, May) above approximate to 25km, with values ranging from -1.0 +/- 0.5 to -0.6 +/- 0.5K/decade. Regional trends estimated with AMSU and long-term lidar measurements (over two decades) confirm stratospheric cooling in the northern midlatitudes and tropical regions. The effect of the length of the short series on trends was found to be small outside polar regions. It was found to be large in polar regions with about 1K changes in trend depending on start dates of the time series. C1 [Funatsu, Beatriz M.] Univ Rennes 2, CNRS, LETG Rennes COSTEL UMR 6554, Rennes, France. [Claud, Chantal] Ecole Polytech, CNRS UMR 5839, LMD, IPSL, Palaiseau, France. [Keckhut, Philippe; Hauchecorne, Alain] Univ Versailles St Quentin, CNRS UMR 8190, LATMOS, IPSL, Guyancourt, France. [Leblanc, Thierry] CALTECH, Jet Prop Lab, Wrightwood, CA USA. RP Funatsu, BM (reprint author), Univ Rennes 2, CNRS, LETG Rennes COSTEL UMR 6554, Rennes, France. EM bmf.amit@gmail.com RI Hauchecorne, Alain/A-8489-2013; OI Claud, Chantal/0000-0001-7613-9525; Hauchecorne, Alain/0000-0001-9888-6994 FU Climserv-IPSL; French National Research Agency (ANR) through the StraDyVariUS project [ANR-13-BS06-0011]; EU H2020 project ARISE2 (Atmospheric dynamics Research InfraStructure in Europe) FX The AMSU-A Climate Data Record (CDR) used in this study was acquired from NOAA's National Climatic Data Center (http://www.ncdc.noaa.gov) with the support of Climserv-IPSL. This CDR was originally developed by Cheng-Zhi Zou and colleagues at NOAA through support from NOAA's CDR Program. The lidar data used in this publication were obtained through the Network for the Detection of Atmospheric Composition Change (NDACC) and are publicly available (see http://www.ndacc.org). This work was supported by the French National Research Agency (ANR) through the StraDyVariUS project (ANR-13-BS06-0011), by the EU H2020 project ARISE2 (Atmospheric dynamics Research InfraStructure in Europe), and is a contribution to the WCRP/SPARC Temperature Trends Group. We are grateful for the critical comments from three anonymous Reviewers that helped improve the manuscript. NR 43 TC 0 Z9 0 U1 5 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 27 PY 2016 VL 121 IS 14 BP 8172 EP 8185 DI 10.1002/2015JD024305 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YX UT WOS:000381632100003 ER PT J AU Boeke, RC Taylor, PC AF Boeke, Robyn C. Taylor, Patrick C. TI Evaluation of the Arctic surface radiation budget in CMIP5 models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE MODEL; ATMOSPHERE RADIATION; POLAR AMPLIFICATION; PART I; CLOUD; FEEDBACKS; ALBEDO; CERES; PARAMETERIZATION; UNCERTAINTY AB The Arctic region is warming at a rate more than double the global average, a trend predicted to continue by all Coupled Model Intercomparison Project 5 (CMIP5) climate models. Despite this consistency, significant intermodel spread exists in the simulated Arctic climate related to differences in the Arctic surface radiation budget. Building upon previous work to characterize and understand surface radiation budget biases in climate models, the annual mean and seasonal cycle of the Arctic surface radiation budget in 17 CMIP5 models using the Historical-forcing scenario is evaluated against state-of-the-art Cloud and Earth's Radiant Energy System Surface Energy Balanced and Filled data. The CMIP5 multimodel ensemble is found to simulate longwave surface fluxes well during the sunlit months (similar to 1Wm(-2) differences in July) but exhibits significant wintertime biases (up to -19Wm(-2)). Shortwave fluxes show substantial across-model spread during summer; the model standard deviation approaches 20Wm(-2) in July. Applying a decomposition analysis to the cloud radiative effect (CRE) seasonal cycles, an unrealistic compensation is uncovered between the model-simulated seasonal cycles of cloud fraction, all-sky/clear-sky flux differences, and surface albedo that enables models to simulate realistic CRE seasonal cycles with unrealistic individual contributions. This unrealistic behavior in models must be constrained to improve Arctic climate simulation; observational uncertainty is sufficient to do so. Lastly, biases in all and clear-sky longwave downwelling fluxes positively correlate with model surface temperature in winter, while in summer surface temperature is most strongly related to clear-sky upwelling radiation biases from surface albedo errors. C1 [Boeke, Robyn C.] Sci Syst Applicat Inc, Hampton, VA 23666 USA. [Taylor, Patrick C.] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. RP Boeke, RC (reprint author), Sci Syst Applicat Inc, Hampton, VA 23666 USA. EM robyn.c.boeke@nasa.gov FU NASA Interdisciplinary Studies Program [NNH12ZDA001N-IDS]; NASA Energy and Water Cycle Studies program FX This work is funded by the NASA Interdisciplinary Studies Program grant NNH12ZDA001N-IDS. The processing of the C3M data used in this analysis was funded under the NASA Energy and Water Cycle Studies program. The C3M and CERES data are available from the Langley Atmospheric Science Data Center (http://eosweb.larc.nasa.gov). We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 59 TC 0 Z9 0 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 27 PY 2016 VL 121 IS 14 BP 8525 EP 8548 DI 10.1002/2016JD025099 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YX UT WOS:000381632100023 ER PT J AU Alfaro-Nunez, A Bojesen, AM Bertelsen, MF Wales, N Balazs, GH Gilbert, MTP AF Alfaro-Nunez, Alonzo Bojesen, Anders Miki Bertelsen, Mads F. Wales, Nathan Balazs, George H. Gilbert, M. Thomas P. TI Further evidence of Chelonid herpesvirus 5 (ChHV5) latency: high levels of ChHV5 DNA detected in clinically healthy marine turtles SO PEERJ LA English DT Article DE Chelonid herpesvirus 5 (ChHV5); Fibropapillomatosis (FP); Glycoprotein B; Clinically healthy; Quantitative PCR; Viral loads; Ubiquitous; Asymptomatic ID FIBROPAPILLOMA-ASSOCIATED HERPESVIRUS; SIMPLEX-VIRUS; GREEN TURTLES; SEA-TURTLES; MYDAS; ESTABLISHMENT; PROTEINS; EXPOSURE; ASSAY AB The Chelonid herpesvirus 5 (ChHV5) has been consistently associated with fibropapillomatosis (FP), a transmissible neoplastic disease of marine turtles. Whether ChHV5 plays a causal role remains debated, partly because while FP tumours have been clearly documented to contain high concentrations of ChHV5 DNA, recent PCR-based studies have demonstrated that large proportions of asymptomatic marine turtles are also carriers of ChHV5. We used a real-time PCR assay to quantify the levels of ChHV5 Glycoprotein B (gB) DNA in both tumour and non-tumour skin tissues, from clinically affected and healthy turtles drawn from distant ocean basins across four species. In agreement with previous studies, higher ratios of viral to host DNA were consistently observed in tumour versus non-tumour tissues in turtles with FP. Unexpectedly however, the levels of ChHV5 gB DNA in clinically healthy turtles were significantly higher than in non-tumour tissues from FP positive turtles. Thus, a large proportion of clinically healthy sea turtle populations worldwide across species carry ChHV5 gB DNA presumably through persistent latent infections. ChHV5 appears to be ubiquitous regardless of the animals' clinical conditions. Hence, these results support the theory that ChHV5 is a near ubiquitous virus with latency characteristics requiring co-factors, possibly environmental or immune related, to induce FP. C1 [Alfaro-Nunez, Alonzo; Wales, Nathan; Gilbert, M. Thomas P.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr GeoGenet, Sect Evolutionary Genom, Copenhagen K, Denmark. [Alfaro-Nunez, Alonzo] Escuela Super Politecn Litoral, Biomed Labs, Fac Ciencias Vida, Guayaquil, Ecuador. [Bojesen, Anders Miki] Univ Copenhagen, Fac Hlth & Med Sci, Dept Vet Dis Biol, Vet Clin Microbiol, Copenhagen, Denmark. [Bertelsen, Mads F.] Copenhagen Zoo, Ctr Zoo & Wild Anim Hlth, Copenhagen, Denmark. [Balazs, George H.] Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI USA. [Gilbert, M. Thomas P.] Curtin Univ Technol, Sch Environm & Agr, Trace & Environm DNA Lab, Perth, WA, Australia. RP Alfaro-Nunez, A (reprint author), Univ Copenhagen, Nat Hist Museum Denmark, Ctr GeoGenet, Sect Evolutionary Genom, Copenhagen K, Denmark.; Alfaro-Nunez, A (reprint author), Escuela Super Politecn Litoral, Biomed Labs, Fac Ciencias Vida, Guayaquil, Ecuador. EM alonzoalfaro@gmail.com OI Bertelsen, Mads/0000-0001-9201-7499; Wales, Nathan/0000-0003-0359-8450 FU Lundbeck Foundation Grant [R52-A5062] FX This project study was funded by the Lundbeck Foundation Grant R52-A5062. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 32 TC 1 Z9 1 U1 9 U2 10 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD JUL 27 PY 2016 VL 4 AR e2274 DI 10.7717/peerj.2274 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DS4HU UT WOS:000380742900006 PM 27547576 ER PT J AU Richardson, DE Marancik, KE Guyon, JR Lutcavage, ME Galuardi, B Lam, CH Walsh, HJ Wildes, S Yates, DA Hare, JA AF Richardson, David E. Marancik, Katrin E. Guyon, Jeffrey R. Lutcavage, Molly E. Galuardi, Benjamin Lam, Chi Hin Walsh, Harvey J. Wildes, Sharon Yates, Douglas A. Hare, Jonathan A. TI REPLY TO SAFINA AND WALTER ET AL.: Multiple lines of evidence for size-structured spawning migrations in western Atlantic bluefin tuna SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter ID THUNNUS-THYNNUS; GULF C1 [Richardson, David E.; Marancik, Katrin E.; Walsh, Harvey J.; Hare, Jonathan A.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Ecosyst Proc Div, Narragansett, RI 02882 USA. [Marancik, Katrin E.] Northeast Fisheries Sci Ctr, Integrated Stat, Narragansett, RI 02882 USA. [Guyon, Jeffrey R.; Wildes, Sharon; Yates, Douglas A.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Genet Program, Juneau, AK 99801 USA. [Lutcavage, Molly E.; Lam, Chi Hin] Univ Massachusetts Boston, Sch Environm, Large Pelag Res Ctr, Gloucester, MA 01931 USA. [Galuardi, Benjamin] Univ Massachusetts Dartmouth, Sch Marine Sci & Technol, Fairhaven, MA 02719 USA. [Galuardi, Benjamin] NOAA, Natl Marine Fisheries Serv, Greater Atlantic Reg Fisheries Off, Gloucester, MA 01930 USA. RP Richardson, DE (reprint author), NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Ecosyst Proc Div, Narragansett, RI 02882 USA. EM david.richardson@noaa.gov NR 14 TC 0 Z9 0 U1 7 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 26 PY 2016 VL 113 IS 30 BP E4262 EP E4263 DI 10.1073/pnas.1607666113 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DS1HJ UT WOS:000380346200003 PM 27436889 ER PT J AU Kara, E Miller, JM Reynolds, C Dai, LX AF Kara, Erin Miller, Jon M. Reynolds, Chris Dai, Lixin TI Relativistic reverberation in the accretion flow of a tidal disruption event SO NATURE LA English DT Article ID ACTIVE GALACTIC NUCLEI; X-RAY REVERBERATION; MASSIVE BLACK-HOLE; BROAD-LINE REGION; RADIUS-LUMINOSITY RELATIONSHIP; K-ALPHA REVERBERATION; NARROW-LINE; XMM-NEWTON; IRON K; TIME LAGS AB Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating(1); however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe(2). Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole(3), can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet(4-8), but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation(9-12) arising from gravitationally redshifted iron Ka photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more(13). The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought(5,14). C1 [Kara, Erin; Reynolds, Chris] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kara, Erin] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kara, Erin; Reynolds, Chris; Dai, Lixin] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48103 USA. [Dai, Lixin] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Kara, E (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Kara, E (reprint author), NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Kara, E (reprint author), Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. EM ekara@astro.umd.edu FU Hubble Fellowship Program from Space Telescope Science Institute [HST-HF2-51360.001-A]; NASA [NAS5-26555, NNX14AF86G]; NASA/NSF/TCAN [NNX14AB46G]; NSF/XSEDE/TACC [TG-PHY120005]; NASA/Pleiades [SMD-14-5451]; ESA member states; US (NASA); Suzaku satellite FX E.K. thanks A. Zoghbi, M. C. Miller, F. Tombesi, E. Miller and L. Denby for discussions. E. K. also thanks the Hubble Fellowship Program for support under grant number HST-HF2-51360.001-A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. J.M.M. acknowledges N. Schartel and XMM-Newton for executing target-of-opportunity observations of Swift J1644+57. C.R. acknowledges support from NASA under grant number NNX14AF86G. L.D. thanks J. McKinney for discussions. L.D. acknowledges support from NASA/NSF/TCAN (NNX14AB46G), NSF/XSEDE/TACC (TG-PHY120005) and NASA/Pleiades (SMD-14-5451). This work is based on observations made with XMM-Newton, a European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA member states and the US (NASA) and the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the US (NASA). NR 61 TC 3 Z9 3 U1 3 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUL 21 PY 2016 VL 535 IS 7612 BP 388 EP + DI 10.1038/nature18007 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DS1GQ UT WOS:000380344200033 PM 27338795 ER PT J AU Wright, AH Robotham, ASG Bourne, N Driver, SP Dunne, L Maddox, SJ Alpaslan, M Andrews, SK Bauer, AE Bland-Hawthorn, J Brough, S Brown, MJI Clarke, C Cluver, M Davies, LJM Grootes, MW Holwerda, BW Hopkins, AM Jarrett, TH Kafle, PR Lange, R Liske, J Loveday, J Moffett, AJ Norberg, P Popescu, CC Smith, M Taylor, EN Tuffs, RJ Wang, L Wilkins, SM AF Wright, A. H. Robotham, A. S. G. Bourne, N. Driver, S. P. Dunne, L. Maddox, S. J. Alpaslan, M. Andrews, S. K. Bauer, A. E. Bland-Hawthorn, J. Brough, S. Brown, M. J. I. Clarke, C. Cluver, M. Davies, L. J. M. Grootes, M. W. Holwerda, B. W. Hopkins, A. M. Jarrett, T. H. Kafle, P. R. Lange, R. Liske, J. Loveday, J. Moffett, A. J. Norberg, P. Popescu, C. C. Smith, M. Taylor, E. N. Tuffs, R. J. Wang, L. Wilkins, S. M. TI Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; astronomical data bases: miscellaneous; galaxies: evolution; galaxies: general; galaxies: photometry ID DIGITAL SKY SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; EXTRAGALACTIC LEGACY SURVEY; DATA RELEASE; PRECISION PHOTOMETRY; MATCHED PHOTOMETRY; HERSCHEL ATLAS; STAR-FORMATION; DATA PRODUCTS; DATA SETS AB We present the Lambda Adaptive Multi-Band Deblending Algorithm in R (lambdar), a novel code for calculating matched aperture photometry across images that are neither pixel- nor PSF-matched, using prior aperture definitions derived from high-resolution optical imaging. The development of this program is motivated by the desire for consistent photometry and uncertainties across large ranges of photometric imaging, for use in calculating spectral energy distributions. We describe the program, specifically key features required for robust determination of panchromatic photometry: propagation of apertures to images with arbitrary resolution, local background estimation, aperture normalization, uncertainty determination and propagation, and object deblending. Using simulated images, we demonstrate that the program is able to recover accurate photometric measurements in both high-resolution, low-confusion, and low-resolution, high-confusion, regimes. We apply the program to the 21-band photometric data set from the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR; Driver et al. 2016), which contains imaging spanning the far-UV to the far-IR. We compare photometry derived from lambdar with that presented in Driver et al. (2016), finding broad agreement between the data sets. None the less, we demonstrate that the photometry from lambdar is superior to that from the GAMA PDR, as determined by a reduction in the outlier rate and intrinsic scatter of colours in the lambdar data set. We similarly find a decrease in the outlier rate of stellar masses and star formation rates using lambdar photometry. Finally, we note an exceptional increase in the number of UV and mid-IR sources able to be constrained, which is accompanied by a significant increase in the mid-IR colour-colour parameter-space able to be explored. C1 [Wright, A. H.; Robotham, A. S. G.; Driver, S. P.; Andrews, S. K.; Kafle, P. R.; Lange, R.; Moffett, A. J.] Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia. [Bourne, N.; Dunne, L.; Maddox, S. J.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Driver, S. P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Dunne, L.; Maddox, S. J.; Smith, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Alpaslan, M.] NASA, Ames Res Ctr, N232, Mountain View, CA 94035 USA. [Bauer, A. E.; Brough, S.; Hopkins, A. M.] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Bland-Hawthorn, J.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Brown, M. J. I.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia. [Clarke, C.; Loveday, J.; Wilkins, S. M.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Cluver, M.] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Bellville, South Africa. [Grootes, M. W.] ESA, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Holwerda, B. W.] Leiden Univ, Sterrenwacht Leiden, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Jarrett, T. H.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Liske, J.] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. [Norberg, P.] Univ Durham, Dept Phys, ICC, South Rd, Durham DH1 3LE, England. [Norberg, P.] Univ Durham, Dept Phys, CEA, South Rd, Durham DH1 3LE, England. [Popescu, C. C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Popescu, C. C.] Romanian Acad, Astron Inst, Str Cutitul Argint 5, Bucharest, Romania. [Taylor, E. N.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Tuffs, R. J.] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. [Wang, L.] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands. RP Wright, AH (reprint author), Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia. EM angus.wright@icrar.org RI Brown, Michael/B-1181-2015 OI Brown, Michael/0000-0002-1207-9137 FU Australian Government's Department of Industry Australian Postgraduate Award (APA); Australian Research Council [FT140101166]; ERC in the form of the Advanced Investigator Program; COS-MICISM; ERC Consolidator Grant CosmicDust; European Union [312725]; STFC (UK); ARC (Australia); AAO FX We thank the anonymous referee for a thorough reading of the paper and for their many constructive comments. AHW and SKA are supported by the Australian Government's Department of Industry Australian Postgraduate Award (APA). SB acknowledges funding support from the Australian Research Council through a Future Fellowship (FT140101166). LD and SJM acknowledge support from the ERC in the form of the Advanced Investigator Program, COS-MICISM, and the ERC Consolidator Grant CosmicDust. NB acknowledges funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 312725. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the AAT. The GAMA IC is based on data taken from the SDSS and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT, and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/. The Herschel-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. The H-ATLAS website is http://www.h-atlas.org/. We thank the Herschel Multitiered Extragalactic Survey (HERMES) collaboration for providing the mock FIR imaging used in Section 5. Figures in this paper have been prepared using the R package MAGICAXIS.2 This research has made use of NASA's Astrophysics Data System. NR 72 TC 9 Z9 9 U1 2 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2016 VL 460 IS 1 BP 765 EP 801 DI 10.1093/mnras/stw832 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3XE UT WOS:000379835200053 ER PT J AU Champion, DJ Petroff, E Kramer, M Keith, MJ Bailes, M Barr, ED Bates, SD Bhat, NDR Burgay, M Burke-Spolaor, S Flynn, CML Jameson, A Johnston, S Ng, C Levin, L Possenti, A Stappers, BW van Straten, W Thornton, D Tiburzi, C Lyne, AG AF Champion, D. J. Petroff, E. Kramer, M. Keith, M. J. Bailes, M. Barr, E. D. Bates, S. D. Bhat, N. D. R. Burgay, M. Burke-Spolaor, S. Flynn, C. M. L. Jameson, A. Johnston, S. Ng, C. Levin, L. Possenti, A. Stappers, B. W. van Straten, W. Thornton, D. Tiburzi, C. Lyne, A. G. TI Five new fast radio bursts from the HTRU high-latitude survey at Parkes: first evidence for two-component bursts SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE scattering; surveys; pulsars: general; intergalactic medium ID UNIVERSE PULSAR SURVEY; GAMMA-RAY BURSTS; NEUTRON-STARS; GIANT PULSES; COSMOLOGICAL DISTANCES; REIONIZATION HISTORY; INITIAL DISCOVERIES; GALACTIC LATITUDES; CRAB PULSAR; TRANSIENTS AB The detection of five new fast radio bursts (FRBs) found in the 1.4-GHz High Time Resolution Universe high-latitude survey at Parkes, is presented. The rate implied is 7(-3)(+5) x 10(3) (95 per cent) FRBs sky(-1) d(-1) above a fluence of 0.13 Jy ms for an FRB of 0.128 ms duration to 1.5 Jy ms for 16 ms duration. One of these FRBs has a two-component profile, in which each component is similar to the known population of single component FRBs and the two components are separated by 2.4 +/- 0.4 ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intrachannel smearing. The two-component burst, FRB 121002, also has the highest dispersion measure (1629 pc cm(-3)) of any FRB to-date. Many of the proposed models to explain FRBs use a single high-energy event involving compact objects (such as neutron-star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing, or orbital events, however, could produce multiple component profiles. The compatibility of these models and the FRB rate implied by these detections is discussed. C1 [Champion, D. J.; Kramer, M.; Ng, C.; Tiburzi, C.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Petroff, E.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Flynn, C. M. L.; Jameson, A.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Mail H30,POB 218, Hawthorn, Vic 3122, Australia. [Petroff, E.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Flynn, C. M. L.; Jameson, A.; van Straten, W.] Swinburne Univ Technol, ARC Ctr Excellence All Sky Astron CAASTRO, Mail H30,POB 218, Hawthorn, Vic 3122, Australia. [Petroff, E.; Johnston, S.; Thornton, D.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, POB 76, Epping, NSW 1710, Australia. [Kramer, M.; Keith, M. J.; Bates, S. D.; Levin, L.; Stappers, B. W.; Thornton, D.; Lyne, A. G.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Bates, S. D.] Natl Radio Astron Observ, POB 2, Green Bank, WV 24944 USA. [Bhat, N. D. R.] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia. [Burgay, M.; Possenti, A.] INAF Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, Italy. [Burke-Spolaor, S.] NASA, Jet Prop Lab, M-S 138-307, Pasadena, CA 91106 USA. [Tiburzi, C.] Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany. RP Champion, DJ (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM champion@mpifr-bonn.mpg.de FU Commonwealth of Australia; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; Swinburne; Australian Government's Education Investment Fund FX The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. This work used the gSTAR national facility which is funded by Swinburne and the Australian Government's Education Investment Fund. NR 42 TC 24 Z9 24 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2016 VL 460 IS 1 BP L30 EP L34 DI 10.1093/mnrasl/slw069 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3VZ UT WOS:000379832000007 ER PT J AU Cusumano, G La Parola, V D' Ai, A Segreto, A Tagliaferri, G Barthelmy, SD Gehrels, N AF Cusumano, G. La Parola, V. D' Ai, A. Segreto, A. Tagliaferri, G. Barthelmy, S. D. Gehrels, N. TI An unexpected drop in the magnetic field of the X-ray pulsar V0332+53 after the bright outburst occurred in 2015 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE magnetic fields; pulsars: individual: V0332+53; X-rays: binaries ID ACCRETING NEUTRON-STARS; TRANSIENT V0332+53; CYCLOTRON LINES; DISCOVERY; EVOLUTION; MASS; LUMINOSITY; TELESCOPE; X0331+53; FEATURES AB How the accreted mass settling on the surface of a neutron star affects the topology of the magnetic field and how the secular evolution of the binary system depends on the magnetic field change is still an open issue. We report evidence for a clear drop in the observed magnetic field in the accreting pulsar V0332+53 after undergoing a bright 3-month long X-ray outburst. We determine the field from the position of the fundamental cyclotron line in its X-ray spectrum and relate it to the luminosity. For equal levels of luminosity, in the declining phase we measure a systematically lower value of the cyclotron line energy with respect to the rising phase. This results in a drop of similar to 1.7 x 10(11) G of the observed field between the onset and the end of the outburst. The settling of the accreted plasma on to the polar cap seems to induce a distortion of the magnetic field lines weakening their intensity along the accretion columns. Therefore, the dissipation rate of the magnetic field could be much faster than previously estimated, unless the field is able to restore its original configuration on a time-scale comparable with the outbursts recurrence time. C1 [Cusumano, G.; La Parola, V.; D' Ai, A.; Segreto, A.] INAF Ist Astrofis Spaziale & Fis Cosm, Via U La Malfa 153, I-90146 Palermo, Italy. [Tagliaferri, G.] INAF Brera Astron Observ, Via Bianchi 46, Merate, LC, Italy. [Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cusumano, G (reprint author), INAF Ist Astrofis Spaziale & Fis Cosm, Via U La Malfa 153, I-90146 Palermo, Italy. EM cusumano@ifc.inaf.it FU ASI [I/004/11/1] FX This work has been supported by ASI grant I/004/11/1. NR 27 TC 3 Z9 3 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2016 VL 460 IS 1 BP L99 EP L103 DI 10.1093/mnrasl/slw084 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3VZ UT WOS:000379832000021 ER PT J AU Evans, PA Kennea, JA Barthelmy, SD Beardmore, AP Burrows, DN Campana, S Cenko, SB Gehrels, N Giommi, P Gronwall, C Marshall, FE Malesani, D Markwardt, CB Mingo, B Nousek, JA O'Brien, PT Osborne, JP Pagani, C Page, KL Palmer, DM Perri, M Racusin, JL Siegel, MH Sbarufatti, B Tagliaferri, G AF Evans, P. A. Kennea, J. A. Barthelmy, S. D. Beardmore, A. P. Burrows, D. N. Campana, S. Cenko, S. B. Gehrels, N. Giommi, P. Gronwall, C. Marshall, F. E. Malesani, D. Markwardt, C. B. Mingo, B. Nousek, J. A. O'Brien, P. T. Osborne, J. P. Pagani, C. Page, K. L. Palmer, D. M. Perri, M. Racusin, J. L. Siegel, M. H. Sbarufatti, B. Tagliaferri, G. TI Swift follow-up of the gravitational wave source GW150914 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational waves; methods: data analysis; X-rays: general ID ALL-SKY SURVEY; X-RAY-TELESCOPE; SOURCE CATALOG; COUNTERPART; SEARCHES; MISSION AB The Advanced Laser Interferometer Gravitational-Wave Observatory (ALIGO) observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, optical, UV or hard X-ray sources were detected in our observations, which were focused on nearby galaxies in the GW error region and covered 4.7 deg(2) similar to 2 per cent of the probability in the rapidly available GW error region; 0.3 per cent of the probability from the final GW error region, which was produced several months after the trigger). We describe the rapid Swift response and automated analysis of the X-ray telescope and UV/Optical telescope data, and note the importance to electromagnetic follow-up of early notification of the progenitor details inferred from GW analysis. C1 [Evans, P. A.; Beardmore, A. P.; Mingo, B.; O'Brien, P. T.; Osborne, J. P.; Pagani, C.; Page, K. L.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Kennea, J. A.; Burrows, D. N.; Gronwall, C.; Nousek, J. A.; Siegel, M. H.; Sbarufatti, B.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Barthelmy, S. D.; Cenko, S. B.; Gehrels, N.; Marshall, F. E.; Markwardt, C. B.; Racusin, J. L.] NASA, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. [Campana, S.; Sbarufatti, B.; Tagliaferri, G.] Osserv Astron Brera, INAF, Via E Bianchi 46, I-23807 Merate, Italy. [Cenko, S. B.] Univ Maryland, Joint Space Sci Institude, College Pk, MD 20742 USA. [Giommi, P.; Perri, M.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Gronwall, C.] Penn State Univ, Inst Gravitat & Cosmos, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Malesani, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. [Markwardt, C. B.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Palmer, D. M.] Los Alamos Natl Lab, B244, Los Alamos, NM 87545 USA. [Perri, M.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM pae9@leicester.ac.uk OI Sbarufatti, Boris/0000-0001-6620-8347 FU UK Space Agency; Italian Space Agency; National Aeronautics and Space Administration; National Science Foundation; SIMBAD data base FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester, and used the ALICE High Performance Computing Facility at the University of Leicester. This research has made use of the XRT Data Analysis Software (XRT-DAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. PAE, APB, BM, KLP and JPO acknowledge UK Space Agency support. SC and GT acknowledge Italian Space Agency support. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation, and the SIMBAD data base, operated at CDS, Strasbourg, France. Fig. 1 was created using the KAPETYN package (Terlouw & Vogelaar 2015). We thank the anonymous referee for their helpful feedback on the original version of the Letter. NR 34 TC 11 Z9 11 U1 1 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2016 VL 460 IS 1 BP L40 EP L44 DI 10.1093/mnrasl/slw065 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3VZ UT WOS:000379832000009 ER PT J AU Kumarasinghe, CS Premaratne, M Gunapala, SD Agrawal, GP AF Kumarasinghe, Chathurangi S. Premaratne, Malin Gunapala, Sarath D. Agrawal, Govind P. TI Theoretical analysis of hot electron injection from metallic nanotubes into a semiconductor interface SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID SURFACE-PLASMONS; NANOPARTICLES; AU; PHOTOEMISSION; DYNAMICS; NANORODS; CARRIERS; DEVICE; LIGHT AB Metallic nanostructures under optical illumination can generate a non-equilibrium high-energy electron gas (also known as hot electrons) capable of being injected into neighbouring media over a potential barrier at particle boundaries. The nature of this process is highly nanoparticle shape and size dependent. Here, we have derived an analytical expression for the frequency dependent rate of injection of these energetic electrons from a metallic nanotube into a semiconductor layer in contact with its inner boundary. In our derivation, we have considered the quantum mechanical motion of the electron gas confined by the particle boundaries in determining the electron energy spectrum and wave functions. We present a comprehensive theoretical analysis of how different geometric parameters such as the outer to inner radius ratio, length and thickness of a nanotube and illumination frequency affect the hot electron injection and internal quantum efficiency of the nanotube. We reveal that longer nanotubes with thin shells and high inner to outer radius ratios show better performance at visible and infrared frequencies. Our derivations and results provide the much needed theoretical insight for optimization of thin nanotubes for different hot electron based applications. C1 [Kumarasinghe, Chathurangi S.; Premaratne, Malin] Monash Univ, Adv Comp & Simulat Lab A L, Dept Elect & Comp Syst Engn, Clayton, Vic 3800, Australia. [Gunapala, Sarath D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Agrawal, Govind P.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. RP Kumarasinghe, CS; Premaratne, M (reprint author), Monash Univ, Adv Comp & Simulat Lab A L, Dept Elect & Comp Syst Engn, Clayton, Vic 3800, Australia. EM chathurangi.kumarasinghe@monash.edu; malin.premaratne@monash.edu FU Monash University Institute of Graduate Research; Australian Research Council [DP140100883] FX The work of C. S. K. is supported by the Monash University Institute of Graduate Research. The work of M. P., S. D. G. and G. P. A. is supported by the Australian Research Council, through its Discovery Grant DP140100883. NR 47 TC 1 Z9 1 U1 3 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD JUL 21 PY 2016 VL 18 IS 27 BP 18227 EP 18236 DI 10.1039/c6cp03043b PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DQ8UH UT WOS:000379486200051 PM 27332556 ER PT J AU Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Brandt, TJ Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caragiulo, M Caraveo, PA Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiaro, G Ciprini, S Cohen, JM Cohen-Tanugi, J Costanza, F Cutini, S D'Ammando, F Davis, DS de Angelis, A de Palma, F Desiante, R Digel, SW Di Lalla, N Di Mauro, M Di Venere, L Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Georganopoulos, M Giglietto, N Giordano, F Giroletti, M Godfrey, G Green, D Grenier, IA Guiriec, S Hays, E Hewitt, JW Hill, AB Jogler, T Johnnesson, G Kensei, S Kuss, M Larsson, S Latronico, L Li, J Li, L Longo, F Loparco, F Lubrano, P Magill, JD Maldera, S Manfreda, A Mayer, M Mazziotta, MN McConville, W McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Monzani, ME Morselli, A Moskalenko, IV Murgia, S Negro, M Nuss, E Ohno, M Ohsugi, T Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Raino S Rando, R Razzano, M Reimer, A Reimer, O Schmid, J Sgro, C Simone, D Siskind, EJ Spada, F Spandre, G Spinelli, P Stawarz, L Takahashi, H Thayer, JB Thompson, DJ Torres, DF Tosti, G Troja, E Vianello, G Wood, KS Wood, M Zimmer, S AF Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caragiulo, M. Caraveo, P. A. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiaro, G. Ciprini, S. Cohen, J. M. Cohen-Tanugi, J. Costanza, F. Cutini, S. D'Ammando, F. Davis, D. S. de Angelis, A. de Palma, F. Desiante, R. Digel, S. W. Di Lalla, N. Di Mauro, M. Di Venere, L. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Georganopoulos, M. Giglietto, N. Giordano, F. Giroletti, M. Godfrey, G. Green, D. Grenier, I. A. Guiriec, S. Hays, E. Hewitt, J. W. Hill, A. B. Jogler, T. Johnnesson, G. Kensei, S. Kuss, M. Larsson, S. Latronico, L. Li, J. Li, L. Longo, F. Loparco, F. Lubrano, P. Magill, J. D. Maldera, S. Manfreda, A. Mayer, M. Mazziotta, M. N. McConville, W. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Negro, M. Nuss, E. Ohno, M. Ohsugi, T. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Schmid, J. Sgro, C. Simone, D. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Stawarz, L. Takahashi, H. Thayer, J. B. Thompson, D. J. Torres, D. F. Tosti, G. Troja, E. Vianello, G. Wood, K. S. Wood, M. Zimmer, S. TI FERMI LARGE AREA TELESCOPE DETECTION OF EXTENDED GAMMA-RAY EMISSION FROM THE RADIO GALAXY FORNAX A SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (Fornax A); galaxies: jets; gamma rays: galaxies; radiation mechanisms: non-thermal ID EXTRAGALACTIC BACKGROUND LIGHT; ACTIVE GALACTIC NUCLEI; COMPTON X-RAYS; SOURCE CATALOG; EAST LOBE; SCALE; STRENGTHS; OUTBURST; NGC-1316; CLUSTER AB We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax. A using 6.1 years of Pass. 8 data. After Centaurus. A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total gamma-ray flux. A preferred alignment of the gamma-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on similar to 0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the gamma-rays. With the extended nature of the > 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus. A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about similar to 2-3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes. C1 [Ackermann, M.; Buehler, R.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Baldini, L.; Blandford, R. D.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Digel, S. W.; Di Mauro, M.; Focke, W. B.; Godfrey, G.; Hill, A. B.; Jogler, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Baldini, L.; Blandford, R. D.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Digel, S. W.; Di Mauro, M.; Focke, W. B.; Godfrey, G.; Hill, A. B.; Jogler, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ballet, J.; Grenier, I. A.; Schmid, J.] Univ Paris Diderot, CNRS, CEA IRFU, Lab AIM,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Di Lalla, N.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; Costanza, F.; de Palma, F.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Simone, D.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.; Negro, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.; Negro, M.] Univ Torino, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Buson, S.; Cohen, J. M.; Davis, D. S.; Ferrara, E. C.; Green, D.; Guiriec, S.; Hays, E.; McConville, W.; McEnery, J. E.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, Lab Univers & Particules Montpellier, CNRS IN2P3, F-34095 Montpellier, France. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Buson, S.; Georganopoulos, M.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Buson, S.; Georganopoulos, M.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Buson, S.] CRESST, Greenbelt, MD 20771 USA. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Cheung, C. C.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Cheung, C. C.; Wood, K. S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Cohen, J. M.; Green, D.; Magill, J. D.; McConville, W.; McEnery, J. E.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Kensei, S.; Ohno, M.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Hewitt, J. W.] Univ North Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Highfield, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johnnesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Larsson, S.; Li, L.] AlbaNova, KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Larsson, S.; Li, L.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] Inst Space Sci IEEC CSIC, Campus UAB, E-08193 Barcelona, Spain. [Mitthumsiri, W.] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Murgia, S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Torres, D. F.] ICREA, Barcelona, Spain. [Zimmer, S.] Univ Geneva, DPNC, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland. [Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA. RP Cheung, CC (reprint author), Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. EM Teddy.Cheung@nrl.navy.mil; georgano@umbc.edu; jmagill@umd.edu; wmcconvi@umd.edu; stawarz@oa.uj.edu.pl RI Reimer, Olaf/A-3117-2013; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017; OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X; Hill, Adam/0000-0003-3470-4834; orienti, monica/0000-0003-4470-7094; DI MAURO, MATTIA/0000-0003-2759-5625; Mazziotta, Mario Nicola/0000-0001-9325-4672; Ajello, Marco/0000-0002-6584-1703 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 45 TC 2 Z9 2 U1 6 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 1 DI 10.3847/0004-637X/826/1/1 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200001 ER PT J AU Ajello, M Ghisellini, G Paliya, VS Kocevski, D Tagliaferri, G Madejski, G Rau, A Schady, P Greiner, J Massaro, F Balokovic, M Buhler, R Giomi, M Marcotulli, L D'Ammando, F Stern, D Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Zhang, WW AF Ajello, M. Ghisellini, G. Paliya, V. S. Kocevski, D. Tagliaferri, G. Madejski, G. Rau, A. Schady, P. Greiner, J. Massaro, F. Balokovic, M. Buehler, R. Giomi, M. Marcotulli, L. D'Ammando, F. Stern, D. Boggs, S. E. Christensen, F. E. Craig, W. W. Hailey, C. J. Harrison, F. A. Zhang, W. W. TI NUSTAR, SWIFT, AND GROND OBSERVATIONS OF THE FLARING MEV BLAZAR PMN J0641-0320 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; quasars: general; quasars: individual (PMN J0641-0320); X-rays: general ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; SUPERMASSIVE BLACK-HOLES; BURST ALERT TELESCOPE; GAMMA-RAY SOURCES; RELATIVISTIC JETS; DISTANT BLAZAR; HOST GALAXIES; HIGH-REDSHIFT; EMISSION AB MeV blazars are a sub-population of the blazar family, exhibiting larger-than-average jet powers, accretion luminosities, and black hole masses. Because of their extremely hard X-ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the Fermi Large Area Telescope and subsequent follow-up observations with NuSTAR, Swift, and GROND of a new member of the MeV blazar family: PMN J0641-0320. Our optical spectroscopy provides confirmation that this is a flat-spectrum radio quasar located at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power-law photon index of similar to 1 up to similar to 80 keV) indicates that the emission is produced via inverse Compton scattering off of photons coming from outside the jet. The overall spectral energy distribution of PMN J0641-0320 is typical of powerful blazars and, using a simple one-zone leptonic emission model, we infer that the emission region is located either inside the broad line region or within the dusty torus. C1 [Ajello, M.; Paliya, V. S.; Marcotulli, L.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Ghisellini, G.] Ist Nazl Fis Nucl, Osservatorio Astronomico Brera, Via E Bianchi 46, I-23807 Merate, Italy. [Paliya, V. S.] Indian Inst Astrophys, Block 2 Koramangala, Bangalore 560034, Karnataka, India. [Kocevski, D.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Madejski, G.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Rau, A.; Schady, P.; Greiner, J.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Massaro, F.] Univ Turin, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy. [Balokovic, M.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Buehler, R.; Giomi, M.] DESY, D-15738 Zeuthen, Germany. [D'Ammando, F.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. RP Ajello, M (reprint author), Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. EM majello@clemson.edu RI Massaro, Francesco/L-9102-2016; OI Massaro, Francesco/0000-0002-1704-9850; Ajello, Marco/0000-0002-6584-1703 FU NASA grant [NNH09ZDA001N]; International Fulbright Science and Technology Award; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; NASA [NNG08FD60C]; National Aeronautics and Space Administration; Leibniz-Prize (DFG grant) [HA 1850/28-1] FX We thank the anonymous referee for useful comments. M.A. acknowledges generous support from NASA grant NNH09ZDA001N. M.B. acknowledges support from the International Fulbright Science and Technology Award and from NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; This NuSTAR work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA).; Part of this work is based on archival data, software, or online services provided by the ASI Data Center (ASDC). This research has made use of the XRT Data Analysis Software (XRTDAS). Part of the funding for GROND (both hardware and personnel) was generously granted by the Leibniz-Prize to G. Hasinger (DFG grant HA 1850/28-1). NR 66 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 76 DI 10.3847/0004-637X/826/1/76 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200076 ER PT J AU Brightman, M Masini, A Ballantyne, DR Balokovic, M Brandt, WN Chen, CT Comastri, A Farrah, D Gandhi, P Harrison, FA Ricci, C Stern, D Walton, DJ AF Brightman, M. Masini, A. Ballantyne, D. R. Balokovic, M. Brandt, W. N. Chen, C. -T. Comastri, A. Farrah, D. Gandhi, P. Harrison, F. A. Ricci, C. Stern, D. Walton, D. J. TI A GROWTH-RATE INDICATOR FOR COMPTON-THICK ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; galaxies: general; galaxies: nuclei; galaxies: Seyfert; masers ID SUPERMASSIVE BLACK-HOLES; RAY SPECTRAL MODEL; H2O MASER EMISSION; X-RAY; CIRCINUS GALAXY; ACCRETION DISK; NGC 1068; BOLOMETRIC LUMINOSITIES; NUSTAR OBSERVATIONS; MEGAMASER DISKS AB Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGNs) is difficult to measure. A statistically significant correlation between the Eddington ratio, lambda(Edd), and the X-ray power-law index, Gamma, observed in unobscured AGNs offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line of sight to the central engine is heavily obscured, the recovery of the intrinsic Gamma is challenging. Here we study a sample of local, predominantly CT megamaser AGNs, where the black hole mass, and thus Eddington luminosity, are well known. We compile results of the X-ray spectral fitting of these sources with sensitive high-energy (E > 10 keV) NuSTAR data, where X-ray torus models, which take into account the reprocessing effects have been used to recover the intrinsic Gamma values and X-ray luminosities, L-X. With a simple bolometric correction to L-X to calculate lambda(Edd), we find a statistically significant correlation between Gamma and lambda(Edd) (p = 0.007). A linear fit to the data yields Gamma = (0.41 +/- 0.18)log(10)lambda(Edd) + (2.38 +/- 0.20), which is statistically consistent with results for unobscured AGNs. This result implies that torus modeling successfully recovers the intrinsic AGN parameters. Since the megamasers have low-mass black holes (M-BH approximate to 10(6)-10(7) M-circle dot) and are highly inclined, our results extend the Gamma-lambda(Edd) relationship to lower masses and argue against strong orientation effects in the corona, in support of AGN unification. Finally this result supports the use of Gamma as a growth-rate indicator for accreting black holes, even for CT AGNs. C1 [Brightman, M.; Balokovic, M.; Harrison, F. A.; Walton, D. J.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. [Masini, A.; Comastri, A.] INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Masini, A.] Univ Bologna, Dipartimento Fis & Astron DIFA, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Brandt, W. N.; Chen, C. -T.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Gandhi, P.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Brightman, M (reprint author), CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. OI Comastri, Andrea/0000-0003-3451-9970 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ASI/INAF [I/037/12/0-011/13]; STFC [ST/J003697/2]; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H] FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. Furthermore, this research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. A.M. and A.C. acknowledge support from the ASI/INAF grant I/037/12/0-011/13. P.G. acknowledges funding from STFC (ST/J003697/2). M.B. acknowledges support from NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H. NR 66 TC 3 Z9 3 U1 5 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 93 DI 10.3847/0004-637X/826/1/93 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200093 ER PT J AU Darling, J Gerard, B Amiri, N Lawrence, K AF Darling, Jeremy Gerard, Benjamin Amiri, Nikta Lawrence, Kelsey TI WATER MASERS IN THE ANDROMEDA GALAXY. I. A SURVEY FOR WATER MASERS, AMMONIA, AND HYDROGEN RECOMBINATION LINES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (M31); galaxies: ISM; ISM: molecules; Local Group; masers; radio lines: galaxies ID STAR-FORMING REGIONS; PROPER-MOTION; LOCAL GROUP; NEARBY GALAXIES; MILKY-WAY; GALACTIC H-2-REGIONS; SPACE-TELESCOPE; MOLECULAR GAS; HOT AMMONIA; H2O MASERS AB We report the results of a Green Bank Telescope survey for water masers, ammonia (1, 1) and (2, 2), and the H66 alpha recombination line toward 506 luminous compact 24 mu m emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for similar to 10 mu as yr(-1) astrometry. No new water masers, ammonia lines, or H66 alpha recombination lines were detected individually or in spectral stacks reaching rms noise levels of similar to 3 mJy and similar to 0.2 mJy, respectively, in 3.1-3.3 km s(-1) channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade. C1 [Darling, Jeremy; Gerard, Benjamin; Amiri, Nikta; Lawrence, Kelsey] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. [Gerard, Benjamin] Univ Victoria, Dept Phys & Astron, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada. [Amiri, Nikta] Jet Prop Lab, M-S 238-600,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Darling, J (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. EM jdarling@colorado.edu OI Gerard, Benjamin/0000-0003-3978-9195; Darling, Jeremy/0000-0003-2511-2060 FU NSF [AST-1109078] FX All authors acknowledge support from the NSF grant AST-1109078. The authors thank K. Gordon for the Spitzer map, M. Claussen and T. Beasley for sharing their results, and the anonymous referee for helpful comments. This research has made use of NASA's Astrophysics Data System Bibliographic Services and the NASA/IPAC Extragalactic Database (NED), and uses observations made with the Spitzer Space Telescope, both of which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 49 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 24 DI 10.3847/0004-637X/826/1/24 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200024 ER PT J AU Gotthelf, EV Mori, K Aliu, E Paredes, JM Tomsick, JA Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Hong, JS Rahoui, F Stern, D Zhang, WW AF Gotthelf, E. V. Mori, K. Aliu, E. Paredes, J. M. Tomsick, J. A. Boggs, S. E. Christensen, F. E. Craig, W. W. Hailey, C. J. Harrison, F. A. Hong, J. S. Rahoui, F. Stern, D. Zhang, W. W. TI HARD X-RAY EMISSION FROM SH 2-104: A NuSTAR SEARCH FOR GAMMA-RAY COUNTERPARTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (Sh 2-104, MGRO J2019+37, 3XMM J201744.7+365045, VER J2019+368); pulsars: individual (NuSTAR J201744.3+364812); stars: neutron ID GALACTIC PLANE; CLUSTER WESTERLUND-1; TEMPERATURE RELATION; MGRO J2019+37; XMM-NEWTON; TELESCOPE; DISCOVERY; REGION; YOUNG; PULSAR AB We present NuSTAR hard X-ray observations of Sh 2-104, a compact H II region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Fainter, diffuse X-rays coincident with the eastern YMSC in Sh2-104 likely result from the colliding winds of a component star. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula, NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with N-H= (3.1 +/- 1.0) x 10(22) cm(-2) and a photon index Gamma= 2.1 +/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (<= 43% modulation), this object is likely a background active galactic nucleus rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV, suggesting an optically obscured galaxy cluster at z = 0.19 +/- 0.02 (d = 800 Mpc) and L-X = 1.2 x 10(44) erg s(-1). Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS excess south of Sh 2-104, is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the H II region. C1 [Gotthelf, E. V.; Mori, K.; Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA. [Gotthelf, E. V.; Aliu, E.; Paredes, J. M.] Univ Barcelona, IEEC UB, Dept Fis Quant & Astrofis, Inst Ciencies Cosmos, Marti i Franques 1, E-08028 Barcelona, Spain. [Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hong, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rahoui, F.] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rahoui, F.] European Southern Observ, Karl Schwarzchild Str 2, D-85748 Garching, Germany. RP Gotthelf, EV (reprint author), Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA.; Gotthelf, EV (reprint author), Univ Barcelona, IEEC UB, Dept Fis Quant & Astrofis, Inst Ciencies Cosmos, Marti i Franques 1, E-08028 Barcelona, Spain. EM eric@astro.columbia.edu FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; National Aeronautics and Space Administration through XMM-Newton Award [NNX15AG28G]; Chandra Award [G05-16061X]; National Aeronautics Space Administration [NAS8-03060]; Spanish MINECO under grants of ICCUB (Unidad de Excelencia "Maria de Maeztu") [AYA2013-47447-C3-1-P, MDM-2014-0369]; Catalan DEC grant [SGR 86]; ICREA Academia FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR operations, software, and calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). E.V.G. acknowledges partial support by the National Aeronautics and Space Administration through XMM-Newton Award Number NNX15AG28G and Chandra Award Number G05-16061X, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. J.M.P. acknowledges support by the Spanish MINECO under grants AYA2013-47447-C3-1-P, MDM-2014-0369 of ICCUB (Unidad de Excelencia "Maria de Maeztu"), and the Catalan DEC grant 2014 SGR 86 and ICREA Academia. NR 44 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 25 DI 10.3847/0004-637X/826/1/25 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200025 ER PT J AU Grefenstette, BW Glesener, L Krucker, S Hudson, H Hannah, IG Smith, DM Vogel, JK White, SM Madsen, KK Marsh, AJ Caspi, A Chen, B Shih, A Kuhar, M Boggs, SE Christensen, FE Craig, WW Forster, K Hailey, CJ Harrison, FA Miyasaka, H Stern, D Zhang, WW AF Grefenstette, Brian W. Glesener, Lindsay Krucker, Sam Hudson, Hugh Hannah, Iain G. Smith, David M. Vogel, Julia K. White, Stephen M. Madsen, Kristin K. Marsh, Andrew J. Caspi, Amir Chen, Bin Shih, Albert Kuhar, Matej Boggs, Steven E. Christensen, Finn E. Craig, William W. Forster, Karl Hailey, Charles J. Harrison, Fiona A. Miyasaka, Hiromasa Stern, Daniel Zhang, William W. TI THE FIRST FOCUSED HARD X-RAY IMAGES OF THE SUN WITH NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; methods: data analysis; Sun: X-rays, gamma rays ID SOLAR-FLARES; ACCELERATION REGION; ENERGY-DISTRIBUTION; QUIET SUN; MICROFLARES; NANOFLARES; TELESCOPE; MISSION; RHESSI; EMISSION AB We present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun. C1 [Grefenstette, Brian W.; Madsen, Kristin K.; Forster, Karl; Harrison, Fiona A.; Miyasaka, Hiromasa] CALTECH, Cahill Ctr Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA. [Glesener, Lindsay] Univ Minnesota Twin Cities, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Glesener, Lindsay; Krucker, Sam; Hudson, Hugh; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Krucker, Sam; Kuhar, Matej] Univ Appl Sci & Arts Northwestern Switzerland, CH-5210 Windisch, Switzerland. [Hudson, Hugh; Hannah, Iain G.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Smith, David M.; Marsh, Andrew J.] Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA. [Smith, David M.; Marsh, Andrew J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, 1156 High St, Santa Cruz, CA 95064 USA. [Vogel, Julia K.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Div Phys, Livermore, CA 94550 USA. [White, Stephen M.] US Air Force, Res Lab, Albuquerque, NM USA. [Caspi, Amir] Southwest Res Inst, Boulder, CO 80302 USA. [Chen, Bin] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Shih, Albert] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Grefenstette, BW (reprint author), CALTECH, Cahill Ctr Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA. EM bwgref@srl.caltech.edu RI Hannah, Iain/F-1972-2011; OI Hannah, Iain/0000-0003-1193-8603; Hudson, Hugh/0000-0001-5685-1283; Glesener, Lindsay/0000-0001-7092-2703; Madsen, Kristin/0000-0003-1252-4891; Caspi, Amir/0000-0001-8702-8273 FU NASA [NNX12AJ36G, NNX14AG07G, NNX15AK26G, NNX14AN84G]; Swiss National Science Foundation [200021-140308]; NASA Earth and Space Science Fellowship [NNX13AM41H]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Royal Society University Research Fellowship FX This work was supported under NASA contract NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. Additional funding for this work was also provided under NASA grants NNX12AJ36G and NNX14AG07G. S.K. acknowledges funding from the Swiss National Science Foundation (200021-140308). A.J.M.'s participation was supported by NASA Earth and Space Science Fellowship award NNX13AM41H. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. A.C. was supported by NASA grants NNX15AK26G and NNX14AN84G. I.G.H. is supported by a Royal Society University Research Fellowship. NR 37 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 20 DI 10.3847/0004-637X/826/1/20 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200020 ER PT J AU Kaplan, DL Kupfer, T Nice, DJ Irrgang, A Heber, U Arzoumanian, Z Beklen, E Crowter, K DeCesar, ME Demorest, PB Dolch, T Ellis, JA Ferdman, RD Ferrara, EC Fonseca, E Gentile, PA Jones, G Jones, ML Kreuzer, S Lam, MT Levin, L Lorimer, DR Lynch, RS McLaughlin, MA Miller, AA Ng, C Pennucci, TT Prince, TA Ransom, SM Ray, PS Spiewak, R Stairs, IH Stovall, K Swiggum, J Zhu, WW AF Kaplan, David L. Kupfer, Thomas Nice, David J. Irrgang, Andreas Heber, Ulrich Arzoumanian, Zaven Beklen, Elif Crowter, Kathryn DeCesar, Megan E. Demorest, Paul B. Dolch, Timothy Ellis, Justin A. Ferdman, Robert D. Ferrara, Elizabeth C. Fonseca, Emmanuel Gentile, Peter A. Jones, Glenn Jones, Megan L. Kreuzer, Simon Lam, Michael T. Levin, Lina Lorimer, Duncan R. Lynch, Ryan S. McLaughlin, Maura A. Miller, Adam A. Ng, Cherry Pennucci, Timothy T. Prince, Tom A. Ransom, Scott M. Ray, Paul S. Spiewak, Renee Stairs, Ingrid H. Stovall, Kevin Swiggum, Joseph Zhu, Weiwei TI PSR J1024-0719: A MILLISECOND PULSAR IN AN UNUSUAL LONG-PERIOD ORBIT SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; pulsars: individual (PSR J1024-0719); stars: distances ID SKY SURVEY 2MASS; GLOBULAR-CLUSTERS; MILKY-WAY; PROPER MOTIONS; NEUTRON-STARS; BINARY PULSAR; EVOLUTION; RESOLUTION; DISCOVERY; TELESCOPE AB PSR J1024-0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to a reexamination of its properties. We present updated radio timing observations along with new and archival optical data which show that PSR J1024-0719 is most likely in a long-period (2-20 kyr) binary system with a low-mass (approximate to 0.4 M-circle dot), low-metallicity (Z approximate to -0.9 dex) main-sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, which is consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters. C1 [Kaplan, David L.; DeCesar, Megan E.; Spiewak, Renee; Swiggum, Joseph] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA. [Kupfer, Thomas; Miller, Adam A.; Prince, Tom A.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Irrgang, Andreas; Heber, Ulrich; Kreuzer, Simon] Univ Erlangen Nurnberg, Astron Inst, Dr Karl Remeis Observ & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Beklen, Elif] Suleyman Demirel Univ, Dept Phys, TR-32260 Isparta, Turkey. [Beklen, Elif; Gentile, Peter A.; Jones, Megan L.; Levin, Lina; Lorimer, Duncan R.; McLaughlin, Maura A.] West Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26506 USA. [Crowter, Kathryn; Fonseca, Emmanuel; Ng, Cherry; Stairs, Ingrid H.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Demorest, Paul B.] Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA. [Dolch, Timothy] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA. [Ellis, Justin A.; Miller, Adam A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Ferdman, Robert D.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Ferrara, Elizabeth C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jones, Glenn] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Lam, Michael T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Lynch, Ryan S.] Natl Radio Astron Observ, POB 2, Green Bank, WV 24944 USA. [Pennucci, Timothy T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Ransom, Scott M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Ray, Paul S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Stairs, Ingrid H.] McGill Space Inst, 3550 Rue Univ, Montreal, PQ H3A 2A7, Canada. [Stovall, Kevin] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Miller, Adam A.; Zhu, Weiwei] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Kaplan, DL (reprint author), Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA. RI Heber, Ulrich/G-3306-2013; OI Heber, Ulrich/0000-0001-7798-6769; Kaplan, David/0000-0001-6295-2881 FU National Science Foundation (NSF) PIRE program [0968296]; NSF Physics Frontiers Center [1430284]; NSERC Discovery Grant; Canadian Institute for Advanced Research; NASA from a Hubble Fellowship [HST-HF-51325.01]; STScI; NASA [NAS 5-26555] FX We thank J. Creighton, C. Bassa, and S. Phinney for useful discussions. The NANOGrav project receives support from National Science Foundation (NSF) PIRE program award number 0968296 and NSF Physics Frontiers Center award number 1430284. P.S.R.'s work at NRL is supported by the Chief of Naval Research. Pulsar research at UBC is supported by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research. A.A.M. acknowledges support for this work by NASA from a Hubble Fellowship grant: HST-HF-51325.01, awarded by STScI, operated by AURA, Inc., for NASA, under contract NAS 5-26555. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 67 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 86 DI 10.3847/0004-637X/826/1/86 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200086 ER PT J AU Keek, L Wolf, Z Ballantyne, DR AF Keek, L. Wolf, Z. Ballantyne, D. R. TI ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: neutron; X-rays: binaries; X-rays: bursts ID EQUATION-OF-STATE; NEUTRON-STARS; TIMING-EXPLORER; THERMONUCLEAR BURSTS; ANGULAR-DISTRIBUTION; SPECTRAL EVOLUTION; MILLISECOND PULSAR; EXO 0748-676; 4U 1636-536; AQL X-1 AB Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes. greater than or similar to 10(-7.5) erg cm(-2) s(-1) and also effectively constrain the reflection parameters for bright bursts with fluxes of similar to 10(-7) erg cm(-2) s(-1) in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts. C1 [Keek, L.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA. [Keek, L.] NASA, Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA. [Keek, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Wolf, Z.; Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, 837 State St, Atlanta, GA 30332 USA. RP Keek, L (reprint author), NASA, CRESST, GSFC, Greenbelt, MD 20771 USA.; Keek, L (reprint author), NASA, Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA.; Keek, L (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM laurens.keek@nasa.gov FU NASA [NNG06EO90A] FX The authors thank R.E. Rutledge for encouraging to write this paper and T.E. Strohmayer for helpful comments. L.K. is supported by NASA under award number NNG06EO90A. L.K. thanks the International Space Science Institute in Bern, Switzerland for hosting an International Team on X-ray bursts. NR 77 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 79 DI 10.3847/0004-637X/826/1/79 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200079 ER PT J AU Kinch, BE Schnittman, JD Kallman, TR Krolik, JH AF Kinch, Brooks E. Schnittman, Jeremy D. Kallman, Timothy R. Krolik, Julian H. TI Fe K alpha PROFILES FROM SIMULATIONS OF ACCRETING BLACK HOLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; line: formation ID X-RAY REFLECTION; ACTIVE GALACTIC NUCLEI; SEYFERT-GALAXIES; RADIATION TRANSPORT; IRON LINES; GX 339-4; DISKS; EMISSION; SPECTRA; SPIN AB We present the first results from a new technique for the prediction of Fe K alpha profiles directly from general relativistic magnetohydrodynamic (GRMHD) simulations. Data from a GRMHD simulation are processed by a Monte Carlo global radiation transport code, which determines the X-ray flux irradiating the disk surface and the coronal electron temperature self-consistently. With that irradiating flux and the disk's density structure drawn from the simulation, we determine the reprocessed Fe K alpha emission from photoionization equilibrium and solution of the radiation transfer equation. We produce maps of the surface brightness of Fe K alpha emission over the disk surface, which-for our example of a 10M(circle dot) Schwarzschild black hole accreting at 1% the Eddington value-rises steeply one gravitational radius outside the radius of the innermost stable circular orbit and then falls alpha r(-2) at larger radii. We explain these features of the Fe K alpha radial surface brightness profile as consequences of the disk's ionization structure and an extended coronal geometry, respectively. We also present the corresponding Fe K alpha line profiles as would be seen by distant observers at several inclinations. Both the shapes of the line profiles and the equivalent widths of our predicted K alpha lines are qualitatively similar to those typically observed from accreting black holes. Most importantly, this work represents a direct link between theory and observation: in a fully self-consistent way, we produce observable results-iron fluorescence line profiles-from the theory of black hole accretion with almost no phenomenological assumptions. C1 [Kinch, Brooks E.; Krolik, Julian H.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Schnittman, Jeremy D.; Kallman, Timothy R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kinch, BE (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM kinch@jhu.edu; jeremy.d.schnittman@nasa.gov; timothy.r.kallman@nasa.gov; jhk@jhu.edu FU NASA/ATP Grant [NNX14AB43G, 13-0077]; NSF Grant [AST-0908869]; NASA grant FX This work was partially supported by NASA/ATP Grant NNX14AB43G, NSF Grant AST-0908869, and NASA/ATP Grant 13-0077. We are particularly grateful to John Hawley for providing funds from the NSF grant and to John Baker for funds from the latter NASA grant. B.E.K. also thanks the GSFC Laboratory for High Energy Astrophysics for hospitality. NR 45 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 52 DI 10.3847/0004-637X/826/1/52 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200052 ER PT J AU Lanz, L Ogle, PM Alatalo, K Appleton, PN AF Lanz, Lauranne Ogle, Patrick M. Alatalo, Katherine Appleton, Philip N. TI STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: evolution; galaxies: ISM; galaxies: jets; galaxies: star formation ID ACTIVE GALACTIC NUCLEI; SPITZER-SPACE-TELESCOPE; DIGITAL-SKY-SURVEY; SPECTRAL IRRADIANCE CALIBRATION; MULTIBAND IMAGING PHOTOMETER; CO-TO-H-2 CONVERSION FACTOR; INFRARED ARRAY CAMERA; SIMILAR-TO 0.1; X-RAY; HYDROGEN EMISSION AB We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of similar to 3-6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H-2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H-2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich. C1 [Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.] CALTECH, Infrared Proc & Anal Ctr, MC100-22, Pasadena, CA 91125 USA. [Alatalo, Katherine] Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Appleton, Philip N.] CALTECH, NASA, Herschel Sci Ctr, IPAC, MC100-22, Pasadena, CA 91125 USA. RP Lanz, L (reprint author), CALTECH, Infrared Proc & Anal Ctr, MC100-22, Pasadena, CA 91125 USA. EM llanz@ipac.caltech.edu OI Alatalo, Katherine/0000-0002-4261-2326 FU NASA through an award issued by JPL/Caltech; NASA through Hubble Fellowship grant - Space Telescope Science Institute [HST-HF2-51352.001]; NASA [NAS5-26555]; NASA; NSF; Sloan Digital Sky Survey (Sloan-III); Alfred P. Sloan Foundation; Participating Institutions; U.S. DOE Office of Science; Association of Universities for Research in Astronomy, Inc., under NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX We thank Mark Lacy for his advice and useful discussion with regards to the Sajina model, as well as George Helou for suggesting the extended Schmidt law as another point of analysis, and Yong Shi, Michael Brown, and Aditya Togi, whose comments improved the revised version of this paper. This work made use of the remote access computing accounts of the NASA Herschel Science Center, which were very helpful in reducing the Herschel data. L.L. and P.M.O. acknowledges support for this work provided by NASA through an award issued by JPL/Caltech. Support for K.A. is provided by NASA through Hubble Fellowship grant #HST-HF2-51352.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555.; This work is based in part on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. This publication used observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL)/California Institute of Technology (Caltech) under a contract with NASA. Observations from the Wide-field Iqrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and JPL/Caltech, funded by NASA, were also used. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC)/Caltech, funded by NASA and the NSF, as well as from the Sloan Digital Sky Survey (Sloan-III),whose funding has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, and the U.S. DOE Office of Science, and which is managed by the Astrophysical Research Consortium for the Participating Institutions of the Sloan-III Collaboration. Finally, this publication makes use of data from the Galaxy Evolution Explorer, retrieved from the Mikulski Archive for Space Telescopes (MAST), part of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 132 TC 1 Z9 1 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 29 DI 10.3847/0004-637X/826/1/29 PG 40 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200029 ER PT J AU Lynch, BJ Edmondson, JK Kazachenko, MD Guidoni, SE AF Lynch, B. J. Edmondson, J. K. Kazachenko, M. D. Guidoni, S. E. TI RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; magnetohydrodynamics (MHD); Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: magnetic fields ID COLLISIONLESS MAGNETIC RECONNECTION; SUPRA-ARCADE DOWNFLOWS; SOLAR-FLARES; FLUX-ROPE; WAVELET ANALYSIS; 2-RIBBON FLARES; MODEL; CHALLENGE; FIELD; ACCELERATION AB We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch & Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to similar to 100:1), Lundquist number (similar to 10(3)), and reconnection rate (inflow-to-outflow ratios reaching similar to 0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs' formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions. C1 [Lynch, B. J.; Kazachenko, M. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Edmondson, J. K.] Univ Michigan, Climate & Space Sci & Engn Dept, Ann Arbor, MI 48109 USA. [Guidoni, S. E.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lynch, BJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RI Lynch, Benjamin/B-1300-2013; OI Lynch, Benjamin/0000-0001-6886-855X FU AFOSR YIP [FA9550-11-1-0048]; NASA HTP [NNX11AJ65G]; NSF AGS [1249150]; Coronal Global Evolutionary Model (CGEM) project NSF AGS [1321474]; NASA LWS [NNX10AQ616G]; NASA Postdoctoral Program at Goddard Space Flight Center FX The authors would like to thank the anonymous referee for valuable suggestions during the review process and acknowledge Drs. George Fisher, Spiro Antiochos, and Paul Cassak for helpful discussion during the preparation of the manuscript. B. J.L. and M.D.K. acknowledge support from AFOSR YIP FA9550-11-1-0048, NASA HTP NNX11AJ65G, NSF AGS 1249150, and the Coronal Global Evolutionary Model (CGEM) project NSF AGS 1321474. J.K.E. acknowledges support from NASA LWS NNX10AQ616G. S.E.G. acknowledges support from the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities. NR 93 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 43 DI 10.3847/0004-637X/826/1/43 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200043 ER PT J AU Racusin, JL Oates, SR de Pasquale, M Kocevski, D AF Racusin, J. L. Oates, S. R. de Pasquale, M. Kocevski, D. TI A CORRELATION BETWEEN THE INTRINSIC BRIGHTNESS AND AVERAGE DECAY RATE OF GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; X-rays: bursts ID SWIFT XRT DATA; OFF-AXIS; COMPREHENSIVE ANALYSIS; TEMPORAL PROPERTIES; OPTICAL AFTERGLOWS; EXTENDED EMISSION; PROMPT EMISSION; COMPLETE SAMPLE; LOW-LUMINOSITY; PLATEAU-PHASE AB We present a correlation between the average temporal decay (alpha(X,avg,> 200 s)) and early-time luminosity (L-X,L-200 (s)) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the gamma-ray trigger. The luminosity-average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation. C1 [Racusin, J. L.; Kocevski, D.] NASAs Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Oates, S. R.] CSIC, Inst Astrofis Andalucia IAA, Glorieta Astron S-N, E-18008 Granada, Spain. [Oates, S. R.; de Pasquale, M.] Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. RP Racusin, JL (reprint author), NASAs Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. EM judith.racusin@nasa.gov FU UK Space Agency; NASA Postdoctoral Program; [AYA2012-39727-C03-01] FX The authors thank the anonymous referee for helpful comments, as well as Brad Cenko and Raffaella Margutti for useful discussions. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. S.R.O. acknowledges the support of the Spanish Ministry, Project Number AYA2012-39727-C03-01. M.D.P. acknowledges the support of the UK Space Agency. D.K. acknowledges the support of the NASA Postdoctoral Program. NR 72 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 45 DI 10.3847/0004-637X/826/1/45 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200045 ER PT J AU Sloan, GC Kraemer, KE McDonald, I Groenewegen, MAT Wood, PR Zijlstra, AA Lagadec, E Boyer, ML Kemper, F Matsuura, M Sahai, R Sargent, BA Srinivasan, S van Loon, JT Volk, K AF Sloan, G. C. Kraemer, K. E. McDonald, I. Groenewegen, M. A. T. Wood, P. R. Zijlstra, A. A. Lagadec, E. Boyer, M. L. Kemper, F. Matsuura, M. Sahai, R. Sargent, B. A. Srinivasan, S. van Loon, J. Th. Volk, K. TI THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; stars: AGB and post-AGB; stars: carbon ID ASYMPTOTIC GIANT BRANCH; SPITZER-SPACE-TELESCOPE; LONG-PERIOD VARIABLES; GRAVITATIONAL LENSING EXPERIMENT.; SHORT-WAVELENGTH SPECTROMETER; AGE-METALLICITY RELATIONSHIP; CLOUDS PHOTOMETRIC SURVEY; POINT-SOURCE CATALOG; OGLE-III CATALOG; PLANETARY-NEBULAE AB The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C2H2 at 7.5 mu m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries. C1 [Sloan, G. C.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Sloan, G. C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Kraemer, K. E.] Boston Coll, Inst Sci Res, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA. [McDonald, I.; Zijlstra, A. A.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Groenewegen, M. A. T.] Koninklijke Sterrenwacht Belgie, Ringlaan 3, B-1180 Brussels, Belgium. [Wood, P. R.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Lagadec, E.] Observ Cote Azur, F-06300 Nice, France. [Boyer, M. L.] NASA, CRESST, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Boyer, M. L.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Boyer, M. L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kemper, F.; Srinivasan, S.] Acad Sinica, Inst Astron & Astrophys, 11F Astron Math Bldg,NTU AS,1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan. [Matsuura, M.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sahai, R.] CALTECH, Jet Prop Lab, MS 183-900, Pasadena, CA 91109 USA. [Sargent, B. A.] Rochester Inst Technol, Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA. [Sargent, B. A.] Rochester Inst Technol, Lab Multiwavelength Astrophys, 54 Lomb Mem Dr, Rochester, NY 14623 USA. [van Loon, J. Th.] Keele Univ, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Volk, K.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. RP Sloan, GC (reprint author), Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA.; Sloan, GC (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. EM sloan@isc.astro.cornell.edu RI Kemper, Francisca/D-8688-2011; OI Kemper, Francisca/0000-0003-2743-8240; Zijlstra, Albert/0000-0002-3171-5469; Kraemer, Kathleen/0000-0002-2626-7155 FU NASA [1257184, 1407]; NSF [1108645]; Ministry of Science and Technology (MoST) of Taiwan [MOST104-2628-M-001-004-MY3] FX We thank the anonymous referee for helpful and constructive comments. GCS was supported by NASA through Contract Number 1257184 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407 and the NSF through Award 1108645. FK received support from the Ministry of Science and Technology (MoST) of Taiwan, grant MOST104-2628-M-001-004-MY3. This research relied on the following resources: NASA's Astrophysics Data System, the Infrared Science Archive at the Infrared Processing and Analysis Center, operated by JPL, and the Simbad and VizieR databases, operated at the Centre de Donnees astronomiques de Strasbourg. NR 91 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 44 DI 10.3847/0004-637X/826/1/44 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200044 ER PT J AU Ukwatta, TN Hurley, K MacGibbon, JH Svinkin, DS Aptekar, RL Golenetskii, SV Frederiks, DD Pal'shin, VD Goldsten, J Boynton, W Kozyrev, AS Rau, A von Kienlin, A Zhang, X Connaughton, V Yamaoka, K Ohno, M Ohmori, N Feroci, M Frontera, F Guidorzi, C Cline, T Gehrels, N Krimm, HA McTiernan, J AF Ukwatta, T. N. Hurley, K. MacGibbon, J. H. Svinkin, D. S. Aptekar, R. L. Golenetskii, S. V. Frederiks, D. D. Pal'shin, V. D. Goldsten, J. Boynton, W. Kozyrev, A. S. Rau, A. von Kienlin, A. Zhang, X. Connaughton, V. Yamaoka, K. Ohno, M. Ohmori, N. Feroci, M. Frontera, F. Guidorzi, C. Cline, T. Gehrels, N. Krimm, H. A. McTiernan, J. TI INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY NETWORK GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; methods: observational ID 1ST 2 YEARS; SPECTRAL CATALOG; SHORT-DURATION; UPPER LIMITS; RATE-DENSITY; GIANT FLARE; SEARCH; EVAPORATION; EXPLOSIONS; BATSE AB The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10(13)-10(18) cm (7-10(5) au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood. C1 [Ukwatta, T. N.] Los Alamos Natl Lab, Space & Remote Sensing ISR 2, Los Alamos, NM 87545 USA. [Hurley, K.; McTiernan, J.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [MacGibbon, J. H.] Univ North Florida, Dept Phys, Jacksonville, FL 32224 USA. [Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'shin, V. D.] Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Goldsten, J.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Boynton, W.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Kozyrev, A. S.] Space Res Inst, 84-32 Profsoyuznaya, Moscow 117997, Russia. [Rau, A.; von Kienlin, A.; Zhang, X.] Max Planck Inst Extraterr Phys, Giessenbachstr,Postfach 1312, D-85748 Garching, Germany. [Connaughton, V.] Univ Alabama Huntsville, NSSTC, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2298558, Japan. [Ohno, M.] Hiroshima Univ, Dept Phys, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan. [Ohmori, N.] Miyazaki Univ, Dept Appl Phys, 1-1 Gakuen Kibanadai Nishi, Miyazaki, Miyazaki 8892192, Japan. [Feroci, M.] IAPS Roma, INAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy. [Frontera, F.; Guidorzi, C.] Univ Ferrara, Dept Phys & Earth Sci, Via Saragat 1, I-44122 Ferrara, Italy. [Cline, T.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, CRESST, USRA, Code 661, Greenbelt, MD 20771 USA. [Frontera, F.] INAF, Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Krimm, H. A.] Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA. RP Ukwatta, TN (reprint author), Los Alamos Natl Lab, Space & Remote Sensing ISR 2, Los Alamos, NM 87545 USA. EM tilan@lanl.gov FU NASA [NNX09AU03G, NNX10AU34G, NNX11AP96G, NNX13AP09G, NNG04GM50G, NNG06GE69G, NNX07AQ22G, NNX08AC90G, NNX08AX95G, NNX09AR28G, NNX08AN23G, NNX09AO97G, NNX12AD68G, NNX06AI36G, NNX08AB84G, NNX08AZ85G, NNX09AV61G, NNX10AR12G, NNX07AR71G, NAG5-3500]; JPL [1282043, Y503559, NNX12AE41G, NNX13AI54G, NNX15AE60G, NNX07AH52G, NAG5-13080, NAG5-7766, NAG5-9126, NAG5-10710, NNG06GI89G]; Laboratory Directed Research and Development program at the Los Alamos National Laboratory (LANL); Russian Space Agency contract and RFBR [15-02-00532, 13-02-12017-ofi-m] FX Support for the IPN was provided by NASA grants NNX09AU03G, NNX10AU34G, NNX11AP96G, and NNX13AP09G (Fermi); NNG04GM50G, NNG06GE69G, NNX07AQ22G, NNX08AC90G, NNX08AX95G, and NNX09AR28G (INTEGRAL); NNX08AN23G, NNX09AO97G, and NNX12AD68G (Swift); NNX06AI36G, NNX08AB84G, NNX08AZ85G, NNX09AV61G, and NNX10AR12G (Suzaku); NNX07AR71G (MESSENGER); NAG5-3500, and JPL Contracts 1282043 and Y503559 (Odyssey); NNX12AE41G, NNX13AI54G, and NNX15AE60G (ADA); NNX07AH52G (Konus); NAG5-13080 (RHESSI); NAG5-7766, NAG5-9126, and NAG5-10710, (BeppoSAX); and NNG06GI89G. T. N. U. acknowledges support from the Laboratory Directed Research and Development program at the Los Alamos National Laboratory (LANL). The Konus-Wind experiment is partially supported by a Russian Space Agency contract and RFBR grants 15-02-00532 and 13-02-12017-ofi-m. We also thank Jim Linnemann (MSU), Dan Stump (MSU), Brenda Dingus (LANL), and Pat Harding (LANL) for useful conversations on the analysis. NR 75 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 98 DI 10.3847/0004-637X/826/1/98 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200098 ER PT J AU Walton, DJ Tomsick, JA Madsen, KK Grinberg, V Barret, D Boggs, SE Christensen, FE Clavel, M Craig, WW Fabian, AC Fuerst, F Hailey, CJ Harrison, FA Miller, JM Parker, ML Rahoui, F Stern, D Tao, L Wilms, J Zhang, W AF Walton, D. J. Tomsick, J. A. Madsen, K. K. Grinberg, V. Barret, D. Boggs, S. E. Christensen, F. E. Clavel, M. Craig, W. W. Fabian, A. C. Fuerst, F. Hailey, C. J. Harrison, F. A. Miller, J. M. Parker, M. L. Rahoui, F. Stern, D. Tao, L. Wilms, J. Zhang, W. TI THE SOFT STATE OF CYGNUS X-1 OBSERVED WITH NuSTAR: A VARIABLE CORONA AND A STABLE INNER DISK SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; X-rays: binaries; X-rays: individual (Cygnus X-1) ID X-RAY REFLECTION; BLACK-HOLE SPIN; XMM-NEWTON OBSERVATIONS; ACTIVE GALACTIC NUCLEI; LONG-TERM VARIABILITY; ACCRETION DISK; STELLAR WIND; HARD STATE; SUZAKU OBSERVATIONS; SWIFT OBSERVATIONS AB We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 less than or similar to a* less than or similar to 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be similar to 10 degrees-15 degrees. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at similar to 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star. C1 [Walton, D. J.; Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Walton, D. J.; Madsen, K. K.; Fuerst, F.; Harrison, F. A.; Tao, L.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Tomsick, J. A.; Boggs, S. E.; Clavel, M.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Grinberg, V.] MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA. [Barret, D.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Barret, D.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Fabian, A. C.; Parker, M. L.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, J. M.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. [Rahoui, F.] European So Observ, K Schwarzschild Str 2, D-85748 Garching, Germany. [Rahoui, F.] Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. [Wilms, J.] ECAP Erlangen Ctr Astroparticle Phys, Sternwartstr 7, D-96049 Bamberg, Germany. [Zhang, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Walton, DJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Walton, DJ (reprint author), CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Clavel, Maica/0000-0003-0724-2742 FU NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060]; French Space Agency (CNES) FX The authors would like to thank the referee for prompt and useful feedback. DB acknowledges financial support from the French Space Agency (CNES). VG acknowledges financial support provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for Support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. This research made use of data obtained with NuSTAR, a project led by Caltech, funded by NASA, and managed by NASA/JPL, and has utilized the NUSTARDAS software package, jointly developed by the ASI Science Data Center (ASDC, Italy) and Caltech (USA). Swift BAT transient monitor results are provided by the Swift BAT team. This research has also made use of MAXI data provided by RIKEN, JAXA, and the MAXI team. NR 89 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 87 DI 10.3847/0004-637X/826/1/87 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200087 ER PT J AU Yang, H Apai, D Marley, MS Karalidi, T Flateau, D Showman, AP Metchev, S Buenzli, E Radigan, J Artigau, E Lowrance, PJ Burgasser, AJ AF Yang, Hao Apai, Daniel Marley, Mark S. Karalidi, Theodora Flateau, Davin Showman, Adam P. Metchev, Stanimir Buenzli, Esther Radigan, Jacqueline Artigau, Etienne Lowrance, Patrick J. Burgasser, Adam J. TI EXTRASOLAR STORMS: PRESSURE-DEPENDENT CHANGES IN LIGHT-CURVE PHASE IN BROWN DWARFS FROM SIMULTANEOUS HST AND SPITZER OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: atmospheres; stars: low-mass ID HUBBLE-SPACE-TELESCOPE; INFRARED ARRAY CAMERA; PROPER-MOTION SURVEY; PECULIAR L DWARFS; ALL-SKY SURVEY; VERY-LOW MASS; T-DWARFS; PHOTOMETRIC VARIABILITY; ABSOLUTE CALIBRATION; EVOLVING WEATHER AB We present Spitzer/Infrared Array Camera Ch1 and Ch2 monitoring of six brown dwarfs during eight different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous Hubble Space Telescope (HST)/WFC3 G141 grism spectra during two epochs and derived light curves in five narrowband filters. Probing different pressure levels in the atmospheres, the multiwavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 to 13 hr. We compare the shapes of the light curves and estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. The phase differences between the two groups of light curves suggest that the modulations seen at lower and higher pressures may be introduced by different cloud layers. C1 [Yang, Hao; Apai, Daniel; Karalidi, Theodora] Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Apai, Daniel; Flateau, Davin] Dept Planetary Sci, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Naval Air Stn, Mountain View, CA 94035 USA. [Showman, Adam P.] Univ Arizona, Dept Planetary Sci, 1629 Univ Blvd, Tucson, AZ 85721 USA. [Metchev, Stanimir] Univ Western Ontario, Dept Phys & Astron, Ctr Planetary Sci & Explorat, 1151 Richmond St, London, ON N6A 3K7, Canada. [Metchev, Stanimir] SUNY Stony Brook, Dept Phys & Astron, 100 Nicolls Rd, Stony Brook, NY 11794 USA. [Buenzli, Esther] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Radigan, Jacqueline] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Artigau, Etienne] Univ Montreal, Dep Phys, CP 6128 Succ Ctr ville, Montreal, PQ H3C 3J7, Canada. [Lowrance, Patrick J.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Burgasser, Adam J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Yang, H (reprint author), Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM haoyang@email.arizona.edu; apai@arizona.edu OI Yang, Hao/0000-0002-9423-2333; Metchev, Stanimir/0000-0003-3050-8203 FU NASA; Universities for Research in Astronomy, Inc. under NASA [13176, NAS5-26555] FX This work is part of the Spitzer Cycle-9 Exploration Program, Extrasolar Storms. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.; Support for HST GO programs 13176 was provided by Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. We acknowledge the outstanding help of Patricia Royle (STScI) and the Spitzer Science Center staff, especially Nancy Silbermann, for coordinating the HST and Spitzer observations. NR 54 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 8 DI 10.3847/0004-637X/826/1/8 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200008 ER PT J AU Zurbuchen, TH Weberg, M von Steiger, R Mewaldt, RA Lepri, ST Antiochos, SK AF Zurbuchen, T. H. Weberg, M. von Steiger, R. Mewaldt, R. A. Lepri, S. T. Antiochos, S. K. TI COMPOSITION OF CORONAL MASS EJECTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; solar wind; Sun: abundances; Sun: coronal mass ejections (CMEs) ID SOLAR ENERGETIC PARTICLES; ELEMENT ABUNDANCES; HELIUM ABUNDANCE; MAGNETIC-FIELD; ACTIVE-REGION; WIND; ACCELERATION; EVENTS; MODEL; SPEED AB We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q(Fe) > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself. C1 [Zurbuchen, T. H.; Weberg, M.; Lepri, S. T.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [von Steiger, R.] Int Space Sci Inst, Bern, Switzerland. [von Steiger, R.] Univ Bern, Phys Inst, CH-3012 Bern, Switzerland. [Mewaldt, R. A.] CALTECH, Pasadena, CA USA. [Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD USA. RP Zurbuchen, TH (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. FU NASA [NNX13AH66G, NNH13ZDA001N, NNX11A075G]; Catholic University of America [362496-Sub1] FX We acknowledge the work of the ACE SWICS team and particularly Paul Shearer for their dedication to producing high-quality compositional data. T.H.Z. acknowledges the hospitality of the staff of the International Space Science Institute where much of this work was performed. This work was supported, in part, by NASA grants NNX13AH66G, NNH13ZDA001N, and NNX11A075G, and the Catholic University of America contract 362496-Sub1. NR 54 TC 0 Z9 0 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2016 VL 826 IS 1 AR 10 DI 10.3847/0004-637X/826/1/10 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1IU UT WOS:000381962200010 ER PT J AU Connaughton, V Burns, E Goldstein, A Blackburn, L Briggs, MS Zhang, BB Camp, J Christensen, N Hui, CM Jenke, P Littenberg, T McEnery, JE Racusin, J Shawhan, P Singer, L Veitch, J Wilson-Hodge, CA Bhat, PN Bissaldi, E Cleveland, W Fitzpatrick, G Giles, MM Gibby, MH von Kienlin, A Kippen, RM McBreen, S Mailyan, B Meegan, CA Paciesas, WS Preece, RD Roberts, OJ Sparke, L Stanbro, M Toelge, K Veres, P AF Connaughton, V. Burns, E. Goldstein, A. Blackburn, L. Briggs, M. S. Zhang, B. -B. Camp, J. Christensen, N. Hui, C. M. Jenke, P. Littenberg, T. McEnery, J. E. Racusin, J. Shawhan, P. Singer, L. Veitch, J. Wilson-Hodge, C. A. Bhat, P. N. Bissaldi, E. Cleveland, W. Fitzpatrick, G. Giles, M. M. Gibby, M. H. von Kienlin, A. Kippen, R. M. McBreen, S. Mailyan, B. Meegan, C. A. Paciesas, W. S. Preece, R. D. Roberts, O. J. Sparke, L. Stanbro, M. Toelge, K. Veres, P. TI FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: general; gravitational waves ID GAMMA-RAY BURSTS; COMPACT OBJECT MERGERS; ELECTROMAGNETIC COUNTERPARTS; VIRGO; BATSE; CATALOG; MONITOR; GRBS; ERA AB With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational-wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4 s after the GW event, with a false-alarm probability of 0.0022 (2.9 sigma). This weak transient lasting 1 s was not detected by any other instrument and does not appear to be connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short gamma-ray burst (GRB) arriving at a large angle to the direction in which Fermi was pointing where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, then this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1 keV and 10 MeV of 1.8(-1.0)(+1.5) x 10(49) erg s(-1). Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short GRBs. C1 [Connaughton, V.; Littenberg, T.; Cleveland, W.; Paciesas, W. S.] Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA. [Burns, E.] Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Goldstein, A.; Hui, C. M.; Wilson-Hodge, C. A.] NASA, Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA. [Blackburn, L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Blackburn, L.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Briggs, M. S.; Preece, R. D.; Stanbro, M.] Univ Alabama, Dept Space Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Briggs, M. S.; Zhang, B. -B.; Jenke, P.; Bhat, P. N.; Fitzpatrick, G.; Mailyan, B.; Meegan, C. A.; Veres, P.] Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Zhang, B. -B.] IAA CSIC, POB 03004, E-18080 Granada, Spain. [Camp, J.; McEnery, J. E.; Racusin, J.; Singer, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Christensen, N.] Carleton Coll, Phys & Astron, Northfield, MN 55057 USA. [Shawhan, P.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bissaldi, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bissaldi, E.; Toelge, K.] Politecn Bari, Dipartimento Fis, I-70125 Bari, Italy. [Giles, M. M.; Gibby, M. H.] Jacobs Technol Inc, Huntsville, AL USA. [von Kienlin, A.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McBreen, S.; Roberts, O. J.] Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland. [Sparke, L.] NASA Headquarters, Washington, DC USA. RP Connaughton, V (reprint author), Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA. EM valerie@nasa.gov RI Roberts, Oliver/N-6284-2016 OI Roberts, Oliver/0000-0002-7150-9061 NR 56 TC 44 Z9 44 U1 5 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2016 VL 826 IS 1 AR L6 DI 10.3847/2041-8205/826/1/L6 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS4GL UT WOS:000380739300006 ER PT J AU El-Batal, AM Miller, JM Reynolds, MT Boggs, SE Chistensen, FE Craig, WW Fuerst, F Hailey, CJ Harrison, FA Stern, DK Tomsick, J Walton, DJ Zhang, WW AF El-Batal, A. M. Miller, J. M. Reynolds, M. T. Boggs, S. E. Chistensen, F. E. Craig, W. W. Fuerst, F. Hailey, C. J. Harrison, F. A. Stern, D. K. Tomsick, J. Walton, D. J. Zhang, W. W. TI NuSTAR OBSERVATIONS OF THE BLACK HOLE GS 1354-645: EVIDENCE OF RAPID BLACK HOLE SPIN SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; X-rays: binaries ID INNER ACCRETION FLOW; HARD-STATE; REFLECTION; DISK; SPECTROSCOPY; OUTBURST; CONSTRAINTS; BINARIES; SPECTRA; SWIFT AB We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cf/GM(2) >= 0.98 (1 sigma statistical limits only). The fits also require a high inclination: 0 similar or equal to 75 (2)degrees. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates. C1 [El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. [Boggs, S. E.; Craig, W. W.; Tomsick, J.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Chistensen, F. E.] Danish Tech Univ, Lungby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fuerst, F.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA. [Hailey, C. J.] Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA. [Stern, D. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Miller, JM (reprint author), Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. EM jonmm@umich.edu FU NASA [NNG08FD60C]; NASA FX We thank the anonymous referee for comments that improved this manuscript. This work was supported under NASA contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. NR 40 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2016 VL 826 IS 1 AR L12 DI 10.3847/2041-8205/826/1/L12 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS4GL UT WOS:000380739300012 ER PT J AU Zhang, X Sander, SP Cheng, L Thimmakondu, VS Stanton, JF AF Zhang, Xu Sander, Stanley P. Cheng, Lan Thimmakondu, Venkatesan S. Stanton, John F. TI Matrix-isolated infrared absorption spectrum of CH2BrOO radical SO CHEMICAL PHYSICS LETTERS LA English DT Article ID GAS-PHASE; ATMOSPHERIC CHEMISTRY; PEROXY-RADICALS; BASIS-SETS; KINETICS; ATOMS; POTENTIALS; GRADIENTS; ELECTRON; 298-K AB The bromomethylperoxy radical, CH2BrOO, has been generated in cryogenic matrices. Six fundamental bands for CH2BrOO have been observed in an argon matrix at 5 K. The experimental frequencies (cm (1)) are: v(4) = 1274.3, v(5) = 1229.4, v(6) = 1086.7, v(7) = 961.8, v(8) = 879.9, and v(10) = 515.4, two of which are detected for the first time. Ab initio calculations have been performed employing coupled-cluster methods. The experimental frequencies are shown to be in good agreement with the computation as well as the four bands (v(4), v(6), v(7) and v(8)) observed by Huang and Lee in the gas phase. (C) 2016 Elsevier B. V. All rights reserved. C1 [Zhang, Xu; Sander, Stanley P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cheng, Lan; Thimmakondu, Venkatesan S.; Stanton, John F.] Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA. RP Zhang, X; Sander, SP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Stanton, JF (reprint author), Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA. EM xzxuzhang@gmail.com FU NASA; U.S. Department of Energy [DE-FG02-07ER15884]; Robert A. Welch Foundation of Houston, TX [F-1284]; National Aeronautics and Space Administration; California Institute of Technology FX This work was supported by the NASA Tropospheric Chemistry and Upper Atmosphere Research Programs. Additional support for this work to J.F.S. comes from the U.S. Department of Energy (Contract Number DE-FG02-07ER15884) and the Robert A. Welch Foundation of Houston, TX (Grant F-1284). The authors would also like to thank Dr. Kyle Bayes and Prof. Barney Ellison for their helpful discussions. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2016 California Institute of Technology. Government sponsorship is acknowledged. NR 25 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 16 PY 2016 VL 657 BP 131 EP 134 DI 10.1016/j.cplett.2016.05.060 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DW2AG UT WOS:000383444700023 ER PT J AU Andre, M Li, W Toledo-Redondo, S Khotyaintsev, YV Vaivads, A Graham, DB Norgren, C Burch, J Lindqvist, PA Marklund, G Ergun, R Torbert, R Magnes, W Russell, CT Giles, B Moore, TE Chandler, MO Pollock, C Young, DT Avanov, LA Dorelli, JC Gershman, DJ Paterson, WR Lavraud, B Saito, Y AF Andre, M. Li, W. Toledo-Redondo, S. Khotyaintsev, Yu. V. Vaivads, A. Graham, D. B. Norgren, C. Burch, J. Lindqvist, P. -A. Marklund, G. Ergun, R. Torbert, R. Magnes, W. Russell, C. T. Giles, B. Moore, T. E. Chandler, M. O. Pollock, C. Young, D. T. Avanov, L. A. Dorelli, J. C. Gershman, D. J. Paterson, W. R. Lavraud, B. Saito, Y. TI Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; magnetopause; electric fields; Hall current ID ART. NO. A03215; EARTHS MAGNETOSPHERE; OUTER MAGNETOSPHERE; PLASMASPHERIC PLUME; PLASMA; WIND; MULTISCALE; OUTFLOW; SPACE; SOLAR AB Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection. C1 [Andre, M.; Li, W.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.] Swedish Inst Space Phys, Uppsala, Sweden. [Toledo-Redondo, S.] European Space Agcy ESAC, Madrid, Spain. [Norgren, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Burch, J.; Torbert, R.; Young, D. T.] Southwest Res Inst, San Antonio, TX USA. [Lindqvist, P. -A.; Marklund, G.] KTH, Stockholm, Sweden. [Ergun, R.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Torbert, R.] Univ New Hampshire, Durham, NH 03824 USA. [Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Giles, B.; Moore, T. E.; Pollock, C.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Chandler, M. O.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Gershman, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, Toulouse, France. [Saito, Y.] Inst Space & Astronaut Sci, JAXA, Chofu, Tokyo, Japan. RP Andre, M (reprint author), Swedish Inst Space Phys, Uppsala, Sweden. EM mats.andre@irfu.se RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU Swedish National Space Board [SNSB 139/12, 164/14, 176/15]; CNES FX We thank the entire MMS team and instrument PIs for data access and support. MMS data are available at https://lasp.colorado.edu/mms/sdc/public/. We acknowledge support from the Swedish National Space Board contracts SNSB 139/12, 164/14, and 176/15. The IRAP contribution to MMS was supported by CNES. NR 52 TC 1 Z9 1 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2016 VL 43 IS 13 BP 6705 EP 6712 DI 10.1002/2016GL069665 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DS6ON UT WOS:000380901600004 ER PT J AU Norgren, C Graham, DB Khotyaintsev, YV Andre, M Vaivads, A Chen, LJ Lindqvist, PA Marklund, GT Ergun, RE Magnes, W Strangeway, RJ Russell, CT Torbert, RB Paterson, WR Gershman, DJ Dorelli, JC Avanov, LA Lavraud, B Saito, Y Giles, BL Pollock, CJ Burch, JL AF Norgren, C. Graham, D. B. Khotyaintsev, Yu. V. Andre, M. Vaivads, A. Chen, L. -J. Lindqvist, P. -A. Marklund, G. T. Ergun, R. E. Magnes, W. Strangeway, R. J. Russell, C. T. Torbert, R. B. Paterson, W. R. Gershman, D. J. Dorelli, J. C. Avanov, L. A. Lavraud, B. Saito, Y. Giles, B. L. Pollock, C. J. Burch, J. L. TI Finite gyroradius effects in the electron outflow of asymmetric magnetic reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; electron demagnetization; finite gyroradius effects; electron diffusion region ID DIFFUSION REGION AB We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by approximate to 15km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T-vertical bar>T and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet. C1 [Norgren, C.; Graham, D. B.; Khotyaintsev, Yu. V.; Andre, M.; Vaivads, A.] Swedish Inst Space Phys, Uppsala, Sweden. [Norgren, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Chen, L. -J.; Paterson, W. R.; Gershman, D. J.; Dorelli, J. C.; Avanov, L. A.; Giles, B. L.; Pollock, C. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Chen, L. -J.; Gershman, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lindqvist, P. -A.; Marklund, G. T.] KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden. [Ergun, R. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, Toulouse, France. [Saito, Y.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa, Japan. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. RP Norgren, C (reprint author), Swedish Inst Space Phys, Uppsala, Sweden.; Norgren, C (reprint author), Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. EM cecilia.norgren@irfu.se RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU Swedish National Space Board [23/12:2, 175/15]; CNES; CNRS FX We thank the entire MMS team and instrument PIs for data access and support. MMS data are available at https://lasp.colorado.edu/mms/sdc/public. This work was supported by the Swedish National Space Board, grants 23/12:2 and 175/15. The IRAP contribution was supported by CNES and CNRS. C.N. thanks the International Space Science Institute (ISSI) for supporting the team "from Cluster to MMS", from which this work was partly developed. NR 26 TC 3 Z9 3 U1 4 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2016 VL 43 IS 13 BP 6724 EP 6733 DI 10.1002/2016GL069205 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DS6ON UT WOS:000380901600006 ER PT J AU Poppe, AR Fillingim, MO Halekas, JS Raeder, J Angelopoulos, V AF Poppe, A. R. Fillingim, M. O. Halekas, J. S. Raeder, J. Angelopoulos, V. TI ARTEMIS observations of terrestrial ionospheric molecular ion outflow at the Moon SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE molecular ions; magnetotail; ion outflow; lunar volatiles; lunar exosphere ID INTERPLANETARY MAGNETIC-FIELD; COLD O+ BEAMS; ELECTRICAL-RESISTIVITY; LOBE/MANTLE REGIONS; EARTHS MAGNETOPAUSE; PLASMA SHEET; MAGNETOSPHERE; NITROGEN; OXYGEN; MODEL AB The Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft observes outflowing molecular ionospheric ions at lunar distances in the terrestrial magnetotail. The heavy ion fluxes are observed during geomagnetically disturbed times and consist of mainly molecular species ( N2+, NO+, and O2+, approximately masses 28-32amu) on the order of 10(5)-10(6)cm(-2)s(-1) at nearly identical velocities as concurrently present protons. By performing backward particle tracing in time-dependent electromagnetic fields from the magnetohydrodynamic Open Global Geospace Circulation Model of the terrestrial magnetosphere, we show that the ions escape the inner magnetosphere through magnetopause shadowing near noon and are subsequently accelerated to common velocities down the low-latitude boundary layer to lunar distances. At the Moon, the observed molecular ion outflow can sputter significant fluxes of neutral species into the lunar exosphere while also delivering nitrogen and oxygen to the lunar volatile inventory. C1 [Poppe, A. R.; Fillingim, M. O.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Poppe, A. R.; Halekas, J. S.] NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Poppe, AR (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.; Poppe, AR (reprint author), NASA, Ames Res Ctr, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA. EM poppe@ssl.berkeley.edu FU NASA's Solar System Exploration Research Virtual Institute (SSERVI) [NNX14AG16A]; NASA LASER [NNX13AJ97G]; NSF [AGS-1143895]; NASA [NAS5-02099]; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302] FX A.R.P. and J.S.H. gratefully acknowledge support from NASA's Solar System Exploration Research Virtual Institute (SSERVI) grant NNX14AG16A and NASA LASER grant NNX13AJ97G. Work at UNH was supported by NSF grant AGS-1143895. The ARTEMIS mission is funded and operated under NASA grant NAS5-02099, and we specifically acknowledge J.P. McFadden for the use of ESA data and K.-H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. ARTEMIS data are publicly available at http://artemis.ssl.berkeley.edu. We thank the NASA Coordinated Community Modeling Center (CCMC) for use of the OpenGGCM model. Modeling results can be accessed by contacting the lead author. NR 49 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2016 VL 43 IS 13 BP 6749 EP 6758 DI 10.1002/2016GL069715 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DS6ON UT WOS:000380901600009 ER PT J AU Toledo-Redondo, S Andre, M Khotyaintsev, YV Vaivads, A Walsh, A Li, WY Graham, DB Lavraud, B Masson, A Aunai, N Divin, A Dargent, J Fuselier, S Gershman, DJ Dorelli, J Giles, B Avanov, L Pollock, C Saito, Y Moore, TE Coffey, V Chandler, MO Lindqvist, PA Torbert, R Russell, CT AF Toledo-Redondo, Sergio Andre, Mats Khotyaintsev, Yuri V. Vaivads, Andris Walsh, Andrew Li, Wenya Graham, Daniel B. Lavraud, Benoit Masson, Arnaud Aunai, Nicolas Divin, Andrey Dargent, Jeremy Fuselier, Stephen Gershman, Daniel J. Dorelli, John Giles, Barbara Avanov, Levon Pollock, Craig Saito, Yoshifumi Moore, Thomas E. Coffey, Victoria Chandler, Michael O. Lindqvist, Per-Arne Torbert, Roy Russell, Christopher T. TI Cold ion demagnetization near the X-line of magnetic reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection ID ART. NO. A03215; DAYSIDE MAGNETOPAUSE; PLASMASPHERIC PLUMES; STATISTICAL-ANALYSIS; OUTER MAGNETOSPHERE; EARTHS MAGNETOPAUSE; SPACECRAFT AB Although the effects of magnetic reconnection in magnetospheres can be observed at planetary scales, reconnection is initiated at electron scales in a plasma. Surrounding the electron diffusion region, there is an Ion-Decoupling Region (IDR) of the size of the ion length scales (inertial length and gyroradius). Reconnection at the Earth's magnetopause often includes cold magnetospheric (few tens of eV), hot magnetospheric (10keV), and magnetosheath (1keV) ions, with different gyroradius length scales. We report observations of a subregion inside the IDR of the size of the cold ion population gyroradius (approximate to 15km) where the cold ions are demagnetized and accelerated parallel to the Hall electric field. Outside the subregion, cold ions follow the E x B motion together with electrons, while hot ions are demagnetized. We observe a sharp cold ion density gradient separating the two regions, which we identify as the cold and hot IDRs. C1 [Toledo-Redondo, Sergio; Walsh, Andrew; Masson, Arnaud] European Space Agcy, Sci Directorate, ESAC, Madrid, Spain. [Andre, Mats; Khotyaintsev, Yuri V.; Vaivads, Andris; Li, Wenya; Graham, Daniel B.; Divin, Andrey] Swedish Inst Space Phys, Uppsala, Sweden. [Lavraud, Benoit; Dargent, Jeremy] Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, Benoit; Dargent, Jeremy] CNRS, Toulouse, France. [Aunai, Nicolas; Dargent, Jeremy] Univ Paris 11, CNRS, Lab Plasma Phys, UPMC,Ecole Polytech, Paris, France. [Divin, Andrey] St Petersburg State Univ, Earth Phys Dept, Fac Phys, St Petersburg, Russia. [Fuselier, Stephen] Southwest Res Inst, San Antonio, TX USA. [Fuselier, Stephen] Univ Texas San Antonio, Dept Space Sci, San Antonio, TX USA. [Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Avanov, Levon; Pollock, Craig; Moore, Thomas E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Avanov, Levon] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Saito, Yoshifumi] Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Coffey, Victoria; Chandler, Michael O.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Lindqvist, Per-Arne] Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden. [Torbert, Roy] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Russell, Christopher T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. RP Toledo-Redondo, S (reprint author), European Space Agcy, Sci Directorate, ESAC, Madrid, Spain. EM sergiotr@ugr.es RI NASA MMS, Science Team/J-5393-2013; Divin, Andrey/E-4501-2015 OI NASA MMS, Science Team/0000-0002-9504-5214; Divin, Andrey/0000-0002-5579-3066 FU ESA Fellowship; science faculty of the European Space Astronomy Centre (ESAC) FX We would like to congratulate all the people involved in the MMS project for all their efforts during this early stage of the mission and the high quality achieved that will provide us great scientific return. S.T.R. holds an ESA Fellowship and acknowledges support from the science faculty of the European Space Astronomy Centre (ESAC). MMS data are available to the public in the MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/public/). NR 33 TC 1 Z9 1 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2016 VL 43 IS 13 BP 6759 EP 6767 DI 10.1002/2016GL069877 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DS6ON UT WOS:000380901600010 ER PT J AU Schorghofer, N Mazarico, E Platz, T Preusker, F Schroder, SE Raymond, CA Russell, CT AF Schorghofer, Norbert Mazarico, Erwan Platz, Thomas Preusker, Frank Schroeder, Stefan E. Raymond, Carol A. Russell, Christopher T. TI The permanently shadowed regions of dwarf planet Ceres SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Ceres; cold traps; Dawn mission; planetary science ID WATER ICE; SURFACE VOLATILES; POLAR-REGIONS; LUNAR-SURFACE; MERCURY; CRATERS; FRACTIONATION; TEMPERATURE; STABILITY; MIGRATION AB Ceres has only a small spin axis tilt (4 degrees), and craters near its rotational poles can experience permanent shadow and trap volatiles, as is the case on Mercury and on Earth's Moon. Topography derived from stereo imaging by the Dawn spacecraft is used to calculate direct solar irradiance that defines the extent of the permanently shadowed regions (PSRs). In the northern polar region, PSRs cover approximate to 1800km(2) or 0.13% of the hemisphere, and most of the PSRs are cold enough to trap water ice over geological time periods. Based on modeling of the water exosphere, water molecules seasonally reside around the winter pole and ultimately an estimated 0.14% of molecules get trapped. Even for the lowest estimates of the amount of available water, this predicts accumulation rates in excess of loss rates, and hence, there should be fresh ice deposits in the cold traps. C1 [Schorghofer, Norbert] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Mazarico, Erwan] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Platz, Thomas] Max Planck Inst Solar Syst Res, Gottingen, Germany. [Preusker, Frank; Schroeder, Stefan E.] Deutsch Zentrum Luft & Raumfahrt DLR, Berlin, Germany. [Raymond, Carol A.] Jet Prop Lab, Pasadena, CA USA. [Russell, Christopher T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. RP Schorghofer, N (reprint author), Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. EM norbert@hawaii.edu RI Platz, Thomas/F-7539-2013; Schroder, Stefan/D-9709-2013 OI Platz, Thomas/0000-0002-1253-2034; Schroder, Stefan/0000-0003-0323-8324 FU National Aeronautics and Space Administration [NNX15AI38G]; DACGIP FX We thank the Dawn team for the acquisition and processing of data used in this work. N.S. was supported by the National Aeronautics and Space Administration under grant NNX15AI38G issued through the Dawn at Ceres Guest Investigator Program (DACGIP). E.M. also acknowledges support from DACGIP. NR 40 TC 3 Z9 3 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2016 VL 43 IS 13 BP 6783 EP 6789 DI 10.1002/2016GL069368 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DS6ON UT WOS:000380901600013 ER PT J AU Hughes, CW Williams, J Hibbert, A Boening, C Oram, J AF Hughes, Chris W. Williams, Joanne Hibbert, Angela Boening, Carmen Oram, James TI A Rossby whistle: A resonant basin mode observed in the Caribbean Sea SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Caribbean Sea; sea level; bottom pressure; Rossby wave; basin mode ID MESOSCALE VARIABILITY; OCEAN AB We show that an important source of coastal sea level variability around the Caribbean Sea is a resonant basin mode. The mode consists of a baroclinic Rossby wave which propagates westward across the basin and is rapidly returned to the east along the southern boundary as coastal shelf waves. Almost two wavelengths of the Rossby wave fit across the basin, and it has a period of 120days. The porous boundary of the Caribbean Sea results in this mode exciting a mass exchange with the wider ocean, leading to a dominant mode of bottom pressure variability which is almost uniform over the Grenada, Venezuela, and Colombia basins and has a sharp spectral peak at 120day period. As the Rossby waves have been shown to be excited by instability of the Caribbean Current, this resonant mode is dynamically equivalent to the operation of a whistle. C1 [Hughes, Chris W.; Oram, James] Univ Liverpool, Sch Environm Sci, Liverpool, Merseyside, England. [Hughes, Chris W.; Williams, Joanne; Hibbert, Angela] Natl Oceanog Ctr, Liverpool, Merseyside, England. [Boening, Carmen] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Hughes, CW (reprint author), Univ Liverpool, Sch Environm Sci, Liverpool, Merseyside, England.; Hughes, CW (reprint author), Natl Oceanog Ctr, Liverpool, Merseyside, England. EM cwh@liv.ac.uk FU National Oceanographic Partnership Program (NOPP); NERC through the National Oceanography Centre; NERC [NE/I023384/1] FX We thank the Permanent Service for Mean Sea Level for providing quality-controlled tide gauge and bottom pressure data, which can be found at http://www.psmsl.org/, and AVISO for provision of the ocean dynamic topography product at http://www.aviso.altimetry.fr/. The ECCO ocean state estimates were provided by the ECCO Consortium for Estimating the Circulation and Climate of the Ocean funded by the National Oceanographic Partnership Program (NOPP). NCEP Reanalysis data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from http://www.esrl.noaa.gov/psd/. The JPL GRACE Mascon data can be downloaded from http://grace.jpl.nasa.gov. Any other data used in this paper will be supplied by C.W.H. on request by e-mail. This work has been supported by NERC through the National Oceanography Centre, as well as through grant NE/I023384/1. The OCCAM and NEMO models were run and provided by the NOC Southampton modeling group. We thank them and particularly Andrew Coward and Beverly de Cuevas for their help with these data sets. NR 25 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2016 VL 43 IS 13 BP 7036 EP 7043 DI 10.1002/2016GL069573 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DS6ON UT WOS:000380901600043 ER PT J AU Dhomse, SS Chipperfield, MP Damadeo, RP Zawodny, JM Ball, WT Feng, W Hossaini, R Mann, GW Haigh, JD AF Dhomse, S. S. Chipperfield, M. P. Damadeo, R. P. Zawodny, J. M. Ball, W. T. Feng, W. Hossaini, R. Mann, G. W. Haigh, J. D. TI On the ambiguous nature of the 11year solar cycle signal in upper stratospheric ozone SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE solar signal; stratosphere; modeling ID CHEMICAL-TRANSPORT MODEL; QUASI-BIENNIAL OSCILLATION; MT. PINATUBO ERUPTION; SPECTRAL IRRADIANCE; CLIMATE MODEL; SAGE II; SIMULATIONS; VARIABILITY; CIRCULATION; VERSION AB Up to now our understanding of the 11year ozone solar cycle signal (SCS) in the upper stratosphere has been largely based on the Stratospheric Aerosol and Gas Experiment (SAGE) II (v6.2) data record, which indicated a large positive signal which could not be reproduced by models, calling into question our understanding of the chemistry of the upper stratosphere. Here we present an analysis of new v7.0 SAGE II data which shows a smaller upper stratosphere ozone SCS, due to a more realistic ozone-temperature anticorrelation. New simulations from a state-of-art 3-D chemical transport model show a small SCS in the upper stratosphere, which is in agreement with SAGE v7.0 data and the shorter Halogen Occultation Experiment and Microwave Limb Sounder records. However, despite these improvements in the SAGE II data, there are still large uncertainties in current observational and meteorological reanalysis data sets, so accurate quantification of the influence of solar flux variability on the climate system remains an open scientific question. C1 [Dhomse, S. S.; Chipperfield, M. P.; Feng, W.; Hossaini, R.; Mann, G. W.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Dhomse, S. S.; Chipperfield, M. P.] Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England. [Damadeo, R. P.; Zawodny, J. M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Ball, W. T.] PMOD WRC, Davos, Switzerland. [Feng, W.; Mann, G. W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Haigh, J. D.] Imperial Coll, Grantham Inst, London, England. [Haigh, J. D.] Imperial Coll, Blackett Lab, London, England. RP Dhomse, SS (reprint author), Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England.; Dhomse, SS (reprint author), Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England. EM S.S.Dhomse@leeds.ac.uk RI FENG, WUHU/B-8327-2008; Dhomse, Sandip/C-8198-2011 OI Ball, William/0000-0002-1005-3670; FENG, WUHU/0000-0002-9907-9120; Dhomse, Sandip/0000-0003-3854-5383 FU NERC SOLCLI [NE/D002753/1]; MAPLE [NE/J008621/1] FX This work was supported by the NERC SOLCLI (NE/D002753/1) and MAPLE (NE/J008621/1) projects. We thank the NASA/NOAA for the MLS and HALOE data. Model simulations were performed on the Archer and Leeds Arc1 HPC systems. NR 35 TC 2 Z9 2 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2016 VL 43 IS 13 BP 7241 EP 7249 DI 10.1002/2016GL069958 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DS6ON UT WOS:000380901600067 ER PT J AU Sarangi, C Tripathi, SN Mishra, AK Goel, A Welton, EJ AF Sarangi, Chandan Tripathi, S. N. Mishra, A. K. Goel, A. Welton, E. J. TI Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE elevated aerosol layer; radiative forcing efficiency; daytime variations; lower atmospheric cooling; atmospheric stability ID ASIAN SUMMER MONSOON; INDO-GANGETIC BASIN; REGIONAL CLIMATE MODEL; BLACK CARBON AEROSOLS; LONG-RANGE TRANSPORT; ENERGY SYSTEM CERES; MAJOR DUST STORMS; VERTICAL-DISTRIBUTION; SEASONAL-VARIATION; PREMONSOON SEASON AB Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximate to 2-3 degrees C) of lower troposphere (below 3km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high aerosol loading scenario could be understood as a dynamical feedback of EAL-induced stratification of lower troposphere. Further, the observed radiative effect of EALs increases the stability of the lower troposphere, which could modulate the large-scale atmospheric dynamics during monsoon onset period. These findings encourage follow-up studies on the implication of EALs to the Indian summer monsoon dynamics using numerical models. C1 [Sarangi, Chandan; Tripathi, S. N.; Goel, A.] Indian Inst Technol, Dept Civil Engn, Kanpur, Uttar Pradesh, India. [Mishra, A. K.] Indian Inst Technol, Ctr Environm Sci & Engn, Kanpur, Uttar Pradesh, India. [Welton, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Tripathi, SN (reprint author), Indian Inst Technol, Dept Civil Engn, Kanpur, Uttar Pradesh, India. EM snt@iitk.ac.in RI Tripathi, Sachchida/J-4840-2016 FU Earth System Science Organization, Ministry of Earth Sciences, Government of India [MM/NERC-MoES-03/2014/002] FX The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India (grant MM/NERC-MoES-03/2014/002) to conduct this research under Monsoon Mission. The authors would like to thank B.N. Holben and staff at NASA GSFC for establishing and processing data of the AERONET and SolRad-Net site at IIT Kanpur, used in this study. We acknowledge the use of radiosonde data freely available from University of Wyoming, the NCEP Reanalysis data provided by the NOAA/OAR/ESRL USA, and use of HYSPLIT model of NOAA-ARL for back trajectory analysis. MODIS, MISR, CERES, CALIPSO, and AIRS data sets were obtained from the NASA Langley Research Centre Atmospheric Science Data Center. All data measured at IITK are available on request from author (snt@iitk.ac.in). We also appreciate help from V.P. Kanawade in Figure 3. NR 111 TC 0 Z9 0 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2016 VL 121 IS 13 BP 7936 EP 7957 DI 10.1002/2015JD024711 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS4DB UT WOS:000380730500026 ER PT J AU Carey, LD Koshak, W Peterson, H Mecikalski, RM AF Carey, Lawrence D. Koshak, William Peterson, Harold Mecikalski, Retha M. TI The kinematic and microphysical control of lightning rate, extent, and NOX production SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE lightning; flash rate; flash extent; NOx production; radar; LMA ID PRECIPITATION DEVELOPMENT; POLARIMETRIC RADAR; TRANSPORT MODELS; MAPPING ARRAY; STORM; ELECTRIFICATION; THUNDERSTORMS; CONVECTION; ALABAMA; PARAMETERIZATION AB This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX=NO+NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC+cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC+CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, 0.8) but are less correlated to total flash extent (0.6) and total LNOX production (0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation. C1 [Carey, Lawrence D.; Mecikalski, Retha M.] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA. [Koshak, William] NASA, Earth Sci Off, Marshall Space Flight Ctr, Huntsville, AL USA. [Peterson, Harold] Bur Indian Affairs, Eastern Region Off, Nashville, TN USA. RP Carey, LD (reprint author), Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA. EM larry.carey@nsstc.uah.edu FU National Science Foundation's Physical and Dynamical Meteorology (NSF PDM) Program [AGS-1063573] FX We wish to recognize funding from the National Science Foundation's Physical and Dynamical Meteorology (NSF PDM) Program (AGS-1063573), which has supported the DC3 field experiment and associated research. We want to acknowledge Lamont Bain for his time editing and gridding the ARMOR and KHTX data and for creating the dual-Doppler fields used in this and other manuscripts. We also wish to thank the many, many people who made the collection of DC3 observations possible. The data used herein can be obtained from the DC3 webpage located here: http://data.eol.ucar.edu/master_list/?project=DC3. Finally, we wish to thank three anonymous reviewers for comments that have substantially improved the quality of this research paper. NR 60 TC 2 Z9 2 U1 3 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2016 VL 121 IS 13 BP 7975 EP 7989 DI 10.1002/2015JD024703 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS4DB UT WOS:000380730500028 ER PT J AU Collow, ABM Miller, MA Trabachino, LC AF Collow, Allison B. Marquardt Miller, Mark A. Trabachino, Lynne C. TI Cloudiness over the Amazon rainforest: Meteorology and thermodynamics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE thermodynamics; lifting condensation level; GoAmazon ID SOUTH-AMERICA; CLIMATE-CHANGE; WATER-VAPOR; DEFORESTATION; CONVECTION; CIRCULATION; SURFACE; BASIN; VARIABILITY; DYNAMICS AB Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5km during the dry season (R-2=0.42) but a weak relationship during the wet season (0.12). C1 [Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.] Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ 08901 USA. [Collow, Allison B. Marquardt] Univ Space Res Assoc, Columbia, MD 21046 USA. [Collow, Allison B. Marquardt] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Collow, ABM (reprint author), Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ 08901 USA.; Collow, ABM (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA.; Collow, ABM (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM allison.collow@nasa.gov FU Department of Energy's Atmospheric System Research program [DE-FG02-08ER64531]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; National Aeronautics and Space Administration FX This work is supported by the Department of Energy's Atmospheric System Research program award DE-FG02-08ER64531. Data used in this study were obtained from the Atmospheric Radiation Measurement Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division (http://www.archive.arm.gov/), and the National Aeronautics and Space Administration (http://ceres.larc.nasa.gov/order_data.php and http://daac.gsfc.nasa.gov/). We would like to thank Kathleen Schiro for sharing data quality concerns regarding the precipitation observations at the AMF11 and Ben Lintner for providing guidance throughout the study. NR 51 TC 1 Z9 1 U1 12 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2016 VL 121 IS 13 BP 7990 EP 8005 DI 10.1002/2016JD024848 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS4DB UT WOS:000380730500029 ER PT J AU Aquila, V Swartz, WH Waugh, DW Colarco, PR Pawson, S Polvani, LM Stolarski, RS AF Aquila, V. Swartz, W. H. Waugh, D. W. Colarco, P. R. Pawson, S. Polvani, L. M. Stolarski, R. S. TI Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE stratospheric temperatures; ozone; volcanic eruptions; solar cycle; ODS; greenhouse gases ID OZONE-DEPLETING SUBSTANCES; CHEMISTRY-CLIMATE MODEL; ATMOSPHERIC-TEMPERATURE; GREENHOUSE GASES; SPECTRAL IRRADIANCE; VOLCANIC-ERUPTIONS; NATURAL INFLUENCES; SOLAR-CYCLE; IN-SITU; TRENDS AB Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone-depleting substances (ODSs) and by the two major volcanic eruptions of El Chichon (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model with prescribed sea surface temperatures. We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely responsible for the step-like behavior of global temperature anomalies, together with volcanically induced ozone depletion and water vapor increases in the post-Pinatubo years. C1 [Aquila, V.] Goddard Earth Sci Technol & Res GESTAR, Columbia, MD 21046 USA. [Aquila, V.; Waugh, D. W.; Stolarski, R. S.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Aquila, V.; Colarco, P. R.] NASA, Lab Atmospher Chem & Dynam Code 614, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Swartz, W. H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Pawson, S.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. [Polvani, L. M.] Columbia Univ, New York, NY USA. RP Aquila, V (reprint author), Goddard Earth Sci Technol & Res GESTAR, Columbia, MD 21046 USA.; Aquila, V (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.; Aquila, V (reprint author), NASA, Lab Atmospher Chem & Dynam Code 614, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM valentina.aquila@jhu.edu RI Pawson, Steven/I-1865-2014; Swartz, William/A-1965-2010; Colarco, Peter/D-8637-2012 OI Pawson, Steven/0000-0003-0200-717X; Swartz, William/0000-0002-9172-7189; Colarco, Peter/0000-0003-3525-1662 FU NASA; U.S. National Science Foundation FX The authors would like to thank D. Seidel, L. Oman, and P. Newman for useful discussions and C. McLandress for providing the AMSU/SSU temperature data. We also thank the three reviewers for their comments. The model simulations were performed at the NASA Center for Climate Simulation. V.A. is funded, in part, by the NASA Model, Analysis, and Prediction program. W.H.S. is funded for this work by a grant from NASA's Living With a Star program. L.M.P. and D.W.W. are funded, in part, by a grant from the U.S. National Science Foundation. The MSU data record is available at http://www.remss.com/measurements/upper-air-temperature. The simulated temperature records are available upon request to the corresponding author. NR 61 TC 2 Z9 2 U1 7 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2016 VL 121 IS 13 BP 8067 EP 8082 DI 10.1002/2015JD023841 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS4DB UT WOS:000380730500034 ER PT J AU Li, Y Barth, MC Chen, G Patton, EG Kim, SW Wisthaler, A Mikoviny, T Fried, A Clark, R Steiner, AL AF Li, Yang Barth, Mary C. Chen, Gao Patton, Edward G. Kim, Si-Wan Wisthaler, Armin Mikoviny, Tomas Fried, Alan Clark, Richard Steiner, Allison L. TI Large-eddy simulation of biogenic VOC chemistry during the DISCOVER-AQ 2011 campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE isoprene; segregation; turbulence; OH reactivity ID VOLATILE ORGANIC-COMPOUNDS; CONVECTIVE BOUNDARY-LAYER; MEXICO-CITY; ATMOSPHERIC CHEMISTRY; PHOTOOXIDATION PRODUCTS; VERTICAL-DISTRIBUTION; ISOPRENE OXIDATION; CHEMICAL-REACTIONS; SHALLOW CUMULUS; REGIONAL MODEL AB Biogenic volatile organic compounds (BVOCs) are oxidized quickly in the atmosphere to form oxygenated VOC (OVOC) and play crucial roles in the formation of ozone and secondary organic aerosols. We use the National Center for Atmospheric Research's large-eddy simulation model and Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2011 flight data to understand the role of boundary layer turbulence on the atmospheric chemistry of key BVOC species and their oxidation products. We simulate three distinct convective environments during the campaign, representing fair weather conditions (case 1: 1 July), a convective event dominated by southwesterly flow (case 2: 11 July), and a polluted event with high temperature and convection (case 3: 29 July). Isoprene segregation is greatest in the lower boundary layer under warm and convective conditions, reaching up to a 10% reduction in the isoprene-OH reaction rate. Under warm and convective conditions, the BVOC lifetimes lengthen due to increased isoprene emission, elevated initial chemical concentrations, and OH competition. Although turbulence-driven segregation has less influence on the OVOC species, convection mixes more OVOC into the upper atmospheric boundary layer (ABL) and increases the total OH reactivity. Production and loss rates of ozone above 2km in all the three cases indicate in situ ozone formation in addition to vertical convective transport of ozone from the surface and aloft, consistent with the increased contribution of OH reactivity from OVOC. Together, these results show that total OH reactivity in the ABL increases under warmer and stronger convective conditions due to enhanced isoprene emission and the OVOC contribution to ozone formation. C1 [Li, Yang; Steiner, Allison L.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Barth, Mary C.; Patton, Edward G.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Chen, Gao] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Kim, Si-Wan] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Kim, Si-Wan] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Wisthaler, Armin] Univ Innsbruck, Inst Ion Phys & Appl Phys, Innsbruck, Austria. [Wisthaler, Armin; Mikoviny, Tomas] Univ Oslo, Dept Chem, Oslo, Norway. [Mikoviny, Tomas] ORAU, Oak Ridge, TN USA. [Fried, Alan] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Clark, Richard] Millersville Univ Pennsylvania, Dept Earth Sci, Millersville, PA USA. RP Li, Y (reprint author), Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM yanglibj@umich.edu RI Manager, CSD Publications/B-2789-2015; Steiner, Allison/F-4942-2011; OI Patton, Edward/0000-0001-5431-9541 FU NASA [NNX13AN76H]; National Science Foundation; NASA FX This research is supported by NASA Earth and Space Science Fellowship NNX13AN76H. The National Center for Atmospheric Research is sponsored by the National Science Foundation. We gratefully acknowledge Kenneth Davis, Chin-Hoh Moeng, and Peter Sullivan for their initiation of the study and the development of the NCAR LES model. DISCOVER-AQ 2011 campaign data are obtained through DISCOVER-AQ doi:10.5067/Aircraft/DISCOVER-AQ/Aerosol-TraceGas. The PTR-MS measurements aboard the NASA P-3B were supported by the Austrian Federal Ministry for Transport, Innovation, and Technology through the Austrian Space Applications Programme of the Austrian Research Promotion Agency. Tomas Mikoviny was supported by an appointment to the NASA Postdoctoral Program at the Langley Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. We gratefully acknowledge Si-Chee Tsay (NASA Goddard Space Flight Center) for providing the NOx measurements and Edwin Gluth (Maryland Department of the Environment) for providing the surface temperature in the Fair Hill site. MERRA IC/BC data are obtained through the Modeling and Assimilation Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl). For data from model runs in this paper, please contact Yang Li (University of Michigan; yanglibj@umich.edu). NR 74 TC 0 Z9 0 U1 8 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2016 VL 121 IS 13 BP 8083 EP 8105 DI 10.1002/2016JD024942 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS4DB UT WOS:000380730500035 ER PT J AU Barnes, EA Parazoo, N Orbe, C Denning, AS AF Barnes, Elizabeth A. Parazoo, Nicholas Orbe, Clara Denning, A. Scott TI Isentropic transport and the seasonal cycle amplitude of CO2 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE carbon dioxide; synoptic transport; isentropic transport; seasonal cycle ID ATMOSPHERE-BIOSPHERE EXCHANGE; COLUMN CARBON-DIOXIDE; EARTH SYSTEM MODELS; TERRESTRIAL BIOSPHERE; NORTHERN ECOSYSTEMS; CLIMATE-CHANGE; PRODUCTIVITY; FOREST; VULNERABILITY; NITROGEN AB Carbon-concentration feedbacks and carbon-climate feedbacks constitute one of the largest sources of uncertainty in future climate. Since the beginning of the modern atmospheric CO2 record, seasonal variations in CO2 have been recognized as a signal of the metabolism of land ecosystems, and quantitative attribution of changes in the seasonal cycle amplitude (SCA) of CO2 to ecosystem processes is critical for understanding and projecting carbon-climate feedbacks far into the 21st Century. Here the impact of surface carbon fluxes on the SCA of CO2 throughout the Northern Hemisphere troposphere is investigated, paying particular attention to isentropic transport across latitudes. The analysis includes both a chemical transport model GOES-Chem and an idealized tracer in a gray-radiation aquaplanet. The results of the study can be summarized by two main conclusions: (1) the SCA of CO2 roughly follows surfaces of constant potential temperature, which can explain the observed increase in SCA with latitude along pressure surfaces and (2) increasing seasonal fluxes in lower latitudes have a larger impact on the SCA of CO2 throughout most of the troposphere compared to increasing seasonal fluxes in higher latitudes. These results provide strong evidence that recently observed changes in the SCA of CO2 at high northern latitudes (poleward of 60 degrees N) are likely driven by changes in midlatitude surface fluxes, rather than changes in Arctic fluxes. C1 [Barnes, Elizabeth A.; Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Parazoo, Nicholas] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Parazoo, Nicholas] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Orbe, Clara] Johns Hopkins Univ, Dept Earth & Planetary Sci, Goddard Earth Sci Technol & Res GESTAR, Baltimore, MD 21218 USA. [Orbe, Clara] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Barnes, EA (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM eabarnes@atmos.colostate.edu RI Barnes, Elizabeth/O-1790-2014 OI Barnes, Elizabeth/0000-0003-4284-9320 FU National Science Foundation [1419818]; NASA's Science Mission Directorate [NNX15AJ09G]; National Aeronautics and Space Administration FX The authors would like to thank three anonymous reviewers for their helpful comments on an earlier version of this manuscript. E.A.B. was supported by the Climate and Large-scale Dynamics Program of the National Science Foundation under grant 1419818. A.S.D. gratefully acknowledges support from NASA's Science Mission Directorate under the Atmospheric Carbon Transport project (NNX15AJ09G). Part of the research in this study was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank C. Koven for providing CLM4.5 CO2 surface flux fields, and the ODIAC fossil fuel CO2 emissions were provided by T. Oda. The model output supporting the conclusions of this article is available from the corresponding author upon request (eabarnes@atmos.colostate.edu). NR 66 TC 1 Z9 1 U1 7 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2016 VL 121 IS 13 BP 8106 EP 8124 DI 10.1002/2016JD025109 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS4DB UT WOS:000380730500036 ER PT J AU Cui, H Xiao, SH Zhou, CM Peng, YB Kaufman, AJ Plummer, RE AF Cui, Huan Xiao, Shuhai Zhou, Chuanming Peng, Yongbo Kaufman, Alan J. Plummer, Rebecca E. TI Phosphogenesis associated with the Shuram Excursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China SO SEDIMENTARY GEOLOGY LA English DT Article DE Phosphogenesis; Sulfate-methane transition zone; Microbial sulfate reduction; Authigenic carbonates; Shuram Excursion; C-S-P-Fe cycles ID PROTEROZOIC CYANOBACTERIAL BLOOMS; FOSSIL PRESERVATION; ATMOSPHERIC OXYGEN; PHOSPHORUS CYCLE; BIOGENIC METHANE; YANGTZE PLATFORM; EARLY EVOLUTION; TRACE FOSSIL; BLACK-SEA; OCEAN AB The Ediacaran Period witnessed one of the largest phosphogenic events in Earth's history. Coincidently, some phosphorite deposits in South China are associated with the largest-known carbon isotope negative excursion (i.e., Shuram Excursion), suggesting an intimate coupling of the biogeochemical carbon and phosphorous cycles. However, the geomicrobiological linkage between these anomalies remain poorly understood. In this study, we investigated the phosphorite samples from the uppermost Doushantuo Formation in South China. Carbon isotope compositions of authigenic calcite cements and nodules in the phosphorites are as low as -34 parts per thousand (VPDB). Petrographic and geochemical investigations indicate that the C-13-depleted carbonates likely formed as the result of microbial sulfate and iron reduction that released phosphorous from iron oxyhydroxide, concentrating phosphorous in pore waters, and thereby promoting phosphate mineralization. The timing of this event appears to coincide with enhanced sulfate delivery to seawater through continental weathering. The basin-scale distribution of Doushantuo phosphorites suggests a redox control on the availability of iron oxyhydroxide and the recycling of pore water phosphorous. Both inner and outer shelf regions were likely characterized by an oxic water column, and were the main loci for phosphogenesis; on the contrary, intra-shelf and slope regions, which are lean in phosphorite, were subjected to euxinic or ferruginous water column conditions. The intimate coupling between Ediacaran phosphogenesis and the Shuram Excursion suggests strong links among seawater redox conditions, C-S-P-Fe cycling, and fossil phosphatization. Increased microbial sulfate reduction driven by enhanced sulfate reservoir in the Ediacaran ocean may have played an essential role on these biogeochemical events. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cui, Huan] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Cui, Huan] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Cui, Huan; Kaufman, Alan J.; Plummer, Rebecca E.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Xiao, Shuhai] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Zhou, Chuanming] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Nanjing 210008, Jiangsu, Peoples R China. [Peng, Yongbo] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA. [Kaufman, Alan J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Cui, H (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.; Cui, H (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. EM Huan.Cui@Wisc.EDU RI Xiao, Shuhai/A-2190-2009; Zhou, Chuanming/E-5313-2010; OI Xiao, Shuhai/0000-0003-4655-2663; Cui, Huan/0000-0003-0705-3423 FU NASA Exobiology [NNX12AR91G, NNX15AL27G]; NSF Sedimentary Geology and Paleontology program [EAR-0844270, EAR-1528553]; Society of Economic Geologists Student Research Grant; Explorers Club Exploration Fund Grant; American Association of Petroleum Geologists; NASA Astrobiology Institute in the University of Wisconsin Madison FX We thank Mike Evans and Zhengting Wang for their assistance in the UMD Paleoclimate Co-Laboratory, and Timothy Rose for the guidance on using the Cathodoluminescence Microscope and Spectrometer in the Department of Mineral Sciences, Smithsonian Institution, Washington, DC. We also thank Drew Muscente, Xiao-Ming Liu and Zhenbing She for helpful comments. This research is supported by grants from the NASA Exobiology (NNX12AR91G to AJK and NNX15AL27G to SX), the NSF Sedimentary Geology and Paleontology program (EAR-0844270 to AJK and EAR-1528553 to SX), the Society of Economic Geologists Student Research Grant (to HC), the Explorers Club Exploration Fund Grant (to HC), and the American Association of Petroleum Geologists Grants-In-Aid Program (to HC). HC also thanks the NASA Astrobiology Institute in the University of Wisconsin Madison for support. The manuscript benefits from constructive reviews by James Schiffbauer and an anonymous reviewer. NR 121 TC 4 Z9 4 U1 13 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0037-0738 EI 1879-0968 J9 SEDIMENT GEOL JI Sediment. Geol. PD JUL 15 PY 2016 VL 341 BP 134 EP 146 DI 10.1016/j.sedgeo.2016.05.008 PG 13 WC Geology SC Geology GA DT5RL UT WOS:000381540200009 ER PT J AU Han, JW Meyyappan, M AF Han, Jin-Woo Meyyappan, M. TI A Built-In Temperature Sensor in an Integrated Microheater SO IEEE SENSORS JOURNAL LA English DT Article DE Temperature sensing; built-in mechanism; microheater; Joule heating ID GAS SENSOR; ARRAY; FILM AB Chip-based microheaters have been widely used in many applications, including gas sensors, flow meters, mass sensors, and polymerase chain reaction chambers, where accurate monitoring of temperature is critical. The temperature measurement is conventionally done with the aid of a separate sensor, which may add to the cost and inaccuracy. In this paper, a built-in temperature sensing method is provided for the microheaters. The resistor-based microheater relies on Joule heating mechanism and its resistance is dependent upon its own body temperature, implying that the microheater has an inherent temperature sensing mechanism. It is found that an intermittent temperature sampling in the middle of the heating cycle does not disturb the body temperature if the temperature sampling voltage and pulsewidth are sufficiently low and short, respectively. The built-in temperature sensing is attributed to the electrical time constant being few orders of magnitude smaller than the thermal time constant. The temperature estimation results using the built-in method show excellent agreement with the benchmark measurements from an infrared pyrometer. C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Han, JW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov; m.meyyappan@nasa.gov NR 16 TC 1 Z9 1 U1 12 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD JUL 15 PY 2016 VL 16 IS 14 BP 5543 EP 5547 DI 10.1109/JSEN.2016.2569445 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA DR0MM UT WOS:000379601600007 ER PT J AU Sobel, AH Camargo, SJ Hall, TM Lee, CY Tippett, MK Wing, AA AF Sobel, Adam H. Camargo, Suzana J. Hall, Timothy M. Lee, Chia-Ying Tippett, Michael K. Wing, Allison A. TI Human influence on tropical cyclone intensity SO SCIENCE LA English DT Review ID GENESIS POTENTIAL INDEX; SEA-SURFACE TEMPERATURE; GLOBAL CLIMATE-CHANGE; HURRICANE ACTIVITY; MAXIMUM INTENSITY; REANALYSIS DATA; FUTURE CHANGES; CMIP5 MODELS; VARIABILITY; TRENDS AB Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. C1 [Sobel, Adam H.; Tippett, Michael K.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Sobel, Adam H.; Camargo, Suzana J.; Wing, Allison A.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Hall, Timothy M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Lee, Chia-Ying] Columbia Univ, Int Res Inst Climate & Soc, Palisades, NY 10964 USA. [Tippett, Michael K.] King Abdulaziz Univ, Dept Meteorol, Ctr Excellence Climate Res, Jeddah, Saudi Arabia. RP Sobel, AH (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Sobel, AH (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM ahs129@columbia.edu RI Camargo, Suzana/C-6106-2009; Sobel, Adam/K-4014-2015; Tippett, Michael/C-6286-2011; OI Camargo, Suzana/0000-0002-0802-5160; Sobel, Adam/0000-0003-3602-0567; Tippett, Michael/0000-0002-7790-5364; Wing, Allison/0000-0003-2194-8709 FU NSF [AGS-1143959]; Office of Naval Research [N00014-16-1-2073]; NSF Atmospheric and Geospace Sciences postdoctoral research fellowship [1433251] FX A.H.S. thanks J. Kossin, G. Vecchi, and K. Emanuel for helpful discussions. This work was supported by NSF grant AGS-1143959 and Office of Naval Research grant N00014-16-1-2073. A.A.W. is supported by a NSF Atmospheric and Geospace Sciences postdoctoral research fellowship under award no. 1433251. NR 83 TC 4 Z9 4 U1 41 U2 73 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUL 15 PY 2016 VL 353 IS 6296 BP 242 EP 246 DI 10.1126/science.aaf6574 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR0EM UT WOS:000379580800038 PM 27418502 ER PT J AU Kulkarni, C Peteet, D Boger, R Heusser, L AF Kulkarni, Charuta Peteet, Dorothy Boger, Rebecca Heusser, Linda TI Exploring the role of humans and climate over the Balkan landscape: 500 years of vegetational history of Serbia SO QUATERNARY SCIENCE REVIEWS LA English DT Article DE Little Ice Age; Paleoecology; Human-environmental interactions; Serbia; Central Balkans ID TREE-RING WIDTHS; PALYNOLOGICAL RICHNESS; LAND-USE; FLORISTIC DIVERSITY; LAST MILLENNIUM; PLANT DIVERSITY; POLLEN ANALYSIS; EASTERN EUROPE; FOSSIL POLLEN; HUMAN IMPACT AB We present the first, well-dated, high-resolution record of vegetation and landscape change from Serbia, which spans the past 500 years. Biological proxies (pollen, spores, and charcoal), geochemical analysis through X-ray Fluorescence (XRF), and a detailed chronology based on AMS C-14 dating from a western Serbian sinkhole core suggest complex woodland-grassland dynamics and strong erosional signals throughout the Little Ice Age (LIA). An open landscape with prominent steppe vegetation (e.g. Poaceae, Chenopodiaceae) and minor woodland exists during 1540-1720 CE (early LIA), while the late LIA (1720-1850 CE) in this record shows higher tree percentages possibly due to increased moisture availability. The post LIA Era (1850-2012 CE) brings a disturbed type of vegetation with the presence of weedy genera and an increase in regional woodland. Anthropogenic indicators for agricultural, pastoral and fire practices in the region together attest to the dominant role of humans in shaping this Balkan landscape throughout the interval. The changing nature of human interference, potentially as a response to underlying climatic transitions, is evident through large-scale soil depletion resulting from grazing and land clearance during the early LIA and stabilization of arable lands during the late and post-LIA eras. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kulkarni, Charuta; Boger, Rebecca] CUNY, Grad Ctr, Dept Earth & Environm Sci, 365 Fifth Ave, New York, NY 10016 USA. [Peteet, Dorothy] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Peteet, Dorothy; Heusser, Linda] Lamont Doherty Earth Observ, 61 Rte 9W, Palisades, NY 10964 USA. [Boger, Rebecca] CUNY Brooklyn Coll, Dept Earth & Environm Sci, 2900 Bedford Ave, Brooklyn, NY 11210 USA. RP Kulkarni, C (reprint author), CUNY, Grad Ctr, Dept Earth & Environm Sci, 365 Fifth Ave, New York, NY 10016 USA. EM ckulkarni@gradcenter.cuny.edu OI Kulkarni, Charuta/0000-0002-4952-7765 FU PSC CUNY [66575-00-44] FX This research is funded by PSC CUNY Grant No. 66575-00-44. The authors are grateful to Dr. Branko Sikoparia and Dr. Predrag Radisic from the Laboratory of Palynology, University of Novi Sad, Serbia for providing necessary reference pollen slides. We also thank Mr. Marko Rucando and Ms. Tamara Dukic for their help in collecting detailed information on local vegetation. Special thanks to Dr. Jonathan Nichols for his insights into the age-depth modelling in this study. We are also grateful to the two anonymous reviewers and the editor, Dr. Jose S Carrion for constructive suggestions on earlier versions of the manuscript. This is LDEO contribution no. 8017. NR 119 TC 0 Z9 0 U1 10 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD JUL 15 PY 2016 VL 144 BP 83 EP 94 DI 10.1016/j.quascirev.2016.05.021 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA DQ3LW UT WOS:000379104800007 ER PT J AU Gupta, RK Pandya, R Sieffert, T Meyyappan, M Koehne, JE AF Gupta, Rakesh K. Pandya, Ruchi Sieffert, Theodore Meyyappan, M. Koehne, Jessica E. TI Multiplexed electrochemical immunosensor for label-free detection of cardiac markers using a carbon nanofiber array chip SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Biosensors; Vertically aligned carbon nanofibers; Cardiac proteins; Nanoelectrode array; Differential pulse voltammetry; Electrochemical multianalyte immunosensor ID C-REACTIVE PROTEIN; ACUTE MYOCARDIAL-INFARCTION; ACUTE CORONARY SYNDROMES; CREATINE-KINASE-MB; TROPONIN-I; NANOELECTRODE ARRAYS; RISK STRATIFICATION; NATRIURETIC PEPTIDE; HUMAN SERUM; BIOMARKERS AB We present an electrochemical multianalyte or multiplexed immunosensor for simultaneous label free detection of cardiac markers panel, comprising of C-reactive protein, cardiac troponin-I and myoglobin. The multi electrode biosensor chip contains nine identical but electrically isolated microelectrodes arranged in a 3 x 3 array configuration. Each electrode contains carbon nanofiber nanoelectrodes grown vertically using plasma enhanced chemical vapor deposition. A hydrophobic photoresist layer, lithographically etched on the chip, exposes the electrodes and helps to selectively immobilize the antibody probes for the three target cardiac biomarkers using carbodiimide chemistry. The real-time label free detection of the three cardiac markers from a mixture is demonstrated with high sensitivity and selectivity. Detection in complex protein mixtures in human blood serum does not show any false positives from non-specific protein adsorption. The results show that the present sensor can serve as a miniaturized, low cost lab-on-a-chip system for the detection of various biomarkers in healthcare, environmental monitoring and security applications. Published by Elsevier B.V. C1 [Gupta, Rakesh K.; Pandya, Ruchi; Sieffert, Theodore; Meyyappan, M.; Koehne, Jessica E.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Gupta, Rakesh K.] Univ Manchester, Manchester M13 9PL, Lancs, England. RP Koehne, JE (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. EM Jessica.e.koehne@nasa.gov FU J&K Council for Science and Technology, Department of Higher Education, JK, India; University Grants Commission (UGC), New-Delhi, India FX JK acknowledges a Presidential Early Career Award. RKG acknowledges the financial support from the J&K Council for Science and Technology, Department of Higher Education, J&K, India and University Grants Commission (UGC), New-Delhi, India. TS was a graduate student intern from the Purdue University, School of Aeronautics and Astronautics and RP was a high school student intern from Lynbrook High School, San Jose, CA. NR 48 TC 0 Z9 0 U1 21 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 EI 1873-2569 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD JUL 15 PY 2016 VL 773 BP 53 EP 62 DI 10.1016/j.jelechem.2016.04.034 PG 10 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA DP4JY UT WOS:000378463400008 ER PT J AU Schmitt, MP Harder, BJ Wolfe, DE AF Schmitt, Michael P. Harder, Bryan J. Wolfe, Douglas E. TI Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition (PS-PVD) thermal barrier coatings SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Thermal barrier coatings; Erosion; Low k; Rare earth; PS-PVD; TBC ID YTTRIA-STABILIZED ZIRCONIA; MECHANICAL-PROPERTIES; TBC MORPHOLOGY; CONDUCTIVITY; ARCHITECTURES; INFILTRATION; DEGRADATION; SYSTEMS AB New thermal barrier coating (TBC) materials and microstructures are under development to increase gas turbine operating temperatures beyond the similar to 1200 degrees C threshold of standard 7 wt% yttria stabilized zirconia (7YSZ). To deposit these advanced coatings, a new thermal spray deposition technique is used: Plasma Spray - Physical Vapor Deposition (PS-PVD). PS-PVD is capable of depositing from the vapor phase to yield strain tolerant columnar microstructures similar to Electron Beam - Physical Vapor Deposition (EB-PVD) or, alternatively, the traditional splat-like lamellar microstructure common to Air Plasma Spray (APS). This study investigates the process-structure relationships and resulting erosion response for plasma gas flow, amperage, and feed rate. It was found that in the selected design space, porosity and surface roughness vary from similar to 12-26% and similar to 5-10 mu m, respectively. Erosion behavior is discussed and the mechanism is identified to be heavily dependent upon the intercolumnar spacing. The lowest erosion rates are similar to EB-PVD, while the highest erosion rates were closer to APS. This is attributed to the hybrid nature of the PS-PVD process and provides an opportunity to tailor coatings with a wide range of properties, and thus performance. Published by Elsevier B.V. C1 [Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. [Schmitt, Michael P.; Harder, Bryan J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Wolfe, Douglas E.] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA. RP Harder, BJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM bryan.harder@nasa.gov FU NASA Graduate Student Researchers Program (GSRP) [NNX11AL02H]; Applied Resarch Lab (ARL)-Walker Fellowship program FX The authors would like to thank Dr. Rick Rogers and Dr. Brian Good for their thoughtful discussion. This work was supported under the NASA Graduate Student Researchers Program (GSRP) award No. NNX11AL02H and the Applied Resarch Lab (ARL)-Walker Fellowship program. The opinions and views expressed are those of the authors and do not necessarily reflect NASA or the US Navy. NR 35 TC 3 Z9 3 U1 18 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUL 15 PY 2016 VL 297 BP 11 EP 18 DI 10.1016/j.surfcoat.2016.04.029 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DO5JS UT WOS:000377820000002 ER PT J AU Keller, JW Gaddis, L Petro, NE AF Keller, John W. Gaddis, Lisa Petro, Noah E. TI Untitled SO ICARUS LA English DT Editorial Material C1 [Keller, John W.; Petro, Noah E.] NASA, Goddard Space Flight Ctr, Washington, DC 20010 USA. [Gaddis, Lisa] USGS, Astrogeol Sci Ctr, San Francisco, CA USA. RP Keller, JW (reprint author), NASA, Goddard Space Flight Ctr, Washington, DC 20010 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 1 EP 1 DI 10.1016/j.icarus.2016.04.016 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900001 ER PT J AU Keller, JW Petro, NE Vondrak, RR AF Keller, J. W. Petro, N. E. Vondrak, R. R. CA LRO Team TI The Lunar Reconnaissance Orbiter Mission - Six years of science and exploration at the Moon SO ICARUS LA English DT Article DE Moon; Moon, surface; Geological processes ID ALTIMETER LOLA DATA; LASER ALTIMETER; SOUTH-POLE; NEUTRON DETECTOR; RADIOMETER OBSERVATIONS; RADIATION ENVIRONMENT; COHERENT BACKSCATTER; COMPTON-BELKOVICH; SHACKLETON CRATER; SILICIC VOLCANISM AB Since entering lunar orbit on June 23, 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. These measurements provide new information regarding the physical properties of the lunar surface, the lunar environment, and the location of volatiles and other resources. Scientific interpretation of these observations improves our understanding of the geologic history of the Moon, its current state, and what its history can tell us about the evolution of the Solar System. Scientific results from LRO observations overturned existing paradigms and deepened our appreciation of the complex nature of our nearest neighbor. This paper summarizes the capabilities, measurements, and some of the science and exploration results of the first six years of the LRO mission. Published by Elsevier Inc. C1 [Keller, J. W.; Petro, N. E.; Vondrak, R. R.; LRO Team] NASA, Goddard Space Flight Ctr, Code 691,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Keller, JW (reprint author), NASA, Goddard Space Flight Ctr, Code 691,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM John.W.Keller@nasa.gov NR 161 TC 3 Z9 3 U1 4 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 2 EP 24 DI 10.1016/j.icarus.2015.11.024 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900002 ER PT J AU Schwadron, NA Wilson, JK Looper, MD Jordan, AP Spence, HE Blake, JB Case, AW Iwata, Y Kasper, JC Farrell, WM Lawrence, DJ Livadiotis, G Mazur, J Petro, N Pieters, C Robinson, MS Smith, S Townsend, LW Zeitlin, C AF Schwadron, N. A. Wilson, J. K. Looper, M. D. Jordan, A. P. Spence, H. E. Blake, J. B. Case, A. W. Iwata, Y. Kasper, J. C. Farrell, W. M. Lawrence, D. J. Livadiotis, G. Mazur, J. Petro, N. Pieters, C. Robinson, M. S. Smith, S. Townsend, L. W. Zeitlin, C. TI Signatures of volatiles in the lunar proton albedo SO ICARUS LA English DT Article DE Moon, surface; Cosmic rays; Ices; Moon ID PROSPECTOR GAMMA-RAY; NEUTRON SPECTROMETERS; SPATIAL-DISTRIBUTION; EPITHERMAL NEUTRONS; WATER ICE; MOON; SURFACE; RADIATION; POLES AB We find evidence for hydrated material in the lunar regolith using "albedo protons" measured with the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and are inconsistent with the latitude trends of heavy element enrichment (e.g., enhanced Fe abundance). The latitudinal distribution of albedo protons anti-correlates with that of epithermal or high energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in hydrated regolith that is more prevalent near the poles. The CRaTER instrument may thus provide important measurements of volatile distributions within regolith at the Moon and potentially, with similar sensors and observations, at other bodies within the Solar System. (C) 2016 Published by Elsevier Inc. C1 [Schwadron, N. A.; Wilson, J. K.; Jordan, A. P.; Spence, H. E.; Smith, S.] Univ New Hampshire, Ctr Space Sci, Morse Hall,8 Coll Rd, Durham, NH 03824 USA. [Schwadron, N. A.; Wilson, J. K.; Jordan, A. P.; Spence, H. E.; Smith, S.] Univ New Hampshire, Inst Earth Oceans & Space, Morse Hall,8 Coll Rd, Durham, NH 03824 USA. [Looper, M. D.; Blake, J. B.; Mazur, J.] Aerosp Corp, El Segundo, CA 90245 USA. [Case, A. W.; Kasper, J. C.] Harvard Smithsonian Ctr Astrophys, Div High Energy Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Kasper, J. C.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Iwata, Y.] NIRS, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan. [Lawrence, D. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Farrell, W. M.; Petro, N.] Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Pieters, C.] Brown Univ, Planetary Geosciences Grp, Dept Earth Environm & Planetary Sci, 324 Brook St, Providence, RI 02912 USA. [Robinson, M. S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Townsend, L. W.] Univ Tennessee, Knoxville, TN 37996 USA. [Livadiotis, G.; Zeitlin, C.] Univ New Hampshire, SW Res Inst, Earth Oceans & Space Sci, Durham, NH 03824 USA. RP Schwadron, NA (reprint author), Univ New Hampshire, Ctr Space Sci, Morse Hall,8 Coll Rd, Durham, NH 03824 USA.; Schwadron, NA (reprint author), Univ New Hampshire, Inst Earth Oceans & Space, Morse Hall,8 Coll Rd, Durham, NH 03824 USA. RI Farrell, William/I-4865-2013 FU LRO program [NNG11PA03C]; SSERVI; DREAM2 (NASA) [NNX14AG13A] FX We thank all those who made CRaTER possible. CRaTER is primarily funded by the LRO program (contract NNG11PA03C). This work was also funded by SSERVI and DREAM2 (NASA Grant NNX14AG13A). CRaTER data are available at http://crater-web.sr.unh.edu. NR 42 TC 0 Z9 0 U1 6 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 25 EP 35 DI 10.1016/j.icarus.2015.12.003 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900003 ER PT J AU Hurley, DM Cook, JC Benna, M Halekas, JS Feldman, PD Retherford, KD Hodges, RR Grava, C Mahaffy, P Gladstone, GR Greathouse, T Kaufmann, DE Elphic, RC Stern, SA AF Hurley, Dana M. Cook, Jason C. Benna, Mehdi Halekas, Jasper S. Feldman, Paul D. Retherford, Kurt D. Hodges, R. Richard Grava, Cesare Mahaffy, Paul Gladstone, G. Randall Greathouse, Thomas Kaufmann, David E. Elphic, Richard C. Stern, S. Alan TI Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS SO ICARUS LA English DT Article DE Moon; Atmospheres, evolution; Spectroscopy; Solar wind ID SOLAR-WIND; MERCURY; MOON; INSTRUMENT; HYDROGEN; MISSION; ARGON; LAMP AB Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 +/- 5% of the helium to the lunar exosphere. The remaining 36 +/- 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 +/- 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate. (C) 2015 Elsevier Inc. All rights reserved. C1 [Hurley, Dana M.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Cook, Jason C.; Stern, S. Alan] SW Res Inst, Boulder, CO 80302 USA. [Benna, Mehdi; Mahaffy, Paul] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Halekas, Jasper S.] Univ Iowa, Iowa City, IA 52242 USA. [Feldman, Paul D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Retherford, Kurt D.; Grava, Cesare; Gladstone, G. Randall; Greathouse, Thomas] SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. [Hodges, R. Richard] Univ Colorado, Boulder, CO 80303 USA. [Elphic, Richard C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hurley, DM (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Hurley, Dana/F-4488-2015; OI Hurley, Dana/0000-0003-1052-1494; Halekas, Jasper/0000-0001-5258-6128 FU NASA through the LADEE mission; NASA through LADEE Guest Investigator Program [NNX13AO70G]; NASA through LRO LAMP mission [NNG05EC87C]; NASA through ARTEMIS mission FX We acknowledge NASA for support through the LADEE mission, LADEE Guest Investigator Program (NNX13AO70G), LRO LAMP mission (NNG05EC87C), and ARTEMIS mission. We are grateful to the many operations folks involved in all three of these mission teams that helped facilitate our campaigns to coordinate investigations during the LADEE era. NR 29 TC 0 Z9 0 U1 6 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 45 EP 52 DI 10.1016/j.icarus.2015.09.011 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900005 ER PT J AU Barker, MK Sun, X Mazarico, E Neumann, GA Zuber, MT Smith, DE AF Barker, M. K. Sun, X. Mazarico, E. Neumann, G. A. Zuber, M. T. Smith, D. E. TI Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter passive and active radiometry SO ICARUS LA English DT Article DE Photometry; Moon; surface; Regoliths ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; PHOTOMETRIC PROPERTIES; MAGNETIC-ANOMALIES; CLEMENTINE DATA; ONE MOON; SURFACE; REGOLITH; MISSION; ALBEDO; MODEL AB We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be similar to 5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with GMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at 300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (GE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and GMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and GMAT, suggesting the visible-to-near-infrared spectrum and phase function respond differently to the unusual regolith evolution and properties at this location. (C) 2016 Elsevier Inc. All rights reserved. C1 [Barker, M. K.] Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA. [Sun, X.; Mazarico, E.; Neumann, G. A.] Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Zuber, M. T.; Smith, D. E.] MIT, Deptartment Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Barker, MK (reprint author), Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA. EM michael.k.barker@nasa.gov RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X NR 74 TC 1 Z9 1 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 96 EP 113 DI 10.1016/j.icarus.2016.02.008 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900010 ER PT J AU Baker, DMH Head, JW Collins, GS Potter, RWK AF Baker, David M. H. Head, James W. Collins, Gareth S. Potter, Ross W. K. TI The formation of peak-ring basins: Working hypotheses and path forward in using observations to constrain models of impact-basin formation SO ICARUS LA English DT Article DE Moon; Moon, surface; Impact processes; Cratering ID COMPLEX CRATER FORMATION; LUNAR MASCON BASINS; SCHRODINGER-BASIN; ACOUSTIC FLUIDIZATION; CHICXULUB CRATER; MOON; ORIGIN; MELT; CRUST; SIMULATIONS AB Impact basins provide windows into the crustal structure and stratigraphy of planetary bodies; however, interpreting the stratigraphic origin of basin materials requires an understanding of the processes controlling basin formation and morphology. Peak-ring basins (exhibiting a rim crest and single interior ring of peaks) provide important insight into the basin-formation process, as they are transitional between complex craters with central peaks and larger multi-ring basins. New image and altimetry data from the Lunar Reconnaissance Orbiter as well as a suite of remote sensing datasets have permitted a reassessment of the origin of lunar peak-ring basins. We synthesize morphometric, spectroscopic, and gravity observations of lunar peak-ring basins and describe two working hypotheses for the formation of peak rings that involve interactions between inward collapsing walls of the transient cavity and large central uplifts of the crust and mantle. Major facets of our observations are then compared and discussed in the context of numerical simulations of peak-ring basin formation in order to plot a course for future model refinement and development. (C) 2015 Elsevier Inc. All rights reserved. C1 [Baker, David M. H.; Head, James W.; Potter, Ross W. K.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Baker, David M. H.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 698, Greenbelt, MD 20771 USA. [Collins, Gareth S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. RP Baker, DMH (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 698, Greenbelt, MD 20771 USA. EM david.m.hollibaughbaker@nasa.gov OI Collins, Gareth/0000-0002-6087-6149 FU NASA Lunar Reconnaissance Orbiter (LRO) Mission, Lunar Orbiter Laser Altimeter (LOLA) Experiment Team [NNX11AK29G, NNX13AO77G]; NASA Gravity Recovery and Interior Laboratory (GRAIL) Mission Guest Scientist Program [NNX12AL07G]; NASA Solar System Exploration Research Virtual Institute (SSERVI) grant for Evolution and Environment of Exploration Destinations [NNA14AB01A]; Science and Facilities Research Council (STFC) [ST/J001260/1] FX Thank you to an anonymous reviewer and to Mark Cintala for their comprehensive reviews that greatly improved the quality of the manuscript. We gratefully acknowledge financial support from the NASA Lunar Reconnaissance Orbiter (LRO) Mission, Lunar Orbiter Laser Altimeter (LOLA) Experiment Team (Grants NNX11AK29G and NNX13AO77G), the NASA Gravity Recovery and Interior Laboratory (GRAIL) Mission Guest Scientist Program (Grant NNX12AL07G) and the NASA Solar System Exploration Research Virtual Institute (SSERVI) grant for Evolution and Environment of Exploration Destinations under cooperative agreement number NNA14AB01A at Brown University. We gratefully acknowledge the developers of the iSALE shock physics code (www.isale-code.de). GSC was funded by Science and Facilities Research Council (STFC) grant ST/J001260/1. NR 116 TC 5 Z9 5 U1 6 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 146 EP 163 DI 10.1016/j.icarus.2015.11.033 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900014 ER PT J AU Ghent, RR Carter, LM Bandfield, JL Udovicic, CJT Campbell, BA AF Ghent, R. R. Carter, L. M. Bandfield, J. L. Udovicic, C. J. Tai Campbell, B. A. TI Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations SO ICARUS LA English DT Article DE Moon; Regoliths; Radar observations; Infrared observations; Cratering ID IMPACT CRATERS; 70-CM WAVELENGTH; MOON; AGES; CONSTRAINTS; REGOLITH; DEPOSITS; BASIN; MARS AB We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale. (C) 2015 Elsevier Inc. All rights reserved. C1 [Ghent, R. R.; Udovicic, C. J. Tai] Univ Toronto, Dept Earth Sci, 22 Russell St, Toronto, ON M5S 3B1, Canada. [Ghent, R. R.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Carter, L. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bandfield, J. L.] Space Sci Inst, Boulder, CO 80301 USA. [Campbell, B. A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. RP Ghent, RR (reprint author), Univ Toronto, Dept Earth Sci, 22 Russell St, Toronto, ON M5S 3B1, Canada. RI Carter, Lynn/D-2937-2012 NR 53 TC 2 Z9 2 U1 5 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 182 EP 195 DI 10.1016/j.icarus.2015.12.014 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900016 ER PT J AU Greenhagen, BT Neish, CD Williams, JP Cahill, JTS Ghent, RR Hayne, PO Lawrence, SJ Petro, NE Bandfield, JL AF Greenhagen, Benjamin T. Neish, Catherine D. Williams, Jean-Pierre Cahill, Joshua T. S. Ghent, Rebecca R. Hayne, Paul O. Lawrence, Samuel J. Petro, Noah E. Bandfield, Joshua L. TI Origin of the anomalously rocky appearance of Tsiolkovskiy crater SO ICARUS LA English DT Article DE Moon, surface; Cratering; Impact processes; Geological processes; Regoliths ID LUNAR FARSIDE; GIORDANO BRUNO; IMPACT MELT; AGE; FLOWS; MOON; MARE AB Rock abundance maps derived from the Diviner Lunar Radiometer instrument on the Lunar Reconnaissance Orbiter (LRO) show Tsiolkovskiy crater to have high surface rock abundance and relatively low regolith thickness. The location of the enhanced rock abundance to the southeast of the crater is consistent with a massive, well-preserved impact melt deposit apparent in LRO Miniature Radio Frequency instrument circular polarization ratio data. A new model crater age using LRO Lunar Reconnaissance Orbiter Camera imagery suggests that while it originated in the Late Imbrian, Tsiolkovskiy may be the youngest lunar crater of its size (similar to 180 km diameter). Together these data show that Tsiolkovskiy has a unique surface rock population and regolith properties for a crater of its size and age. Explanation of these observations requires mechanisms that produce more large blocks, preserve boulders and large blocks from degradation to regolith, and/or uncover buried rocks. These processes have important implications for formation of regolith on the Moon. (C) 2016 Elsevier Inc. All rights reserved. C1 [Greenhagen, Benjamin T.; Cahill, Joshua T. S.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Neish, Catherine D.] Univ Western Ontario, Dept Earth Sci, Biol & Geol Sci Bldg,Room 1026 1151 Richmond St N, London, ON N6A 5B7, Canada. [Williams, Jean-Pierre] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, 595 Charles Young Dr East,Box 951567, Los Angeles, CA 90095 USA. [Ghent, Rebecca R.] Ctr Earth Sci, Dept Earth Sci, 22 Russell St, Toronto, ON M5S 3B1, Canada. [Ghent, Rebecca R.] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Hayne, Paul O.] CALTECH, Jet Prop Lab, ASU, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Lawrence, Samuel J.] Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA. [Petro, Noah E.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Bandfield, Joshua L.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. RP Greenhagen, BT (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM benjamin.greenhagen@jhuapl.edu RI Williams, Jean-Pierre/C-3531-2009 OI Williams, Jean-Pierre/0000-0003-4163-2760 FU LRO project; Diviner science investigation; NASA FX We thank the LRO, Diviner, Mini-RF, and LROC operations teams for their effort in returning the data presented here. We also wish to thank the Diviner and Mini-RF science teams for helpful discussion in the early stages of this work. This work was supported by the LRO project and the Diviner science investigation, under contract with NASA. NR 39 TC 1 Z9 1 U1 4 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 237 EP 247 DI 10.1016/j.icarus.2016.02.041 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900021 ER PT J AU Ashley, JW Robinson, MS Stopar, JD Glotch, TD Hawke, BR van der Bogert, CH Hiesinger, H Lawrence, SJ Jolliff, BL Greenhagen, BT Giguere, TA Paige, DA AF Ashley, J. W. Robinson, M. S. Stopar, J. D. Glotch, T. D. Hawke, B. Ray van der Bogert, C. H. Hiesinger, H. Lawrence, S. J. Jolliff, B. L. Greenhagen, B. T. Giguere, T. A. Paige, D. A. TI The Lassell massif-A silicic lunar volcano SO ICARUS LA English DT Article DE Moon, surface; Moon, interior; Volcanism; Infrared observations; Image processing ID COMPOSITIONAL ANALYSES; PYROCLASTIC DEPOSITS; MAIRAN DOMES; MARE BASALTS; MARIUS HILLS; RED SPOTS; MOON; SURFACE; GRUITHUISEN; EMPLACEMENT AB Lunar surface volcanic processes are dominated by mare-producing basaltic extrusions. However, spectral anomalies, landform morphology, and granitic or rhyolitic components found in the Apollo sample suites indicate limited occurrences of non-mare, geochemically evolved (Si-enriched) volcanic deposits. Recent thermal infrared spectroscopy, high-resolution imagery, and topographic data from the Lunar Reconnaissance Orbiter (LRO) show that most of the historic "red spots" and other, less well-known locations on the Moon, are indeed silica rich (relative to basalt). Here we present a geologic investigation of the Lassell massif (14.65 degrees S, 350.96 degrees E) near the center of Alphonsus A basin in Mare Nubium, where high silica thermal emission signals correspond with morphological indications of viscous (possibly also explosive) extrusion, and small-scale, low-reflectance deposits occur in a variety of stratigraphic relationships. Multiple layers with stair-step lobate forms suggest different eruption events or pulsing within a single eruption. Absolute model ages derived from crater size-frequency distributions (CSFDs) indicate that the northern parts of the massif were emplaced at similar to 4 Ga, before the surrounding mare. However, CSFDs also indicate the possibility of more recent resurfacing events. The complex resurfacing history might be explained by either continuous resurfacing due to mass wasting and/or the emplacement of pyroclastics. Relatively low-reflectance deposits are visible at meter-scale resolutions (below detection limits for compositional analysis) at multiple locations across the massif, suggestive of pyroclastic activity, a quenched flow surface, or late-stage mafic materials. Compositional evidence from 7-band UV/VIS spectral data at the kilometer-scale and morphologic evidence for possible caldera collapse and/or explosive venting support the interpretation of a complex volcanic history for the Lassell massif. (C) 2016 Elsevier Inc. All rights reserved. C1 [Ashley, J. W.; Robinson, M. S.; Stopar, J. D.; Lawrence, S. J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA. [Ashley, J. W.] CALTECH, Jet Prop Lab, Mail Stop 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Glotch, T. D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Hawke, B. Ray; Giguere, T. A.] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [van der Bogert, C. H.; Hiesinger, H.] Univ Munster, Inst Planetol, D-48149 Munster, Germany. [Jolliff, B. L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63105 USA. [Greenhagen, B. T.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Paige, D. A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Ashley, JW (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM james.w.ashley@jpl.nasa.gov OI Ashley, James/0000-0003-0723-0987; Stopar, Julie/0000-0003-1578-3688 FU Lunar Reconnaissance Orbiter Camera (LROC) project; German Space Agency (DLR) FX We would like to thank Dr. Debra Hurwitz and Dr. Briony Horgan, who provided insightful reviews. This work was supported by the Lunar Reconnaissance Orbiter Camera (LROC) project. The authors gratefully acknowledge the contributions of the Lunar Reconnaissance Orbiter and LROC Teams. H. Hiesinger and C.H. van der Bogert were funded by the German Space Agency (DLR). The final draft of this paper is submitted in fond memory of co-author Dr. Bernard Ray Hawke. NR 70 TC 2 Z9 2 U1 3 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 248 EP 261 DI 10.1016/j.icarus.2015.12.036 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900022 ER PT J AU Bennett, KA Horgan, BHN Gaddis, LR Greenhagen, BT Allen, CC Hayne, PO Bell, JF Paige, DA AF Bennett, Kristen A. Horgan, Briony H. N. Gaddis, Lisa R. Greenhagen, Benjamin T. Allen, Carlton C. Hayne, Paul O. Bell, James F., III Paige, David A. TI Complex explosive volcanic activity on the Moon within Oppenheimer crater SO ICARUS LA English DT Article DE Volcanism; Spectroscopy; Infrared observations; Mineralogy; Moon; Moon, surface ID LUNAR PYROCLASTIC DEPOSITS; NEAR-INFRARED SPECTRA; MINERALOGY MAPPER M-3; COMPOSITIONAL ANALYSES; SURFACE LAYER; GLASS-BEADS; IDENTIFICATION; CLEMENTINE; THICKNESS; MIXTURES AB Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire fountaining eruption, and in some cases may have included an effusive component. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought. (C) 2016 Elsevier Inc. All rights reserved. C1 [Bennett, Kristen A.; Bell, James F., III] Arizona State Univ, Sch Earth & Space Explorat, ISTB4 Room 795,781 Terrace Mall, Tempe, AZ 85287 USA. [Horgan, Briony H. N.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Gaddis, Lisa R.] US Geol Survey, Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. [Greenhagen, Benjamin T.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, 2101 NASA Rd 1, Houston, TX 77058 USA. [Hayne, Paul O.] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Paige, David A.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, 595 Charles E Young Dr E, Los Angeles, CA 90095 USA. RP Bennett, KA (reprint author), Arizona State Univ, Sch Earth & Space Explorat, ISTB4 Room 795,781 Terrace Mall, Tempe, AZ 85287 USA. EM kristen.a.bennett@asu.edu NR 63 TC 0 Z9 0 U1 3 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 296 EP 314 DI 10.1016/j.icarus.2016.02.007 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900025 ER PT J AU Lemelin, M Lucey, PG Neumann, GA Mazarico, EM Barker, MK Kakazu, A Trang, D Smith, DE Zuber, MT AF Lemelin, M. Lucey, P. G. Neumann, G. A. Mazarico, E. M. Barker, M. K. Kakazu, A. Trang, D. Smith, D. E. Zuber, M. T. TI Improved calibration of reflectance data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and implications for space weathering SO ICARUS LA English DT Article DE Moon; Moon, surface; Image processing; Infrared observations; Solar wind ID KAGUYA MULTIBAND IMAGER; PROSPECTOR; NEUTRONS; SURFACE; MOON AB The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric models and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes. (C) 2016 Elsevier Inc. All rights reserved. C1 [Lemelin, M.; Lucey, P. G.; Kakazu, A.; Trang, D.] Univ Hawaii Manoa, Dept Geol & Geophys, Hawaii Inst Geophys & Planetol, 1680 East West Rd,Post 602, Honolulu, HI 96822 USA. [Neumann, G. A.; Mazarico, E. M.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Barker, M. K.] Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA. [Smith, D. E.; Zuber, M. T.] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Lemelin, M (reprint author), Univ Hawaii Manoa, Dept Geol & Geophys, Hawaii Inst Geophys & Planetol, 1680 East West Rd,Post 602, Honolulu, HI 96822 USA. EM mlemelin@hawaii.edu RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter Experiment; Hawaii Institute of Geophysics and Planetology [2185, 9582]; Natural Sciences and Engineering Research Council of Canada (NSERC) through the Alexander Graham Bell Graduate Scholarship (PGS D) FX This work was supported in part by the Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter Experiment, David E. Smith Principal Investigator, by the Hawaii Institute of Geophysics and Planetology (HIGP Publication 2185, SOEST Publication 9582), and by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Alexander Graham Bell Graduate Scholarship (PGS D). NR 27 TC 2 Z9 2 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 315 EP 328 DI 10.1016/j.icarus.2016.02.006 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900026 ER PT J AU Barker, MK Mazarico, E Neumann, GA Zuber, MT Haruyama, J Smith, DE AF Barker, M. K. Mazarico, E. Neumann, G. A. Zuber, M. T. Haruyama, J. Smith, D. E. TI A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera SO ICARUS LA English DT Article DE Moon; Moon, interior; Moon, surface ID GRAIL; MISSION; CRUST; MOON; DIMENSIONS; TOPOGRAPHY AB We present an improved lunar digital elevation model (DEM) covering latitudes within 60, at a horizontal resolution of 512 pixels per degree (similar to 60 m at the equator) and a typical vertical accuracy similar to 3 to 4 m. This DEM is constructed from similar to 4.5 x 10(9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 degrees x 1 degrees) from the SELENE Terrain Camera (TC) (similar to 10(10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of <5 m compared to similar to 50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to <10 m horizontally and <1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors. (C) 2015 The Authors. Published by Elsevier Inc. C1 [Barker, M. K.] Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA. [Mazarico, E.; Neumann, G. A.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Zuber, M. T.; Smith, D. E.] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Haruyama, J.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Tokyo, Japan. RP Barker, MK (reprint author), Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA. EM michael.k.barker@nasa.gov RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU NASA's Lunar Reconnaissance Orbiter Project; NASA's Planetary Geology and Geophysics Program FX This work was supported by NASA's Lunar Reconnaissance Orbiter Project and Planetary Geology and Geophysics Program. We thank the SELENE (Kaguya) TC team and the SELENE Data Archive for providing the SELENE (Kaguya) data. SELENE is a Japanese mission developed and operated by JAXA. We also thank the LRO Mission Operations Center and LOLA science teams for their hard work in producing the LOLA data used in this study. We are grateful to the anonymous reviewers for constructive feedback which improved the quality of this paper. NR 39 TC 2 Z9 2 U1 4 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 15 PY 2016 VL 273 SI SI BP 346 EP 355 DI 10.1016/j.icarus.2015.07.039 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL6FK UT WOS:000375734900029 ER PT J AU Rizzardi, LF Kunz, H Rubins, K Chouker, A Quiriarte, H Sams, C Crucian, BE Feinberg, AP AF Rizzardi, Lindsay F. Kunz, Hawley Rubins, Kathleen Chouker, Alexander Quiriarte, Heather Sams, Clarence Crucian, Brian E. Feinberg, Andrew P. TI Evaluation of techniques for performing cellular isolation and preservation during microgravity conditions SO NPJ MICROGRAVITY LA English DT Article ID BUBBLE FORMATION; GRAVITY AB Genomic and epigenomic studies require the precise transfer of microliter volumes among different types of tubes in order to purify DNA, RNA, or protein from biological samples and subsequently perform analyses of DNA methylation, RNA expression, and chromatin modifications on a genome-wide scale. Epigenomic and transcriptional analyses of human blood cells, for example, require separation of purified cell types to avoid confounding contributions of altered cellular proportions, and long-term preservation of these cells requires their isolation and transfer into appropriate freezing media. There are currently no protocols for these cellular isolation procedures on the International Space Station (ISS). Currently human blood samples are either frozen as mixed cell populations (within the CPT collection tubes) with poor yield of viable cells required for cell-type isolations, or returned under ambient conditions, which requires timing with Soyuz missions. Here we evaluate the feasibility of translating terrestrial cell purification techniques to the ISS. Our evaluations were performed in microgravity conditions during parabolic atmospheric flight. The pipetting of open liquids in microgravity was evaluated using analog-blood fluids and several types of pipette hardware. The best-performing pipettors were used to evaluate the pipetting steps required for peripheral blood mononuclear cell (PBMC) isolation following terrestrial density-gradient centrifugation. Evaluation of actual blood products was performed for both the overlay of diluted blood, and the transfer of isolated PBMCs. We also validated magnetic purification of cells. We found that positive-displacement pipettors avoided air bubbles, and the tips allowed the strong surface tension of water, glycerol, and blood to maintain a patent meniscus and withstand robust pipetting in microgravity. These procedures will greatly increase the breadth of research that can be performed on board the ISS, and allow improvised experimentation by astronauts on extraterrestrial missions. C1 [Rizzardi, Lindsay F.; Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Ctr Epigenet, Baltimore, MD 21218 USA. [Kunz, Hawley] Wyle, Sci Technol & Engn Grp, Houston, TX USA. [Rubins, Kathleen] NASA, Johnson Space Ctr, Astronaut Off, Houston, TX USA. [Chouker, Alexander] Hosp Ludwig Maximilians Univ, Dept Anesthesiol, Munich, Germany. [Quiriarte, Heather] JES Tech, Houston, TX USA. [Sams, Clarence] NASA, Johnson Space Ctr, Space & Clin Operat Div, Houston, TX USA. [Crucian, Brian E.] NASA, Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX 77058 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Dept Mental Hlth, Baltimore, MD 21218 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Dept Med, Sch Engn, Baltimore, MD 21218 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Dept Biomed Engn, Sch Engn, Baltimore, MD 21218 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Dept Mental Hlth, Sch Engn, Baltimore, MD 21218 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Sch Publ Hlth, Dept Med, Baltimore, MD 21218 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Sch Publ Hlth, Dept Biomed Engn, Baltimore, MD 21218 USA. [Feinberg, Andrew P.] Johns Hopkins Univ, Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD 21218 USA. RP Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Ctr Epigenet, Baltimore, MD 21218 USA.; Crucian, BE (reprint author), NASA, Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX 77058 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Dept Mental Hlth, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Dept Med, Sch Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Dept Biomed Engn, Sch Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Dept Mental Hlth, Sch Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Publ Hlth, Dept Med, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Publ Hlth, Dept Biomed Engn, Baltimore, MD 21218 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD 21218 USA. EM brian.crucian-1@nasa.gov; afeinberg@jhu.edu NR 4 TC 1 Z9 1 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2373-8065 J9 NPJ MICROGRAVITY JI NPJ Microgravity PD JUL 14 PY 2016 VL 2 AR 16025 DI 10.1038/npjmgrav.2016.25 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR9IT UT WOS:000380211000001 ER PT J AU Hajra, R Chakraborty, SK Tsurutani, BT DasGupta, A Echer, E Brum, CGM Gonzalez, WD Sobral, JHA AF Hajra, Rajkumar Chakraborty, Shyamal Kumar Tsurutani, Bruce T. DasGupta, Ashish Echer, Ezequiel Brum, Christiano G. M. Gonzalez, Walter D. Andrade Sobral, Jose Humberto TI An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA) SO JOURNAL OF SPACE WEATHER AND SPACE CLIMATE LA English DT Article DE Ionosphere (equatorial); Solar activity; Solar cycle; Total electron content; Forecasting ID LOW-LATITUDE; SOLAR MINIMUM; SEMIANNUAL VARIATIONS; AMBIENT IONIZATION; SUNSPOT MINIMUM; INDIAN ZONE; REGION; IRI; PREDICTIONS; SATELLITE AB We present a geomagnetic quiet time (Dst > -50 nT) empirical model of ionospheric total electron content (TEC) for the northern equatorial ionization anomaly (EIA) crest over Calcutta, India. The model is based on the 1980-1990 TEC measurements from the geostationary Engineering Test Satellite-2 (ETS-2) at the Haringhata (University of Calcutta, India: 22.58 degrees N, 88.38 degrees E geographic; 12.09 degrees N, 160.46 degrees E geomagnetic) ionospheric field station using the technique of Faraday rotation of plane polarized VHF (136.11 MHz) signals. The ground station is situated virtually underneath the northern EIA crest. The monthly mean TEC increases linearly with F-10.7 solar ionizing flux, with a significantly high correlation coefficient (r - 0.89-0.99) between the two. For the same solar flux level, the TEC values are found to be significantly different between the descending and ascending phases of the solar cycle. This ionospheric hysteresis effect depends on the local time as well as on the solar flux level. On an annual scale, TEC exhibits semiannual variations with maximum TEC values occurring during the two equinoxes and minimum at summer solstice. The semiannual variation is strongest during local noon with a summer-to-equinox variability of similar to 50-100 TEC units. The diurnal pattern of TEC is characterized by a pre-sunrise (0400-0500 LT) minimum and near-noon (1300-1400 LT) maximum. Equatorial electrodynamics is dominated by the equatorial electrojet which in turn controls the daytime TEC variation and its maximum. We combine these long-term analyses to develop an empirical model of monthly mean TEC. The model is validated using both ETS-2 measurements and recent GNSS measurements. It is found that the present model efficiently estimates the TEC values within a 1-sigma range from the observed mean values. C1 [Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Andrade Sobral, Jose Humberto] Inst Nacl Pesquisas Espaciais, Av Astronautas, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Hajra, Rajkumar; Brum, Christiano G. M.] SRI Int, Natl Astron & Ionosphere Ctr, Space & Atmospher Sci Dept, Arecibo Observ, HC3 Box 53995, Arecibo, PR 00612 USA. [Hajra, Rajkumar] CNRS, Lab Phys & Chim Environm & Espace LPC2E, F-45100 Orleans, France. [Chakraborty, Shyamal Kumar] Raja Peary Mohan Coll, Dept Phys, Uttarpara 712258, Hooghly, India. [Tsurutani, Bruce T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr Pasadena, Pasadena, CA 91109 USA. [DasGupta, Ashish] Univ Calcutta, SK Mitra Ctr Res Space Environm, Kolkata 700009, W Bengal, India. RP Hajra, R (reprint author), Inst Nacl Pesquisas Espaciais, Av Astronautas, BR-12227010 Sao Jose Dos Campos, SP, Brazil.; Hajra, R (reprint author), SRI Int, Natl Astron & Ionosphere Ctr, Space & Atmospher Sci Dept, Arecibo Observ, HC3 Box 53995, Arecibo, PR 00612 USA.; Hajra, R (reprint author), CNRS, Lab Phys & Chim Environm & Espace LPC2E, F-45100 Orleans, France. EM rajkumarhajra@yahoo.co.in OI Hajra, Rajkumar/0000-0003-0447-1531 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) through post-doctoral research fellowship at INPE; DST SERB Project, Govt. of India; Brazilian CNPq agency [302583/2015-7]; NASA; National Science Foundation (NSF) [1160876] FX The work of R.H. is financially supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) through post-doctoral research fellowship at INPE. The work of S.K.C. is supported by DST SERB Project, Govt. of India. E.E. would like to thank the Brazilian CNPq (302583/2015-7) agency for financial support. Portions of this research were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. The Arecibo Observatory is operated by SRI International in collaboration with the Universities Space Research Association (USRA) and the Universidad Metropolitana (UMET) under a cooperative agreement with the National Science Foundation (NSF), Award Number 1160876. We would like to thank the referees and the editors for valuable suggestions leading to substantial improvement of the manuscript. The editor thanks three anonymous referees for their assistance in evaluating this paper. NR 69 TC 0 Z9 0 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2115-7251 J9 J SPACE WEATHER SPAC JI J. Space Weather Space Clim. PD JUL 14 PY 2016 VL 6 AR A29 DI 10.1051/swsc/2016023 PG 9 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DR9CM UT WOS:000380194700001 ER PT J AU Wang, J Kaseman, D Lee, K Sen, S Kovnir, K AF Wang, Jian Kaseman, Derrick Lee, Kathleen Sen, Sabyasachi Kovnir, Kirin TI Enclathration of X@La-4 Tetrahedra in Channels of Zn-P Frameworks in La3Zn4P6X (X = Cl, Br) SO CHEMISTRY OF MATERIALS LA English DT Article ID MATPASS/CPMG NMR-SPECTROSCOPY; STRUCTURAL CHEMISTRY; CRYSTAL-STRUCTURES; ELECTRON LOCALIZATION; PHYSICAL-PROPERTIES; PHOSPHIDES; POLYPHOSPHIDES; ANIONS; PHOSPHORUS; LANTHANUM AB Two new quaternary lanthanum zinc phosphide-halides were synthesized via high-temperature solid-state reactions. Their complex crystal structures were determined by a combination of X-ray diffraction and advanced solid-state 31P NMR spectroscopy. La3Zn4P6Cl and La3Zn4P6.6Br0.8 share a common structural feature: a polyanionic Zn-P framework with large channels hosting complex one-dimensional cations. The cations are built from X@La4 tetrahedral chains with X = Cl (La3Zn4P6Cl) or Br0.8P0.2 (La3Zn4P6.6Br0.8). The X@La4 tetrahedra share two vertices forming one-dimensional chains. To accommodate larger bromine-containing cations the Zn-P framework is rearranged by breaking and forming several Zn-P and P-P bonds. This results in the formation of a unique [P3]3- cycle, which is isoelectronic to cyclopropane. Analysis of the electron localization and orbital overlaps confirmed the presence of different chemical bonding in the Zn-P networks in the Cl- and Br-containing compounds. La3Zn4P6Cl was predicted to be a narrow bandgap semiconductor, while the formation of the [P3]3- units in the structure of La3Zn4P6.6Br0.8 was shown to lead to a narrowing of the bandgap. Characterization of the transport properties confirmed both La3Zn4P6Cl and La3Zn4P6.6Br0.8 to be narrow bandgap semiconductors with electrons as dominating charge carriers at low temperatures. La3Zn4P6Cl exhibits a n-p transition around 250 K. Due to the complex crystal structure and segregation of the areas of different chemical bonding, both title compounds exhibit ultralow thermal conductivities of 0.7 Wm(-1) K-1 and 1.5 Wm(-1) K-1 at 400 K for La3Zn4P6Cl and La3Zn4P6.6Br0.8, respectively. C1 [Wang, Jian; Lee, Kathleen; Kovnir, Kirin] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. [Kaseman, Derrick; Sen, Sabyasachi] Univ Calif Davis, Dept Mat Sci, One Shields Ave, Davis, CA 95616 USA. [Lee, Kathleen] Jet Prop Lab, Thermal Energy Convers Technol Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Kovnir, K (reprint author), Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. EM kkovnir@ucdavis.edu OI Wang, Jian/0000-0003-1326-4470 FU GAANN; ARCS; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0008931] FX The authors would like to thank Prof. S. M. Kauzlarich for access to the SPS. K.L. acknowledges the GAANN and ARCS fellowships. This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008931. NR 70 TC 2 Z9 2 U1 4 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUL 12 PY 2016 VL 28 IS 13 BP 4741 EP 4750 DI 10.1021/acs.chemmater.6b01752 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DR1ZJ UT WOS:000379704100026 ER PT J AU Parazoo, NC Commane, R Wofsy, SC Koven, CD Sweeney, C Lawrence, DM Lindaas, J Chang, RYW Miller, CE AF Parazoo, Nicholas C. Commane, Roisin Wofsy, Steven C. Koven, Charles D. Sweeney, Colm Lawrence, David M. Lindaas, Jakob Chang, Rachel Y. -W. Miller, Charles E. TI Detecting regional patterns of changing CO2 flux in Alaska SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbon cycle; permafrost thaw; climate; Earth system models; remote sensing ID NORTHERN ECOSYSTEMS; SATELLITE-OBSERVATIONS; CARBON-DIOXIDE; PERMAFROST; CLIMATE; CYCLE; AIRCRAFT; DYNAMICS; EXCHANGE; FEEDBACK AB With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. C1 [Parazoo, Nicholas C.; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Parazoo, Nicholas C.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Commane, Roisin; Wofsy, Steven C.; Lindaas, Jakob] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Commane, Roisin; Wofsy, Steven C.] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Koven, Charles D.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. [Sweeney, Colm] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Sweeney, Colm] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Lawrence, David M.] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO 80302 USA. [Lindaas, Jakob] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Chang, Rachel Y. -W.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. RP Parazoo, NC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.; Parazoo, NC (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM nicholas.c.parazoo@jpl.nasa.gov RI Koven, Charles/N-8888-2014; OI Koven, Charles/0000-0002-3367-0065; Lindaas, Jakob/0000-0003-1872-3162; Commane, Roisin/0000-0003-1373-1550 FU NASA; Office of Science, Office of Biological and Environmental Research (BER) of the US Department of Energy (DOE) [DE-AC02-05CH11231]; US DOE, BER [DE-FC03-97ER62402/A010]; NSF [PLR-1304220] FX Some of the research described was performed for CARVE, an Earth Ventures (EV-1) investigation, under contract with NASA. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. C.D.K. was supported by the Director, Office of Science, Office of Biological and Environmental Research (BER) of the US Department of Energy (DOE) Contract DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling (BGC-Feedbacks SFA) and Terrestrial Ecosystem Science (NGEE-Arctic) Programs. D.M.L. was supported by the US DOE, BER as part of Climate Change Prediction Program Cooperative Agreement DE-FC03-97ER62402/A010 and by NSF Grant PLR-1304220. NR 36 TC 0 Z9 0 U1 13 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 12 PY 2016 VL 113 IS 28 BP 7733 EP 7738 DI 10.1073/pnas.1601085113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR1VX UT WOS:000379694100032 PM 27354511 ER PT J AU McKinna, LIW Werdell, PJ Proctor, CW AF McKinna, Lachlan I. W. Werdell, P. Jeremy Proctor, Christopher W. TI Implementation of an analytical Raman scattering correction for satellite ocean-color processing SO OPTICS EXPRESS LA English DT Article ID INHERENT OPTICAL-PROPERTIES; RADIANCE MODEL; NATURAL-WATERS; CHLOROPHYLL-A; TIME-SERIES; PURE WATER; ABSORPTION; INVERSION; SURFACE; BACKSCATTERING AB Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a time-series study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs. (C) 2016 Optical Society of America C1 [McKinna, Lachlan I. W.] Sci Applicat Int Corp, 1710 SAIC Dr, Mclean, VA 22102 USA. [McKinna, Lachlan I. W.; Werdell, P. Jeremy; Proctor, Christopher W.] NASA, Goddard Space Flight Ctr, Code 616, Greenbelt, MD 20771 USA. [Proctor, Christopher W.] Sci Syst & Applicat Inc, 10210 Greenbelt Rd,Suite 600, Lanham, MD 20706 USA. RP McKinna, LIW (reprint author), Sci Applicat Int Corp, 1710 SAIC Dr, Mclean, VA 22102 USA.; McKinna, LIW (reprint author), NASA, Goddard Space Flight Ctr, Code 616, Greenbelt, MD 20771 USA. EM lachlan.i.mckinna@nasa.gov FU NASA Ocean Biology and Biogeochemistry Program FX A NASA Ocean Biology and Biogeochemistry Program award for the Science of Terra and Aqua supported this work. We thank Tommy Owens for time-series data processing support. Ivona Cetinic, Amir Ibrahim and other members of the NASA OBPG are also duly acknowledged for providing valuable scientific advice. We also wish to recognize the efforts of Emmanuel Boss who kindly reviewed this paper. NR 46 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 11 PY 2016 VL 24 IS 14 BP A1123 EP A1137 DI 10.1364/OE.24.0A1123 PG 15 WC Optics SC Optics GA DT8UF UT WOS:000381770500011 PM 27410899 ER PT J AU Underwood, DS Tennyson, J Yurchenko, SN Huang, XC Schwenke, DW Lee, TJ Clausen, S Fateev, A AF Underwood, Daniel S. Tennyson, Jonathan Yurchenko, Sergei N. Huang, Xinchuan Schwenke, David W. Lee, Timothy J. Clausen, Sonnik Fateev, Alexander TI ExoMol molecular line lists - XIV. The rotation-vibration spectrum of hot SO2 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE molecular data; opacity; astronomical data bases: miscellaneous; planets and satellites: atmospheres ID CROSS-SECTION MEASUREMENTS; ROVIBRATIONAL BOUND-STATES; POTENTIAL-ENERGY SURFACE; HIGH-RESOLUTION; SULFUR-DIOXIDE; TRIATOMIC-MOLECULES; WAVELENGTH REGION; ORION-KL; INTENSITIES; ABSORPTION AB Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion (SO2)-S-32-O-16 vibration-rotation transitions computed using an empirically adjusted potential energy surface and an ab initio dipole moment surface. The list gives complete coverage up to 8000 cm(-1) (wavelengths longer than 1.25 mu m) for temperatures below 2000 K. Infrared absorption cross-sections are recorded at 300 and 500 C are used to validated the resulting ExoAmes line list. The line list is made available in electronic form as supplementary data to this article and at www.exomol.com. C1 [Underwood, Daniel S.; Tennyson, Jonathan; Yurchenko, Sergei N.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huang, Xinchuan] SETI Inst, Mountain View, CA 94043 USA. [Schwenke, David W.] NASA, Ames Res Ctr, NAS Facil, Moffett Field, CA 94035 USA. [Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Clausen, Sonnik; Fateev, Alexander] Tech Univ Denmark, Dept Chem & Biochem Engn, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. RP Tennyson, J (reprint author), UCL, Dept Phys & Astron, London WC1E 6BT, England. EM j.tennyson@ucl.ac.uk RI Tennyson, Jonathan/I-2222-2012; Yurchenko, Sergey/G-9929-2012; Lee, Timothy/K-2838-2012; HUANG, XINCHUAN/A-3266-2013 OI Tennyson, Jonathan/0000-0002-4994-5238; Yurchenko, Sergey/0000-0001-9286-9501; FU Energinet.dk project [2010-1-10442]; ERC [267219]; STFC; BIS; NASA [12-APRA12-0107]; NASA/SETI Institute Cooperative Agreement [NNX15AF45A] FX This work was supported by Energinet.dk project 2010-1-10442 'Sulfur trioxide measurement technique for energy systems' and the ERC under the Advanced Investigator Project 267219. It made use of the DiRAC@Darwin HPC cluster which is part of the DiRAC UK HPC facility for particle physics, astrophysics and cosmology and is supported by STFC and BIS. XH, DWS, and TJL gratefully acknowledge funding support from the NASA Grant 12-APRA12-0107. XH also acknowledges support from the NASA/SETI Institute Cooperative Agreement NNX15AF45A. NR 89 TC 8 Z9 8 U1 5 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2016 VL 459 IS 4 BP 3890 EP 3899 DI 10.1093/mnras/stw849 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3VM UT WOS:000379830700038 ER PT J AU Knowles, K Intema, HT Baker, AJ Bharadwaj, V Bond, JR Cress, C Gupta, N Hajian, A Hilton, M Hincks, AD Hlozek, R Hughes, JP Lindner, RR Marriage, TA Menanteau, F Moodley, K Niemack, MD Reese, ED Sievers, J Sifon, C Srianand, R Wollack, EJ AF Knowles, K. Intema, H. T. Baker, A. J. Bharadwaj, V. Bond, J. R. Cress, C. Gupta, N. Hajian, A. Hilton, M. Hincks, A. D. Hlozek, R. Hughes, J. P. Lindner, R. R. Marriage, T. A. Menanteau, F. Moodley, K. Niemack, M. D. Reese, E. D. Sievers, J. Sifon, C. Srianand, R. Wollack, E. J. TI A giant radio halo in a low-mass SZ-selected galaxy cluster: ACT-CL J0256.5+0006 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: individual: (ACT-CL J0256.5+0006); galaxies: clusters: intracluster medium; radio continuum: general; X-rays: individual: ACT-CL J0256.5+0006 ID X-RAY-CLUSTERS; SUNYAEV-ZELDOVICH; SIMULATED CLUSTERS; SCALING RELATIONS; MERGING CLUSTER; ABELL CLUSTERS; SKY SURVEY; FOLLOW-UP; EMISSION; SUBSTRUCTURE AB We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 (z = 0.363), observed with the Giant Metrewave Radio Telescope at 325 and 610 MHz. We find this cluster to host a faint (S-610 = 5.6 +/- 1.4 mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest mass systems, M-500,M- SZ = (5.0 +/- 1.2) x 10(14) M-aS (TM), found to host a GRH. We measure the GRH at lower significance at 325 MHz (S-325 = 10.3 +/- 5.3 mJy), obtaining a spectral index measurement of $\alpha <^>{610}_{325} = 1.0<^>{+0.7}_{-0.9}$. This result is consistent with the mean spectral index of the population of typical radio haloes, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P-1.4 GHz = (1.0 +/- 0.3) x 10(24) W Hz(-1), placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the intracluster medium morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of v(aSyen) = 1880 +/- 210 km s(-1). We construct a simple merger model to infer relevant time-scales in the merger. From its location on the P-1.4 GHz-L-X scaling relation, we infer that we observe ACT-CL J0256.5+0006 just before first core crossing. C1 [Knowles, K.; Bharadwaj, V.; Hilton, M.; Moodley, K.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4041 Durban, South Africa. [Intema, H. T.] Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA. [Baker, A. J.; Hughes, J. P.; Lindner, R. R.] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Bond, J. R.; Hajian, A.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cress, C.] Ctr High Performance Comp, CSIR Campus,15 Lower Hope Rd, Cape Town, South Africa. [Cress, C.] Univ Western Cape, Dept Phys, Modderdam Rd, ZA-7535 Bellville, South Africa. [Gupta, N.; Srianand, R.] IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. [Hincks, A. D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Hlozek, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Lindner, R. R.] Univ Wisconsin, Dept Astron, 475 N Charter St, Madison, WI 53706 USA. [Marriage, T. A.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Menanteau, F.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 W Clark St, Urbana, IL 61801 USA. [Menanteau, F.] Univ Illinois, Dept Astron, W Green St, Urbana, IL 61801 USA. [Niemack, M. D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Reese, E. D.] Moorpk Coll, Dept Phys Astron & Engn, 7075 Campus Rd, Moorpark, CA 93021 USA. [Sievers, J.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Chem & Phys, ZA-4041 Durban, South Africa. [Sievers, J.] Univ KwaZulu Natal, Natl Inst Theoret Phys NITheP, Private Bag X54001, ZA-4000 Durban, South Africa. [Sifon, C.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Knowles, K (reprint author), Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4041 Durban, South Africa. EM kendaknowles.astro@gmail.com RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sifon, Cristobal/0000-0002-8149-1352 FU NRF/SKA South Africa Project; National Radio Astronomy Observatory, a facility of the National Science Foundation; National Science Foundation [AST 0955810] FX KK acknowledges post-graduate support from the NRF/SKA South Africa Project. HTI is financially supported by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under Associated Universities Inc. AJB acknowledges support from National Science Foundation grant AST 0955810. NR 73 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2016 VL 459 IS 4 BP 4240 EP 4258 DI 10.1093/mnras/stw795 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3VM UT WOS:000379830700065 ER PT J AU Kuhn, RB Rodriguez, JE Collins, KA Lund, MB Siverd, RJ Colon, KD Pepper, J Stassun, KG Cargile, PA James, DJ Penev, K Zhou, G BaylisS, D Tan, TG Curtis, IA Udry, S Segransan, D Mawet, D Dhita, S Soutter, J Hart, R Carter, B Gaudi, BS Myers, G Beatty, TG Eastman, JD Reichart, DE Haislip, JB Kielkopf, J Bieryla, A Latham, DW Jensen, ELN Oberst, TE StevensI, DJ AF Kuhn, Rudolf B. Rodriguez, Joseph E. Collins, Karen A. Lund, Michael B. Siverd, Robert J. Colon, Knicole D. Pepper, Joshua Stassun, Keivan G. Cargile, Phillip A. James, David J. Penev, Kaloyan Zhou, George Bayliss, Daniel Tan, T. G. Curtis, Ivan A. Udry, Stephane Segransan, Damien Mawet, Dimitri Dhital, Saurav Soutter, Jack Hart, Rhodes Carter, Brad Gaudi, B. Scott Myers, Gordon Beatty, Thomas G. Eastman, Jason D. Reichart, Daniel E. Haislip, Joshua B. Kielkopf, John Bieryla, Allyson Latham, David W. Jensen, Eric L. N. Oberst, Thomas E. Stevens, Daniel J. TI KELT-10b: the first transiting exoplanet from the KELT-South survey -a hot sub-Jupiter transiting a V=10.7 early G-star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; techniques: radial velocities; techniques: spectroscopic; stars: individual: KELT-10; planetary systems ID SPECTRAL-LINE BISECTORS; IMAGE SUBTRACTION; EXTRASOLAR PLANET; STELLAR PHOTOMETRY; RADIAL-VELOCITIES; VARIABLE-STARS; LIGHT CURVES; SHORT-PERIOD; SPACED DATA; COOL STARS AB We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with T-eff = 5948 +/- 74 K, log g = $4.319_{-0.030}<^>{+0.020}$ and [Fe/H] = $0.09_{-0.10}<^>{+0.11}$, an inferred mass M-* = $1.112_{-0.061}<^>{+0.055}$ M-aS (TM) and radius R-* = $1.209_{-0.035}<^>{+0.047}$ R-aS (TM). The planet has a radius R-p = $1.399_{-0.049}<^>{+0.069}$ R-J and mass M-p = $0.679_{-0.038}<^>{+0.039}$ M-J. The planet has an eccentricity consistent with zero and a semimajor axis a = $0.052\,50_{-0.000\,97}<^>{+0.000\,86}$ au. The best-fitting linear ephemeris is T-0 = 2457 066.720 45 +/- 0.000 27 BJD(TDB) and P = 4.166 2739 +/- 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of T-eq = $1377_{-23}<^>{+28}$ K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of $0.817_{-0.054}<^>{+0.068}$ x 10(9) erg s(-1) cm(-2), which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies. C1 [Kuhn, Rudolf B.] S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. [Rodriguez, Joseph E.; Collins, Karen A.; Lund, Michael B.; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, 6301 Stevenson Ctr, Nashville, TN 37235 USA. [Collins, Karen A.; Kielkopf, John] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Siverd, Robert J.] Las Cumbres Observ, Global Telescope Network, 6740 Cortona Dr,Suite 102, Santa Barbara, CA 93117 USA. [Colon, Knicole D.; Pepper, Joshua] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Colon, Knicole D.] NASA Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. [Colon, Knicole D.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, 1000 17thAve North, Nashville, TN 37208 USA. [Cargile, Phillip A.; Eastman, Jason D.; Bieryla, Allyson; Latham, David W.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [James, David J.] Cerro Tololo Interamer Observ, Colina El Pino S-N,Casilla 603, La Serena, Chile. [Penev, Kaloyan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Zhou, George] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Bayliss, Daniel; Udry, Stephane; Segransan, Damien] Univ Geneva, Astron Observ, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland. [Bayliss, Daniel] Australia Telescope Natl Facil, Acton, ACT 2601, Australia. [Tan, T. G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia. [Curtis, Ivan A.] 2 Yandra St,Vale Pk, Adelaide, SA 5081, Australia. [Mawet, Dimitri] CALTECH, Dept Astron, Mail Code 249-17,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Mawet, Dimitri] European So Observ, Alonso Coniova 3107, Santiago, Chile. [Dhital, Saurav] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. [Soutter, Jack; Hart, Rhodes; Carter, Brad] Univ So Queensland, Computat Engn & Sci Res Ctr, Toowoomba, Qld 4350, Australia. [Gaudi, B. Scott; Stevens, Daniel J.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. [Myers, Gordon] 5 Inverness Way, Hillsborough, CA 94010 USA. [Myers, Gordon] AAVSO, 49 Bay State Rd, Cambridge, MA 02138 USA. [Beatty, Thomas G.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Beatty, Thomas G.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, 525 Davey Lab, University Pk, PA 16802 USA. [Reichart, Daniel E.; Haislip, Joshua B.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Jensen, Eric L. N.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Oberst, Thomas E.] Westminster Coll, Dept Phys, Wilmington, PA 16172 USA. RP Kuhn, RB (reprint author), S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa.; Rodriguez, JE (reprint author), Vanderbilt Univ, Dept Phys & Astron, 6301 Stevenson Ctr, Nashville, TN 37235 USA.; Pepper, J (reprint author), Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. EM rudi@saao.ac.za; rodriguez.jr.joey@gmail.com; joshua.pepper@lehigh.edu OI Jensen, Eric/0000-0002-4625-7333; Tan, Thiam-Guan/0000-0001-5603-6895; Pepper, Joshua/0000-0002-3827-8417 FU NASA [NNX13AQ62G]; NSF CAREER [AST-1056524] FX KELT-South is hosted by the South African Astronomical Observatory and we are grateful for their ongoing support and assistance. KP acknowledges support from NASA grant NNX13AQ62G. Work by BSG and DJS was partially supported by NSF CAREER Grant AST-1056524. NR 103 TC 5 Z9 5 U1 3 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2016 VL 459 IS 4 BP 4281 EP 4298 DI 10.1093/mnras/stw880 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3VM UT WOS:000379830700067 ER PT J AU Kromer, M Fremling, C Pakmor, R Taubenberger, S Amanullah, R Cenko, SB Fransson, C Goobar, A Leloudas, G Taddia, F Ropke, FK Seitenzahl, IR Sim, SA Sollerman, J AF Kromer, M. Fremling, C. Pakmor, R. Taubenberger, S. Amanullah, R. Cenko, S. B. Fransson, C. Goobar, A. Leloudas, G. Taddia, F. Roepke, F. K. Seitenzahl, I. R. Sim, S. A. Sollerman, J. TI The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances; radiative transfer; methods: numerical; supernovae: individual: iPTF14atg ID WHITE-DWARF MODELS; LATE-TIME SPECTROSCOPY; SN 2011FE; PROGENITOR SYSTEM; LIGHT CURVES; SYNTHETIC OBSERVABLES; SPECTRUM SYNTHESIS; STELLAR COMPANION; NEBULAR SPECTRA; SHOCK BREAKOUT AB iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system, where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multidimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M-aS (TM), respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circumstellar medium and surface radioactivity from an He-ignited merger that may be able to account for the early UV emission in violent merger models. C1 [Kromer, M.; Fremling, C.; Fransson, C.; Taddia, F.; Sollerman, J.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden. [Pakmor, R.; Roepke, F. K.] Heidelberger Inst Theoret Studien, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany. [Taubenberger, S.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Taubenberger, S.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Amanullah, R.; Goobar, A.] Stockholm Univ, Dept Phys, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Leloudas, G.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel. [Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Roepke, F. K.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany. [Seitenzahl, I. R.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Seitenzahl, I. R.; Sim, S. A.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW, Australia. [Sim, S. A.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. RP Kromer, M (reprint author), Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden. EM markus.kromer@astro.su.se OI Sollerman, Jesper/0000-0003-1546-6615 FU Knut and Alice Wallenberg Foundation; Swedish Research Council; Klaus Tschira Foundation; European Research Council under ERC-StG [EXAGAL-308037]; Deutsche Forschungsgemeinschaft via the Transregional Collaborative Research Center [TRR 33]; Swedish National Space Board; Australian Research Council [FL0992131]; German Federal Ministry of Education and Research (BMBF); German State Ministries for Research of Baden-Wurttemberg (MWK); Bayern (StMWFK); Nordrhein-Westfalen (MIWF) FX We gratefully acknowledge support from the Knut and Alice Wallenberg Foundation. The Oskar Klein Centre is funded by the Swedish Research Council. The work of RP and FKR is supported by the Klaus Tschira Foundation. RP also acknowledges support by the European Research Council under ERC-StG grant EXAGAL-308037. ST is supported by the Deutsche Forschungsgemeinschaft via the Transregional Collaborative Research Center TRR 33 'The Dark Universe'. AG and RA acknowledge support from the Swedish Research Council and the Swedish National Space Board. IRS was supported by the Australian Research Council Laureate Grant FL0992131.; The authors gratefully acknowledge the Gauss Centre for Super computing (GCS) for providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of the supercomputer JUQUEEN (Stephan & Docter 2015) at Julich Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universitat Stuttgart), JSC (Forschungszentrum Julich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Wurttemberg (MWK), Bayern (StMWFK), and Nordrhein-Westfalen (MIWF). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 94 TC 2 Z9 2 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2016 VL 459 IS 4 BP 4428 EP 4439 DI 10.1093/mnras/stw962 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3VM UT WOS:000379830700077 ER PT J AU Gacesa, M Montgomery, JA Michels, HH Cote, R AF Gacesa, Marko Montgomery, John A., Jr. Michels, H. Harvey Cote, Robin TI Production of NaCa+ molecular ions in the ground state from cold atom-ion mixtures by photoassociation via an intermediate state SO PHYSICAL REVIEW A LA English DT Article ID LONG-RANGE MOLECULES; CHARGE-EXCHANGE; COLLISIONS; ELECTRON; EQUATION; CURVES; TRAP AB We present a theoretical analysis of optical pathways for formation of cold ground-state (NaCa)(+) molecular ions via an intermediate state. The formation schemes are based on ab initio potential energy curves and transition dipole moments calculated using effective-core-potential methods of quantum chemistry. In the proposed approach, starting from a mixture of cold trapped Ca+ ions immersed into an ultracold gas of Na atoms, (NaCa)(+) molecular ions are photoassociated in the excited E-1 Sigma(+) electronic state and allowed to spontaneously decay either to the ground electronic state or an intermediate state from which the population is transferred to the ground state via an additional optical excitation. By analyzing all possible pathways, we find that the efficiency of a two-photon scheme, via either the B-1 Sigma(+) or C-1 Sigma(+) potential, is sufficient to produce significant quantities of ground-state (NaCa)(+) molecular ions. A single-step process results in lower formation rates that would require either a high-density sample or a very intense photoassociation laser to be viable. C1 [Gacesa, Marko] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gacesa, Marko; Montgomery, John A., Jr.; Michels, H. Harvey; Cote, Robin] Univ Connecticut, Dept Phys, Storrs, CT 06268 USA. RP Gacesa, M (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Gacesa, M (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06268 USA. EM marko.gacesa@nasa.gov FU MURI US Army Research Office [W911NF-14-1-0378]; National Science Foundation [PHY-1415560] FX The authors wish to thank W. W. Smith for useful discussions and an anonymous reviewer for suggestions that led to significant improvements of the manuscript. This work was partially supported by the MURI US Army Research Office Grant No. W911NF-14-1-0378 (MG) and by the PIF program of the National Science Foundation Grant No. PHY-1415560 (RC). NR 66 TC 1 Z9 1 U1 9 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JUL 11 PY 2016 VL 94 IS 1 AR 013407 DI 10.1103/PhysRevA.94.013407 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA DQ8XV UT WOS:000379495900006 ER PT J AU Hitlin, DG Kim, JH Trevor, J Hoenk, M Hennessy, J Jewell, A Farrell, R McClish, M AF Hitlin, D. G. Kim, J. H. Trevor, J. Hoenk, M. Hennessy, J. Jewell, A. Farrell, R. McClish, M. TI An APD for the efficient detection of the fast scintillation component of BaF2 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Barium fluoride; Photosensors; APD; Solar blind; Superlattice; Atomic layer deposition AB Barium fluoride crystals are the baseline choice for the calorimeter of the Mu2e experiment at Fermilab. By the fast (decay time 0.9 ns) 220 nm scintillation component and discriminating against the larger slow (decay time 630 ns) 300 nm component, it is possible to build a radiation-hard calorimeter with good energy and time resolution and high rate capability. This requires a solid state photosensor with high quantum efficiency at 220 nm, discrimination against the 300 nm component and good rise and decay times. Progress on the development of such a sensor is presented. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hitlin, D. G.; Kim, J. H.; Trevor, J.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Hoenk, M.; Hennessy, J.; Jewell, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Farrell, R.; McClish, M.] RMD Inc, Watertown, MA USA. RP Hitlin, DG (reprint author), CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. EM hitlin@caltech.edu OI Jung, Kyuhyun/0000-0001-8631-610X FU SBIR grant [DE-SC0011316] FX The development of this UV sensitive, solar-blind APD a collaborative effort of Caltech, Jet Propulsion Laboratory and RMD Inc., under SBIR grant DE-SC0011316 and with NASA and DOE funds. NR 10 TC 0 Z9 0 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2016 VL 824 BP 119 EP 122 DI 10.1016/j.nima.2015.11.074 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DL1RD UT WOS:000375408700042 ER PT J AU Barlis, A Aguirre, J Stevenson, T AF Barlis, A. Aguirre, J. Stevenson, T. TI Kinetic inductance detectors for far-infrared spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Kinetic inductance detectors; Superconducting detectors; Applied superconductivity AB The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. (C) 2015 Elsevier B.V. All rights reserved. C1 [Barlis, A.; Aguirre, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Stevenson, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Barlis, A (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. EM abarlis@physics.upenn.edu FU NASA Space Technology Research Fellowship [NNX13AL68H] FX This work was supported by a NASA Space Technology Research Fellowship (grant #NNX13AL68H). The authors thank the members of the Detector Development Laboratory at NASA Goddard Space Flight Center for sharing their expertise on the KID fabrication process. NR 2 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2016 VL 824 BP 165 EP 167 DI 10.1016/j.nima.2015.12.022 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DL1RD UT WOS:000375408700057 ER PT J AU Nucciotti, A Alpert, B Becker, D Bennett, D Biasotti, M Brofferio, C Ceriale, V Ceruti, G Corsini, D Day, P De Gerone, M Dressler, R Faverzani, M Ferri, E Fowler, J Fumagalli, E Gard, J Gatti, F Giachero, A Hays-Wehle, J Heinitz, S Hilton, G Koester, U Lusignoli, M Maino, M Mates, J Nisi, S Nizzolo, R Orlando, A Parodi, L Pessina, G Pizzigoni, G Puiu, A Ragazzi, S Reintsema, C Ribeiro-Gomes, M Schmidt, D Schumann, D Siccardi, F Sisti, M Swetz, D Terranova, F Ullom, J Vale, L AF Nucciotti, A. Alpert, B. Becker, D. Bennett, D. Biasotti, M. Brofferio, C. Ceriale, V. Ceruti, G. Corsini, D. Day, P. De Gerone, M. Dressler, R. Faverzani, M. Ferri, E. Fowler, J. Fumagalli, E. Gard, J. Gatti, F. Giachero, A. Hays-Wehle, J. Heinitz, S. Hilton, G. Koester, U. Lusignoli, M. Maino, M. Mates, J. Nisi, S. Nizzolo, R. Orlando, A. Parodi, L. Pessina, G. Pizzigoni, G. Puiu, A. Ragazzi, S. Reintsema, C. Ribeiro-Gomes, M. Schmidt, D. Schumann, D. Siccardi, F. Sisti, M. Swetz, D. Terranova, F. Ullom, J. Vale, L. TI Status of the HOLMES detector development SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino mass; Ho-163; Electron capture; Low temperature detectors ID ELECTRON NEUTRINO MASS; HO-163; DECAY AB HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 0.4 eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of Ho-163. HOLMES will deploy a large array of low temperature microcalorimeters with implanted Ho-163 nuclei. HOLMES baseline detector is an array of 1000 microcalorimeters each with an implanted Ho-163 activity of about 300 Bq, an energy resolution FVVHM of about 1 eV at the spectrum end-point (Q approximate to 2.5 keV), and a time resolution of about 1 mu s. Matching these performances requires a careful optimization of all components, from the microcalorimeters to the signal processing algorithms. We outline here the project technical challenges and the present status of the development. (C) 2015 Elsevier B.V. All rights reserved. C1 [Nucciotti, A.; Brofferio, C.; Faverzani, M.; Ferri, E.; Nizzolo, R.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy. [Nucciotti, A.; Brofferio, C.; Ceruti, G.; Faverzani, M.; Ferri, E.; Giachero, A.; Maino, M.; Pessina, G.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Ist Nazl Fis Nucl, Sezi Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy. [Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Fumagalli, E.; Gatti, F.; Orlando, A.; Parodi, L.; Pizzigoni, G.; Schumann, D.; Siccardi, F.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Day, P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dressler, R.; Heinitz, S.] Paul Scherrer Inst, Villigen, Switzerland. [Alpert, B.; Becker, D.; Bennett, D.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Mates, J.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.] NIST, Boulder, CO USA. [Koester, U.] Inst Laue Langevin, Grenoble, France. [Nisi, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, AQ, Italy. [Lusignoli, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Ribeiro-Gomes, M.] Univ Lisbon, Multidisciplinary Ctr Astrophysics CENTRA IST, P-1699 Lisbon, Portugal. RP Nucciotti, A (reprint author), Univ Milano Bicocca, Dipartimento Fis, Milan, Italy. EM angelo.nucciotti@mib.infn.it RI Giachero, Andrea/I-1081-2013; Sisti, Monica/B-7550-2013; Ferri, Elena/L-8531-2014; Biasotti, Michele/C-7890-2017 OI Giachero, Andrea/0000-0003-0493-695X; Sisti, Monica/0000-0003-2517-1909; De Gerone, Matteo/0000-0002-5489-6581; Ferri, Elena/0000-0003-1425-3669; Pessina, Gianluigi Ezio/0000-0003-3700-9757; Biasotti, Michele/0000-0002-7241-8479 FU European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC [340321]; NIST Innovations in Measurement Science program for the TES detector development FX The HOLMES experiment is funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 340321. We also acknowledge support from the NIST Innovations in Measurement Science program for the TES detector development. NR 6 TC 0 Z9 0 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2016 VL 824 BP 182 EP 183 DI 10.1016/j.nima.2015.09.066 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DL1RD UT WOS:000375408700062 ER PT J AU Pizzigoni, G Alpert, B Balata, M Bennett, D Biasotti, M Boragno, C Brofferio, C De Gerone, M Dressler, R Faverazani, M Ferri, E Folwer, J Gatti, F Giachero, A Heinitz, S Hilton, G Koster, U Lusignoli, M Maino, M Mates, J Nisi, S Nizzolo, R Nucciotti, A Pessina, G Puiu, A Ragazzi, S Reintsema, C Gomes, MR Shmidt, D Schumann, D Sisti, M Swetz, D Terranova, F Ullom, J Day, PK AF Pizzigoni, G. Alpert, B. Balata, M. Bennett, D. Biasotti, M. Boragno, C. Brofferio, C. De Gerone, M. Dressler, R. Faverazani, M. Ferri, E. Folwer, J. Gatti, F. Giachero, A. Heinitz, S. Hilton, G. Koster, U. Lusignoli, M. Maino, M. Mates, J. Nisi, S. Nizzolo, R. Nucciotti, A. Pessina, G. Puiu, A. Ragazzi, S. Reintsema, C. Ribeiro Gomes, M. Shmidt, D. Schumann, D. Sisti, M. Swetz, D. Terranova, F. Ullom, J. Day, P. K. TI Inside HOLMES experiment: Ho-163 metallic target production for the micro-calorimeter absorber SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino mass; Holmes experiment; Reduction and distillation process AB The main goal in the HOLMES experiment is the neutrino mass measurement using an array of 1000 micro-calorimeters with standard metallic absorber. A good isotope for such measurement is the Ho-163, those isotopes embedded in the metallic absorber will be 10(11)-10(13). Since Ho-163 is not available in nature, a dedicated process must be set up to produce the amount needed for this neutrino mass experiment. The process with the highest born-up cross-section is the neutron irradiation of Er2O3 enriched in Er-162: Er-162(n,gamma)Er-163 -> Ho-163 +v(e), where the decay is an EC with half-life of about 75 min and the (n,gamma) is about 20 barns for thermal neutron. After the neutron irradiation in the oxide powder there are several radioactive isotopes which are potentially disturbing because of the background that they cause below 5 keV. The chemical separation of holmium from the irradiation enriched Er2O3 powder is therefore mandatory and will be performed by means of ion exchange chromatography. On the end of those processes the oxide powder enriched in 162Er will have the 163Ho isotope number required. The holmium chemical state influences the end point of the EC spectrum, in order to avoid such effect it is necessary to embed in the absorber only the metallic isotope. Reduction and distillation technique allowed us to obtain a pure metallic holmium, starting from natural oxide holmium. This technique will be applied on the irradiated oxide powder to obtain the metallic Ho-163, ready to be embedded in the micro-calorimeter absorber. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pizzigoni, G.; Biasotti, M.; Boragno, C.; De Gerone, M.; Gatti, F.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Pizzigoni, G.; Biasotti, M.; Boragno, C.; De Gerone, M.; Gatti, F.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Alpert, B.; Bennett, D.; Folwer, J.; Mates, J.; Reintsema, C.; Shmidt, D.; Swetz, D.; Ullom, J.] NIST, Boulder, CO USA. [Balata, M.; Nisi, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, AQ, Italy. [Brofferio, C.; Faverazani, M.; Ferri, E.; Giachero, A.; Maino, M.; Nizzolo, R.; Nucciotti, A.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy. [Brofferio, C.; Faverazani, M.; Ferri, E.; Giachero, A.; Maino, M.; Nizzolo, R.; Nucciotti, A.; Pessina, G.; Puiu, A.; Ragazzi, S.; Sisti, M.; Terranova, F.] Ist Nazl Fis Nucl, Sez Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy. [Day, P. K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dressler, R.; Heinitz, S.; Hilton, G.; Schumann, D.] Paul Scherrer Inst, Villigen, Switzerland. [Lusignoli, M.] Inst Laue Langevin, Grenoble, France. [Koster, U.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Ribeiro Gomes, M.] Univ Lisbon, Multidisciplinary Ctr Astrophys CENTRA IST, P-1699 Lisbon, Portugal. RP Pizzigoni, G (reprint author), Univ Genoa, Dipartimento Fis, Genoa, Italy. EM giulio.pizzigoni@ge.infn.it RI Giachero, Andrea/I-1081-2013; Ferri, Elena/L-8531-2014; Biasotti, Michele/C-7890-2017; Sisti, Monica/B-7550-2013 OI Giachero, Andrea/0000-0003-0493-695X; Ferri, Elena/0000-0003-1425-3669; Biasotti, Michele/0000-0002-7241-8479; Sisti, Monica/0000-0003-2517-1909 FU European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC Grant [340321] FX The HOLMES experiment is funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 340321. We would like to thank Professor P. Manfrinetti for his useful contributions. NR 6 TC 2 Z9 2 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2016 VL 824 BP 223 EP 225 DI 10.1016/j.nima.2015.11.020 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DL1RD UT WOS:000375408700078 ER PT J AU Benford, JN Benford, DJ AF Benford, James N. Benford, Dominic J. TI POWER BEAMING LEAKAGE RADIATION AS A SETI OBSERVABLE SO ASTROPHYSICAL JOURNAL LA English DT Article DE extraterrestrial intelligence; space vehicles; stars: individual (KIC 8462852) ID DEEP SPACE EXPLORATION; INTERSTELLAR COMMUNICATION; ENERGY; EARTH AB The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here. C1 [Benford, James N.] Microwave Sci, 1041 Los Arabis Lane, Lafayette, CA 94549 USA. [Benford, Dominic J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Benford, JN (reprint author), Microwave Sci, 1041 Los Arabis Lane, Lafayette, CA 94549 USA. EM jimbenford@gmail.com RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 28 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 101 DI 10.3847/0004-637X/825/2/101 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800019 ER PT J AU Dwek, E AF Dwek, Eli TI IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; Galaxy: abundances; ISM: abundances; nuclear reactions, nucleosynthesis, abundances; supernovae: general; solar neighborhood ID KEPLERS SUPERNOVA REMNANT; CORE-COLLAPSE SUPERNOVAE; SPITZER-SPACE-TELESCOPE; IA SUPERNOVAE; SOLAR NEIGHBORHOOD; CHEMICAL EVOLUTION; NUMERICAL SIMULATIONS; INFRARED-EMISSION; GALACTIC-CENTER; MASSIVE SINGLE AB The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB stars. Only the latter two are observed to be sources of interstellar dust since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65% of the iron is injected into the ISM in gaseous form. Yet ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase as compared to expected solar abundances. The missing iron, comprising about 90% of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by a cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust. C1 [Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. RP Dwek, E (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM eli.dwek@nasa.gov FU NASA's research grants [12-ADP12-0145, 13-ADAP13-0094] FX In writing this paper I have benefited from many enlightening conversations with Joe Nuth, and useful references provided by Steven Rodney. J.N. and Rick Arendt provided useful comments on an early version of the manuscript. I thank the referees, Xander Tielens and Anthony Jones, for their critical comments, which led to improvements in the manuscript. This work was supported by NASA's 12-ADP12-0145 and 13-ADAP13-0094 research grants. NR 74 TC 3 Z9 3 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 136 DI 10.3847/0004-637X/825/2/136 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800054 ER PT J AU Eingorn, M AF Eingorn, Maxim TI FIRST-ORDER COSMOLOGICAL PERTURBATIONS ENGENDERED BY POINT-LIKE MASSES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology: theory; dark energy; dark matter; gravitation; large-scale structure of universe ID UNIVERSE; SIMULATIONS; HOMOGENEITY; SCALE AB In the framework of the concordance cosmological model, the first-order scalar and vector perturbations of the homogeneous background are derived in the weak gravitational field limit without any supplementary approximations. The sources of these perturbations (inhomogeneities) are presented in the discrete form of a system of separate point-like gravitating masses. The expressions found for the metric corrections are valid at all (sub-horizon and super-horizon) scales and converge at all points except at the locations of the sources. The average values of these metric corrections are zero (thus, first-order backreaction effects are absent). Both the Minkowski background limit and the Newtonian cosmological approximation are reached under certain well-defined conditions. An important feature of the velocity-independent part of the scalar perturbation is revealed: up to an additive constant, this part represents a sum of Yukawa potentials produced by inhomogeneities with the same finite time-dependent Yukawa interaction range. The suggested connection between this range and the homogeneity scale is briefly discussed along with other possible physical implications. C1 [Eingorn, Maxim] North Carolina Cent Univ, CREST, Fayetteville St 1801, Durham, NC 27707 USA. [Eingorn, Maxim] NASA, Res Ctr, Fayetteville St 1801, Durham, NC 27707 USA. RP Eingorn, M (reprint author), North Carolina Cent Univ, CREST, Fayetteville St 1801, Durham, NC 27707 USA.; Eingorn, M (reprint author), NASA, Res Ctr, Fayetteville St 1801, Durham, NC 27707 USA. EM maxim.eingorn@gmail.com RI Eingorn, Maxim/L-1543-2014 OI Eingorn, Maxim/0000-0002-1545-7818 FU NSF CREST award [HRD-1345219]; NASA grant [NNX09AV07A] FX This work was supported by NSF CREST award HRD-1345219 and NASA grant NNX09AV07A. I would like to thank the anonymous referee for valuable comments that have considerably improved the discussion of the derived results. I am also grateful to my colleague Prof. Diane Markoff for the careful review of their presentation. NR 46 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 84 DI 10.3847/0004-637X/825/2/84 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800002 ER PT J AU Elmegreen, DM Elmegreen, BG Almeida, JS Munoz-Tunon, C Mendez-Abreu, J Gallagher, JS Rafelski, M Filho, M Ceverino, D AF Elmegreen, Debra Meloy Elmegreen, Bruce G. Sanchez Almeida, Jorge Munoz-Tunon, Casiana Mendez-Abreu, Jairo Gallagher, John S. Rafelski, Marc Filho, Mercedes Ceverino, Daniel TI HUBBLE SPACE TELESCOPE OBSERVATIONS OF ACCRETION-INDUCED STAR FORMATION IN THE TADPOLE GALAXY KISO 5639 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: individual (Kiso 5639); galaxies: photometry; galaxies: star clusters: general; galaxies: star formation; H II regions ID COMPACT DWARF GALAXIES; ULTRA DEEP FIELD; ALPHA ESCAPE FRACTION; METAL-POOR GALAXIES; I ZW 18; FORMING GALAXIES; NEARBY GALAXIES; FORMATION LAW; INTEGRATED PHOTOMETRY; IRREGULAR GALAXIES AB The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength Hubble Space Telescope Wide Field Camera 3 images of UV through I band plus H alpha to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of similar to 10(6) M-circle dot and an ionization rate of 6.4 x 10(51) s(-1), equivalent to similar to 2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of similar to 1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of -1.73 +/- 0.51. Fourteen young clusters in the head are more massive than 10(4) M-circle dot, suggesting a clustering fraction of 30%-45%. Wispy filaments of Ha emission and young stars extend away from the galaxy. Shells and holes in the head H II region could be from winds and supernovae. Gravity from the disk should limit the expansion of the H II region, although hot gas might escape through the holes. The star formation surface density determined from Ha in the head is compared to that expected from likely pre-existing and accreted gas. Unless the surface density of the accreted gas is a factor of similar to 3 or more larger than what was in the galaxy before, the star formation rate has to exceed the usual Kennicutt-Schmidt rate by a factor of >= 5. C1 [Elmegreen, Debra Meloy] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. [Elmegreen, Bruce G.] IBM Res Div, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Sanchez Almeida, Jorge; Munoz-Tunon, Casiana; Filho, Mercedes] Inst Astrofis Canarias, C Via Lactea S-N, E-38205 Tenerife, Spain. [Sanchez Almeida, Jorge; Munoz-Tunon, Casiana; Filho, Mercedes] Univ La Laguna, Dept Astrofis, E-38207 San Cristobal la Laguna, Spain. [Mendez-Abreu, Jairo] Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Gallagher, John S.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Rafelski, Marc] Goddard Space Flight Ctr, Astrophys Sci Div, Code 665, Greenbelt, MD 20771 USA. [Ceverino, Daniel] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. RP Elmegreen, DM (reprint author), Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. OI Elmegreen, Debra/0000-0002-1392-3520; Mendez Abreu, Jairo/0000-0002-8766-2597 FU NASA; STScI; Spanish Ministry of Economy and Competitiveness [AYA2013-47742-C4-2-P]; European Research Council Starting Grant (SEDmorph); European Research Council Advanced Grant (STARLIGHT); National Aeronautics and Space Administration; Jesus Serra Foundation; [HST-GO-13723.002-A]; [HST-GO-13723.001-A] FX We thank NASA and STScI for observing time and grant support. DME is supported by HST-GO-13723.002-A and BGE is supported by HST-GO-13723.001-A; both are grateful to the Severo Ochoa and Jesus Serra Foundation for support during a visit to the Instituto de Astrofisica de Canarias. The work of JSA, CMT, and MF has been partly funded by the Spanish Ministry of Economy and Competitiveness, project AYA2013-47742-C4-2-P. JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P. I. V. Wild). MR acknowledges support from an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center. DC acknowledges support from the European Research Council Advanced Grant (STARLIGHT; P. I. Ralf Klessen) This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 74 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 145 DI 10.3847/0004-637X/825/2/145 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800063 ER PT J AU Farr, B Berry, CPL Farr, WM Haster, CJ Middleton, H Cannon, K Graff, PB Hanna, C Mandel, I Pankow, C Price, LR Sidery, T Singer, LP Urban, AL Vecchio, A Veitch, J Vitale, S AF Farr, Ben Berry, Christopher P. L. Farr, Will M. Haster, Carl-Johan Middleton, Hannah Cannon, Kipp Graff, Philip B. Hanna, Chad Mandel, Ilya Pankow, Chris Price, Larry R. Sidery, Trevor Singer, Leo P. Urban, Alex L. Vecchio, Alberto Veitch, John Vitale, Salvatore TI PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; methods: data analysis; stars: neutron; surveys ID COMPACT-OBJECT BINARIES; BLACK-HOLES; MASS-DISTRIBUTION; ADVANCED LIGO; FOLLOW-UP; RADIATION; MERGERS; VIRGO; COALESCENCE; TRANSIENTS AB Inspiraling binary neutron stars (BNSs) are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses 1.2 M-circle dot-1.6 M-circle dot and spins of less than 0.05) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential BNS sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of similar to 16%, with little constraint on spins (the median 90% upper limit on the spin of the more massive component is similar to 0.7). Stronger prior constraints on neutron-star spins can further constrain mass estimates but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up. C1 [Farr, Ben] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Farr, Ben] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Berry, Christopher P. L.; Farr, Will M.; Haster, Carl-Johan; Middleton, Hannah; Mandel, Ilya; Sidery, Trevor; Vecchio, Alberto; Veitch, John] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Cannon, Kipp] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. [Graff, Philip B.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Graff, Philip B.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Hanna, Chad] Penn State Univ, University Pk, PA 16802 USA. [Pankow, Chris; Urban, Alex L.] Univ Wisconsin, Leonard E Parker Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53201 USA. [Price, Larry R.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Singer, Leo P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Vitale, Salvatore] MIT, 185 Albany St, Cambridge, MA 02139 USA. RP Farr, B (reprint author), Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.; Farr, B (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. EM farr@uchicago.edu RI Vecchio, Alberto/F-8310-2015; OI Vecchio, Alberto/0000-0002-6254-1617; Farr, Will/0000-0003-1540-8562; Berry, Christopher/0000-0003-3870-7215; Mandel, Ilya/0000-0002-6134-8946; Veitch, John/0000-0002-6508-0713 FU Enrico Fermi Institute at the University of Chicago as a McCormick Fellow; Science and Technology Facilities Council; NASA [NNX12AN10G]; National Science Foundation; LIGO Laboratory; STFC [ST/K005014/1]; National Science Foundation [PHY-0757058]; NSF [PHY-1126812]; LIGO Data Grid including: the Nemo computing cluster at the Center for Gravitation and Cosmology at the University of Wisconsin-Milwaukee under NSF [PHY-0923409, PHY-0600953]; Atlas computing cluster at the Albert Einstein Institute, Hannover; LIGO computing clusters at Caltech FX B.F. was supported by the Enrico Fermi Institute at the University of Chicago as a McCormick Fellow. This work was supported in part by the Science and Technology Facilities Council. P.B.G. acknowledges NASA grant NNX12AN10G. S.V. acknowledges the support of the National Science Foundation and the LIGO Laboratory. J.V. was supported by STFC grant ST/K005014/1. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0757058.; This work used computing resources at CIERA funded by NSF PHY-1126812, as well as the computing facilities of the LIGO Data Grid including: the Nemo computing cluster at the Center for Gravitation and Cosmology at the University of Wisconsin-Milwaukee under NSF Grants PHY-0923409 and PHY-0600953; the Atlas computing cluster at the Albert Einstein Institute, Hannover; the LIGO computing clusters at Caltech, and the facilities of the Advanced Research Computing @ Cardiff (ARCCA) Cluster at Cardiff University. NR 63 TC 3 Z9 3 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 116 DI 10.3847/0004-637X/825/2/116 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800034 ER PT J AU Hong, J Mori, K Hailey, CJ Nynka, M Zhang, S Gotthelf, E Fornasini, FM Krivonos, R Bauer, F Perez, K Tomsick, JA Bodaghee, A Chiu, JL Clavel, M Stern, D Grindlay, JE Alexander, DM Aramaki, T Baganoff, FK Barret, D Barriere, N Boggs, SE Canipe, AM Christensen, FE Craig, WW Desai, MA Forster, K Giommi, P Grefenstette, BW Harrison, FA Hong, D Hornstrup, A Kitaguchi, T Koglin, JE Madsen, KK Mao, PH Miyasaka, H Perri, M Pivovaroff, MJ Puccetti, S Rana, V Westergaard, NJ Zhang, WW Zoglauer, A AF Hong, JaeSub Mori, Kaya Hailey, Charles J. Nynka, Melania Zhang, Shuo Gotthelf, Eric Fornasini, Francesca M. Krivonos, Roman Bauer, Franz Perez, Kerstin Tomsick, John A. Bodaghee, Arash Chiu, Jeng-Lun Clavel, Maica Stern, Daniel Grindlay, Jonathan E. Alexander, David M. Aramaki, Tsuguo Baganoff, Frederick K. Barret, Didier Barriere, Nicolas Boggs, Steven E. Canipe, Alicia M. Christensen, Finn E. Craig, William W. Desai, Meera A. Forster, Karl Giommi, Paolo Grefenstette, Brian W. Harrison, Fiona A. Hong, Dooran Hornstrup, Allan Kitaguchi, Takao Koglin, Jason E. Madsen, Kristen K. Mao, Peter H. Miyasaka, Hiromasa Perri, Matteo Pivovaroff, Michael J. Puccetti, Simonetta Rana, Vikram Westergaard, Niels J. Zhang, William W. Zoglauer, Andreas TI NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. II. X-RAY POINT SOURCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: center; X-rays: binaries; X-rays: diffuse background; X-rays: general ID MAGNETIC CATACLYSMIC VARIABLES; SUPERNOVA-REMNANT SAGITTARIUS; XMM-NEWTON OBSERVATIONS; BURSTING PULSAR; CHANDRA CATALOG; LIMITING WINDOW; GRS 1741.9-2853; NUMBER COUNTS; V404 CYGNI; A-ASTERISK AB We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(2) region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of similar to 4x and similar to 8 x 10(32) erg s(-1) at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Gamma = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population. C1 [Hong, JaeSub; Grindlay, Jonathan E.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Canipe, Alicia M.; Desai, Meera A.; Hong, Dooran] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Gotthelf, Eric] Univ Barcelona, Dept Fis Quant & Astrofis, Inst Ciencies Cosmos, IEEC UB, Marti & Franques 1, Barcelona 08028, Spain. [Fornasini, Francesca M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Krivonos, Roman] Russian Acad Sci, Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia. [Bauer, Franz] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz] Millennium Inst Astrophys, Santiago, Chile. [Bauer, Franz] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Perez, Kerstin] Haverford Coll, 370 Lancaster Ave,KINSC L109, Haverford, PA 19041 USA. [Tomsick, John A.; Chiu, Jeng-Lun; Clavel, Maica; Barriere, Nicolas; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bodaghee, Arash] Georgia Coll, 231 W Hancock St, Milledgeville, GA 31061 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Alexander, David M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Aramaki, Tsuguo] Standford Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Baganoff, Frederick K.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Barret, Didier; Christensen, Finn E.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Barret, Didier] Inst Rech Astrophys & Planetol, CNRS, 9Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Craig, William W.; Pivovaroff, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Forster, Karl; Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Giommi, Paolo; Perri, Matteo; Puccetti, Simonetta] ASI Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Hornstrup, Allan; Westergaard, Niels J.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kitaguchi, Takao] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Kitaguchi, Takao] Hiroshima Univ, Core Res Energet Universe, Higashihiroshima, Hiroshima 7398526, Japan. [Koglin, Jason E.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Perri, Matteo; Puccetti, Simonetta] INAF Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hong, J (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jaesub@head.cfa.harvard.edu OI Clavel, Maica/0000-0003-0724-2742; Krivonos, Roman/0000-0003-2737-5673 FU NASA [NASA Contract No. NNG08FD60C]; National Aeronautics and Space Administration; NASA/APRA grant [NNX14AD59G]; Russian Science Foundation [14-22-00271]; CONICYT-Chile (Basal-CATA) [PFB-06/2007]; CONICYT-Chile (FONDECYT) [1141218]; CONICYT-Chile ("EMBIGGEN" Anillo) [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; NASA Headquarters under the NASA Earth and Space Science Fellowship Program-Grant [NNX13AM31]; French Space Agency (CNES) FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. We thank G. Ponti for careful reading and suggestions of the manuscript. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). J. Hong acknowledges support from NASA/APRA grant NNX14AD59G. R. Krivonos acknowledges support from Russian Science Foundation through grant 14-22-00271. F.E. Bauer acknowledges support from CONICYT-Chile (Basal-CATA PFB-06/2007, FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. S. Zhang is supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program-Grant NNX13AM31. D. Barret acknowledges support from the French Space Agency (CNES). NR 89 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 132 DI 10.3847/0004-637X/825/2/132 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800050 ER PT J AU Karalidi, T Apai, D Marley, MS Buenzli, E AF Karalidi, Theodora Apai, Daniel Marley, Mark S. Buenzli, Esther TI MAPS OF EVOLVING CLOUD STRUCTURES IN LUHMAN 16AB FROM HST TIME-RESOLVED SPECTROSCOPY SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: statistical; stars: individual (WISE J104915.57-531906.1); techniques: photometric ID BINARY BROWN DWARF; 2 PC; WISE J104915.57-531906.1AB; AMPLITUDE VARIABILITY; L/T TRANSITION; T DWARFS; ATMOSPHERE; WEATHER; DISCOVERY; ROTATION AB WISE J104915.57-531906.1 is the nearest brown dwarf binary to our solar system, consisting of two brown dwarfs in the L/T transition: Luhman 16A and B. In this paper, we present the first map of Luhman 16A, and maps of Luhman 16B for two epochs. Our maps were created by applying Aeolus, a Markov-Chain Monte Carlo code that maps the top-of-the-atmosphere (TOA) structure of brown dwarf and other ultracool atmospheres, to light curves of Luhman 16A and B using the Hubble Space Telescope's G141 and G102 grisms. Aeolus retrieved three or four spots in the TOA of Luhman 16A and B, with a surface coverage of 19%-32% (depending on an assumed rotational period of 5 hr or 8 hr) or 21%-38.5% (depending on the observational epoch), respectively. The brightness temperature of the spots of the best-fit models was similar to 200 K hotter than the background TOA. We compared our Luhman 16B map with the only previously published map. Interestingly, our map contained a large TOA spot that was cooler (Delta T similar to 51 K) than the background, which lay at low latitudes, in agreement with the previous Luhman 16B map. Finally, we report the detection of a feature reappearing in Luhman 16B light curves that are separated by tens of hundreds of rotations from each other. We speculate that this feature is related to TOA structures of Luhman 16B. C1 [Karalidi, Theodora; Apai, Daniel] Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Apai, Daniel] Univ Arizona, Lunar & Planetary Lab, 1629 East Univ Blvd, Tucson, AZ 85721 USA. [Marley, Mark S.] NASA, Ames Res Ctr, MS-245-3, Moffett Field, CA 94035 USA. [Buenzli, Esther] ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. RP Karalidi, T (reprint author), Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. EM tkaralidi@email.arizona.edu OI Marley, Mark/0000-0002-5251-2943 FU Spitzer Cycle-9 Exploration Program Extrasolar Storms [90063]; NASA by JPL/Caltech; NASA from the Space Telescope Science Institute [12314]; NASA [NAS5-26555, NAS 526555]; National Aeronautics and Space Administration [NNX15AD94G] FX This work is part of the Spitzer Cycle-9 Exploration Program Extrasolar Storms (program No. 90063). Support for this work was provided by NASA through an award issued by JPL/Caltech. Support for Program number 12314 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. An allocation of computer time from the UA Research Computing High Performance Computing (HTC) and High Throughput Computing (HTC) at the University of Arizona is gratefully acknowledged. This study, in part, is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 526555. D. Apai acknowledges support by the National Aeronautics and Space Administration under agreement No. NNX15AD94G for the program Earths in Other Solar Systems. We thank I.J.M. Crossfield for providing us with the previously published Luhman 16B map data set. We thank Ben W.P. Lew for providing us with a best-fit exoplanet period for the PPCS-1 in Luhman 16B light curves. We thank the anonymous referee for a helpful report. NR 32 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 90 DI 10.3847/0004-637X/825/2/90 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800008 ER PT J AU Koss, MJ Assef, R Balokovic, M Stern, D Gandhi, P Lamperti, I Alexander, DM Ballantyne, DR Bauer, FE Berney, S Brandt, WN Comastri, A Gehrels, N Harrison, FA Lansbury, G Markwardt, C Ricci, C Rivers, E Schawinski, K Trakhtenbrot, B Treister, E Urry, CM AF Koss, Michael J. Assef, R. Balokovic, M. Stern, D. Gandhi, P. Lamperti, I. Alexander, D. M. Ballantyne, D. R. Bauer, F. E. Berney, S. Brandt, W. N. Comastri, A. Gehrels, N. Harrison, F. A. Lansbury, G. Markwardt, C. Ricci, C. Rivers, E. Schawinski, K. Trakhtenbrot, B. Treister, E. Urry, C. Megan TI A NEW POPULATION OF COMPTON-THICK AGNs IDENTIFIED USING THE SPECTRAL CURVATURE ABOVE 10 keV SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SEYFERT 2 GALAXIES; SUPERMASSIVE BLACK-HOLES; X-RAY SPECTROSCOPY; SWIFT-BAT SURVEY; DEEP FIELD-SOUTH; XMM-NEWTON; MIDINFRARED SELECTION; MU-M; NUSTAR AB We present a new metric that uses the spectral curvature (SC) above 10 keV to identify Compton-thick active galactic nuclei (AGNs) in low-quality Swift/Burst Alert Telescope (BAT) X-ray data. Using NuSTAR, we observe nine high SC-selected AGNs. We find that high-sensitivity spectra show that the majority are Compton-thick (78% or 7/9) and the remaining two are nearly Compton-thick (NH similar or equal to (5-8) x 10(23) cm(-2)). We find that the SCBAT and SCNuSTAR measurements are consistent, suggesting that this technique can be applied to future telescopes. We tested the SC method on well-known Compton-thick AGNs and found that it is much more effective than broadband ratios (e.g., 100% using SC versus 20% using 8-24 keV/3-8 keV). Our results suggest that using the > 10 keV emission may be the only way to identify this population since only two sources show Compton-thick levels of excess in the Balmer decrement corrected [O III] to observed X-ray emission ratio (F-[O III]/F-2-10(obs) keV > 1) and WISE colors do not identify most of them as AGNs. Based on this small sample, we find that a higher fraction of these AGNs are in the final merger stage (< 10 kpc) than typical BAT AGNs. Additionally, these nine obscured AGNs have, on average, approximate to 4 x higher accretion rates than other BAT-detected AGNs ( = 0.068 +/- 0.023 compared to = 0.016 +/- 0.004). The robustness of SC at identifying Compton-thick AGNs implies that a higher fraction of nearby AGNs may be Compton-thick (approximate to 22%) and the sum of black hole growth in Compton-thick AGNs (Eddington ratio times population percentage) is nearly as large as mildly obscured and unobscured AGNs. C1 [Koss, Michael J.; Lamperti, I.; Berney, S.; Schawinski, K.; Trakhtenbrot, B.] Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Koss, Michael J.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Assef, R.] Univ Diego Portales, Nucleo Astron Fac Ingn, Av Ejercito 441, Santiago, Chile. [Balokovic, M.; Harrison, F. A.; Rivers, E.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gandhi, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Alexander, D. M.] Univ Durham, Dept Phys, S Rd, Durham DH1 3LE, England. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Inst Astrofis, Fac Fis, Casilla 306, Santiago 22, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Brandt, W. N.] Penn State Univ, Davey Lab 525, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA. [Comastri, A.] INAF, Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Gehrels, N.; Markwardt, C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD USA. [Treister, E.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile. [Urry, C. Megan] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, POB 208120, New Haven, CT 06520 USA. RP Koss, MJ (reprint author), Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.; Koss, MJ (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM mkoss@phys.ethz.ch OI Koss, Michael/0000-0002-7998-9581; Trakhtenbrot, Benny/0000-0002-3683-7297 FU Ambizione fellowship grant [PZ00P2_154799/1]; Swiss National Science Foundation (NSF) grant [PP00P2 138979/1]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; FONDECYT regular grant [1120061]; CONICYT Anillo project [ACT1101]; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]; NSF award [AST 1008067]; Caltech NuSTAR sub-contract [44A-1092750]; NASA ADP grant [NNX10AC99G]; ASI/INAF grant [I/037/12/0011/13]; Caltech Kingsley visitor program; National Aeronautics and Space Administration through Chandra Award [AR3-14010X]; National Aeronautics Space Administration [NAS8-03060]; NASA [NNG08FD60C]; ESA Member States FX We acknowledge financial support from Ambizione fellowship grant PZ00P2_154799/1 (M.K.), the Swiss National Science Foundation (NSF) grant PP00P2 138979/1 (M.K. and K.S.), the Center of Excellence in Astrophysics and Associated Technologies (PFB 06), by the FONDECYT regular grant 1120061 and by the CONICYT Anillo project ACT1101 (E.T.), NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H (M.B.), NSF award AST 1008067 (D.B.), Caltech NuSTAR sub-contract 44A-1092750 and NASA ADP grant NNX10AC99G (W. N.B.), and the ASI/INAF grant I/037/12/0011/13 and the Caltech Kingsley visitor program (A.C.). M.K. also acknowledges that support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number AR3-14010X issued by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research made use of the XRT Data Analysis Software (XRTDAS), archival data, software, and online services provided by the ASDC. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The scientific results reported in this article are based on data obtained from the Chandra Data Archive (Obs ID = 4078, 4868, 12290, 13895). This work is based on observations obtained with XMM-Newton (Obs ID = 0110930201, 0147760101, 0200430201), an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. NR 87 TC 3 Z9 3 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 85 DI 10.3847/0004-637X/825/2/85 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800003 ER PT J AU Rafelski, M Gardner, JP Fumagalli, M Neeleman, M Teplitz, HI Grogin, N Koekemoer, AM Scarlata, C AF Rafelski, Marc Gardner, Jonathan P. Fumagalli, Michele Neeleman, Marcel Teplitz, Harry I. Grogin, Norman Koekemoer, Anton M. Scarlata, Claudia TI THE STAR FORMATION RATE EFFICIENCY OF NEUTRAL ATOMIC-DOMINATED HYDROGEN GAS IN THE OUTSKIRTS OF STAR-FORMING GALAXIES FROM z similar to 1 TO z similar to 3 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: photometry; galaxies: star formation; galaxies: structure; quasars: absorption lines ID LY-ALPHA SYSTEMS; DAMPED LYMAN-ALPHA; ULTRA-DEEP FIELD; CO-TO-H-2 CONVERSION FACTOR; KENNICUTT-SCHMIDT RELATION; DWARF IRREGULAR GALAXIES; SURFACE BRIGHTNESS GALAXIES; EXTRAGALACTIC LEGACY SURVEY; II-ASTERISK ABSORPTION; DARK-MATTER UNIVERSE AB Current observational evidence suggests that the star formation rate (SFR) efficiency of neutral atomic hydrogen gas measured in damped Lya systems (DLAs) at z similar to 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS) relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z similar to 1, z similar to 2, and z similar to 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is similar to 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies. C1 [Rafelski, Marc; Gardner, Jonathan P.] Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Fumagalli, Michele] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. [Fumagalli, Michele] Univ Durham, Ctr Extragalact Astron, Dept Phys, South Rd, Durham DH1 3LE, England. [Neeleman, Marcel] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. [Teplitz, Harry I.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Grogin, Norman; Koekemoer, Anton M.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Scarlata, Claudia] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Rafelski, M (reprint author), Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM marc.a.rafelski@nasa.gov RI Fumagalli, Michele/K-9510-2015; OI Fumagalli, Michele/0000-0001-6676-3842; Koekemoer, Anton/0000-0002-6610-2048 FU Science and Technology Facilities Council [ST/L00075X/1]; NASA from the Space Telescope Science Institute [GO-12534]; NASA [NAS5-26555]; NASA Postdoctoral Program at Goddard Space Flight Center FX We would like to thank Rachel Somerville, Mark Krumholz, and Bruce Elmegreen for useful discussions on interpreting the results. We also thank the referee for useful comments that improved the clarity of the paper. M.R. acknowledges support from an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center. M.F. acknowledges support by the Science and Technology Facilities Council (grant number ST/L00075X/1). Support for HST Program GO-12534 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. NR 140 TC 3 Z9 3 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 87 DI 10.3847/0004-637X/825/2/87 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800005 ER PT J AU Ryu, T Sato, B Kuzuhara, M Narita, N Takahashi, YH Uyama, T Kudo, T Kusakabe, N Hashimoto, J Omiya, M Harakawa, H Abe, L Ando, H Brandner, W Brandt, TD Carson, JC Currie, T Egner, S Feldt, M Goto, M Grady, CA Guyon, O Hayano, Y Hayashi, M Hayashi, SS Helminiak, KG Henning, T Hodapp, KW Ida, S Ishii, M Itoh, Y Iye, M Izumiura, H Janson, M Kambe, E Kandori, R Knapp, GR Kokubo, E Kwon, J Matsuo, T Mayama, S McElwain, MW Mede, K Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, E Suenaga, T Suto, H Suzuki, R Takami, M Takato, N Takeda, Y Terada, H Thalmann, C Turner, EL Watanabe, M Wisniewski, J Yamada, T Yoshida, M Takami, H Usuda, T Tamura, M AF Ryu, Tsuguru Sato, Bun'ei Kuzuhara, Masayuki Narita, Norio Takahashi, Yasuhiro H. Uyama, Taichi Kudo, Tomoyuki Kusakabe, Nobuhiko Hashimoto, Jun Omiya, Masashi Harakawa, Hiroki Abe, Lyu Ando, Hiroyasu Brandner, Wolfgang Brandt, Timothy D. Carson, Joseph C. Currie, Thayne Egner, Sebastian Feldt, Markus Goto, Miwa Grady, Carol A. Guyon, Olivier Hayano, Yutaka Hayashi, Masahiko Hayashi, Saeko S. Helminiak, Krzysztof G. Henning, Thomas Hodapp, Klaus W. Ida, Shigeru Ishii, Miki Itoh, Yoichi Iye, Masanori Izumiura, Hideyuki Janson, Markus Kambe, Eiji Kandori, Ryo Knapp, Gillian R. Kokubo, Eiichiro Kwon, Jungmi Matsuo, Taro Mayama, Satoshi McElwain, Michael W. Mede, Kyle Miyama, Shoken Morino, Jun-Ichi Moro-Martin, Amaya Nishimura, Tetsuo Pyo, Tae-Soo Serabyn, Eugene Suenaga, Takuya Suto, Hiroshi Suzuki, Ryuji Takami, Michihiro Takato, Naruhisa Takeda, Yoichi Terada, Hiroshi Thalmann, Christian Turner, Edwin L. Watanabe, Makoto Wisniewski, John Yamada, Toru Yoshida, Michitoshi Takami, Hideki Usuda, Tomonori Tamura, Motohide TI HIGH-CONTRAST IMAGING OF INTERMEDIATE-MASS GIANTS WITH LONG-TERM RADIAL VELOCITY TRENDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; methods: observational; planetary systems; techniques: high angular resolution; techniques: radial velocities ID EXOPLANET HOST STARS; EVOLUTIONARY MODELS; STELLAR COMPANIONS; K-GIANT; SUBSTELLAR COMPANION; PLANETARY COMPANIONS; DWARF COMPANION; IOTA DRACONIS; OKAYAMA HIDES; BROWN DWARFS AB A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to gamma Hya B (0.61(-0.14)(+0.12)M(circle dot)), HD 5608 B (0.10 +/- 0.01M(circle dot)), and HD 109272 B (0.28 +/- 0.06M(circle dot)). For the remaining targets (iota Dra, 18 Del, and HD 14067), we exclude companions more massive than 30-60 M-Jup at projected separations of 1 ''-7 ''. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets iota Dra b, HD 5608 b, and HD 14067 b. C1 [Ryu, Tsuguru; Narita, Norio; Izumiura, Hideyuki; Kokubo, Eiichiro; Mayama, Satoshi; Suenaga, Takuya; Takeda, Yoichi] Grad Univ Adv Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Ryu, Tsuguru; Narita, Norio; Omiya, Masashi; Harakawa, Hiroki; Ando, Hiroyasu; Hayashi, Masahiko; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Kokubo, Eiichiro; Morino, Jun-Ichi; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takeda, Yoichi; Terada, Hiroshi; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Sato, Bun'ei; Kuzuhara, Masayuki; Ida, Shigeru] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Narita, Norio; Kusakabe, Nobuhiko; Hashimoto, Jun; Suto, Hiroshi; Tamura, Motohide] Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Takahashi, Yasuhiro H.; Uyama, Taichi; Kwon, Jungmi; Mede, Kyle; Tamura, Motohide] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Kudo, Tomoyuki; Currie, Thayne; Egner, Sebastian; Guyon, Olivier; Hayano, Yutaka; Hayashi, Saeko S.; Helminiak, Krzysztof G.; Nishimura, Tetsuo; Pyo, Tae-Soo; Takato, Naruhisa] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Abe, Lyu] Univ Nice Sophia Antipolis, Observ Cote Azur, CNRS, Lab Lagrange UMR 7293, 28 Ave Valrose, F-06108 Nice 2, France. [Brandner, Wolfgang; Carson, Joseph C.; Feldt, Markus; Henning, Thomas] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Brandt, Timothy D.] Inst Adv Study, Dept Astrophys, Olden Lane, Princeton, NJ 08540 USA. [Carson, Joseph C.] Coll Charleston, Dept Phys & Astron, 58 Coming St, Charleston, SC 29424 USA. [Goto, Miwa] Univ Munich, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Grady, Carol A.; McElwain, Michael W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Grady, Carol A.] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. [Grady, Carol A.] Goddard Ctr Astrobiol, Washington, DC USA. [Hodapp, Klaus W.] Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA. [Itoh, Yoichi] Univ Hyogo, Ctr Astron, Nishi Harima Astron Observ, 407-2 Nishigaichi, Sayo, Hyogo 6795313, Japan. [Izumiura, Hideyuki; Kambe, Eiji] Natl Astron Observ Japan, Okayama Astrophys Observ, Kamogata, Okayama 7190232, Japan. [Janson, Markus; Knapp, Gillian R.] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Matsuo, Taro; Turner, Edwin L.] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto, Kyoto 6068502, Japan. [Miyama, Shoken] Hiroshima Univ, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 7398511, Japan. [Moro-Martin, Amaya] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Moro-Martin, Amaya] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Takami, Michihiro] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan. [Thalmann, Christian] ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Turner, Edwin L.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan. [Watanabe, Makoto] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Wisniewski, John] Univ Oklahoma, HL Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Yamada, Toru] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Yoshida, Michitoshi] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. RP Ryu, T (reprint author), Grad Univ Adv Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.; Ryu, T (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. EM tsuguru.ryu@nao.ac.jp RI MIYAMA, Shoken/A-3598-2015 FU NAOJ Fellowship; Inoue Science Research Award; JSPS KAKENHI [25247026]; U.S. National Science Foundation [1009203]; Center for the Promotion of Integrated Sciences (CPIS) of SOKENDAI; [25-8826] FX The data analysis was carried out using a common use data analysis computer system at the Astronomy Data Center of the National Astronomical Observatory of Japan. This research made use of the SIMBAD database, operated at CDS, Strasbourg, France. Our analysis is also based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute, the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA). N.N. acknowledges support from the NAOJ Fellowship, Inoue Science Research Award, and a Grant-in-Aid for Scientific Research (A) (JSPS KAKENHI Grant Number 25247026). J.C.C. acknowledges support from the U.S. National Science Foundation under Award No. 1009203. This work was partially supported by a Grant-in-Aid for JSPS Fellows (Grant Number 25-8826). This work was supported in part by the Center for the Promotion of Integrated Sciences (CPIS) of SOKENDAI. NR 65 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 127 DI 10.3847/0004-637X/825/2/127 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800045 ER PT J AU Sumi, T Udalski, A Bennett, DP Gould, A Poleski, R Bond, IA Skowron, J Rattenbury, N Pogge, RW Bensby, T Beaulieu, JP Marquette, JB Batista, V Brillant, S Abe, F Asakura, Y Bhattacharya, A Donachie, M Freeman, M Fukui, A Hirao, Y Itow, Y Koshimoto, N Li, MCA Ling, CH Masuda, K Matsubara, Y Muraki, Y Nagakane, M Ohnishi, K Oyokawa, H Saito, T Sharan, A Sullivan, DJ Suzuki, D Tristram, PJ Yonehara, A Szymanski, MK Ulaczyk, K Kozlowski, S Wyrzykowski, L Kubiak, M Pietrukowicz, P Pietrzynski, G Soszynski, I Han, C Jung, YK Shin, IG Lee, CU AF Sumi, T. Udalski, A. Bennett, D. P. Gould, A. Poleski, R. Bond, I. A. Skowron, J. Rattenbury, N. Pogge, R. W. Bensby, T. Beaulieu, J. P. Marquette, J. B. Batista, V. Brillant, S. Abe, F. Asakura, Y. Bhattacharya, A. Donachie, M. Freeman, M. Fukui, A. Hirao, Y. Itow, Y. Koshimoto, N. Li, M. C. A. Ling, C. H. Masuda, K. Matsubara, Y. Muraki, Y. Nagakane, M. Ohnishi, K. Oyokawa, H. Saito, To. Sharan, A. Sullivan, D. J. Suzuki, D. Tristram, P. J. Yonehara, A. Szymanski, M. K. Ulaczyk, K. Kozlowski, S. Wyrzykowski, L. Kubiak, M. Pietrukowicz, P. Pietrzynski, G. Soszynski, I. Han, C. Jung, Y-K. Shin, I-G Lee, C-U. CA MOA Collaboration OGLE Collaboration TI THE FIRST NEPTUNE ANALOG OR SUPER-EARTH WITH A NEPTUNE-LIKE ORBIT: MOA-2013-BLG-605LB SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: bulge; gravitational lensing: micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; PARALLAX MICROLENS DEGENERACY; DIFFERENCE IMAGE-ANALYSIS; SAGITTARIUS-A-ASTERISK; LOW-MASS STARS; GALACTIC BULGE; GIANT PLANETS; PROPER MOTION; SNOW LINE; JUPITER/SATURN ANALOG AB We present the discovery of the first Neptune analog exoplanet or super-Earth with a Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9 similar to 14 times the expected position of the snow line, a(snow), which is similar to Neptune's separation of 11 a(snow) from the Sun. The planet/host-star mass ratio is q = (3.6 +/- 0.7) x 10(-4) and the projected separation normalized by the Einstein radius is s = 2.39 +/- 0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy." The three models have (i) a Neptune-mass planet with a mass of M-p = 21(-7)(+6)M(circle plus) orbiting a low-mass M-dwarf with a mass of M-h = 0.19(-0.06)(+0.05)M(circle dot), (ii) a mini-Neptune with M-p = 7.9(-1.2)(+1.8)M(circle plus) orbiting a brown dwarf host with M-h = 0.068(-0.011)(+0.019)M(circle dot), and (iii) a super-Earth with M-p = 3.2(-0.3)(+0.5)M(circle plus) orbiting a low-mass brown dwarf host with M-h = 0.025(-0.004)(+0.005)M(circle dot), which is slightly favored. The 3D planet-host separations are 4.6(-1.2)(+4.7) au, 2.1(-0.2) (+1.0) au, and 0.94(-0.02)(+0.67) au, which are 8.9(-1.4)(+10.5), 12(-1)(+7), or 14(-1)(+11) times larger than a(snow) for these models, respectively. Keck adaptive optics observations confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbits are common. Therefore processes similar to the one that formed Neptune in our own solar system or cold super-Earths may be common in other solar systems. C1 [Sumi, T.; Hirao, Y.; Koshimoto, N.; Nagakane, M.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Udalski, A.; Poleski, R.; Skowron, J.; Szymanski, M. K.; Ulaczyk, K.; Kozlowski, S.; Wyrzykowski, L.; Kubiak, M.; Pietrukowicz, P.; Pietrzynski, G.; Soszynski, I.] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. [Bennett, D. P.; Bhattacharya, A.; Suzuki, D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bennett, D. P.] NASA, Goddard Space Flight Ctr, Lab Exoplanets & Stellar Astrophys, Greenbelt, MD 20771 USA. [Gould, A.; Poleski, R.; Pogge, R. W.] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. [Bond, I. A.; Ling, C. H.] Massey Univ, Inst Informat & Math Sci, Private Bag 102-904,North Shore Mail Ctr, Auckland, New Zealand. [Rattenbury, N.; Donachie, M.; Freeman, M.; Li, M. C. A.; Sharan, A.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland, New Zealand. [Bensby, T.] Lund Observ, Dept Astron & Theoret Phys, Box 43, SE-22100 Lund, Sweden. [Beaulieu, J. P.; Marquette, J. B.; Batista, V.] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France. [Brillant, S.] ESO, Karl Schwarzschildst 2, D-85748 Garching, Germany. [Abe, F.; Asakura, Y.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Oyokawa, H.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, 3037-5 Honjo, Asakuchi, Okayama 7190232, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Tristram, P. J.] Mt John Univ Observ, POB 56, Lake Tekapo 8770, New Zealand. [Yonehara, A.] Kyoto Sangyo Univ, Dept Phys, Fac Sci, Kyoto 6038555, Japan. [Han, C.; Jung, Y-K.; Shin, I-G] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. [Lee, C-U.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. RP Sumi, T (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. EM sumi@ess.sci.osaka-u.ac.jp; udalski@astrouw.edu.pl; bennett@nd.edu; i.a.bond@massey.ac.nz; n.rattenbury@auckland.ac.nz; mdon849@aucklanduni.ac.nz; mli351@auckland.ac.nz; c.h.ling@massey.ac.nz; asha583@aucklanduni.ac.nz; msz@astrouw.edu.pl; kulaczyk@astrouw.edu.pl; mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl RI Kozlowski, Szymon/G-4799-2013; Skowron, Jan/M-5186-2014; OI Kozlowski, Szymon/0000-0003-4084-880X; Skowron, Jan/0000-0002-2335-1730; Pogge, Richard/0000-0003-1435-3053 FU JSPS [JSPS23103002, JSPS24253004, JSPS26247023]; National Science Centre, Poland [MAESTRO 2014/14/A/ST9/00121]; NSF grants [AST-1009621, AST-1211875, AST 1103471]; NASA grants [NNX12AF54G, NNX13AF64G, NNX12AB99G]; Marsden Fund of the Royal Society of New Zealand [MAU1104]; ESO's DGDF; Programme National de Planetologie, CNRS; PERSU Sorbonne Universite; Creative Research Initiative Program of National Research Foundation of Korea [2009-0081561]; [JSPS25103508]; [23340064] FX T.S. acknowledges financial support from the JSPS, JSPS23103002, JSPS24253004, and JSPS26247023. The MOA project is supported by the grant JSPS25103508 and 23340064. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to A.U.. D.P.B. acknowledges support from NSF grants AST-1009621 and AST-1211875, as well as NASA grants NNX12AF54G and NNX13AF64G. Work by I.A.B. and P.Y. was supported by the Marsden Fund of the Royal Society of New Zealand, contract no. MAU1104. N.J.R. is a Royal Society of New Zealand Rutherford Discovery Fellow. A.S., M.L. and M.D. acknowledge support from the Royal Society of New Zealand. A.S. is a University of Auckland Doctoral Scholar. A.G. was supported by NSF grant AST 1103471 and NASA grant NNX12AB99G. J.P.B., S.B., and J.B.M. gratefully acknowledge support from ESO's DGDF 2014. J.P.B. and J.B. acknowledge the support of the Programme National de Planetologie, CNRS, and from PERSU Sorbonne Universite. The work by C.H. was supported by the Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. NR 95 TC 3 Z9 3 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 112 DI 10.3847/0004-637X/825/2/112 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800030 ER PT J AU Tsuge, M Bahou, M Wu, YJ Allamandola, L Lee, YP AF Tsuge, Masashi Bahou, Mohammed Wu, Yu-Jong Allamandola, Louis Lee, Yuan-Pern TI THE INFRARED SPECTRUM OF PROTONATED OVALENE IN SOLID PARA-HYDROGEN AND ITS POSSIBLE CONTRIBUTION TO INTERSTELLAR UNIDENTIFIED INFRARED EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: ISM; ISM: lines and bands; ISM: molecules ID POLYCYCLIC AROMATIC-HYDROCARBONS; ELECTRONIC-ABSORPTION-SPECTRA; PHASE PAH MOLECULES; GAS-PHASE; ASTROPHYSICAL IMPLICATIONS; NEUTRAL COUNTERPART; DETAILED MODEL; BANDS; SPECTROSCOPY; CATIONS AB The mid-infrared emission from galactic objects, including reflection nebulae, planetary nebulae, proto-planetary nebulae, molecular clouds, etc, as well as external galaxies, is dominated by the unidentified infrared (UIR) emission bands. Large protonated polycyclic aromatic hydrocarbons (H(+)PAHs) were proposed as possible carriers, but no spectrum of an H(+)PAH has been shown to exactly match the UIR bands. Here, we report the IR spectrum of protonated ovalene (7-C32H15+) measured in a para-hydrogen (p-H-2) matrix at 3.2 K, generated by bombarding a mixture of ovalene and p-H-2 with electrons during matrix deposition. Spectral assignments were made based on the expected chemistry and on the spectra simulated with the wavenumbers and infrared intensities predicted with the B3PW91/6-311++G(2d, 2p) method. The close resemblance of the observed spectral pattern to that of the UIR bands suggests that protonated ovalene may contribute to the UIR emission, particularly from objects that emit Class A spectra, such as the IRIS reflection nebula, NGC 7023. C1 [Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern] Natl Chiao Tung Univ, Dept Appl Chem, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan. [Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern] Natl Chiao Tung Univ, Inst Mol Sci, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan. [Wu, Yu-Jong] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd, Hsinchu 30076, Taiwan. [Allamandola, Louis] NASA, Ames Res Ctr, Astrophys & Astrochem Lab, Moffett Field, CA 94035 USA. [Lee, Yuan-Pern] Acad Sinica, Inst Mol Sci, Taipei 10617, Taiwan. RP Tsuge, M (reprint author), Natl Chiao Tung Univ, Dept Appl Chem, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan.; Tsuge, M (reprint author), Natl Chiao Tung Univ, Inst Mol Sci, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan. EM tsuge@nctu.edu.tw; yplee@mail.nctu.edu.tw RI Lee, Yuan-Pern/F-7938-2012; OI Lee, Yuan-Pern/0000-0001-6418-7378; Tsuge, Masashi/0000-0001-9669-1288 FU Ministry of Science and Technology, Taiwan [MOST104-2745-M009-001-ASP, MOST104-2113-M-213-004]; Ministry of Education, Taiwan ("ATU Plan" of National Chiao Tung University); NASA's Astrophysics Data Analysis Program FX The Ministry of Science and Technology, Taiwan (grants MOST104-2745-M009-001-ASP and MOST104-2113-M-213-004), and Ministry of Education, Taiwan ("ATU Plan" of National Chiao Tung University) supported this work. The National Center for High-Performance Computing provided the computer time. L.A. gratefully acknowledges support from NASA's Astrophysics Data Analysis Program. We thank Christiaan Boersma for providing the Red Rectangle spectrum. NR 53 TC 4 Z9 4 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2016 VL 825 IS 2 AR 96 DI 10.3847/0004-637X/825/2/96 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU1BM UT WOS:000381940800014 ER PT J AU Folatelli, G Van Dyk, SD Kuncarayakti, H Maeda, K Bersten, MC Nomoto, K Pignata, G Hamuy, M Quimby, RM Zheng, WK Filippenko, AV Clubb, KI Smith, N Elias-Rosa, N Foley, RJ Miller, AA AF Folatelli, Gaston Van Dyk, Schuyler D. Kuncarayakti, Hanindyo Maeda, Keiichi Bersten, Melina C. Nomoto, Ken'ichi Pignata, Giuliano Hamuy, Mario Quimby, Robert M. Zheng, WeiKang Filippenko, Alexei V. Clubb, Kelsey I. Smith, Nathan Elias-Rosa, Nancy Foley, Ryan J. Miller, Adam A. TI DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: individual (NGC 5806); stars: evolution; supernovae: general; supernovae: individual (iPTF13bvn) ID CORE-COLLAPSE SUPERNOVA; BINARY PROGENITOR; LIGHT CURVES; IB SUPERNOVA; SN 2011DH; SUPERGIANT PROGENITOR; STELLAR PHOTOMETRY; DUST EXTINCTION; IA SUPERNOVAE; COMPANION AB Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site similar to 740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment. C1 [Folatelli, Gaston; Bersten, Melina C.] Univ Nacl La Plata, IALP, Fac Ciencias Astron & Geofis, CONICET, Paseo Bosque S-N,B1900FWA, La Plata, Buenos Aires, Argentina. [Folatelli, Gaston; Maeda, Keiichi; Bersten, Melina C.; Nomoto, Ken'ichi; Quimby, Robert M.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Van Dyk, Schuyler D.] CALTECH, IPAC, Mailcode 100-22, Pasadena, CA 91125 USA. [Kuncarayakti, Hanindyo; Pignata, Giuliano; Hamuy, Mario] Millennium Inst Astrophys MAS, Santiago, Chile. [Kuncarayakti, Hanindyo; Hamuy, Mario] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. [Maeda, Keiichi] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. [Pignata, Giuliano] Univ Andres Bello, Dept Ciencias Fis, Avda Republ 252, Santiago, Chile. [Quimby, Robert M.] San Diego State Univ, Dept Astron, 5500 Campanile Dr, San Diego, CA 92182 USA. [Zheng, WeiKang; Filippenko, Alexei V.; Clubb, Kelsey I.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Smith, Nathan] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Elias-Rosa, Nancy] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Foley, Ryan J.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, Ryan J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Miller, Adam A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 169-506, Pasadena, CA 91109 USA. RP Folatelli, G (reprint author), Univ Nacl La Plata, IALP, Fac Ciencias Astron & Geofis, CONICET, Paseo Bosque S-N,B1900FWA, La Plata, Buenos Aires, Argentina.; Folatelli, G (reprint author), Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. EM gaston.folatelli@ipmu.jp RI Elias-Rosa, Nancy/D-3759-2014; OI Elias-Rosa, Nancy/0000-0002-1381-9125; Van Dyk, Schuyler/0000-0001-9038-9950 FU STScI [GO-13684, GO-13822, AR-14295]; NASA [NAS5-26555, HST-HF-51325.01, NAS 5-26555]; NSF [AST-1211916, AST-1518052]; TABASGO Foundation (KAIT and research support); Sylvia & Jim Katzman Foundation; Clark and Sharon Winslow; Christopher R. Redlich Fund; WPI Initiative MEXT (Japan); Japan Society for the Promotion of Science (JSPS) KAKENHI [26800100, 23224004, 26400222]; JSPS Open Partnership Bilateral Joint Research Project between Japan and Chile; Millennium Institute of Astrophysics [IC120009]; FONDECYT [3140563]; PRIN-INAF; Alfred P. Sloan Foundation FX This research is supported by grants GO-13684, GO-13822, and AR-14295 from STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555. A.V.F.'s group is also grateful for funding through NSF grant AST-1211916, the TABASGO Foundation (KAIT and research support), the Sylvia & Jim Katzman Foundation, Clark and Sharon Winslow, and the Christopher R. Redlich Fund. This research is supported by the WPI Initiative MEXT (Japan), the Japan Society for the Promotion of Science (JSPS) KAKENHI grants 26800100 (K.M.) 23224004, and 26400222 (K.N.), and by the JSPS Open Partnership Bilateral Joint Research Project between Japan and Chile (K.M.). M.H., G.P., and H.K. acknowledge support from the Millennium Institute of Astrophysics (grant IC120009). H.K. also acknowledges FONDECYT grant 3140563. N.E.R. is supported by PRIN-INAF 2014. R.J.F. acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan Foundation. A.A.M. acknowledges support by NASA (Hubble Fellowship grant HST-HF-51325.01, under contract NAS 5-26555). Many UC Berkeley undergraduate students helped obtain Lick/Nickel data. Research at Lick Observatory is partially supported by a generous gift from Google. NR 38 TC 4 Z9 4 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2016 VL 825 IS 2 AR L22 DI 10.3847/2041-8205/825/2/L22 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS4GG UT WOS:000380738800006 ER PT J AU Parks, GK Lee, E Fu, SY Kim, HE Ma, YQ Yang, ZW Liu, Y Lin, N Hong, J Canu, P Dandouras, I Reme, H Goldstein, ML AF Parks, G. K. Lee, E. Fu, S. Y. Kim, H. E. Ma, Y. Q. Yang, Z. W. Liu, Y. Lin, N. Hong, J. Canu, P. Dandouras, I. Reme, H. Goldstein, M. L. TI TRANSPORT OF SOLAR WIND H+ AND He++ IONS ACROSS EARTH'S BOW SHOCK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE shock waves; solar wind ID QUASI-PERPENDICULAR SHOCKS; HEAT-CONDUCTION; MAGNETIC-FIELD; MACH NUMBER; TEMPERATURE; MODEL; MAGNETOSHEATH; REFORMATION; ANISOTROPY AB We have investigated the dependence of mass, energy, and charge of solar wind ( SW) transport across Earth's bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s(-1). The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is similar to 50 Volts. We find that the temperatures of H+ and He++ beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks. C1 [Parks, G. K.; Lin, N.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lee, E.] Kyung Hee Univ, Sch Space Res, Yongin, South Korea. [Lee, E.] Kyung Hee Univ, Inst Nat Sci, Yongin, South Korea. [Fu, S. Y.; Ma, Y. Q.] Peking Univ, Inst Space Sci, Beijing, Peoples R China. [Kim, H. E.; Hong, J.] Kyung Hee Univ, Sch Space Res, Yongin, South Korea. [Yang, Z. W.; Liu, Y.] Chinese Acad Sci, Key Lab Space Weather, Beijing, Peoples R China. [Canu, P.] Ecole Polytech, Plasma Phys Lab, Paris, France. [Dandouras, I.; Reme, H.] Univ Toulouse 3, IRAP, Toulouse, France. [Dandouras, I.; Reme, H.] CNRS, Toulouse, France. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Parks, GK (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM parks@ssl.berkeley.edu FU NASA [NNX07AP96G]; National Research Foundation - Ministry of Education of Korea [NRF-2013R1A1A2010711] FX The research at UC Berkeley was performed under NASA Grant No. NNX07AP96G. Cluster is a joint project of the ESA and NASA. The research work by E. Lee was supported in part by the BK21 Plus Program and the Basic Science Research Program (NRF-2013R1A1A2010711) through the National Research Foundation funded by the Ministry of Education of Korea. NR 35 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2016 VL 825 IS 2 AR L27 DI 10.3847/2041-8205/825/2/L27 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS4GG UT WOS:000380738800011 ER PT J AU Kuleshov, MV Jones, MR Rouillard, AD Fernandez, NF Duan, QN Wang, ZC Koplev, S Jenkins, SL Jagodnik, KM Lachmann, A McDermott, MG Monteiro, CD Gundersen, GW Ma'ayan, A AF Kuleshov, Maxim V. Jones, Matthew R. Rouillard, Andrew D. Fernandez, Nicolas F. Duan, Qiaonan Wang, Zichen Koplev, Simon Jenkins, Sherry L. Jagodnik, Kathleen M. Lachmann, Alexander McDermott, Michael G. Monteiro, Caroline D. Gundersen, Gregory W. Ma'ayan, Avi TI Enrichr: a comprehensive gene set enrichment analysis web server 2016 update SO NUCLEIC ACIDS RESEARCH LA English DT Article ID FUNCTIONAL INTERPRETATION; ONTOLOGY TERMS; HUMAN PROTEOME; TOOL; DATABASE; PATHWAY; LIST; INFORMATION; BIOLOGY; SYSTEM AB Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr. C1 [Kuleshov, Maxim V.; Jones, Matthew R.; Rouillard, Andrew D.; Fernandez, Nicolas F.; Duan, Qiaonan; Wang, Zichen; Koplev, Simon; Jenkins, Sherry L.; Lachmann, Alexander; McDermott, Michael G.; Monteiro, Caroline D.; Gundersen, Gregory W.; Ma'ayan, Avi] Icahn Sch Med Mt Sinai, Dept Pharmacol & Syst Therapeut, LINCS Data Coordinat & Integrat Ctr BD2K, One Gustave L Levy Pl,Box 1215, New York, NY 10029 USA. [Jagodnik, Kathleen M.] NASA Glenn Res Ctr, Fluid Phys & Transport Proc Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. RP Ma'ayan, A (reprint author), Icahn Sch Med Mt Sinai, Dept Pharmacol & Syst Therapeut, LINCS Data Coordinat & Integrat Ctr BD2K, One Gustave L Levy Pl,Box 1215, New York, NY 10029 USA. EM avi.maayan@mssm.edu FU NIH [R01GM098316, U54HL127624, U54CA189201] FX NIH [R01GM098316, U54HL127624 and U54CA189201 to A.M.]. Funding for open access charge: Institutional funds. NR 43 TC 32 Z9 32 U1 6 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 8 PY 2016 VL 44 IS W1 BP W90 EP W97 DI 10.1093/nar/gkw377 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DR3FA UT WOS:000379786800016 PM 27141961 ER PT J AU Xu, LT Dunning, TH AF Xu, Lu T. Dunning, Thom H., Jr. TI Variations in the Nature of Triple Bonds: The N-2, HCN, and HC2H Series SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CASSCF WAVE-FUNCTIONS; SPACE SCF METHOD; POLYATOMIC-MOLECULES; ELECTRONIC-STRUCTURES; QUANTUM-THEORY; VALENCE; BENT; C-2; REPRESENTATIONS; OPTIMIZATION AB The inertness of molecular nitrogen and the reactivity of acetylene suggest there are significant variations in the nature of triple bonds. To understand these differences, we performed generalized valence bond as well as more accurate electronic structure calculations on three molecules with putative triple bonds: N-2, HCN, and HC2H. The calculations predict that the triple bond in HC2H is quite different from the triple bond in N-2 with HCN being an intermediate case but closer to N-2 than HC2H. The triple bond in N-2 is a traditional triple bond with the spins of the electrons in the bonding orbital pairs predominantly singlet coupled in the GVB wave function (92%). In HC2H, however, there is a substantial amount of residual CH(a(4)Sigma(-)) fragment coupling in the triple bond at its equilibrium geometry with the contribution of the perfect pairing spin function dropping to 82% (77% in a full valence GVB calculation). This difference in the nature of the triple bond in N-2 and HC2H may well be responsible for the differences in the reactivities of N-2 and HC2H. C1 [Xu, Lu T.; Dunning, Thom H., Jr.] Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA. [Xu, Lu T.] Univ Illinois, Dept Aerosp Engn, 104 S Wright St, Urbana, IL 61801 USA. [Xu, Lu T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Dunning, Thom H., Jr.] Univ Washington, NIAC, Pacific Northwest Natl Lab, Sieg Hall,3960 Benton Lane NE, Seattle, WA 98195 USA. [Dunning, Thom H., Jr.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Dunning, TH (reprint author), Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA.; Dunning, TH (reprint author), Univ Washington, NIAC, Pacific Northwest Natl Lab, Sieg Hall,3960 Benton Lane NE, Seattle, WA 98195 USA.; Dunning, TH (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM thdjr@illinois.edu FU Distinguished Chair for Research Excellence in Chemistry at the University of Illinois at Urbana-Champaign FX This work was supported by funding from the Distinguished Chair for Research Excellence in Chemistry at the University of Illinois at Urbana-Champaign. NR 39 TC 1 Z9 1 U1 3 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 7 PY 2016 VL 120 IS 26 BP 4526 EP 4533 DI 10.1021/acs.jpca.6b03631 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DQ8JM UT WOS:000379457100011 PM 27299373 ER PT J AU Aharonian, F Akamatsu, H Akimoto, F Allen, SW Anabuki, N Angelini, L Arnaud, K Audard, M Awaki, H Axelsson, M Bamba, A Bautz, M Blandford, R Brenneman, L Brown, GV Bulbul, E Cackett, E Chernyakova, M Chiao, M Coppi, P Costantini, E de Plaa, J den Herder, JW Done, C Dotani, T Ebisawa, K Eckart, M Enoto, T Ezoe, Y Fabian, AC Ferrigno, C Foster, A Fujimoto, R Fukazawa, Y Furuzawa, A Galeazzi, M Gallo, L Gandhi, P Giustini, M Goldwurm, A Gu, L Guainazzi, M Haba, Y Hagino, K Hamaguchi, K Harrus, I Hatsukade, I Hayashi, K Hayashi, T Hayashida, K Hiraga, J Hornschemeier, A Hoshino, A Hughes, J Iizuka, R Inoue, H Inoue, Y Ishibashi, K Ishida, M Ishikawa, K Ishisaki, Y Itoh, M Iyomoto, N Kaastra, J Kallman, T Kamae, T Kara, E Kataoka, J Katsuda, S Katsuta, J Kawaharada, M Kawai, N Kelley, R Khangulyan, D Kilbourne, C King, A Kitaguchi, T Kitamoto, S Kitayama, T Kohmura, T Kokubun, M Koyama, S Koyama, K Kretschmar, P Krimm, H Kubota, A Kunieda, H Laurent, P Lebrun, F Lee, SH Leutenegger, M Limousin, O Loewenstein, M Long, KS Lumb, D Madejski, G Maeda, Y Maier, D Makishima, K Markevitch, M Matsumoto, H Matsushita, K McCammon, D McNamara, B Mehdipour, M Miller, E Miller, J Mineshige, S Mitsuda, K Mitsuishi, I Miyazawa, T Mizuno, T Mori, H Mori, K Moseley, H Mukai, K Murakami, H Murakami, T Mushotzky, R Nagino, R Nakagawa, T Nakajima, H Nakamori, T Nakano, T Nakashima, S Nakazawa, K Nobukawa, M Noda, H Nomachi, M O'Dell, S Odaka, H Ohashi, T Ohno, M Okajima, T Ota, N Ozaki, M Paerels, F Paltani, S Parmar, A Petre, R Pinto, C Pohl, M Porter, FS Pottschmidt, K Ramsey, B Reynolds, C Russell, H Safi-Harb, S Saito, S Sakai, K Sameshima, H Sato, G Sato, K Sato, R Sawada, M Schartel, N Serlemitsos, P Seta, H Shidatsu, M Simionescu, A Smith, R Soong, Y Stawarz, L Sugawara, Y Sugita, S Szymkowiak, A Tajima, H Takahashi, H Takahashi, T Takeda, S Takei, Y Tamagawa, T Tamura, K Tamura, T Tanaka, T Tanaka, Y Tanaka, Y Tashiro, M Tawara, Y Terada, Y Terashima, Y Tombesi, F Tomida, H Tsuboi, Y Tsujimoto, M Tsunemi, H Tsuru, T Uchida, H Uchiyama, H Uchiyama, Y Ueda, S Ueda, Y Ueno, S Uno, S Urry, M Ursino, E De Vries, C Watanabe, S Werner, N Wik, D Wilkins, D Williams, B Yamada, S Yamaguchi, H Yamaoka, K Yamasaki, NY Yamauchi, M Yamauchi, S Yaqoob, T Yatsu, Y Yonetoku, D Yoshida, A Yuasa, T Zhuravleva, I Zoghbi, A AF Aharonian, Felix Akamatsu, Hiroki Akimoto, Fumie Allen, Steven W. Anabuki, Naohisa Angelini, Lorella Arnaud, Keith Audard, Marc Awaki, Hisamitsu Axelsson, Magnus Bamba, Aya Bautz, Marshall Blandford, Roger Brenneman, Laura Brown, Gregory V. Bulbul, Esra Cackett, Edward Chernyakova, Maria Chiao, Meng Coppi, Paolo Costantini, Elisa de Plaa, Jelle den Herder, Jan-Willem Done, Chris Dotani, Tadayasu Ebisawa, Ken Eckart, Megan Enoto, Teruaki Ezoe, Yuichiro Fabian, Andrew C. Ferrigno, Carlo Foster, Adam Fujimoto, Ryuichi Fukazawa, Yasushi Furuzawa, Akihiro Galeazzi, Massimiliano Gallo, Luigi Gandhi, Poshak Giustini, Margherita Goldwurm, Andrea Gu, Liyi Guainazzi, Matteo Haba, Yoshito Hagino, Kouichi Hamaguchi, Kenji Harrus, Ilana Hatsukade, Isamu Hayashi, Katsuhiro Hayashi, Takayuki Hayashida, Kiyoshi Hiraga, Junko Hornschemeier, Ann Hoshino, Akio Hughes, John Iizuka, Ryo Inoue, Hajime Inoue, Yoshiyuki Ishibashi, Kazunori Ishida, Manabu Ishikawa, Kumi Ishisaki, Yoshitaka Itoh, Masayuki Iyomoto, Naoko Kaastra, Jelle Kallman, Timothy Kamae, Tuneyoshi Kara, Erin Kataoka, Jun Katsuda, Satoru Katsuta, Junichiro Kawaharada, Madoka Kawai, Nobuyuki Kelley, Richard Khangulyan, Dmitry Kilbourne, Caroline King, Ashley Kitaguchi, Takao Kitamoto, Shunji Kitayama, Tetsu Kohmura, Takayoshi Kokubun, Motohide Koyama, Shu Koyama, Katsuji Kretschmar, Peter Krimm, Hans Kubota, Aya Kunieda, Hideyo Laurent, Philippe Lebrun, Francois Lee, Shiu-Hang Leutenegger, Maurice Limousin, Olivier Loewenstein, Michael Long, Knox S. Lumb, David Madejski, Grzegorz Maeda, Yoshitomo Maier, Daniel Makishima, Kazuo Markevitch, Maxim Matsumoto, Hironori Matsushita, Kyoko McCammon, Dan McNamara, Brian Mehdipour, Missagh Miller, Eric Miller, Jon Mineshige, Shin Mitsuda, Kazuhisa Mitsuishi, Ikuyuki Miyazawa, Takuya Mizuno, Tsunefumi Mori, Hideyuki Mori, Koji Moseley, Harvey Mukai, Koji Murakami, Hiroshi Murakami, Toshio Mushotzky, Richard Nagino, Ryo Nakagawa, Takao Nakajima, Hiroshi Nakamori, Takeshi Nakano, Toshio Nakashima, Shinya Nakazawa, Kazuhiro Nobukawa, Masayoshi Noda, Hirofumi Nomachi, Masaharu O'Dell, Steve Odaka, Hirokazu Ohashi, Takaya Ohno, Masanori Okajima, Takashi Ota, Naomi Ozaki, Masanobu Paerels, Frits Paltani, Stephane Parmar, Arvind Petre, Robert Pinto, Ciro Pohl, Martin Porter, F. Scott Pottschmidt, Katja Ramsey, Brian Reynolds, Christopher Russell, Helen Safi-Harb, Samar Saito, Shinya Sakai, Kazuhiro Sameshima, Hiroaki Sato, Goro Sato, Kosuke Sato, Rie Sawada, Makoto Schartel, Norbert Serlemitsos, Peter Seta, Hiromi Shidatsu, Megumi Simionescu, Aurora Smith, Randall Soong, Yang Stawarz, Lukasz Sugawara, Yasuharu Sugita, Satoshi Szymkowiak, Andrew Tajima, Hiroyasu Takahashi, Hiromitsu Takahashi, Tadayuki Takeda, Shin'ichiro Takei, Yoh Tamagawa, Toru Tamura, Keisuke Tamura, Takayuki Tanaka, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki Tashiro, Makoto Tawara, Yuzuru Terada, Yukikatsu Terashima, Yuichi Tombesi, Francesco Tomida, Hiroshi Tsuboi, Yohko Tsujimoto, Masahiro Tsunemi, Hiroshi Tsuru, Takeshi Uchida, Hiroyuki Uchiyama, Hideki Uchiyama, Yasunobu Ueda, Shutaro Ueda, Yoshihiro Ueno, Shiro Uno, Shin'ichiro Urry, Meg Ursino, Eugenio De Vries, Cor Watanabe, Shin Werner, Norbert Wik, Daniel Wilkins, Dan Williams, Brian Yamada, Shinya Yamaguchi, Hiroya Yamaoka, Kazutaka Yamasaki, Noriko Y. Yamauchi, Makoto Yamauchi, Shigeo Yaqoob, Tahir Yatsu, Yoichi Yonetoku, Daisuke Yoshida, Atsumasa Yuasa, Takayuki Zhuravleva, Irina Zoghbi, Abderahmen CA Hitomi Collaboration TI The quiescent intracluster medium in the core of the Perseus cluster SO NATURE LA English DT Article ID X-RAY SPECTROSCOPY; GALAXY CLUSTERS; XMM-NEWTON; TURBULENT VELOCITY; NGC 1275; NGC-1275; LINE; CONSTRAINTS; FEEDBACK; PLASMAS AB Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes(1) of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling-a process known as active galactic nucleus feedback(2-6). Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 +/- 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 +/- 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure. C1 [Aharonian, Felix; Chernyakova, Maria] Dublin Inst Adv Studies, Astron & Astrophys Sect, Dublin 2, Ireland. [Aharonian, Felix] Natl Res Nucl Univ MEPHI, Moscow 115409, Russia. [Akamatsu, Hiroki; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; Giustini, Margherita; Gu, Liyi; Kaastra, Jelle; Mehdipour, Missagh; De Vries, Cor] SRON Netherlands Inst Space Res, Utrecht, Netherlands. [Akimoto, Fumie; Furuzawa, Akihiro; Hayashi, Takayuki; Ishibashi, Kazunori; Kunieda, Hideyo; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Tamura, Keisuke; Tawara, Yuzuru; Yamaoka, Kazutaka] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Allen, Steven W.; Blandford, Roger; Kamae, Tuneyoshi; King, Ashley; Madejski, Grzegorz; Werner, Norbert; Zhuravleva, Irina] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Allen, Steven W.; Blandford, Roger; King, Ashley; Werner, Norbert; Zhuravleva, Irina] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Allen, Steven W.; Blandford, Roger; Madejski, Grzegorz] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Anabuki, Naohisa; Hayashida, Kiyoshi; Nagino, Ryo; Nakajima, Hiroshi; Tsunemi, Hiroshi] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Angelini, Lorella; Arnaud, Keith; Chiao, Meng; Eckart, Megan; Hamaguchi, Kenji; Harrus, Ilana; Hornschemeier, Ann; Kallman, Timothy; Kelley, Richard; Kilbourne, Caroline; Krimm, Hans; Leutenegger, Maurice; Loewenstein, Michael; Markevitch, Maxim; Mori, Hideyuki; Moseley, Harvey; Mukai, Koji; Okajima, Takashi; Petre, Robert; Porter, F. Scott; Pottschmidt, Katja; Sakai, Kazuhiro; Serlemitsos, Peter; Soong, Yang; Tombesi, Francesco; Wik, Daniel; Williams, Brian; Yamaguchi, Hiroya; Yaqoob, Tahir] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Arnaud, Keith; Kara, Erin; Loewenstein, Michael; Mushotzky, Richard; Reynolds, Christopher] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Audard, Marc; Ferrigno, Carlo; Paltani, Stephane; Pohl, Martin] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Awaki, Hisamitsu; Terashima, Yuichi] Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, Japan. [Axelsson, Magnus; Ezoe, Yuichiro; Ishisaki, Yoshitaka; Ohashi, Takaya; Seta, Hiromi; Yamada, Shinya] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Bamba, Aya; Nakazawa, Kazuhiro] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Bautz, Marshall; Bulbul, Esra; Miller, Eric] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Brenneman, Laura; Foster, Adam; Smith, Randall] Smithsonian Astrophys Observ, 60 Garden St,MS-4, Cambridge, MA 02138 USA. [Brown, Gregory V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cackett, Edward; Fabian, Andrew C.; Pinto, Ciro; Russell, Helen] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Coppi, Paolo; Szymkowiak, Andrew; Urry, Meg] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Done, Chris] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Dotani, Tadayasu; Ebisawa, Ken; Guainazzi, Matteo; Hagino, Kouichi; Hayashi, Katsuhiro; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Kokubun, Motohide; Koyama, Shu; Lee, Shiu-Hang; Maeda, Yoshitomo; Mitsuda, Kazuhisa; Nakagawa, Takao; Nakashima, Shinya; Odaka, Hirokazu; Ozaki, Masanobu; Sameshima, Hiroaki; Sato, Goro; Sato, Rie; Simionescu, Aurora; Takahashi, Tadayuki; Takei, Yoh; Tamura, Takayuki; Tanaka, Yasuo; Tomida, Hiroshi; Tsujimoto, Masahiro; Ueda, Shutaro; Ueno, Shiro; Watanabe, Shin; Yamasaki, Noriko Y.] Japan Aerosp Explorat Agcy JAXA, ISAS, Sagamihara, Kanagawa 2525210, Japan. [Enoto, Teruaki; Mineshige, Shin; Ueda, Yoshihiro] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. [Enoto, Teruaki] Kyoto Univ, Hakubi Ctr Adv Res, Kyoto 6068302, Japan. [Fujimoto, Ryuichi; Murakami, Toshio; Yonetoku, Daisuke] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan. [Fukazawa, Yasushi; Katsuta, Junichiro; Kitaguchi, Takao; Mizuno, Tsunefumi; Ohno, Masanori; Takahashi, Hiromitsu; Tanaka, Yasuyuki] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Galeazzi, Massimiliano; Ursino, Eugenio] Univ Miami, Dept Phys, Miami, FL 33124 USA. [Gallo, Luigi; Wilkins, Dan] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Gandhi, Poshak] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Goldwurm, Andrea; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel] CEA Saclay, IRFU Serv Astrophys, F-91191 Gif Sur Yvette, France. [Guainazzi, Matteo; Kretschmar, Peter; Schartel, Norbert] ESAC, ESA, Madrid, Spain. [Haba, Yoshito] Aichi Univ Educ, Dept Phys & Astron, Kariya, Aichi 4488543, Japan. [Hamaguchi, Kenji; Harrus, Ilana; Mukai, Koji; Pottschmidt, Katja; Yaqoob, Tahir] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Hatsukade, Isamu; Mori, Koji; Yamauchi, Makoto] Miyazaki Univ, Dept Appl Phys & Elect Engn, Miyazaki 8892192, Japan. [Hiraga, Junko] Kwansei Gakuin Univ, Sch Sci & Technol, Dept Phys, Nishinomiya, Hyogo 6691337, Japan. [Hoshino, Akio; Khangulyan, Dmitry; Kitamoto, Shunji; Saito, Shinya; Uchiyama, Yasunobu] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Hughes, John] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ishikawa, Kumi; Nakano, Toshio; Noda, Hirofumi; Tamagawa, Toru; Yuasa, Takayuki] RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Itoh, Masayuki] Kobe Univ, Fac Human Dev, Kobe, Hyogo 6578501, Japan. [Iyomoto, Naoko] Kyushu Univ, Fukuoka 8190395, Japan. [Kataoka, Jun] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Katsuda, Satoru; Sugawara, Yasuharu; Tsuboi, Yohko] Chuo Univ, Dept Phys, Tokyo 1128551, Japan. [Kawaharada, Madoka] Japan Aerosp Explorat Agcy JAXA, Tsukuba Space Ctr TKSC, Tsukuba, Ibaraki 3058505, Japan. [Kawai, Nobuyuki; Sugita, Satoshi; Yatsu, Yoichi] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kitayama, Tetsu] Toho Univ, Dept Phys, Chiba 2748510, Japan. [Kohmura, Takayoshi] Tokyo Univ Sci, Dept Phys, Chiba 2788510, Japan. [Koyama, Katsuji; Tanaka, Takaaki; Tsuru, Takeshi; Uchida, Hiroyuki] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Krimm, Hans] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Kubota, Aya] Shibaura Inst Technol, Dept Elect Informat Syst, Saitama 3378570, Japan. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lumb, David; Parmar, Arvind] ESTEC, ESA, NL-2200 AG Noordwijk, Netherlands. [Makishima, Kazuo; Shidatsu, Megumi] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Matsumoto, Hironori] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Matsushita, Kyoko; Sato, Kosuke] Tokyo Univ Sci, Dept Phys, Tokyo 1628601, Japan. [McCammon, Dan] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [McNamara, Brian] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. [Miller, Jon; Zoghbi, Abderahmen] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Murakami, Hiroshi] Tohoku Gakuin Univ, Fac Liberal Arts, Dept Informat Sci, Sendai, Miyagi 9813193, Japan. [Nakamori, Takeshi] Yamagata Univ, Dept Phys, Fac Sci, Yamagata 9908560, Japan. [Nobukawa, Masayoshi] Nara Univ Educ, Dept Teacher Training, Takabatake Cho, Nara 6308528, Japan. [Nobukawa, Masayoshi] Nara Univ Educ, Sch Educ, Takabatake Cho, Nara 6308528, Japan. [Nomachi, Masaharu] Osaka Univ, Res Ctr Nucl Phys Toyonaka, 1-1 Machikaneyama Machi, Toyonaka, Osaka 5600043, Japan. [O'Dell, Steve; Ramsey, Brian] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Ota, Naomi; Yamauchi, Shigeo] Nara Womens Univ, Fac Sci, Dept Phys, Nara 6308506, Japan. [Paerels, Frits] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Safi-Harb, Samar] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Sawada, Makoto; Yoshida, Atsumasa] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2525258, Japan. [Stawarz, Lukasz] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Tajima, Hiroyasu] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Takeda, Shin'ichiro] Grad Univ OIST, Okinawa Inst Sci & Technol, Adv Med Instrumentat Unit, Okinawa 9040495, Japan. [Tashiro, Makoto; Terada, Yukikatsu] Saitama Univ, Dept Phys, Saitama 3388570, Japan. [Uchiyama, Hideki] Shizuoka Univ, Fac Educ, Sci Educ, Shizuoka 4228529, Japan. [Uno, Shin'ichiro] Nihon Fukushi Univ, Fac Hlth Sci, Mihama, Aichi 4750012, Japan. [Wik, Daniel] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Fabian, AC (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM acf@ast.cam.ac.uk RI Yamasaki, Noriko/C-2252-2008; Porter, Frederick/D-3501-2012; Zoghbi, Abderahmen/A-8445-2017; Shidatsu, Megumi/C-5742-2017; OI Porter, Frederick/0000-0002-6374-1119; Zoghbi, Abderahmen/0000-0002-0572-9613; Kretschmar, Peter/0000-0001-9840-2048; , kouichi/0000-0003-4235-5304; De Coppi, Paolo/0000-0002-1659-0207 FU NASA Science Mission Directorate; DoE [DE-AC3-76SF00515]; NASA [NNX15AM19G]; US DoE by LLNL [DE-AC52-07NA27344]; NASA; European Space Agency; CNES; Centre National d'Etudes Spatiales; NWO, the Netherlands Organization for Scientific Research; Swiss Secretariat for Education, Research and Innovation SERI; ESA's PRODEX programme; Canadian Space Agency; JSPS/MEXT KAKENHI [15H02070, 15K05107, 23340071, 26109506, 24103002, 25400236, 25800119, 25400237, 25287042, 24540229, 25105516, 23540280, 25400235, 25247028, 26800095, 25400231, 26220703, 24105007, 23340055, 15H00773, 23000004, 15H02090, 15K17610, 15H05438, 15H00785, 24540232]; NWO via a Veni grant; JSPS; STFC [ST/L00075X/1]; JAXA; UK Science and Technology Funding Council (STFC) [ST/J003697/2]; ERC [340442]; JAXA/ISAS; JAXA/TKSC; NASA/GSFC; Noqsi Aerospace Ltd; Stanford U/KIPAC; ESA (Netherlands); SRON; CSA FX We acknowledge all the JAXA members who have contributed to the ASTRO-H (Hitomi) project. All US members gratefully acknowledge support through the NASA Science Mission Directorate. Stanford and SLAC members acknowledge support via DoE contract to SLAC National Accelerator Laboratory DE-AC3-76SF00515 and NASA grant NNX15AM19G. Part of this work was performed under the auspices of the US DoE by LLNL under contract DE-AC52-07NA27344 and also supported by NASA grants to LLNL. Support from the European Space Agency is gratefully acknowledged. French members acknowledge support from CNES, the Centre National d'Etudes Spatiales. SRON is supported by NWO, the Netherlands Organization for Scientific Research. The Swiss team acknowledges support of the Swiss Secretariat for Education, Research and Innovation SERI and ESA's PRODEX programme. The Canadian Space Agency is acknowledged for the support of Canadian members. We acknowledge support from JSPS/MEXT KAKENHI grant numbers 15H02070, 15K05107, 23340071, 26109506, 24103002, 25400236, 25800119, 25400237, 25287042, 24540229, 25105516, 23540280, 25400235, 25247028, 26800095, 25400231, 25247028, 26220703, 24105007, 23340055, 15H00773, 23000004, 15H02090, 15K17610, 15H05438, 15H00785 and 24540232. H. Akamatsu acknowledges support of NWO via a Veni grant. M. Axelsson acknowledges a JSPS International Research Fellowship. C. Done acknowledges STFC funding under grant ST/L00075X/1. P. Gandhi acknowledges a JAXA International Top Young Fellowship and UK Science and Technology Funding Council (STFC) grant ST/J003697/2. H. Russell, A. C. Fabian and C. Pinto acknowledge support from ERC Advanced Grant Feedback 340442. We thank contributions by many companies, including, in particular, NEC, Mitsubishi Heavy Industries, Sumitomo Heavy Industries and Japan Aviation Electronics Industry. Finally, we acknowledge strong support from the following engineers. JAXA/ISAS: C. Baluta, N. Bando, A. Harayama, K. Hirose, K. Ishimura, N. Iwata, T. Kawano, S. Kawasaki, K. Minesugi, C. Natsukari, H. Ogawa, M. Ogawa, M. Ohta, T. Okazaki, S.-i. Sakai, Y. Shibano, M. Shida, T. Shimada, A. Wada, T. Yamada; JAXA/TKSC: A. Okamoto, Y. Sato, K. Shinozaki, H. Sugita; Chubu U: Y. Namba; Ehime U: K. Ogi; Kochi U of Technology: T. Kosaka; Miyazaki U: Y. Nishioka; Nagoya U: H. Nagano; NASA/GSFC: T. Bialas, K. Boyce, E. Canavan, M. DiPirro, M. Kimball, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Simmons, G. Sneiderman, T. Watanabe; Noqsi Aerospace Ltd: J. Doty; Stanford U/KIPAC: M. Asai, K. Gilmore; ESA (Netherlands): C. Jewell; SRON: D. Haas, M. Frericks, P. Laubert, P. Lowes; U of Geneva: P. Azzarello; CSA: A. Koujelev, F. Moroso. NR 37 TC 7 Z9 7 U1 11 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUL 7 PY 2016 VL 535 IS 7610 BP 117 EP + DI 10.1038/nature18627 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DQ2EU UT WOS:000379015600035 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adamo, M Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blackburn, L Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Charlton, P Chassande-Mottin, E Chatterji, S Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, RT De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Ghosh, VGA Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzlez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, S White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zotov, N Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adamo, M. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blackburn, L. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P-F Colla, A. Collette, C. G. Cominsky, L. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J-P Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. T. De Rosa, R. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H-B Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J-D Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Ghosh, V. Germain Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzlez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C-J Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J-M Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y-M King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J-Y Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L-W Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J-P Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zotov, N. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE gravitational waves; detector characterization; GW150914 AB On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal. C1 [Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzlez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Adamo, M.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adamo, M.; Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Ghosh, V. Germain Archisman; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, Lab Annecy Le Vieux Phys Particules, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H-B; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Slutsky, J.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Blackburn, L.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Chatterji, S.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, V. Germain Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS IN2P3, Univ Paris Saclay, LAL, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, CNRS, CEA Irfu,IN2P3, Observ Paris,Sorbonne Paris Cite,APC,AstroParticu, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] European Gravitat Observ, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Bozzi, A.; Brown, D. A.; Chincarini, A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J-P] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C-J; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J-D; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L-W] Univ Cote Azur, CNRS, Observ Cote Azur, Artemis, F-34229 Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P-F; Deleglise, S.; Heidmann, A.; Isac, J-M; Jacqmin, T.] Univ Paris 06, Sorbonne Univ, CNRS, ENS PSL Res Univ,Coll France,Lab Kastler Brossel, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, Inst Lumiere Matiere, UMR CNRS 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon 1, CNRS, IN2P3, Lab Materiaux Avances, F-69622 Villeurbanne, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3, IEEC, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Kuo, L.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Buonanno, A.; Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y-M; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Bozzi, A.; Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Zhu, Xingjiang/E-1501-2016; Pinto, Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Rocchi, Alessio/O-9499-2015; Costa, Cesar/G-7588-2012; Gemme, Gianluca/C-7233-2008; Strain, Kenneth/D-5236-2011; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Iyer, Bala R./E-2894-2012; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; prodi, giovanni/B-4398-2010; Ciani, Giacomo/G-1036-2011; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni, Fabio/A-1920-2008; Strigin, Sergey/I-8337-2012 OI Zhu, Xingjiang/0000-0001-7049-6468; Conti, Livia/0000-0003-2731-2656; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Rocchi, Alessio/0000-0002-1382-9016; Gemme, Gianluca/0000-0002-1127-7406; Strain, Kenneth/0000-0002-2066-5355; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Berry, Christopher/0000-0003-3870-7215; Kanner, Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901; Nelemans, Gijs/0000-0002-0752-2974; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; O'Shaughnessy, Richard/0000-0001-5832-8517; Dolique, Vincent/0000-0001-5644-9905; Boschi, Valerio/0000-0001-8665-2293; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; prodi, giovanni/0000-0001-5256-915X; Ciani, Giacomo/0000-0003-4258-9338; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Marchesoni, Fabio/0000-0001-9240-6793; FU Australian Research Council; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science AMP; Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat of the Govern de les Illes Balears; Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. NR 43 TC 12 Z9 12 U1 28 U2 54 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUL 7 PY 2016 VL 33 IS 13 AR 134001 DI 10.1088/0264-9381/33/13/134001 PG 34 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DP2QM UT WOS:000378334600003 ER PT J AU Abbott, T Abdalla, FB Allam, S Amara, A Annis, J Armstrong, R Bacon, D Banerji, M Bauer, AH Baxter, E Becker, MR Benoit-Levy, A Bernstein, RA Bernstein, GM Bertin, E Blazek, J Bonnett, C Bridle, SL Brooks, D Bruderer, C Buckley-Geer, E Burke, DL Busha, MT Capozzi, D Rosell, AC Kind, MC Carretero, J Castander, FJ Chang, C Clampitt, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Das, R DePoy, DL Desai, S Diehl, HT Dietrich, JP Dodelson, S Doel, P Drlica-Wagner, A Efstathiou, G Eifler, TF Erickson, B Estrada, J Evrard, AE Neto, AF Fernandez, E Finley, DA Flaugher, B Fosalba, P Friedrich, O Frieman, J Gangkofner, C Garcia-Bellido, J Gaztanaga, E Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G Hartley, W Hirsch, M Honscheid, K Huff, EM Jain, B James, DJ Jarvis, M Kacprzak, T Kent, S Kirk, D Krause, E Kravtsov, A Kuehn, K Kuropatkin, N Kwan, J Lahav, O Leistedt, B Li, TS Lima, M Lin, H MacCrann, N March, M Marshall, JL Martini, P McMahon, RG Melchior, P Miller, CJ Miquel, R Mohr, JJ Neilsen, E Nichol, RC Nicola, A Nord, B Ogando, R Palmese, A Peiris, HV Plazas, AA Refregier, A Roe, N Romer, AK Roodman, A Rowe, B Rykoff, ES Sabiu, C Sadeh, I Sako, M Samuroff, S Sanchez, E Sanchez, C Seo, H Sevilla-Noarbe, I Sheldon, E Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Troxel, MA Vikram, V Walker, AR Wechsler, RH Weller, J Zhang, Y Zuntz, J AF Abbott, T. Abdalla, F. B. Allam, S. Amara, A. Annis, J. Armstrong, R. Bacon, D. Banerji, M. Bauer, A. H. Baxter, E. Becker, M. R. Benoit-Levy, A. Bernstein, R. A. Bernstein, G. M. Bertin, E. Blazek, J. Bonnett, C. Bridle, S. L. Brooks, D. Bruderer, C. Buckley-Geer, E. Burke, D. L. Busha, M. T. Capozzi, D. Rosell, A. Carnero Kind, M. Carrasco Carretero, J. Castander, F. J. Chang, C. Clampitt, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Das, R. DePoy, D. L. Desai, S. Diehl, H. T. Dietrich, J. P. Dodelson, S. Doel, P. Drlica-Wagner, A. Efstathiou, G. Eifler, T. F. Erickson, B. Estrada, J. Evrard, A. E. Fausti Neto, A. Fernandez, E. Finley, D. A. Flaugher, B. Fosalba, P. Friedrich, O. Frieman, J. Gangkofner, C. Garcia-Bellido, J. Gaztanaga, E. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. Hartley, W. Hirsch, M. Honscheid, K. Huff, E. M. Jain, B. James, D. J. Jarvis, M. Kacprzak, T. Kent, S. Kirk, D. Krause, E. Kravtsov, A. Kuehn, K. Kuropatkin, N. Kwan, J. Lahav, O. Leistedt, B. Li, T. S. Lima, M. Lin, H. MacCrann, N. March, M. Marshall, J. L. Martini, P. McMahon, R. G. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Neilsen, E. Nichol, R. C. Nicola, A. Nord, B. Ogando, R. Palmese, A. Peiris, H. V. Plazas, A. A. Refregier, A. Roe, N. Romer, A. K. Roodman, A. Rowe, B. Rykoff, E. S. Sabiu, C. Sadeh, I. Sako, M. Samuroff, S. Sanchez, E. Sanchez, C. Seo, H. Sevilla-Noarbe, I. Sheldon, E. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Troxel, M. A. Vikram, V. Walker, A. R. Wechsler, R. H. Weller, J. Zhang, Y. Zuntz, J. CA Dark Energy Survey Collaboration TI Cosmology from cosmic shear with Dark Energy Survey Science Verification data SO PHYSICAL REVIEW D LA English DT Article ID MATTER POWER SPECTRUM; WEAK-LENSING TOMOGRAPHY; LARGE-SCALE STRUCTURE; BARYON ACOUSTIC-OSCILLATIONS; INTRINSIC ALIGNMENTS; PARAMETER CONSTRAINTS; GALAXY ELLIPTICITIES; PRECISION COSMOLOGY; COVARIANCE-MATRIX; HUBBLE CONSTANT AB We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma(8)(Omega(m)/0.3)(0.5) = 0.81 +/- 0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are similar to 30% larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma(8)(Omega(m)/0.3)(0.5) is present regardless of the value of w. C1 [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Hirsch, M.; Kirk, D.; Lahav, O.; Leistedt, B.; Palmese, A.; Peiris, H. V.; Rowe, B.; Sadeh, I.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Dodelson, S.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Lin, H.; Neilsen, E.; Nord, B.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Amara, A.; Bruderer, C.; Chang, C.; Hartley, W.; Kacprzak, T.; Nicola, A.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Banerji, M.; Efstathiou, G.; McMahon, R. G.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.; Efstathiou, G.; McMahon, R. G.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Bauer, A. H.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain. [Baxter, E.; Bernstein, G. M.; Clampitt, J.; Eifler, T. F.; Jain, B.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Becker, M. R.; Burke, D. L.; Busha, M. T.; Cunha, C. E.; Krause, E.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Becker, M. R.; Busha, M. T.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Blazek, J.; Honscheid, K.; Huff, E. M.; Martini, P.; Melchior, P.; Seo, H.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonnett, C.; Carretero, J.; Fernandez, E.; Miquel, R.; Sanchez, C.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bridle, S. L.; MacCrann, N.; Samuroff, S.; Troxel, M. A.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Burke, D. L.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rosell, A. Carnero; da Costa, L. N.; Jarvis, M.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, A. Carnero; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Das, R.; Erickson, B.; Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Dietrich, J. P.; Gangkofner, C.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Desai, S.; Dietrich, J. P.; Gangkofner, C.; Mohr, J. J.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Dodelson, S.; Frieman, J.; Kravtsov, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Friedrich, O.; Gruen, D.; Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Friedrich, O.; Gruen, D.; Weller, J.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Garcia-Bellido, J.] Univ Autonoma Madrid, Inst Fis Teor IFT UAM CSIC, E-28049 Madrid, Spain. [Honscheid, K.; Huff, E. M.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Kwan, J.; Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Roe, N.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sabiu, C.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. [Seo, H.] Ohio Univ, Dept Phys & Astron, 251B Clippinger Labs, Athens, OH 45701 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP MacCrann, N (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. EM niall.maccrann@postgrad.manchester.ac.uk; joseph.zuntz@manchester.ac.uk RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; Gaztanaga, Enrique/L-4894-2014; OI Garcia-Bellido, Juan/0000-0002-9370-8360; Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Gaztanaga, Enrique/0000-0001-9632-0815; McMahon, Richard/0000-0001-8447-8869; Stern, Corvin/0000-0003-4406-6127; Rowe, Barnaby/0000-0002-7042-9174; Abdalla, Filipe/0000-0003-2063-4345 FU DoE [DE-AC02-98CH10886, DE-SC0007901, DE-FG02-91ER40690]; SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG); DFG cluster of excellence 'Origin and Structure of the Universe'; NSF [AST-0812790, AST-1138729]; JPL; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234, SEV-2012-0249]; European Research Council under European Union Seventh Framework Programme; ERC grant [240672, 291329, 306478] FX We are grateful for the extraordinary contributions of our CTIO colleagues and the DECam Construction, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management group. We are very grateful to Iain Murray for advice on importance sampling. We thank Catherine Heymans, Martin Kilbinger, Antony Lewis and Adam Moss for helpful discussion. This paper is DES paper DES-2015-0076 and FermiLab preprint number FERMILAB-PUB-15-285-AE. Sheldon is supported by DoE Grant No. DE-AC02-98CH10886. Gruen was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence 'Origin and Structure of the Universe'. Gangkofner acknowledges the support by the DFG Cluster of Excellence 'Origin and Structure of the Universe'. Jarvis has been supported on this project by NSF Grants No. AST-0812790 and AST-1138729. Jarvis, Bernstein, and Jain are partially supported by DoE Grant No. DE-SC0007901. Melchior was supported by DoE Grant No. DE-FG02-91ER40690. Plazas was supported by DoE Grant No. DE-AC02-98CH10886 and by JPL, run by Caltech under a contract for NASA. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant No. AST-1138766. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234 and SEV-2012-0249.; r Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. This paper has gone through internal review by the DES collaboration. NR 118 TC 8 Z9 8 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 6 PY 2016 VL 94 IS 2 AR 022001 DI 10.1103/PhysRevD.94.022001 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DR1RJ UT WOS:000379682300001 ER PT J AU Becker, MR Troxel, MA MacCrann, N Krause, E Eifler, TF Friedrich, O Nicola, A Refregier, A Amara, A Bacon, D Bernstein, GM Bonnett, C Bridle, SL Busha, MT Chang, C Dodelson, S Erickson, B Evrard, AE Frieman, J Gaztanaga, E Gruen, D Hartley, W Jain, B Jarvis, M Kacprzak, T Kirk, D Kravtsov, A Leistedt, B Peiris, HV Rykoff, ES Sabiu, C Sanchez, C Seo, H Sheldon, E Wechsler, RH Zuntz, J Abbott, T Abdalla, FB Allam, S Armstrong, R Banerji, M Bauer, AH Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Castander, FJ Crocce, M Cunha, CE D'Andrea, CB da Costa, LN DePoy, DL Desai, S Diehl, HT Dietrich, JP Doel, P Neto, AF Fernandez, E Finley, DA Flaugher, B Fosalba, P Gerdes, DW Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Maia, MAG March, M Martini, P Melchior, P Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Sako, M Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Vikram, V Walker, AR AF Becker, M. R. Troxel, M. A. MacCrann, N. Krause, E. Eifler, T. F. Friedrich, O. Nicola, A. Refregier, A. Amara, A. Bacon, D. Bernstein, G. M. Bonnett, C. Bridle, S. L. Busha, M. T. Chang, C. Dodelson, S. Erickson, B. Evrard, A. E. Frieman, J. Gaztanaga, E. Gruen, D. Hartley, W. Jain, B. Jarvis, M. Kacprzak, T. Kirk, D. Kravtsov, A. Leistedt, B. Peiris, H. V. Rykoff, E. S. Sabiu, C. Sanchez, C. Seo, H. Sheldon, E. Wechsler, R. H. Zuntz, J. Abbott, T. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Bauer, A. H. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Castander, F. J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. DePoy, D. L. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Fausti Neto, A. Fernandez, E. Finley, D. A. Flaugher, B. Fosalba, P. Gerdes, D. W. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. March, M. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Vikram, V. Walker, A. R. CA Dark Energy Survey Collaboration TI Cosmic shear measurements with Dark Energy Survey Science Verification data SO PHYSICAL REVIEW D LA English DT Article ID WEAK LENSING SURVEYS; POLARIZATION POWER SPECTRA; GALAXY SHAPE MEASUREMENT; LARGE-SCALE STRUCTURE; COVARIANCE-MATRIX; DISTANT GALAXIES; NOISE BIAS; STATISTICS; IMPACT; SIMULATIONS AB We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either NGMIX or IM3SHAPE, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We furthermore use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7 sigma. Cosmological constraints from the measurements in this work are presented in a companion paper. C1 [Becker, M. R.; Busha, M. T.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Becker, M. R.; Krause, E.; Busha, M. T.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.; Reil, K.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Troxel, M. A.; MacCrann, N.; Bridle, S. L.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Oxford Rd, Manchester M13 9PL, Lancs, England. [Eifler, T. F.; Bernstein, G. M.; Jain, B.; Jarvis, M.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Eifler, T. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Friedrich, O.; Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Friedrich, O.; Gruen, D.; Dietrich, J. P.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Nicola, A.; Refregier, A.; Amara, A.; Chang, C.; Hartley, W.; Kacprzak, T.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Bonnett, C.; Sanchez, C.; Carretero, J.; Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dodelson, S.; Frieman, J.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Dodelson, S.; Frieman, J.; Kravtsov, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Erickson, B.; Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gaztanaga, E.; Bauer, A. H.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain. [Kirk, D.; Leistedt, B.; Peiris, H. V.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Sabiu, C.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Seo, H.; Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Banerji, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [DePoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Thomas, D.] Www Sepnet Ac Uk, South East Phys Network, SEPnet, Southampton, Hants, England. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Becker, MR (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.; Becker, MR (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. EM beckermr@stanford.edu RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Gaztanaga, Enrique/0000-0001-9632-0815; Abdalla, Filipe/0000-0003-2063-4345 FU University of Chicago Research Computing Center; National Science Foundation [ACI-1053575, AST-1138766]; European Research Council [240672]; DOE SciDAC grant; SFB-Transregio 33 "The Dark Universe" by the Deutsche Forschungsgemeinaft (DFG); DFG cluster of excellence "Origin and Structure of the Universe"; Swiss National Foundation [20021_14944, 20021_1439606]; NSF [AST-0812790, AST-1138729]; DoE [DE-SC0007901]; FAPESP; CNPq; NASA Astrophysics Data System; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; ERDF funds from European Union; [NSF-AST-1211838] FX We are grateful for the extraordinary contributions of our CTIO colleagues and the DECam Construction, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management group. M. R. B. is grateful for the support of the University of Chicago Research Computing Center, and especially Doug Rudd, for the time used to carry out the N-body simulations carried out in this work. M. R. B. would also like to thank Stewart Marshall for his ongoing assistance in using SLAC computing resources. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. J. A. Z., M. A. T., S. L. B. acknowledge support from the European Research Council in the form of a Starting Grant with number 240672. M. R. B. and R. H. W. received partial support from NSF-AST-1211838 and from a DOE SciDAC grant. O. F. and D. G. were supported by SFB-Transregio 33 "The Dark Universe" by the Deutsche Forschungsgemeinaft (DFG) and the DFG cluster of excellence "Origin and Structure of the Universe." A.A., A.R., A.N. are supported in part by Grants No. 20021_14944 and No. 20021_1439606 from the Swiss National Foundation. Jarvis has been supported on this project by NSF Grants No. AST-0812790 and No. AST-1138729. Jarvis, Bernstein, and Jain are partially supported by DoE grant DE-SC0007901. M. L. is partially supported by FAPESP and CNPq. This work made extensive use of the NASA Astrophysics Data System and arXiv.org preprint server. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.; r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. This paper is Fermilab publication FERMILAB-PUB-15-303-AE and DES publication DES-2015-0061. This paper has gone through internal review by the DES collaboration. NR 78 TC 16 Z9 16 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 6 PY 2016 VL 94 IS 2 AR 022002 DI 10.1103/PhysRevD.94.022002 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DR1RJ UT WOS:000379682300002 ER PT J AU Leonard, CD Bull, P Allison, R AF Leonard, C. Danielle Bull, Philip Allison, Rupert TI Spatial curvature endgame: Reaching the limit of curvature determination SO PHYSICAL REVIEW D LA English DT Article ID BARYON ACOUSTIC-OSCILLATION; MATTER POWER SPECTRUM; DARK ENERGY; DISTANCE MEASUREMENTS; CROSS-CORRELATION; COSMIC SHEAR; UNIVERSE; COSMOLOGY; SCALE; RECONSTRUCTION AB Current constraints on spatial curvature show that it is dynamically negligible: vertical bar Omega(K)vertical bar less than or similar to 5 x 10(-3) (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on Omega(K) at around the 10(-4) level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable-by an order of magnitude-even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Lambda CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like Omega(K) with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses. C1 [Leonard, C. Danielle; Allison, Rupert] Univ Oxford, Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. [Bull, Philip] CALTECH, Pasadena, CA 91125 USA. [Bull, Philip] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. RP Leonard, CD (reprint author), Univ Oxford, Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. EM danielle.leonard@physics.ox.ac.uk FU Natural Sciences and Engineering Research Council of Canada; NASA; ERC [259505] FX We would like to thank Pedro Ferreira and Jo Dunkley for helpful discussions. We also thank the authors of CAMB, which was used in this work. C. D. L. is supported by the Natural Sciences and Engineering Research Council of Canada. P. B.'s research was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Universities Space Research Association under contract with NASA. R. A. is supported by ERC Grant No. 259505. NR 91 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 5 PY 2016 VL 94 IS 2 AR 023502 DI 10.1103/PhysRevD.94.023502 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DR2GK UT WOS:000379722800005 ER PT J AU Chakraborty, S Fu, R Massie, ST Stephens, G AF Chakraborty, Sudip Fu, Rong Massie, Steven T. Stephens, Graeme TI Relative influence of meteorological conditions and aerosols on the lifetime of mesoscale convective systems SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE mesoscale convective systems; aerosols; meteorological parameters ID LIGHTNING ACTIVITY; CLOUDS; PRECIPITATION; INVIGORATION; RETRIEVAL; IMPACTS; LIQUID; AMAZON; RADAR; FLOOD AB Using collocated measurements from geostationary and polar-orbital satellites over tropical continents, we provide a large-scale statistical assessment of the relative influence of aerosols and meteorological conditions on the lifetime of mesoscale convective systems (MCSs). Our results show that MCSs' lifetime increases by 3-24 h when vertical wind shear (VWS) and convective available potential energy (CAPE) are moderate to high and ambient aerosol optical depth (AOD) increases by 1 SD (1s). However, this influence is not as strong as that of CAPE, relative humidity, and VWS, which increase MCSs' lifetime by 3-30 h, 3-27 h, and 3-30 h per 1s of these variables and explain up to 36%, 45%, and 34%, respectively, of the variance of the MCSs' lifetime. AOD explains up to 24% of the total variance of MCSs' lifetime during the decay phase. This result is physically consistent with that of the variation of the MCSs' ice water content (IWC) with aerosols, which accounts for 35% and 27% of the total variance of the IWC in convective cores and anvil, respectively, during the decay phase. The effect of aerosols on MCSs' lifetime varies between different continents. AOD appears to explain up to 20-22% of the total variance of MCSs' lifetime over equatorial South America compared with 8% over equatorial Africa. Aerosols over the Indian Ocean can explain 20% of total variance of MCSs' lifetime over South Asia because such MCSs form and develop over the ocean. These regional differences of aerosol impacts may be linked to different meteorological conditions. C1 [Chakraborty, Sudip; Fu, Rong] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Massie, Steven T.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Stephens, Graeme] Jet Prop Lab, Pasadena, CA 91109 USA. RP Chakraborty, S (reprint author), Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. EM sudipm@utexas.edu FU NASA [NNX1172G]; Office of Biological & Environmental Research within Department of Energy, Office of Science [DE-SC0011117]; NASA CALIPSO/CLOUDSAT [NNX14AO85G] FX We acknowledge the providers of the ISCCP, CloudSat, TRMM, Aura MLS, Aqua MODIS, and MERRA datasets. S.C. and R.F. were supported by NASA Aura Science Team Grant (NNX1172G) and the Office of Biological & Environmental Research within the Department of Energy, Office of Science Grant (DE-SC0011117). S.T.M. and S.C. are supported by NASA CALIPSO/CLOUDSAT Grant NNX14AO85G. The supercomputer at the University of Texas has been used to store and analyze the data. NR 43 TC 2 Z9 2 U1 5 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 5 PY 2016 VL 113 IS 27 BP 7426 EP 7431 DI 10.1073/pnas.1601935113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DQ2GW UT WOS:000379021700050 PM 27313203 ER PT J AU Saghaian, SM Karaca, HE Souri, M Turabi, AS Noebe, RD AF Saghaian, S. M. Karaca, H. E. Souri, M. Turabi, A. S. Noebe, R. D. TI Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys SO MATERIALS & DESIGN LA English DT Article DE Shape memory alloys; NiTiHf; Tensile testing; Heat treatments ID INDUCED MARTENSITIC-TRANSFORMATION; SINGLE-CRYSTALS; COMPRESSION ASYMMETRY; POLYCRYSTALLINE NITI; PSEUDOELASTIC NITI; DAMPING CAPACITY; STRESS; STATE; SHEAR AB The effects of heat treatment on the shape memory characteristics of a polycrystalline Ni50.3Ti29.7Hf20 alloy were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. It was revealed that transformation temperatures could be increased above 100 degrees C with aging at temperature above 500 degrees C and in particular were stabilized against stress-free thermal cycling after aging at 500 degrees C. Recoverable strain of similar to 5% was observed for the as-extruded samples and decreased to similar to 4% after aging due to the formation of non-transformable precipitates. The aged alloys demonstrated near perfect shape memory effect under tensile stresses as high as 700 MPa and perfect superelasticity at temperatures up to 230 degrees C. Finally, the tension-compression asymmetry observed in NiTiHf alloys was discussed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Saghaian, S. M.; Karaca, H. E.; Souri, M.; Turabi, A. S.] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. [Noebe, R. D.] NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH USA. RP Karaca, HE (reprint author), Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. EM karacahaluk@uky.edu FU NASA EPSCoR [NNX11AQ31A]; NSF [CMMI-1538665]; NASA Transformative Aeronautics Concepts Program (TACP), Transformational Tools & Technologies Project; [KSEF-148-502-15-355] FX This work was supported in part by the NASA EPSCoR NNX11AQ31A, KSEF-148-502-15-355, NSF CMMI-1538665 programs and NASA Transformative Aeronautics Concepts Program (TACP), Transformational Tools & Technologies Project (Dale Hopkins, Technical Lead for Structures & Materials Discipline). NR 30 TC 2 Z9 2 U1 10 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-1275 EI 1873-4197 J9 MATER DESIGN JI Mater. Des. PD JUL 5 PY 2016 VL 101 BP 340 EP 345 DI 10.1016/j.matdes.2016.03.163 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA DL1SS UT WOS:000375413100043 ER PT J AU Zuidema, P Redemann, J Haywood, J Wood, R Piketh, S Hipondoka, M Formenti, P AF Zuidema, Paquita Redemann, Jens Haywood, James Wood, Robert Piketh, Stuart Hipondoka, Martin Formenti, Paola TI Smoke and Clouds above the Southeast Atlantic Upcoming Field Campaigns Probe Absorbing Aerosol's Impact on Climate SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Zuidema, Paquita] Univ Miami, Miami, FL USA. [Redemann, Jens] NASA, Ames Res Ctr, Mountain View, CA USA. [Haywood, James] Univ Exeter, Exeter, Devon, England. [Wood, Robert] Univ Washington, Seattle, WA 98195 USA. [Piketh, Stuart] North West Univ, Potchefstroom, South Africa. [Hipondoka, Martin] Univ Namibia, Windhoek, Namibia. [Formenti, Paola] Lab Interuniv Syst Atmospher, Creteil, France. RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM pzuidema@rsmas.miami.edu RI Zuidema, Paquita/C-9659-2013; Wood, Robert/A-2989-2008 OI Zuidema, Paquita/0000-0003-4719-372X; Wood, Robert/0000-0002-1401-3828 NR 2 TC 2 Z9 2 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUL PY 2016 VL 97 IS 7 BP 1131 EP 1135 DI 10.1175/BAMS-D-15-00082.1 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT7GF UT WOS:000381654400006 ER PT J AU Shui, JL Lin, Y Connell, JW Xu, JT Fan, XL Dai, LM AF Shui, Jianglan Lin, Yi Connell, John W. Xu, Jiantie Fan, Xueliu Dai, Liming TI Nitrogen-Doped Holey Graphene for High-Performance Rechargeable Li-O-2 Batteries SO ACS ENERGY LETTERS LA English DT Article ID LITHIUM-OXYGEN BATTERIES; LI-AIR BATTERIES; CATHODE CATALYSTS; POROUS GRAPHENE; REDUCTION; NANOPARTICLES; COMPOSITE; ELECTRODE; OXIDE; ELECTROCATALYST AB Li-air batteries represent cutting edge electrochemical energy storage devices, but their practical applications have been precluded by the high cathode cost, the low discharge/charge efficiency, and/or the short battery lifetime. Here, we developed a low-cost, but very efficient, air electrode from porous nitrogen-doped holey graphene for rechargeable nonaqueous Li-O-2 cells. The resultant Li-O-2 cell can deliver a high round-trip efficiency (85%) and a long cycling life (>100 cycles) under controlled discharge/charge depths or a high capacity of 17 000 mAh/g under the full discharge/charge condition, superior to most other carbonaceous air cathodes. The observed superb performance for the air electrode based on the nitrogen-doped holey graphene can be attributed to its efficient metal-free catalytic activity and three-dimensional mass transport pathway. Therefore, this work represents a new approach to low-cost, efficient, metal-free, binder-free, and hierarchically porous air electrodes useful for energy conversion and storage from N-doped holey graphene. C1 [Shui, Jianglan; Xu, Jiantie; Fan, Xueliu; Dai, Liming] Case Western Reserve Univ, Case Sch Engn, Dept Macromol Sci & Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA. [Lin, Yi] Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. [Lin, Yi] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA. [Connell, John W.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Mail Stop 226, Hampton, VA 23681 USA. [Shui, Jianglan] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. RP Dai, LM (reprint author), Case Western Reserve Univ, Case Sch Engn, Dept Macromol Sci & Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA.; Lin, Y (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA.; Lin, Y (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA.; Connell, JW (reprint author), NASA, Langley Res Ctr, Adv Mat & Proc Branch, Mail Stop 226, Hampton, VA 23681 USA. EM yi.lin@nianet.org; john.w.connell@nasa.gov; liming.dai@case.edu FU AFOSR [FA9550-12-1-0037]; NSF-AIR [HP-1343270]; NSF [CMMI-1400274]; Internal Research and Development (IRAD) funds at NASA Langley Research Center FX We acknowledge support from AFOSR (FA9550-12-1-0037), NSF-AIR (HP-1343270), and NSF (CMMI-1400274). Y.L. and J.W.C are grateful for support from Internal Research and Development (IRAD) funds at NASA Langley Research Center. NR 45 TC 1 Z9 1 U1 29 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD JUL PY 2016 VL 1 IS 1 BP 260 EP 265 DI 10.1021/acsenergylett.6b00128 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EE5AS UT WOS:000389617700042 ER PT J AU Fang, K Shen, C Fisher, JB Niu, J AF Fang, Kuai Shen, Chaopeng Fisher, Joshua B. Niu, Jie TI Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE SO WATER RESOURCES RESEARCH LA English DT Article ID SURFACE PROCESSES MODEL; GROUNDWATER DEPLETION; CLIMATE-CHANGE; ANNUAL RUNOFF; EVAPOTRANSPIRATION; FRAMEWORK; BALANCES; CONSTRAINTS; VARIABILITY; SATELLITES AB The Budyko hypothesis provides a first-order estimate of water partitioning into runoff (Q) and evapotranspiration (E). Observations, however, often show significant departures from the Budyko curve; moreover, past improvements to Budyko curve tend to lose predictive power when migrated between regions or to small scales. Here to estimate departures from the Budyko curve, we use hydrologic signatures extracted from Gravity Recovery And Climate Experiment (GRACE) terrestrial water storage anomalies. The signatures include GRACE amplitude as a fraction of precipitation (A/P), interannual variability, and 1-month lag autocorrelation. We created a group of linear models embodying two alternate hypotheses that departures can be predicted by (a) Taylor series expansion based on the deviation of physical characteristics (seasonality, snow fraction, and vegetation index) from reference conditions and (b) surrogate indicators covarying with E, e.g., A/P. These models are fitted using a mesoscale USA data set (HUC4) and then evaluated using world data sets and USA basins <1 x 10(5) km(2). The model with A/P could reduce error by 50% compared to Budyko itself. We found that seasonality and fraction of precipitation as snow account for a major portion of the predictive power of A/P, while the remainder is attributed to unexplained basin characteristics. When migrated to a global data set, type b models performed better than type a. This contrast in transferability is argued to be due to data set limitations and catchment coevolution. The GRACE-based correction performs well for USA basins >1000 km(2) and, according to comparison with other global data sets, is suitable for data fusion purposes, with GRACE error as estimates of uncertainty. C1 [Fang, Kuai; Shen, Chaopeng] Penn State Univ, Dept Civil & Environm Engn, State Coll, PA 16801 USA. [Fisher, Joshua B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Niu, Jie] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Niu, Jie] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Shen, C (reprint author), Penn State Univ, Dept Civil & Environm Engn, State Coll, PA 16801 USA. EM cshen@engr.psu.edu OI Fisher, Joshua/0000-0003-4734-9085; Shen, Chaopeng/0000-0002-0685-1901 FU Office of Biological and Environmental Research of the US Department of Energy [DE-SC0010620] FX This work was supported by Office of Biological and Environmental Research of the US Department of Energy under contract DE-SC0010620. We thank David Wolock from USGS for providing shapefiles for the USGS basins. Data generated from this study are presented in figure format in the paper, and the data sets can be requested from the corresponding author. We thank Murugesu Sivapalan for some useful discussion about incomplete coevolution. J.B.F. contributed to this work from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Constructive comments from anonymous reviewers and the Associate Editor have helped to improve the manuscript. NR 77 TC 1 Z9 1 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUL PY 2016 VL 52 IS 7 BP 5537 EP 5554 DI 10.1002/2016WR018748 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DW5KO UT WOS:000383683800035 ER PT J AU Tenenbaum, LF AF Tenenbaum, Laura Faye TI Between a rock and a cold place SO PHYSICS WORLD LA English DT Editorial Material C1 [Tenenbaum, Laura Faye] NASA, Jet Prop Lab, Washington, DC 20546 USA. RP Tenenbaum, LF (reprint author), NASA, Jet Prop Lab, Washington, DC 20546 USA. EM laura.f.tenenbaum@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUL PY 2016 VL 29 IS 7 BP 32 EP 35 PG 4 WC Physics, Multidisciplinary SC Physics GA EB7MD UT WOS:000387570800025 ER PT J AU Olkin, C AF Olkin, Cathy TI Our new view of Pluto SO PHYSICS WORLD LA English DT Editorial Material C1 [Olkin, Cathy] Southwest Res Inst, Boulder, CO 80302 USA. [Olkin, Cathy] NASA, New Horizons Mission, Washington, DC 20546 USA. RP Olkin, C (reprint author), Southwest Res Inst, Boulder, CO 80302 USA.; Olkin, C (reprint author), NASA, New Horizons Mission, Washington, DC 20546 USA. EM colkin@boulder.swri.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUL PY 2016 VL 29 IS 7 BP 40 EP 43 PG 4 WC Physics, Multidisciplinary SC Physics GA EB7MD UT WOS:000387570800027 ER PT J AU Bottom, M Shelton, JC Wallace, JK Bartos, R Kuhn, J Mawet, D Mennesson, B Burruss, R Serabyn, E AF Bottom, Michael Shelton, J. Chris Wallace, James K. Bartos, Randall Kuhn, Jonas Mawet, Dimitri Mennesson, Bertrand Burruss, Rick Serabyn, Eugene TI Stellar Double Coronagraph: A Multistage Coronagraphic Platform at Palomar Observatory SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE instrumentation: adaptive optics; instrumentation: high angular resolution; planets and satellites: detection ID VORTEX CORONAGRAPH; LABORATORY DEMONSTRATION; MASK; ASTROMETRY; IMAGE AB We present a new instrument, the "Stellar Double Coronagraph," a flexible coronagraphic platform. Designed for Palomar Observatory's 200 '' Hale telescope, its two focal and pupil planes allow for a number of different observing configurations, including multiple vortex coronagraphs in series for improved contrast at small angles. We describe the motivation, design, observing modes, wavefront control approaches, data reduction pipeline, and early science results. We also discuss future directions for the instrument. C1 [Bottom, Michael; Mawet, Dimitri] CALTECH, MC 249-17, Pasadena, CA 91125 USA. [Shelton, J. Chris; Wallace, James K.; Bartos, Randall; Kuhn, Jonas; Mawet, Dimitri; Mennesson, Bertrand; Burruss, Rick; Serabyn, Eugene] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kuhn, Jonas] ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. RP Bottom, M (reprint author), CALTECH, MC 249-17, Pasadena, CA 91125 USA. EM mbottom@caltech.edu FU NASA [NNX13AN42H]; National Aeronautics and Space Administration (NASA) FX We are pleased to acknowledge the Palomar Observatory staff for their enthusiastic and excellent support. We thank the referee for a careful and thorough read, and comments which improved the paper. MB is supported by a NASA Space Technology Research Fellowship, grant NNX13AN42H. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 30 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUL PY 2016 VL 128 IS 965 AR 075003 DI 10.1088/1538-3873/128/965/075003 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1LD UT WOS:000387112300010 ER PT J AU Mullally, F Coughlin, JL Thompson, SE Christiansen, J Burke, C Clarke, BD Haas, MR AF Mullally, F. Coughlin, Jeffery L. Thompson, Susan E. Christiansen, Jessie Burke, Christopher Clarke, Bruce D. Haas, Michael R. TI Identifying False Alarms in the Kepler Planet Candidate Catalog SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE methods: data analysis; planets and satellites: detection; binaries: eclipsing ID SYSTEMATIC-ERROR CORRECTION; LIGHT CURVES; VALIDATION; POSITIVES; SAMPLE; IDENTIFICATION; SIGNALS AB We present a new automated method to identify instrumental features masquerading as small, long-period planets in the Kepler planet candidate catalog. These systematics, mistakenly identified as planet transits, can have a strong impact on occurrence rate calculations because they cluster in a region of parameter space where Kepler's sensitivity to planets is poor. We compare individual transit-like events to a variety of models of real transits and systematic events and use a Bayesian information criterion to evaluate the likelihood that each event is real. We describe our technique and test its performance on simulated data. Results from this technique are incorporated in the Kepler Q1-Q17 DR24 planet candidate catalog of Coughlin et al. C1 [Mullally, F.; Coughlin, Jeffery L.; Thompson, Susan E.; Burke, Christopher; Clarke, Bruce D.] NASA, Ames Res Ctr, SETI, Moffett Field, CA 94035 USA. [Christiansen, Jessie] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Haas, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mullally, F (reprint author), NASA, Ames Res Ctr, SETI, Moffett Field, CA 94035 USA. EM fergal.mullally@nasa.gov FU NASA's Science Mission Directorate; NASA [NAS5-26555]; NASA Office of Space Science [NNX13AC07G]; National Aeronautics and Space Administration FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. All of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. NR 27 TC 6 Z9 6 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUL PY 2016 VL 128 IS 965 AR 074502 DI 10.1088/1538-3873/128/965/074502 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1LD UT WOS:000387112300006 ER PT J AU Placek, B Knuth, KH Angerhausen, D AF Placek, Ben Knuth, Kevin H. Angerhausen, Daniel TI Combining Photometry from Kepler and TESS to Improve Short-period Exoplanet Characterization SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE methods: data analysis; techniques: photometric ID EXTRASOLAR GIANT PLANETS; LIGHT CURVES; ELLIPSOIDAL VARIATIONS; PHASE CURVES; HOT JUPITER; ORBIT; CONFIRMATION; COMPANIONS; EFFICIENT; EXONEST AB Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission. C1 [Placek, Ben; Knuth, Kevin H.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Angerhausen, Daniel] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Placek, Ben] Schenectady Cty Community Coll, Ctr Sci & Technol, Schenectady, NY 12305 USA. [Knuth, Kevin H.] SUNY Albany, Dept Informat, Albany, NY 12222 USA. RP Placek, B (reprint author), SUNY Albany, Dept Phys, Albany, NY 12222 USA.; Placek, B (reprint author), Schenectady Cty Community Coll, Ctr Sci & Technol, Schenectady, NY 12305 USA. EM placekbh@sunysccc.edu; kknuth@albany.edu; daniel.angerhausen@nasa.gov FU National Aeronautics and Space Administration FX This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at exoplanets.org. This research has also made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Finally, the authors would like to thank the anonymous reviewer for the very constructive comments on the paper. NR 37 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUL PY 2016 VL 128 IS 965 AR 074503 DI 10.1088/1538-3873/128/965/074503 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1LD UT WOS:000387112300007 ER PT J AU Van Cleve, JE Howell, SB Smith, JC Clarke, BD Thompson, SE Bryson, ST Lund, MN Handberg, R Chaplin, WJ AF Van Cleve, Jeffrey E. Howell, Steve B. Smith, Jeffrey C. Clarke, Bruce D. Thompson, Susan E. Bryson, Stephen T. Lund, Mikkel N. Handberg, Rasmus Chaplin, William J. TI That's How We Roll: The NASA K2 Mission Science Products and Their Performance Metrics SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE asteroseismology; instrumentation: photometers; methods: data analysis; planetary systems; stars: variables: general ID SYSTEMATIC-ERROR CORRECTION; INSTRUMENT NOISE PROPERTIES; SOLAR-TYPE STARS; KEPLER MISSION; PLANETARY CANDIDATES; STELLAR; PHOTOMETRY; CATALOG; ASTEROSEISMOLOGY; CLASSIFICATION AB NASA's exoplanet Discovery mission Kepler was reconstituted as the K2 mission a year after the failure of the second of Kepler's four. reaction wheels in 2013 May. Fine control of the spacecraft pointing is now accomplished through the use of the two remaining well-functioning reaction wheels and balancing the pressure of sunlight on the solar panels, which constrains K2 observations to fields in the ecliptic for up to approximately 80 days each. This pseudo-stable mechanism gives typical roll motion in the focal plane of 1.0 pixels peak-to-peak over 6 hr at the edges of the field, two orders of magnitude greater than typical 6 hr pointing errors in the Kepler primary mission. Despite these roll errors, the joint performance of the flight system and its modified science data processing pipeline restores much of the photometric precision of the primary mission while viewing a wide variety of targets, thus turning adversity into diversity. We define K2 performance metrics for data compression and pixel budget available in each campaign; the photometric noise on exoplanet transit and stellar activity timescales; residual correlations in corrected long-cadence light curves; and the protection of test sinusoidal signals from overfitting in the systematic error removal process. We find that data compression and noise both increase linearly with radial distance from the center of the field of view, with the data compression proportional to star count as well. At the center, where roll motion is nearly negligible, the limiting 6 hr photometric precision for a quiet 12th magnitude star can be as low as 30 ppm, only 25% higher than that of Kepler. This noise performance is achieved without sacrificing signal fidelity; test sinusoids injected into the data are attenuated by less than 10% for signals with periods upto 15 days, so that a wide range of stellar rotation and variability signatures are preserved by the K2 pipeline. At timescales relevant to asteroseismology, light curves derived from K2 archive calibrated pixels have high-frequency noise amplitude within 40% of that achieved by Kepler. The improvements in K2 operations and science data analysis resulting from 1.5 years of experience with this new mission concept, and quantified by the metrics in this paper, will support continuation of K2's already high level of scientific productivity in an extended K2 mission. C1 [Van Cleve, Jeffrey E.; Howell, Steve B.; Smith, Jeffrey C.; Clarke, Bruce D.; Thompson, Susan E.; Bryson, Stephen T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Van Cleve, Jeffrey E.; Smith, Jeffrey C.; Clarke, Bruce D.; Thompson, Susan E.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Lund, Mikkel N.; Chaplin, William J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Lund, Mikkel N.; Handberg, Rasmus; Chaplin, William J.] Aarhus Univ, Dept Phys & Astron, SAC, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. RP Van Cleve, JE (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Van Cleve, JE (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM jeffrey.vancleve@nasa.gov OI Handberg, Rasmus/0000-0001-8725-4502 FU NASA's Science Mission Directorate; NASA [NNX13AD01A] FX Funding for this Discovery Mission is provided by NASA's Science Mission Directorate. We thank the Kepler Science Operation Center and Science Office staff whose efforts led to the data products discussed in this work. We thank in particular Tom Barclay and Fergal Mullally for reading early drafts and making helpful comments; Wendy Stenzel for Figure 1; Mike Haas and Charlie Sobeck for K2 project support of the preparation of this manuscript; Daniel Huber for the EPIC stellar properties in advance of publication; and Ball Aerospace and LASP for making the operational improvements that led to these results. This work was supported by NASA grant NNX13AD01A. NR 37 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUL PY 2016 VL 128 IS 965 AR 075002 DI 10.1088/1538-3873/128/965/075002 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1LD UT WOS:000387112300009 ER PT J AU Shen, Y Fichot, CG Liang, SK Benner, R AF Shen, Yuan Fichot, Cedric G. Liang, Sheng-Kang Benner, Ronald TI Biological hot spots and the accumulation of marine dissolved organic matter in a highly productive ocean margin SO LIMNOLOGY AND OCEANOGRAPHY LA English DT Article ID GULF-OF-MEXICO; MISSISSIPPI RIVER PLUME; WESTERN ARCTIC-OCEAN; PHYTOPLANKTON GROWTH; INTERMEDIATE SALINITIES; AQUATIC ECOSYSTEMS; COASTAL ECOSYSTEM; SURFACE WATERS; AMINO-ACIDS; FRESH-WATER AB Concentrations of dissolved organic carbon (DOC) and major biochemicals (amino acids and carbohydrates) were measured during five cruises (2009-2010) to the Louisiana margin in the northern Gulf of Mexico. Concentrations of amino acids and carbohydrates were elevated at mid-salinities and were indicative of plankton production of dissolved organic matter (DOM) in surface waters. Hot spots of two compositionally distinct types of labile DOM were identified based on the relative abundances of amino acids and carbohydrates. Amino acid-rich hot spots occurred sporadically in regions of high phytoplankton biomass and were mostly observed between dusk and dawn, reflecting a grazing source. In contrast, carbohydrate-rich hot spots were more widespread and were often found in nutrient-poor waters, indicating the production of carbon-rich DOM associated with nutrient limitation. Major biochemical indicators and bioassay experiments indicated labile DOM comprised a relatively small fraction of the DOC. Most DOM was degraded and had a semi-labile nature. Substantial accumulations of marine (plankton-derived) DOC were observed in surface waters, particularly at mid-salinities during the summer. Microbial alteration of marine DOC and nutrient limitation of microbial utilization of carbon-rich DOM appeared largely responsible for the accumulation of DOC. The reservoir of accumulated marine DOC in the shelf surface mixed layer ranged from 0.11 Tg C to 0.23 Tg C, with the lowest and highest values occurring during winter and summer. Substantial cross-shelf export of semi-labile marine DOM occurred during the summer and provided a major carbon and energy subsidy to microbial food webs in offshore waters. C1 [Shen, Yuan; Fichot, Cedric G.; Liang, Sheng-Kang; Benner, Ronald] Univ South Carolina, Marine Sci Program, Columbia, SC 29208 USA. [Liang, Sheng-Kang] Minist Educ, Key Lab Marine Chem Theory & Technol, Qingdao, Peoples R China. [Benner, Ronald] Univ South Carolina, Dept Biol Sci, Columbia, SC 29208 USA. [Fichot, Cedric G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Shen, Y (reprint author), Univ South Carolina, Marine Sci Program, Columbia, SC 29208 USA. EM shen2@email.sc.edu OI Shen, Yuan/0000-0001-6618-4226 FU U.S. National Science Foundation [0850653]; 111 Project of China [B13030] FX l We are grateful to Steven E. Lohrenz and Wei-Jun Cai for providing the opportunity to participate in the GulfCarbon cruises. We appreciate the sampling assistance by Leanne Powers and the crews of the R/V Cape Hatteras and the R/V Hugh Sharp. We thank the anonymous reviewers for their comments and suggestions. This research was funded by a grant from the U.S. National Science Foundation (0850653 to RB) and by the 111 Project of China (B13030 to SKL). NR 66 TC 1 Z9 1 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0024-3590 EI 1939-5590 J9 LIMNOL OCEANOGR JI Limnol. Oceanogr. PD JUL PY 2016 VL 61 IS 4 BP 1287 EP 1300 DI 10.1002/lno.10290 PG 14 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA DW4OO UT WOS:000383622900011 ER PT J AU Rademacher, KR Campbell, MD Gledhill, CT Fitzhugh, G Driggers, WB Caillouet, R Switzer, TS AF Rademacher, Kevin R. Campbell, Matthew D. Gledhill, Christopher T. Fitzhugh, Gary Driggers, William B. Caillouet, Ryan Switzer, Theodore S. TI Male color phase in gag: implications for monitoring sex ratio via visual underwater surveys and port sample observations SO BULLETIN OF MARINE SCIENCE LA English DT Article ID GULF-OF-MEXICO; MYCTEROPERCA-MICROLEPIS SERRANIDAE; SOUTHEASTERN UNITED-STATES; SOCIAL-CONTROL; REPRODUCTIVE-BIOLOGY; BLUEHEAD WRASSE; GROUPER; PISCES; FISHES; REEF AB Fishing of gag (Mycteroperca microlepis Goode and Bean, 1879) spawning aggregations in the northern Gulf of Mexico has reduced the percentage of males in the population from approximately 17% to 2% since the 1970s. This is critical as gag are monandric, protogynous hermaphrodites, and accurate estimation of size-attransition and sex ratio is necessary for proper management. Presence of darkened pigmentation on the abdomen was thought to indicate transition from female to male, and thus, video observations of gag with dark pigmentation were used to estimate sex ratios and indices of abundance. Recent video observations of gag demonstrate that they can change pigmentation patterns within seconds, which could be leading to misidentification of males in those surveys. Results of our investigation showed that males observed in the video survey, as determined by pigmentation only, are significantly shorter than males observed in the commercial fishery, which were determined using both pigmentation and histological examination. Significant differences were detected between pigmented and non-pigmented gag in the commercial data, but not in the video survey data. Additionally, size at which 50% of females had transitioned to male was significantly larger when estimated using commercial fishery data vs the video survey data. Due to significant differences in length distributions and estimates of size-at-transition, and evidence of rapid changes in pigmentation patterns, it is inadvisable to estimate sex ratios or relative indices of abundance by sex for gag from video observations. To address potential shifts in size- and age-at-transition, continued monitoring of sex ratios using histological techniques is recommended. C1 [Rademacher, Kevin R.; Campbell, Matthew D.; Driggers, William B.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, 3209 Freder St, Pascagoula, MS 39567 USA. [Gledhill, Christopher T.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Stennis Branch, Mississippi Labs, Stennis Space Ctr, MS 39529 USA. [Fitzhugh, Gary] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Panama City Lab, Panama City, FL 32408 USA. [Caillouet, Ryan; Switzer, Theodore S.] Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, St Petersburg, FL 33701 USA. RP Campbell, MD (reprint author), Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, 3209 Freder St, Pascagoula, MS 39567 USA. EM matthew.d.campbell@noaa.gov NR 45 TC 0 Z9 0 U1 2 U2 2 PU ROSENSTIEL SCH MAR ATMOS SCI PI MIAMI PA 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA SN 0007-4977 EI 1553-6955 J9 B MAR SCI JI Bull. Mar. Sci. PD JUL PY 2016 VL 92 IS 3 BP 305 EP 319 DI 10.5343/bms.2015.1060 PG 15 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA DZ4CB UT WOS:000385804300002 ER PT J AU Norris, PM da Silva, AM AF Norris, Peter M. da Silva, Arlindo M. TI Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE cloud data assimilation; statistical cloud parametrizations; Bayesian inference; Markov chain Monte Carlo ID SATELLITE CLOUD; WATER-VAPOR; FIELDS; MODIS; ASSIMILATION AB A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC. C1 [Norris, Peter M.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Norris, Peter M.; da Silva, Arlindo M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. RP Norris, PM (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM peter.m.norris@nasa.gov FU NASA [NNH08ZDA001N-MAP] FX This work was supported by a NASA grant from the Modeling, Analysis, and Prediction program (solicitation NNH08ZDA001N-MAP, proposal title: 'Assimilation of A-Train satellite data for constraining a new PDF-based cloud parametrization in GEOS-5', PI: Arlindo da Silva). The authors thank Steven Platnick and Gala Wind for much useful information on the inner workings of the MODIS cloud algorithms and the characteristics of their retrievals. The authors also thank Dr Chris Snyder and an anonymous reviewer for their reviews, which helped to improve this article substantially. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. NR 23 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JUL PY 2016 VL 142 IS 699 BP 2505 EP 2527 DI 10.1002/qj.2843 PN B PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8GL UT WOS:000385367000025 ER PT J AU Norris, PM da Silva, AM AF Norris, Peter M. da Silva, Arlindo M. TI Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 2: Sensitivity tests and results SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE cloud data assimilation; Monte Carlo Bayesian inference; correlation models ID DENSITY-FUNCTIONS; ARAKAWA-SCHUBERT; WATER; PARAMETERIZATION; SCHEME; SCALE; CONVECTION; AGCM AB Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state. C1 [Norris, Peter M.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Norris, Peter M.; da Silva, Arlindo M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. RP Norris, PM (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM peter.m.norris@nasa.gov FU NASA [NNH08ZDA001N-MAP, NNH12ZDA001N-MAP] FX This work was supported by NASA grants from the Modeling, Analysis, and Prediction program (solicitation NNH08ZDA001N-MAP, proposal title: 'Assimilation of A-Train satellite data for constraining a new PDF-based cloud parametrization in GEOS-5', PI: Arlindo da Silva, and solicitation NNH12ZDA001N-MAP, proposal title: 'Using Near-Real Time Satellite Retrieved Cloud and Surface Properties to Validate and Improve GEOS-5 Analyses and Forecasts', PIs: P. Minnis and M. Rienecker). NR 17 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JUL PY 2016 VL 142 IS 699 BP 2528 EP 2540 DI 10.1002/qj.2844 PN B PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8GL UT WOS:000385367000026 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Barthelmy, S Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, RT De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Haris, K Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, N Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, P Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palliyaguru, N Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL SzczepaNczyk, MJ Tacca, M Talukder, D Tanner, DB Tpai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, P Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Tyr, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J Allison, J Bannister, K Bell, ME Chatterjee, S Chippendale, AP Edwards, PG Harvey-Smith, L Heywood, I Hotan, A Indermuehle, B Marvil, J McConnell, D Murphy, T Popping, A Reynolds, J Sault, RJ Voronkov, MA Whiting, MT Castro-Tirado, AJ Cunniffe, R Jelinek, M Tello, JC Oates, SR Hu, YD Kubanek, P Guziy, S Castellon, A Garcia-Cerezo, A Munoz, VF del Pulgar, CP Castillo-Carrion, S Ceron, JMC Hudec, R Caballero-Garcia, MD Pata, P Vitek, S Adame, JA Konig, S Rendon, F Sanguino, TDM Fernandez-Munoz, R Yock, PC Rattenbury, N Allen, WH Querel, R Jeong, S Park, IH Bai, J Cui, C Fan, Y Wang, C Hiriart, D Lee, WH Claret, A Sanchez-Ramirez, R Pandey, SB Mediavilla, T Sabau-Graziati, L Abbott, TMC Abdalla, FB Allam, S Annis, J Armstrong, R Benoit-Levy, A Berger, E Bernstein, RA Bertin, E Brout, D Buckley-Geer, E Burke, DL Capozzi, D Carretero, J Castander, FJ Chornock, R Cowperthwaite, PS Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Diehl, HT Dietrich, JP Doctor, Z Drlica-Wagner, A Drout, MR Eifler, TF Estrada, J Evrard, AE Fernandez, E Finley, DA Flaugher, B Foley, RJ Fong, WF Fosalba, P Fox, DB Frieman, J Fryer, CL Gaztanaga, E Gerdes, DW Goldstein, DA Gruen, D Gruendl, RA Gutierrez, G Herner, K Honscheid, K James, DJ Johnson, MD Johnson, MWG Karliner, I Kasen, D Kent, S Kessler, R Kim, AG Kind, MC Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Lin, H Maia, MAG Margutti, R Marriner, J Martini, P Matheson, T Melchior, P Metzger, BD Miller, CJ Miquel, R Neilsen, E Nichol, RC Nord, B Nugent, P Ogando, R Petravick, D Plazas, AA Quataert, E Roe, N Romer, AK Roodman, A Rosell, AC Rykoff, ES Sako, M Sanchez, E Scarpine, V Schindler, R Schubnell, M Scolnic, D Sevilla-Noarbe, I Sheldon, E Smith, N Smith, RC Soares-Santos, M Sobreira, F Stebbins, A Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Thomas, RC Tucker, DL Vikram, V Walker, AR Wechsler, RH Wester, W Yanny, B Zhang, Y Zuntz, J Connaughton, V Burns, E Goldstein, A Briggs, MS Zhang, BB Hui, CM Jenke, P Wilson-Hodge, CA Bhat, PN Bissaldi, E Cleveland, W Fitzpatrick, G Giles, MM Gibby, MH Greiner, J von Kienlin, A Kippen, RM McBreen, S Mailyan, B Meegan, CA Paciesas, WS Preece, RD Roberts, O Sparke, L Stanbro, M Toelge, K Veres, P Yu, HF Blackburn, L Ackermann, M Ajello, M Albert, A Anderson, B Atwood, WB Axelsson, M Baldini, L Barbiellini, G Bastieri, D Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bruel, P Buson, S Caliandro, GA Cameron, RA Caragiulo, M Caraveo, PA Cavazzuti, E Charles, E Chekhtman, A Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Cominsky, LR Costanza, F Cuoco, A D'Ammando, F de Palma, F Desiante, R Digel, SW Di Lalla, N Di Mauro, M Di Venere, L Dominguez, A Drell, PS Dubois, R Favuzzi, C Ferrara, EC Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Green, D Grenier, IA Grove, JE Guiriec, S Hadasch, D Harding, AK Hays, E Hewitt, JW Hill, AB Horan, D Jogler, T Johannesson, G Johnson, AS Kensei, S Kocevski, D Kuss, M La Mura, G Larsson, S Latronico, L Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Magill, J Maldera, S Manfreda, A Marelli, M Mayer, M Mazziotta, MN McEnery, JE Meyer, M Michelson, PF Mirabal, N Mizuno, T Moiseev, AA Monzani, ME Moretti, E Morselli, A Moskalenko, IV Negro, M Nuss, E Ohsugi, T Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Racusin, JL Raino, S Rando, R Razzaque, S Reimer, A Reimer, O Salvetti, D Parkinson, PMS Sgro, C Simone, D Siskind, EJ Spada, F Spandre, G Spinelli, P Suson, DJ Tajima, H Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Troja, E Uchiyama, Y Venters, TM Vianello, G Wood, KS Wood, M Zhu, S Zimmer, S Brocato, E Cappellaro, E Covino, S Grado, A Nicastro, L Palazzi, E Pian, E Amati, L Antonelli, LA Capaccioli, M D'Avanzo, P D'Elia, V Getman, F Giuffrida, G Iannicola, G Limatola, L Lisi, M Marinoni, S Marrese, P Melandri, A Piranomonte, S Possenti, A Pulone, L Rossi, A Stamerra, A Stella, L Testa, V Tomasella, L Yang, S Bazzano, A Bozzo, E Brandt, S Courvoisier, TJL Ferrigno, C Hanlon, L Kuulkers, E Laurent, P Mereghetti, S Roques, JP Savchenko, V Ubertini, P Kasliwal, MM Singer, LP Cao, Y Duggan, G Kulkarni, SR Bhalerao, V Miller, AA Barlow, T Bellm, E Manulis, I Rana, J Laher, R Masci, F Surace, J Rebbapragada, U Cook, D Van Sistine, A Sesar, B Perley, D Ferreti, R Prince, T Kendrick, R Horesh, A Hurley, K Golenetskii, SV Aptekar, RL Frederiks, DD Svinkin, DS Rau, A von Kienlin, A Zhang, X Smith, DM Cline, T Krimm, H Abe, F Doi, M Fujisawa, K Kawabata, KS Morokuma, T Motohara, K Tanaka, M Ohta, K Yanagisawa, K Yoshida, M Baltay, C Rabinowitz, D Ellman, N Rostami, S Bersier, DF Bode, MF Collins, CA Copperwheat, CM Darnley, MJ Galloway, DK Gomboc, A Kobayashi, S Mazzali, P Mundell, CG Piascik, AS Pollacco, D Steele, IA Ulaczyk, K Broderick, JW Fender, RP Jonker, PG Rowlinson, A Stappers, BW Wijers, RAMJ Lipunov, V Gorbovskoy, E Tyurina, N Kornilov, V Balanutsa, P Kuznetsov, A Buckley, D Rebolo, R Serra-Ricart, M Israelian, G Budnev, NM Gress, O Ivanov, K Poleshuk, V Tlatov, A Yurkov, V Kawai, N Serino, M Negoro, H Nakahira, S Mihara, T Tomida, H Ueno, S Tsunemi, H Matsuoka, M Croft, S Feng, L Franzen, TMO Gaensler, BM Johnston-Hollitt, M Kaplan, DL Morales, MF Tingay, SJ Wayth, RB Williams, A Smartt, SJ Chambers, KC Smith, KW Huber, ME Young, DR Wright, DE Schultz, A Denneau, L Flewelling, H Magnier, EA Primak, N Rest, A Sherstyuk, A Stalder, B Stubbs, CW Tonry, J Waters, C Willman, M Olivares, F Campbell, H Kotak, R Sollerman, J Smith, M Dennefeld, M Anderson, JP Botticella, MT Chen, TW Valle, MD Elias-Rosa, N Fraser, M Inserra, C Kankare, E Kupfer, T Harmanen, J Galbany, L Le Guillou, L Lyman, JD Maguire, K Mitra, A Nicholl, M Razza, A Terreran, G Valenti, S Gal-Yam, A Cwiek, A Cwiok, M Mankiewicz, L Opiela, R Zaremba, M Zarnecki, AF Onken, CA Scalzo, RA Schmidt, BP Wolf, C Yuan, F Evans, PA Kennea, JA Burrows, DN Campana, S Cenko, SB Giommi, P Marshall, FE Nousek, J O'Brien, P Osborne, JP Palmer, D Perri, M Siegel, M Tagliaferri, G Klotz, A Turpin, D Laugier, R Beroiz, M Penuela, T Macri, LM Oelkers, RJ Lambas, DG Vrech, R Cabral, J Colazo, C Dominguez, M Sanchez, B Gurovich, S Lares, M Marshall, JL Depoy, DL Padilla, N Pereyra, NA Benacquista, M Tanvir, NR Wiersema, K Levan, AJ Steeghs, D Hjorth, J Fynbo, JPU Malesani, D Milvang-Jensen, B Watson, D Irwin, M Fernandez, CG McMahon, RG Banerji, M Gonzalez-Solares, E Schulze, S Postigo, AD Thoene, CC Cano, Z Rosswog, S AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Barthelmy, S. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. C. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. C. Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. C. Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. T. De Rosa, R. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. G. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Haris, K. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, N. Kim, N. Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, A. Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, R. J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palliyaguru, N. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. SzczepaNczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tpai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Tyr, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. Allison, J. Bannister, K. Bell, M. E. Chatterjee, S. Chippendale, A. P. Edwards, P. G. Harvey-Smith, L. Heywood, Ian Hotan, A. Indermuehle, B. Marvil, J. McConnell, D. Murphy, T. Popping, A. Reynolds, J. Sault, R. J. Voronkov, M. A. Whiting, M. T. Castro-Tirado, A. J. Cunniffe, R. Jelinek, M. Tello, J. C. Oates, S. R. Hu, Y. -D. Kubanek, P. Guziy, S. Castellon, A. Garcia-Cerezo, A. Munoz, V. F. Perez del Pulgar, C. Castillo-Carrion, S. Castro Ceron, J. M. Hudec, R. Caballero-Garcia, M. D. Pata, P. Vitek, S. Adame, J. A. Konig, S. Rendon, F. Mateo Sanguino, T. de J. Fernandez-Munoz, R. Yock, P. C. Rattenbury, N. Allen, W. H. Querel, R. Jeong, S. Park, I. H. Bai, J. Cui, Ch. Fan, Y. Wang, Ch. Hiriart, D. Lee, W. H. Claret, A. Sanchez-Ramirez, R. Pandey, S. B. Mediavilla, T. Sabau-Graziati, L. Abbott, T. M. C. Abdalla, F. B. Allam, S. Annis, J. Armstrong, R. Benoit-Levy, A. Berger, E. Bernstein, R. A. Bertin, E. Brout, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carretero, J. Castander, F. J. Chornock, R. Cowperthwaite, P. S. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doctor, Z. Drlica-Wagner, A. Drout, M. R. Eifler, T. F. Estrada, J. Evrard, A. E. Fernandez, E. Finley, D. A. Flaugher, B. Foley, R. J. Fong, W. -F. Fosalba, P. Fox, D. B. Frieman, J. Fryer, C. L. Gaztanaga, E. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gruendl, R. A. Gutierrez, G. Herner, K. Honscheid, K. James, D. J. Johnson, M. D. Johnson, M. W. G. Karliner, I. Kasen, D. Kent, S. Kessler, R. Kim, A. G. Kind, M. C. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Lin, H. Maia, M. A. G. Margutti, R. Marriner, J. Martini, P. Matheson, T. Melchior, P. Metzger, B. D. Miller, C. J. Miquel, R. Neilsen, E. Nichol, R. C. Nord, B. Nugent, P. Ogando, R. Petravick, D. Plazas, A. A. Quataert, E. Roe, N. Romer, A. K. Roodman, A. Rosell, A. C. Rykoff, E. S. Sako, M. Sanchez, E. Scarpine, V. Schindler, R. Schubnell, M. Scolnic, D. Sevilla-Noarbe, I. Sheldon, E. Smith, N. Smith, R. C. Soares-Santos, M. Sobreira, F. Stebbins, A. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Thomas, R. C. Tucker, D. L. Vikram, V. Walker, A. R. Wechsler, R. H. Wester, W. Yanny, B. Zhang, Y. Zuntz, J. Connaughton, V. Burns, E. Goldstein, A. Briggs, M. S. Zhang, B. -B. Hui, C. M. Jenke, P. Wilson-Hodge, C. A. Bhat, P. N. Bissaldi, E. Cleveland, W. Fitzpatrick, G. Giles, M. M. Gibby, M. H. Greiner, J. von Kienlin, A. Kippen, R. M. McBreen, S. Mailyan, B. Meegan, C. A. Paciesas, W. S. Preece, R. D. Roberts, O. Sparke, L. Stanbro, M. Toelge, K. Veres, P. Yu, H. -F. Blackburn, L. Ackermann, M. Ajello, M. Albert, A. Anderson, B. Atwood, W. B. Axelsson, M. Baldini, L. Barbiellini, G. Bastieri, D. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bruel, P. Buson, S. Caliandro, G. A. Cameron, R. A. Caragiulo, M. Caraveo, P. A. Cavazzuti, E. Charles, E. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Cominsky, L. R. Costanza, F. Cuoco, A. D'Ammando, F. de Palma, F. Desiante, R. Digel, S. W. Di Lalla, N. Di Mauro, M. Di Venere, L. Dominguez, A. Drell, P. S. Dubois, R. Favuzzi, C. Ferrara, E. C. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Green, D. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Harding, A. K. Hays, E. Hewitt, J. W. Hill, A. B. Horan, D. Jogler, T. Johannesson, G. Johnson, A. S. Kensei, S. Kocevski, D. Kuss, M. La Mura, G. Larsson, S. Latronico, L. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Magill, J. Maldera, S. Manfreda, A. Marelli, M. Mayer, M. Mazziotta, M. N. McEnery, J. E. Meyer, M. Michelson, P. F. Mirabal, N. Mizuno, T. Moiseev, A. A. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Negro, M. Nuss, E. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Racusin, J. L. Raino, S. Rando, R. Razzaque, S. Reimer, A. Reimer, O. Salvetti, D. Parkinson, P. M. Saz Sgro, C. Simone, D. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Suson, D. J. Tajima, H. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Troja, E. Uchiyama, Y. Venters, T. M. Vianello, G. Wood, K. S. Wood, M. Zhu, S. Zimmer, S. Brocato, E. Cappellaro, E. Covino, S. Grado, A. Nicastro, L. Palazzi, E. Pian, E. Amati, L. Antonelli, L. A. Capaccioli, M. D'Avanzo, P. D'Elia, V. Getman, F. Giuffrida, G. Iannicola, G. Limatola, L. Lisi, M. Marinoni, S. Marrese, P. Melandri, A. Piranomonte, S. Possenti, A. Pulone, L. Rossi, A. Stamerra, A. Stella, L. Testa, V. Tomasella, L. Yang, S. Bazzano, A. Bozzo, E. Brandt, S. Courvoisier, T. J. -L. Ferrigno, C. Hanlon, L. Kuulkers, E. Laurent, P. Mereghetti, S. Roques, J. P. Savchenko, V. Ubertini, P. Kasliwal, M. M. Singer, L. P. Cao, Y. Duggan, G. Kulkarni, S. R. Bhalerao, V. Miller, A. A. Barlow, T. Bellm, E. Manulis, I. Rana, J. Laher, R. Masci, F. Surace, J. Rebbapragada, U. Cook, D. Van Sistine, A. Sesar, B. Perley, D. Ferreti, R. Prince, T. Kendrick, R. Horesh, A. Hurley, K. Golenetskii, S. V. Aptekar, R. L. Frederiks, D. D. Svinkin, D. S. Rau, A. von Kienlin, A. Zhang, X. Smith, D. M. Cline, T. Krimm, H. Abe, F. Doi, M. Fujisawa, K. Kawabata, K. S. Morokuma, T. Motohara, K. Tanaka, M. Ohta, K. Yanagisawa, K. Yoshida, M. Baltay, C. Rabinowitz, D. Ellman, N. Rostami, S. Bersier, D. F. Bode, M. F. Collins, C. A. Copperwheat, C. M. Darnley, M. J. Galloway, D. K. Gomboc, A. Kobayashi, S. Mazzali, P. Mundell, C. G. Piascik, A. S. Pollacco, Don Steele, I. A. Ulaczyk, K. Broderick, J. W. Fender, R. P. Jonker, P. G. Rowlinson, A. Stappers, B. W. Wijers, R. A. M. J. Lipunov, V. Gorbovskoy, E. Tyurina, N. Kornilov, V. Balanutsa, P. Kuznetsov, A. Buckley, D. Rebolo, R. Serra-Ricart, M. Israelian, G. Budnev, N. M. Gress, O. Ivanov, K. Poleshuk, V. Tlatov, A. Yurkov, V. Kawai, N. Serino, M. Negoro, H. Nakahira, S. Mihara, T. Tomida, H. Ueno, S. Tsunemi, H. Matsuoka, M. Croft, S. Feng, L. Franzen, T. M. O. Gaensler, B. M. Johnston-Hollitt, M. Kaplan, D. L. Morales, M. F. Tingay, S. J. Wayth, R. B. Williams, A. Smartt, S. J. Chambers, K. C. Smith, K. W. Huber, M. E. Young, D. R. Wright, D. E. Schultz, A. Denneau, L. Flewelling, H. Magnier, E. A. Primak, N. Rest, A. Sherstyuk, A. Stalder, B. Stubbs, C. W. Tonry, J. Waters, C. Willman, M. Olivares E, F. Campbell, H. Kotak, R. Sollerman, J. Smith, M. Dennefeld, M. Anderson, J. P. Botticella, M. T. Chen, T. -W. Valle, M. D. Elias-Rosa, N. Fraser, M. Inserra, C. Kankare, E. Kupfer, T. Harmanen, J. Galbany, L. Le Guillou, L. Lyman, J. D. Maguire, K. Mitra, A. Nicholl, M. Razza, A. Terreran, G. Valenti, S. Gal-Yam, A. Cwiek, A. Cwiok, M. Mankiewicz, L. Opiela, R. Zaremba, M. Zarnecki, A. F. Onken, C. A. Scalzo, R. A. Schmidt, B. P. Wolf, C. Yuan, F. Evans, P. A. Kennea, J. A. Burrows, D. N. Campana, S. Cenko, S. B. Giommi, P. Marshall, F. E. Nousek, J. O'Brien, P. Osborne, J. P. Palmer, D. Perri, M. Siegel, M. Tagliaferri, G. Klotz, A. Turpin, D. Laugier, R. Beroiz, M. Penuela, T. Macri, L. M. Oelkers, R. J. Lambas, D. G. Vrech, R. Cabral, J. Colazo, C. Dominguez, M. Sanchez, B. Gurovich, S. Lares, M. Marshall, J. L. Depoy, D. L. Padilla, N. Pereyra, N. A. Benacquista, M. Tanvir, N. R. Wiersema, K. Levan, A. J. Steeghs, D. Hjorth, J. Fynbo, J. P. U. Malesani, D. Milvang-Jensen, B. Watson, D. Irwin, M. Fernandez, C. G. McMahon, R. G. Banerji, M. Gonzalez-Solares, E. Schulze, S. Postigo, A. de U. Thoene, C. C. Cano, Z. Rosswog, S. CA LIGO Sci Collaboration Virgo Colla ASKAP Collaboration BOOTES Collaboration Dark Energy Survey Collaboration Dark Energy Camera GW-EM Collabor Fermi GBM Collaboration FERMI LAT Collaboration GRAvitational Wave Inaf TeAm GRAWI INTEGRAL Collaboration IPTF Collaboration InterPlanetary Network J-GEM Collaboration LA Silla-QUEST Survey Liverpool Telescope Collaboration Low Frequency Array LOFAR Collabo MASTER Collaboration MAXI Collaboration MWA Collaboration Pan-STARRS Collaboration PESSTO Collaboration Pi Sky Collaboration SkyMapper Collaboration Swift Collaboration Tarot Zadko Algerian Natl Observ C TOROS Collaboration VISTA Collaboration TI SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914" (2016, ApJL, 826, L13) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE gravitational waves; methods: observational ID ADVANCED LIGO; ELECTROMAGNETIC COUNTERPARTS; DARK ENERGY; TELESCOPE; MISSION; VIRGO; EVENTS; SEARCH; CAMERA AB This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R. J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.; Albert, A.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.; Bhalerao, V.; Rana, J.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.; Van Sistine, A.; Kaplan, D. L.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. G.; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. G.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. C.; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, Univ Paris Saclay, CNRS, LAL,IN2P3, Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Chennai, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.; D'Andrea, C. B.; Smith, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,CNRS,IN2P3,CEA,Irfu, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] Wigner RCP, RMKI, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Barthelmy, S.; Camp, J. B.; Gehrels, N.; Singer, L. P.; Cline, T.; Cenko, S. B.; Marshall, F. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.; Wechsler, R. H.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] INFN, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Tyr, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] INFN, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, MP, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; Jonker, P. G.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.; Laugier, R.] Univ Cote dAzur, CNRS, Observ Cote dAzur, Artemis, CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. C.; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. C.; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.] UPMC, Sorbonne Univ, PSL Res Univ, CNRS,ENS,Coll France,Lab Kastler Brossel, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. C.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. C.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, UMR CNRS 5306, Inst Lumiere Mat, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, IN2P3 CNRS, LMA, F-69622 Villeurbanne, France. [Bustillo, J. C.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC IAC3, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.; Palliyaguru, N.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.; Kennea, J. A.; Burrows, D. N.; Nousek, J.; Siegel, M.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, N.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.; Sault, R. J.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tpai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; SzczepaNczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.; Evrard, A. E.; Zhang, Y.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts Amherst, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] West Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.; Cwiek, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.; Morales, M. F.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Allison, J.; Bannister, K.; Bell, M. E.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Indermuehle, B.; Marvil, J.; McConnell, D.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.] CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia. [Allison, J.; Bannister, K.; Bell, M. E.; Murphy, T.; Popping, A.; Rowlinson, A.; Gaensler, B. M.; Tingay, S. J.; Wayth, R. B.; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia. [Chatterjee, S.] Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Heywood, Ian; Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Hotan, A.] CSIRO Astron & Space Sci, 26 Dick Perry Ave,Technol Pk, Kensington, WA 6151, Australia. [Murphy, T.; Gaensler, B. M.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Popping, A.] Univ Western Australia, ICRAR, M468,35 Stirling Highway, Perth, WA 6009, Australia. [Castro-Tirado, A. J.; Cunniffe, R.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Rendon, F.; Jeong, S.; Claret, A.; Sanchez-Ramirez, R.] CSIC, IAA, POB 03004, E-18080 Granada, Spain. [Castro-Tirado, A. J.; Garcia-Cerezo, A.; Munoz, V. F.; Perez del Pulgar, C.] Univ Malaga, Unidad Asociada CSIC, Escuela Ingn, Dept Ingn Sistemas & Automat, E-29071 Malaga, Spain. [Jelinek, M.; Hudec, R.] Acad Sci Czech Republic, Inst Astron, CS-25165 Ondrejov, Czech Republic. [Kubanek, P.] Acad Sci Czech Republic, Inst Phys, Slovance 1999-2, Prague 18221 8, Czech Republic. [Guziy, S.] Nikolaev Natl Univ, Nikolska Str 24, UA-54030 Nikolayev, Ukraine. [Castellon, A.] Univ Malaga, Fac Ciencias, Blvd Louis Pasteur, E-29010 Malaga, Spain. [Castillo-Carrion, S.] Univ Malaga, Ensenanza Virtual & Labs Tecnol, Jimenez Fraud 10, E-29071 Malaga, Spain. [Castro Ceron, J. M.] ISDEFE SMOS FOS ESA ESAC, E-28692 Villanueva De La Canada, Madrid, Spain. [Hudec, R.; Pata, P.; Vitek, S.] Czech Tech Univ, Fac Elect Engn, Dept Radioelect, Tech 2, Prague 16627, Czech Republic. [Caballero-Garcia, M. D.] Acad Sci Czech Republic, Inst Astron, Bocni 2 1401, CZ-14100 Prague 4, Czech Republic. [Adame, J. A.; Konig, S.; Rendon, F.] Estn Sondeos Atmosfer ESAt) El Arenosillo CEDEA I, E-21130 Mazagon, Huelva, Spain. [Mateo Sanguino, T. de J.] Univ Huelva, ETSI La Rabida, Dept Ingn Elect Sistemas Informat & Automat, E-21819 Palos De La Frontera, Huelva, Spain. [Fernandez-Munoz, R.] IHSM UMA CSIC, Inst Hortofruticultura Subtrop & Mediterranea La, E-29750 Algarrobo Costa, Malaga, Spain. [Yock, P. C.; Rattenbury, N.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland 1, New Zealand. [Allen, W. H.] Vintage Lane Observ, RD3, Blenheim 7273, New Zealand. [Querel, R.] Natl Inst Water & Atmospher Res NIWA, Lauder, New Zealand. [Jeong, S.; Park, I. H.] Sungkyunkwan Univ SKKU, Dept Phys, Suwon, South Korea. [Bai, J.; Fan, Y.; Wang, Ch.] Chinese Acad Sci, Yunnan Astron Observ, Kunming 650011, Yunnan, Peoples R China. [Cui, Ch.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Hiriart, D.] Univ Nacl Autonoma Mexico, Inst Astron, Ensenada 22800, Baja California, Mexico. [Lee, W. H.] Univ Nacl Autonoma Mexico, Inst Astron, Apdo Postal 70-264, Mexico City 04510, DF, Mexico. [Pandey, S. B.] Aryabhatta Res Inst Observat Sci, Manora Peak 263002, Nainital, India. [Mediavilla, T.] Univ Cadiz, Escuela Politecn Super, Avda Ramon Puyol, E-11202 Algeciras, Cadiz, Spain. [Sabau-Graziati, L.] INTA, Div Ciencias Espacio, E-28850 Torrejon De Ardoz, Madrid, Spain. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Herner, K.; Kent, S.; Kuropatkin, N.; Lin, H.; Marriner, J.; Neilsen, E.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Stebbins, A.; Tucker, D. L.; Wester, W.; Yanny, B.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Armstrong, R.; Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Benoit-Levy, A.; Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Berger, E.; Cowperthwaite, P. S.; Drout, M. R.; Blackburn, L.; Nicholl, M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Brout, D.; Eifler, T. F.; Sako, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.; Schindler, R.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Fernandez, E.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Chornock, R.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Clippinger Lab 251B, Athens, OH 45701 USA. [da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Rosell, A. C.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Desai, S.; Dietrich, J. P.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Doctor, Z.; Frieman, J.; Kessler, R.; Scolnic, D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Eifler, T. F.; Plazas, A. A.; Miller, A. A.; Rebbapragada, U.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Foley, R. J.; Gruendl, R. A.; Kind, M. C.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.; Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Fong, W. -F.; Smith, N.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Fox, D. B.] Penn State Univ, Ctr Particle & Gravitat Astrophys, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fox, D. B.] Penn State Univ, Ctr Theoret & Observat Cosmol, University Pk, PA 16802 USA. [Fryer, C. L.] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. [Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.; Kasen, D.; Kim, A. G.; Nugent, P.; Roe, N.; Thomas, R. C.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gruendl, R. A.; Johnson, M. D.; Johnson, M. W. G.; Kind, M. C.; Petravick, D.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, D.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Margutti, R.] NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Metzger, B. D.] Columbia Astrophys Lab, Pupin Hall, New York, NY 10027 USA. [Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, Madrid, Spain. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. [Zuntz, J.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Connaughton, V.; Cleveland, W.; Paciesas, W. S.] Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA. [Burns, E.; Stanbro, M.] Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35899 USA. [Goldstein, A.; Hui, C. M.; Wilson-Hodge, C. A.] NASA, Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA. [Briggs, M. S.; Preece, R. D.] Univ Alabama, Dept Space Sci, 320 Sparkman Dr, Huntsville, AL 35899 USA. [Zhang, B. -B.; Jenke, P.; Bhat, P. N.; Fitzpatrick, G.; Mailyan, B.; Meegan, C. A.; Veres, P.] Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35899 USA. [Zhang, B. -B.] CSIC, IAA, POB 03004, E-18080 Granada, Spain. [Bissaldi, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Giles, M. M.; Gibby, M. H.] Jacobs Technol Inc, Huntsville, AL USA. [Greiner, J.; von Kienlin, A.; Toelge, K.; Yu, H. -F.; Rau, A.; Zhang, X.; Chen, T. -W.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McBreen, S.; Roberts, O.] Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland. [Sparke, L.] NASA Headquarters, Washington, DC USA. [Yu, H. -F.] Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Ackermann, M.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Dominguez, A.] Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Meyer, M.; Zimmer, S.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, B.; Larsson, S.; Li, L.; Meyer, M.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Atwood, W. B.; Parkinson, P. M. Saz; Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Parkinson, P. M. Saz; Smith, D. M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.; Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Axelsson, M.] Tokyo Metropolitan Univ, Dept Phys, Minami Osawa 1-1, Hachioji, Tokyo 1920397, Japan. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Chiaro, G.; La Mura, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Di Lalla, N.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; Costanza, F.; de Palma, F.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Simone, D.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Cuoco, A.; Desiante, R.; Latronico, L.; Maldera, S.; Negro, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.; Cuoco, A.; Negro, M.] Univ Torino, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Buson, S.; Ferrara, E. C.; Green, D.; Guiriec, S.; Harding, A. K.; Hays, E.; Kocevski, D.; McEnery, J. E.; Mirabal, N.; Perkins, J. S.; Racusin, J. L.; Thompson, D. J.; Troja, E.; Venters, T. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bruel, P.; Horan, D.] CNRS IN2P3, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. [Buson, S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Buson, S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Buson, S.; Moiseev, A. A.; Krimm, H.] CRESST, Greenbelt, MD 20771 USA. [Buson, S.; Moiseev, A. A.; Krimm, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Caraveo, P. A.; Marelli, M.; Salvetti, D.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Gasparrini, D.; Giommi, P.] ASI, Sci Data Ctr, I-00133 Rome, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA. [Ciprini, S.; Gasparrini, D.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Kensei, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Green, D.; Magill, J.; McEnery, J. E.; Moiseev, A. A.; Troja, E.; Zhu, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Green, D.; Magill, J.; McEnery, J. E.; Moiseev, A. A.; Troja, E.; Zhu, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Grenier, I. A.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Grove, J. E.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Hadasch, D.; La Mura, G.; Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Hadasch, D.; La Mura, G.; Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Hewitt, J. W.] Univ North Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Li, J.; Torres, D. F.] IEEC CSIC, Inst Space Sci, Campus UAB, E-08193 Barcelona, Spain. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moretti, E.; Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Razzaque, S.] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Parkinson, P. M. Saz] Univ Hong Kong, Lab Space Res, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tibaldo, L.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Uchiyama, Y.] Dept Phys, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan. [Brocato, E.; Antonelli, L. A.; D'Elia, V.; Giuffrida, G.; Iannicola, G.; Lisi, M.; Marinoni, S.; Marrese, P.; Piranomonte, S.; Pulone, L.; Stella, L.; Testa, V.; Perri, M.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, RM, Italy. [Cappellaro, E.; Marrese, P.; Tomasella, L.; Yang, S.; Elias-Rosa, N.; Terreran, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Covino, S.; D'Avanzo, P.; Melandri, A.; Campana, S.; Tagliaferri, G.] INAF Osservatorio Astron Brera, Via E Bianchi 46, I-23807 Merate, Italy. [Grado, A.; Getman, F.; Limatola, L.; Botticella, M. T.; Valle, M. D.] INAF Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy. [Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Rossi, A.] INAF Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Pian, E.; Stamerra, A.] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. [Antonelli, L. A.; D'Elia, V.; Giuffrida, G.; Marinoni, S.; Giommi, P.; Perri, M.] ASI Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Capaccioli, M.] Univ Naples Federico II, CU Monte St Angelo, Dip Fis Ettore Pancini, Via Cinthia, I-80126 Naples, Italy. [Possenti, A.] INAF ORA Osservatorio Astron Cagliari, Via Sci 5, I-09047 Selargius, CA, Italy. [Stamerra, A.] INAF Osservatorio Astron Torino, Str Osservatorio 20, I-10025 Pino Torinese, To, Italy. [Bazzano, A.; Ubertini, P.] INAF Inst Space Astrophys & Planetol, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. [Bazzano, A.; Bozzo, E.; Courvoisier, T. J. -L.; Ferrigno, C.] Univ Geneva, Dept Astron, ISDC, Chemin Ecogia 16, CH-1290 Versoix, Switzerland. [Brandt, S.] Natl Space Inst Elektrovej, DTU Space, Bldg 327, DK-2800 Lyngby, Denmark. [Hanlon, L.] Univ Coll Dublin, Sch Phys, Space Sci Grp, Dublin 4, Ireland. [Kuulkers, E.] ESAC, ESA, Sci Operat Dept, E-28691 Madrid, Spain. [Laurent, P.] Univ Paris Diderot, CNRS IN2P3, Sorbonne Paris Cite, APC,CEA Irfu,Observ Paris, 10 Rue Alice Domont & Leonie Duquet, F-75205 Paris 13, France. [Mereghetti, S.] INAF, IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Roques, J. P.] Univ Toulouse, 9 Ave Roche,BP 44346, F-31028 Toulouse, France. [Roques, J. P.] UPS OMP, 9 Ave Roche,BP 44346, F-31028 Toulouse, France. [Roques, J. P.] CNRS, 9 Ave Roche,BP 44346, F-31028 Toulouse, France. [Roques, J. P.] IRAP, 9 Ave Roche,BP 44346, F-31028 Toulouse, France. [Savchenko, V.] Univ Paris Diderot, CNRS IN2P3, Sorbonne Paris Cite, Francois Arago Ctr,APC,CEA Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kasliwal, M. M.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Miller, A. A.; Barlow, T.; Bellm, E.; Cook, D.; Prince, T.; Kupfer, T.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Manulis, I.; Horesh, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Laher, R.; Masci, F.; Surace, J.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Sesar, B.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Perley, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Postigo, A. de U.] Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. [Ferreti, R.; Sollerman, J.; Rosswog, S.] Stockholm Univ, AlbaNova, Dept Astron, SE-10691 Stockholm, Sweden. [Ferreti, R.; Sollerman, J.; Rosswog, S.] Stockholm Univ, AlbaNova, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Kendrick, R.] Lockheed Martin Space Syst Co, Palo Alto, CA 94304 USA. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.] Ioffe Phys Tech Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia. [Krimm, H.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Abe, F.] Nagoya Univ, Inst Space Earth Environm Res, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. [Doi, M.; Morokuma, T.; Motohara, K.] Univ Tokyo, Inst Astron, Grad Sch Sci, Mitaka, Tokyo 1810015, Japan. [Fujisawa, K.] Yamaguchi Univ, Res Inst Time Studies, Yamaguchi, Yamaguchi 7538511, Japan. [Kawabata, K. S.; Yoshida, M.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Tanaka, M.] Natl Astron Observ Japan, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan. [Ohta, K.] Kyoto Univ, Dept Astron, Kyoto, Kyoto 6068502, Japan. [Yanagisawa, K.] Natl Astron Observ Japan, Okayama Astrophys Observ, Okayama 7190232, Japan. [Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Kobayashi, S.; Mazzali, P.; Piascik, A. S.; Steele, I. A.] Liverpool JMU, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Galloway, D. K.] Monash Univ, Monash Ctr Astrophys MoCA, Clayton, Vic 3800, Australia. [Galloway, D. K.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia. [Gomboc, A.] Univ Nova Gorica, Vipavska 13, Nova Gorica 5000, Slovenia. [Gomboc, A.] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia. [Mundell, C. G.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Pollacco, Don; Ulaczyk, K.; Lyman, J. D.; Levan, A. J.; Steeghs, D.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. [Broderick, J. W.; Rowlinson, A.] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. [Fender, R. P.] Univ Oxford, Dept Phys, Astrophys, Keble Rd, Oxford OX1 3RH, England. [Jonker, P. G.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Rowlinson, A.; Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.] Lomonosov Moscow State Univ, Sternberg Astron Inst, 13 Univ Skiy Prospekt, Moscow 119234, Russia. [Buckley, D.] South African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. [Rebolo, R.; Serra-Ricart, M.; Israelian, G.] Inst Astrofis Canarias, Calle Via Lactea S-N, E-38200 Tenerife, Spain. [Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.] Irkutsk State Univ, Inst Appl Phys, 20 Gagarin Blvd, Irkutsk 664003, Russia. [Tlatov, A.] RAS, Kislovodsk Solar Stn Main Pulkovo Observ, POB 45,Ul Gagarina 100, Kislovodsk 357700, Russia. [Yurkov, V.] Blagoveschensk State Pedag Univ, Lenin Str 104, Blagoveshchensk 675000, Amur Region, Russia. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528851, Japan. [Serino, M.; Mihara, T.; Matsuoka, M.] RIKEN, MAXI Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Negoro, H.] Nihon Univ, Dept Phys, Chiyoda Ku, 1-8-14 Kanda Surugadai, Tokyo 1018308, Japan. [Nakahira, S.] Japan Aerosp Explorat Agcy, Human Spaceflight Technol Directorate, JEM Mission Operat & Integrat Ctr, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. [Tomida, H.; Ueno, S.] Japan Aerosp Explorat Agcy JAXA, ISAS, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Tsunemi, H.] Osaka Univ, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. [Croft, S.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA. [Croft, S.] Eureka Sci Inc, 2452 Delmer St Suite 100, Oakland, CA 94602 USA. [Feng, L.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Franzen, T. M. O.; Tingay, S. J.; Wayth, R. B.; Williams, A.] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia. [Gaensler, B. M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Johnston-Hollitt, M.] Victoria Univ Wellington, Sch Chem & Phys Sci, POB 600, Wellington 6140, New Zealand. [Tingay, S. J.] Ist Nazl Astrofis, Osservatorio Radio Astron, I-40123 Bologna, Italy. [Smartt, S. J.; Smith, K. W.; Young, D. R.; Wright, D. E.; Kotak, R.; Inserra, C.; Kankare, E.; Maguire, K.; Terreran, G.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Chambers, K. C.; Huber, M. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Sherstyuk, A.; Stalder, B.; Tonry, J.; Waters, C.; Willman, M.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Rest, A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Olivares E, F.; Galbany, L.; Razza, A.; Schulze, S.] Millennium Inst Astrophys, Casilla 36-D, Santiago, Chile. [Olivares E, F.] Univ Andres Bello, Dept Ciencias Fis, Avda Republ 252, Santiago, Chile. [Campbell, H.; Fraser, M.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Dennefeld, M.] CNRS, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Dennefeld, M.] Univ Paris 06, 98 Bis Blvd Arago, F-75014 Paris, France. [Anderson, J. P.] European Southern Observ, Alonso de Cordova 3107, Santiago, Chile. [Harmanen, J.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Vaialantie 20, FI-21500 Piikkio, Finland. [Galbany, L.; Razza, A.] Univ Chile, Dept Astron, Camino El Observ 1515, Santiago, Chile. [Le Guillou, L.] Univ Paris 06, Sorbonne Univ, UMR 7585, LPNHE, F-75005 Paris, France. [Le Guillou, L.; Mitra, A.] CNRS, UMR 7585, Lab Phys Nucl & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France. [Valenti, S.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Valenti, S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Cwiok, M.; Zaremba, M.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Mankiewicz, L.; Opiela, R.] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland. [Evans, P. A.; O'Brien, P.; Osborne, J. P.; Tanvir, N. R.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Palmer, D.] Los Alamos Natl Lab, B244, Los Alamos, NM 87545 USA. [Klotz, A.; Turpin, D.] CNRS UMR 5277 UPS, Inst Rech Astrophys & Planetol, 14 Ave Edouard Belin, F-31400 Toulouse, France. [Beroiz, M.] Univ Texas San Antonio, San Antonio, TX USA. [Penuela, T.] Univ Munich, Fac Phys, Schellingstr 4, D-80799 Munich, Germany. [Macri, L. M.; Oelkers, R. J.; Marshall, J. L.; Depoy, D. L.] Texas A&M Univ, Dept Phys & Astron, Mitchell Inst Fundamental Phys & Astron, 4242 TAMU, College Stn, TX 77843 USA. [Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.] Univ Nacl Cordoba, IATE, Laprida 854, Cordoba, Argentina. [Padilla, N.; Schulze, S.] Pontificia Univ Catolica Chile, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago, Chile. [Postigo, A. de U.; Thoene, C. C.] CSIC, Inst Astrofis Andalucia, Glorieta Astron S-N, E-18008 Granada, Spain. [Cano, Z.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. EM lsc-spokesperson@ligo.org RI Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ciani, Giacomo/G-1036-2011; Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Garufi, Fabio/K-3263-2015; Sergeev, Alexander/F-3027-2017; Vitek, Stanislav/B-3332-2015; Harms, Jan/J-4359-2012; Jelinek, Martin/E-5290-2016; Marchesoni, Fabio/A-1920-2008; Cesarini, Elisabetta/C-4507-2017; Costa, Cesar/G-7588-2012; Hild, Stefan/A-3864-2010; Roberts, Oliver/N-6284-2016; Mihara, Tatehiro/C-5536-2017; Di Venere, Leonardo/C-7619-2017; Chow, Jong/A-3183-2008; Hudec, Rene/G-9018-2014; Frey, Raymond/E-2830-2016; Serino, Motoko/D-3890-2017; Caballero-Garcia, Maria/D-5659-2017; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Gaztanaga, Enrique/L-4894-2014; zhou, hua/A-6862-2017; Cella, Giancarlo/A-9946-2012; prodi, giovanni/B-4398-2010; Ogando, Ricardo/A-1747-2010; Leonardi, Matteo/G-9694-2015; Galbany, Lluis/A-8963-2017; Elias-Rosa, Nancy/D-3759-2014; Reimer, Olaf/A-3117-2013; Ferrante, Isidoro/F-1017-2012; Pata, Petr/D-5817-2013; Gemme, Gianluca/C-7233-2008; Vecchio, Alberto/F-8310-2015; Losurdo, Giovanni/K-1241-2014; Lima, Marcos/E-8378-2010; Strigin, Sergey/I-8337-2012; Iyer, Bala R./E-2894-2012; Sorrentino, Fiodor/M-6662-2016; Orlando, E/R-5594-2016; Wayth, Randall/B-2444-2013; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016 OI Gammaitoni, Luca/0000-0002-4972-7062; Ciani, Giacomo/0000-0003-4258-9338; Sigg, Daniel/0000-0003-4606-6526; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi, Fabio/0000-0003-1391-6168; Vitek, Stanislav/0000-0002-3185-1495; Jelinek, Martin/0000-0003-3922-7416; Gorbovskoy, Evgeny/0000-0002-4368-9237; Bondu, Francois/0000-0001-6487-5197; Marchesoni, Fabio/0000-0001-9240-6793; Cesarini, Elisabetta/0000-0001-9127-3167; Roberts, Oliver/0000-0002-7150-9061; Mihara, Tatehiro/0000-0002-6337-7943; Di Venere, Leonardo/0000-0003-0703-824X; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Caballero-Garcia, Maria/0000-0001-7920-4564; Scalzo, Richard/0000-0003-3740-1214; Kotak, Rubina/0000-0001-5455-3653; Abdalla, Filipe/0000-0003-2063-4345; Piccinni, Ornella Juliana/0000-0001-5478-3950; Nelemans, Gijs/0000-0002-0752-2974; Pitkin, Matthew/0000-0003-4548-526X; Croft, Steve/0000-0003-4823-129X; Principe, Maria/0000-0002-6327-0628; Macri, Lucas/0000-0002-1775-4859; Lares, Marcelo/0000-0001-8180-5780; Getman, Fedor/0000-0003-1550-0182; Zweizig, John/0000-0002-1521-3397; Horesh, Assaf/0000-0002-5936-1156; Schmidt, Brian/0000-0001-6589-1287; Hill, Adam/0000-0003-3470-4834; Onken, Christopher/0000-0003-0017-349X; Gendre, Bruce/0000-0002-9077-2025; McMahon, Richard/0000-0001-8447-8869; orienti, monica/0000-0003-4470-7094; Granata, Massimo/0000-0003-3275-1186; Axelsson, Magnus/0000-0003-4378-8785; Schulze, Steve/0000-0001-6797-1889; Punturo, Michele/0000-0001-8722-4485; Gaztanaga, Enrique/0000-0001-9632-0815; Cella, Giancarlo/0000-0002-0752-0338; prodi, giovanni/0000-0001-5256-915X; Ogando, Ricardo/0000-0003-2120-1154; Galbany, Lluis/0000-0002-1296-6887; Elias-Rosa, Nancy/0000-0002-1381-9125; Reimer, Olaf/0000-0001-6953-1385; Ferrante, Isidoro/0000-0002-0083-7228; Pata, Petr/0000-0002-6561-9088; Gemme, Gianluca/0000-0002-1127-7406; Vecchio, Alberto/0000-0002-6254-1617; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Sorrentino, Fiodor/0000-0002-9605-9829; Wayth, Randall/0000-0002-6995-4131; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Funk, Stefan/0000-0002-2012-0080; FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck Society; State of Niedersachsen/Germany; Australian Research Council; Netherlands Organisation for Scientific Research; EGO consortium; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; Australian Government; National Collaborative Research Infrastructure Strategy; Government of Western Australia; United States Department of Energy; United States National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766, AST-1238877]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under European Union's Seventh Framework Programme; ERC [240672, 291329, 306478]; NASA (United States); DOE (United States); IN2P3/CNRS (France); CEA/Irfu (France); ASI (Italy); INFN (Italy); MEXT (Japan); KEK (Japan); JAXA (Japan); Wallenberg Foundation; Swedish Research Council; National Space Board (Sweden); NASA in the United States; DRL in Germany; INAF for the project "Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments"; ESA (Denmark); ESA (France); ESA (Germany); ESA (Italy); ESA (Switzerland); ESA (Spain); German INTEGRAL through DLR grant [50 OG 1101]; US under NASA Grant [NNX15AU74G]; National Science Foundation PIRE program grant [1545949]; Hubble Fellowship [HST-HF-51325.01]; KAKENHI of MEXT Japan [24103003, 15H00774, 15H00788]; JSPS [15H02069, 15H02075]; "Optical and Near-Infrared Astronomy Inter-University Cooperation Program" - MEXT; UK Science and Technology Facilities Council; ERC Advanced Investigator Grant [267697]; Lomonosov Moscow State University Development programm; Moscow Union OPTICA; Russian Science Foundation [16-12-00085, RFBR15-02-07875]; National Research Foundation of South Africa; Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS); NVIDIA at Harvard University; University of Hawaii; National Aeronautics and Space Administration's Planetary Defense Office [NNX14AM74G]; Queen's University Belfast; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate [NNX08AR22G]; European Research Council under European Union's Seventh Framework Programme/ERC [291222]; STFC grants [ST/I001123/1, ST/L000709/1]; European Union FP7 programme through ERC [320360]; STFC through an Ernest Rutherford Fellowship; FONDECYT [3140326]; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; NASA in the US; UK Space Agency in the UK; Agenzia Spaziale Italiana (ASI) in Italy; Ministerio de Ciencia y Tecnologia (MinCyT); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET) from Argentina; USA NSF PHYS [1156600]; NSF [1242090] FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector, and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources.; The Australian SKA Pathfinder is part of the Australia Telescope National Facility which is managed by CSIRO. The operation of ASKAP is funded by the Australian Government with support from the National Collaborative Research Infrastructure Strategy. Establishment of the Murchison Radio-astronomy Observatory was funded by the Australian Government and the Government of Western Australia. ASKAP uses advanced supercomputing resources at the Pawsey Supercomputing Centre. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.; A.J.C.T. acknowledges support from the Junta de Andalucia (Project P07-TIC-03094) and Univ. of Auckland and NIWA for installing of the Spanish BOOTES-3 station in New Zealand, and support from the Spanish Ministry Projects AYA2012-39727-C03-01 and 2015-71718R.; Funding for the DES Projects has been provided by the United States Department of Energy, the United States National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; The Fermi LAT Collaboration acknowledges support for LAT development, operation, and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. The Fermi GBM Collaboration acknowledges the support of NASA in the United States and DRL in Germany.; GRAWITA acknowledges the support of INAF for the project "Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments."; This work exploited data by INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), and with the participation of Russia and the USA. The SPI ACS detector system has been provided by MPE Garching/Germany. We acknowledge the German INTEGRAL support through DLR grant 50 OG 1101.; IPN work is supported in the US under NASA Grant ;NNX15AU74G.; This work is partly based on observations obtained with the Samuel Oschin 48 in Telescope and the 60 in Telescope at the Palomar Observatory as part of the Intermediate Palomar Transient Factory (iPTF) project, a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the universe. M.M.K. and Y.C. acknowledge funding from the National Science Foundation PIRE program grant 1545949. A.A.M. acknowledges support from the Hubble Fellowship HST-HF-51325.01. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.; J-GEM is financially supported by KAKENHI Grant No. 24103003, 15H00774, and 15H00788 of MEXT Japan, 15H02069 and 15H02075 of JSPS, and the "Optical and Near-Infrared Astronomy Inter-University Cooperation Program" supported by MEXT.; The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council.; LOFAR, the Low Frequency Array designed and constructed by ASTRON, has facilities in several countries, which are owned by various parties (each with their own funding sources), and that are collectively operated by the International LOFAR Telescope (ILT) foundation under a joint scientific policy. R. Fender acknowledges support from ERC Advanced Investigator Grant 267697.; MASTER Global Robotic Net is supported in parts by Lomonosov Moscow State University Development programm, Moscow Union OPTICA, Russian Science Foundation 16-12-00085, RFBR15-02-07875, National Research Foundation of South Africa.; We thank JAXA and RIKEN for providing MAXI data. The MAXI team is partially supported by KAKENHI grant Nos. 24103002, 24540239, 24740186, and 23000004 of MEXT, Japan.; This work uses the Murchison Radio-astronomy Observatory, operated by CSIRO. We acknowledge the Wajarri Yamatji people as the traditional owners of the observatory site. Support for the operation of the MWA is provided by the Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. The MWA acknowledges the iVEC Petabyte Data Store and the Initiative in Innovative Computing and the CUDA Center for Excellence sponsored by NVIDIA at Harvard University.; Pan-STARRS is supported by the University of Hawaii and the National Aeronautics and Space Administration's Planetary Defense Office under grant No. NNX14AM74G. The PanSTARRS-LIGO effort is in collaboration with the LIGO Consortium and supported by Queen's University Belfast. The Pan-STARRS1 Sky Surveys have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, and the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), and the Los Alamos National Laboratory. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programs 188.D-3003, 191.D-0935.; S.J.S. acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. [291222] and STFC grants ST/I001123/1 and ST/L000709/1. M.F. is supported by the European Union FP7 programme through ERC grant No. 320360. K.M. acknowledges support from the STFC through an Ernest Rutherford Fellowship.; F.O.E. acknowledges support from FONDECYT through postdoctoral grant 3140326.; Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project No. CE110001020.; Funding for Swift is provided by NASA in the US, by the UK Space Agency in the UK, and by the Agenzia Spaziale Italiana (ASI) in Italy. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We acknowledge the use of public data from the Swift data archive.; The TOROS Collaboration acknowledges support from Ministerio de Ciencia y Tecnologia (MinCyT) and Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET) from Argentina and grants from the USA NSF PHYS 1156600 and NSF HRD 1242090. NR 51 TC 8 Z9 8 U1 68 U2 68 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2016 VL 225 IS 1 AR 8 DI 10.3847/0067-0049/225/1/8 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU6FG UT WOS:000382309000008 ER PT J AU Bilicki, M Peacock, JA Jarrett, TH Cluver, ME Maddox, N Brown, MJI Taylor, EN Hambly, NC Solarz, A Holwerda, BW Baldry, I Loveday, J Moffett, A Hopkins, AM Driver, SP Alpaslan, M Bland-Hawthorn, J AF Bilicki, Maciej Peacock, John A. Jarrett, Thomas H. Cluver, Michelle E. Maddox, Natasha Brown, Michael J. I. Taylor, Edward N. Hambly, Nigel C. Solarz, Aleksandra Holwerda, Benne W. Baldry, Ivan Loveday, Jon Moffett, Amanda Hopkins, Andrew M. Driver, Simon P. Alpaslan, Mehmet Bland-Hawthorn, Joss TI WISE x SuperCOSMOS PHOTOMETRIC REDSHIFT CATALOG: 20 MILLION GALAXIES OVER 3 pi STERADIANS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: distances and redshifts; large-scale structure of universe; methods: data analysis; methods: statistical; surveys ID DIGITAL-SKY-SURVEY; MASS ASSEMBLY GAMA; OSCILLATION SPECTROSCOPIC SURVEY; ARTIFICIAL NEURAL-NETWORKS; ACTIVE GALACTIC NUCLEI; LARGE-SCALE STRUCTURE; DATA RELEASE; SDSS-III; LUMINOSITY FUNCTION; CROSS-CORRELATIONS AB We cross-match the two currently largest all-sky photometric catalogs-mid-infrared Wide-field Infrared Survey Explorer and SuperCOSMOS scans of UKST/POSS-II photographic plates-to obtain a new galaxy sample that covers 3 pi steradians. In order to characterize and purify the extragalactic data set, we use external GAMA and Sloan Digital Sky Survey spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended source catalog. After appropriate data cleaning, we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of more than 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic data. Our sample has a median redshift of z(med) = 0.2, with a broad dN/dz reaching up to z > 0.4. The photometric redshifts have a mean bias of vertical bar delta z vertical bar similar to 10(-3), a normalized scatter of sigma(z) = 0.033, and less than 3% outliers beyond 3 sigma(z). Comparison with external data sets shows no significant variation of photo-z quality with sky position. Together with the overall statistics, we also provide a more detailed analysis of photometric redshift accuracy as a function of magnitudes and colors. The final catalog is appropriate for "all-sky" three-dimensional (3D) cosmology to unprecedented depths, in particular through cross-correlations with other large-area surveys. It should also be useful for source preselection and identification in forthcoming surveys, such as TAIPAN or WALLABY. C1 [Bilicki, Maciej; Jarrett, Thomas H.] Univ Cape Town, Dept Astron, Private Bag X3, ZA-7701 Rondebosch, South Africa. [Bilicki, Maciej; Holwerda, Benne W.] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Bilicki, Maciej; Solarz, Aleksandra] Univ Zielona Gora, Janusz Gil Inst Astron, Ul Szafrana 2, PL-65516 Zielona Gora, Poland. [Peacock, John A.; Hambly, Nigel C.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Cluver, Michelle E.] Univ Western Cape, Dept Phys, Robert Sobukwe Rd, ZA-7530 Bellville, South Africa. [Maddox, Natasha] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. [Brown, Michael J. I.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia. [Taylor, Edward N.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Solarz, Aleksandra] Natl Ctr Nucl Res, Ul Hoza 69, Warsaw, Poland. [Baldry, Ivan] Liverpool John Moores Univ, Astrophys Res Inst, IC2,Liverpool Sci Pk,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Loveday, Jon] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Moffett, Amanda; Driver, Simon P.] Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia. [Hopkins, Andrew M.] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Driver, Simon P.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Alpaslan, Mehmet] NASA, Ames Res Ctr, N232 Moffett Field, Mountain View, CA 94035 USA. [Bland-Hawthorn, Joss] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. RP Bilicki, M (reprint author), Univ Cape Town, Dept Astron, Private Bag X3, ZA-7701 Rondebosch, South Africa.; Bilicki, M (reprint author), Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands.; Bilicki, M (reprint author), Univ Zielona Gora, Janusz Gil Inst Astron, Ul Szafrana 2, PL-65516 Zielona Gora, Poland. EM maciek@ast.uct.ac.za OI Maddox, Natasha/0000-0001-8312-5260; Bilicki, Maciej/0000-0002-3910-5809; Baldry, Ivan/0000-0003-0719-9385 FU South African National Research Foundation (NRF); Netherlands Organization for Scientific Research, NWO [614.001.451]; European Research Council [279396]; Polish National Science Center [UMO-2012/07/D/ST9/02785, UMO-2015/16/S/ST9/00438]; National Aeronautics and Space Administration; UK Science and Technology Facilities Council; STFC (UK); ARC (Australia); AAO; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX Financial assistance from the South African National Research Foundation (NRF) toward this research is hereby acknowledged. M Bilicki was supported by the Netherlands Organization for Scientific Research, NWO, through grant number 614.001.451, and through FP7 grant number 279396 from the European Research Council. M Bilicki and A Solarz were partially supported by the Polish National Science Center under contract #UMO-2012/07/D/ST9/02785. A Solarz was supported by the Polish National Science Center under contract #UMO-2015/16/S/ST9/00438.; This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration.; This research has made use of data obtained from the SuperCOSMOS Science Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalog is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KiDS, VISTA VIK-ING, WISE, Herschel-ATLAS, GMRT, and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/.; Funding for SDSS-III was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 118 TC 6 Z9 6 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2016 VL 225 IS 1 AR 5 DI 10.3847/0067-0049/225/1/5 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU6FG UT WOS:000382309000005 ER PT J AU Timlin, JD Ross, NP Richards, GT Lacy, M Ryan, EL Stone, RB Bauer, FE Brandt, WN Fan, XH Glikman, E Haggard, D Jiang, LH LaMassa, SM Lin, YT Makler, M McGehee, P Myers, AD Schneider, DP Urry, CM Wollack, EJ Zakamska, NL AF Timlin, John D. Ross, Nicholas P. Richards, Gordon T. Lacy, Mark Ryan, Erin L. Stone, Robert B. Bauer, Franz E. Brandt, W. N. Fan, Xiaohui Glikman, Eilat Haggard, Daryl Jiang, Linhua LaMassa, Stephanie M. Lin, Yen-Ting Makler, Martin McGehee, Peregrine Myers, Adam D. Schneider, Donald P. Urry, C. Megan Wollack, Edward J. Zakamska, Nadia L. TI SpIES: THE SPITZER IRAC EQUATORIAL SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; infrared: general; quasars: general; surveys ID DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; QUASAR LUMINOSITY FUNCTION; LARGE-AREA SURVEY; STRIPE 82 SURVEY; SPACE-TELESCOPE; MIDINFRARED SELECTION; EXTRAGALACTIC SURVEY; STAR-FORMATION; SURVEY DESIGN AB We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of similar to 115 deg(2) in the Equatorial SDSS Stripe 82 field using Spitzer during its "warm" mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z >= 3 to test various models for "feedback" from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z >= 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5 sigma depths of 6.13 mu Jy (21.93 AB magnitude) and 5.75 mu Jy (22.0 AB magnitude) at 3.6 and 4.5 mu m, respectively-depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (similar to 98%) in Stripe 82 than are recovered by WISE (similar to 55%). This depth is especially powerful at high-redshift (z >= 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 mu m. only detection catalog containing similar to 6.1 million sources, a 4.5 mu m. only detection catalog containing similar to 6.5 million sources, and a dual-band detection catalog containing similar to 5.4 million sources. C1 [Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Stone, Robert B.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Ross, Nicholas P.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lacy, Mark] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Ryan, Erin L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Inst Astrofis, Fac Fis, Casilla 306, Santiago 22, Chile. [Bauer, Franz E.] MAS, Millennium Inst Astrophys, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Fan, Xiaohui] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Glikman, Eilat] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Haggard, Daryl] Amherst Coll, Dept Phys & Astron, Amherst, MA 01002 USA. [Jiang, Linhua] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [LaMassa, Stephanie M.; Urry, C. Megan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Makler, Martin] Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil. [McGehee, Peregrine] IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, 1000 Univ Ave, Laramie, WY 82071 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zakamska, Nadia L.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr, 3400N Charlesty 7 St, Baltimore, MD 21218 USA. RP Timlin, JD (reprint author), Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. EM john.d.timlin@drexel.edu RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Urry, Meg/0000-0002-0745-9792 FU NASA [AR3-14015X]; CONICYT-Chile [Basal-CATA PFB-06/2007]; FONDECYT Regular [1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism'(s) Millennium Science Initiative [IC120009]; V.M. Willaman Endowment; STFC; Ernest Rutherford Fellowship scheme; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; U.S. Department of Energy Office of Science FX This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We would like to thank Rick Arendt, who computed the Galactic star counts for the SpIES field shown in Figure 13, and Matt Ashby, with whom we consulted about the SpIES number counts and depth. We acknowledge support from CONICYT-Chile grants, Basal-CATA PFB-06/2007 (F.E.B.), FONDECYT Regular 1141218 (F.E.B.), "EMBIGGEN" Anillo ACT1101 (F.E.B.), the Ministry of Economy, Development, and Tourism'(s) Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F.E.B.), and NASA grant AR3-14015X and the V.M. Willaman Endowment (W.N.B.). N.P.R. acknowledges support from the STFC and the Ernest Rutherford Fellowship scheme.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. NR 74 TC 1 Z9 1 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2016 VL 225 IS 1 AR 1 DI 10.3847/0067-0049/225/1/1 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU6FG UT WOS:000382309000001 ER PT J AU Chen, S Tian, YD Behrangi, A Hu, JJ Hong, Y Zhang, ZX Stepanian, PM Hu, BQ Zhang, XH AF Chen, Sheng Tian, Yudong Behrangi, Ali Hu, Junjun Hong, Yang Zhang, Zengxin Stepanian, Phillip M. Hu, Baoqing Zhang, Xinhua TI Precipitation Spectra Analysis Over China With High-Resolution Measurements From Optimally Merged Satellite/Gauge Observations-Part I: Spatial and Seasonal Analysis SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Atmospheric measurements; rain; satellite applications; snow ID CONTERMINOUS UNITED-STATES; GLOBAL PRECIPITATION; DIURNAL-VARIATIONS; THUNDERSTORM FREQUENCIES; CLIMATE; INTENSITY; RAINFALL; EAST; SIMULATIONS; MONSOON AB Precipitation amount (PA), frequency (PF), and intensity (PI) over China are characterized and quantified using a high-resolution merged satellite-gauge precipitation product for 6 years (January 2008 through December 2013). The precipitation product synthesizes both state-of-the-art multisatellite precipitation algorithms and the latest, densest gauge observations to provide high-quality precipitation information at a very fine temporal and spatial resolution (0.1 degrees/hourly) that encompasses all of China. The geographical and seasonal variations in precipitation are systematically documented over seven subregions, each corresponding to a unique climate regime. PA, PF, and PI have large seasonal and geographical variations across China. It is found that 1) although heavy precipitation events (>10 mm/h) represent only 0.8% of total precipitation occurrence over China, they contribute 12.1% of the total precipitation volume. Light precipitation events (<1 mm/h) dominate the precipitation occurrence (74.3%) and contribute 23.1% of the total precipitation volume; 2) over the high-altitude Tibetan Plateau (TP), the landlocked Xinjiang (XJ) province, and northwestern China (NW), light precipitation events (<1 mm/h) occur very frequently (74.7%, 82.1%, and 64.1% of all precipitation events) and contribute 29.8%, 35.5%, and 27.4% of the total precipitation volume. This initial continental-scale study provides new insights on precipitation characteristics that can benefit meteorological and hydrological modeling and applications, especially in areas with sparse rain-gauge coverage. C1 [Chen, Sheng] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Guangdong, Peoples R China. [Chen, Sheng; Hu, Baoqing] Guangxi Teachers Educ Univ, Key Lab Beibu Gulf Environm Evolut & Resources Ut, Minist Educ, Nanning 530001, Peoples R China. [Chen, Sheng; Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Chen, Sheng; Hong, Yang] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA. [Tian, Yudong] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Tian, Yudong] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Behrangi, Ali] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hu, Junjun] Univ Oklahoma, Sch Comp Sci, Norman, OK 73072 USA. [Zhang, Zengxin] Nanjing Forestry Univ, Coll Biol & Environm, Joint Innovat Ctr Modern Forestry Studies, Nanjing 210037, Jiangsu, Peoples R China. [Stepanian, Phillip M.] Natl Weather Ctr, Adv Radar Res Ctr, Norman, OK 73072 USA. [Stepanian, Phillip M.] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA. [Zhang, Xinhua] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China. RP Hong, Y (reprint author), Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.; Hong, Y (reprint author), Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.; Zhang, XH (reprint author), Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China. EM chenshengbj@gmail.com; yanghong@ou.edu; xhzhang@scu.edu.cn RI Hong, Yang/D-5132-2009 OI Hong, Yang/0000-0001-8720-242X FU Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma; National Natural Science Foundation of China [41361022, 41171020]; Guangxi Science and Technology Development Project [2014DD29090]; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University [SKHL1310, SKHL1501]; State Key Laboratory of Water Resources and Hydropower Engineering Science [2011B079]; Key laboratory of watershed Geographic Sciences, Chinese Academy of Sciences [WSGS2015005] FX This work was supported in part by the Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma, in part by the National Natural Science Foundation of China (No. 41361022 and No. 41171020), Guangxi Science and Technology Development Project (No. 2014DD29090), the Open Fund from State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (No. SKHL1310 and No. SKHL1501), the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science (No. 2011B079), Key laboratory of watershed Geographic Sciences, Chinese Academy of Sciences (No. WSGS2015005). (Corresponding authors: Yang Hong and Xinhua Zhang.) NR 43 TC 0 Z9 0 U1 9 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUL PY 2016 VL 9 IS 7 SI SI BP 2966 EP 2978 DI 10.1109/JSTARS.2016.2529003 PG 13 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DY2EI UT WOS:000384905500012 ER PT J AU Chen, S Behrangi, A Tian, YD Hu, JJ Hong, Y Tang, QH Hu, XM Stepanian, PM Hu, BQ Zhang, XH AF Chen, Sheng Behrangi, Ali Tian, Yudong Hu, Junjun Hong, Yang Tang, Qiuhong Hu, Xiao-Ming Stepanian, Phillip M. Hu, Baoqing Zhang, Xinhua TI Precipitation Spectra Analysis Over China With High-Resolution Measurements From Optimally-Merged Satellite/Gauge Observations-Part II: Diurnal Variability Analysis SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Atmospheric measurement; rain; satellite ID WARM-SEASON PRECIPITATION; BRIGHTNESS TEMPERATURE OBSERVATIONS; GLOBAL PRECIPITATION; TIBETAN PLATEAU; NORTHERN CHINA; UNITED-STATES; RAINFALL; CYCLE; EAST; INTENSITY AB Timing and diurnal variation of summer precipitation is analyzed over China using a new high-resolution (0.1 degrees, hourly) satellite-gauge merged surface rainfall dataset that spans from 2008 through 2013. The results show that: 1) both precipitation amount (PA) and frequency (PF) show strong diurnal cycles with local solar time (LST); 2) peak times of PA (PAPT) primarily occur from 15 LST to 00 LST in most parts of the Tibet Plateau (TP), Xinjiang (XJ), Northwestern China (NW), Northeastern China (NE), and Southern China (SC), and the PAPT occurs from 00 LST to 09 LST in southern TP, Eastern XJ, western NW, southern NE, eastern Northern China (NC), and most parts of Southwestern China (SW); 3) the PAPT transitions eastward with time, occurring at similar to 15 LST in central TP, at midnight in SW, and at 15-18 LST in the eastern coastal regions that are in the lower reach of Yangtze River and in the north side of Wuyi Mountains; 4) peak times of PF (PFPT) show a similar spatial pattern with PAPT, but with a small temporal (1-2 h) lead; 5) peak times of precipitation intensity (PIPT) occur during the 18-00 LST time frame in the southeastern TP and central SW regions. The PIPT along the upper Yangtze River valley occurs around 00-06 LST. The PIPT occurs in the morning at around 06-09 LST in the mid-lower Yangtze River valley and most parts of SC. This study on the diurnal cycle of precipitation over China can be used as a reference to validate atmospheric and hydrologic models, and also to guide hydrometerological research and applications. C1 [Chen, Sheng] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Guangdong, Peoples R China. [Chen, Sheng; Hu, Baoqing] Guangxi Teachers Educ Univ, Minist Educ, Key Lab Beibu Gulf Environm Evolut & Resources Ut, Nanning 530001, Peoples R China. [Chen, Sheng; Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Chen, Sheng; Hong, Yang] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA. [Behrangi, Ali] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Tian, Yudong] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Tian, Yudong] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hu, Junjun] Univ Oklahoma, Sch Comp Sci, Norman, OK 73072 USA. [Tang, Qiuhong] Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China. [Hu, Xiao-Ming] Univ Oklahoma, Ctr Anal & Predict Storms, Norman, OK 73072 USA. [Stepanian, Phillip M.] Natl Weather Ctr, Adv Radar Res Ctr, Norman, OK 73072 USA. [Stepanian, Phillip M.] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA. [Zhang, Xinhua] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China. RP Hong, Y (reprint author), Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.; Hong, Y (reprint author), Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.; Zhang, XH (reprint author), Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China. EM chenshengbj@gmail.com; Ali.Behrangi@jpl.nasa.gov; yudong.tian-1@nasa.gov; Junjun.Hu-1@ou.edu; yanghong@ou.edu; tangqh@igsnrr.ac.cn; xhu@ou.edu; step@ou.edu; hbq1230@sina.com; xhzhang@scu.edu.cn RI Hu, Xiao-Ming/D-8085-2011; Hong, Yang/D-5132-2009 OI Hu, Xiao-Ming/0000-0002-0769-5090; Hong, Yang/0000-0001-8720-242X FU Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma; National Natural Science Foundation of China [41361022, 41425002]; Guangxi Science and Technology Development Project [2014DD29090]; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University [SKHL1310, SKHL1501] FX This work was supported in part by the Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma, in part by the National Natural Science Foundation of China (No. 41361022 and No. 41425002), Guangxi Science and Technology Development Project (No. 2014DD29090), the Open Fund from State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (No. SKHL1310 and No. SKHL1501). (Corresponding authors: Yang Hong and Xinhua Zhang.) NR 35 TC 0 Z9 0 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUL PY 2016 VL 9 IS 7 SI SI BP 2979 EP 2988 DI 10.1109/JSTARS.2016.2529001 PG 10 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DY2EI UT WOS:000384905500013 ER PT J AU Kempeneers, P Sedano, F Piccard, I Eerens, H AF Kempeneers, P. Sedano, F. Piccard, I. Eerens, H. TI Data Assimilation of PROBA-V 100 and 300 m SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Data assimilation; Kalman filter; PROBA-V 100 m; time series ID NDVI TIME-SERIES; KALMAN FILTER; IMAGE FUSION; LANDSAT DATA; COVER; REFLECTANCE; SURFACE; MODIS; IMPROVE; QUALITY AB The project for on-board autonomy-vegetation (PROBA-V) satellite can produce global daily images at 300-m spatial resolution. Three sensors are mounted on the same platform. Two off-nadir-viewing sensors acquire imagery at 300-m spatial resolution, whereas a nadir-viewing sensor acquires imagery at 100-m spatial resolution. The swath of the nadir-viewing sensor is only half of the swath of a single off-nadir-viewing sensor. Using this sensor only, the revisit time is five days. Here, we present a data assimilation method to increase the temporal resolution of the 100-m product. The method implements a Kalman filter recursive algorithm that integrates the images at 100 and 300-m resolution to generate the assimilated imagery at the fine spatial detail (100 m). The proposed method can be applied for global products. In this study, it has been applied to a region in western Europe (Flanders) during the growing season. This region is particularly challenging due to frequent cloud cover (45% cloud cover on average). The assimilated product is a cloud-free time series at the temporal resolution of the 300-m data, while preserving the spatial detail of the 100-m data. Quantitative results show the potential of the method compared to a simple data assimilation and the Savitzky-Golay (SG) filter. The added value of the improved spatial resolution from 300 to 100 m has also been illustrated for monitoring agriculture via remote sensing in this area. C1 [Kempeneers, P.; Piccard, I.; Eerens, H.] Flemish Inst Technol Res VITO, Ctr Remote Sensing & Earth Observat Proc TAP, B-2400 Mol, Belgium. [Kempeneers, P.] European Commiss, Joint Res Ctr, Ispra, Italy. [Sedano, F.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Sedano, F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kempeneers, P (reprint author), European Commiss, Joint Res Ctr, Ispra, Italy. EM pieter.kempeneers@jrc.ec.europa.eu; fsedano@umd.edu; isabelle.piccard@vito.be; herman.eerens@vito.be NR 31 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUL PY 2016 VL 9 IS 7 SI SI BP 3314 EP 3325 DI 10.1109/JSTARS.2016.2527922 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DY2EI UT WOS:000384905500042 ER PT J AU Reck, T Jung-Kubiak, C Chattopadhyay, G AF Reck, Theodore Jung-Kubiak, Cecile Chattopadhyay, Goutam TI A 700-GHz MEMS Waveguide Switch SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Reflect switch; RF microelectromechanical systems (RF-MEMS); silicon micromachining AB A low-loss microelectromechanical systems (MEMS) waveguide reflect switch is demonstrated operating across the WM-380 (WR-1.5) waveguide band. The design uses a large deflection MEMS actuator to mechanically obstruct a reduced height waveguide to create the switch. The MEMS device exhibits 3 dB of insertion loss across the band in the open state, over 20 dB of isolation when closed, and better than 20 dB of return loss. Lifetime testing of this device demonstrates 5.07 million cycles before it failed in the closed state. C1 [Reck, Theodore; Jung-Kubiak, Cecile] Jet Prop Lab, Dept Instrument Elect & Sensors, Pasadena, CA 91109 USA. [Chattopadhyay, Goutam] CALTECH, Dept Jet Prop Lab, Pasadena, CA 91109 USA. RP Reck, T (reprint author), Jet Prop Lab, Dept Instrument Elect & Sensors, Pasadena, CA 91109 USA. EM theodore.reck@jpl.nasa.gov; Cecile.D.Jung@jpl.nasa.gov; goutam@jpl.nasa.gov NR 6 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD JUL PY 2016 VL 6 IS 4 BP 641 EP 643 DI 10.1109/TTHZ.2016.2574304 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA DY2HK UT WOS:000384913500017 ER PT J AU Yeo, H Jain, R Jayaraman, B AF Yeo, Hyeonsoo Jain, Rohit Jayaraman, Buvana TI Investigation of Rotor Vibratory Loads of a UH-60A Individual Blade Control System SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article ID HELICOPTER; PREDICTION; AIRLOADS; DYNAMICS AB Wind tunnel measurements of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using a Rotorcraft Comprehensive Analysis System (RCAS) and a coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) analysis using Helios. The effects of open-loop 3, 4, and 5/rev IBC on vibratory hub loads, rotor performance, and IBC actuator loads (pitch link loads) are investigated at high-speed, moderate-thrust and high-thrust, moderate-speed conditions. RCAS captures maximum vibratory hub load reduction values well for some cases, but phase is generally not well captured at all. The coupled analysis shows reasonably good correlation with the measured vibratory hub load variations with 3/rev IBC actuation at the high-speed condition. However, the vibratory hub load correlation is worse for 4 and 5/rev IBC actuations. IBC actuations also have a significant influence on rotor performance. Measured data show a maximum 2.2% rotor power reduction (3.9% increase in rotor lift to effective-drag ratio) using 3/rev IBC actuation with 0.9 degrees. amplitude at mu = 0.35. In general, the coupled analysis shows good correlation with the measured rotor power variations at both high-speed and high-thrust conditions. Half peak-to-peak IBC actuator load variations are well predicted by the coupled analysis only for the 3/rev IBC actuation at high speed. In general, correlation at the high-speed condition is better than for the high-thrust condition. C1 [Yeo, Hyeonsoo; Jain, Rohit] US Army, Aviat Dev Directorate AFDD, Aviat & Missile Res Dev & Engn Ctr, Res Dev & Engn Command,Ames Res Ctr, Moffett Field, CA 94035 USA. [Jayaraman, Buvana] Sci & Technol Corp, Ames Res Ctr, Moffett Field, CA USA. RP Yeo, H (reprint author), US Army, Aviat Dev Directorate AFDD, Aviat & Missile Res Dev & Engn Ctr, Res Dev & Engn Command,Ames Res Ctr, Moffett Field, CA 94035 USA. EM hyeonsoo.yeo.civ@mail.mil NR 41 TC 0 Z9 0 U1 0 U2 0 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 EI 2161-6027 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD JUL PY 2016 VL 61 IS 3 AR 032009 DI 10.4050/JAHS.61.032009 PG 16 WC Engineering, Aerospace SC Engineering GA DY3NG UT WOS:000384999900009 ER PT J AU Calle, LM Pearman, BP Zhang, XJ Li, WY Buhrow, JW Johnsey, MN Jolley, ST Fitzpatrick, L Gillis, M Blanton, M Hanna, JS Rawlins, JW AF Calle, Luz M. Pearman, Benjamin P. Zhang, Xuejun Li, Wenyan Buhrow, Jerry W. Johnsey, Marissa N. Jolley, Scott T. Fitzpatrick, Lilliana Gillis, Mathew Blanton, Michael Hanna, Joshua S. Rawlins, James W. TI Environmentally Friendly Coating Technology for Autonomous Corrosion Control SO JCT COATINGSTECH LA English DT Article ID SELF-HEALING MATERIALS; COMPOSITES C1 [Calle, Luz M.; Pearman, Benjamin P.; Zhang, Xuejun] NASA, Kennedy Space Ctr, FL 32899 USA. [Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Fitzpatrick, Lilliana] ESC ONA, Kennedy Space Ctr, FL 32899 USA. [Gillis, Mathew; Blanton, Michael; Hanna, Joshua S.; Rawlins, James W.] Univ Southern Mississippi, Hattiesburg, MS 39406 USA. RP Calle, LM (reprint author), NASA, Kennedy Space Ctr, FL 32899 USA. EM Luz.M.Calle@nasa.gov NR 29 TC 0 Z9 0 U1 2 U2 2 PU AM COATINGS ASSOC-ACA PI WASHINGTON PA 1500 RHODE ISLAND AVE NW, WASHINGTON, DC 20005 USA SN 1547-0083 J9 JCT COATINGSTECH JI JCT Coatingstech PD JUL PY 2016 VL 13 IS 7 BP 26 EP 35 PG 10 WC Chemistry, Applied; Materials Science, Coatings & Films SC Chemistry; Materials Science GA DW8SY UT WOS:000383927000005 ER PT J AU Stanford, BK AF Stanford, Bret K. TI Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT 33rd AIAA Applied Aerodynamics Conference CY JUN 22-26, 2015 CL Dallas, TX SP AIAA ID DESIGN OPTIMIZATION; AEROELASTIC ANALYSIS; FLUTTER SUPPRESSION; LIFTING SURFACES; COMPOSITE WINGS; SYSTEMS; CONSTRAINTS AB This paper considers the aeroelastic optimization of a subsonic transport wing box under a variety of static and dynamic aeroelastic constraints. Three types of design variables are used: structural variables ( skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of a linear quadratic regulator controller (for flutter suppression), which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed-loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open-loop flutter requirements. C1 [Stanford, Bret K.] NASA, Langley Res Ctr, Aeroelast Branch, Hampton, VA 23681 USA. RP Stanford, BK (reprint author), NASA, Langley Res Ctr, Aeroelast Branch, Hampton, VA 23681 USA. EM bret.k.stanford@nasa.gov NR 44 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD JUL-AUG PY 2016 VL 53 IS 4 BP 1131 EP 1144 DI 10.2514/1.C033613 PG 14 WC Engineering, Aerospace SC Engineering GA DX3TN UT WOS:000384297100023 ER PT J AU Cui, H Kaufman, AJ Xiao, S Peek, S Cao, H Min, X Cai, Y Siegel, Z Liu, XM Peng, Y Schiffbauer, JD Martin, AJ AF Cui, H. Kaufman, A. J. Xiao, S. Peek, S. Cao, H. Min, X. Cai, Y. Siegel, Z. Liu, X. -M. Peng, Y. Schiffbauer, J. D. Martin, A. J. TI Environmental context for the terminal Ediacaran biomineralization of animals SO GEOBIOLOGY LA English DT Article ID CARBONATE-ASSOCIATED SULFATE; SULFUR ISOTOPE FRACTIONATION; PROTEROZOIC NAMA GROUP; YANGTZE GORGES AREA; SOUTH CHINA; DOUSHANTUO FORMATION; SEAWATER CHEMISTRY; GAOJIASHAN LAGERSTATTE; ORGANIC-CARBON; MARINE SULFATE AB In terminal Ediacaran strata of South China, the onset of calcareous biomineralization is preserved in the paleontological transition from Conotubus to Cloudina in repetitious limestone facies of the Dengying Formation. Both fossils have similar size, funnel-in-funnel construction, and epibenthic lifestyle, but Cloudina is biomineralized, whereas Conotubus is not. To provide environmental context for this evolutionary milestone, we conducted a high-resolution elemental and stable isotope study of the richly fossiliferous Gaojiashan Member. Coincident with the first appearance of Cloudina is a significant positive carbonate carbon isotope excursion (up to + 6 parts per thousand) and an increase in the abundance and S-34 composition of pyrite. In contrast, delta S-34 values of carbonate-associated sulfate remain steady throughout the succession, resulting in anomalously large (>70 parts per thousand) sulfur isotope fractionations in the lower half of the member. The fractionation trend likely relates to changes in microbial communities, with sulfur disproportionation involved in the lower interval, whereas microbial sulfate reduction was the principal metabolic pathway in the upper. We speculate that the coupled paleontological and biogeochemical anomalies may have coincided with an increase in terrestrial weathering fluxes of sulfate, alkalinity, and nutrients to the depositional basin, which stimulated primary productivity, the spread of an oxygen minimum zone, and the development of euxinic conditions in subtidal and basinal environments. Enhanced production and burial of organic matter is thus directly connected to the carbon isotope anomaly, and likely promoted pyritization as the main taphonomic pathway for Conotubus and other soft-bodied Ediacara biotas. Our studies suggest that the Ediacaran confluence of ecological pressures from predation and environmental pressures from an increase in seawater alkalinity set the stage for an unprecedented geobiological response: the evolutionary novelty of animal biomineralization. C1 [Cui, H.; Kaufman, A. J.; Peek, S.; Cao, H.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Cui, H.] Univ Wisconsin, Dept Geosci, Madison, WI USA. [Cui, H.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA. [Kaufman, A. J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Xiao, S.] Virginia Tech, Dept Geosci, Blacksburg, VA USA. [Min, X.; Cai, Y.] Northwest Univ, Dept Geol, Xian, Peoples R China. [Siegel, Z.] Bethesda Chevy Chase High Sch, Bethesda, MD USA. [Liu, X. -M.] Univ N Carolina, Dept Geol Sci, Chapel Hill, NC USA. [Peng, Y.] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA. [Schiffbauer, J. D.] Univ Missouri, Dept Geol Sci, Columbia, MO USA. [Martin, A. J.] IPICYT, Div Geociencias Aplicadas, San Luis Potosi, Mexico. [Peek, S.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Cao, H.] Jilin Univ, Coll Earth Sci, Changchun 130061, Peoples R China. RP Cui, H (reprint author), Univ Maryland, Dept Geol, College Pk, MD 20742 USA. EM Huan.Cui@wisc.edu RI Xiao, Shuhai/A-2190-2009; OI Xiao, Shuhai/0000-0003-4655-2663; Cui, Huan/0000-0003-0705-3423 FU NASA Exobiology grant [NNX12AR91G, NNX15AL27G]; NSF Sedimentary Geology and Paleontology grant [EAR0844270, EAR1528553]; NSF [EAR1032156]; AAPG Grants-In-Aid Program Marilyn Atwater Memorial Grant; Explorers Club Washington Group grant; Carnegie Institution of Washington Postdoctoral Fellowship; National Natural Science Foundation of China [41572012] FX We thank Rebecca Plummer, Mike Evans, and Brittney Gaeta for their assistance in the UMD Paleoclimate CoLaboratory. This research is funded by the NASA Exobiology grant (NNX12AR91G to AJK and NNX15AL27G to SX), the NSF Sedimentary Geology and Paleontology grant (EAR0844270 and EAR1528553 to AJK; EAR1528553 to SX), the NSF grant (EAR1032156) to the Arizona LaserChron Center, the AAPG Grants-In-Aid Program Marilyn Atwater Memorial Grant to HC, the Explorers Club Washington Group grant to HC, the Carnegie Institution of Washington Postdoctoral Fellowship to XML, and the National Natural Science Foundation of China grant (41572012) to YC. Thanks to the party chief of the Gaojiashan village Fazhi Li for his warm-hearted assistance in the field. Thanks to James Farquhar and Heather M. Stoll for helpful comments. The manuscript also benefits from constructive reviews by Pedro J. Marenco, Marc Laflamme, and an anonymous reviewer. Thanks also to the editor Kurt Konhauser for handling this manuscript. NR 178 TC 6 Z9 6 U1 9 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD JUL PY 2016 VL 14 IS 4 BP 344 EP 363 DI 10.1111/gbi.12178 PG 20 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA DW7BL UT WOS:000383806000002 PM 27038407 ER PT J AU Hamlington, BD Thompson, P Hammond, WC Blewitt, G Ray, RD AF Hamlington, B. D. Thompson, P. Hammond, W. C. Blewitt, G. Ray, R. D. TI Assessing the impact of vertical land motion on twentieth century global mean sea level estimates SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE vertical land motion; GMSL; tide gauge ID TIDE GAUGES; SPACE GEODESY; GPS; TREND; RISE; MODEL; ALTIMETRY; TOPEX AB Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.240.08 mm yr(-1) in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM. C1 [Hamlington, B. D.] Old Dominion Univ, Dept Ocean Earth & Atmospher Sci, Norfolk, VA USA. [Thompson, P.] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. [Hammond, W. C.; Blewitt, G.] Univ Nevada, Nevada Geodet Lab, Nevada Bur Mines & Geol, Reno, NV 89557 USA. [Ray, R. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Hamlington, BD (reprint author), Old Dominion Univ, Dept Ocean Earth & Atmospher Sci, Norfolk, VA USA. EM bhamling@odu.edu RI Ray, Richard/D-1034-2012 FU NASA Sea Level Change Team [NNX14AJ98G]; NASA New Investigator Program [NNX16AH56G]; NOAA Climate Program Office in support of the University of Hawaii Sea Level Center; NSF-EAR EarthScope project [1252210] FX The tide gauge data are available from the Permanent Service for Mean Sea Level (http://www.psmsl.org/data/). The GIA corrections for the PSMSL stations are provided by Richard Peltier (http://www.psmsl.org/train_and_info/geo_signals/gia/peltier/). B.D.H, W.C.H, and G.B. acknowledge support from NASA Sea Level Change Team grant NNX14AJ98G. B.D. Halso acknowledges support from NASA New Investigator Program NNX16AH56G. P.R.T acknowledges support from the NOAA Climate Program Office in support of the University of Hawaii Sea Level Center. W.C.H. and G.B. acknowledge support from NSF-EAR EarthScope project 1252210. We thank the great number of GPS network operators and data archivists who provided open access to GPS data used in this study. We thank the NASA Jet Propulsion Laboratory, Caltech, for providing the GIPSY OASIS II software used to generate GPS time series. We thank IGS and UNAVCO for providing the GPS data through their web portals http://www.igs.org and http://www.unavco.org. Time series used for this study were obtained through the Nevada Geodetic Laboratory web portal http://geodesy.unr.edu. NR 38 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUL PY 2016 VL 121 IS 7 BP 4980 EP 4993 DI 10.1002/2016JC011747 PG 14 WC Oceanography SC Oceanography GA DW2JK UT WOS:000383468500033 ER PT J AU Ishikawa, S Katsuragawa, M Watanabe, S Uchida, Y Takeda, S Takahashi, T Saito, S Glesener, L Buitrago-Casas, JC Krucker, S Christe, S AF Ishikawa, Shin-nosuke Katsuragawa, Miho Watanabe, Shin Uchida, Yuusuke Takeda, Shin'ichiro Takahashi, Tadayuki Saito, Shinya Glesener, Lindsay Buitrago-Casas, Juan Camilo Krucker, Sam Christe, Steven TI Fine-pitch CdTe detector for hard X-ray imaging and spectroscopy of the Sun with the FOXSI rocket experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Sun; X-ray; solar corona; semiconductor detector; imaging spectroscopy ID SOLAR-A MISSION; DIODE; NUSTAR; FLARES; REGION; RHESSI; IMAGER; LOOP AB We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15keV using the new technique of HXR focusing optics. The focal plane detector requires <100m position resolution (to take advantage of the angular resolution of the optics) and approximate to 1keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4keV, with moderate cooling (>-30 degrees C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15keV for the silicon detectors) and position resolution of 75m for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60m and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67mmx7.67mm, corresponding to the field of view of 791x791. An energy resolution of 1keV (FWHM) and low-energy threshold of approximate to 4keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun. C1 [Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takahashi, Tadayuki] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takahashi, Tadayuki] Univ Tokyo, Grad Sch Sci, Tokyo, Japan. [Takeda, Shin'ichiro] Okinawa Inst Sci & Technol Grad Univ, Adv Med Instrumentat Unit, Onna, Okinawa, Japan. [Saito, Shinya] Rikkyo Univ, Dept Phys, Bunkyo Ku, Tokyo, Japan. [Glesener, Lindsay] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Buitrago-Casas, Juan Camilo; Krucker, Sam] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Krucker, Sam] Univ Appl Sci Northwestern Switzerland, Inst Technol 4D, Sch Engn, Windisch, Switzerland. [Christe, Steven] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Ishikawa, S (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. EM s.ishikawa@solar.isas.jaxa.jp FU KAKENHI from the Japan Society for the Promotion of Science [24244021, 20244017, 24105007]; NASA's LCAS program [NNX11AB75G]; JAXA; NAOJ (Japan); STFC (U.K.); NASA; ESA; NSC (Norway) FX This work was supported through KAKENHI grants 24244021, 20244017 and 24105007 from the Japan Society for the Promotion of Science. FOXSI was funded by NASA's LCAS program, grant NNX11AB75G. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the postlaunch operation is provided by JAXA and NAOJ (Japan), STFC (U.K.), NASA, ESA, and NSC (Norway). The authors will provide the data shown in this article to those who are interested. Please contact S.I.: s.ishikawa@solar.isas.jaxa.jp. NR 30 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6009 EP 6016 DI 10.1002/2016JA022631 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100001 ER PT J AU Verkhoglyadova, OP Wissing, JM Wang, S Kallenrode, MB Zank, GP AF Verkhoglyadova, O. P. Wissing, J. M. Wang, S. Kallenrode, M. -B. Zank, G. P. TI Nighttime mesospheric hydroxyl enhancements during SEP events and accompanying geomagnetic storms: Ionization rate modeling and Aura satellite observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE mesosphere; SEP; magnetic storms; hydroxyl ID SOLAR PROTON EVENTS; ENERGETIC PARTICLE EVENTS; TERTIARY OZONE MAXIMUM; OCTOBER-NOVEMBER 2003; INTERPLANETARY SHOCKS; NORTHERN-HEMISPHERE; MIDDLE ATMOSPHERE; ODD HYDROGEN; PRECIPITATION; MLS AB We quantify the effects of combined precipitating solar protons and magnetospheric electrons on nighttime odd hydrogen density enhancements during two solar energetic particle (SEP) events accompanied by strong geomagnetic storms. We perform detailed modeling of ionization rates for 7-17 November 2004 and 20-30 August 2005 intervals with improved version 1.6 of the Atmospheric Ionization Module Osnabruck model. Particle measurements from Geostationary Operational Environmental Satellites and Polar Orbiting Environmental Satellites are sorted and combined in 2h intervals to create realistic particle precipitation maps that are used as the modeling input. We show that modeled atmospheric ionization rates and estimated peak odd hydrogen (primarily hydroxyl) production from 0.001hPa to 0.1hPa atmospheric pressure levels during these intervals are consistent with enhancements in nighttime averaged zonal odd hydrogen densities derived from newly reprocessed and improved data set of Microwave Limb Sounder instrument on board Aura satellite. We show that both precipitating SEPs and magnetospheric electrons contribute to mesospheric ionization and their relative contributions change throughout the intervals. Our event-based modeling results underline the importance of the combined ionization sources for odd hydrogen chemistry in the middle atmosphere. C1 [Verkhoglyadova, O. P.; Wang, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Verkhoglyadova, O. P.; Zank, G. P.] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA. [Wissing, J. M.; Kallenrode, M. -B.] Univ Osnabruck, Inst Environm Syst Res, Osnabruck, Germany. [Zank, G. P.] Univ Alabama, Ctr Space & Aeron Res, Huntsville, AL 35899 USA. RP Verkhoglyadova, OP (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.; Verkhoglyadova, OP (reprint author), Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA. EM Olga.Verkhoglyadova@jpl.nasa.gov FU NASA Aura Science Team program FX Portions of this work were done at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government Sponsorship acknowledged. S.W. acknowledges the support of the NASA Aura Science Team program. We are thankful to the NOAA Space Weather Prediction Center for providing POES and GOES particle data. The AIMOS model can be accessed at http://aimos.physik.uos.de. The authors acknowledge the use of OMNI database supported by NASA GSFC (at http://satdat.ngdc.noaa.gov/sem/goes/data/new_avg/ and http://omniweb.gsfc.nasa.gov/form/omni_min.html). MLS data are provided through http://mls.jpl.nasa.gov/. NR 41 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6017 EP 6030 DI 10.1002/2015JA022217 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100002 ER PT J AU Winslow, RM Lugaz, N Schwadron, NA Farrugia, CJ Yu, WY Raines, JM Mays, ML Galvin, AB Zurbuchen, TH AF Winslow, Reka M. Lugaz, Noe Schwadron, Nathan A. Farrugia, Charles J. Yu, Wenyuan Raines, Jim M. Mays, M. Leila Galvin, Antoinette B. Zurbuchen, Thomas H. TI Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ICME; HPS; HCS; magnetic topology ID CORONAL MASS EJECTIONS; MAGNETIC CLOUD EROSION; SOLAR-WIND; FLUX ROPE; INTERPLANETARY SPACE; INNER HELIOSPHERE; RECONNECTION; PLASMA; FIELD; RECONSTRUCTION AB We use data on an interplanetary coronal mass ejection (ICME) seen by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and STEREO A starting on 29 December 2011 in a near-perfect longitudinal conjunction (within 3 degrees) to illustrate changes in its structure via interaction with the solar wind in less than 0.6AU. From force-free field modeling we infer that the orientation of the underlying flux rope has undergone a rotation of approximate to 80 degrees in latitude and approximate to 65 degrees in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interaction involving magnetic reconnection with corotating structures in the solar wind dramatically alters the ICME magnetic field. In particular, we observed a highly turbulent region with distinct properties within the flux rope at STEREO A, not observed at MESSENGER, which we attribute to interaction between the ICME and a heliospheric plasma sheet/current sheet during propagation. Our case study is a concrete example of a sequence of events that can increase the complexity of ICMEs with heliocentric distance even in the inner heliosphere. The results highlight the need for large-scale statistical studies of ICME events observed in conjunction at different heliocentric distances to determine how frequently significant changes in flux rope orientation occur during propagation. These results also have significant implications for space weather forecasting and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients. C1 [Winslow, Reka M.; Lugaz, Noe; Schwadron, Nathan A.; Farrugia, Charles J.; Yu, Wenyuan; Galvin, Antoinette B.] Univ New Hampshire, Inst Study Earth Ocean & Space, Durham, NH 03824 USA. [Raines, Jim M.; Zurbuchen, Thomas H.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Mays, M. Leila] Catholic Univ Amer, Washington, DC 20064 USA. [Mays, M. Leila] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Winslow, RM (reprint author), Univ New Hampshire, Inst Study Earth Ocean & Space, Durham, NH 03824 USA. EM reka.winslow@unh.edu RI Lugaz, Noe/C-1284-2008 OI Lugaz, Noe/0000-0002-1890-6156 FU NASA Lunar Reconnaissance Orbiter Project (NASA) [NNG11PA03C]; NASA [NNX07AC14G, NNX13AC89G, NNX10AB17A, DREAM2, NNX14AG13A, NNX15AW31G, NNX15AB87G, NNX13AP52G]; NSF [AGS1135432, AGS1622352]; International Space Science Institute; STEREO-FARSIDE grant [NNX13AP52G] FX Support for this work was provided by the NASA Lunar Reconnaissance Orbiter Project (NASA contract NNG11PA03C), as well as various NASA grants (EMMREM, grant NNX07AC14G; C-SWEPA, grant NNX07AC14G; DoSEN, grant NNX13AC89G; DREAM, grant NNX10AB17A; and DREAM2; grant NNX14AG13A) and two NSF grants (Sun-2-Ice, grant AGS1135432 and grant AGS1622352). We also thank the International Space Science Institute for supporting the Research Team: Radiation Interactions at Planetary Bodies (http://www.issibern.ch/teams/interactplanetbody/). R.W. acknowledges support from NASA grant NNX15AW31G and NSF grant AGS1622352. N.L. acknowledges support from NASA grants NNX15AB87G and NNX13AP52G. We also acknowledge support from the STEREO-FARSIDE grant (NNX13AP52G) to the University of New Hampshire. MESSENGER data are available on the Planetary Data System (https://pds.jpl.nasa.gov). STEREO data are available on the Space Physics Data Facility (http://cdaweb.gsfc.nasa.gov). Simulation results (run number Reka_Winslow_110515_SH_1) have been provided by special request from the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The MAS model was developed by J. Linker, Z. Mikic, R. Lionello, and P. Riley and the ENLIL Model was developed by D. Odstrcil. We thank two anonymous reviewers for their comments on the paper. NR 62 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6092 EP 6106 DI 10.1002/2015JA022307 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100007 ER PT J AU Xie, H Makela, P Gopalswamy, N St Cyr, OC AF Xie, H. Makela, P. Gopalswamy, N. St Cyr, O. C. TI Energy dependence of SEP electron and proton onset times SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE solar energetic particle; onset time ID CORONAL MASS EJECTION; PARTICLE EVENT ONSET; STEREO MISSION; SOLAR ELECTRON; EARTH; INJECTION; SPACECRAFT; TELESCOPE; ACCELERATION; CONNECTION AB We study the large solar energetic particle (SEP) events that were detected by GOES in the >10MeV energy channel during December 2006 to March 2014. We derive and compare solar particle release (SPR) times for the 0.25-10.4MeV electrons and 10-100MeV protons for the 28 SEP events. In the study, the electron SPR times are derived with the time-shifting analysis (TSA) and the proton SPR times are derived using both the TSA and the velocity dispersion analysis (VDA). Electron anisotropies are computed to evaluate the amount of scattering for the events under study. Our main results include (1) near-relativistic electrons and high-energy protons are released at the same time within 8min for most (16 of 23) SEP events. (2)There exists a good correlation between electron and proton acceleration, peak intensity, and intensity time profiles. (3) The TSA SPR times for 90.5MeV and 57.4MeV protons have maximum errors of 6min and 10min compared to the proton VDA release times, respectively, while the maximum error for 15.4MeV protons can reach to 32min. (4) For 7 low-intensity events of the 23, large delays occurred for 6.5MeV electrons and 90.5MeV protons relative to 0.5MeV electrons. Whether these delays are due to times needed for the evolving shock to be strengthened or due to particle transport effects remains unsolved. C1 [Xie, H.; Makela, P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Xie, H.; Makela, P.; Gopalswamy, N.; St Cyr, O. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Xie, H (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.; Xie, H (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM hong.xie@nasa.gov FU NASA LWS TRT program [NNX15AB70G]; NASA [NNX15AB77G]; NSF [AGS-1358274] FX The authors would like to thank the support of STEREO, SOHO, Wind, and ACE teams. The STEREO SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). The SOHO LASCO data are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut fur Aeronomie (Germany), Laboratoire d'Astronomie (France), and the University of Birmingham (UK). SOHO Electron Proton and Helium Instrument (EPHIN) data were obtained from http://www2.physik.uni-kiel.de/SOHO/phpeph/EPHIN.htm; SOHO Energetic and Relativistic Nuclei and Electron instrument (ERNE) data were obtained from http://www.srl.utu.fi/erne_data/datafinder/df.shtml; STEREO High-Energy Telescope (HET) data were obtained from http://www.srl.caltech.edu/STEREO/Public/HET_public.html; STEREO High-Energy Telescope (LET) data were obtained from http://www.srl.caltech.edu/STEREO/Public/LET_public.html; STEREO Solar Electron Proton Telescope data (SEPT) were obtained from http://www2.physik.uni-kiel.de/STEREO/index.php?doc=data; and Wind/3DP and ACE/EPAM proton and electron data were obtained from http://cdaweb.gsfc.nasa.gov/istp_public/. This work was supported by NASA LWS TR&T program NNX15AB70G. P.M. was partially supported by NASA grant NNX15AB77G and NSF grant AGS-1358274. NR 52 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6168 EP 6183 DI 10.1002/2015JA021422 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100011 ER PT J AU Dewey, RM Baker, DN Mays, ML Brain, DA Jakosky, BM Halekas, JS Connerney, JEP Odstrcil, D Luhmann, JG Lee, CO AF Dewey, R. M. Baker, D. N. Mays, M. L. Brain, D. A. Jakosky, B. M. Halekas, J. S. Connerney, J. E. P. Odstrcil, D. Luhmann, J. G. Lee, C. O. TI Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSA-ENLIL plus Cone model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE MAVEN; Mars ID CORONAL MASS EJECTION; GLOBAL SURVEYOR; MAGNETOHYDRODYNAMIC SIMULATION; HALO CMES; JULY 2012; VARIABILITY; FLUX; TRANSPORT; PRESSURE; SCHEMES AB Knowledge of solar wind conditions at Mars is often necessary to study the planet's magnetospheric and ionospheric dynamics. With no continuous upstream solar wind monitor at Mars, studies have used a variety of methods to measure or predict Martian solar wind conditions. In situ measurements, when available, are preferred, but can often be limited in continuity or scope, and so studies have also utilized solar wind proxies, spacecraft flybys, and Earth-Mars alignment to provide solar wind context. Despite the importance of solar wind knowledge and the range of methods used to provide it, the use of solar wind models remains relatively unutilized. This study uses the Wang-Sheeley-Arge (WSA)-ENLIL+Cone solar wind model to calculate solar wind parameters at Mars' orbital location to provide a new approach to determining solar wind conditions at Mars. Comparisons of the model results with observations by the MAVEN spacecraft indicate that the WSA-ENLIL+Cone model can forecast solar wind conditions at Mars as accurately as it has predicted them historically at the Earth, although at Mars the model systematically mispredicts solar wind speed and density, likely a result of magnetogram calibration. Particular focus is placed on modeling the early March 2015 interplanetary coronal mass ejections (ICMEs) that interacted with Mars. Despite the complexity of the ICMEs, the model accurately predicted the speed and arrival time of the ICME-driven interplanetary shock, although it underpredicted other solar wind parameters. These results suggest that solar wind models can be used to provide the necessary general context of the heliospheric conditions to planetary studies. C1 [Dewey, R. M.; Baker, D. N.; Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Dewey, R. M.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Mays, M. L.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Mays, M. L.; Connerney, J. E. P.; Odstrcil, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Odstrcil, D.] George Mason Univ, Computat & Data Sci, Fairfax, VA 22030 USA. [Luhmann, J. G.; Lee, C. O.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Dewey, RM (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.; Dewey, RM (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM ryan.dewey@colorado.edu OI Lee, Christina/0000-0002-1604-3326 FU NASA through the Mars Exploration Program; NASA [NNX15AB80G]; National Science Foundation's Center for Integrated Space Weather Modeling FX The MAVEN project is supported by NASA through the Mars Exploration Program. All original MAVEN data reported in this paper will be archived by the NASA Planetary Data System. M. L. Mays thanks B.J. Thompson for helpful discussions and acknowledges the support of NASA grant NNX15AB80G. R. M. Dewey thanks L.K. Sarno-Smith for helpful discussions. The modeling techniques described here were originally developed under the auspices of the National Science Foundation's Center for Integrated Space Weather Modeling. Simulation results have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The WSA model was developed by N. Arge at AFRL, and the ENLIL model was developed by D. Odstrcil at GMU. Model outputs were provided by D. Odstrcil and M. L. Mays. The CCMC run ID is Leila_Mays_063015_SH_1. NR 73 TC 1 Z9 1 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6207 EP 6222 DI 10.1002/2015JA021941 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100014 ER PT J AU Halford, AJ Fraser, BJ Morley, SK Elkington, SR Chan, AA AF Halford, A. J. Fraser, B. J. Morley, S. K. Elkington, S. R. Chan, A. A. TI Dependence of EMIC wave parameters during quiet, geomagnetic storm, and geomagnetic storm phase times SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE electromagnetic ion cyclotron waves; geomagnetic storms; wave parameters; CRRES satellite; ULF waves; geomagnetic index ID ION-CYCLOTRON WAVES; VAN ALLEN PROBES; MAGNETIC PULSATIONS; RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; STATISTICAL-ANALYSIS; SYNCHRONOUS ORBIT; RADIATION-BELT; MAGNETOSPHERE; CRRES AB As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. We show that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. In this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts. C1 [Halford, A. J.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Halford, A. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fraser, B. J.] Univ Newcastle, Ctr Space Phys, Callaghan, NSW, Australia. [Morley, S. K.] Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Los Alamos, NM USA. [Elkington, S. R.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Chan, A. A.] Rice Univ, Dept Phys & Astron, Houston, TX USA. RP Halford, AJ (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.; Halford, AJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM alexa.halford@gmail.com RI Morley, Steven/A-8321-2008 OI Morley, Steven/0000-0001-8520-0199 FU Australian Research Council [DP0772504, LX0882515]; University of Newcastle Postgraduate Research Scholarship; NASA [NNX15AF66G, NNX14ACO4G, NNX15AF59G, NNX15AI93G, NNX14AN55G]; U.S. Department of Energy Laboratory Directed Research and Development (LDRD) [20150127ER]; Japan Society for Promotion of Science (JSPS) [127008, 168069, 178061, 188071, 198053, 208041, 218046, 228040, 238033, 248032] FX This research was partly supported by Australian Research Council Project grant DP0772504 and Linkage International grant LX0882515. A.J. Halford was supported during her PhD by a University of Newcastle Postgraduate Research Scholarship and continued support by NASA under grant number NNX15AF66G. S.K.M. was supported by U.S. Department of Energy Laboratory Directed Research and Development (LDRD) award 20150127ER. S.E. was supported by NASA grant NNX14ACO4G and NNX15AF59G. A.A.C. was supported by NASA grant NNX15AI93G and NNX14AN55G. The SYM-H, Kp, and AE index were generated by the Kyoto data service whose construction of this database has been supported in part (as "Solar-Terrestrial Physics Database") by grants 127008, 168069, 178061, 188071, 198053, 208041, 218046, 228040, 238033, and 248032 under the Japan Society for Promotion of Science (JSPS) and can be found on the kyoto website http://wdc.kugi.kyoto-u.ac.jp/index.html. The event list used in this study is available on request from the corresponding author, A.J. Halford (alexa.j.halford@Dartmouth.edu). CRRES ephemeris and number density data are available on request from B.J. Fraser (brian.fraser@newcastle.edu.au). A.J.H. would like to thank Alex Glocer for useful discussions. NR 81 TC 3 Z9 3 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6277 EP 6291 DI 10.1002/2016JA022694 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100019 ER PT J AU Forsyth, C Rae, IJ Murphy, KR Freeman, MP Huang, CL Spence, HE Boyd, AJ Coxon, JC Jackman, CM Kalmoni, NME Watt, CEJ AF Forsyth, C. Rae, I. J. Murphy, K. R. Freeman, M. P. Huang, C. -L. Spence, H. E. Boyd, A. J. Coxon, J. C. Jackman, C. M. Kalmoni, N. M. E. Watt, C. E. J. TI What effect do substorms have on the content of the radiation belts? SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE substorm; radiation belts; enhancements; losses ID RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; MAGNETIC STORMS; MAGNETOSPHERIC-SUBSTORM; PARTICLE INJECTIONS; GEOMAGNETIC STORMS; LOCAL ACCELERATION; SOLAR-WIND; CHORUS; INDEX AB Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV seed population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1-3days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6days. Increases in radiation belt content show a significant correlation with SML and SYM-H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels. C1 [Forsyth, C.; Rae, I. J.; Kalmoni, N. M. E.] Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England. [Murphy, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Freeman, M. P.] British Antarctic Survey, Cambridge, England. [Huang, C. -L.; Spence, H. E.; Boyd, A. J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Boyd, A. J.] New Mexico Consortium, Los Alamos, NM USA. [Coxon, J. C.; Jackman, C. M.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Watt, C. E. J.] Univ Reading, Dept Meteorol, Reading, Berks, England. RP Forsyth, C (reprint author), Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England. EM colin.forsyth@ucl.ac.uk RI Watt, Clare/C-5218-2008; OI Watt, Clare/0000-0003-3193-8993; Forsyth, Colin/0000-0002-0026-8395 FU Natural Environment Research Council (NERC) [NE/L007495/1, NE/M00886X/1, NE/L007177/1, NE/L006456/1]; Science and Technology Facilities Council (STFC) [ST/L000563/1]; Canadian NSERC Postdoctoral Fellowship; RBSP-ECT by JHU/APL [967399]; NASA's Prime contract [NAS5-01072]; National Science Foundation (NSF); National Aeronautics and Space Administration (NASA); NSF [ATM-0646323, AGS-1003580]; NASA [NNX08AM32G S03] FX C.F. and I.J.R. are funded in part by Natural Environment Research Council (NERC) grants NE/L007495/1 and NE/M00886X/1 and I.J.R. by Science and Technology Facilities Council (STFC) grant ST/L000563/1. K.R.M. is funded by a Canadian NSERC Postdoctoral Fellowship. J.C.C. and C.M.J. are supported by Natural Environment Research Council (NERC) joint grants NE/L007177/1 and M.P.F. by NE/L006456/1. The authors thank D.G. Sibeck for useful discussion of this work. Visits to and a portion of the work performed at GSFC were supported by the Van Allen Probes project. This work was supported by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA's Prime contract NAS5-01072. We gratefully acknowledge the members of the RBSP-ECT team. For the ground magnetometer data we gratefully acknowledge the following: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; CANMOS; the S-RAMP Database, PI K. Yumoto and K. Shiokawa; the SPIDR database; AARI, PI Oleg Troshichev; the MACCS program, PI M. Engebretson, Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; the institutes who maintain the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Connors; DTU Space, PI Juergen Matzka; South Pole and McMurdo Magnetometer, PIs Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Antarctic Survey; McMac, PI Peter Chi; BGS, PI Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Juergen Matzka; MFGI, PI B. Heilig; IGFPAS, PI J. Reda; University of L'Aquila, PI M. Vellante; and SuperMAG, PI Jesper W. Gjerloev. SuperMAG is made possible by the generous funding provided by the National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA). We gratefully acknowledge: NSF ATM-0646323, NSF AGS-1003580, and NASA NNX08AM32G S03. NR 69 TC 1 Z9 1 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6292 EP 6306 DI 10.1002/2016JA022620 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100020 ER PT J AU Samsonov, AA Gordeev, E Tsyganenko, NA Safrankova, J Nemecek, Z Simunek, J Sibeck, DG Toth, G Merkin, VG Raeder, J AF Samsonov, A. A. Gordeev, E. Tsyganenko, N. A. Safrankova, J. Nemecek, Z. Simunek, J. Sibeck, D. G. Toth, G. Merkin, V. G. Raeder, J. TI Do we know the actual magnetopause position for typical solar wind conditions? SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE magnetopause; MHD modeling ID GLOBAL MHD; MAGNETIC-FIELD; DAYSIDE MAGNETOSPHERE; EARTHS MAGNETOPAUSE; GEOMAGNETIC FIELD; PRESSURE BALANCE; BOW SHOCK; MODEL; SHAPE; MAGNETOSHEATH AB We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter >1R(E)) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than nonaxisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global nonaxisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the nonaxisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for B-z=0. Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed. C1 [Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.] St Petersburg State Univ, St Petersburg, Russia. [Safrankova, J.; Nemecek, Z.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Simunek, J.] CAS, Inst Atmospher Phys, Prague, Czech Republic. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Toth, G.] Univ Michigan, Dept Climate & Space, Ann Arbor, MI 48109 USA. [Merkin, V. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Raeder, J.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Samsonov, AA (reprint author), St Petersburg State Univ, St Petersburg, Russia. EM a.samsonov@spbu.ru RI Samsonov, Andrey/I-7057-2012; Simunek, Jiri/H-8139-2014; Gordeev, Evgeny/H-8222-2013; OI Samsonov, Andrey/0000-0001-8243-1151; Gordeev, Evgeny/0000-0002-2687-7287; Tsyganenko, Nikolai/0000-0002-5938-1579 FU Russian Foundation for Basic Research [14-05-00399]; RFBR [14-05-31380]; Czech Grant Agency [14-19376S] FX This work was supported by the Russian Foundation for Basic Research grant 14-05-00399. The work by E.G. was supported by RFBR grant 14-05-31380. J. Safrankova and Z. Nemecek thank the Czech Grant Agency for support under contract 14-19376S. A.A.S. thanks Victor Sergeev for valuable comments. We thank Yongli Wang for providing results of the W13 model. Simulation results were provided by the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov) at Goddard Space Flight Center. THEMIS data are available from the Coordinated Data Analysis Web (CDAWeb) and THEMIS website (http://themis.igpp.ucla.edu). OMNI data are available from OMNIWeb service (http://omniweb.gsfc.nasa.gov). NR 64 TC 1 Z9 1 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6493 EP 6508 DI 10.1002/2016JA022471 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100032 ER PT J AU Perez, JD Goldstein, J McComas, DJ Valek, P Fok, MC Hwang, KJ AF Perez, J. D. Goldstein, J. McComas, D. J. Valek, P. Fok, M. -C. Hwang, Kyoung-Joo TI Global images of trapped ring current ions during main phase of 17 March 2015 geomagnetic storm as observed by TWINS SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ring current; TWINS; RBSPICE ID PITCH-ANGLE DISTRIBUTIONS; ENERGETIC NEUTRAL ATOM; INNER MAGNETOSPHERE; ENA OBSERVATIONS; MISSION; SUBSTORM; DYNAMICS; HENA AB A unique view of the trapped particles in the inner magnetosphere provided by energetic neutral atom (ENA) imaging is used to observe the dynamics of the spatial structure and the pitch angle anisotropy on a global scale during the last 6h of the main phase of a large geomagnetic storm (minimum SYM-H=-230nT) that began on 17 March 2015. Ion flux and pressure anisotropy obtained from Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) ENA images are shown. The ion flux shows two peaks, an inner one at approximately radii=3-4 R-E in the dusk-to-midnight sector and an outer peak at radii=8-9 R-E prior to midnight. The inner peak is relatively stationary during the entire period with some intensification during the final steep decline in SYM-H to its minimum. The outer peak shows the significant temporal variation brightening and dimming and finally disappearing at the end of the main phase. The pressure anisotropy shows the expected perpendicular pitch angles inside of L=6 but shows parallel pitch angles at greater L values. This is interpreted as consistent with pitch angle-dependent drift as modeled in the Tsy05 magnetic field and Comprehensive Inner Magnetosphere-Ionosphere simulations. The TWINS results are compared directly with Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)-A measurements. Using 15min snapshots of flux and pressure anisotropy from TWINS along the path of RBSPICE-A during the 6h focused upon in this study, the essential features displayed in the TWINS global images are supported. C1 [Perez, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Goldstein, J.; McComas, D. J.; Valek, P.] Southwest Res Inst, San Antonio, TX USA. [Goldstein, J.; McComas, D. J.; Valek, P.] Univ Texas San Antonio, Dept Phys, San Antonio, TX USA. [Fok, M. -C.; Hwang, Kyoung-Joo] NASA, Goddard Space Flight Ctr, Greenest, MD USA. [Hwang, Kyoung-Joo] Univ Maryland, Goddard Planetary & Heliophys Inst, Baltimore, MD 21201 USA. RP Perez, JD (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. EM perez@physics.auburn.edu OI Valek, Philip/0000-0002-2318-8750 NR 39 TC 1 Z9 1 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6509 EP 6525 DI 10.1002/2016JA022375 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100033 ER PT J AU Baker, DN Jaynes, AN Kanekal, SG Foster, JC Erickson, PJ Fennell, JF Blake, JB Zhao, H Li, X Elkington, SR Henderson, MG Reeves, GD Spence, HE Kletzing, CA Wygant, JR AF Baker, D. N. Jaynes, A. N. Kanekal, S. G. Foster, J. C. Erickson, P. J. Fennell, J. F. Blake, J. B. Zhao, H. Li, X. Elkington, S. R. Henderson, M. G. Reeves, G. D. Spence, H. E. Kletzing, C. A. Wygant, J. R. TI Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE radiation belts; magnetosphere; electron acceleration ID ALLEN PROBES OBSERVATIONS; ULTRARELATIVISTIC ELECTRONS; PROMPT ENERGIZATION; DIFFUSION; PROTONS; RING AB Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223nT. On 22 June 2015 another strong storm (Dst reaching -204nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E1MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong butterfly distributions with deep minima in flux at =90 degrees. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported impenetrable barrier at L approximate to 2.8 was pushed inward, but not significantly breached, and no E2.0MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis. C1 [Baker, D. N.; Jaynes, A. N.; Zhao, H.; Li, X.; Elkington, S. R.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Foster, J. C.; Erickson, P. J.] MIT, Haystack Observ, Westford, MA 01886 USA. [Fennell, J. F.; Blake, J. B.] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA. [Henderson, M. G.; Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Wygant, J. R.] Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA. RP Baker, DN (reprint author), Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM Daniel.Baker@LASP.colorado.edu RI Henderson, Michael/A-3948-2011 OI Henderson, Michael/0000-0003-4975-9029 FU RBSP-ECT funding through JHU/APL [967399, NAS5-01072] FX The research presented here was supported by RBSP-ECT funding through JHU/APL contract 967399 (under prime NASA contract NAS5-01072). All data used in this paper are currently available via CDAweb (http://cdaweb.gsfc.nasa.gov/) or through the individual Van Allen Probes instrument suite web pages, with the exception of background-corrected REPT data which are available directly from the REPT team. NR 32 TC 5 Z9 5 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6647 EP 6660 DI 10.1002/2016JA022502 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100043 PM 27867796 ER PT J AU Khazanov, GV Glocer, A Sibeck, DG Tripathi, AK Detweiler, LG Avanov, LA Singhal, RP AF Khazanov, G. V. Glocer, A. Sibeck, D. G. Tripathi, A. K. Detweiler, L. G. Avanov, L. A. Singhal, R. P. TI Ionosphere-magnetosphere energy interplay in the regions of diffuse aurora SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE diffuse aurora; superthermal electrons; plasma waves; magnetosphere; ionosphere ID WHISTLER-MODE WAVES; PRECIPITATION; ELECTRONS; INTERCHANGE; EMISSIONS AB Both electron cyclotron harmonic (ECH) waves and whistler mode chorus waves resonate with electrons of the Earth's plasma sheet in the energy range from tens of eV to several keV and produce the electron diffuse aurora at ionospheric altitudes. Interaction of these superthermal electrons with the neutral atmosphere leads to the production of secondary electrons (E<500-600eV) and, as a result, leads to the activation of lower energy superthermal electron spectra that can escape back to the magnetosphere and contribute to the thermal electron energy deposition processes in the magnetospheric plasma. The ECH and whistler mode chorus waves, however, can also interact with the secondary electrons that are coming from both of the magnetically conjugated ionospheres after they have been produced by initially precipitated high-energy electrons that came from the plasma sheet. After their degradation and subsequent reflection in magnetically conjugate atmospheric regions, both the secondary electrons and the precipitating electrons with high (E>600eV) initial energies will travel back through the loss cone, become trapped in the magnetosphere, and redistribute the energy content of the magnetosphere-ionosphere system. Thus, scattering of the secondary electrons by ECH and whistler mode chorus waves leads to an increase of the fraction of superthermal electron energy deposited into the core magnetospheric plasma. C1 [Khazanov, G. V.; Glocer, A.; Sibeck, D. G.; Avanov, L. A.] NASA GSFC, Greenbelt, MD 20771 USA. [Tripathi, A. K.; Singhal, R. P.] Banaras Hindu Univ, Indian Inst Technol, Dept Phys, Varanasi, Uttar Pradesh, India. [Detweiler, L. G.] Southern Oregon State Coll, Ashland, OR USA. RP Khazanov, GV (reprint author), NASA GSFC, Greenbelt, MD 20771 USA. EM george.v.khazanov@nasa.gov FU NASA Van Allen Probes as the Radiation Belt Storm Probes (RBSP); NASA LWS Program FX Funding support for this study was provided by NASA Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)) Project, the NASA LWS Program. The data for this paper are available from George V. Khazanov at george.v.khazanov@nasa.gov. NR 27 TC 2 Z9 2 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 6661 EP 6673 DI 10.1002/2016JA022403 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100044 ER PT J AU Sakai, S Andersson, L Cravens, TE Mitchell, DL Mazelle, C Rahmati, A Fowler, CM Bougher, SW Thiemann, EMB Eparvier, FG Fontenla, JM Mahaffy, PR Connerney, JEP Jakosky, BM AF Sakai, Shotaro Andersson, Laila Cravens, Thomas E. Mitchell, David L. Mazelle, Christian Rahmati, Ali Fowler, Christopher M. Bougher, Stephen W. Thiemann, Edward M. B. Eparvier, Francis G. Fontenla, Juan M. Mahaffy, Paul R. Connerney, John E. P. Jakosky, Bruce M. TI Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Mars; ionosphere; electron temperature; photoelectrons ID MAGNETIC-FIELD; CROSS-SECTIONS; SOLAR-WIND; UPPER-ATMOSPHERE; CARBON-DIOXIDE; MARS; ION; TEMPERATURES; OXYGEN; VENUS AB This paper presents a study of the energetics of the dayside ionosphere of Mars using models and data from several instruments on board the Mars Atmosphere and Volatile EvolutioN spacecraft. In particular, calculated photoelectron fluxes are compared with suprathermal electron fluxes measured by the Solar Wind Electron Analyzer, and calculated electron temperatures are compared with temperatures measured by the Langmuir Probe and Waves experiment. The major heat source for the thermal electrons is Coulomb heating from the suprathermal electron population, and cooling due to collisional rotational and vibrational CO2 dominates the energy loss. The models used in this study were largely able to reproduce the observed high topside ionosphere electron temperatures (e.g., 3000K at 300km altitude) without using a topside heat flux when magnetic field topologies consistent with the measured magnetic field were adopted. Magnetic topology affects both suprathermal electron transport and thermal electron heat conduction. The effects of using two different solar irradiance models were also investigated. In particular, photoelectron fluxes and electron temperatures found using the Heliospheric Environment Solar Spectrum Radiation irradiance were higher than those with the Flare Irradiance Spectrum Model-Mars. The electron temperature is shown to affect the O-2(+) dissociative recombination rate coefficient, which in turn affects photochemical escape of oxygen from Mars. C1 [Sakai, Shotaro; Cravens, Thomas E.; Rahmati, Ali] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Andersson, Laila; Fowler, Christopher M.; Thiemann, Edward M. B.; Eparvier, Francis G.; Jakosky, Bruce M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Mitchell, David L.; Rahmati, Ali] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mazelle, Christian] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Mazelle, Christian] CNRS, IRAP, Toulouse, France. [Bougher, Stephen W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Fontenla, Juan M.] NorthWest Res Associates, Boulder, CO USA. [Mahaffy, Paul R.; Connerney, John E. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Cravens, TE (reprint author), Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. EM cravens@ku.edu OI EPARVIER, FRANCIS/0000-0001-7143-2730; Sakai, Shotaro/0000-0001-9135-2076 FU NASA [NNH10CC04C]; CNES FX All data shown in the figures can be obtained from the corresponding author. MAVEN data are in the Planetary Data System. This work was supported by NASA grant NNH10CC04C to the University of Colorado and by subcontract to the University of Kansas. The MAVEN project is supported by NASA through the Mars Exploration Program. This work was also partially supported by CNES for the part based on observations with the SWEA instrument onboard MAVEN. NR 57 TC 1 Z9 1 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 7049 EP 7066 DI 10.1002/2016JA022782 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100073 ER PT J AU Humberset, BK Gjerloev, JW Samara, M Michell, RG Mann, IR AF Humberset, B. K. Gjerloev, J. W. Samara, M. Michell, R. G. Mann, I. R. TI Temporal characteristics and energy deposition of pulsating auroral patches SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE aurora; pulsating aurora; fluctuating aurora; auroral patch; auroral characteristics ID PITCH-ANGLE DIFFUSION; DAWN-DUSK ASYMMETRY; MORNINGSIDE AURORAE; FAST SATELLITE; MAGNETOSPHERE; ELECTRON; CHORUS; MODULATION; MODEL; PRECIPITATION AB We present a careful statistical analysis of pulsating aurora (PA) using all-sky green line (557.7nm) images obtained at 3.3Hz. Six well-defined individual PA patches are identified and extracted using a contouring technique. Quantitative parameters such as the patch duration (on-time and off-time), peak intensity, and integrated intensity are determined for each patch and each pulsation. The resulting characteristics serve as strict observational constraints that any of the many competing theories attempting to explain PA must predict. The purpose of this paper is to determine the characteristics of PA patches in order to provide better observational constraints on the suggested mechanisms. All aspects of the temporal behavior of the individual patches appear to be erratic. Historically, PA has been defined very loosely and we argue that the use of the term pulsating is inappropriate since our findings and other published results are not regularly periodic and thus a more appropriate term may be fluctuating aurora. Further, we find that the observational constraints do not fit well with the flow cyclotron maser theory, which in particular is suggested to create PA patches. There is no clear candidate of the suggested mechanisms and drivers to explain the observational constraints set by the PA patches in a satisfactory manner. C1 [Humberset, B. K.; Gjerloev, J. W.] Univ Bergen, Dept Phys & Technol, Birkeland Ctr Space Sci, Bergen, Norway. [Gjerloev, J. W.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Samara, M.; Michell, R. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Michell, R. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mann, I. R.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. RP Humberset, BK (reprint author), Univ Bergen, Dept Phys & Technol, Birkeland Ctr Space Sci, Bergen, Norway. EM Beate.Humberset@uib.no OI Mann, Ian/0000-0003-1004-7841 FU Research Council of Norway [223252/F50] FX This study was supported by the Research Council of Norway under contract 223252/F50. The authors acknowledge the use of SuperMAG indices and all-sky imager data from the Multi-spectral Observatory of Sensitive EMCCDs (MOOSE). The SuperMAG indices were obtained freely from supermag.uib.no. MOOSE all-sky imager data were obtained from R. Michell and M. Samara. The data analyzed in this study are available upon request from the authors. NR 51 TC 2 Z9 2 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 7087 EP 7107 DI 10.1002/2016JA022921 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100075 ER PT J AU Dawkins, ECM Plane, JMC Chipperfield, MP Feng, W Marsh, DR Hoffner, J Janches, D AF Dawkins, E. C. M. Plane, J. M. C. Chipperfield, M. P. Feng, W. Marsh, D. R. Hoeffner, J. Janches, D. TI Solar cycle response and long-term trends in the mesospheric metal layers SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE mesospheric metal; solar cycle; long-term trends; modeling; satellite retrieval ID POTASSIUM LAYER; UPPER-ATMOSPHERE; SEASONAL-VARIATIONS; SODIUM LAYER; CHEMISTRY; VARIABILITY; CLIMATE; THERMOSPHERE; 54-DEGREES-N; TEMPERATURES AB The meteoric metal layers (Na, Fe, and K)which form as a result of the ablation of incoming meteorsact as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere region. In this work, we examine whether these metal layers are sensitive indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer timescales (both the similar to psi 11year solar cycle and 50year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013. C1 [Dawkins, E. C. M.; Plane, J. M. C.; Feng, W.] Univ Leeds, Sch Chem, Leeds, W Yorkshire, England. [Dawkins, E. C. M.; Chipperfield, M. P.; Feng, W.] Univ Leeds, Sch Earth & Environm, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Dawkins, E. C. M.; Janches, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Dawkins, E. C. M.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Marsh, D. R.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Hoeffner, J.] Leibniz Inst Atmospher Phys, Kuhlhungsborn, Germany. RP Plane, JMC (reprint author), Univ Leeds, Sch Chem, Leeds, W Yorkshire, England. EM j.m.c.plane@leeds.ac.uk RI Plane, John/C-7444-2015; FENG, WUHU/B-8327-2008; Marsh, Daniel/A-8406-2008; Janches, Diego/D-4674-2012 OI Plane, John/0000-0003-3648-6893; FENG, WUHU/0000-0002-9907-9120; Marsh, Daniel/0000-0001-6699-494X; Janches, Diego/0000-0001-8615-5166 FU UK Natural Environment Research Council [NE/G019487/1]; European Research Council [291332-CODITA]; National Science Foundation FX This work was funded by the UK Natural Environment Research Council (grant NE/G019487/1) and the European Research Council (project 291332-CODITA). The OSIRIS retrieved and WACCM metal data sets are available upon request to J.M.C.P. The Kuhlungsborn K lidar data are available upon request to J.H. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 44 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 7153 EP 7165 DI 10.1002/2016JA022522 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100079 ER PT J AU Wu, DL Yee, JH Schlecht, E Mehdi, I Siles, J Drouin, BJ AF Wu, Dong L. Yee, Jeng-Hwa Schlecht, Erich Mehdi, Imran Siles, Jose Drouin, Brian J. TI THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE terahertz; winds; thermosphere; atomic oxygen; density; temperature ID 63 MU-M; UPPER ATMOSPHERIC WIND; ATOMIC OXYGEN; MIDDLE-ATMOSPHERE; MESOSPHERE; EMISSION; MIXER; INTERFEROMETER; SUBMILLIMETER; DYNAMICS AB Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06THz Schottky receiver to measure wind profiles at 100-140km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules. C1 [Wu, Dong L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yee, Jeng-Hwa] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Wu, DL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM dong.l.wu@nasa.gov FU NASA SMD Heliophysics and Geospace Science Instrument Development and Enabling Science (G/IDES) program [NNX13AD70G]; NASA FX The support from NASA SMD Heliophysics and Geospace Science Instrument Development and Enabling Science (G/IDES) program (grant NNX13AD70G) is acknowledged. The work performed at Jet Propulsion Laboratory, California Institute of Technology, was sponsored by and under contract with NASA. For further information on the analyses in this study, please contact the corresponding author at dong.l.wu@nasa.gov. Releases of additional technical information on the TLS instrument parameters are subject to the U.S. security and regulation reviews. NR 55 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2016 VL 121 IS 7 BP 7301 EP 7315 DI 10.1002/2015JA022314 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW1SE UT WOS:000383422100090 ER PT J AU Sekerak, MJ Gallimore, AD Brown, DL Hofer, RR Polk, JE AF Sekerak, Michael J. Gallimore, Alec D. Brown, Daniel L. Hofer, Richard R. Polk, James E. TI Mode Transitions in Hall-Effect Thrusters Induced by Variable Magnetic Field Strength SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (JPC) and Exhibit CY JUL 14-19, 2013 CL San Jose, CA SP AIAA, ASME, SAE, ASEE ID STATIONARY PLASMA THRUSTERS; WALL AB Mode transitions in a 6 kW laboratory Hall-effect thruster were induced by varying the magnetic field intensity while holding all other operating parameters constant. Ultrafast imaging, discharge current, and thrust measurements were used to characterize the change in discharge channel current density and thruster performance through mode transitions. The modes are described here as global oscillation mode and local oscillation mode. In global mode, the entire discharge channel is oscillating in unison and spokes are either absent or negligible with discharge current oscillation amplitude (root mean square) greater than 10% of the mean value and can even be as high as 100%. In local oscillation mode, perturbations in the discharge current density are seen to propagate in the E x B direction. Spokes are localized oscillations that are typically 10-20% of the mean discharge current density value. The discharge current oscillation amplitude and mean values are significantly lower than global mode. The mode transitions changed with operating conditions, where the transition between global mode and local mode occurred at higher relative magnetic field strengths for higher mass flow rate or higher discharge voltage. The thrust was approximately constant through the mode transition, but the thrust-to-power ratio and anode efficiency decreased significantly in global mode. The peaks in thrust to power and anode efficiency typically occur near the transition point. Thruster performance maps should include variation in discharge current, discharge voltage, and magnetic field, known as I-D - V-D - B maps, at different flow rates to identify transition regions throughout the life of a thruster. These results are used to calculate a transition surface for use by operators to keep the thruster operating in an optimal mode. C1 [Sekerak, Michael J.; Gallimore, Alec D.] Univ Michigan, Plasmadynam & Elect Prop Lab, Ann Arbor, MI 48105 USA. [Brown, Daniel L.] US Air Force, Res Lab, Aerosp Syst Directorate, In Space Prop Branch, Edwards AFB, CA 93524 USA. [Hofer, Richard R.] CALTECH, Jet Prop Lab, Elect Prop Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Polk, James E.] CALTECH, Jet Prop Lab, Prop & Mat Engn Sect, Pasadena, CA 91109 USA. RP Sekerak, MJ (reprint author), Univ Michigan, Plasmadynam & Elect Prop Lab, Ann Arbor, MI 48105 USA. EM msekerak@umich.edu; alec.gallimore@umich.edu; daniel.brown.50@us.af.mil; richard.r.hofer@jpl.nasa.gov; james.e.polk@jpl.nasa.gov NR 31 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 EI 1533-3876 J9 J PROPUL POWER JI J. Propul. Power PD JUL PY 2016 VL 32 IS 4 BP 903 EP 917 DI 10.2514/1.B35709 PG 15 WC Engineering, Aerospace SC Engineering GA DW2LW UT WOS:000383474900010 ER PT J AU Holzmann, GJ AF Holzmann, Gerard J. TI The Weakest Link SO IEEE SOFTWARE LA English DT Article C1 [Holzmann, Gerard J.] NASA, Jet Prop Lab, Washington, DC 20546 USA. RP Holzmann, GJ (reprint author), NASA, Jet Prop Lab, Washington, DC 20546 USA. EM gholzmann@acm.org NR 3 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0740-7459 EI 1937-4194 J9 IEEE SOFTWARE JI IEEE Softw. PD JUL-AUG PY 2016 VL 33 IS 4 BP 18 EP 21 PG 4 WC Computer Science, Software Engineering SC Computer Science GA DV7CJ UT WOS:000383093400005 ER PT J AU Dorn, ML Pipher, JL McMurtry, C Hartman, S Mainzer, A McKelvey, M McMurray, R Chevara, D Rosser, J AF Dorn, Meghan L. Pipher, Judith L. McMurtry, Craig Hartman, Spencer Mainzer, Amy McKelvey, Mark McMurray, Robert Chevara, David Rosser, Joshua TI Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE infrared detectors; infrared; detector array ID FOCAL-PLANE ARRAYS; RADIATION AB HgCdTe detector arrays with a cutoff wavelength of similar to 10 mu m intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-mu m substrate intact, one with 30-mu m substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-mu m substrate. The detector array with full 800-mu m substrate exhibited substantial photocurrent for a flux of 103 protons/cm(2) s at a beam energy of 18.1 MeV (similar to 750 e(-)/s) and 34.4 MeV (similar to 65 e(-)/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of < 200 e(-)/s, but the pattern of luminescence could be problematic, possibly complicating calibration. (C) The Authors. C1 [Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Chevara, David; Rosser, Joshua] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Hartman, Spencer] Univ Calif Davis, Crocker Nucl Lab, Davis, CA 95616 USA. [Mainzer, Amy] CALTECH, NASA, Jet Prop Lab, M-S 264-723,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [McKelvey, Mark; McMurray, Robert] NASA, Ames Res Ctr, M-S 244-10, Moffett Field, CA 94035 USA. RP Dorn, ML (reprint author), Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. EM meghan@pas.rochester.edu NR 23 TC 1 Z9 1 U1 0 U2 0 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD JUL PY 2016 VL 2 IS 3 AR 036002 DI 10.1117/1.JATIS.2.3.036002 PG 11 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PC UT WOS:000383127600004 ER PT J AU Hamden, ET Jewell, AD Shapiro, CA Cheng, SR Goodsall, TM Hennessy, J Hoenk, M Jones, T Gordon, S Ong, HR Schiminovich, D Martin, DC Nikzad, S AF Hamden, Erika T. Jewell, April D. Shapiro, Charles A. Cheng, Samuel R. Goodsall, Tim M. Hennessy, John Hoenk, Michael Jones, Todd Gordon, Sam Ong, Hwei Ru Schiminovich, David Martin, D. Christopher Nikzad, Shouleh TI Charge-coupled devices detectors with high quantum efficiency at UV wavelengths SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE UV; antireflection coatings; thin-films; charge-coupled devices ID ATOMIC LAYER DEPOSITION; ANTIREFLECTION COATINGS; ULTRAVIOLET; PHOTODIODES; OZONE; RANGE; NM AB We report on multilayer high efficiency antireflection coating (ARC) design and development for use at UV wavelengths on CCDs and other Si-based detectors. We have previously demonstrated a set of single-layer coatings, which achieve >50% quantum efficiency (QE) in four bands from 130 to 300 nm. We now present multilayer coating designs that significantly outperform our previous work between 195 and 215 nm. Using up to 11 layers, we present several model designs to reach QE above 80%. We also demonstrate the successful performance of 5 and 11 layer ARCs on silicon and fused silica substrates. Finally, we present a five-layer coating deposited onto a thinned, delta-doped CCD and demonstrate external QE greater than 60% between 202 and 208 nm, with a peak of 67.6% at 206 nm. (C) The Authors. C1 [Hamden, Erika T.; Martin, D. Christopher] CALTECH, Dept Astron, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Jewell, April D.; Shapiro, Charles A.; Cheng, Samuel R.; Goodsall, Tim M.; Hennessy, John; Hoenk, Michael; Jones, Todd; Nikzad, Shouleh] CALTECH, Jet Prop Lab, M-S 302-304, Pasadena, CA 91109 USA. [Gordon, Sam] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Ong, Hwei Ru; Schiminovich, David] Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10025 USA. RP Hamden, ET (reprint author), CALTECH, Dept Astron, 1200 East Calif Blvd, Pasadena, CA 91125 USA. EM hamden@caltech.edu NR 26 TC 0 Z9 0 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD JUL PY 2016 VL 2 IS 3 AR 036003 DI 10.1117/1.JATIS.2.3.036003 PG 11 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PC UT WOS:000383127600005 ER PT J AU Komjathy, A Yang, YM Meng, X Verkhoglyadova, O Mannucci, AJ Langley, RB AF Komjathy, Attila Yang, Yu-Ming Meng, Xing Verkhoglyadova, Olga Mannucci, Anthony J. Langley, Richard B. TI Review and perspectives: Understanding natural-hazards-generated ionospheric perturbations using GPS measurements and coupled modeling SO RADIO SCIENCE LA English DT Review DE natural hazards; ionosphere; TEC; GPS; perturbations; early warning systems ID TOHOKU-OKI EARTHQUAKE; INTERNAL GRAVITY-WAVES; TOTAL ELECTRON-CONTENT; TSUNAMI; DISTURBANCES; OSCILLATIONS; ATMOSPHERE; DEPENDENCE; SIGNATURE; ERUPTION AB Natural hazards including earthquakes, volcanic eruptions, and tsunamis have been significant threats to humans throughout recorded history. Global navigation satellite systems (GNSS; including the Global Positioning System (GPS)) receivers have become primary sensors to measure signatures associated with natural hazards. These signatures typically include GPS-derived seismic deformation measurements, coseismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure, model, and monitor postseismic ionospheric disturbances caused by, e.g., earthquakes, volcanic eruptions, and tsunamis. In this paper, we review research progress at the Jet Propulsion Laboratory and elsewhere using examples of ground-based and spaceborne observation of natural hazards that generated TEC perturbations. We present results for state-of-the-art imaging using ground-based and spaceborne ionospheric measurements and coupled atmosphere-ionosphere modeling of ionospheric TEC perturbations. We also report advancements and chart future directions in modeling and inversion techniques to estimate tsunami wave heights and ground surface displacements using TEC measurements and error estimates. Our initial retrievals strongly suggest that both ground-based and spaceborne GPS remote sensing techniques could play a critical role in detection and imaging of the upper atmosphere signatures of natural hazards including earthquakes and tsunamis. We found that combining ground-based and spaceborne measurements may be crucial in estimating critical geophysical parameters such as tsunami wave heights and ground surface displacements using TEC observations. The GNSS-based remote sensing of natural-hazard-induced ionospheric disturbances could be applied to and used in operational tsunami and earthquake early warning systems. C1 [Komjathy, Attila; Yang, Yu-Ming; Meng, Xing; Verkhoglyadova, Olga; Mannucci, Anthony J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Langley, Richard B.] Univ New Brunswick, Dept Geodesy & Geomat Engn, Fredericton, NB, Canada. RP Komjathy, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM Attila.Komjathy@jpl.nasa.gov FU NASA Headquarters, the Earth Science and Interior NASA ROSES grant program [NNH07ZDA001N-ESI]; NASA Postdoctoral Program (NPP) fellowship; Natural Sciences and Engineering Research Council of Canada; Canadian Space Agency FX The authors would like to thank NASA Headquarters, the Earth Science and Interior NASA ROSES grant program (NNH07ZDA001N-ESI) and the NASA Postdoctoral Program (NPP) fellowship administrated by Oak Ridge Associated Universities. R.B.L.'s involvement in the research is supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration. The Japanese GEONET GPS data used in the paper may be requested from GNSS Earth Observatory Network System (GEONET Data, 2016, http://datahouse1.gsi.go.jp/terras/terras_english.html, accessed on 4 May 2016), and GRACE data are publicly available at COSMIC Data Analysis and Archive Center (CDAAC, online report, 2016). We gratefully acknowledge the U.S. Institute of Navigation for supplying Figures 2 and 4. The paper is based on the presentation originally given at the 2015 Ionospheric Effects Symposium in Alexandria, Virginia. Copyright 2016. All rights reserved. NR 80 TC 0 Z9 0 U1 13 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD JUL PY 2016 VL 51 IS 7 BP 951 EP 961 DI 10.1002/2015RS005910 PG 11 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA DV5TC UT WOS:000382991200006 ER PT J AU Vergados, P Komjathy, A Runge, TF Butala, MD Mannucci, AJ AF Vergados, Panagiotis Komjathy, Attila Runge, Thomas F. Butala, Mark D. Mannucci, Anthony J. TI Characterization of the impact of GLONASS observables on receiver bias estimation for ionospheric studies SO RADIO SCIENCE LA English DT Article DE GPS; GLONASS; receiver bias ID TOTAL ELECTRON-CONTENT; DIFFERENTIAL CODE BIASES; MULTI-GNSS OBSERVATIONS; SATELLITE-OBSERVATIONS; INSTRUMENTAL BIASES; GPS SATELLITE; VARIABILITY; ALGORITHM; ACCURACY; SYSTEM AB This study investigates the impact of including the Russian Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS) and Global Positioning System (GPS) observables in the estimation of the GPS satellite and receiver interfrequency delay biases. Efforts to advance the total electron content accuracy are directly linked to improving the satellite and receiver bias estimation. This analysis is a preliminary assessment of the impact of including GLONASS observables in the bias estimation process. We analyze bias series from 84 globally distributed stations between 17 February 2015 and 31 March 2015. We find that inclusion of GLONASS observables in the biases retrieval algorithm systematically reduces receiver biases at 88% of the stations than when only GPS observables are used. The difference is <1.0total electron content unit (TECU; 1TECU=10(16)elm(-2)), which falls within the bias retrieval uncertainty. However, due to its systematic behavior it must be characterized and documented. We also compare the bias series between two centers, the Jet Propulsion Laboratory and the Center for Orbit Determination in Europe. Our analysis shows that the mean difference between the two centers varies from station to station, with a value <1.0TECU for 57% of the stations, suggesting an excellent intercenter agreement. For the other stations, the differences can reach up to 5.0TECU. Finally, the stability of the bias retrievals over time is latitudinally dependent. Low-latitude and middle-latitude stations exhibit systematically the largest and smallest scatter, respectively, whereas stations at high latitudes obtain intermediate values. C1 [Vergados, Panagiotis; Komjathy, Attila; Runge, Thomas F.; Butala, Mark D.; Mannucci, Anthony J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Butala, Mark D.] Univ Illinois, Elect & Comp Engn, Urbana, IL USA. [Butala, Mark D.] Univ Illinois, Elect & Comp Engn, Champaign, IL USA. RP Vergados, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM Panagiotis.Vergados@jpl.nasa.gov FU NASA's Physical Oceanography Program of the Earth Science Mission FX This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors are grateful to NASA's Physical Oceanography Program of the Earth Science Mission Directorate) entitled "GPS-ionosphere support for NASA's Earth observation satellites." We would like to thank the Center for Orbit Determination in Europe (CODE) for making publicly available the satellite and receiver biases through the following website link: ftp://cddis.gsfc.nasa.gov/gps/products/. The JPL-GIM data sets used in this analysis are available upon request to Panagiotis Vergados (Panagiotis.Vergados@jpl.nasa.gov). Finally, we would like to thank Stephan Esterhuizen for the detailed explanation of the origin of the satellite and receiver interfrequency delay biases, as well as the anonymous reviewers for providing a wealth of constructive criticism to improve the presentation and quality of this manuscript. NR 49 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD JUL PY 2016 VL 51 IS 7 BP 1010 EP 1021 DI 10.1002/2015RS005831 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA DV5TC UT WOS:000382991200011 ER PT J AU Bernhardt, PA Siefring, CL Briczinski, SJ McCarrick, M Michell, RG AF Bernhardt, Paul A. Siefring, Carl L. Briczinski, Stanley J. McCarrick, Mike Michell, Robert G. TI Large ionospheric disturbances produced by the HAARP HF facility SO RADIO SCIENCE LA English DT Article DE ionospheric modification ID WAVES; IRREGULARITIES; SCINTILLATIONS; MINIMUM; LAYERS AB The enormous transmitter power, fully programmable antenna array, and agile frequency generation of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska have allowed the production of unprecedented disturbances in the ionosphere. Using both pencil beams and conical (or twisted) beam transmissions, artificial ionization clouds have been generated near the second, third, fourth, and sixth harmonics of the electron gyrofrequency. The conical beam has been used to sustain these clouds for up to 5h as opposed to less than 30min durations produced using pencil beams. The largest density plasma clouds have been produced at the highest harmonic transmissions. Satellite radio transmissions at 253MHz from the National Research Laboratory TACSat4 communications experiment have been severely disturbed by propagating through artificial plasma regions. The scintillation levels for UHF waves passing through artificial ionization clouds from HAARP are typically 16dB. This is much larger than previously reported scintillations at other HF facilities which have been limited to 3dB or less. The goals of future HAARP experiments should be to build on these discoveries to sustain plasma densities larger than that of the background ionosphere for use as ionospheric reflectors of radio signals. C1 [Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Mike] Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA. [Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Mike] Naval Res Lab, Div Informat Technol, Washington, DC 20375 USA. [Michell, Robert G.] Univ Maryland, GSFC, College Pk, MD 20742 USA. RP Bernhardt, PA (reprint author), Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA.; Bernhardt, PA (reprint author), Naval Res Lab, Div Informat Technol, Washington, DC 20375 USA. EM paul.bernhardt@nrl.navy.mil FU 6.1 Base Program at the Naval Research Laboratory; DARPA BRIOCHE Program FX This work was supported by the 6.1 Base Program at the Naval Research Laboratory and the DARPA BRIOCHE Program. All of the SEE data from the HAARP experiments can be obtained from the Naval Research Laboratory by contacting Paul Bernhardt at paul.bern-hardt@nrl.navy.mil. The optical images are available from the University of Maryland and Goddard Space Flight Center by contacting Robert Michell at robert.g.michell@nasa.gov. NR 22 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD JUL PY 2016 VL 51 IS 7 BP 1081 EP 1093 DI 10.1002/2015RS005883 PG 13 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA DV5TC UT WOS:000382991200018 ER PT J AU Schunk, RW Scherliess, L Eccles, V Gardner, LC Sojka, JJ Zhu, L Pi, X Mannucci, AJ Butala, M Wilson, BD Komjathy, A Wang, C Rosen, G AF Schunk, R. W. Scherliess, L. Eccles, V. Gardner, L. C. Sojka, J. J. Zhu, L. Pi, X. Mannucci, A. J. Butala, M. Wilson, B. D. Komjathy, A. Wang, C. Rosen, G. TI Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS) SO RADIO SCIENCE LA English DT Article DE ionosphere; data assimilation; space weather ID ASSIMILATIVE IONOSPHERIC MODEL; TOTAL ELECTRON-CONTENT; KALMAN FILTER; GLOBAL ASSIMILATION; SPECIFICATIONS AB The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown. C1 [Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA. [Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Wang, C.; Rosen, G.] Univ Southern Calif, Dept Math, Los Angeles, CA USA. RP Schunk, RW (reprint author), Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA. EM robert.schunk@usu.edu FU NASA/NSF Space Weather Modeling Collaboration program via NSF [AGS-1329544] FX The research was supported by the NASA/NSF Space Weather Modeling Collaboration program via NSF grant AGS-1329544 to Utah State University. The research conducted at the Jet Propulsion Laboratory, California Institute of Technology, is under a contract with the National Aeronautics and Space Administration. The model output from these simulations is available on the USU CASS computer system. (Contact Larry Gardner at larry.gardner@usu.edu for information.) NR 36 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD JUL PY 2016 VL 51 IS 7 BP 1157 EP 1165 DI 10.1002/2015RS005888 PG 9 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA DV5TC UT WOS:000382991200024 ER PT J AU Ooijevaar, T Rogge, MD Loendersloot, R Warnet, L Akkerman, R Tinga, T AF Ooijevaar, Ted Rogge, Matthew D. Loendersloot, Richard Warnet, Laurent Akkerman, Remko Tinga, Tiedo TI Vibro-acoustic modulation-based damage identification in a composite skin-stiffener structure SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Article DE vibro-acoustics; composites structures; nonlinear dynamics; modulation; impact damage; nondestructive testing ID ELASTIC-WAVE SPECTROSCOPY; DISCERN MATERIAL DAMAGE; CRACK DETECTION; IMPACT DAMAGE; NONLINEAR ACOUSTICS; METALLIC STRUCTURES; NEWS TECHNIQUES AB Vibro-acoustic modulation-based damage identification relies on the modulation of a high-frequency carrier signal by an intenser low-frequency vibration signal due to damage-induced structural nonlinearities. A time domain analysis of the vibro-acoustic modulation phenomena was presented at multiple spatial locations in an impact damaged composite skin-stiffener structure. The instantaneous amplitude and frequency of the carrier velocity response were extracted to analyze the intermodulation effects between the two excitation signals. Increased amplitude modulations at the damaged region revealed the presence, location, and length of the skin-stiffener damage. The damage hardly modulated the frequency of the carrier response. This difference in behavior was attributed to the nonlinear skin-stiffener interaction introduced by the periodic opening and closing of the damage, according to earlier research by authors on the same structure. A parametric study showed that the amplitude and phase of the amplitude modulation are dependent on the selected carrier excitation frequency, and hence the high-frequency wave field that is introduced. This work demonstrates not only the potential but also the complexity of the vibro-acoustic modulation based damage identification approach. C1 [Ooijevaar, Ted; Warnet, Laurent; Akkerman, Remko] Univ Twente, Fac Engn Technol, Prod Technol, POB 217, NL-7500 AE Enschede, Netherlands. [Ooijevaar, Ted; Loendersloot, Richard; Tinga, Tiedo] Univ Twente, Fac Engn Technol, Dynam Based Maintenance, Enschede, Netherlands. [Rogge, Matthew D.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA. RP Ooijevaar, T (reprint author), Univ Twente, Fac Engn Technol, Prod Technol, POB 217, NL-7500 AE Enschede, Netherlands. EM ted@dvonline.net FU National Aeronautics and Space Administration, Langley Research Center [NNL09AA00A]; European research project Clean Sky, Eco-Design Integrated Technology Demonstrator [CSJU-GAM-ED-2008-001] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This material is based on work supported by National Aeronautics and Space Administration, Langley Research Center under Research Cooperative Agreement No. NNL09AA00A awarded to the National Institute of Aerospace. This work is funded by the European research project Clean Sky, Eco-Design Integrated Technology Demonstrator (grant agreement number CSJU-GAM-ED-2008-001). NR 33 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 EI 1741-3168 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD JUL PY 2016 VL 15 IS 4 BP 458 EP 472 DI 10.1177/1475921716645107 PG 15 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DV5PC UT WOS:000382979100007 ER PT J AU Pokhrel, YN Hanasaki, N Wada, Y Kim, H AF Pokhrel, Yadu N. Hanasaki, Naota Wada, Yoshihide Kim, Hyungjun TI Recent progresses in incorporating human land-water management into global land surface models toward their integration into Earth system models SO WILEY INTERDISCIPLINARY REVIEWS-WATER LA English DT Review ID CONTERMINOUS UNITED-STATES; GENERAL-CIRCULATION MODEL; CALIFORNIA CENTRAL VALLEY; CLIMATE-CHANGE; GROUNDWATER DEPLETION; TABLE DYNAMICS; FRESH-WATER; HIGH-PLAINS; SEA-LEVEL; ATMOSPHERIC RESPONSE AB The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system. (C) 2016 Wiley Periodicals, Inc. C1 [Pokhrel, Yadu N.] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. [Hanasaki, Naota] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Wada, Yoshihide] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kim, Hyungjun] Univ Tokyo, Inst Ind Sci, Tokyo, Japan. [Wada, Yoshihide] Int Inst Appl Syst Anal, Laxenburg, Austria. RP Pokhrel, YN (reprint author), Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. EM ypokhrel@egr.msu.edu NR 229 TC 1 Z9 1 U1 10 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA EI 2049-1948 J9 WIRES-WATER JI Wiley Interdiscip. Rev.-Water PD JUL-AUG PY 2016 VL 3 IS 4 BP 548 EP 574 DI 10.1002/wat2.1150 PG 27 WC Water Resources SC Water Resources GA DV4DH UT WOS:000382874800006 ER PT J AU Johnson, JR Bell, JF Bender, S Blaney, D Cloutis, E Ehliviann, B Fraeman, A Gasnault, O Kinch, K Le Mouelic, S Maurice, S Rampe, E Vaniman, D Wiens, RC AF Johnson, Jeffrey R. Bell, James F., III Bender, Steve Blaney, Diana Cloutis, Edward Ehliviann, Bethany Fraeman, Abigail Gasnault, Olivier Kinch, Kjartan Le Mouelic, Stephane Maurice, Sylvestre Rampe, Elizabeth Vaniman, David Wiens, Roger C. TI Constraints on iron sulfate and iron oxide mineralogy from ChemCam visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale Crater, Mars SO AMERICAN MINERALOGIST LA English DT Article DE Mars spectroscopy; Mars remote sensing; visible/near-infrared; IR spectroscopy; ferric sulfates; iron oxides; Invited Centennial article ID PATHFINDER LANDING SITE; YELLOWKNIFE BAY; SPECTRAL CHARACTERISTICS; INSTRUMENT SUITE; CLAY-MINERALS; ROVER; EXPLORATION; SURFACE; ANALOG; ROCKS AB Relative reflectance point spectra (400-840 nm) were acquired by the Chemistry and Camera (ChemCam) instrument on the Mars Science Laboratory (MSL) rover Curiosity in passive mode (no laser) of drill tailings and broken rock fragments near the rover as it entered the lower reaches of Mt. Sharp and of landforms at distances of 2-8 km. Freshly disturbed surfaces are less subject to the spectral masking effects of dust, and revealed spectral features consistent with the presence of iron oxides and ferric sulfates. We present the first detection on Mars of a similar to 433 nm absorption band consistent with small abundances of ferric sulfates, corroborated by jarosite detections by the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument in the Mojave, Telegraph Peak, and Confidence Hills drilled samples. Disturbed materials near the Bonanza King region also exhibited strong 433 nm bands and negative near-infrared spectral slopes consistent with jarosite. ChemCam passive spectra of the Confidence Hills and Mojave drill tailings showed features suggestive of the crystalline hematite identified by CheMin analyses. The Windjana drill sample tailings exhibited flat, low relative reflectance spectra, explained by the occurrence of magnetite detected by CheMin. Passive spectra of Bonanza King were similar, suggesting the presence of spectrally dark and neutral minerals such as magnetite. Long-distance spectra of the "Hematite Ridge" feature (3-5 km from the rover) exhibited features consistent with crystalline hematite. The Bagnold dune field north of the Hematite Ridge area exhibited low relative reflectance and near-infrared features indicative of basaltic materials (olivine, pyroxene). Light-toned layers south of Hematite Ridge lacked distinct spectral features in the 400-840 nm region, and may represent portions of nearby clay minerals and sulfates mapped with orbital near-infrared observations. The presence of ferric sulfates such as jarosite in the drill tailings suggests a relatively acidic environment, likely associated with flow of iron-bearing fluids, associated oxidation, and/or hydrothermal leaching of sedimentary rocks. Combined with other remote sensing data sets, mineralogical constraints from ChemCam passive spectra will continue to play an important role in interpreting the mineralogy and composition of materials encountered as Curiosity traverses further south within the basal layers of the Mt. Sharp complex. C1 [Johnson, Jeffrey R.] Johns Hopkins Univ, Appl Phys Lab, 11101 Johns Hopkins Rd 200-W230, Laurel, MD 20723 USA. [Bell, James F., III] Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA. [Bender, Steve; Vaniman, David] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Blaney, Diana; Ehliviann, Bethany] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cloutis, Edward] Univ Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada. [Ehliviann, Bethany; Fraeman, Abigail] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Gasnault, Olivier; Maurice, Sylvestre] Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, 9 Ave Colonel Roche, F-31400 Toulouse, France. [Kinch, Kjartan] Univ Copenhagen, Niels Bohr Inst, Norregade 10,POB 2177, DK-1017 Copenhagen K, Denmark. [Le Mouelic, Stephane] Univ Nantes, Lab Planetol & Geodynam, 2,Rue Houssiniere,BP 92208 44322, Nantes 3, France. [Wiens, Roger C.] Los Alamos Natl Lab, POB 166, Los Alamos, NM 87545 USA. [Rampe, Elizabeth] Johnson Space Ctr, 2101 NASA Rd 1, Houston, TX 77058 USA. RP Johnson, JR (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11101 Johns Hopkins Rd 200-W230, Laurel, MD 20723 USA. EM jeffrey.r.johnson@jhuapl.edu RI Kinch, Kjartan/C-5742-2015 OI Kinch, Kjartan/0000-0002-4629-8880 FU NASA Mars Science Laboratory Participating Scientist program through the Jet Propulsion Laboratory [1350588]; NASA's Mars Exploration Program; Centre National d'Etudes Spatiales (CNES); Danish Council for Independent Research/Natural Sciences (FNU grant) [12-127126]; Keck Institute for Space Studies; Caltech GPS division Texaco postdoctoral fellowships FX This work was funded by the NASA Mars Science Laboratory Participating Scientist program through the Jet Propulsion Laboratory (contract 1350588). The U.S. portion of ChemCam and MSL rover operations was funded by NASA's Mars Exploration Program. The French contribution to MSL is supported by the Centre National d'Etudes Spatiales (CNES). Work by K. Kinch was supported by the Danish Council for Independent Research/Natural Sciences (FNU grant 12-127126). A. Fraeman is supported by Keck Institute for Space Studies and Caltech GPS division Texaco postdoctoral fellowships. The authors thank W. Farrand and an anonymous reviewer for their helpful suggestions, and to J. Bishop for valuable editorial recommendations. Relative reflectance spectra used in Figures 10, 14, and 15 are available as supplemental material1. NR 89 TC 3 Z9 3 U1 17 U2 17 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL-AUG PY 2016 VL 101 IS 7-8 BP 1501 EP 1514 DI 10.2138/am-2016-5553 PG 14 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DT4KW UT WOS:000381450500003 ER PT J AU Clark, BC Morris, RV Herkenhoff, KE Farrand, WH Gellert, R Jolliff, BL Arvidson, RE Squyres, SW Mittlefehldt, DW Ming, DW Yen, AS AF Clark, Benton C. Morris, Richard V. Herkenhoff, Kenneth E. Farrand, William H. Gellert, Ralf Jolliff, Bradley L. Arvidson, Raymond E. Squyres, Steven W. Mittlefehldt, David W. Ming, Douglas W. Yen, Albert S. TI Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars SO AMERICAN MINERALOGIST LA English DT Article DE Mars; aqueous; water; geochemistry; vein; coating; montmorillonite; smectite; phyllosilicate; sulfate; habitability; organics ID MERIDIANI-PLANUM; DEPOSITS; MONTMORILLONITE; IDENTIFICATION; CHEMISTRY; OUTCROPS; CRATER; SALTS AB In the search for evidence of past aqueous activity by the Mars Exploration Rover Opportunity, fracture-filling veins and rock coatings are prime candidates for exploration. At one location within a segment of remaining rim material surrounding Endeavour Crater, a set of "boxwork" fractures in an outcrop called Esperance are filled by a bright, hydrated, and highly siliceous (SiO2 similar to 66 wt%) material, which has overall a montmorillonite-like chemical composition. This material is partially covered by patches of a thin, dark coating that is sulfate-rich (SO3 similar to 21 wt%) but also contains significant levels of Si, Fe, Ca, and Mg. The simultaneous presence of abundant S, Si, and Fe indicates significant mineralogical complexity within the coating. This combination of vein and coating compositions is unlike previous analyses on Mars. Both materials are heterogeneously eroded, presumably by eolian abrasion. The evidence indicates at least two separate episodes of solute precipitation from aqueous fluids at this location, possibly widely separated in time. In addition to the implications for multiple episodes of alteration at the surface of the planet, aqueous chemical environments such as these would have been habitable at the time of their formation and are also favorable for preservation of organic material. C1 [Clark, Benton C.; Farrand, William H.] Space Sci Inst, 4750 Walnut, Boulder, CO 80301 USA. [Morris, Richard V.; Mittlefehldt, David W.; Ming, Douglas W.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Herkenhoff, Kenneth E.] USGS Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Gellert, Ralf] Univ Guelph, Guelph, ON N1G 2W1, Canada. [Jolliff, Bradley L.; Arvidson, Raymond E.] Washington Univ, St Louis, MO 63130 USA. [Squyres, Steven W.] Cornell Univ, Ithaca, NY 14853 USA. [Yen, Albert S.] Jet Prop Lab, Pasadena, CA 91109 USA. RP Clark, BC (reprint author), Space Sci Inst, 4750 Walnut, Boulder, CO 80301 USA. EM bclark@spacescience.org FU NASA FX Digital data not presented in numerical form in this paper can be accessed through the NASA Planetary Data System Geosciences Node (http://pds-geosciences.wustl.edu/). We are indebted to NASA for their support, including the Jet Propulsion Laboratory and the many engineers and supporting scientists who have enabled continuation of the highly productive mission and discoveries of the MER Opportunity rover. Early recognition of the potential importance of the boxwork was championed by S.W. Ruff, and we thank him also for comments on an early draft of the manuscript. Bonnie Redding provided invaluable assistance in preparation of numerous products from MI images. NR 53 TC 3 Z9 3 U1 4 U2 4 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL-AUG PY 2016 VL 101 IS 7-8 BP 1515 EP 1526 DI 10.2138/am-2016-5575 PG 12 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DT4KW UT WOS:000381450500004 ER PT J AU Ehlmann, BL Swayze, GA Milliken, RE Mustard, JF Clarks, RN Murchie, SL Breit, GN Wray, JJ Gondet, B Poulet, F Carter, J Calvin, WM Benzel, WM Seelos, KD AF Ehlmann, Bethany L. Swayze, Gregg A. Milliken, Ralph E. Mustard, John F. Clarks, Roger N. Murchie, Scott L. Breit, George N. Wray, James J. Gondet, Brigitte Poulet, Francois Carter, John Calvin, Wendy M. Benzel, William M. Seelos, Kimberly D. TI Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters SO AMERICAN MINERALOGIST LA English DT Article DE Alunite; phyllosilicates; hydrothermal activity; lakes; groundwater; Mars; sediments; infrared spectroscopy; Invited Centennial article ID SOUTHERN WESTERN-AUSTRALIA; SULFATE ALTERATION; IMAGING SPECTROSCOPY; MERIDIANI-PLANUM; REFLECTANCE SPECTROSCOPY; SALINE LAKES; BASIN LAKES; SURFACE; DEPOSITS; MINERALS AB Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30 degrees S, 158 degrees W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitie (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater's basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km x 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling steam or fluids through fracture zones. The unique, highly aluminous nature of the Cross crater deposits relative to other martian acid sulfate deposits indicates acid waters, high water throughput during alteration, atypically glassy and/or felsic materials, or a combination of these conditions. C1 [Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Swayze, Gregg A.; Breit, George N.; Benzel, William M.] US Geol Survey, Denver, CO 80225 USA. [Milliken, Ralph E.; Mustard, John F.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02906 USA. [Clarks, Roger N.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Murchie, Scott L.; Seelos, Kimberly D.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Wray, James J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Gondet, Brigitte; Poulet, Francois; Carter, John] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Calvin, Wendy M.] Univ Nevada, Dept Geol Sci, Reno, NV 89557 USA. RP Ehlmann, BL (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.; Ehlmann, BL (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.; Swayze, GA (reprint author), US Geol Survey, Denver, CO 80225 USA. EM ehlmann@caltech.edu; gswayze@usgs.gov RI Wray, James/B-8457-2008; Murchie, Scott/E-8030-2015 OI Wray, James/0000-0001-5559-2179; Murchie, Scott/0000-0002-1616-8751 NR 105 TC 1 Z9 1 U1 22 U2 22 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL-AUG PY 2016 VL 101 IS 7-8 BP 1527 EP 1542 DI 10.2138/am-2016-5574 PG 16 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DT4KW UT WOS:000381450500005 ER PT J AU Boujibar, A Bolfan-Casanova, N Andrault, D Bouhifd, MA Trcera, N AF Boujibar, Asmaa Bolfan-Casanova, Nathalie Andrault, Denis Bouhifd, M. Ali Trcera, Nicolas TI Incorporation of Fe2+ and Fe3+ in bridgmanite during magma ocean crystallization SO AMERICAN MINERALOGIST LA English DT Article DE Bridgmanite; lower mantle; magma ocean; melting; partitioning; redox; ferric iron; XANES ID EARTHS LOWER MANTLE; EQUATION-OF-STATE; SILICATE PEROVSKITE; OXIDATION-STATE; HIGH-PRESSURE; DEEP MANTLE; PARTITIONING EXPERIMENTS; PHASE-TRANSFORMATIONS; OXYGEN FUGACITY; FERRIC IRON AB Using large volume press, samples of bridgmanites (Bg) in equilibrium with both silicate melt and liquid Fe-alloy were synthesized to replicate the early period of core-mantle segregation and magma ocean crystallization. We observe that the Fe partition coefficient between Bg and silicate melt (D-Fe(Bg/melt)) varies strongly with the degree of partial melting (F). It is close to 1 at very low F and adopts a constant value of similar to 0.3 for F values above 10 wt%. In the context of a partially molten mantle, a larger F (closer to liquidus) should yield Fe-depleted Bg grains floating in the liquid mantle. In contrast, a low F (closer to solidus) should yield buoyant pockets of silicate melt in the dominantly solid mantle. We also determined the valence state of Fe in these Bg phases using X-ray absorption near-edge spectroscopy (XANES). Combining our results with all available data sets, we show a redox state of Fe in Bg more complex than generally accepted. Under the reducing oxygen fugacities (f(o2)) of this study ranging from IW-1.5 and IW-2, the measured Fe3+ content of f(o2) is found moderate (Fe3+/Sigma Fe = 21 +/- 4%) and weakly correlated with Al content. When f(o2) is comprised between IW-1 and IW, this ratio is correlated with both Al content and oxygen fugacity. When f(o2) remains between IW and Re/ReO2 buffers, Fe3+/Sigma Fe ratio becomes independent f(o2) and exclusively correlated with Al content. Due to the incompatibility of Fe in Bg and the variability of its partition coefficient with the degree of melting, fractional crystallization of the magma ocean can lead to important chemical heterogeneities that will be attenuated ultimately with mantle stirring. In addition, the relatively low-Fe3+ contents found in Bg (21%) at the reducing conditions (IW-2) prevailing during core segregation seem contradictory with the 50% previously suggested for the actual Earth's lower mantle. This suggests the presence of 1.7 wt% Fe3+ in the lower mantle, which reduces the difference with the value observed in the upper mantle (0.3 wt%). Reaching higher concentrations of trivalent Fe requires additional oxidation processes such as the late arrival of relatively oxidized material during the Earth accretion or interaction with oxidized subducting slabs. C1 [Boujibar, Asmaa; Bolfan-Casanova, Nathalie; Andrault, Denis; Bouhifd, M. Ali] Univ Clermont Ferrand, Lab Magmas & Volcans, UMR 6524, F-63000 Clermont Ferrand, France. [Trcera, Nicolas] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. [Boujibar, Asmaa] NASA, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. RP Boujibar, A (reprint author), Univ Clermont Ferrand, Lab Magmas & Volcans, UMR 6524, F-63000 Clermont Ferrand, France.; Boujibar, A (reprint author), NASA, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM asmaa.boujibar@nasa.gov FU ANR Oxydeep project FX We are grateful to J.L. Fruquiere, F. Pointud, and F. Dore for support with the multi-anvil press, J.L. Devidal and J.M. Henot for SEM and EPMA measurements, and M. Munoz for help in treatment of the XANES spectra. This study was supported by the ANR Oxydeep project and is a ClerVOlc contribution no. 203. NR 58 TC 0 Z9 0 U1 5 U2 5 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL-AUG PY 2016 VL 101 IS 7-8 BP 1560 EP 1570 DI 10.2138/am-2016-5561 PG 11 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DT4KW UT WOS:000381450500007 ER PT J AU Li, CM Wang, RC Xu, HF Lu, XC Konishi, H He, K AF Li, Chengmang Wang, Rucheng Xu, Huifang Lu, Xiancai Konishi, Hiromi He, Kun TI Interstratification of graphene-like carbon layers within black talc from Southeastern China: Implications to sedimentary talc formation SO AMERICAN MINERALOGIST LA English DT Article DE Black talc; graphene-like carbon; interstratification structure; sedimentary talc ID RAY PHOTOELECTRON-SPECTROSCOPY; AMORPHOUS-CARBON; STRUCTURAL-CHARACTERIZATION; RAMAN MICROSPECTROMETRY; CRYSTAL-STRUCTURE; LOW-TEMPERATURE; EASTERN DESERT; SOUTH CHINA; GRAPHITE; FILMS AB Large deposits of unusual black talc interstratified with dolostone layers of the late Neoproterozoic Dengying Formation were discovered in Guangfeng County, Jiangxi Province, southeastern China. The black talc ore exhibits primarily oolitic structures and consists mainly of talc (30-70 wt%), dolomite, and quartz, with trace amounts of pyrite and apatite. The ooids are composed of nearly pure black talc crystals, most of which consist of ultrafine nano-plates. The black talc contains small amounts of carbon, which causes the black coloring. Raman spectra and X-ray photoelectron spectroscopy (XPS) results indicate structural disorder and chemical impurities within bonds (e.g., sp(3) hybridized carbon and C-O bonds) in the carbonaceous material, instead of perfectly structured graphite or graphene. Isolated graphene-like carbon interlayers are present in the talc nano-crystals, as shown by Z-contrast transmission electron microscope (TEM) imaging. Based on previous studies on Mg-silicate precipitation from surface water, we propose a sedimentary formation mechanism for the black talc, in which tetrahedral octahedral tetrahedral (T-O-T) layers of Mg-silicates, 1 similar to 2 unit-cells thick, co-precipitated with abundant organic matter derived from microorganisms thriving in locally Al-depleted sea water with high concentrations of Mg2+ and SiO2 (aq), in a shallow marine or lagoonal environment. The involvement of organic matter may have facilitated the precipitation of Mg-silicate. Further diagenesis and re-crystalliztion of the biomass-coated precursor resulted in the formation of graphene-like layers between neighboring talc nano-crystals with same orientation. C1 [Li, Chengmang; Wang, Rucheng; Lu, Xiancai] Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Mineral Deposits Res, Nanjing 210093, Jiangsu, Peoples R China. [Li, Chengmang; Xu, Huifang; Konishi, Hiromi] Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, 1215 West Dayton St, Madison, WI 53706 USA. [Konishi, Hiromi] Niigata Univ, Dept Geol, Nishi Ku, 8050 Ikarashi 2 Cho, Niigata 9502181, Japan. [He, Kun] State Key Lab Enhanced Oil Recovery, Beijing 10083, Peoples R China. RP Wang, RC (reprint author), Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Mineral Deposits Res, Nanjing 210093, Jiangsu, Peoples R China.; Xu, HF (reprint author), Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, 1215 West Dayton St, Madison, WI 53706 USA. EM rcwang@nju.edu.cn; hfxu@geology.wisc.edu FU National Natural Science Foundation of China [41472033, 41425009]; NASA Astrobiology Institute [N07-5489]; China Scholarship Council (CSC) FX The authors appreciate the financial support from the National Natural Science Foundation of China (Grant Nos. 41472033 and 41425009), and the NASA Astrobiology Institute (N07-5489). The first author thanks the China Scholarship Council (CSC) for providing funding to support the Joint Education Program. NR 82 TC 0 Z9 0 U1 10 U2 10 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL-AUG PY 2016 VL 101 IS 7-8 BP 1668 EP 1678 DI 10.2138/am-2016-5600 PG 11 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DT4KW UT WOS:000381450500017 ER PT J AU Melchior, P Sheldon, E Drlica-Wagner, A Rykoff, ES Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Brooks, D Buckley-Geer, E Rosell, AC Kind, MC Carretero, J Crocce, M D'Andrea, CB da Costa, LN Desai, S Doel, P Evrard, AE Finley, DA Flaugher, B Frieman, J Gaztanaga, E Gerdes, DW Gruen, D Gruendl, RA Honscheid, K James, DJ Jarvis, M Kuehn, K Li, TS Maia, MAG March, M Marshall, JL Nord, B Ogando, R Plazas, AA Romer, AK Sanchez, E Scarpine, V Sevilla-Noarbe, I Smith, RC Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Vikram, V Walker, AR Wester, W Zhang, Y AF Melchior, P. Sheldon, E. Drlica-Wagner, A. Rykoff, E. S. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Brooks, D. Buckley-Geer, E. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Crocce, M. D'Andrea, C. B. da Costa, L. N. Desai, S. Doel, P. Evrard, A. E. Finley, D. A. Flaugher, B. Frieman, J. Gaztanaga, E. Gerdes, D. W. Gruen, D. Gruendl, R. A. Honscheid, K. James, D. J. Jarvis, M. Kuehn, K. Li, T. S. Maia, M. A. G. March, M. Marshall, J. L. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Sanchez, E. Scarpine, V. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Vikram, V. Walker, A. R. Wester, W. Zhang, Y. TI Crowdsourcing quality control for Dark Energy Survey images SO ASTRONOMY AND COMPUTING LA English DT Article DE Surveys Information systems: Crowdsourcing; Human-centered computing: Collaborative filtering ID SCIENCE AB We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomers but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo version at http://des-exp-checker.pmelchionnet. (C) 2016 Elsevier B.V. All rights reserved. C1 [Melchior, P.; Honscheid, K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Melchior, P.; Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Drlica-Wagner, A.; Allam, S.; Buckley-Geer, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Crocce, M.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain. [Carretero, J.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [D'Andrea, C. B.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Evrard, A. E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Jarvis, M.; March, M.; Suchyta, E.] Univ Pennsylvania, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Melchior, P (reprint author), Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. EM peter@pmelchior.net RI Ogando, Ricardo/A-1747-2010; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Gaztanaga, Enrique/0000-0001-9632-0815; Abdalla, Filipe/0000-0003-2063-4345 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana/Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro/Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas Madrid; University of Chicago; University College London; DES/Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana/Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST/1138766, PHYS/1066293]; MINECO [AYA2012/39559, ESP2013/48274, FPA2013/47986]; Centro de Excelencia Severo Ochoa [SEV/2012/0234]; European Research Council under the European Union's Seventh Framework Programme (FP7); ERC [240672, 291329, 306478]; U.S. Department of Energy [DE-FG02/91ER40690]; DOE [DE-AC02/98CH10886] FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana/Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro/Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas Madrid, the University of Chicago, University College London, the DES/Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana/Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under Grant Number AST/1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012/39559, ESP2013/48274, FPA2013/47986, and Centro de Excelencia Severo Ochoa SEV/2012/0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007/2013) including ERC grant agreements 240672, 291329, and 306478.; PM is supported by the U.S. Department of Energy under Contract No. DE-FG02/91ER40690. ES is supported by DOE grant DE-AC02/98CH10886. This work was supported in part by the National Science Foundation under Grant No. PHYS/1066293 and the hospitality of the Aspen Center for Physics. NR 21 TC 1 Z9 1 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD JUL PY 2016 VL 16 BP 99 EP 108 DI 10.1016/j.ascom.2016.04.003 PG 10 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA DU7SE UT WOS:000382414100010 ER PT J AU Ade, PAR Ahmed, Z Aikin, RW Alexander, KD Barkats, D Benton, SJ Bischoff, CA Bock, JJ Bowens-Rubin, R Brevik, JA Buder, I Bullock, E Buza, V Connors, J Crill, BP Duband, L Dvorkin, C Filippini, JP Fliescher, S Grayson, J Halpern, M Harrison, S Hildebrandt, SR Hilton, GC Hui, H Irwin, KD Kang, J Karkare, KS Karpel, E Kaufman, JP Keating, BG Kefeli, S Kernasovskiy, SA Kovac, JM Kuo, CL Leitch, EM Lueker, M Megerian, KG Namikawa, T Netterfield, CB Nguyen, HT O'Brient, R Ogburn, RW Orlando, A Pryke, C Richter, S Schwarz, R Sheehy, CD Staniszewski, ZK Steinbach, B Sudiwala, RV Teply, GP Thompson, KL Tolan, JE Tucker, C Turner, AD Vieregg, AG Weber, AC Wiebe, DV Willmert, J Wong, CL Wu, WLK Yoon, KW AF Ade, P. A. R. Ahmed, Z. Aikin, R. W. Alexander, K. D. Barkats, D. Benton, S. J. Bischoff, C. A. Bock, J. J. Bowens-Rubin, R. Brevik, J. A. Buder, I. Bullock, E. Buza, V. Connors, J. Crill, B. P. Duband, L. Dvorkin, C. Filippini, J. P. Fliescher, S. Grayson, J. Halpern, M. Harrison, S. Hildebrandt, S. R. Hilton, G. C. Hui, H. Irwin, K. D. Kang, J. Karkare, K. S. Karpel, E. Kaufman, J. P. Keating, B. G. Kefeli, S. Kernasovskiy, S. A. Kovac, J. M. Kuo, C. L. Leitch, E. M. Lueker, M. Megerian, K. G. Namikawa, T. Netterfield, C. B. Nguyen, H. T. O'Brient, R. Ogburn, R. W. Orlando, A. Pryke, C. Richter, S. Schwarz, R. Sheehy, C. D. Staniszewski, Z. K. Steinbach, B. Sudiwala, R. V. Teply, G. P. Thompson, K. L. Tolan, J. E. Tucker, C. Turner, A. D. Vieregg, A. G. Weber, A. C. Wiebe, D. V. Willmert, J. Wong, C. L. Wu, W. L. K. Yoon, K. W. CA Keck Array Collaboration Bicep2 Collaboration TI BICEP2/KECK ARRAY. VII. MATRIX BASED E/B SEPARATION APPLIED TO BICEP2 AND THE KECK ARRAY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; gravitational waves; inflation polarization ID MICROWAVE BACKGROUND POLARIZATION; POWER SPECTRUM; TEMPERATURE AB A linear polarization field on the sphere can be uniquely decomposed into an E-mode and a B-mode component. These two components are analytically defined in terms of spin-2 spherical harmonics. Maps that contain filtered modes on a partial sky can also be decomposed into E-mode and B-mode components. However, the lack of full sky information prevents orthogonally separating these components using spherical harmonics. In this paper, we present a technique for decomposing an incomplete map into E and B-mode components using E and B eigenmodes of the pixel covariance in the observed map. This method is found to orthogonally define E and B in the presence of both partial sky coverage and spatial filtering. This method has been applied to the BICEP2 and the Keck Array maps and results in reducing E to B leakage from Lambda CDME-modes to a level corresponding to a tensor-to-scalar ratio of r < 1 x 10(-4). C1 [Ade, P. A. R.; Kernasovskiy, S. A.; Sudiwala, R. V.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Ahmed, Z.; Grayson, J.; Irwin, K. D.; Kang, J.; Karpel, E.; Kuo, C. L.; Namikawa, T.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Wu, W. L. K.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ahmed, Z.; Irwin, K. D.; Kang, J.; Kuo, C. L.; Namikawa, T.; Ogburn, R. W.; Thompson, K. L.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Hildebrandt, S. R.; Hui, H.; Kefeli, S.; Lueker, M.; O'Brient, R.; Orlando, A.; Staniszewski, Z. K.; Steinbach, B.; Teply, G. P.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Alexander, K. D.; Barkats, D.; Bischoff, C. A.; Bowens-Rubin, R.; Buder, I.; Buza, V.; Connors, J.; Harrison, S.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Vieregg, A. G.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St MS 42, Cambridge, MA 02138 USA. [Benton, S. J.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bock, J. J.; Crill, B. P.; Hildebrandt, S. R.; Megerian, K. G.; Nguyen, H. T.; O'Brient, R.; Staniszewski, Z. K.; Turner, A. D.; Weber, A. C.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bullock, E.; Fliescher, S.; Pryke, C.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Buza, V.; Dvorkin, C.; Kovac, J. M.; Wong, C. L.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Duband, L.] Commissariat Energie Atom, Serv Basses Temp, F-38054 Grenoble, France. [Filippini, J. P.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Halpern, M.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hilton, G. C.] NIST, Boulder, CO 80305 USA. [Kaufman, J. P.; Keating, B. G.; Teply, G. P.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Leitch, E. M.; Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Pryke, C.; Schwarz, R.; Sheehy, C. D.; Willmert, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Wu, W. L. K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Tolan, JE (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM jetolan@stanford.edu OI Karkare, Kirit/0000-0002-5215-6993; Barkats, Denis/0000-0002-8971-1954; Namikawa, Toshiya/0000-0003-3070-9240 FU US National Science Foundation [ANT-0742818, ANT-1044978, ANT-0742592, ANT-1110087]; FAS Science Division Research Computing Group at Harvard University; US Department of Energy Office of Science FX BICEP2 was supported by the US National Science Foundation under grants ANT-0742818 and ANT-1044978 (Caltech/Harvard) and ANT-0742592 and ANT-1110087 (Chicago/Minnesota). The computations in this paper were run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University. The analysis effort at Stanford/SLAC is partially supported by the US Department of Energy Office of Science. Tireless administrative support was provided by Irene Coyle and Kathy Deniston. NR 39 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 66 DI 10.3847/0004-637X/825/1/66 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000066 ER PT J AU Alberts, S Pope, A Brodwin, M Chung, SM Cybulski, R Dey, A Eisenhardt, PRM Galametz, A Gonzalez, AH Jannuzi, BT Stanford, SA Snyder, GF Stern, D Zeimann, GR AF Alberts, Stacey Pope, Alexandra Brodwin, Mark Chung, Sun Mi Cybulski, Ryan Dey, Arjun Eisenhardt, Peter R. M. Galametz, Audrey Gonzalez, Anthony H. Jannuzi, Buell T. Stanford, S. Adam Snyder, Gregory F. Stern, Daniel Zeimann, Gregory R. TI STAR FORMATION AND AGN ACTIVITY IN GALAXY CLUSTERS FROM z=1-2: A MULTI-WAVELENGTH ANALYSIS FEATURING HERSCHEL/PACS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: clusters: general; galaxies: evolution; galaxies: high-redshift; galaxies: star formation; infrared: galaxies ID SIMILAR-TO 2; SUPERMASSIVE BLACK-HOLES; IRAC SHALLOW SURVEY; INFRARED LUMINOSITY FUNCTIONS; MORPHOLOGY-DENSITY RELATION; HIGH-REDSHIFT GALAXIES; INITIAL MASS FUNCTION; WIDE-FIELD SURVEY; GREATER-THAN 1.5; X-RAY SURVEY AB We present a detailed, multi-wavelength study of star formation (SF) and active galactic nucleus (AGN) activity in 11 near-infrared (IR) selected, spectroscopically confirmed massive (greater than or similar to 10(14)M(circle dot)) galaxy clusters at 1 < z < 1.75. Using new deep Herschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGNs through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs) and specific SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z greater than or similar to 1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r < 0.5 Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z similar to 1. Enhanced SFRs are found in lower mass (10.1< logM(kappa)/M-circle dot < 10.8) cluster galaxies. We find significant variation in SF from cluster to cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGNs in clusters from z = 0.5-2, finding an excess AGN fraction at z greater than or similar to 1, suggesting environmental triggering of AGNs during this epoch. We argue that our results-a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGNs-are consistent with a co-evolution between SF and AGNs in clusters and an increased merger rate in massive halos at high redshift. C1 [Alberts, Stacey; Jannuzi, Buell T.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Alberts, Stacey; Pope, Alexandra; Cybulski, Ryan] Univ Massachusetts, Dept Astron, LGRT-B 619E, Amherst, MA 01003 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA. [Chung, Sun Mi] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. [Dey, Arjun] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Galametz, Audrey] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Stanford, S. Adam] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Snyder, Gregory F.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Zeimann, Gregory R.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. RP Alberts, S (reprint author), Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA.; Alberts, S (reprint author), Univ Massachusetts, Dept Astron, LGRT-B 619E, Amherst, MA 01003 USA. FU NASA through JPL/Caltech FX The authors thank their colleagues in the IRAC Shallow/Distant Cluster Survey, IRAC Shallow Survey, NDWFS, SDWFS, and MAGES teams, in addition to the HerMES collaboration for making its data publicly available. This work is based on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The authors extend a special thanks to Bruno Altieri and Hanae Inami for their assistance in Herschel data reduction and source extraction and to Ranga-Ram Chary for discussions on the source extraction and analysis. HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia. This work is additionally based on observations made with Spitzer, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. Finally, the authors thank the anonymous referee for constructive and helpful comments which have improved this work. NR 216 TC 4 Z9 4 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 72 DI 10.3847/0004-637X/825/1/72 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000072 ER PT J AU Bain, HM Mays, ML Luhmann, JG Li, Y Jian, LK Odstrcil, D AF Bain, H. M. Mays, M. L. Luhmann, J. G. Li, Y. Jian, L. K. Odstrcil, D. TI SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: coronal mass ejections (CMEs); Sun: heliosphere ID CORONAL MASS EJECTIONS; ADVANCED COMPOSITION EXPLORER; FLIGHT-CENTER INSTRUMENTS; CME-CME INTERACTION; INTERPLANETARY SHOCKS; PEAK INTENSITIES; STEREO MISSION; WIND; PROPAGATION; RADIO AB During periods of increased solar activity, coronal mass ejections (CMEs) can occur in close succession and proximity to one another. This can lead to the interaction and merger of CME ejecta as they propagate in the heliosphere. The particles accelerated in these shocks can result in complex solar energetic particle (SEP) events, as observing spacecraft form both remote and local shock connections. It can be challenging to understand these complex SEP events from in situ profiles alone. Multipoint observations of CMEs in the near-Sun environment, from the Solar Terrestrial Relations Observatory-Sun Earth Connection Coronal and Heliospheric Investigation and the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph, greatly improve our chances of identifying the origin of these accelerated particles. However, contextual information on conditions in the heliosphere, including the background solar wind conditions and shock structures, is essential for understanding SEP properties well enough to forecast their characteristics. Wang-Sheeley-Arge WSA-ENLIL + Cone modeling provides a tool to interpret major SEP event periods in the context of a realistic heliospheric model and to determine how much of what is observed in large SEP events depends on nonlocal magnetic connections to shock sources. We discuss observations of the SEP-rich periods of 2010 August and 2012 July in conjunction with ENLIL modeling. We find that much SEP activity can only be understood in the light of such models, and in particular from knowing about both remote and local shock source connections. These results must be folded into the investigations of the physics underlying the longitudinal extent of SEP events, and the source connection versus diffusion pictures of interpretations of SEP events. C1 [Bain, H. M.; Luhmann, J. G.; Li, Y.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Mays, M. L.] Catholic Univ Amer, Washington, DC 20064 USA. [Mays, M. L.; Jian, L. K.; Odstrcil, D.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jian, L. K.] Univ Maryland, College Pk, MD 20742 USA. [Odstrcil, D.] George Mason Univ, Fairfax, VA 22030 USA. RP Bain, HM (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM hbain@ssl.berkeley.edu RI Jian, Lan/B-4053-2010 OI Jian, Lan/0000-0002-6849-5527 FU IMPACT Investigation grant [NAS503131]; NASA ROSES LWS grant [NNH14ZDA001NLWS, NNX15AB80G]; NSF [AGS 1259549, 1321493] FX This work was supported by the IMPACT Investigation grant (NAS503131), by NASA ROSES LWS grant NNH14ZDA001NLWS and NNX15AB80G, and by NSF grants AGS 1259549 and 1321493. Simulation results have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov; run numbers Leila_Mays_052715_SH_1, Leila_Mays_033115_SH_1). The WSA model was developed by N. Arge at AFRL and the ENLIL Model was developed by D. Odstrcil at GMU. NR 59 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 1 DI 10.3847/0004-637X/825/1/1 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000001 ER PT J AU Han, C Bennett, DP Udalski, A Jung, YK AF Han, Cheongho Bennett, David P. Udalski, Andrzej Jung, Youn Kil TI A NEW NONPLANETARY INTERPRETATION OF THE MICROLENSING EVENT OGLE-2013-BLG-0723 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID BINARY; DWARF; MASS; LENS; PHOTOMETRY; PLANETS AB Recently, the discovery of a Venus-mass planet orbiting a brown-dwarf host in a binary system was reported from the analysis of the microlensing event OGLE-2013-BLG-0723. We reanalyze the event considering the possibility of other interpretations. From this, we find a new solution where the lens is composed of two bodies, in contrast to the three-body solution of the previous analysis. The new solution better explains the observed light curve than the previous solution with Delta chi(2) similar to 202, suggesting that the new solution is a correct model for the event. From the estimation of the physical parameters based on the new interpretation, we find that the lens system is composed of two low-mass stars with similar to 0.2M(circle dot) and similar to 0.1M(circle dot) and located at a distance of similar to 3 kpc. The fact that the physical parameters correspond to those of the most common lens population located at a distance with a large lensing probability further supports the likelihood of the new interpretation. Considering that two dramatically different solutions can approximately explain the observed light curve, the event suggests the need for carefully testing all possible lens-system geometries. C1 [Han, Cheongho; Jung, Youn Kil] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. [Bennett, David P.] NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. [Bennett, David P.] Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. [Udalski, Andrzej] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Han, C (reprint author), Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. FU Creative Research Initiative Program of the National Research Foundation of Korea [2009-0081561]; NASA [NNX13AF64G, NNX15AJ76G]; National Science Centre, Poland [MAESTRO 2014/14/A/ST9/00121] FX Work by C Han was supported by the Creative Research Initiative Program (2009-0081561) of the National Research Foundation of Korea. DPB was supported by grants NASA-NNX13AF64G and NNX15AJ76G. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to AU. NR 18 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 8 DI 10.3847/0004-637X/825/1/8 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000008 ER PT J AU Hippke, M Angerhausen, D Lund, MB Pepper, J Stassun, KG AF Hippke, Michael Angerhausen, Daniel Lund, Michael B. Pepper, Joshua Stassun, Keivan G. TI A STATISTICAL ANALYSIS OF THE ACCURACY OF THE DIGITIZED MAGNITUDES OF PHOTOMETRIC PLATES ON THE TIMESCALE OF DECADES WITH AN APPLICATION TO THE CENTURY-LONG LIGHT CURVE OF KIC 8462852 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: general; techniques: photometric ID TIME-DOMAIN ASTRONOMY; GUIDE STAR CATALOG; DENSITY-FUNCTION; DASCH DISCOVERY; STANDARD STARS; VARIABILITY; ASTROMETRY; SYSTEM; WINDOW; FLUX AB We present a statistical analysis of the accuracy of the digitized magnitudes of photometric plates on the timescale of decades. In our examination of archival Johnson B photometry from the Harvard DASCH archive, we find a median rms scatter of light curves of the order of 0.15 mag over the range B similar to 9-17 for all calibrations. Slight underlying systematics (trends or flux discontinuities) are on a level of less than or similar to 0.2mag per century (1889-1990) for the majority of constant stars. These historic data can be unambiguously used for processes that happen on scales of magnitudes, and need to be carefully examined in cases approaching the noise floor. The characterization of these limits in photometric stability may guide future studies in their use of plate archives. We explain these limitations for the example case of KIC 8462852, which has been claimed to dim by 0.16 mag per century, and show that this trend cannot be considered as significant. C1 [Hippke, Michael] Luiter Str 21b, D-47506 Neukirchen Vluyn, Germany. [Angerhausen, Daniel] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Lund, Michael B.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pepper, Joshua] Lehigh Univ, Dept Phys, 16 Mem Dr East, Bethlehem, PA 18015 USA. [Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Stevenson Ctr 6301, Nashville, TN 37235 USA. RP Hippke, M (reprint author), Luiter Str 21b, D-47506 Neukirchen Vluyn, Germany. EM hippke@ifda.eu; daniel.angerhausen@nasa.gov; michael.b.lund@vanderbilt.edu; joshua.pepper@lehigh.edu; keivan.stassun@vanderbilt.edu OI Stassun, Keivan/0000-0002-3481-9052; Pepper, Joshua/0000-0002-3827-8417 NR 43 TC 1 Z9 1 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 73 DI 10.3847/0004-637X/825/1/73 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000073 ER PT J AU Jameson, KE Bolatto, AD Leroy, AK Meixner, M Roman-Duval, J Gordon, K Hughes, A Israel, FP Rubio, M Indebetouw, R Madden, SC Bot, C Hony, S Cormier, D Pellegrini, EW Galametz, M Sonneborn, G AF Jameson, Katherine E. Bolatto, Alberto D. Leroy, Adam K. Meixner, Margaret Roman-Duval, Julia Gordon, Karl Hughes, Annie Israel, Frank P. Rubio, Monica Indebetouw, Remy Madden, Suzanne C. Bot, Caroline Hony, Sacha Cormier, Diane Pellegrini, Eric W. Galametz, Maud Sonneborn, George TI THE RELATIONSHIP BETWEEN MOLECULAR GAS, H I, AND STAR FORMATION IN THE LOW-MASS, LOW-METALLICITY MAGELLANIC CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: evolution; ISM: clouds; Magellanic Clouds ID SPECTRAL ENERGY-DISTRIBUTION; DIFFUSE INTERSTELLAR-MEDIUM; CO-TO-H-2 CONVERSION FACTOR; FORMATION RATE INDICATORS; GALAXY EVOLUTION SAGE; NEARBY DISK GALAXIES; COMPLETE CO SURVEY; SEST KEY PROGRAM; FORMATION LAW; ATOMIC-GAS AB The Magellanic Clouds provide the only laboratory to study the effects of metallicity and galaxy mass on molecular gas and star formation at high (similar to 20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H-2. Using our dust-based molecular gas estimates, we find molecular gas depletion times (tau(mol)(dep)) of similar to 0.4 Gyr in the Large Magellanic Cloud and similar to 0.6 in the Small Magellanic Cloud at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between the gas and the star formation rate across a range of size scales from 20 pc to >= 1 kpc, including how the scatter in tau(mol)(dep) changes with the size scale, and discuss the physical mechanisms driving the relationships. We compare the metallicity-dependent star formation models of Ostriker et al. and Krumholz to our observations and find that they both predict the trend in the data, suggesting that the inclusion of a diffuse neutral medium is important at lower metallicity. C1 [Jameson, Katherine E.; Bolatto, Alberto D.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Jameson, Katherine E.; Bolatto, Alberto D.] Univ Maryland, Lab Millimeter Wave Astron, College Pk, MD 20742 USA. [Leroy, Adam K.] Ohio State Univ, Dept Astron, 4051 McPherson Lab,140 West 18th Ave, Columbus, OH 43210 USA. [Meixner, Margaret; Roman-Duval, Julia; Gordon, Karl] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Hughes, Annie] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Israel, Frank P.] Leiden Univ, Sterrewacht Leiden, POB 9513, NL-2300 RA Leiden, Netherlands. [Rubio, Monica] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. [Indebetouw, Remy] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Indebetouw, Remy] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Madden, Suzanne C.] Univ Paris 07, Lab AIM, IRFU, Serv Astrophys,CEA, Bat 709, F-91191 Gif Sur Yvette, France. [Bot, Caroline] Univ Strasbourg, Observatoire Astronom Strasbourg, CNRS, UMR 7550, 11 Rue Univ, F-67000 Strasbourg, France. [Hony, Sacha; Cormier, Diane] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. [Pellegrini, Eric W.] Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. [Galametz, Maud] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Sonneborn, George] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. RP Jameson, KE (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Jameson, KE (reprint author), Univ Maryland, Lab Millimeter Wave Astron, College Pk, MD 20742 USA. EM kjameson@astro.umd.edu OI Bot, Caroline/0000-0001-6118-2985 FU NASA Herschel Science Center, JPL contracts [1381522, 1381650, 1350371]; European Space Agency (ESA); NSF grant [1312902]; [NSF-AST0955836]; [NSF-AST141241]; [NASA-JPL 1372988]; [1483968]; [1454733] FX We thank Mark Krumholz for useful discussions and for use of his Python code implementation of the KMT+ model and Diederik Kruijssen for helpful comments and assistance using their code from Kruijssen & Longmore (2014). We thank Eve Ostriker for very thoughtful comments. A.D.B. and K.E.J. wish to acknowledge partial support from grants NSF-AST0955836 (CAREER), NSF-AST141241, NASA-JPL 1372988, 1483968, and 1454733. We acknowledge financial support from the NASA Herschel Science Center, JPL contracts #1381522, #1381650, and #1350371. We are grateful for the contributions and support from the European Space Agency (ESA), the PACS and SPIRE teams, the Herschel Science Center (especially L. Conversi) and the NASA Herschel Science Center (especially A. Barbar and R. Paladini) and the PACS and SPIRE instrument control centers (especially George Bendo), without whom none of this work would have been possible. M.M. is grateful for support from NSF grant 1312902. NR 150 TC 2 Z9 2 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 12 DI 10.3847/0004-637X/825/1/12 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000012 ER PT J AU Lehmer, BD Basu-Zych, AR Mineo, S Brandt, WN Eufrasio, RT Fragos, T Hornschemeier, AE Luo, B Xue, YQ Bauer, FE Gilfanov, M Ranalli, P Schneider, DP Shemmer, O Tozzi, P Trump, JR Vignali, C Wang, JX Yukita, M Zezas, A AF Lehmer, B. D. Basu-Zych, A. R. Mineo, S. Brandt, W. N. Eufrasio, R. T. Fragos, T. Hornschemeier, A. E. Luo, B. Xue, Y. Q. Bauer, F. E. Gilfanov, M. Ranalli, P. Schneider, D. P. Shemmer, O. Tozzi, P. Trump, J. R. Vignali, C. Wang, J. -X. Yukita, M. Zezas, A. TI THE EVOLUTION OF NORMAL GALAXY X-RAY EMISSION THROUGH COSMIC HISTORY: CONSTRAINTS FROM THE 6 MS CHANDRA DEEP FIELD-SOUTH SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; surveys; X-rays: binaries; X-rays: galaxies; X-rays: general ID STAR-FORMING GALAXIES; LYMAN BREAK GALAXIES; EXTRAGALACTIC LEGACY SURVEY; LUMINOUS INFRARED GALAXIES; FORMATION RATE INDICATOR; ACTIVE GALACTIC NUCLEI; STELLAR MASS FUNCTIONS; BLACK-HOLE BINARIES; BROAD-BAND; XMM-NEWTON AB We present measurements of the evolution of normal-galaxy X-ray emission from z approximate to 0-7 using local galaxies and galaxy samples in the approximate to 6Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame less than or similar to 1 keV emission at z less than or similar to 1. We show that a single scaling relation between X-ray luminosity (L-X) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass (M-*) and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z approximate to 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with M-* and SFR, respectively. We find L2-10 keV (LMXB)/M-* proportional to (1 + z)(2-3) and L2-10 keV (HMXB)/SFR proportional to (1 + z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei. C1 [Lehmer, B. D.] Univ Arkansas, Dept Phys, 226 Phys Bldg,835 West Dickson St, Fayetteville, AR 72701 USA. [Lehmer, B. D.; Eufrasio, R. T.; Yukita, M.] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. [Lehmer, B. D.; Basu-Zych, A. R.; Eufrasio, R. T.; Yukita, M.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Basu-Zych, A. R.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Mineo, S.; Gilfanov, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Mineo, S.] XAIA Investment GmbH, Sonnenstr 19, D-80331 Munich, Germany. [Brandt, W. N.; Luo, B.; Schneider, D. P.; Trump, J. R.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.; Luo, B.; Schneider, D. P.; Trump, J. R.] Penn State Univ, Inst Gravitat & Cosmos, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.; Luo, B.; Schneider, D. P.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Eufrasio, R. T.] Univ Geneva, Observ Geneva, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland. [Luo, B.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Xue, Y. Q.; Wang, J. -X.] Chinese Acad Sci, Univ Sci & Technol China, CAS Key Lab Res Galaxies & Cosmol, Ctr Astrophys,Dept Astron, Hefei 230026, Anhui, Peoples R China. [Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Bauer, F. E.] MAS, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Ranalli, P.] Natl Observ Athens, IAASARS, Penteli 15236, Greece. [Shemmer, O.] Univ North Texas, Dept Phys, Denton, TX 76203 USA. [Tozzi, P.] INAF, Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy. [Vignali, C.] Univ Bologna, Via Ranzani 1, Bologna, Italy. [Zezas, A.] Univ Crete, Dept Phys, Iraklion, Greece. [Zezas, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Lehmer, BD (reprint author), Univ Arkansas, Dept Phys, 226 Phys Bldg,835 West Dickson St, Fayetteville, AR 72701 USA.; Lehmer, BD (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA.; Lehmer, BD (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. RI Eufrasio, Rafael/F-7611-2016; Yukita, Mihoko/E-4135-2017; Zezas, Andreas/C-7543-2011; Ranalli, Piero/K-6363-2013; Fragos, Tassos/A-3581-2016; OI Eufrasio, Rafael/0000-0002-2987-1796; Zezas, Andreas/0000-0001-8952-676X; Ranalli, Piero/0000-0003-3956-755X; Shemmer, Ohad/0000-0003-4327-1460; Fragos, Tassos/0000-0003-1474-1523; Luo, Bin/0000-0002-9036-0063 FU Chandra X-ray Center (CXC) grant [GO4-15130B]; NASA ADAP grant [NNX13AI48G, 09-ADP09-0071, NNX10AC99G]; CXC [GO4-15130Z, GO4-15130A]; Ambizione Fellowship of the Swiss National Science Foundation [PZ00P2_148123]; CONICYT-Chile (Basal-CATA) [PFB-06/2007]; CONICYT-Chile (FONDECYT Regular) [1141218]; CONICYT-Chile ("EMBIGGEN" Anillo) [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; Thousand Young Talents program [KJ2030220004]; 973 Program [2015CB857004]; USTC startup funding [ZC9850290195]; National Natural Science Foundation of China [NSFC-11473026, 11421303]; Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences [XDB09000000]; Fundamental Research Funds for the Central Universities [WK3440000001] FX BDL gratefully acknowledges financial support from Chandra X-ray Center (CXC) grant GO4-15130B and NASA ADAP grant NNX13AI48G. AEH and ABZ acknowledge funding through CXC program GO4-15130Z and NASA ADAP grant 09-ADP09-0071. WNB and BL. thank CXC grant GO4-15130A and NASA ADP grant NNX10AC99G. TF acknowledges support from the Ambizione Fellowship of the Swiss National Science Foundation (grant PZ00P2_148123). FEB acknowledges support from CONICYT-Chile (Basal-CATA PFB-06/2007, FONDECYT Regular 1141218, "EMBIGGEN" Anillo ACT1101), the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. YQX acknowledges support of the Thousand Young Talents program (KJ2030220004), the 973 Program (2015CB857004), the USTC startup funding (ZC9850290195), the National Natural Science Foundation of China (NSFC-11473026, 11421303), the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (XDB09000000), and the Fundamental Research Funds for the Central Universities (WK3440000001). NR 120 TC 6 Z9 6 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 7 DI 10.3847/0004-637X/825/1/7 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000007 ER PT J AU Mirabal, N Charles, E Ferrara, EC Gonthier, PL Harding, AK Sanchez-Conde, MA Thompson, DJ AF Mirabal, N. Charles, E. Ferrara, E. C. Gonthier, P. L. Harding, A. K. Sanchez-Conde, M. A. Thompson, D. J. TI 3FGL DEMOGRAPHICS OUTSIDE THE GALACTIC PLANE USING SUPERVISED MACHINE LEARNING: PULSAR AND DARK MATTER SUBHALO INTERPRETATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; gamma rays: general; pulsars: general ID GAMMA-RAY PULSARS; RR LYRAE STARS; MILKY-WAY HALO; FERMI-LAT; MILLISECOND PULSARS; GLOBULAR-CLUSTERS; SLOT GAPS; EMISSION; SUBSTRUCTURE; ANNIHILATION AB Nearly one-third of the sources listed in the Third Fermi Large Area Telescope (LAT) catalog (3FGL) remain unassociated. It is possible that predicted and even unanticipated gamma-ray source classes are present in these data waiting to be discovered. Taking advantage of the excellent spectral capabilities achieved by the Fermi LAT, we use machine-learning classifiers (Random Forest and XGBoost) to pinpoint potentially novel source classes in the unassociated 3FGL sample outside the Galactic plane. Here we report a total of 34 high-confidence Galactic candidates at vertical bar b vertical bar >= 5 degrees. The currently favored standard astrophysical interpretations for these objects are pulsars or low-luminosity globular clusters hosting millisecond pulsars (MSPs). Yet these objects could also be interpreted as dark matter annihilation taking place in ultra-faint dwarf galaxies or dark matter subhalos. Unfortunately, Fermi LAT spectra are not sufficient to break degeneracies between the different scenarios. Careful visual inspection of archival optical images reveals no obvious evidence for low-luminosity globular clusters or ultra-faint dwarf galaxies inside the 95% error ellipses. If these are pulsars, this would bring the total number of MSPs at vertical bar b vertical bar >= 5 degrees to 106, down to an energy flux approximate to 4.0 x 10(-12) erg cm(-2) s(-1) between 100 MeV and 100 GeV. We find this number to be in excellent agreement with predictions from a new population synthesis of MSPs that predicts 100-126 high-latitude 3FGL MSPs depending on the choice of high-energy emission model. If, however, these are dark matter substructures, we can place upper limits on the number of Galactic subhalos surviving today and on dark matter annihilation cross sections. These limits are beginning to approach the canonical thermal relic cross section for dark matter particle masses below similar to 100 GeV in the bottom quark (b (b) over bar) annihilation channel. C1 [Mirabal, N.; Ferrara, E. C.; Harding, A. K.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Charles, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Charles, E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gonthier, P. L.] Hope Coll, Dept Phys, Holland, MI 49423 USA. [Sanchez-Conde, M. A.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Sanchez-Conde, M. A.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. RP Mirabal, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. OI Gonthier, Peter/0000-0002-4579-9587 FU Wenner-Gren Foundations FX This research was supported by a senior appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by the Universities Space Research Association through a contract with NASA. M.A.S.C. is a Wenner-Gren Fellow and acknowledges the support of the Wenner-Gren Foundations to develop his research. We thank Seth Digel for helpful suggestions. NR 84 TC 4 Z9 4 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 69 DI 10.3847/0004-637X/825/1/69 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000069 ER PT J AU More, S Miyatake, H Takada, M Diemer, B Kravtsov, AV Dalal, NK More, A Murata, R Mandelbaum, R Rozo, E Rykoff, ES Oguri, M Spergel, DN AF More, Surhud Miyatake, Hironao Takada, Masahiro Diemer, Benedikt Kravtsov, Andrey V. Dalal, Neal K. More, Anupreeta Murata, Ryoma Mandelbaum, Rachel Rozo, Eduardo Rykoff, Eli S. Oguri, Masamune Spergel, David N. TI DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; cosmology: observations; galaxies: clusters: general; large-scale structure of universe; methods: observational ID DARK-MATTER HALOES; DIGITAL SKY SURVEY; OBSERVATIONAL EVIDENCE; LUMINOSITY FUNCTION; SELF-INTERACTIONS; AGE-DEPENDENCE; DATA RELEASE; PROFILES; MODEL; SDSS AB We show that the projected number density profiles of Sloan Digital Sky Survey photometric galaxies around galaxy clusters display strong evidence for the splashback radius, a sharp halo edge corresponding to the location of the first orbital apocenter of satellite galaxies after their infall. We split the clusters into two subsamples with different mean projected radial distances of their members, < R-mem >, at fixed richness and redshift. The sample with smaller < R-mem > has a smaller ratio of the splashback radius to the traditional halo boundary R-200m than the subsample with larger < R-mem >, indicative of different mass accretion rates for these subsamples. The same subsamples were recently used by Miyatake et al. to show that their large-scale clustering differs despite their similar weak lensing masses, demonstrating strong evidence for halo assembly bias. We expand on this result by presenting a 6.6 sigma difference in the clustering amplitudes of these samples using cluster-photometric galaxy cross-correlations. This measurement is a clear indication that halo clustering depends on parameters other than halo mass. If < R-mem > is related to the mass assembly history of halos, the measurement is a manifestation of the halo assembly bias. However, our measured splashback radii are smaller, while the strength of the assembly bias signal is stronger, than the predictions of collisionless. cold dark matter simulations. We show that dynamical friction, cluster mis-centering, or projection effects are not likely to be the sole source of these discrepancies. However, further investigations regarding unknown catastrophic weak lensing or cluster identification systematics are warranted. C1 [More, Surhud; Miyatake, Hironao; Takada, Masahiro; Dalal, Neal K.; More, Anupreeta; Murata, Ryoma; Oguri, Masamune; Spergel, David N.] Univ Tokyo, Tokyo Inst Adv Study, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Miyatake, Hironao] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Miyatake, Hironao; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Diemer, Benedikt] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Kravtsov, Andrey V.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Dalal, Neal K.] Univ Illinois Urbana Champagne, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Murata, Ryoma; Oguri, Masamune] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Rozo, Eduardo] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85721 USA. [Rykoff, Eli S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Oguri, Masamune] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. RP More, S (reprint author), Univ Tokyo, Tokyo Inst Adv Study, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. EM surhud.more@ipmu.jp RI Oguri, Masamune/C-6230-2011; Mandelbaum, Rachel/N-8955-2014; OI Mandelbaum, Rachel/0000-0003-2271-1527; Diemer, Benedikt/0000-0001-9568-7287; More, Surhud/0000-0002-2986-2371 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; Spanish MultiDark Consolider Project [CSD2009-00064]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; FIRST program "Subaru Measurements of Images and Redshifts (SuMIRe)", CSTP, Japan; JSPS Promotion of Science [15K17600, 16H01089, 23340061, 26610058, 26800093]; MEXT [15H05893, 15K21733, 15H05892]; JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers; Japan Society for the Promotion of Science (JSPS); Jet Propulsion Laboratory, California Institute of Technology; Kavli Institute for Cosmological Physics at the University of Chicago [PHY-1125897]; University of Tokyo-Princeton strategic partnership grant; Department of Energy Early Career Award program FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS website is www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, the University of Basel, the University of Cambridge, Case Western Reserve University, the University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, the University of Pittsburgh, the University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; The CosmoSim database used in this paper is a service by the Leibniz-Institute for Astrophysics Potsdam (AIP). The MultiDark database was developed in cooperation with the Spanish MultiDark Consolider Project CSD2009-00064. The MultiDark-Planck II (MDPL2) simulation has been performed in the Supermuc supercomputer at LRZ using time granted by PRACE.; We thank the referee for the positive report and recommendations of additional discussion items. We acknowledge useful discussions with Simon White, Frank van den Bosch, Andrew Hearin, Andrew Zentner, Erik Tollerud, Shigeki Matsumoto, Hitoshi Murayama, Justin Khoury, Mark Trodden, Bhuvnesh Jain, Daisuke Nagai, Uros Seljak, Susmita Adhikari, Xun Shi, and Arka Banerjee. M.T. and S.M. are supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and by the FIRST program "Subaru Measurements of Images and Redshifts (SuMIRe)", CSTP, Japan. S.M., M.T., and M.O. are also supported by Grant-in-Aid for Scientific Research from the JSPS Promotion of Science (No. 15K17600, 16H01089, 23340061, 26610058 and 26800093), MEXT Grant-in-Aid for Scientific Research on Innovative Areas (No. 15H05893, 15K21733, 15H05892), and by JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers. H.M. is supported in part by the Japan Society for the Promotion of Science (JSPS) Research Fellowships for Young Scientists and by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A.K. was supported by by the Kavli Institute for Cosmological Physics at the University of Chicago through grant PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. Ry.M. acknowledges financial support from the University of Tokyo-Princeton strategic partnership grant. R.M. acknowledges support from the Department of Energy Early Career Award program. NR 67 TC 8 Z9 8 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 39 DI 10.3847/0004-637X/825/1/39 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000039 ER PT J AU Okura, Y Petri, A May, M Plazas, AA Tamagawa, T AF Okura, Yuki Petri, Andrea May, Morgan Plazas, Andres A. Tamagawa, Toru TI CONSEQUENCES OF CCD IMPERFECTIONS FOR COSMOLOGY DETERMINED BY WEAK LENSING SURVEYS: FROM LABORATORY MEASUREMENTS TO COSMOLOGICAL PARAMETER BIAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology: miscellaneous; cosmology: observations; instrumentation: detectors ID DARK-MATTER; CALIBRATION AB Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shapes of galaxies, which in turn can bias the inferred cosmological parameters. In this paper we consider the effect of two widely discussed sensor imperfections: tree rings, due to impurity gradients that cause transverse electric fields in the charge-coupled devices (CCDs), and pixel size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat-field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat-field images recorded with LSST prototype CCDs in the laboratory. We find that tree rings and periodic pixel size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w, Omega(m), and sigma(8). C1 [Okura, Yuki; Tamagawa, Toru] RIKEN Nishina Ctr, Wako, Saitama, Japan. [Okura, Yuki] RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Petri, Andrea] Columbia Univ, New York, NY 10027 USA. [Petri, Andrea; May, Morgan; Plazas, Andres A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Plazas, Andres A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Okura, Y (reprint author), RIKEN Nishina Ctr, Wako, Saitama, Japan.; Okura, Y (reprint author), RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM yuki.okura@riken.jp FU US Department of Energy [DEAC02-98CH10886, DE-SC0012704]; Jet Propulsion Laboratory FX We thank G. Bernstein and P. O'Connor for useful comments and discussions, and the Instrumentation Division of Brookhaven for data taking. This work was supported in part by the US Department of Energy under Contract No. DEAC02-98CH10886 and Contract No. DE-SC0012704. A.A.P. is also supported by the Jet Propulsion Laboratory, which is run under a contract for NASA by Caltech. NR 21 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 61 DI 10.3847/0004-637X/825/1/61 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000061 ER PT J AU Stamenkovic, V Seager, S AF Stamenkovic, Vlada Seager, Sara TI EMERGING POSSIBILITIES AND INSUPERABLE LIMITATIONS OF EXOGEOPHYSICS: THE EXAMPLE OF PLATE TECTONICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; Earth; planets and satellites: composition; planets and satellites: interiors; planets and satellites: tectonics; planets and satellites: terrestrial planets ID GALACTIC CHEMICAL EVOLUTION; EARTH-LIKE PLANETS; SUPER-EARTHS; TERRESTRIAL PLANETS; THERMAL EVOLUTION; MANTLE CONVECTION; DEPENDENT VISCOSITY; SELF-DIFFUSION; ROCKY EXOPLANETS; SILICON-CARBIDE AB To understand the evolution and the habitability of any rocky exoplanet demands detailed knowledge about its geophysical state and history-such as predicting the tectonic mode of a planet. Yet. no astronomical observation can directly confirm or rule out the occurrence of plate tectonics on a given exoplanet. Moreover, the field of plate tectonics is still young-questioning whether we should study plate tectonics on exoplanets at this point in. time. In this work, we determine the limitations and the emerging possibilities of exogeophysics, the science of connecting geophysics to exoplanets, on the example of plate tectonics. Assuming current uncertainties in model and planet parameters, we develop a qualitatively probabilistic and conservative framework to estimate on what kind of planets and where in the Galaxy plate tectonics might occur. This we achieve by modeling how plate yielding, the most critical condition needed for plate mobility and subduction, is affected by directly observable (planet mass, size) or indirectly, to some degree, assessable planet properties (structure and composition). Our framework not only highlights the importance of a planet's chemistry for the existence of plate tectonics and the path toward practical exogeophysics but also demonstrates how exoplanet science can actually help to better understand geophysics and the fundamentals of plate tectonics on. Earth itself. C1 [Stamenkovic, Vlada] CALTECH, Dept Geol & Planetary Sci, Mail Stop 100-23, Pasadena, CA 91125 USA. [Stamenkovic, Vlada] Jet Prop Labs, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Seager, Sara] MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Stamenkovic, V (reprint author), CALTECH, Dept Geol & Planetary Sci, Mail Stop 100-23, Pasadena, CA 91125 USA.; Stamenkovic, V (reprint author), Jet Prop Labs, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM rinsan@caltech.edu; seager@mit.edu OI Stamenkovic, Vlada/0000-0003-2416-3683 FU Simons Foundation [338555] FX V.S. thanks the Simons Foundation for kindly supporting this work through a "Simons Collaboration on the Origins of Life" fellowship (338555, VS), Adrian Lenardic, Tobias Hoink, and Doris Brever for insightful discussions, an anonymous reviewer for comments, and Steinn Sigurdson for his editorial work. NR 83 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 78 DI 10.3847/0004-637X/825/1/78 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000078 ER PT J AU Stone, JM Marrone, DP Dowell, CD Schulz, B Heinke, CO Yusef-Zadeh, F AF Stone, Jordan M. Marrone, D. P. Dowell, C. D. Schulz, B. Heinke, C. O. Yusef-Zadeh, F. TI FAR INFRARED VARIABILITY OF SAGITTARIUS A*: 25.5 hr OF MONITORING WITH HERSCHEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; Galaxy: center ID SUPERMASSIVE BLACK-HOLE; SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS; PHOTON IMAGING CAMERA; SGR-A; GALACTIC-CENTER; X-RAY; XMM-NEWTON; FLARE EMISSION; STELLAR ORBITS; POWER SPECTRA AB Variable emission from Sgr A*, the luminous counterpart to the super-massive black hole at the center of our Galaxy, arises from the innermost portions of the accretion flow. Better characterization of the variability is important for constraining models of the low-luminosity accretion mode powering Sgr A*, and could further our ability to use variable emission as a probe of the strong gravitational potential in the vicinity of the 4 x 10(6) M-circle dot black hole. We use the Herschel Spectral and Photometric Imaging Receiver (SPIRE) to monitor Sgr. A* at wavelengths that are difficult or impossible to observe from the ground. We find highly significant variations at 0.25, 0.35, and 0.5 mm, with temporal structure that is highly correlated across these wavelengths. While the variations correspond to < 1% changes in the total intensity in the Herschel beam containing Sgr. A*, comparison to independent, simultaneous observations at 0.85 mm strongly supports the reality of the variations. The lowest point in the light curves, similar to 0.5 Jy below the time-averaged flux density, places a lower bound on the emission of Sgr. A* at 0.25 mm, the first such constraint on the THz portion of the spectral energy distribution. The variability on few hour timescales in the SPIRE light curves is similar to that seen in historical 1.3 mm data, where the longest time series is available, but the distribution of variations in the sub-mm do not show a tail of large-amplitude variations seen at 1.3 mm. Simultaneous X-ray photometry from XMM-Newton shows no significant variation within our observing period, which may explain the lack of very large submillimeter variations in our data if X-ray and submillimeter flares are correlated. C1 [Stone, Jordan M.; Marrone, D. P.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Dowell, C. D.] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, JPL, MS 100-22, Pasadena, CA 91125 USA. [Heinke, C. O.] Univ Alberta, Dept Phys, CCIS 4-183, Edmonton, AB T6G 2E1, Canada. [Heinke, C. O.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Yusef-Zadeh, F.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Yusef-Zadeh, F.] Northwestern Univ, CIERA, Evanston, IL 60208 USA. RP Stone, JM (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM jstone@as.arizona.edu; dmarrone@as.arizona.edu; charles.d.dowell@jpl.nasa.gov; bschulz@ipac.caltech.edu; heinke@ualberta.ca; zadeh@northwestern.edu OI Heinke, Craig/0000-0003-3944-6109; Stone, Jordan/0000-0003-0454-3718 FU NSF [AST-1207752]; NASA; NSERC; Alexander von Humboldt Fellowship FX This work is based on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. We thank Chi-Kwan Chan, Feryal Ozel, and Dimitrios Psaltis for helpful discussions. DPM and JMS acknowledge support from NSF award AST-1207752 and from NASA through award OT1 cdowell 2 issued by JPL/Caltech. COH acknowledges support from an NSERC Discovery Grant and an Alexander von Humboldt Fellowship. NR 53 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 32 DI 10.3847/0004-637X/825/1/32 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000032 ER PT J AU Thompson, BJ Young, CA AF Thompson, B. J. Young, C. A. TI PERSISTENCE MAPPING USING EUV SOLAR IMAGER DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; Sun: activity; Sun: corona ID CORONAL MASS EJECTION; LOVEJOY C/2011 W3; SUN-GRAZING COMET; JUNE 7 ERUPTION; EXTREME-ULTRAVIOLET; RETURNING PLASMA; EVOLUTION; DYNAMICS; DIMMINGS AB We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call "Persistence Mapping," to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or " time-lapse" imaging uses the full sample (of size N), Persistence Mapping rejects (N - 1)/N of the data set and identifies the most relevant 1/N values using the following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions. C1 [Thompson, B. J.] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [Young, C. A.] NASA, Goddard Space Flight Ctr, Code 670, Greenbelt, MD 20771 USA. RP Thompson, BJ (reprint author), NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. EM barbara.j.thompson@nasa.gov RI Thompson, Barbara/C-9429-2012 FU NASA Program Element [NNH14ZDA001N-GIODDE14] FX The authors would like to thank Dean Pesnell, John Raymond, Paul Bryans, Michael Chesnes, Mark Cheung, Cooper Downs, Wei Liu, and Leila Mays for discussion and assistance in developing this technique. The authors would also like to acknowledge the referee, Dr. Timothy A. Howard, for his role in improving this paper. This work was supported by NASA Program Element NNH14ZDA001N-GIODDE14. NR 30 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 27 DI 10.3847/0004-637X/825/1/27 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000027 ER PT J AU Veilleux, S Melendez, M Tripp, TM Hamann, F Rupke, DSN AF Veilleux, S. Melendez, M. Tripp, T. M. Hamann, F. Rupke, D. S. N. TI THE COMPLETE ULTRAVIOLET SPECTRUM OF THE ARCHETYPAL "WIND-DOMINATED" QUASAR MRK 231: ABSORPTION AND EMISSION FROM A HIGH-SPEED DUSTY NUCLEAR OUTFLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies: active; quasars: absorption lines ID ACTIVE GALACTIC NUCLEI; ULTRALUMINOUS INFRARED GALAXIES; BLACK-HOLE ACCRETION; RADIO-QUIET QUASARS; STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; X-RAY-EMISSION; RADIATION MAGNETOHYDRODYNAMIC SIMULATION; REDSHIFT CIRCUMGALACTIC MEDIUM; KILOPARSEC-SCALE OUTFLOWS AB New near-and far-ultraviolet (NUV and FUV) Hubble Space Telescope spectra of Mrk. 231, the nearest quasar known, are combined with ground-based optical spectra to study the remarkable dichotomy between the FUV and NUV-optical spectral regions in this object. The FUV emission-line features are faint, broad, and highly blueshifted (up to similar to 7000 km s(-1)), with no significant accompanying absorption. In contrast, the profiles of the NUV absorption features resemble those of the optical Na I. D, He I, and Ca II H and K lines, exhibiting broad blueshifted troughs that overlap in velocity space with the FUV emission-line features and indicate a dusty, high-density and patchy broad absorption line (BAL) screen covering similar to 90% of the observed continuum source at a distance less than or similar to 2-20 pc. The FUV continuum emission does not show the presence of any obvious stellar features and is remarkably flat compared with the steeply declining NUV continuum. The NUV (FUV) features and continuum emission have not varied significantly over the past similar to 22 (3) years and are unresolved on scales similar to 40 (170) pc. These results favor an active galactic nucleus origin for the NUV-FUV line and continuum emission. The observed FUV line emission is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad line region seen through the dusty BAL screen. Our data are inconsistent with the recently proposed binary black hole model. We argue instead that Mrk. 231 is the nearest example of weak-lined "wind-dominated" quasars with high Eddington ratios and geometrically thick ("slim") accretion disks; these quasars are likely more common in the early universe. C1 [Veilleux, S.; Melendez, M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Veilleux, S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Melendez, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Melendez, M.] Wyle Sci Technol & Engn Grp, 1290 Hercules Ave, Houston, TX 77058 USA. [Tripp, T. M.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Hamann, F.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92507 USA. [Hamann, F.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Rupke, D. S. N.] Rhodes Coll, Dept Phys, Memphis, TN 38112 USA. RP Veilleux, S (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Veilleux, S (reprint author), Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. EM veilleux@astro.umd.edu OI Veilleux, Sylvain/0000-0002-3158-6820 FU NASA [HST GO-13460.001-A]; National Science Foundation [AST-1207785] FX S.V. acknowledges useful discussions regarding the high-frequency radio data of Mrk. 231 with Drs. B. Punsly and C. Reynolds. We thank J. I. Capone and Dr. S. B. Cenko for obtaining the 2015 DCT optical spectrum and reducing it, respectively. We also thank the anonymous referee for useful suggestions that have improved this paper. Support for this work was provided to S.V. and M.M. by NASA through contract HST GO-13460.001-A. S.V. also acknowledges support from the National Science Foundation through grant AST-1207785. This work made use of the Discovery Channel Telescope at Lowell Observatory. Lowell is a private, nonprofit institution dedicated to astrophysical research and public appreciation of astronomy and operates the DCT in partnership with Boston University, the University of Maryland, the University of Toledo and Northern Arizona University. It also made use of NASA's Astrophysics Data System Abstract Service and the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 183 TC 7 Z9 7 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 42 DI 10.3847/0004-637X/825/1/42 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000042 ER PT J AU Zhu, W Novati, SC Gould, A Udalski, A Han, C Shvartzvald, Y Ranc, C Jorgensen, UG Poleski, R Bozza, V Beichman, C Bryden, G Carey, S Gaudi, BS Henderson, CB Pogge, RW Porritt, I Wibking, B Yee, JC Pawlak, M Szymanski, MK Skowron, J Mroz, P Kozlowski, S Wyrzykowski, L Pietrukowicz, P Pietrzynski, G Soszynski, I Ulaczyk, K Choi, JY Park, H Jung, YK Shin, IG Albrow, MD Park, BG Kim, SL Lee, CU Cha, SM Kim, DJ Lee, Y Friedmann, M Kaspi, S Maoz, D Hundertmark, M Street, RA Tsapras, Y Bramich, DM Cassan, A Dominik, M Bachelet, E Dong, SB Jaimes, RF Horne, K Mao, S Menzies, J Schmidt, R Snodgrass, C Steele, IA Wambsganss, J Skottfelt, J Andersen, MI Burgdorf, MJ Ciceri, S D'Ago, G Evans, DF Gu, SH Hinse, TC Kerins, E Korhonen, H Kuffmeier, M Mancini, L Peixinho, N Popovas, A Rabus, M Rahvar, S Tronsgaard, R Scarpetta, G Southworth, J Surdej, J von Essen, C Wang, YB Wertz, O AF Zhu, Wei Novati, S. Calchi Gould, A. Udalski, A. Han, C. Shvartzvald, Y. Ranc, C. Jorgensen, U. G. Poleski, R. Bozza, V. Beichman, C. Bryden, G. Carey, S. Gaudi, B. S. Henderson, C. B. Pogge, R. W. Porritt, I. Wibking, B. Yee, J. C. Pawlak, M. Szymanski, M. K. Skowron, J. Mroz, P. Kozlowski, S. Wyrzykowski, L. Pietrukowicz, P. Pietrzynski, G. Soszynski, I. Ulaczyk, K. Choi, J. -Y. Park, H. Jung, Y. K. Shin, I. -G. Albrow, M. D. Park, B. -G. Kim, S. -L. Lee, C. -U. Cha, S. -M. Kim, D. -J. Lee, Y. Friedmann, M. Kaspi, S. Maoz, D. Hundertmark, M. Street, R. A. Tsapras, Y. Bramich, D. M. Cassan, A. Dominik, M. Bachelet, E. Dong, Subo Jaimes, R. Figuera Horne, K. Mao, S. Menzies, J. Schmidt, R. Snodgrass, C. Steele, I. A. Wambsganss, J. Skottfelt, J. Andersen, M. I. Burgdorf, M. J. Ciceri, S. D'Ago, G. Evans, D. F. Gu, S. -H. Hinse, T. C. Kerins, E. Korhonen, H. Kuffmeier, M. Mancini, L. Peixinho, N. Popovas, A. Rabus, M. Rahvar, S. Tronsgaard, R. Scarpetta, G. Southworth, J. Surdej, J. von Essen, C. Wang, Y. -B. Wertz, O. CA SPITZER TEAM OGLE GRP KMTNET GRP WISE GRP ROBONET TEAM MINDSTEP GRP TI MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; gravitational lensing: micro; stars: fundamental parameters ID GRAVITATIONAL LENSING EXPERIMENT; PARALLAX SATELLITE MASS; GALACTIC BULGE; SPITZER OBSERVATIONS; PLANET SENSITIVITY; PROPER MOTIONS; OGLE-III; EVENTS; STARS; SYSTEMS AB We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 +/- 7 M-J BD at 5.9 +/- 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 +/- 0.04 M-circle dot star at 6.9 +/- 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground-and space-based observations are conducted. C1 [Zhu, Wei; Gould, A.; Poleski, R.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Wibking, B.] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. [Novati, S. Calchi; Beichman, C.; Carey, S.] CALTECH, NASA, Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA. [Novati, S. Calchi; Bozza, V.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo 2, I-84084 Fisciano, SA, Italy. [Novati, S. Calchi; D'Ago, G.] IIASS, Via G Pellegrino 19, I-84019 Vietri Sul Mare, SA, Italy. [Udalski, A.; Poleski, R.; Pawlak, M.; Szymanski, M. K.; Skowron, J.; Mroz, P.; Kozlowski, S.; Wyrzykowski, L.; Pietrukowicz, P.; Pietrzynski, G.; Soszynski, I.] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. [Han, C.; Choi, J. -Y.; Park, H.; Jung, Y. K.; Shin, I. -G.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Shvartzvald, Y.; Bryden, G.; Henderson, C. B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Shvartzvald, Y.; Friedmann, M.; Kaspi, S.; Maoz, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Ranc, C.; Cassan, A.] Univ Paris 06, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France. [Ranc, C.; Cassan, A.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Bd Arago, F-75014 Paris, France. [Jorgensen, U. G.; Hundertmark, M.; Skottfelt, J.; Korhonen, H.; Kuffmeier, M.; Popovas, A.] Univ Copenhagen, Niels Bohr Inst, Oster Voldgade 5, DK-1350 Copenhagen, Denmark. [Jorgensen, U. G.; Hundertmark, M.; Skottfelt, J.; Korhonen, H.; Kuffmeier, M.; Popovas, A.] Univ Copenhagen, Ctr Star & Planet Format, Oster Voldgade 5, DK-1350 Copenhagen, Denmark. [Bozza, V.; Scarpetta, G.] Ist Nazl Fis Nucl, Sez Napoli, Rome, Italy. [Porritt, I.] Turitea Observ, Palmerston North, New Zealand. [Yee, J. C.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Ulaczyk, K.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. [Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch 8020, New Zealand. [Park, B. -G.; Kim, S. -L.; Lee, C. -U.; Cha, S. -M.; Kim, D. -J.; Lee, Y.; Hinse, T. C.] Korea Astron & Space Sci Inst, Daejon 305348, South Korea. [Cha, S. -M.; Kim, D. -J.] Kyung Hee Univ, Sch Space Res, Yongin 446701, South Korea. [Street, R. A.; Bachelet, E.] Las Cumbres Observ, Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Tsapras, Y.; Schmidt, R.; Wambsganss, J.] Univ Heidelberg ZAH, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Bramich, D. M.; Bachelet, E.] Qatar Fdn, QEERI, HBKU, Doha, Qatar. [Dominik, M.; Jaimes, R. Figuera; Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Dong, Subo] Peking Univ, Kavli Inst Astron & Astrophys, Yi He Yuan Rd 5, Beijing 100871, Peoples R China. [Jaimes, R. Figuera] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Mao, S.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Menzies, J.] South African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Snodgrass, C.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Skottfelt, J.] Open Univ, Dept Phys Sci, Ctr Elect Imaging, Milton Keynes MK7 6AA, Bucks, England. [Andersen, M. I.] Univ Copenhagen, Niels Bohr Inst, Juliane Mariesvej 30, DK-2100 Copenhagen O, Denmark. [Burgdorf, M. J.] Univ Hamburg, Meteorol Inst, Bundesstr 55, D-20146 Hamburg, Germany. [Ciceri, S.; Mancini, L.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Evans, D. F.; Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Gu, S. -H.; Wang, Y. -B.] Chinese Acad Sci, Yunnan Observat, Kunming 650011, Peoples R China. [Kerins, E.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Korhonen, H.] Finnish Ctr Astron ESO FINCA, Vaisalantie 20, FI-21500 Piikkio, Finland. [Peixinho, N.] Univ Antofagasta, Fac Ciencias Basicas, Unidad Astron, Avda U Antofagasta 02800, Antofagasta, Chile. [Peixinho, N.] Univ Coimbra, Astron Observ, CITEUC Ctr Earth & Space Sci Res, P-3030004 Coimbra, Portugal. [Rabus, M.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Av Vicuna Mackenna 4860, Santiago 7820436, Chile. [Rahvar, S.] Sharif Univ Technol, Dept Phys, POB 11155-9161, Tehran, Iran. [Tronsgaard, R.; von Essen, C.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Surdej, J.; Wertz, O.] Inst Astrophys & Geophys, Allee 6 Aout 17,Bat B5c, B-4000 Liege, Belgium. RP Zhu, W (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM weizhu@astronomy.ohio-state.edu RI Kozlowski, Szymon/G-4799-2013; Skowron, Jan/M-5186-2014; Korhonen, Heidi/E-3065-2016; D'Ago, Giuseppe/N-8318-2016; OI Kozlowski, Szymon/0000-0003-4084-880X; Skowron, Jan/0000-0002-2335-1730; Korhonen, Heidi/0000-0003-0529-1161; D'Ago, Giuseppe/0000-0001-9697-7331; ZHU, WEI/0000-0003-4027-4711 FU JPL grant [1500811]; NSF [AST-1516842]; NASA; National Science Centre, Poland [MAESTRO 2014/14/A/ST9/00121]; Creative Research Initiative Program of National Research Foundation of Korea [2009-0081561]; KASI grant [2016-1-832-01]; STFC grant [ST/M001296/1]; Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences [XDB09000000]; Villum Foundation; Gemini-Conicyt Fund [32120036]; Danish Council for Independent Research, Natural Sciences; Centre for Star and Planet Formation; NPRP grant from the Qatar National Research Fund (a member of Qatar Foundation) [X-019-1-006]; Regione Campania from POR-FSE Campania; Communaute francaise de Belgique' Actions de recherche concertees' Academie universitaire Wallonie-Europe FX Work by WZ, SCN and AG was supported by JPL grant 1500811. WZ and AG also acknowledge support by NSF grant AST-1516842. Work by JCY was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. The Spitzer Team thanks Christopher S. Kochanek for graciously trading us his allocated observing time on the CTIO 1.3m during the Spitzer campaign. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to au. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Work by CH was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. This research has made the use of the KMTNet telescopes operated by the Korea Astronomy and Space Science Institute (KASI), and was supported by KASI grant 2016-1-832-01. This work makes use of observations from the LCOGT network, which includes three SUPAscopes owned by the University of St Andrews. The RoboNet programme is an LCOGT Key Project using time allocations from the University of St Andrews, LCOGT and the University of Heidelberg together with time on the Liverpool Telescope through the Science and Technology Facilities Council (STFC), UK. This research has made use of the LCOGT Archive, which is operated by the California Institute of Technology, under contract with the Las Cumbres Observatory. KH acknowledges support from STFC grant ST/M001296/1. This project is partly supported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences, Grant No. XDB09000000 (SM and SD). MPGH acknowledges support from the Villum Foundation. NP acknowledges funding by the Gemini-Conicyt Fund, allocated to the project No. 32120036. Based on data collected by MiNDSTEp with the Danish 1.54m telescope at the ESO La Silla observatory. Operation of the Danish 1.54m telescope at ESOs La Silla observatory was supported by The Danish Council for Independent Research, Natural Sciences, and by Centre for Star and Planet Formation. The MiNDSTEp monitoring campaign is powered by ARTEMiS (Automated Terrestrial Exoplanet Microlensing Search, Dominik et al. 2008). DMB acknowledges support from NPRP grant # X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). GD acknowledges Regione Campania for support from POR-FSE Campania 2014-2020. OW and JS acknowledge support from the Communaute francaise de Belgique' Actions de recherche concertees' Academie universitaire Wallonie-Europe. NR 61 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2016 VL 825 IS 1 AR 60 DI 10.3847/0004-637X/825/1/60 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0YD UT WOS:000381930000060 ER PT J AU Devaraju, N Bala, G Caldeira, K Nemani, R AF Devaraju, N. Bala, G. Caldeira, K. Nemani, R. TI A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period SO CLIMATE DYNAMICS LA English DT Article DE Terrestrial carbon uptake; CO2 fertilization; Nitrogen deposition; Climate change; Land use land cover change; Net primary productivity ID WATER-USE EFFICIENCY; NET PRIMARY PRODUCTION; EARTH SYSTEM MODEL; SOIL RESPIRATION; CYCLE FEEDBACKS; COUPLED CLIMATE; ATMOSPHERIC CO2; COVER CHANGE; PERMAFROST CARBON; WOOD-HARVEST AB In this paper, using the fully coupled NCAR Community Earth System Model (CESM1.0.4), we investigate the relative importance of CO2-fertilization, climate warming, anthropogenic nitrogen deposition, and land use and land cover change (LULCC) for terrestrial carbon uptake during the historical period (1850-2005). In our simulations, between the beginning and end of this period, we find an increase in global net primary productivity (NPP) on land of about 4 PgCyr(-1) (8.2 %) with a contribution of 2.3 PgCyr(-1) from CO2-fertilization and 2.0 PgCyr(-1) from nitrogen deposition. Climate warming also causes NPP to increase by 0.35 PgCyr(-1) but LULCC causes a decline of 0.7 PgCyr(-1). These results indicate that the recent increase in vegetation productivity is most likely driven by CO2 fertilization and nitrogen deposition. Further, we find that this configuration of CESM projects that the global terrestrial ecosystem has been a net source of carbon during 1850-2005 (release of 45.1 +/- 2.4 PgC), largely driven by historical LULCC related CO2 fluxes to the atmosphere. During the recent three decades (early 1970s to early 2000s), however, our model simulations project that the terrestrial ecosystem acts as a sink, taking up about 10 PgC mainly due to CO2 fertilization and nitrogen deposition. Our results are in good qualitative agreement with recent studies that indicate an increase in vegetation production and water use efficiency in the satellite era and that the terrestrial ecosystem has been a net sink for carbon in recent decades. C1 [Devaraju, N.; Bala, G.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Devaraju, N.; Bala, G.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Bala, G.] Indian Inst Sci, Interdisciplinary Ctr Water Res, Bangalore 560012, Karnataka, India. [Caldeira, K.] Carnegie Inst, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA. [Nemani, R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Devaraju, N (reprint author), Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India.; Devaraju, N (reprint author), Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. EM devarajun@gmail.com RI Caldeira, Ken/E-7914-2011; OI Devaraju, Narayanappa/0000-0001-8471-3961 FU Department of Science and Technology [DST0948]; Divecha Center for Climate Change; FIST FX We thank the funding from Department of Science and Technology under the Grant DST0948. Dr. Devaraju is supported by the Divecha Center for Climate Change. Computations were carried out at CAOS HPC facility funded by FIST, Department of Science and Technology and Divecha Center for Climate Change. NR 94 TC 4 Z9 4 U1 22 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUL PY 2016 VL 47 IS 1-2 BP 173 EP 190 DI 10.1007/s00382-015-2830-8 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT1FM UT WOS:000381227100012 ER PT J AU Johnson, LF Cahn, M Martin, F Melton, F Benzen, S Farrara, B Post, K AF Johnson, Lee F. Cahn, Michael Martin, Frank Melton, Forrest Benzen, Sharon Farrara, Barry Post, Kirk TI Evapotranspiration-based Irrigation Scheduling of Head Lettuce and Broccoli SO HORTSCIENCE LA English DT Article DE irrigation management; fractional cover; crop coefficients; Lactuca sativa; Brassica oleracea ID CALIFORNIA; SATELLITE AB Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fraction of the ground covered by photosynthetically active vegetation (Fc), crop coefficients (Kc), and evapotranspiration (El) of cool-season vegetables and other specialty crops. Replicated irrigation trials for iceberg lettuce and broccoli were performed during 2012 and 2013 at the USDA Agricultural Research Station in Salinas, CA. The main objective was to compare crop yield and quality from ET-based irrigation scheduling with industry standard practice. Sprinkler irrigation was used to germinate and establish the crops, followed by surface drip irrigation during the treatment period. Each experiment compared three irrigation treatment schedules replicated five times in a randomized block design. Two decision-support models were evaluated as follows: 1) anFAO-56-based algorithm embedded in NASA's prototype Satellite Information Management System (SIMS) based on observed Fc, and 2) CropManage (CM), an online database-driven irrigation scheduling tool based on modeled Fc. Both methods used daily reference ETo data from the California Irrigation Management Irrigation System (CIMIS) to translate Kc to crop ET, with a target of 100% replacement of water use during the drip irrigation phase. A third treatment followed an irrigation schedule representing grower standard practice (SP) at 150% to 175% ET replacement during the drip irrigation phase. No significant treatment differences were seen in lettuce head weight or total biomass. Marketable yields of lettuce (near 45.4 Mg.ha(-1)) and broccoli (near 17.4 Mg.ha(-1)) were in-line with industry averages during both years and all treatments. During 2012, CM yield was below lettuce SP, and above broccoli SP, while in 2013 no treatment differences were detected for either crop. No significant differences were detected between SIMS and SP yields during any trial. C1 [Johnson, Lee F.; Melton, Forrest; Post, Kirk] Calif State Univ, Div Sci & Environm Policy, Seaside, CA 93955 USA. [Johnson, Lee F.; Melton, Forrest] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Cahn, Michael; Farrara, Barry] Univ Calif Cooperat Extens, Salinas, CA 93901 USA. [Martin, Frank; Benzen, Sharon] ARS, USDA, Salinas, CA 93905 USA. RP Johnson, LF (reprint author), Calif State Univ, Div Sci & Environm Policy, Seaside, CA 93955 USA.; Johnson, LF (reprint author), NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. EM lee.f.johnson@nasa.gov FU California Dept. Food Agriculture [SCB11016]; NASA's Applied Sciences Program FX The project was sponsored by the California Dept. Food & Agriculture no. SCB11016 with additional support from NASA's Applied Sciences Program. Commercial cooperators Fresh Express and Tanimura & Antle harvested the crops and evaluated, or provided guidance on collection of, associated crop quality data. We thank Sakata, Enza, and Seminis for donating seeds, and Wilbur-Ellis for fertilizer. David Lara and Gerry Ochoa (USDA-ARS) contributed to agricultural operations. NR 22 TC 1 Z9 1 U1 3 U2 3 PU AMER SOC HORTICULTURAL SCIENCE PI ALEXANDRIA PA 113 S WEST ST, STE 200, ALEXANDRIA, VA 22314-2851 USA SN 0018-5345 EI 2327-9834 J9 HORTSCIENCE JI Hortscience PD JUL PY 2016 VL 51 IS 7 BP 935 EP 940 PG 6 WC Horticulture SC Agriculture GA DT1KJ UT WOS:000381240900023 ER PT J AU Mauk, BH Ukhorskiy, AY Fox, NJ Kessel, RL Sibeck, DG Kanekal, SG AF Mauk, Barry H. Ukhorskiy, Aleksandr Y. Fox, Nicola J. Kessel, Ramona L. Sibeck, David G. Kanekal, Shrikanth G. TI History and Science Motivation for the Van Allen Probes Mission SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article ID GEOMAGNETIC STORMS; RADIATION BELTS; ELECTRONS; ACCELERATION; MAGNETOSPHERE; PROTONS; ENERGY AB The NASA Van Allen Probes (previously known as Radiation Belt Storm Probes, or RBSP) mission addresses how populations of high-energy charged particles are created, vary, and evolve in space environments, specifically within Earth's magnetically trapped radiation belts. The Probes were launched 30 August 2012 and comprise two spacecraft making in situ measurements for the past several years in nearly the same highly elliptical, low inclination orbits (1.1 x 5.8 R-E, 10 degrees). The initial orbits are slightly different so that one spacecraft laps the other spacecraft about every 67 days, allowing separation of spatial from temporal effects over spatial scales ranging from similar to 0.1 to 5 R-E. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particles (electrons, ions, ion composition), fields (E and B), and wave distributions (dE and dB) needed to resolve the most critical science questions. Summarized in this article are the high-level science objectives for the Probes mission, examples of the radiation belts' most compelling scientific mysteries that motivated the mission, and the mission design that targets these mysteries and objectives. The instruments that are now working to deliver these measurements are also addressed. C1 [Mauk, Barry H.; Ukhorskiy, Aleksandr Y.] APL Space Explorat Sect, Laurel, MD 20723 USA. [Mauk, Barry H.] NASA, Juno Mission Polar Orbit Jupiter & Set Instrument, Washington, DC 20546 USA. [Mauk, Barry H.; Ukhorskiy, Aleksandr Y.; Kessel, Ramona L.; Sibeck, David G.; Kanekal, Shrikanth G.] Prime Mission NASA, Van Allen Probes Mission, Washington, DC 20546 USA. [Mauk, Barry H.] NASA, Voyager Mission Outer Planets & Beyond, Washington, DC 20546 USA. [Mauk, Barry H.] NASA, Galileo Mission Jupiter, Washington, DC 20546 USA. [Mauk, Barry H.] NASA, Phase B Port, TIMED Mission, Washington, DC 20546 USA. [Mauk, Barry H.] Ballist Missile Def Org, Phase B Port, Nucl Elect Space Test Program, Washington, DC USA. [Fox, Nicola J.] APL, Laurel, MD USA. [Fox, Nicola J.] Space Res Branch, Space Weather, Washington, DC USA. [Fox, Nicola J.] NASA Ctr, Van Allen Probes Mission, Washington, DC USA. [Fox, Nicola J.] NASA, Headquarters Full Range Sci Issues These High Pro, Washington, DC USA. [Fox, Nicola J.] NASA, Goddard Space Flight Ctr, USA Natl Res Council, Greenbelt, MD USA. [Fox, Nicola J.] Raytheon, NASA Polar Spacecraft & Int Solar Terr Phys Progr, Waltham, MA USA. [Kessel, Ramona L.] NASA Headquarters, Heliophys Div, Washington, DC USA. [Kessel, Ramona L.] NASA, Magnetospher Multiscale Mission, Washington, DC USA. [Kessel, Ramona L.] NASA, TWINS Mission, Washington, DC USA. [Kessel, Ramona L.] Solar Terr Probes Program, Washington, DC USA. [Kessel, Ramona L.] Heliophys Subcommittee, Washington, DC USA. [Sibeck, David G.] NASA, Goddard Space Flight Ctr, Earths Space Environm, Greenbelt, MD USA. [Sibeck, David G.] NASA, Multisatellite THEMIS ARTEMIS Mission Orbiting Ea, Washington, DC USA. [Sibeck, David G.] Natl Sci Fdn, Geospace Environm Modeling Program, 4201 Wilson Blvd, Arlington, VA 22230 USA. [Sibeck, David G.] Amer Geophys Union, Space Phys & Aeron Sect, Washington, DC USA. [Kanekal, Shrikanth G.] NASA, Goddard Space Flight Ctr, Phys Radiat Belts Earths Space Environm, Washington, DC USA. RP Mauk, BH (reprint author), APL Space Explorat Sect, Laurel, MD 20723 USA.; Mauk, BH (reprint author), NASA, Juno Mission Polar Orbit Jupiter & Set Instrument, Washington, DC 20546 USA.; Mauk, BH (reprint author), Prime Mission NASA, Van Allen Probes Mission, Washington, DC 20546 USA.; Mauk, BH (reprint author), NASA, Voyager Mission Outer Planets & Beyond, Washington, DC 20546 USA.; Mauk, BH (reprint author), NASA, Galileo Mission Jupiter, Washington, DC 20546 USA.; Mauk, BH (reprint author), NASA, Phase B Port, TIMED Mission, Washington, DC 20546 USA.; Mauk, BH (reprint author), Ballist Missile Def Org, Phase B Port, Nucl Elect Space Test Program, Washington, DC USA. EM barry.mauk@jhuapl.edu RI Fox, Nicola/P-6692-2016; Mauk, Barry/E-8420-2017 OI Fox, Nicola/0000-0003-3411-4228; Mauk, Barry/0000-0001-9789-3797 NR 41 TC 0 Z9 0 U1 0 U2 0 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 EI 1930-0530 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PD JUL PY 2016 VL 33 IS 3 BP 165 EP 172 PG 8 WC Engineering, Multidisciplinary SC Engineering GA DT4PI UT WOS:000381462800002 ER PT J AU Zanetti, LJ Kessel, RL Mauk, BH Ukhorskiy, AY Fox, NJ Barnes, RJ Weiss, M Sotirelis, TS Raouafi, N AF Zanetti, Lawrence J. Kessel, Ramona L. Mauk, Barry H. Ukhorskiy, Aleksandr Y. Fox, Nicola J. Barnes, Robin J. Weiss, Michele Sotirelis, Thomas S. Raouafi, NourEddine TI The Van Allen Probes' Contribution to the Space Weather System SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article AB The Van Allen Probes mission, formerly the Radiation Belt Storm Probes mission, was renamed soon after launch to honor the late James Van Allen, who discovered Earth's radiation belts at the beginning of the space age. While most of the science data are telemetered to the ground using a store-and-then-dump schedule, some of the space weather data are broadcast continuously when the Probes are not sending down the science data (approximately 90% of the time). This space weather data set is captured by contributed ground stations around the world (presently Korea Astronomy and Space Science Institute and the Institute of Atmospheric Physics, Czech Republic), automatically sent to the ground facility at the Johns Hopkins University Applied Physics Laboratory, converted to scientific units, and published online in the form of digital data and plots-all within less than 15 minutes from the time that the data are accumulated onboard the Probes. The real-time Van Allen Probes space weather information is publicly accessible via the Van Allen Probes Gateway web interface. C1 [Zanetti, Lawrence J.] APLs Space Explorat Sect, Laurel, MD 20723 USA. [Zanetti, Lawrence J.] NASA, Living Star LWS Program, Washington, DC 20546 USA. [Zanetti, Lawrence J.] NASA Headquarters, Geospace Missions, Washington, DC 20546 USA. [Zanetti, Lawrence J.] NOAA, Silver Spring, MD 20910 USA. [Zanetti, Lawrence J.] NASA, NEAR Magnetometer, Washington, DC 20546 USA. [Kessel, Ramona L.] NASA Headquarters, Heliophys Div, Washington, DC 20546 USA. [Kessel, Ramona L.; Mauk, Barry H.; Ukhorskiy, Aleksandr Y.; Sotirelis, Thomas S.] NASA, Van Allen Probes Mission, Washington, DC 20546 USA. [Kessel, Ramona L.] NASA, Magnetospher Multiscale Mission, Washington, DC 20546 USA. [Kessel, Ramona L.] NASA, TWINS Mission, Washington, DC 20546 USA. [Mauk, Barry H.] APL Space Explorat Sect, Planetary Space Environm, Laurel, MD USA. [Mauk, Barry H.] NASA, Juno Mission Polar Orbit Jupiter & Set Instrument, Washington, DC 20546 USA. [Mauk, Barry H.] NASA, Voyager Mission Outer Planets & Beyond, Washington, DC 20546 USA. [Mauk, Barry H.] NASA, Galileo Mission Jupiter, Washington, DC 20546 USA. [Mauk, Barry H.] NASA, Phase B Port, TIMED Mission, Washington, DC 20546 USA. [Ukhorskiy, Aleksandr Y.] APL Space Explorat Sect, Earths Space Environm & Theoret & Numer Modeling, Laurel, MD USA. [Fox, Nicola J.; Raouafi, NourEddine] APL, Laurel, MD USA. [Fox, Nicola J.] NASA Ctr, Van Allen Probes Mission, Washington, DC USA. [Fox, Nicola J.] NASA Headquarters, Washington, DC USA. [Fox, Nicola J.] NASA, Goddard Space Flight Ctr, USA Natl Res Council, Greenbelt, MD USA. [Fox, Nicola J.] Raytheon, NASA Polar Spacecraft & Int Solar Terr Phys Progr, Waltham, MA USA. [Barnes, Robin J.] APL, Space Sect, Laurel, MD USA. [Barnes, Robin J.] Van Allen Probes Mission, Washington, DC USA. [Weiss, Michele] APL, TIMED GUVI Sci Payload Operat Ctr, VITMO, Laurel, MD USA. [Weiss, Michele] APL, RBSP Sci Gateway, Laurel, MD USA. [Weiss, Michele] Fairchild Def, Germantown, MD USA. [Weiss, Michele] EER Syst, Birmingham, AL USA. [Weiss, Michele] Litton Amecom, College Pk, MD USA. [Sotirelis, Thomas S.] APL Space Explorat Sect, Phys Earths Space Environm, Laurel, MD USA. [Raouafi, NourEddine] Natl Solar Observ, Sunspot, NM 88349 USA. [Raouafi, NourEddine] Max Planck Inst Solar Syst Res, Gottingen, Germany. RP Zanetti, LJ (reprint author), APLs Space Explorat Sect, Laurel, MD 20723 USA.; Zanetti, LJ (reprint author), NASA, Living Star LWS Program, Washington, DC 20546 USA.; Zanetti, LJ (reprint author), NASA Headquarters, Geospace Missions, Washington, DC 20546 USA.; Zanetti, LJ (reprint author), NOAA, Silver Spring, MD 20910 USA.; Zanetti, LJ (reprint author), NASA, NEAR Magnetometer, Washington, DC 20546 USA. EM larry.zanetti@jhuapl.edu RI Fox, Nicola/P-6692-2016; Mauk, Barry/E-8420-2017 OI Fox, Nicola/0000-0003-3411-4228; Mauk, Barry/0000-0001-9789-3797 NR 15 TC 0 Z9 0 U1 0 U2 0 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 EI 1930-0530 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PD JUL PY 2016 VL 33 IS 3 BP 194 EP 201 PG 8 WC Engineering, Multidisciplinary SC Engineering GA DT4PI UT WOS:000381462800005 ER PT J AU Staten, PW Kahn, BH Schreier, MM Heidinger, AK AF Staten, Paul W. Kahn, Brian H. Schreier, Mathias M. Heidinger, Andrew K. TI Subpixel Characterization of HIRS Spectral Radiances Using Cloud Properties from AVHRR SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID INFRARED RADIATION SOUNDER; PATMOS-X; BRIGHTNESS TEMPERATURES; TOP-HEIGHT; ALGORITHM; CLIMATE; CHANNELS; ISCCP; MODIS; CALIBRATION AB This paper describes a cloud type radiance record derived from NOAA polar-orbiting weather satellites using cloud properties retrieved from the Advanced Very High Resolution Radiometer (AVHRR) and spectral brightness temperatures (Tb) observed by the High Resolution Infrared Radiation Sounder (HIRS). The authors seek to produce a seamless, global-scale, long-term record of cloud type and Tb statistics intended to better characterize clouds from seasonal to decadal time scales. Herein, the methodology is described in which the cloud type statistics retrieved from AVHRR are interpolated onto each HIRS footprint using two cloud classification methods. This approach is tested over the northeast tropical and subtropical Pacific Ocean region, which contains a wide variety of cloud types during a significant ENSO variation from 2008 to 2009. It is shown that the Tb histograms sorted by cloud type are realistic for all HIRS channels. The magnitude of Tb biases among spatially coincident satellite intersections over the northeast Pacific is a function of cloud type and wavelength. While the sign of the bias can change, the magnitudes are generally small for NOAA-18 and NOAA-19, and NOAA-19 and MetOp-A intersections. The authors further show that the differences between calculated standard deviations of cloud-typed Tb well exceed intersatellite calibration uncertainties. The authors argue that consideration of higher-order statistical moments determined from spectral infrared observations may serve as a useful long-term measure of small-scale spatial changes, in particular cloud types over the HIRS-AVHRR observing record. C1 [Staten, Paul W.] Indiana Univ, 1001 E 10th St, Bloomington, IN 47405 USA. [Kahn, Brian H.; Schreier, Mathias M.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA USA. [Heidinger, Andrew K.] NOAA, NESDIS, Ctr Satellite Applicat & Res, Madison, WI USA. RP Staten, PW (reprint author), Indiana Univ, 1001 E 10th St, Bloomington, IN 47405 USA. EM pwstaten@indiana.edu RI Heidinger, Andrew/F-5591-2010 OI Heidinger, Andrew/0000-0001-7631-109X FU National Aeronautics and Space Administration; NASA Satellite Calibration Interconsistency Studies program [NNN13D968T] FX Portions of the research described in this paper were carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. P. W. Staten, B. H. Kahn, and M. M. Schreier were supported by the NASA Satellite Calibration Interconsistency Studies program under Grant NNN13D968T directed by Lucia Tsaoussi. The HIRS and AVHRR level 1b data were processed and obtained from the NOAA Comprehensive Large Array-Data Stewardship System (http://www.class.ngdc.noaa.gov). NCEP reanalysis data are provided by the NOAA/OAR/ESRL/PSD, Boulder, Colorado (http://www.esrl.noaa.gov/psd/). The authors thank Hai-Tien Lee and Paul Menzel for their expertise and helpful discussions, as well as three anonymous reviewers for their helpful comments. Government sponsorship is acknowledged. NR 46 TC 1 Z9 1 U1 4 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2016 VL 33 IS 7 BP 1519 EP 1538 DI 10.1175/JTECH-D-15-0187.1 PG 20 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DT3XR UT WOS:000381415000005 ER PT J AU MacGregor, JA Fahnestock, MA Catania, GA Aschwanden, A Clow, GD Colgan, WT Gogineni, SP Morlighem, M Nowicki, SMJ Paden, JD Price, SF Seroussi, H AF MacGregor, Joseph A. Fahnestock, Mark A. Catania, Ginny A. Aschwanden, Andy Clow, Gary D. Colgan, William T. Gogineni, S. Prasad Morlighem, Mathieu Nowicki, Sophie M. J. Paden, John D. Price, Stephen F. Seroussi, Helene TI A synthesis of the basal thermal state of the Greenland Ice Sheet SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE Greenland Ice Sheet; ice sheet thermodynamics; remote sensing; radar sounding; Northeast Greenland Ice Stream ID GEOTHERMAL HEAT-FLUX; BORE-HOLE SURVEY; SEA-LEVEL RISE; NORTHEAST GREENLAND; WEST ANTARCTICA; FAST-FLOW; JAKOBSHAVNS-ISBRAE; CLIMATE SCENARIOS; THWAITES GLACIER; SUBGLACIAL LAKES AB The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics, and response to external forcings. However, this state can only be observed directly at sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the Sea Level Response to Ice Sheet Evolution (SeaRISE) effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity, and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west facing slopes, is frozen. Elsewhere, there is poorer agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area), where additional observations would most improve knowledge of its overall basal thermal state. C1 [MacGregor, Joseph A.; Catania, Ginny A.] Univ Texas Austin, Inst Geophys, 8701 Mopac Blvd, Austin, TX 78712 USA. [MacGregor, Joseph A.; Nowicki, Sophie M. J.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Code 615, Greenbelt, MD 20771 USA. [Fahnestock, Mark A.; Aschwanden, Andy] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Catania, Ginny A.] Univ Texas Austin, Dept Geol Sci, Austin, TX USA. [Clow, Gary D.] US Geol Survey, Box 25046, Denver, CO 80225 USA. [Clow, Gary D.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Colgan, William T.] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON, Canada. [Gogineni, S. Prasad; Paden, John D.] Univ Kansas, Ctr Remote Sensing Ice Sheets, Lawrence, KS 66045 USA. [Morlighem, Mathieu] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Price, Stephen F.] Los Alamos Natl Lab, Fluid Dynam Grp, Los Alamos, NM USA. [Seroussi, Helene] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP MacGregor, JA (reprint author), Univ Texas Austin, Inst Geophys, 8701 Mopac Blvd, Austin, TX 78712 USA.; MacGregor, JA (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Code 615, Greenbelt, MD 20771 USA. EM joseph.a.macgregor@nasa.gov RI Colgan, William/H-1570-2014; Catania, Ginny/B-9787-2008 OI Colgan, William/0000-0001-6334-1660; FU NSF [ARC 1107753, 1108058, ANT 0424589]; NASA [NNX12AB71G, NNX13AM16G, NNX13AK27G, NNX13AD53A]; U.S. Geological Survey Climate and Land Use Change Program; U.S. Department of Energy Office of Science's Biological and Environmental Research Program; NASA Cryospheric Sciences and Modeling Analysis and Prediction Programs, under Caltech's Jet Propulsion Laboratory FX NSF (ARC 1107753 and 1108058 and ANT 0424589) and NASA (NNX12AB71G, NNX13AM16G, NNX13AK27G, and NNX13AD53A) supported this work. We thank the organizations (Program for Arctic Regional Climate Assessment, Center for Remote Sensing of Ice Sheets, Operation IceBridge, and SeaRISE) and innumerable individuals that both supported and performed the development, collection, and processing of the radar data and numerical models used in this study. G.D. Clow was supported by the U.S. Geological Survey Climate and Land Use Change Program. S.F. Price was supported by the U.S. Department of Energy Office of Science's Biological and Environmental Research Program. H. Seroussi was supported by NASA Cryospheric Sciences and Modeling Analysis and Prediction Programs, under a contract with Caltech's Jet Propulsion Laboratory. We thank A.N. Mabrey for analyzing the MOG surface texture, I. Joughin for providing the updated composite surface-velocity field, H. Thomsen for the borehole-temperature data, and L.C. Andrews for the valuable discussions. We thank the Editor, Associate Editor, M. Luthi, and two anonymous reviews for their constructive reviews that substantially improved this manuscript. A mask of the likely basal thermal state of the GrIS (Figure 11) will be archived at the National Snow and Ice Data Center. NR 100 TC 4 Z9 4 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD JUL PY 2016 VL 121 IS 7 BP 1328 EP 1350 DI 10.1002/2015JF003803 PG 23 WC Geosciences, Multidisciplinary SC Geology GA DV0AZ UT WOS:000382581200008 PM 28163988 ER PT J AU Crassidis, JL Markley, FL AF Crassidis, John L. Markley, F. Landis TI Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID SPACECRAFT ATTITUDE; INERTIAL NAVIGATION; SYSTEMS AB Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyroscopes that read angular rates. Rate-integrating gyroscopes measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyroscopes has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate-integrating gyroscopes. To account for correlations introduced by using these gyroscopes, the state vector must be augmented, compared with filters using traditional gyroscopes that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyroscope biases, and gyroscope angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyroscope biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyroscopes, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position. C1 [Crassidis, John L.] SUNY Buffalo, Dept Mech & Aerosp Engn, Space Situat Awareness, Amherst, NY 14260 USA. [Markley, F. Landis] NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. RP Crassidis, JL (reprint author), SUNY Buffalo, Dept Mech & Aerosp Engn, Space Situat Awareness, Amherst, NY 14260 USA. EM johnc@buffalo.edu; landis.markley@nasa.gov NR 22 TC 0 Z9 0 U1 11 U2 11 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD JUL PY 2016 VL 39 IS 7 BP 1513 EP 1526 DI 10.2514/1.G000336 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DU8XW UT WOS:000382500500006 ER PT J AU Brune, AJ Hosder, S Edquist, KT AF Brune, Andrew J. Hosder, Serhat Edquist, Karl T. TI Uncertainty Analysis of Fluid-Structure Interaction of a Deformable Hypersonic Inflatable Aerodynamic Decelerator SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference CY JUL 06-09, 2015 CL Glasgow, SCOTLAND SP AIAA ID POLYNOMIAL CHAOS; SENSITIVITY-ANALYSIS AB The objective of this paper is to present the results of a detailed uncertainty analysis for high-fidelity fluid-structure interaction modeling of a deformable hypersonic inflatable aerodynamic decelerator at peak heating conditions for lifting Mars entry with a turbulent flow assumption. Uncertainty results are presented for the structural deformation response and surface conditions (pressure, shear stress, and convective heat transfer) of the inflatable decelerator with an efficient polynomial chaos expansion approach. The uncertainty results are compared with results obtained in a previous study for ballistic Mars entry. Approximately half of the flowfield and structural modeling uncertainties show at least 90% combined contribution to the inflatable decelerator deflection and resulting surface condition uncertainties. For lifting Mars entry, global nonlinear sensitivity analysis shows that the tensile stiffness of the inflatable structure's axial cords and radial straps and the torus torsional and tensile stiffnesses are the main contributors to the inflatable decelerator deflection uncertainty. As a result of these structural uncertainty contributions, the shape deformation contributes up to 10% of the uncertainty in the surface conditions. However, the freestream density dominates the uncertainty in the surface conditions experienced by the inflatable decelerator. In addition, the CO2-CO2 binary collision interaction is a significant contributor to aerodynamic heating and shear stress uncertainty. C1 [Brune, Andrew J.] Missouri Univ Sci & Technol, Dept Aerosp & Mech Engn, Rolla, MO 65409 USA. [Hosder, Serhat] Missouri Univ Sci & Technol, Dept Aerosp & Mech Engn, Aerosp Engn, Rolla, MO 65409 USA. [Edquist, Karl T.] NASA, Langley Res Ctr, Atmospher Flight & Entry Syst Branch, Engn Directorate, Hampton, VA 23681 USA. [Brune, Andrew J.; Hosder, Serhat; Edquist, Karl T.] AIAA, Reston, VA 20191 USA. RP Brune, AJ (reprint author), Missouri Univ Sci & Technol, Dept Aerosp & Mech Engn, Rolla, MO 65409 USA.; Brune, AJ (reprint author), AIAA, Reston, VA 20191 USA. NR 39 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL PY 2016 VL 53 IS 4 BP 654 EP 668 DI 10.2514/1.A33532 PG 15 WC Engineering, Aerospace SC Engineering GA DV1HA UT WOS:000382670500007 ER PT J AU Mason, ML Berry, SA AF Mason, Michelle L. Berry, Scott A. TI Global Aeroheating Measurements of Shock-Shock Interactions on Swept Cylinder SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 45th AIAA Fluid Dynamics Conference / 45th AIAA Thermophysics Conference CY JUN 22-26, 2015-2016 CL Dallas, TX SP AIAA AB The effects of the fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. The cylindrical leading-edge models, with radii varied from 0.25 to 0.75in., represent wings or struts on hypersonic vehicles. A planar oblique shock at 16.7deg to the flow intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. Three fin sweep angles were tested: 0, -15, and -25deg (swept forward). Global temperature data were obtained from the surface of the fused silica fins using phosphor thermography. Metal oil-flow models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite and one- and two-dimensional finite-volume methods. These results were compared to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method. C1 [Mason, Michelle L.; Berry, Scott A.] NASA, Langley Res Ctr, Aerothermodynam Branch, MS 408A, Hampton, VA 23681 USA. [Mason, Michelle L.; Berry, Scott A.] AIAA, Reston, VA 20191 USA. RP Mason, ML (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, MS 408A, Hampton, VA 23681 USA.; Mason, ML (reprint author), AIAA, Reston, VA 20191 USA. NR 24 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL PY 2016 VL 53 IS 4 BP 678 EP 692 DI 10.2514/1.A33434 PG 15 WC Engineering, Aerospace SC Engineering GA DV1HA UT WOS:000382670500009 ER PT J AU Garrett, HB Kim, W Evans, RW AF Garrett, Henry B. Kim, Wousik Evans, Robin W. TI Updating the Jovian Plasma and Radiation Environments: The Latest Results for 2015 SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Space Conference and Exposition CY AUG 31-SEP 02, 2015 CL Pasadena, CA SP AIAA ID HOT PLASMA; JUPITER; SPACECRAFT; MAGNETOSPHERE; VOYAGER; TORUS; CODE AB Since publication in 1983 by Divine and Garrett ("Charged Particle Distributions in Jupiter's Magnetosphere," Journal of Geophysical Research, Vol. 88, No. 9, Sept. 1983, pp. 6889-6903.), the Jet Propulsion Laboratory's plasma and radiation models have been the design standard for NASA's missions to Jupiter. These models consist of representations of the cold plasma and electrons, the warm and auroral electrons and protons, and the radiation environment (high-energy electrons, protons, and heavy ions). The current status of these models, which have been undergoing extensive revision, is reviewed, and examples of their uses in modeling the effects of the environment on Jovian missions are provided. Of particular importance are recent changes in the plasma-environment models for modeling the charging effects on the proposed Europa mission, and the extension of the high-energy proton model from similar to 12 to similar to 50RJ to study the radiation effects on the solar arrays for that mission concept. C1 [Garrett, Henry B.] CALTECH, Jet Prop Lab, Reliabil Engn & Mission Environm Assurance Off, MS 156-206,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kim, Wousik] CALTECH, Jet Prop Lab, Reliabil Engn & Mission Environm Assurance Off, MS 122-104,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evans, Robin W.] MORI Associates, Montrose, CA 91214 USA. RP Garrett, HB (reprint author), CALTECH, Jet Prop Lab, Reliabil Engn & Mission Environm Assurance Off, MS 156-206,4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 30 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL PY 2016 VL 53 IS 4 BP 693 EP 707 DI 10.2514/1.A33510 PG 15 WC Engineering, Aerospace SC Engineering GA DV1HA UT WOS:000382670500010 ER PT J AU Kang, YH Ozdogan, M Zipper, SC Roman, MO Walker, J Hong, SY Marshall, M Magliulo, V Moreno, J Alonso, L Miyata, A Kimball, B Loheide, SP AF Kang, Yanghui Ozdogan, Mutlu Zipper, Samuel C. Roman, Miguel O. Walker, Jeff Hong, Suk Young Marshall, Michael Magliulo, Vincenzo Moreno, Jose Alonso, Luis Miyata, Akira Kimball, Bruce Loheide, Steven P., II TI How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment SO REMOTE SENSING LA English DT Article DE LAI; Vegetation Index; agriculture; Landsat; agroecosystem modeling ID PHOTOSYNTHETICALLY ACTIVE RADIATION; ESSENTIAL CLIMATE VARIABLES; ABSOLUTE ERRORS REGRESSION; CANOPY CHLOROPHYLL CONTENT; NET PRIMARY PRODUCTION; GREEN LAI; TRANSFER MODELS; TIME-SERIES; EOS-MODIS; HEMISPHERICAL PHOTOGRAPHY AB Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CIGreen). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R-2 > 0.5), and provide LAI estimates with RMSE below 1.2 m(2)/m(2). Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research. C1 [Kang, Yanghui; Ozdogan, Mutlu] Univ Wisconsin, Nelson Inst Ctr Sustainabil & Global Environm, 1710 Univ Ave, Madison, WI 53726 USA. [Kang, Yanghui] Univ Wisconsin, Dept Geog, Madison, WI 53706 USA. [Zipper, Samuel C.; Loheide, Steven P., II] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Lab, Code 619 Bld 32 S-036F, Greenbelt, MD 20771 USA. [Walker, Jeff] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia. [Hong, Suk Young] RDA, Natl Inst Agr Sci NAS, Agr Environm Dept, Wonju 55365, South Korea. [Marshall, Michael] World Agroforestry Ctr, Climate Res Unit, United Nations Ave,POB 30677, Nairobi 00100, Kenya. [Magliulo, Vincenzo] CNR, Inst Mediterranean Agr & Forest Syst, CNR ISAFOM, Via Patacca 85, I-80040 Naples, Italy. [Magliulo, Vincenzo] Natl Res Council IBIMET CNR, Inst Biometeorol, I-50145 Florence 8, Italy. [Moreno, Jose; Alonso, Luis] Univ Valencia, Dept Earth Phys & Thermodynam, Lab Earth Observat, E-46100 Valencia, Spain. [Miyata, Akira] NARO, Inst Agroenvironm Sci, Tsukuba, Ibaraki 3058604, Japan. [Kimball, Bruce] ARS, US Arid Land Agr Res Ctr, USDA, Maricopa, AZ 85138 USA. RP Ozdogan, M (reprint author), Univ Wisconsin, Nelson Inst Ctr Sustainabil & Global Environm, 1710 Univ Ave, Madison, WI 53726 USA. EM ykang38@wisc.edu; ozdogan@wisc.edu; szipper@wisc.edu; miguel.o.roman@nasa.gov; jeff.walker@monash.edu; syhong67@korea.kr; m.marshall@cgiar.org; enzo.magliulo@cnr.it; Jose.Moreno@uv.es; luis.alonso@uv.es; amiyat@affrc.go.jp; Bruce.Kimball@ars.usda.gov; loheide@wisc.edu OI Kang, Yanghui/0000-0001-8563-1503; Zipper, Samuel/0000-0002-8735-5757 FU NASA Earth and Space Science Fellowship; National Science Foundation Water Sustainability & Climate Program [DEB-1038759]; North Temperate Lakes Long-Term Ecological Research Program [DEB-0822700]; University of Wisconsin-Madison Anna Grant Birge Award FX Yanghui Kang was supported by NASA Earth and Space Science Fellowship. Samuel C. Zipper, Steven P. Loheide and Wisconsin data collection were supported by the National Science Foundation Water Sustainability & Climate Program (DEB-1038759), the North Temperate Lakes Long-Term Ecological Research Program (DEB-0822700), and the University of Wisconsin-Madison Anna Grant Birge Award. Jeff Oimoen, Eric Booth, Melissa Motew, and the Wisconsin Department of Natural Resources assisted in the collection of aerial imagery. We would also like to thank the Wisconsin land owner who provided access to his fields for field-scale validation data collection. NR 113 TC 0 Z9 0 U1 21 U2 21 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUL PY 2016 VL 8 IS 7 AR 597 DI 10.3390/rs8070597 PG 29 WC Remote Sensing SC Remote Sensing GA DU5AR UT WOS:000382224800067 ER PT J AU Montesano, PM Neigh, CSR Sexton, J Feng, M Channan, S Ranson, KJ Townshend, JR AF Montesano, Paul Mannix Neigh, Christopher S. R. Sexton, Joseph Feng, Min Channan, Saurabh Ranson, Kenneth J. Townshend, John R. TI Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone SO REMOTE SENSING LA English DT Article DE Landsat; tree; canopy; cover; forest; structure; taiga; tundra; ecotone; uncertainty ID ARCTIC FOREST-TUNDRA; VEGETATION GRADIENTS; CLIMATE-CHANGE; BOREAL FOREST; LIDAR; SHRUB; ICESAT/GLAS; INTERFACE; DYNAMICS; AIRBORNE AB Monitoring current forest characteristics in the taiga-tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010) by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE. C1 [Montesano, Paul Mannix] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Montesano, Paul Mannix; Neigh, Christopher S. R.; Ranson, Kenneth J.] NASA Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. [Sexton, Joseph; Feng, Min; Channan, Saurabh; Townshend, John R.] Univ Maryland, Dept Geog Sci, Global Land Cover Facil, College Pk, MD 20742 USA. RP Montesano, PM (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA.; Montesano, PM (reprint author), NASA Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. EM paul.m.montesano@nasa.gov; christopher.s.neigh@nasa.gov; jsexton@umd.edu; fengm@umd.edu; schannan@umd.edu; Kenneth.j.ranson@nasa.gov; jtownshend@bsos.umd.edu OI Neigh, Christopher/0000-0002-5322-6340 FU NASA Terrestrial Ecology Program [NNH13ZDA001N-CARBON] FX Funding for this work was provided by the NASA Terrestrial Ecology Program (NNH13ZDA001N-CARBON). NR 53 TC 3 Z9 3 U1 16 U2 16 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUL PY 2016 VL 8 IS 7 AR 551 DI 10.3390/rs8070551 PG 16 WC Remote Sensing SC Remote Sensing GA DU5AR UT WOS:000382224800021 ER PT J AU Glocer, A Rastatter, L Kuznetsova, M Pulkkinen, A Singer, HJ Balch, C Weimer, D Welling, D Wiltberger, M Raeder, J Weigel, RS McCollough, J Wing, S AF Glocer, A. Rastatter, L. Kuznetsova, M. Pulkkinen, A. Singer, H. J. Balch, C. Weimer, D. Welling, D. Wiltberger, M. Raeder, J. Weigel, R. S. McCollough, J. Wing, S. TI Community-wide validation of geospace model local K-index predictions to support model transition to operations SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR-WIND; SYSTEMS AB We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPC's effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC. C1 [Glocer, A.; Rastatter, L.; Kuznetsova, M.; Pulkkinen, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Singer, H. J.; Balch, C.] NOAA, Space Weather Predict Ctr, Boulder, CO USA. [Weimer, D.] Virginia Polytech Inst & State Univ, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA. [Welling, D.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Wiltberger, M.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Raeder, J.] Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA. [Raeder, J.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Weigel, R. S.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. [McCollough, J.] Air Force Res Lab, Kirtland AFB, NM USA. [Wing, S.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Glocer, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM alex.glocer-1@nasa.gov RI Wiltberger, Michael/B-8781-2008; McCollough, James/A-2489-2016 OI Wiltberger, Michael/0000-0002-4844-3148; McCollough, James/0000-0003-3615-8857 FU National Science Foundation FX The data from the ground-based magnetic observatories was critical to this study. As such, we thank the institutions that support those observatories as well as INTERMAGNET for promoting high standards of practice (www.intermagnet.org). The National Center for Atmospheric Research is supported by the National Science Foundation. All model output used in the analysis is available through the CCMC as described in the manuscript. NR 19 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUL PY 2016 VL 14 IS 7 BP 469 EP 480 DI 10.1002/2016SW001387 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DV5SS UT WOS:000382990100002 ER PT J AU Moore, AJ Schubert, M Dolph, C Woodell, G AF Moore, Andrew J. Schubert, Matthew Dolph, Chester Woodell, Glenn TI Machine Vision Identification of Airport Runways with Visible and Infrared Videos SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS LA English DT Article ID FEATURES; SYSTEM AB A widely used machine vision pipeline based on the Speeded-Up Robust Features feature detector was applied to the problem of identifying a runway from a universe of known runways, which was constructed using video records of 19 straight-in glidepath approaches to nine runways. The recordings studied included visible, short-wave infrared, and long-wave infrared videos in clear conditions, rain, and fog. Both daytime and nighttime runway approaches were used. High detection specificity (identification of the runway approached and rejection of the other runways in the universe) was observed in all conditions (greater than 90% Bayesian posterior probability). In the visible band, repeatability (identification of a given runway across multiple videos of it) was observed only if illumination (day versus night) was the same and approach visibility was good. Some repeatability was found across visible and shortwave sensor bands. Camera-based geolocation during aircraft landing was compared to the standard Charted Visual Approach Procedure. C1 [Moore, Andrew J.; Woodell, Glenn] NASA, Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden Street, Hampton, VA 23681 USA. [Schubert, Matthew] Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. [Dolph, Chester] Old Dominion Univ, Vis Lab, 2107 Engn Syst Bldg, Norfolk, VA 23529 USA. RP Moore, AJ (reprint author), NASA, Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden Street, Hampton, VA 23681 USA. FU NASA Atmospheric and Environmental Safety Technologies; NASA Safe Autonomous Systems Operations programs FX This work was supported in part by the NASA Atmospheric and Environmental Safety Technologies and the NASA Safe Autonomous Systems Operations programs. We are grateful to Robert Neece, Taumi Daniels, and Dan Jobson for comments on experimental design, and to Tim Dugan for discussions on experimental design and operational feasibility. An invaluable flight video was provided by Rockwell Collins, and we are grateful to Carlo Tiana, Tim Etherington, and Weston Lahr for helpful discussions. NR 23 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 EI 2327-3097 J9 J AEROSP INFORM SYST JI J. Aerosp. Inf. Syst. PD JUL PY 2016 VL 13 IS 7 BP 266 EP 277 DI 10.2514/1.I010405 PG 12 WC Engineering, Aerospace SC Engineering GA DU9DT UT WOS:000382517200002 ER PT J AU Baker, JD Harting, AL Barbieri, MM Johanos, TC Robinson, SJ Littnan, CL AF Baker, Jason D. Harting, Albert L. Barbieri, Michelle M. Johanos, Thea C. Robinson, Stacie J. Littnan, Charles L. TI ESTIMATING CONTACT RATES OF HAWAIIAN MONK SEALS (NEOMONACHUS SCHAUINSLANDI) USING SOCIAL NETWORK ANALYSIS SO JOURNAL OF WILDLIFE DISEASES LA English DT Article DE Association data; contact rates; Hawaiian monk seal; social network analysis ID MONACHUS-SCHAUINSLANDI; DISTEMPER VIRUS; PATHOGEN TRANSMISSION; DISEASE DYNAMICS; WILDLIFE; BEHAVIOR AB Understanding disease transmission dynamics, which are in part mediated by rates and patterns of social contact, is fundamental to predicting the likelihood, rate of spread, impacts, and mitigation of disease outbreaks in wildlife populations. Contact rates, which are important parameters required for epidemiologic models, are difficult to estimate. The endangered Hawaiian monk seal (Neomonachus schauinslandi) may be particularly vulnerable to morbillivirus outbreaks, due to its low abundance, lack of genetic diversity, and history of isolation from mammalian diseases. Morbillivirus epizootics have had devastating effects on other seal populations. We constructed social networks based on visual observations of individually identifiable monk seals associating onshore to estimate contact rates, assuming random mixing, and also to investigate contact patterns of different age and sex classes. Contact rates estimated from two island populations in 4 yr were remarkably similar, indicating any two individuals have about a one in 1,000 chance of making contact on any given day. Further, contact patterns within and among age and sex classes were statistically different from random. The methods we used could be broadly applied to empirically derive contact rates using association data. These rates are critical for epidemiologic modelling to simulate wildlife disease outbreaks and to inform science-based prevention and mitigation programs. C1 [Baker, Jason D.; Barbieri, Michelle M.; Johanos, Thea C.; Robinson, Stacie J.; Littnan, Charles L.] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd 176, Honolulu, HI 96818 USA. [Harting, Albert L.] Harting Biol Consulting, 8898 Sandy Creek Lane, Bozeman, MT 59715 USA. RP Baker, JD (reprint author), NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd 176, Honolulu, HI 96818 USA. EM jason.baker@noaa.gov NR 41 TC 0 Z9 0 U1 17 U2 17 PU WILDLIFE DISEASE ASSOC, INC PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0090-3558 EI 1943-3700 J9 J WILDLIFE DIS JI J. Wildl. Dis. PD JUL PY 2016 VL 52 IS 3 BP 533 EP 543 DI 10.7589/2015-10-286 PG 11 WC Veterinary Sciences SC Veterinary Sciences GA DT5NA UT WOS:000381528700010 PM 27195686 ER PT J AU Kastner, JH Principe, DA Punzi, K Stelzer, B Gorti, U Pascucci, I Argiroffi, C AF Kastner, Joel H. Principe, David A. Punzi, Kristina Stelzer, Beate Gorti, Uma Pascucci, Ilaria Argiroffi, Costanza TI M STARS IN THE TW HYA ASSOCIATION: STELLAR X-RAYS AND DISK DISSIPATION SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; planets and satellites: formation; stars: formation; stars: pre-main sequence ID LOW-MASS STARS; YOUNG BROWN DWARFS; TAURUS MOLECULAR CLOUD; MAIN-SEQUENCE STARS; HYDRAE ASSOCIATION; PROTOPLANETARY DISKS; CIRCUMSTELLAR DISKS; CHANDRA OBSERVATION; KINEMATIC ANALYSIS; MAGNETIC ACTIVITY AB To investigate the potential connection between the intense X-ray emission from young low-mass stars and the lifetimes of their circumstellar planet-forming disks, we have compiled the X-ray luminosities (L-X) of M stars in the similar to 8 Myr old TW Hya Association (TWA) for which X-ray data are presently available. Our investigation includes analysis of archival Chandra data for the TWA binary systems TWA 8, 9, and 13. Although our study suffers from poor statistics for stars later than M3, we find a trend of decreasing L-X/L-bol with decreasing T-eff for TWA M stars, wherein the earliest-type (M0-M2) stars cluster near log(L-X/L-bol) approximate to -3.0 and then log(L-X/L-bol) decreases, and its distribution broadens, for types M4 and later. The fraction of TWA stars that display evidence for residual primordial disk material also sharply increases in this same (mid-M) spectral type regime. This apparent anticorrelation between the relative X-ray luminosities of low-mass TWA stars and the longevities of their circumstellar disks suggests that primordial disks orbiting early-type M stars in the TWA have dispersed rapidly as a consequence of their persistent large X-ray fluxes. Conversely, the disks orbiting the very lowest-mass pre-MS stars and pre-MS brown dwarfs in the Association may have survived because their X-ray luminosities and, hence, disk photoevaporation rates are very low to begin with, and then further decline relatively early in their pre-MS evolution. C1 [Kastner, Joel H.; Punzi, Kristina] Rochester Inst Technol, Sch Phys & Astron, Chester F Carlson Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA. [Kastner, Joel H.; Punzi, Kristina] Rochester Inst Technol, Lab Multiwavelength Astrophys, 54 Lomb Mem Dr, Rochester, NY 14623 USA. [Principe, David A.] Univ Diego Port, Fac Ingn, Nucleo Astron, Av Ejercito 441, Santiago 8320000, Chile. [Principe, David A.] Univ Diego Portales, Millennium Nucleus Protoplanetary Disks, Av Ejercito 441, Santiago 8320000, Chile. [Stelzer, Beate; Argiroffi, Costanza] INAF, Osservatorio Astron Palermo, Piazza Parlamento 1, I-90134 Palermo, Italy. [Gorti, Uma] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Gorti, Uma] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pascucci, Ilaria] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Argiroffi, Costanza] Univ Palermo, Dip Fis & Chim, Piazza Parlamento 1, I-90134 Palermo, Italy. RP Kastner, JH (reprint author), Rochester Inst Technol, Sch Phys & Astron, Chester F Carlson Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA.; Kastner, JH (reprint author), Rochester Inst Technol, Lab Multiwavelength Astrophys, 54 Lomb Mem Dr, Rochester, NY 14623 USA. EM jhk@cis.rit.edu OI Punzi, Kristina/0000-0001-8976-2383 FU NASA Astrophysics Data Analysis Program [NNX12AH37G]; NASA Exoplanets program [NNX16AB43G]; National Science Foundation [AST-1108950]; CONICYT-FONDECYT [3150550]; Millennium Science Initiative (Chilean Ministry of Economy) [RC 130007] FX This research was supported by NASA Astrophysics Data Analysis Program grant NNX12AH37G, NASA Exoplanets program grant NNX16AB43G, and National Science Foundation grant AST-1108950 to RIT. D.P. acknowledges a CONICYT-FONDECYT award (grant 3150550) and support from the Millennium Science Initiative (Chilean Ministry of Economy; grant Nucleus RC 130007). The authors thank Hao Shi for preliminary analysis that contributed to this study, and the referee, Manuel Gudel, for helpful comments. NR 72 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUL PY 2016 VL 152 IS 1 AR 3 DI 10.3847/0004-6256/152/1/3 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS7IF UT WOS:000380956000003 ER PT J AU Kenyon, SJ Garcia, MR AF Kenyon, Scott J. Garcia, Michael R. TI EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: spectroscopic; binaries: symbiotic; stars: individual (EG And); stars: winds, outflows ID SYMBIOTIC BINARY STARS; MASS-RADIUS RELATION; SPECTROSCOPIC BINARIES; INFRARED-SPECTROSCOPY; COOL COMPONENTS; RECENT PHOTOMETRY; COLLIDING-WINDS; CIRCULAR ORBITS; H-ALPHA; ACCRETION AB We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 +/- 1.6. days and semi-amplitude K = 7.34 +/- 0.07 km s(-1). Combined with previous data, these observations rule out an elliptical orbit at the 10 sigma level. Equivalent widths of H I Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H II region is consistent with a model where a hot secondary star with effective temperature T-h approximate to 75,000 K ionizes the wind from the red giant. C1 [Kenyon, Scott J.] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. [Garcia, Michael R.] NASA Headquarters, Mail Suite 3Y28,300 E St SW, Washington, DC 20546 USA. RP Kenyon, SJ (reprint author), Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. EM skenyon@cfa.harvard.edu; michael.r.garcia@nasa.gov OI Kenyon, Scott/0000-0003-0214-609X NR 87 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUL PY 2016 VL 152 IS 1 AR 1 DI 10.3847/0004-6256/152/1/1 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS7IF UT WOS:000380956000001 ER PT J AU Giri, C McKay, CP Goesmann, F Schafer, N Li, X Steininger, H Brinckerhoff, WB Gautier, T Reitner, J Meierhenrich, UJ AF Giri, Chaitanya McKay, Christopher P. Goesmann, Fred Schaefer, Nadine Li, Xiang Steininger, Harald Brinckerhoff, William B. Gautier, Thomas Reitner, Joachim Meierhenrich, Uwe J. TI Carbonization in Titan Tholins: implication for low albedo on surfaces of Centaurs and trans-Neptunian objects SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE albedo; Centaur; graphite; organics; PAH; soot; Titan; tholins; trans-Neptunian objects ID EARLY SOLAR-SYSTEM; POLYCYCLIC AROMATIC-HYDROCARBONS; DENSE INTERSTELLAR CLOUDS; ORGANIC-MATTER; MASS-SPECTROMETRY; CARBON CLUSTERS; RAMAN-SPECTRA; AMINO-ACIDS; GAS-PHASE; ORIGIN AB Astronomical observations of Centaurs and trans-Neptunian objects (TNOs) yield two characteristic features - near-infrared (NIR) reflectance and low geometric albedo. The first feature apparently originates due to complex organic material on their surfaces, but the origin of the material contributing to low albedo is not well understood. Titan tholins synthesized to simulate aerosols in the atmosphere of Saturn's moon Titan have also been used for simulating the NIR reflectances of several Centaurs and TNOs. Here, we report novel detections of large polycyclic aromatic hydrocarbons, nanoscopic soot aggregates and cauliflower-like graphite within Titan tholins. We put forth a proof of concept stating the surfaces of Centaurs and TNOs may perhaps comprise of highly carbonized' complex organic material, analogous to the tholins we investigated. Such material would apparently be capable of contributing to the NIR reflectances and to the low geometric albedos simultaneously. C1 [Giri, Chaitanya; Goesmann, Fred; Steininger, Harald; Gautier, Thomas] Max Planck Inst Solar Syst Res, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [Giri, Chaitanya; Meierhenrich, Uwe J.] Univ Nice Sophia Antipolis, CNRS UMR 7272, Inst Chim Nice, 28 Ave Valrose, F-06108 Nice 2, France. [McKay, Christopher P.] NASA, Space Sci Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schaefer, Nadine; Reitner, Joachim] Univ Gottingen, Dept Geobiol, Geosci Ctr, Goldschmidtstr 3, D-37077 Gottingen, Germany. [Li, Xiang] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Brinckerhoff, William B.; Gautier, Thomas] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reitner, Joachim] Gottingen Acad Sci & Humanities, Theaterstr 7, D-37073 Gottingen, Germany. RP Giri, C (reprint author), Max Planck Inst Solar Syst Res, Justus von Liebig Weg 3, D-37077 Gottingen, Germany.; Giri, C (reprint author), Univ Nice Sophia Antipolis, CNRS UMR 7272, Inst Chim Nice, 28 Ave Valrose, F-06108 Nice 2, France. EM giri@mps.mpg.de RI Li, Xiang/F-4539-2012; OI Meierhenrich, Uwe/0000-0001-6422-3930 FU International Max Planck Research School for the Doctoral and Postdoctoral Fellowships - Max Planck Institute for Solar System Research, Germany FX This paper is dedicated to the late Dr Bishun Khare, who passed away on August 20, 2013. Kharemade noteworthy contribution to the global effort to understand tholins and encouraged initiating this study as well. We thank Dr Hiroshi Imanaka, David Beeler and Dr Seema Jagota for discussion of tholins plasma-discharge experimental setup. We thank Dr Martin Hilchenbach for the discussions on preliminary Raman analyses of tholins. C. G. acknowledges the International Max Planck Research School for the Doctoral and Postdoctoral Fellowships awarded by the Max Planck Institute for Solar System Research, Germany. T.G. was supported by an appointment to the NASA Postdoctoral Programme at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The authors would like to thank the reviewers, Dr Rainer Oswald and Dr Tim Leefmann for their valuable remarks and suggestions to improve this paper. NR 64 TC 0 Z9 0 U1 5 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 EI 1475-3006 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2016 VL 15 IS 3 BP 231 EP 238 DI 10.1017/S1473550415000439 PG 8 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DS8KY UT WOS:000381033400007 ER PT J AU Goetz, W Brinckerhoff, WB Arevalo, R Freissinet, C Getty, S Glavin, DP Siljestrom, S Buch, A Stalport, F Grubisic, A Li, X Pinnick, V Danell, R van Amerom, FHW Goesmann, F Steininger, H Grand, N Raulin, F Szopa, C Meierhenrich, U Brucato, JR AF Goetz, W. Brinckerhoff, W. B. Arevalo, R., Jr. Freissinet, C. Getty, S. Glavin, D. P. Siljestrom, S. Buch, A. Stalport, F. Grubisic, A. Li, X. Pinnick, V. Danell, R. van Amerom, F. H. W. Goesmann, F. Steininger, H. Grand, N. Raulin, F. Szopa, C. Meierhenrich, U. Brucato, J. R. CA MOMA Sci Team TI MOMA: the challenge to search for organics and biosignatures on Mars SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE MOMA; Mars; ExoMars rover; organic; biosignature; life; perchlorate ID GALE CRATER; MARTIAN SOIL; RADIATION CONDITIONS; INSTRUMENT SUITE; PERCHLORATE; MOLECULES; SURFACE; PRESERVATION; ANALOG; ROVER AB This paper describes strategies to search for, detect, and identify organic material on the surface and subsurface of Mars. The strategies described include those applied by landed missions in the past and those that will be applied in the future. The value and role of ESA's ExoMars rover and of her key science instrument Mars Organic Molecule Analyzer (MOMA) are critically assessed. C1 [Goetz, W.; Goesmann, F.; Steininger, H.] MPS, Gottingen, Germany. [Brinckerhoff, W. B.; Arevalo, R., Jr.; Freissinet, C.; Getty, S.; Glavin, D. P.; Grubisic, A.; Li, X.; Pinnick, V.] NASA, GSFC, Greenbelt, MD USA. [Siljestrom, S.] SP Tech Res Inst Sweden, Boras, Sweden. [Buch, A.] Ecole Cent Paris, LPGM, Chatenay Malabry, France. [Stalport, F.; Grand, N.; Raulin, F.] Univ Paris Est, LISA, Creteil, France. [Stalport, F.; Grand, N.; Raulin, F.] Univ Paris Diderot, CNRS, Paris, France. [Danell, R.] Danell Consulting, Winterville, NC USA. [van Amerom, F. H. W.] Minimass Consulting, Hyattsville, MD USA. [Szopa, C.] LATMOS, Guyancourt, France. [Meierhenrich, U.] Univ Nice, F-06108 Nice 2, France. [Brucato, J. R.] Astrophys Observ Arcetri, INAF, Florence, Italy. [MOMA Sci Team] Univ Bremen, D-28359 Bremen, Germany. RP Goetz, W (reprint author), MPS, Gottingen, Germany. EM goetz@mps.mpg.de RI Glavin, Daniel/D-6194-2012; Li, Xiang/F-4539-2012; OI Glavin, Daniel/0000-0001-7779-7765; Brucato, John Robert/0000-0002-4738-5521 FU DLR [50QX1401]; Swedish National Space Board [121/11, 198/15]; Swedish Research Council [2015-04129] FX This work was supported by DLR grant No. 50QX1401. Support for the mass spectrometer subsystem of MOMA under development at Goddard is provided by NASA's Mars Exploration Program (David Lavery, Program Executive). J. R. Brucato acknowledges ASI/INAF Agreement n. 20015-002-R.0. S. Siljestrom acknowledges support from the Swedish National Space Board (Contract No. 121/11 and 198/15) and the Swedish Research Council (Contract No. 2015-04129). Discussions on the MOMA project at Gottingen Academy of Sciences and Humanities provided useful input to the manuscript. A. A. Pavlov, GSFC, Greenbelt, provided advice on degradation of organic compounds on the surface of Mars. N. Mangold, Univ. of Nantes, contributed to Fig. 1. Some excellent comments by two anonymous reviewers are gratefully acknowledged. NR 60 TC 0 Z9 0 U1 35 U2 39 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 EI 1475-3006 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2016 VL 15 IS 3 BP 239 EP 250 DI 10.1017/S1473550416000227 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DS8KY UT WOS:000381033400008 ER PT J AU Scovronick, N Franca, D Alonso, M Almeida, C Longo, K Freitas, S Rudorff, B Wilkinson, P AF Scovronick, Noah Franca, Daniela Alonso, Marcelo Almeida, Claudia Longo, Karla Freitas, Saulo Rudorff, Bernardo Wilkinson, Paul TI Air Quality and Health Impacts of Future Ethanol Production and Use in Sao Paulo State, Brazil SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE biofuel; ethanol; air quality; emissions; pollution; health; cardiovascular; transport ID PARTICULATE MATTER; HOSPITAL ADMISSIONS; POLLUTION EXPOSURE; CATT-BRAMS; MORTALITY; EMISSIONS; GASOLINE; SUGARCANE; OZONE; MODEL AB It is often argued that liquid biofuels are cleaner than fossil fuels, and therefore better for human health, however, the evidence on this issue is still unclear. Brazil's high uptake of ethanol and role as a major producer makes it the most appropriate case study to assess the merits of different biofuel policies. Accordingly, we modeled the impact on air quality and health of two future fuel scenarios in Sao Paulo State: a business-as-usual scenario where ethanol production and use proceeds according to government predictions and a counterfactual scenario where ethanol is frozen at 2010 levels and future transport fuel demand is met with gasoline. The population-weighted exposure to fine particulate matter (PM2.5) and ozone was 3.0 mu g/m(3) and 0.3 ppb lower, respectively, in 2020 in the scenario emphasizing gasoline compared with the business-as-usual (ethanol) scenario. The lower exposure to both pollutants in the gasoline scenario would result in the population living 1100 additional life-years in the first year, and if sustained, would increase to 40,000 life-years in year 20 and continue to rise. Without additional measures to limit emissions, increasing the use of ethanol in Brazil could lead to higher air pollution-related population health burdens when compared to policy that prioritizes gasoline. C1 [Scovronick, Noah] Princeton Univ, Woodrow Wilson Sch, Princeton, NJ 08544 USA. [Scovronick, Noah] Princeton Univ, Climate Futures Initiat, Princeton, NJ 08544 USA. [Scovronick, Noah; Wilkinson, Paul] London Sch Hyg & Trop Med, Dept Social & Environm Hlth Res, London WC1E 7HT, England. [Franca, Daniela] Univ Fed Rio de Janeiro, Inst Geociencias, BR-21941916 Rio De Janeiro, RJ, Brazil. [Alonso, Marcelo] Univ Fed Pelotas, Fac Meteorol, BR-35903087 Capao De Leao, RS, Brazil. [Almeida, Claudia; Longo, Karla; Freitas, Saulo] Natl Inst Space Res, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Rudorff, Bernardo] Agrosatelite Geotecnol Aplicada Ltda, BR-88032005 Florianopolis, SC, Brazil. [Longo, Karla; Freitas, Saulo] NASA, Goddard Space Flight Ctr, Univ Space Res Assoc, GESTAR, Greenbelt, MD 20771 USA. [Longo, Karla; Freitas, Saulo] NASA, Goddard Space Flight Ctr, GMAO, Greenbelt, MD 20771 USA. RP Scovronick, N (reprint author), Princeton Univ, Woodrow Wilson Sch, Princeton, NJ 08544 USA.; Scovronick, N (reprint author), Princeton Univ, Climate Futures Initiat, Princeton, NJ 08544 USA.; Scovronick, N (reprint author), London Sch Hyg & Trop Med, Dept Social & Environm Hlth Res, London WC1E 7HT, England. EM Noah.Scovronick@princeton.edu; daniela.franca@igeo.ufrj.br; marcelo.alonso@ufpel.edu.br; almeida@dsr.inpe.br; karla.longo@cptec.inpe.br; saulo.freitas@cptec.inpe.br; bernardo@agrosatelite.com.br; Paul.Wilkinson@lshtm.ac.uk RI Freitas, Saulo/A-2279-2012 OI Freitas, Saulo/0000-0002-9879-646X FU Sao Paulo Research Foundation (FAPESP) [2008/56252-0, 2013/18884-2]; Coordination for the Improvement of Higher Education Personnel; Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (CAPES/FAPERJ) [E-26/201.221/2015]; Colt Foundation (UK) FX We thank the Sao Paulo Research Foundation (FAPESP-projects 2008/56252-0 and 2013/18884-2), the Coordination for the Improvement of Higher Education Personnel, the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (CAPES/FAPERJ partnership-project E-26/201.221/2015), and the Colt Foundation (UK) for financial support. NR 60 TC 2 Z9 2 U1 5 U2 8 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD JUL PY 2016 VL 13 IS 7 AR 695 DI 10.3390/ijerph13070695 PG 13 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA DS4OG UT WOS:000380759800071 ER PT J AU Piqueux, S Kleinbohl, A Hayne, PO Heavens, NG Kass, DM McCleese, DJ Schofield, JT Shirley, JH AF Piqueux, Sylvain Kleinbohl, Armin Hayne, Paul O. Heavens, Nicholas G. Kass, David M. McCleese, Daniel J. Schofield, John T. Shirley, James H. TI Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMAL EMISSION SPECTROMETER; SEASONAL CO-2 CYCLE; MARTIAN POLAR CAPS; SLOPE STREAKS; SURFACE-PROPERTIES; CARBON-DIOXIDE; INFRARED EMISSIVITY; CLIMATE SOUNDER; PRESSURE CYCLE; GUSEV CRATER AB While the detection of CO2 ice has only been reported outside the Martian polar regions at very high elevation (i.e., Elysium, Olympus Mons, and the Tharsis Montes), nighttime surface observations by the Mars Climate Sounder on board the Mars Reconnaissance Orbiter document the widespread occurrence of atmospherically corrected ground temperatures consistent with the presence of extensive carbon dioxide frost deposits in the dusty low thermal inertia units at middle/low latitudes. Thermal infrared emissivities, interpreted in conjunction with mass balance modeling, suggest micrometer size CO2 ice crystals forming optically thin layers never exceeding a few hundreds of microns in thickness (i.e., 10(-2)kgm(-2)) locally, which is insufficient to generate a measurable diurnal pressure cycle (<<0.1% of the Martian atmosphere). Atmospheric temperatures at middle/low latitudes are not consistent with precipitation of CO2 ice, suggesting that condensation occurs on the surface. The recurring growth and sublimation of CO2 ice on Martian dusty terrains may be an important process preventing soil induration and promoting dynamic phenomena (soil avalanching and fluidization and regolith gardening), maintaining a reservoir of micrometer size dust particles that are mobile and available for lifting. The discovery of this diurnal CO2 cycle represents an important step forward in our understanding of the way the Martian atmosphere interacts with the surface. C1 [Piqueux, Sylvain; Kleinbohl, Armin; Hayne, Paul O.; Kass, David M.; McCleese, Daniel J.; Schofield, John T.; Shirley, James H.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Heavens, Nicholas G.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. RP Piqueux, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM Sylvain.Piqueux@jpl.nasa.gov OI Heavens, Nicholas/0000-0001-7654-503X FU NASA's Mars Reconnaissance Orbiter Mars Climate Sounder project FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and was supported by NASA's Mars Reconnaissance Orbiter Mars Climate Sounder project. The MCS data used for this work are available in the Planetary Data System (PDS) http://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/Mars/ Mars.html. MOLA (elevation) and TES (thermal inertia, albedo) maps also originate from the PDS: http://pds-geosciences.wustl.edu/missions/mgs/megdr.html and http://geo.pds.nasa.gov/missions/mgs/tesspecial.html, respectively. The numerical model used to predict frost masses is available at the following address: http://krc.mars.asu.edu/index.php?title=Main_Page. Other materials are listed in the references or figures and figure captions. NR 79 TC 2 Z9 2 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL PY 2016 VL 121 IS 7 BP 1174 EP 1189 DI 10.1002/2016JE005034 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT6ZB UT WOS:000381632500003 ER PT J AU Kenig, F Chou, L McKay, CP Jackson, WA Doran, PT Murray, AE Fritsen, CH AF Kenig, Fabien Chou, Luoth McKay, Christopher P. Jackson, W. Andrew Doran, Peter T. Murray, Alison E. Fritsen, Christian H. TI Perchlorate and volatiles of the brine of Lake Vida (Antarctica): Implication for the in situ analysis of Mars sediments SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MCMURDO DRY VALLEYS; SOLID-PHASE MICROEXTRACTION; UV-RADIATION CONDITIONS; ICE-COVERED LAKES; ORGANIC-MOLECULES; MARINE-PHYTOPLANKTON; DIMETHYLSULFIDE DMS; SULFUR-COMPOUNDS; EAST ANTARCTICA; GALE CRATER AB The cold (-13.4 degrees C), cryoencapsulated, anoxic, interstitial brine of the >27m thick ice of Lake Vida (Victoria Valley, Antarctica) contains 49 mu gL(-1) of perchlorate and 11 mu gL(-1) of chlorate. Lake Vida brine (LVBr) may provide an analog for potential oxychlorine-rich subsurface brine on Mars. LVBr volatiles were analyzed by solid-phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) with two different SPME fibers. With the exception of volatile organic sulfur compounds, most other volatiles observed were artifacts produced in the GC injector when the thermal decomposition products of oxychlorines reacted with reduced carbon derived from LVBr and the SPME fiber phases. Analysis of MilliQ water with perchlorate (40 mu gL(-1)) showed low level of organic artifacts, reflecting carbon limitation. In order to observe sample-derived organic compounds, both in analog samples and on Mars, the molar abundance of reduced carbon in a sample must exceed those of O-2 and Cl-2 produced during decomposition of oxychlorines. This suggests that the abundance of compounds observed by the Sample Analysis at Mars (SAM) instruments in Sheepbed samples (CB-3, CB5, and CB6) may be controlled by an increase in the reduced-carbon/oxychlorine ratio of these samples. To increase chances of in situ detection of Martian organics during pyrolysis-GC-MS, we propose that the derivatization agents stored on SAM may be used as an external source of reduced carbon, increasing artificially the reduced-carbon to perchlorate ratio during pyrolysis, allowing the expression of more abundant and perhaps more diverse Martian organic matter. C1 [Kenig, Fabien; Chou, Luoth; Doran, Peter T.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. [McKay, Christopher P.] NASA, Space Sci Div, Ames Res Ctr, Moffett Field, CA USA. [Jackson, W. Andrew] Texas Tech Univ, Civil & Environm Engn Dept, Lubbock, TX 79409 USA. [Doran, Peter T.] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA. [Murray, Alison E.; Fritsen, Christian H.] Desert Res Inst, Div Earth & Ecosyst Sci, Reno, NV USA. RP Kenig, F (reprint author), Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. EM fkenig@uic.edu FU National Aeronautics and Space Administration (NASA)-ASTEP [NAG5-12889]; National Science Foundation (NSF) [ANT-0739681, ANT-0739698]; Illinois Space Consortium Graduate Fellowship FX The GC-MS data can be made available upon request to F.K. We thank J. Kyne and B. Bergeron (Ice Coring and Drilling Services), B. Wagner (University of Cologne), B. Glazer (University of Hawaii), and P. Glenday for the field assistance. This work was supported in part by National Aeronautics and Space Administration (NASA)-ASTEP NAG5-12889 (to P.T.D.) and National Science Foundation (NSF) awards ANT-0739681 (to A.E.M. and C.F.) and ANT-0739698 (to P.T.D. and F.K.). In 2005, the NSF Office of Polar Programs provided logistical support through a cooperative agreement with NASA. L.C. was supported by the Illinois Space Consortium Graduate Fellowship. NR 58 TC 0 Z9 0 U1 16 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL PY 2016 VL 121 IS 7 BP 1190 EP 1203 DI 10.1002/2015JE004964 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT6ZB UT WOS:000381632500004 ER PT J AU Arnold, JA Glotch, TD Lucey, PG Song, E Thomas, IR Bowles, NE Greenhagen, BT AF Arnold, J. A. Glotch, T. D. Lucey, P. G. Song, E. Thomas, I. R. Bowles, N. E. Greenhagen, B. T. TI Constraints on olivine-rich rock types on the Moon as observed by Diviner and M-3: Implications for the formation of the lunar crust SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID PARTICULATE PLANETARY SURFACES; REFLECTANCE SPECTROSCOPY; MINERAL MIXTURES; EMISSION-SPECTROSCOPY; FERROAN ANORTHOSITES; SPECTRAL REFLECTANCE; OPTICAL-PROPERTIES; SYNTHETIC OLIVINE; PLAGIOCLASE; MANTLE AB We place upper limits on lunar olivine abundance using midinfrared (5-25 mu m) data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment (Diviner) along with effective emissivity spectra of mineral mixtures in a simulated lunar environment. Olivine-bearing, pyroxene-poor lithologies have been identified on the lunar surface with visible-near-infrared (VNIR) observations. Since the Kaguya Spectral Profiler (SP) VNIR survey of olivine-rich regions is the most complete to date, we focus this work on exposures identified by that study. We first confirmed the locations with VNIR data from the Moon Mineralogy Mapper (M-3) instrument. We then developed a Diviner olivine index from our laboratory data which, along with M-3 and Lunar Reconnaissance Orbiter Camera wide-angle camera data, was used to select the geographic area over which Diviner emissivity data were extracted. We calculate upper limits on olivine abundance for these areas using laboratory emissivity spectra of anorthite-forsterite mixtures acquired under lunar-like conditions. We find that these exposures have widely varying olivine content. In addition, after applying an albedo-based space weathering correction to the Diviner data, we find that none of the areas are unambiguously consistent with concentrations of forsterite exceeding 90wt%, in contrast to the higher abundance estimates derived from VNIR data. C1 [Arnold, J. A.; Glotch, T. D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Arnold, J. A.; Thomas, I. R.; Bowles, N. E.] Univ Oxford, Dept Phys, Atmospher Ocean & Planetary Phys, Oxford, England. [Lucey, P. G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Song, E.] Jet Prop Lab, Pasadena, CA USA. [Thomas, I. R.] Royal Belgian Inst Space Aeron, Brussels, Belgium. [Greenhagen, B. T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Arnold, JA (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.; Arnold, JA (reprint author), Univ Oxford, Dept Phys, Atmospher Ocean & Planetary Phys, Oxford, England. EM jessica.arnold@physics.ox.ac.uk FU Diviner Lunar Radiometer Extended Mission science investigation; RIS4E Solar System Exploration Research Virtual Institute investigation FX We would like to thank Sara Russell for collecting anorthite microprobe measurements. Funding support for J.A.A., T.D.G., P.G.L., E.S., and B.T.G. was provided by the Diviner Lunar Radiometer Extended Mission science investigation (D.A. Paige Principal Investigator) and the RIS4E Solar System Exploration Research Virtual Institute investigation (T.D.G. Principal Investigator). We would also like to thank Leah Cheek and an anonymous reviewer for their thorough examination of the manuscript and suggestions for improvement. This is SSERVI publication number SSERVI-2015-127. Diviner and M3 data products can be accessed via the PDS Geosciences Node Lunar Orbital Data Explorer (http://ode.rsl.wustl.edu/moon/). SELENE (Kaguya) data products are available at http://l2db.selene.darts.isas.jaxa.jp/index.html.en. Emissivity spectra collected in support of this work will be archived at http://aram.ess.sunysb.edu/spectra.html following acceptance of this publication. NR 101 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL PY 2016 VL 121 IS 7 BP 1342 EP 1361 DI 10.1002/2015JE004874 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT6ZB UT WOS:000381632500010 ER PT J AU Bell, LD AF Bell, L. Douglas TI Ballistic electron emission microscopy and spectroscopy: Recent results and related techniques SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Review ID METAL-SEMICONDUCTOR INTERFACES; SCANNING-TUNNELING-MICROSCOPE; INAS QUANTUM DOTS; SCHOTTKY-BARRIER FORMATION; HOT-CARRIER SCATTERING; ELASTIC-SCATTERING; SOLAR-CELLS; SILICON NANOWIRES; PHASE-TRANSITION; LEVEL ALIGNMENT AB Interfaces play a central role in determining properties of optical and electronic devices. Many mature techniques exist for surface characterization, providing a great deal of detailed, local information. Interface methods with equivalent capabilities have not developed as fully, due primarily to the inaccessibility of buried interfaces to traditional surface sensitive probes. Ballistic electron emission microscopy (BEEM) is a class of microscopies and spectroscopies that uses energetic electrons injected by a scanning tunneling microscopy tip as a probe of subsurface electronic structure. This article reviews the growth of BEEM methods and summarizes recent areas of investigation using these techniques. Research areas span a range of materials, such as metals, semiconductors, insulators, magnetic materials, and organic layers, as well as a variety of physical properties that include interface barrier height, hot-carrier scattering, interface heterogeneity, magnetic domain structure, and electronic band structure. (C) 2016 American Vacuum Society. C1 [Bell, L. Douglas] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Bell, LD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM LBell@mail.jpl.nasa.gov FU National Aeronautics and Space Administration FX The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 150 TC 2 Z9 2 U1 2 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2016 VL 34 IS 4 AR 040801 DI 10.1116/1.4959103 PG 27 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA DU4UI UT WOS:000382207700011 ER PT J AU Kim, J Kim, J Oh, H Meyyappan, M Han, JW Lee, JS AF Kim, Jungsik Kim, Jiwon Oh, Hyeongwan Meyyappan, M. Han, Jin-Woo Lee, Jeong-Soo TI Design guidelines for nanoscale vacuum field emission transistors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID EMITTERS AB Nanoscale vacuum channel field emission transistors (VFETs) with different gate-structures, channel lengths, and emitter tip radii are comprehensively studied using technical computer-aided design simulation. With a multigate configuration, the operating gate voltage decreases and the transfer characteristics improve due to excellent gate controllability. The gate-all-around (GAA) VFET with short channel length and thin channel to gate distance would be most suitable for low power consumption and less sensitivity to device fluctuation. In order to further understand the impact of physical gate length on the on-current (I-on) and the gate leakage current in VFETs, fulland half-gate devices are compared. With shorter channel length and thinner channel to gate distance, the tunneling energy band becomes sensitive to the gate field, resulting in a more severe I-on fluctuation. The half-gate structure can mitigate the gate leakage current without sacrificing the on-current because the leakage current near the collector tip can be reduced in comparison to the fullgate structure. The GAA VFET also shows superior cut-off frequency performance resulting from high transconductance, compared with the single-and double-gate VFETs. (C) 2016 American Vacuum Society. C1 [Kim, Jungsik] Pohang Univ Sci & Technol POSTECH, Div IT Convergence Engn, Pohang 37673, South Korea. [Kim, Jiwon; Oh, Hyeongwan; Lee, Jeong-Soo] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang 37673, South Korea. [Meyyappan, M.; Han, Jin-Woo] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Lee, JS (reprint author), Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang 37673, South Korea. EM ljs6951@postech.ac.kr FU National Research Foundation of Korea (NRF) - Korean government (MSIP) [2013R1A1A2007094]; agency for Defense Development [ADD-14-02-06-20]; POSTECH; SK Hynix FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2013R1A1A2007094), and by the agency for Defense Development (ADD-14-02-06-20), and Semiconductor Industry Collaborative Project between POSTECH and SK Hynix. The TCAD Sentaurus simulator was provided by the Electronic Design Automation (EDA) tool program of IC Design Education Center (IDEC) in Republic of Korea. NR 16 TC 0 Z9 0 U1 6 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2016 VL 34 IS 4 AR 042201 DI 10.1116/1.4944687 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA DU4UI UT WOS:000382207700061 ER PT J AU Woo, K Lee, K Kovnir, K AF Woo, Katherine Lee, Kathleen Kovnir, Kirill TI BP: synthesis and properties of boron phosphide SO MATERIALS RESEARCH EXPRESS LA English DT Article DE boron; phosphorus; synthesis; doping ID TEMPERATURE SYNTHESIS; CRYSTAL-STRUCTURE; SEMICONDUCTOR AB Cubic boron phosphide, BP, is notorious for its difficult synthesis, thus preventing it from being a widely used material in spite of having numerous favorable technological properties. In the current work, three different methods of synthesis are developed and compared: from the high temperature reaction of elements, Sn flux assisted synthesis, and a solid state metathesis reaction. Structural and optical properties of the products synthesized from the three methods were thoroughly characterized. Solid state metathesis is shown to be the cleanest and most efficient method in terms of reaction temperature and time. Synthesis by Sn flux resulted in a novel Sn-doped BP compound. Undoped BP samples exhibit an optical bandgap of similar to 2.2 eV while Sn-doped BP exhibits a significantly smaller bandgap of 1.74 eV. All synthesized samples show high stability in concentrated hydrochloric acid, saturated sodium hydroxide solutions, and fresh aqua regia. C1 [Woo, Katherine; Lee, Kathleen; Kovnir, Kirill] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. [Lee, Kathleen] Jet Prop Lab, Thermal Energy Convers Technol Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Kovnir, K (reprint author), Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. EM kkovnir@ucdavis.edu FU UC Davis; ACS Petroleum Research Fund [55036-DNI10]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Dr Frank Osterloh for access to the solid state UV-vis spectrometer, Joshua Greenfield for his assistance in synchrotron data refinement, and Dr Andrei Olenev for preliminary Sn flux syntheses. This research is supported by the UC Davis and ACS Petroleum Research Fund, grant 55036-DNI10. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 32 TC 2 Z9 2 U1 19 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1591 J9 MATER RES EXPRESS JI Mater. Res. Express PD JUL PY 2016 VL 3 IS 7 AR 074003 DI 10.1088/2053-1591/3/7/074003 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA DS5VV UT WOS:000380852000003 ER PT J AU Ralph, FM Prather, KA Cayan, D Spackman, JR DeMott, P Dettinger, M Fairall, C Leung, R Rosenfeld, D Rutledge, S Waliser, D White, AB Cordeira, J Martin, A Helly, J Intrieri, J AF Ralph, F. M. Prather, K. A. Cayan, D. Spackman, J. R. DeMott, P. Dettinger, M. Fairall, C. Leung, R. Rosenfeld, D. Rutledge, S. Waliser, D. White, A. B. Cordeira, J. Martin, A. Helly, J. Intrieri, J. TI CALWATER FIELD STUDIES DESIGNED TO QUANTIFY THE ROLES OF ATMOSPHERIC RIVERS AND AEROSOLS IN MODULATING US WEST COAST PRECIPITATION IN A CHANGING CLIMATE SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID WATER-VAPOR SIGNATURE; SIERRA BARRIER JETS; UNITED-STATES; OROGRAPHIC PRECIPITATION; NORTHERN CALIFORNIA; AIR-POLLUTION; PACIFIC; STORM; WINTER; SATELLITE C1 [Ralph, F. M.; Prather, K. A.; Cayan, D.; Dettinger, M.; Martin, A.; Helly, J.] Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr,Ste 0224, La Jolla, CA 92093 USA. [Cayan, D.; Dettinger, M.] US Geol Survey, La Jolla, CA USA. [Spackman, J. R.] Sci & Technol Corp, Boulder, CO USA. [Spackman, J. R.; Fairall, C.; White, A. B.; Intrieri, J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [DeMott, P.; Rutledge, S.] Colorado State Univ, Ft Collins, CO 80523 USA. [Leung, R.] Pacific Northwest Natl Lab, Dept Energy, Richland, WA USA. [Rosenfeld, D.] Hebrew Univ Jerusalem, Jerusalem, Israel. [Waliser, D.] NASA, Jet Prop Lab, Pasadena, CA USA. [Cordeira, J.] Plymouth State Univ, Plymouth, NH USA. [Helly, J.] Univ Calif San Diego, San Diego Super Comp Ctr, La Jolla, CA 92093 USA. RP Ralph, FM (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr,Ste 0224, La Jolla, CA 92093 USA. EM mralph@ucsd.edu RI Rosenfeld, Daniel/F-6077-2016; Prather, Kimberly/A-3892-2008 OI Rosenfeld, Daniel/0000-0002-0784-7656; Prather, Kimberly/0000-0003-3048-9890 FU California Energy Commission (CEC); NOAA's Physical Sciences Division; NOAA; DOE; NSF; California's Department of Water Resources; UC San Diego's Scripps Institution of Oceanography; Center for Western Weather and Water Extremes; Science and Technology Corporation FX The CalWater-1 study from 2009 to 2011 was sponsored primarily by the California Energy Commission (CEC) and NOAA's Physical Sciences Division. The programmatic leadership of Guido Franco and Joe O'Hagan of CEC were central to the success of the experiment. Major field deployments for CalWater-2 (2014-16) are sponsored primarily by NOAA, DOE, and NSF, with additional facilities provided by NASA. The entire CalWater program of field studies leverages the unique ground-based extreme precipitation-observing network sponsored by California's Department of Water Resources. Planning has been heavily sponsored by UC San Diego's Scripps Institution of Oceanography and by the Center for Western Weather and Water Extremes, as well as Science and Technology Corporation. The knowledge and major effort of innumerable engineering, aircraft, ship, and technical support staff were vital to the development and execution of CalWater over the last several years. NR 63 TC 6 Z9 6 U1 14 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUL PY 2016 VL 97 IS 7 BP 1209 EP 1228 DI 10.1175/BAMS-D-14-00043.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT7GF UT WOS:000381654400013 ER PT J AU Theurich, G DeLuca, C Campbell, T Liu, F Saint, K Vertenstein, M Chen, J Oehmke, R Doyle, J Whitcomb, T Wallcraft, A Iredell, M Black, T da Silva, AM Clune, T Ferraro, R Li, P Kelley, M Aleinov, I Balaji, V Zadeh, N Jacob, R Kirtman, B Giraldo, F McCarren, D Sandgathe, S Peckham, S Dunlap, R AF Theurich, Gerhard DeLuca, C. Campbell, T. Liu, F. Saint, K. Vertenstein, M. Chen, J. Oehmke, R. Doyle, J. Whitcomb, T. Wallcraft, A. Iredell, M. Black, T. da Silva, A. M. Clune, T. Ferraro, R. Li, P. Kelley, M. Aleinov, I. Balaji, V. Zadeh, N. Jacob, R. Kirtman, B. Giraldo, F. McCarren, D. Sandgathe, S. Peckham, S. Dunlap, R. TI THE EARTH SYSTEM PREDICTION SUITE Toward a Coordinated US Modeling Capability SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID ATMOSPHERIC SIMULATIONS; COUPLING TECHNOLOGIES; COAMPS-TC; CLIMATE; COMMUNITY; DESIGN; FRAMEWORK; ARCHITECTURE; DISSIPATION; WEATHER C1 [Theurich, Gerhard; Chen, J.] Sci Applicat Int Corp, Mclean, VA USA. [DeLuca, C.; Oehmke, R.; Dunlap, R.] NOAA ESRL, Boulder, CO USA. [DeLuca, C.; Oehmke, R.; Dunlap, R.] CIRES, Boulder, CO USA. [Campbell, T.; Wallcraft, A.] Naval Res Lab, Stennis Space Ctr, MS USA. [Liu, F.; Saint, K.] Cherokee Serv Grp, Ft Collins, CO USA. [Vertenstein, M.] Natl Ctr Atmospher Res, Boulder, CO USA. [Doyle, J.; Whitcomb, T.] Naval Res Lab, Monterey, CA USA. [Iredell, M.; Black, T.] NOAA NWS NCEP Environm Modeling Ctr, College Pk, MD USA. [da Silva, A. M.; Clune, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Ferraro, R.; Li, P.] NASA, Jet Prop Lab, Pasadena, CA USA. [Kelley, M.; Aleinov, I.] NASA, Goddard Space Flight Ctr, New York, NY USA. [Balaji, V.; Zadeh, N.] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Balaji, V.] Princeton Univ, Princeton, NJ 08544 USA. [Zadeh, N.] Engil Inc, Princeton, NJ USA. [Jacob, R.] Argonne Natl Lab, Lemont, IL USA. [Kirtman, B.] Univ Miami, Miami, FL USA. [Giraldo, F.] Naval Postgrad Sch, Monterey, CA USA. [McCarren, D.] Naval Meteorol & Oceanog, Naval Meteorol & Oceanog Command, Silver Spring, MD USA. [Sandgathe, S.] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. [Peckham, S.] Univ Colorado, Boulder, CO 80309 USA. RP DeLuca, C (reprint author), NOAA CIRES, 325 Broadway, Boulder, CO 80305 USA. EM cecelia.deluca@noaa.gov FU National Aeronautics and Space Administration's Computational Modeling Algorithms and Cyberinfrastructure program [NNX12AP51G, NNX16AB20G]; National Aeronautics and Space Administration's Modeling Analysis and Prediction program [NNX11AL82G]; National Oceanic and Atmospheric Administration Climate Program Office; National Weather Service [NA15OAR4310103, NA12OAR4320137]; Department of Defense Office of Naval Research [N00014-13-1-0508, N00014-13-1-0845]; High Performance Computing Modernization Program [PP-CWO-KY06-001-P3]; National Science Foundation [1343811]; Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory - Office of Science (BER) of the Department of Energy; NASA Center for Climate Simulation; NOAA Environmental Security Computer Center; Cooperative Institute for Climate Science, Princeton University from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce [NA080AR4320752] FX The National Aeronautics and Space Administration's Computational Modeling Algorithms and Cyberinfrastructure program provides support for ESMF, the Cupid Integrated Development Environment, and integration of ESMF and the NUOPC Layer with ModelE (NNX12AP51G, NNX16AB20G). The National Aeronautics and Space Administration's Modeling Analysis and Prediction program supports ESMF and the integration of ESMF and the NUOPC Layer with the GEOS-5 model (NNX11AL82G). The National Oceanic and Atmospheric Administration Climate Program Office provides support for ESMF and the development of the Climate Forecast System using NUOPC Layer tools. The National Weather Service supports ESMF and NUOPC Layer development, and development of the Next Generation Global Prediction System using NUOPC Layer tools (NA15OAR4310103, NA12OAR4320137). The Department of Defense Office of Naval Research supports ESMF and NUOPC development, including adaption for emerging computer architectures, and the integration of the NUOPC Layer into the Community Earth System Model and Navy models (N00014-13-1-0508, N00014-13-1-0845). The High Performance Computing Modernization Program provides support for development of asynchronous I/O capabilities in ESMF (PP-CWO-KY06-001-P3). The National Science Foundation provided support for early development of ESMF and support for integration of hydrology and land components into NEMS (1343811). Computing resources for testing infrastructure and implementing it in applications were provided by the National Center for Atmospheric Research Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies; the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science (BER) of the Department of Energy; the NASA Center for Climate Simulation; and the NOAA Environmental Security Computer Center. V. Balaji is supported by the Cooperative Institute for Climate Science, Princeton University, under Award NA080AR4320752 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of Princeton University, the National Oceanic and Atmospheric Administration, or the U.S. Department of Commerce. The authors thank Richard Rood and Anthony Craig for their insightful comments on the original manuscript, Donald Anderson for his guidance and advocacy, and Matthew Rothstein for his contributions to understanding the performance of NUOPC modeling applications. NR 75 TC 1 Z9 1 U1 1 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUL PY 2016 VL 97 IS 7 BP 1229 EP 1247 DI 10.1175/BAMS-D-14-00164.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT7GF UT WOS:000381654400014 ER PT J AU Mitrofanov, IG Fedosov, FS Sanin, AB Bakhtin, BN Boynton, W Vostrukhin, AA Golovin, DV Kosyrev, AS Litvak, ML Malakhov, AV McClanahan, T Mokrousov, MI Nuzhdin, IO Starr, R Tretyakov, VI Shvetsov, VN Shevchenko, VV Harshman, K AF Mitrofanov, I. G. Fedosov, F. S. Sanin, A. B. Bakhtin, B. N. Boynton, W. Vostrukhin, A. A. Golovin, D. V. Kosyrev, A. S. Litvak, M. L. Malakhov, A. V. McClanahan, T. Mokrousov, M. I. Nuzhdin, I. O. Starr, R. Tretyakov, V. I. Shvetsov, V. N. Shevchenko, V. V. Harshman, K. TI Physical calibration of the LEND space-based neutron telescope: the sensitivity and the angular resolution SO INSTRUMENTS AND EXPERIMENTAL TECHNIQUES LA English DT Article ID LUNAR RECONNAISSANCE ORBITER; MARS ODYSSEY; WATER ICE; HYDROGEN; DETECTOR; EMISSION; SURFACE; POLE AB Results of physical calibrations of the LEND neutron telescope operating on board the NASA's LRO lunar satellite since June 2009 are described. The main goal of the LEND telescope is to measure the epithermal neutron flux in polar areas of the lunar surface with a high (similar to 10 km) resolution with the aim of determining the hydrogen distribution in the lunar regolith and detect the presence of water ice beds at the bottom of permanently shadowed lunar polar craters. The neutron detection efficiency and the effective area of the LEND detectors is experimentally estimated. C1 [Mitrofanov, I. G.; Fedosov, F. S.; Sanin, A. B.; Bakhtin, B. N.; Vostrukhin, A. A.; Golovin, D. V.; Kosyrev, A. S.; Litvak, M. L.; Malakhov, A. V.; Mokrousov, M. I.; Nuzhdin, I. O.; Tretyakov, V. I.] Russian Acad Sci, Inst Space Res, Ul Profsoyuznaya 84-32, Moscow 117997, Russia. [Boynton, W.; Harshman, K.] Univ Arizona, Tucson, AZ USA. [McClanahan, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Starr, R.] Catholic Univ Amer, Washington, DC 20064 USA. [Shvetsov, V. N.] Joint Inst Nucl Res, Ul Joliot Curie 6, Dubna 141980, Moscow Oblast, Russia. [Shevchenko, V. V.] Moscow MV Lomonosov State Univ, Sternberg State Astron Inst, Univ Skii Pr 13, Moscow 119899, Russia. RP Fedosov, FS (reprint author), Russian Acad Sci, Inst Space Res, Ul Profsoyuznaya 84-32, Moscow 117997, Russia. EM fedosov@l503.iki.rssi.ru FU Russian Science Foundation [14-22-00249] FX The work of the Russian authors was supported by the Russian Science Foundation, grant no. 14-22-00249. NR 14 TC 0 Z9 0 U1 1 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0020-4412 EI 1608-3180 J9 INSTRUM EXP TECH+ JI Instrum. Exp. Tech. PD JUL PY 2016 VL 59 IS 4 BP 578 EP 591 DI 10.1134/S0020441216040096 PG 14 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DS3LZ UT WOS:000380685800016 ER PT J AU Desai, SD Sibois, AE AF Desai, Shailen D. Sibois, Aurore E. TI Evaluating predicted diurnal and semidiurnal tidal variations in polar motion with GPS-based observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE ocean tide; polar motion; GPS ID EARTHS ROTATION; ANGULAR-MOMENTUM; OCEANIC TIDES; PERIODIC CHANGES; ALTIMETRY; MODELS AB We evaluate models for the predicted diurnal and semidiurnal tidal variations in polar motion using observations based upon the Global Positioning System (GPS). The GPS-based observations are composed of 10year continuous time series of polar motion estimates with 15min temporal resolution. Predicted effects account for the contributions from ocean tide angular momentum and libration. We consider two models for the predicted ocean tide effects, both of which have their heritage with the so-called TPXO hydrodynamic models of the ocean tide heights and currents that assimilate satellite altimetry, for example, Egbert et al. (1994) and Egbert and Erofeeva (2002). When considering libration effects we use the model from Mathews and Bretagnon (2003). Of the models considered in this study, the best consistency with the GPS-based observations is achieved with predictions from the most recent (version 8) TPXO-based model for ocean tide effects together with the model for libration effects. This combination demonstrates closure of the budget between predicted and GPS-based observations at the level of less than 10, 2, and 5 mu as in prograde diurnal, prograde semidiurnal, and retrograde semidiurnal tidal variations in polar motion, respectively. The observations also demonstrate inconsistency between the older TPXO-based model for ocean tide effects and the libration model, both of which are currently recommended by the International Earth Rotation Service. C1 [Desai, Shailen D.; Sibois, Aurore E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. RP Desai, SD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM shailen.desai@jpl.nasa.gov RI Sibois, Aurore/I-6415-2016 OI Sibois, Aurore/0000-0003-1212-3940 FU National Aeronautics and Space Administration FX S.D.D. and A.E.S. performed the work described in this paper at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. The authors thank G. Egbert and L. Erofeeva for making the TPXO8 global models of the ocean tide height and mass transport publicly available at http://volkov.oce.orst.edu/tides/tpxo8_atlas.html and for feedback on an early draft of this paper. The authors also thank the Associate Editor, an anonymous reviewer, and Richard Ray for their reviews and feedback on this paper. The International GNSS Service and its member agencies are acknowledged for providing tracking data from globally distributed GNSS stations. Information on IGS data availability is provided at http://igs.org. The International Earth Rotation Service provided the EOPC04 daily time series of polar motion at https://hpiers.obspm.fr/iers/eop/eopc04/. NR 38 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUL PY 2016 VL 121 IS 7 BP 5237 EP 5256 DI 10.1002/2016JB013125 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT6XF UT WOS:000381627500023 ER PT J AU Kumar, SV Zaitchik, BF Peters-Lidard, CD Rodell, M Reichle, R Li, BL Jasinski, M Mocko, D Getirana, A De Lannoy, G Cosh, MH Hain, CR Anderson, M Arsenault, KR Xia, YL Ek, M AF Kumar, Sujay V. Zaitchik, Benjamin F. Peters-Lidard, Christa D. Rodell, Matthew Reichle, Rolf Li, Bailing Jasinski, Michael Mocko, David Getirana, Augusto De Lannoy, Gabrielle Cosh, Michael H. Hain, Christopher R. Anderson, Martha Arsenault, Kristi R. Xia, Youlong Ek, Michael TI Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID ENSEMBLE KALMAN FILTER; TIME-VARIABLE GRAVITY; SOIL-MOISTURE; SURFACE MODEL; ESTIMATING EVAPOTRANSPIRATION; CLIMATE EXPERIMENT; RIVER-BASIN; SNOW COVER; VARIABILITY; RETRIEVALS AB The objective of the North American Land Data Assimilation System (NLDAS) is to provide best-available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin-averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts. C1 [Kumar, Sujay V.; Peters-Lidard, Christa D.; Rodell, Matthew; Li, Bailing; Jasinski, Michael; Mocko, David; Getirana, Augusto; Arsenault, Kristi R.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA. [Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Reichle, Rolf; Mocko, David] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Li, Bailing; Getirana, Augusto; Hain, Christopher R.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Mocko, David] Sci Applicat Int Corp, Beltsville, MD USA. [De Lannoy, Gabrielle] Univ Leuven, Dept Earth & Environm Sci, Leuven, Belgium. [Cosh, Michael H.; Anderson, Martha] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD USA. [Hain, Christopher R.] NOAA, Ctr Satellite Applicat & Res, College Pk, MD USA. [Arsenault, Kristi R.] Sci Applicat Int Corp, Mclean, VA 22102 USA. [Xia, Youlong] NCEP EMC, IMSG, College Pk, MD USA. [Xia, Youlong; Ek, Michael] Natl Ctr Environm Predict, Environm Modeling Ctr, College Pk, MD USA. RP Kumar, SV (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA. EM sujay.v.kumar@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Reichle, Rolf/E-1419-2012; Rodell, Matthew/E-4946-2012; Kumar, Sujay/B-8142-2015; OI Peters-Lidard, Christa/0000-0003-1255-2876; Rodell, Matthew/0000-0003-0106-7437; Anderson, Martha/0000-0003-0748-5525 FU NASA Science Mission Directorate's Earth Science Division through the National Climate Assessment (NCA) project; NOAA's Climate Program Office MAPP program FX Funding for this work was provided by the NASA Science Mission Directorate's Earth Science Division through the National Climate Assessment (NCA) project and NOAA's Climate Program Office MAPP program. Computing was supported by the resources at the NASA Center for Climate Simulation. The NLDAS-2 forcing data used in this effort were acquired as part of the activities of NASA's Science Mission Directorate and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). The GRACE land data available at http://grace.jpl.nasa.gov were supported by the NASA MEaSUREs program. NR 55 TC 3 Z9 3 U1 10 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUL PY 2016 VL 17 IS 7 BP 1951 EP 1972 DI 10.1175/JHM-D-15-0157.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS1FV UT WOS:000380342100004 ER PT J AU Miller, SD Wang, F Burgess, AB Skiles, SM Rogers, M Painter, TH AF Miller, Steven D. Wang, Fang Burgess, Ann B. Skiles, S. McKenzie Rogers, Matthew Painter, Thomas H. TI Satellite-Based Estimation of Temporally Resolved Dust Radiative Forcing in Snow Cover SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID UNITED-STATES; SPECTRAL ALBEDO; WESTERN US; ALGORITHM; DEPOSITION; CLIMATE; CLOUD; REFLECTANCE; ATMOSPHERE; TRANSPORT AB Runoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources. C1 [Miller, Steven D.; Wang, Fang; Rogers, Matthew] Colorado State Univ, Cooperat Inst Res Atmosphere, 1375 Campus Delivery, Ft Collins, CO 80523 USA. [Burgess, Ann B.] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA USA. [Skiles, S. McKenzie; Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Miller, SD (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, 1375 Campus Delivery, Ft Collins, CO 80523 USA. EM steven.miller@colostate.edu RI Painter, Thomas/B-7806-2016 FU Naval Research Laboratory [N00173-10-C-2003]; Oceanographer of the Navy through the Program Executive Office [C4I/PMW-120, PE-0603207N]; Office of Naval Research [N00014-16-1-2040, 11843919]; NASA [NNX10AO97G] FX This work was supported jointly by the Naval Research Laboratory through Contract N00173-10-C-2003, the Oceanographer of the Navy through the Program Executive Office C4I/PMW-120 under Program Element PE-0603207N, the Office of Naval Research through Contract N00014-16-1-2040 (Grant 11843919), and by NASA Project NNX10AO97G. We also thank Dr. Andrew Heidinger (NOAA/NESDIS) and Dr. Andi Walter (University of Wisconsin-Madison) for providing the NOAA satellite processing packages used in this analysis. NR 44 TC 0 Z9 0 U1 6 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUL PY 2016 VL 17 IS 7 BP 1999 EP 2011 DI 10.1175/JHM-D-15-0150.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DS1FV UT WOS:000380342100007 ER PT J AU Antolovic, IM Burri, S Hoebe, RA Maruyama, Y Bruschini, C Charbon, E AF Antolovic, I. Michel Burri, Samuel Hoebe, Ron A. Maruyama, Yuki Bruschini, Claudio Charbon, Edoardo TI Photon-Counting Arrays for Time-Resolved Imaging SO SENSORS LA English DT Article DE single-photon avalanche diode; SPAD; fluorescence; fluorescence lifetime imaging microscopy; FLIM; fluorescence correlation spectroscopy; FCS ID AVALANCHE-DIODE; CMOS TECHNOLOGY; FILL-FACTOR; SENSOR; PERFORMANCE; RESOLUTION AB The paper presents a camera comprising 512 x 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach. C1 [Antolovic, I. Michel; Charbon, Edoardo] Delft Univ Technol, Quantum Engn Dept, Appl Quantum Architecture Lab AQUA, NL-2628 CD Delft, Netherlands. [Burri, Samuel; Bruschini, Claudio; Charbon, Edoardo] Ecole Polytech Fed Lausanne, Microengn Dept, Adv Quantum Architecture Lab AQUA, CH-1015 Lausanne, Switzerland. [Hoebe, Ron A.] Univ Amsterdam, Acad Med Ctr, NL-1100 DD Amsterdam, Netherlands. [Maruyama, Yuki] Jet Prop Lab, Pasadena, CA 91109 USA. RP Charbon, E (reprint author), Delft Univ Technol, Quantum Engn Dept, Appl Quantum Architecture Lab AQUA, NL-2628 CD Delft, Netherlands.; Charbon, E (reprint author), Ecole Polytech Fed Lausanne, Microengn Dept, Adv Quantum Architecture Lab AQUA, CH-1015 Lausanne, Switzerland. EM i.m.antolovic@tudelft.nl; samuel.burri@epfl.ch; r.a.hoebe@amc.uva.nl; y.maruyama@tudelft.nl; claudio.bruschini@epfl.ch; edoardo.charbon@epfl.ch OI Antolovic, Ivan Michel/0000-0001-6155-6895 FU Dutch Technology Foundation (STW); Swiss National Science Foundation (SNF) [SNF 51NF40-144633]; NCCR MICS; CCES through the SwissEx project FX This research was funded in part by the Dutch Technology Foundation (STW), by the Swiss National Science Foundation (SNF) under Grant SNF 51NF40-144633, by the NCCR MICS, as well as by CCES through the SwissEx project. The microlenses on the SwissSPAD chip were fabricated by CSEM Muttenz, Switzerland. The authors thank Xilinx Inc. (Santa Jose, CA, USA) for the generous donation of Virtex (TM) 4 FPGAs used in this work. NR 37 TC 2 Z9 2 U1 3 U2 6 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUL PY 2016 VL 16 IS 7 AR UNSP 1005 DI 10.3390/s16071005 PG 15 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DS7MG UT WOS:000380967000063 ER PT J AU Morris, RA Johnson, M Venable, KB Lindsey, J AF Morris, Robert A. Johnson, Matthew Venable, K. Brent Lindsey, James TI Designing Noise-Minimal Rotorcraft Approach Trajectories SO ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY LA English DT Article DE Path planning; optimization; rotorcraft noise reduction; sustainability ID PROBABILISTIC ROADMAPS; HELICOPTER; SEARCH AB NASA and the international aviation community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence to design low-noise flight profiles that can be then validated though field tests. This article investigates the use of discrete heuristic search methods to design low-noise approach trajectories for rotorcraft. Our work builds on a long research tradition in trajectory optimization using either numerical methods or discrete search. Novel features of our approach include the use of a discrete search space with a resolution that can be varied, and the coupling of search with a robust simulator to evaluate candidates. The article includes a systematic comparison of different search techniques; in particular, in the experiments, we are able to do a trade study that compares complete search algorithms such as A* with faster but approximate methods such as local search. C1 [Morris, Robert A.; Lindsey, James] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Johnson, Matthew] Florida Inst Human & Machine Cognit, 40 S Alcaniz St, Pensacola, FL 32502 USA. [Venable, K. Brent] Florida Inst Human & Machine Cognit, 15 SE Osceola Ave, Ocala, FL 34471 USA. [Morris, Robert A.; Lindsey, James] Ames Res Ctr, Moffett Field, CA 94035 USA. RP Morris, RA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Morris, RA (reprint author), Ames Res Ctr, Moffett Field, CA 94035 USA. EM robert.a.morris@nasa.gov; mjohnson@ihmc.us; kvenable@ihmc.us; james.e.lindsey@nasa.gov FU NASA FX This work is supported by NASA. NR 29 TC 0 Z9 0 U1 3 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 2157-6904 EI 2157-6912 J9 ACM T INTEL SYST TEC JI ACM Trans. Intell. Syst. Technol. PD JUL PY 2016 VL 7 IS 4 SI SI AR 58 DI 10.1145/2838738 PG 25 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems SC Computer Science GA DS0YG UT WOS:000380322200015 ER PT J AU Garrett, RD Carlson, KM Rueda, X Noojipady, P AF Garrett, Rachael D. Carlson, Kimberly M. Rueda, Ximena Noojipady, Praveen TI Assessing the potential additionality of certification by the Round table on Responsible Soybeans and the Roundtable on Sustainable Palm Oil (vol 11, pg 045003, 2016) SO Environmental Research Letters LA English DT Correction C1 [Garrett, Rachael D.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Carlson, Kimberly M.] Univ Hawaii Manoa, Dept Nat Resources & Environm Management, Honolulu, HI 96822 USA. [Carlson, Kimberly M.] Univ Minnesota, Inst Environm, St Paul, MN 55108 USA. [Rueda, Ximena] Univ Los Andes, Sch Management, Bogota, Colombia. [Noojipady, Praveen] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA. [Noojipady, Praveen] Natl Wildlife Federat, Natl Advocacy Ctr, Washington, DC USA. [Noojipady, Praveen] Univ Maryland, College Pk, MD 20742 USA. RP Garrett, RD (reprint author), Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. OI Garrett, Rachael/0000-0002-6171-263X NR 1 TC 0 Z9 0 U1 7 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL PY 2016 VL 11 IS 7 AR 079502 DI 10.1088/1748-9326/11/7/079502 PG 3 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DS5JD UT WOS:000380817000038 ER PT J AU Pulver, JR Liu, H Scott-Denton, E AF Pulver, Jeffrey Robert Liu, Hui Scott-Denton, Elizabeth TI Modelling community structure and species co-occurrence using fishery observer data SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE cluster analysis; commercial fisheries; fishery observer; species co-occurrence; species stratifications ID UNITED-STATES; ASSEMBLAGES; MORTALITY; DISCARD; SNAPPER; OREGON; CAUGHT; COAST AB In this study, we modelled fishery observer data to compare methods of identifying community structure using cluster analyses to determine stratifications and probabilistic models for examining species co-occurrence in the Gulf of Mexico deepwater reef fish fishery. Comparing cluster analysis methods, the correlation measure of dissimilarity in combination with average agglomerative linkage was the most efficient method for determining species relationships using simulated random species as a comparison tool. Cluster analysis revealed distinct species stratifications and in combination with multiscale bootstrapping generated probabilities indicating the strength of stratifications in the fishery. A more parsimonious approach with probabilistic models was also developed to quantify pairwise species co-occurrence as random, positive, or negative based on the observed vs. expected fishing sets with co-occurrence. For the most common species captured, the probabilistic models predicted positive or negative co-occurrence between 84.2% of the pairwise combinations examined. These methods provide fishery managers tools for determining multispecies quota allocations and offer insights into other by catch species of interest. C1 [Pulver, Jeffrey Robert; Scott-Denton, Elizabeth] Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Galveston Lab, 4700 Ave U, Galveston, TX 77551 USA. [Liu, Hui] Texas A&M Univ, Dept Marine Biol, Galveston, TX 77553 USA. RP Pulver, JR (reprint author), Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Galveston Lab, 4700 Ave U, Galveston, TX 77551 USA. EM jeff.pulver@noaa.gov NR 30 TC 0 Z9 0 U1 2 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JUL PY 2016 VL 73 IS 7 BP 1750 EP 1763 DI 10.1093/icesjms/fsw033 PG 14 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA DR8HX UT WOS:000380140100004 ER PT J AU Cruden, BA Brandis, AM White, TR Mahzari, M Bose, D AF Cruden, Brett A. Brandis, Aaron M. White, Todd R. Mahzari, Milad Bose, Deepak TI y Radiative Heating During Mars Science Laboratory Entry: Simulation, Ground Test, and Flight SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 53rd AIAA Aerospace Sciences Meeting / AIAA Atmospheric Flight Mechanics Conference / 17th AIAA Non-Deterministic Approaches Conference / AIAA Science and Technology Forum / AIAA Infotech at Aerospace Conference CY JAN 05-09, 2015 CL Kissimmee, FL SP AIAA ID ENVIRONMENT; EMISSION AB The heat shield of the Mars Science Laboratory was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system during atmospheric entry. The heat load derived from the thermocouples in the stagnation region was found to be 33% lower than corresponding postflight predictions of convective heating alone. It was hypothesized that this difference could be attributed to radiation from the shock-heated gas, a mechanism not considered in preflight analyses of flowfields. To test the hypothesis and quantify the contribution of shock-layer radiation to total surface heating, ground tests and simulations (both flow and radiation) were performed at several points along the best-estimated entry trajectory of the Mars Science Laboratory. The present paper provides an assessment of the quality of the radiation model and its impact to stagnation point heating. The impact of radiative heating is shown to account for 43% of the heat load discrepancy. Additional possible factors behind the remaining discrepancy are discussed. C1 [Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.] NASA, Ames Res Ctr, ERC Inc, Aerothermodynam Branch, Moffett Field, CA 94035 USA. [Mahzari, Milad] NASA, Ames Res Ctr, ERC Inc, Entry Syst Branch, Moffett Field, CA 94035 USA. [Bose, Deepak] NASA, Ames Res Ctr, Aerothermodynam Branch, Moffett Field, CA 94035 USA. [Cruden, Brett A.; Bose, Deepak] AIAA, Reston, VA 20191 USA. RP Cruden, BA (reprint author), NASA, Ames Res Ctr, ERC Inc, Aerothermodynam Branch, Moffett Field, CA 94035 USA.; Cruden, BA (reprint author), AIAA, Reston, VA 20191 USA. EM brett.a.cruden@nasa.gov; aaron.m.brandis@nasa.gov; todd.r.white@nasa.gov; milad.mahzari@nasa.gov; deepak.bose@nasa.gov NR 29 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD JUL-SEP PY 2016 VL 30 IS 3 BP 642 EP 650 DI 10.2514/1.T4798 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA DS1NZ UT WOS:000380364100017 ER PT J AU Nuth, JA Johnson, NM Ferguson, FT Carayon, A AF Nuth, Joseph A. Johnson, Natasha M. Ferguson, Frank T. Carayon, Alicia TI Gas/solid carbon branching ratios in surface-mediated reactions and the incorporation of carbonaceous material into planetesimals SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID SOLAR NEBULA; GRAPHITE WHISKERS; ORGANICS; GRAINS; METEORITES; CATALYSIS; MOLECULES; CHEMISTRY; SPHERES; ANALOGS AB We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N-2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673K to less than 40% for a magnetite catalyst at 873K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume filamentous structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions. C1 [Nuth, Joseph A.] NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Code 690, Greenbelt, MD 20771 USA. [Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia] NASA Goddard Space Flight Ctr, Astrochem Lab, Code 691, Greenbelt, MD 20771 USA. [Ferguson, Frank T.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Carayon, Alicia] Strasbourg Cent Campus 1 Rue Jean Domin Cassini, Int Space Univ, Strasbourg Cent Campus,1 Rue Jean Dominique, F-67400 Illkirch Graffenstaden, France. RP Nuth, JA (reprint author), NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Code 690, Greenbelt, MD 20771 USA. EM joseph.a.nuth@nasa.gov NR 33 TC 0 Z9 0 U1 4 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2016 VL 51 IS 7 BP 1310 EP 1322 DI 10.1111/maps.12666 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS0GU UT WOS:000380274300008 ER PT J AU Erzberger, H Nikoleris, T Paielli, RA Chu, YC AF Erzberger, Heinz Nikoleris, Tasos Paielli, Russell A. Chu, Yung-Cheng TI Algorithms for control of arrival and departure traffic in terminal airspace SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE Automated air traffic management; algorithms for control of arrival traffic; autonomous system for air traffic control; separation assurance for air traffic AB This paper presents a design approach and basic algorithms for a future system that can perform aircraft conflict resolution, arrival scheduling and convective weather avoidance with a high level of autonomy in terminal area airspace. Such a system, located on the ground, is intended to solve autonomously the major problems currently handled manually by human controllers. It has the potential to accomodate higher traffic levels and a mix of conventional and unmanned aerial vehicles with reduced dependency on controllers. The main objective of this paper is to describe the fundamental trajectory and scheduling algorithms that provide the foundation for an autonomous system of the future. These algorithms generate trajectories that are free of conflicts with other traffic, avoid convective weather if present, and provide scheduled times for landing with specified in-trail spacings. The maneuvers the algorithms generate to resolve separation and spacing conflicts include speed, horizontal path, and altitude changes. Furthermore, a method for reassigning arrival aircraft to alternate runways in order to reduce delays is also included. The algorithms generate conflict free trajectories for terminal area traffic, comprised primarily of arrivals and departures to and from multiple airports. Examples of problems solved and performance statistics from a fast-time simulation using simulated traffic of arrivals and departures at the Dallas/Fort Worth International Airport and Dallas Love Field are described. C1 [Erzberger, Heinz; Paielli, Russell A.] NASA, Ames Res Ctr, Mail Stop 210-10, Moffett Field, CA 94035 USA. [Nikoleris, Tasos] Univ Calif Santa Cruz, Moffett Field, CA USA. [Chu, Yung-Cheng] AerospaceComputing Inc, Moffett Field, CA USA. RP Erzberger, H (reprint author), NASA, Ames Res Ctr, Mail Stop 210-10, Moffett Field, CA 94035 USA. EM heinz.erzberger@nasa.gov NR 15 TC 0 Z9 0 U1 6 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0954-4100 EI 2041-3025 J9 P I MECH ENG G-J AER JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. PD JUL PY 2016 VL 230 IS 9 SI SI BP 1762 EP 1779 DI 10.1177/0954410016629499 PG 18 WC Engineering, Aerospace; Engineering, Mechanical SC Engineering GA DS0UM UT WOS:000380312300018 ER PT J AU Marchi, S Ermakov, AI Raymond, CA Fu, RR O'Brien, DP Bland, MT Ammannito, E De Sanctis, MC Bowling, T Schenk, P Scully, JEC Buczkowski, DL Williams, DA Hiesinger, H Russell, CT AF Marchi, S. Ermakov, A. I. Raymond, C. A. Fu, R. R. O'Brien, D. P. Bland, M. T. Ammannito, E. De Sanctis, M. C. Bowling, T. Schenk, P. Scully, J. E. C. Buczkowski, D. L. Williams, D. A. Hiesinger, H. Russell, C. T. TI The missing large impact craters on Ceres SO NATURE COMMUNICATIONS LA English DT Article ID MAIN ASTEROID BELT; PRIMORDIAL EXCITATION; COLLISIONAL HISTORY; SOLAR-SYSTEM; EVOLUTION; VESTA; ORIGIN AB Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters > 4400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters > similar to 280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing. C1 [Marchi, S.] Southwest Res Inst, Boulder, CO 80305 USA. [Ermakov, A. I.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Raymond, C. A.; Scully, J. E. C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Fu, R. R.] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10968 USA. [O'Brien, D. P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Bland, M. T.] USGS Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Ammannito, E.; Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [De Sanctis, M. C.] INAF, Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy. [Bowling, T.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Schenk, P.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Buczkowski, D. L.] John Hopkins Appl Phys Lab, Laurel, MD 20723 USA. [Williams, D. A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Hiesinger, H.] Univ Munster, Inst Planetol, D-48149 Munster, Germany. RP Marchi, S (reprint author), Southwest Res Inst, Boulder, CO 80305 USA. EM marchi@boulder.swri.edu OI Ermakov, Anton/0000-0002-7020-7061 NR 41 TC 1 Z9 1 U1 5 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2016 VL 7 AR 12257 DI 10.1038/ncomms12257 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR9DK UT WOS:000380197100001 PM 27459197 ER PT J AU Lyons, JB Ho, NT Fergueson, WE Sadler, GG Cals, SD Richardson, CE Wilkins, MA AF Lyons, Joseph B. Ho, Nhut T. Fergueson, William E. Sadler, Garrett G. Cals, Samantha D. Richardson, Casey E. Wilkins, Mark A. TI Trust of an Automatic Ground Collision Avoidance Technology: A Fighter Pilot Perspective SO MILITARY PSYCHOLOGY LA English DT Article DE trust in automation; automatic ground collision avoidance system; trust; aviation psychology ID INDIVIDUAL-DIFFERENCES; RELIANCE; HUMANS AB The present study examined the antecedents of trust among operational Air Force fighter pilots for an automatic ground collision avoidance technology. This technology offered a platform with high face validity for studying trust in automation because it is an automatic system currently being used in operations by the Air Force. Pilots (N = 142) responded to an online survey which asked about their attitudes toward the technology and assessed a number of psychological factors. Consistent with prior research on trust in automation, a number of trust antecedents were identified which corresponded to human factors, learned trust factors, and situational factors. Implications for the introduction of novel automatic systems into the military are discussed. C1 [Lyons, Joseph B.; Fergueson, William E.] Air Force Res Lab, Human Trust & Interact Branch, 2215 1st St,Bldg 33, Wright Patterson AFB, OH 45433 USA. [Ho, Nhut T.] Calif State Univ, Dept Mech Engn, Long Beach, CA USA. [Sadler, Garrett G.] NASA, Flight Deck Display Res Lab, Ames Res Ctr, Moffett Field, CA USA. [Cals, Samantha D.; Richardson, Casey E.] 416th Flight Test Squadron, Edwards AFB, CA USA. [Wilkins, Mark A.] Off Secretary Def, Washington, DC USA. RP Lyons, JB (reprint author), Air Force Res Lab, Human Performance Wing 711, Human Ctr ISR Div, Human Trust & Interact Branch, 2215 1st St,Bldg 33, Wright Patterson AFB, OH 45433 USA. EM joseph.lyons.6@us.af.mil NR 20 TC 0 Z9 0 U1 7 U2 7 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0899-5605 EI 1532-7876 J9 MIL PSYCHOL JI Milit. Psychol. PD JUL PY 2016 VL 28 IS 4 BP 271 EP 277 DI 10.1037/mil0000124 PG 7 WC Psychology, Multidisciplinary SC Psychology GA DR7HG UT WOS:000380070000006 ER PT J AU Park, JY Moon, DI Bae, H Roh, YT Seol, ML Lee, BH Jeon, CH Lee, HC Choi, YK AF Park, Jun-Young Moon, Dong-Il Bae, Hagyoul Roh, Young Tak Seol, Myeong-Lok Lee, Byung-Hyun Jeon, Chang-Hoon Lee, Hee Chul Choi, Yang-Kyu TI Local Electro-Thermal Annealing for Repair of Total Ionizing Dose-Induced Damage in Gate-All-Around MOSFETs SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE MOSFET; gate-all-around (GAA); total ionizing dose (TID); electro-thermal annealing (ETA); nanowire; self-curable; Joule heat ID MOS OXIDES; RADIATION AB A shift in threshold voltage caused by total ionizing dose (TID) is problematic in the MOSFET, especially in aerospace applications. Unlike traditional methods to minimize damage from TID, in this letter, a novel electro-thermal annealing method to cure the TID-induced damage is demonstrated for the first time. In this concept, the conventional hardening or shielding techniques are not used. In a gate-all-around MOSFET structure, dual gate electrodes were employed as an embedded nanowire heater to generate localized Joule heat, which can anneal insulating layers, including gate oxide and spacer. With the Joule heat, trapped positive charges produced by the TID were neutralized within 200 ms. A damaged device with a radiation-induced threshold voltage shift was repaired to the level of a fresh pristine device. C1 [Park, Jun-Young; Bae, Hagyoul; Roh, Young Tak; Seol, Myeong-Lok; Lee, Byung-Hyun; Jeon, Chang-Hoon; Lee, Hee Chul; Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea. [Moon, Dong-Il] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Lee, Byung-Hyun; Jeon, Chang-Hoon] Samsung Elect, Dept Memory Business & Semicond, Ctr Res & Dev, Hwaseong 445701, South Korea. RP Choi, YK (reprint author), Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea. EM ykchoi@ee.kaist.ac.kr RI Lee, Hee Chul/C-1996-2011; OI Seol, Myeong-Lok/0000-0001-5724-2244 FU National Research Foundation of Korea (NRF) within the Ministry of Science, ICT and Future Planning (MSIP) through the Pioneer Research Center Program [2012-0009600]; Center for Integrated Smart Sensors within MSIP through the Global Frontier Project [CISS-2011-0031848]; NRF within the Ministry of Education [2014H1A2A1022137] FX This work was supported in part by the National Research Foundation of Korea (NRF) within the Ministry of Science, ICT and Future Planning (MSIP) through the Pioneer Research Center Program under Grant 2012-0009600, in part by the Center for Integrated Smart Sensors within MSIP through the Global Frontier Project under Grant CISS-2011-0031848, and in part by NRF within the Ministry of Education through the Global Ph.D. Fellowship Program under Grant 2014H1A2A1022137. The review of this letter was arranged by Editor T. Wang. (Corresponding author: Yang-Kyu Choi.) NR 21 TC 0 Z9 0 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 EI 1558-0563 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD JUL PY 2016 VL 37 IS 7 BP 843 EP 846 DI 10.1109/LED.2016.2574341 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA DR5JZ UT WOS:000379940600006 ER PT J AU Brekke, C Jones, CE Skrunes, S Holt, B Espeseth, M Eltoft, T AF Brekke, Camilla Jones, Cathleen E. Skrunes, Stine Holt, Benjamin Espeseth, Martine Eltoft, Torbjorn TI Cross-Correlation Between Polarization Channels in SAR Imagery Over Oceanographic Features SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Cross-correlation features; hybrid-polarity (HP); oil spill; quad-polarimetry; synthetic aperture radar (SAR) ID SYNTHETIC-APERTURE RADAR AB This letter discusses cross-correlation features derived from near-coincident RADARSAT-2 quad-polarimetric and RISAT-1 hybrid-polarity (HP) measurements collected during the NOrwegian Radar oil Spill Experiment in 2015 (NORSE2015). We show that the imaginary part of the cross-correlation between RH and RV is an HP parallel to the real part of the cross-correlation between HH and VV earlier proposed for oil spill characterization. We compared the RADARSAT-2 and RISAT-1 scenes, separated in time by less than an hour, and the results show a clear difference between the slicks across these acquisitions. The development of the oil spills was closely monitored during NORSE2015. Due to the evolving nature of the oil spills and the weathering processes acting upon the spills, our results also indicate an importance of a high synthetic aperture radar sampling rate during an actual oil spill event. C1 [Brekke, Camilla; Skrunes, Stine; Espeseth, Martine; Eltoft, Torbjorn] UiT, N-9037 Tromso, Norway. [Jones, Cathleen E.; Holt, Benjamin] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Brekke, C (reprint author), UiT, N-9037 Tromso, Norway. EM camilla.brekke@uit.no; cathleen.e.jones@jpl.nasa.gov; stine.skrunes@uit.no; benjamin.m.holt@jpl.nasa.gov; martine.espeseth@uit.no; torbjorn.eltoft@uit.no FU National Aeronautics and Space Administration; GlobOilRisk (RCN) [235444]; CIRFA (RCN) [237906] FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The RS-2 data were provided by NSC/KSAT, Norwegian-Canadian RADARSAT agreement 2015. The RISAT-1 data were provided through GlobOilRisk (RCN project no. 235444). NORSE2015 was partly financed by CIRFA (RCN Grant no. 237906) NR 11 TC 3 Z9 3 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD JUL PY 2016 VL 13 IS 7 BP 997 EP 1001 DI 10.1109/LGRS.2016.2558543 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DR2EU UT WOS:000379718600024 ER PT J AU Burt, EA Yi, L Tucker, B Hamell, R Tjoelker, RL AF Burt, Eric A. Yi, Lin Tucker, Blake Hamell, Robert Tjoelker, Robert L. TI JPL Ultrastable Trapped Ion Atomic Frequency Standards SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article DE Atomic clocks; compensated multipole trapped ion atomic clock; ion traps AB Recently, room temperature trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on three directions: 1) ultrastable atomic clocks, usually for terrestrial applications emphasizing ultimate stability performance and autonomous timekeeping; 2) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements; and 3) miniature clocks. In this paper, we concentrate on the first direction and present a design and the initial results from a new ultrastable clock referred to as L10 that achieves a short-term stability of 4.5 x 10(-14)/tau(1/2) and an initial measurement of no significant drift with an uncertainty of 2.4 x 10(-16)/day over a two-week period. C1 [Burt, Eric A.; Yi, Lin; Tucker, Blake; Hamell, Robert; Tjoelker, Robert L.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. RP Burt, EA (reprint author), CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. EM eric.a.burt@jpl.nasa.gov; lin.yi@jpl.nasa.gov; blake.c.tucker@jpl.nasa.gov; robert.l.hamell.@jpl.nasa.gov; robert.l.tjoelker@jpl.nasa.gov NR 18 TC 2 Z9 2 U1 4 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD JUL PY 2016 VL 63 IS 7 SI SI BP 1013 EP 1021 DI 10.1109/TUFFC.2016.2572701 PG 9 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA DR4OH UT WOS:000379880500013 PM 27249827 ER PT J AU Tjoelker, RL Prestage, JD Burt, EA Chen, P Chong, YJ Chung, SK Diener, W Ely, T Enzer, DG Mojaradi, H Okino, C Pauken, M Robison, D Swenson, BL Tucker, B Wang, RB AF Tjoelker, Robert L. Prestage, John D. Burt, Eric A. Chen, Pin Chong, Yong J. Chung, Sang K. Diener, William Ely, Todd Enzer, Daphna G. Mojaradi, Hadi Okino, Clay Pauken, Mike Robison, David Swenson, Bradford L. Tucker, Blake Wang, Rabi TI Mercury Ion Clock for a NASA Technology Demonstration Mission SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article DE Atomic clocks; atomic frequency standards; ion traps; space clocks ID FREQUENCY STANDARD AB There are many different atomic frequency standard technologies but only few meet the demanding performance, reliability, size, mass, and power constraints required for space operation. The Jet Propulsion Laboratory is developing a linear ion-trap-based mercury ion clock, referred to as DSAC (Deep-Space Atomic Clock) under NASA's Technology Demonstration Mission program. This clock is expected to provide a new capability with broad application to space-based navigation and science. A one-year flight demonstration is planned as a hosted payload following an early 2017 launch. This first-generation mercury ion clock for space demonstration has a volume, mass, and power of 17 L, 16 kg, and 47 W, respectively, with further reductions planned for follow-on applications. Clock performance with a signal-to-noise ratio (SNR)*Q limited stability of 1.5E - 13/tau(1/2) has been observed and a fractional frequency stability of 2E-15 at one day measured (no drift removed). Such a space-based stability enables autonomous timekeeping of Delta t < 0.2ns/day with a technology capable of even higher stability, if desired. To date, the demonstration clock has been successfully subjected to mechanical vibration testing at the 14 g(rms) level, thermal-vacuum operation over a range of 42 degrees C, and electromagnetic susceptibility tests. C1 [Tjoelker, Robert L.; Prestage, John D.; Burt, Eric A.; Chen, Pin; Chong, Yong J.; Chung, Sang K.; Diener, William; Ely, Todd; Enzer, Daphna G.; Mojaradi, Hadi; Okino, Clay; Pauken, Mike; Robison, David; Swenson, Bradford L.; Tucker, Blake; Wang, Rabi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Tjoelker, RL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.L.Tjoelker@jpl.nasa.gov RI Chen, Pin/B-1112-2008 OI Chen, Pin/0000-0003-1195-9666 NR 23 TC 1 Z9 1 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD JUL PY 2016 VL 63 IS 7 SI SI BP 1034 EP 1043 DI 10.1109/TUFFC.2016.2543738 PG 10 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA DR4OH UT WOS:000379880500016 PM 27019481 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Caneva, G De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Glawion, D Godinovic, N Munoz, AG Guberman, D Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Reinthal, R Rhode, W Ribo, M Rico, J Garcia, JR Rugamer, S Saito, T Satalecka, K Scapin, V Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanin, R Lucarelli, F Pittori, C Vercellone, S Berdyugin, A Carini, MT Lahteenmaki, A Pasanen, M Pease, A Sainio, J Tornikoski, M Walters, R AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Caneva, G. De Lotto, B. de Ona Wilhelmi, E. Mendez, C. Delgado Di Pierro, F. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Glawion (Eisenacher), D. Godinovic, N. Gonzalez Munoz, A. Guberman, D. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Ruegamer, S. Saito, T. Satalecka, K. Scapin, V. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanin, R. Lucarelli, F. Pittori, C. Vercellone, S. Berdyugin, A. Carini, M. T. Lahteenmaki, A. Pasanen, M. Pease, A. Sainio, J. Tornikoski, M. Walters, R. CA MAGIC Collaboration AGILE Team TI Multiwavelength observations of the blazar 1ES 1011+496 in Spring 2008 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; galaxies: active; gamma-rays: galaxies; X-rays: galaxies ID BL-LACERTAE OBJECTS; ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; SPECTRAL ENERGY-DISTRIBUTIONS; ALL-SKY SURVEY; LAC OBJECTS; X-RAY; MAGIC TELESCOPES; SOURCE CATALOG AB The BL Lac object 1ES 1011+ 496 was discovered at very high energy (VHE, E > 100GeV) gamma-rays by Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) in Spring 2007. Before that the source was little studied in different wavelengths. Therefore, a multiwave-length (MWL) campaign was organized in Spring 2008. Along MAGIC, the MWL campaign included the Mets " ahovi Radio Observatory, Bell and Kungliga Vetenskapsakademien (KVA) optical telescopes and the Swift and AGILE satellites. MAGIC observations span from 2008 March to May for a total of 27.9 h, of which 19.4 h remained after quality cuts. The light curve showed no significant variability yielding an integral flux above 200GeVof (1.3 +/- 0.3) x10(-11) photons cm(-2) s(-1). The differential VHE spectrum could be described with a power-law function with a spectral index of 3.3 +/- 0.4. Both results were similar to those obtained during the discovery. Swift X-ray Telescope observations revealed an X-ray flare, characterized by a harder-when-brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous spectral energy distribution shows a synchrotron-dominated source, unlike concluded in previous work based on non-simultaneous data, and is well described by a standard one-zone synchrotron self-Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects. C1 [Barres de Almeida, U.] Ctr Brasileiro Pesquisas Fis CBPF MCTI, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, RJ, Brazil. [Becerra Gonzalez, J.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Astron, Dept Phys, College Pk, MD 20742 USA. [Bretz, T.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Lopez-Oramas, A.] CEA Saclay, DSM IRFU, Lab AIM, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Nilsson, K.] Finnish Ctr Astron ESO FINCA, Turku, Finland. [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, HR-10000 Zagreb, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, HR-10000 Zagreb, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, Sect 1,Block Bidhannagar, Kolkata 700064, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Doro, M.; Fruck, C.; Hose, J.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Noda, K.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.; Scapin, V.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; De Caneva, G.; Garczarczyk, M.; Mallot, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Bernardini, E.] Humboldt Univ, Ist Phys, Newtonstr 15, D-12489 Berlin, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.; Ward, J. E.] IFAE, Campus UAB, E-08193 Bellaterra, Spain. [Bretz, T.; Dorner, D.; Elsaesser, D.; Glawion (Eisenacher), D.; Mannheim, K.; Ruegamer, S.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Mendez, C. Delgado] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] INFN, I-35131 Padua, Italy. [de Ona Wilhelmi, E.; Wu, M. H.] IEEC, CSIC, Inst Space Sci, E-08193 Barcelona, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Barcelona, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, IEEC, CERES, E-08193 Barcelona, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC, E-08028 Barcelona, Spain. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokyo, ICRR, Japanese MAGIC Consortium, Dept Phys, Tokyo 1138654, Japan. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokushima, Kyoto Univ, Tokai Univ, Hakubi Ctr,KEK, Kyoto 6068502, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Turku, Finnish MAGIC Consortium, Tuorla Observ, FI-21500 Piikkio, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Astron Div, FI-21500 Piikkio, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Persic, M.] Univ Trieste, I-34127 Trieste, Italy. [Persic, M.] INFN Trieste, I-34127 Trieste, Italy. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Torres, D. F.] ICREA, E-08193 Barcelona, Spain. [Torres, D. F.] IEEC, CSIC, Inst Space Sci, E-08193 Barcelona, Spain. [Treves, A.] Univ Insubria, I-22100 Como, Como, Italy. [Treves, A.] INFN Milano Bicocca, I-22100 Como, Como, Italy. [Lucarelli, F.; Pittori, C.] ASI Sci Data Ctr, I-00133 Rome, Italy. [Lucarelli, F.; Pittori, C.] INAF Oar, I-00040 Monte Porzio Catone, Italy. [Vercellone, S.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-90146 Palermo, Italy. [Berdyugin, A.; Pasanen, M.; Sainio, J.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Vaisalantie 20, FI-21500 Piikkio, Finland. [Carini, M. T.; Pease, A.; Walters, R.] Western Kentucky Univ, Dept Phys & Astron, Bowling Green, KY 42103 USA. [Lahteenmaki, A.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, Metsahovintie 114, FI-02540 Kylmala, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, FI-00076 Aalto, Finland. RP Lindfors, E (reprint author), Univ Turku, Finnish MAGIC Consortium, Tuorla Observ, FI-21500 Piikkio, Finland.; Lindfors, E (reprint author), Univ Oulu, Astron Div, FI-21500 Piikkio, Finland. EM elilin@utu.fi; rirein@utu.fi; stefan.ruegamer@web.de RI GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Lahteenmaki, Anne/L-5987-2013; Nievas Rosillo, Mireia/K-9738-2014; Font, Lluis/L-4197-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Miranda, Jose Miguel/F-2913-2013; Torres, Diego/O-9422-2016; Barrio, Juan/L-3227-2014 OI GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Bonnoli, Giacomo/0000-0003-2464-9077; Doro, Michele/0000-0001-9104-3214; Poutanen, Juri/0000-0002-0983-0049; Mazin, Daniel/0000-0002-2010-4005; Prandini, Elisa/0000-0003-4502-9053; Temnikov, Petar/0000-0002-9559-3384; Nievas Rosillo, Mireia/0000-0002-8321-9168; Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Miranda, Jose Miguel/0000-0002-1472-9690; Torres, Diego/0000-0002-1522-9065; Barrio, Juan/0000-0002-0965-0259 FU German BMBF; MPG; Italian INFN; INAF; Swiss National Fund SNF; ERDF under Spanish MINECO [FPA2012-39502]; Japanese JSPS; MEXT; Centro de Excelencia Severo [Ochoa SEV-2012-0234, CPAN CSD2007-00042]; Spanish Consolider-Ingenio programme [CSD2009-00064]; Academy of Finland [268740, 212656, 210338, 121148]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW grant [745/N-HESS-MAGIC/2010/0]; ASI [I/089/06/2, I/042/10/0, I/028/12/0]; Italian Institute of Astrophysics (INAF); Italian Institute of Nuclear Physics (INFN); Institute for Astrophysics and Space Science at Western Kentucky University FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish MINECO (FPA2012-39502); and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.; The AGILE Mission is funded by the ASI, with scientific and programmatic participation by the Italian Institute of Astrophysics (INAF) and the Italian Institute of Nuclear Physics (INFN). Research partially supported through the ASI grants no. I/089/06/2, I/042/10/0 and I/028/12/0.; MTC, RW, AP acknowledge support from the Institute for Astrophysics and Space Science at Western Kentucky University.; The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (numbers 212656, 210338, 121148, and others). NR 83 TC 2 Z9 2 U1 9 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2016 VL 459 IS 3 BP 2286 EP 2298 DI 10.1093/mnras/stw710 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3ZJ UT WOS:000379840900002 ER PT J AU Roa, J Urrutxua, H Pelaez, J AF Roa, Javier Urrutxua, Hodei Pelaez, Jesus TI Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE celestial mechanics; methods: numerical; binaries: general; stars: kinematics and dynamics ID SINGLE-STAR SCATTERING; EFFICIENT ORBIT INTEGRATION; N-BODY SIMULATIONS; KS-TRANSFORMATION; ANALYTIC APPROXIMATIONS; GRAVITATIONAL PROBLEM; NUMERICAL EXPERIMENTS; CHAIN REGULARIZATION; DYNAMICAL EVOLUTION; HYPERCOMPLEX FORM AB The need for the extra dimension in Kustaanheimo-Stiefel (KS) regularization is explained by the topology of the Hopf fibration, which defines the geometry and structure of KS space. A trajectory in Cartesian space is represented by a four-dimensional manifold called the fundamental manifold. Based on geometric and topological aspects classical concepts of stability are translated to KS language. The separation between manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-raising nature of the fibration transforms fixed points, limit cycles, attractive sets, and Poincare sections to higher dimensional subspaces. From these concepts chaotic systems are studied. In strongly perturbed problems, the numerical error can break the topological structure of KS space: points in a fibre are no longer transformed to the same point in Cartesian space. An observer in three dimensions will see orbits departing from the same initial conditions but diverging in time. This apparent randomness of the integration can only be understood in four dimensions. The concept of topological stability results in a simple method for estimating the time-scale in which numerical simulations can be trusted. Ideally, all trajectories departing from the same fibre should be KS transformed to a unique trajectory in three-dimensional space, because the fundamental manifold that they constitute is unique. By monitoring how trajectories departing from one fibre separate from the fundamental manifold a critical time, equivalent to the Lyapunov time, is estimated. These concepts are tested on N-body examples: the Pythagorean problem, and an example of field stars interacting with a binary. C1 [Roa, Javier; Urrutxua, Hodei; Pelaez, Jesus] Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, Madrid 28040, Spain. [Urrutxua, Hodei] Univ Southampton, Astronaut Res Grp, Southampton SO17 1BJ, Hants, England. [Roa, Javier] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Roa, J (reprint author), Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, Madrid 28040, Spain.; Roa, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM javier.roa@upm.es; H.Urrutxua@soton.ac.uk; j.pelaez@upm.es RI Pelaez, Jesus/M-7806-2016; OI Pelaez, Jesus/0000-0001-9755-1674; URRUTXUA CEREIJO, HODEI/0000-0002-9173-9593 FU Spanish Ministry of Economy and Competitiveness [ESP2013-41634-P]; Spanish Government; 'La Caixa' FX This work is part of the research project entitled 'Dynamical Analysis, Advanced Orbit Propagation and Simulation of Complex Space Systems' (ESP2013-41634-P) supported by the Spanish Ministry of Economy and Competitiveness. Authors thank the Spanish Government for its support. JR specially thanks 'La Caixa' for his doctoral fellowship and S. Le Maistre for motivating him to work on N-body problems. NR 67 TC 2 Z9 2 U1 3 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2016 VL 459 IS 3 BP 2444 EP 2454 DI 10.1093/mnras/stw780 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3ZJ UT WOS:000379840900014 ER PT J AU Abeysekara, AU Archambault, S Archer, A Benbow, W Bird, R Biteau, J Buchovecky, M Buckley, JH Bugaev, V Byrum, K Cardenzana, JV Cerruti, M Chen, X Christiansen, JL Ciupik, L Connolly, MP Cui, W Dickinson, HJ Dumm, J Eisch, JD Errando, M Falcone, A Feng, Q Finley, JP Fleischhack, H Flinders, A Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Huetten, M Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Kertzman, M Kieda, D Krause, M Krennrich, F Lang, MJ Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nieto, D O'Brien, S de Bhroithe, AO Ong, RA Otte, AN Park, N Pelassa, V Petrashyk, A Petry, D Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Ratliff, G Reyes, LC Reynolds, PT Reynolds, K Richards, GT Roache, E Rulten, C Santander, M Sembroski, GH Shahinyan, K Smith, AW Staszak, D Telezhinsky, I Tucci, JV Tyler, J Vincent, S Wakely, SP Weiner, OM Weinstein, A Wilhelm, A Williams, DA Zitzer, B AF Abeysekara, A. U. Archambault, S. Archer, A. Benbow, W. Bird, R. Biteau, J. Buchovecky, M. Buckley, J. H. Bugaev, V. Byrum, K. Cardenzana, J. V. Cerruti, M. Chen, X. Christiansen, J. L. Ciupik, L. Connolly, M. P. Cui, W. Dickinson, H. J. Dumm, J. Eisch, J. D. Errando, M. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Flinders, A. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Kertzman, M. Kieda, D. Krause, M. Krennrich, F. Lang, M. J. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nieto, D. O'Brien, S. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Pelassa, V. Petrashyk, A. Petry, D. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Ratliff, G. Reyes, L. C. Reynolds, P. T. Reynolds, K. Richards, G. T. Roache, E. Rulten, C. Santander, M. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Wilhelm, A. Williams, D. A. Zitzer, B. TI VERITAS and multiwavelength observations of the BL Lacertae object 1ES 1741+196 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astroparticle physics; relativistic processes; galaxies: individual: 1ES 1741+196=VER J1744+195 ID SPECTRAL ENERGY-DISTRIBUTIONS; GAMMA-RAY ASTRONOMY; X-RAY; LAC OBJECTS; SOURCE CATALOG; TEV BLAZARS; TELESCOPE; FERMI; DISCOVERY; SWIFT AB We present results from multiwavelength observations of the BL Lacertae object 1ES 1741 + 196, including results in the very high energy gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well modelled by a power law with a spectral index of 2.7 +/- 0.7(stat) +/- 0.2(syst). The integral flux above 180 GeV is (3.9 +/- 0.8(stat) +/- 1.0(syst)) x 10(-8) m(-2) s(-1), corresponding to 1.6 per cent of the Crab nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state. C1 [Abeysekara, A. U.; Flinders, A.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Archambault, S.; Griffin, S.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Buckley, J. H.; Bugaev, V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Pelassa, V.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; O'Brien, S.; Pueschel, E.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Buchovecky, M.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chen, X.; Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.; Wilhelm, A.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Christiansen, J. L.; Reyes, L. C.; Reynolds, K.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway H91, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Rulten, C.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Errando, M.; Mukherjee, R.; Santander, M.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.; Nieto, D.; Petrashyk, A.; Weiner, O. M.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Petry, D.] ESO, ALMA Reg Ctr, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork T12, Ireland. [Smith, A. W.] Univ Maryland, NASA GSFC, College Pk, MD 20742 USA. RP Christiansen, JL (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. EM jlchrist@calpoly.edu; elisa.pueschel@ucd.ie OI Pueschel, Elisa/0000-0002-0529-1973; Krause, Maria/0000-0001-7595-0914 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Marie Curie Intra-European Fellowship within 7th European Community FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada. This research used computational resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. EP acknowledges the support of a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. We are also grateful to Grant Williams and Daniel Kiminki for their dedication to the operation and support of the Super-LOTIS telescope. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible. NR 47 TC 0 Z9 0 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2016 VL 459 IS 3 BP 2550 EP 2557 DI 10.1093/mnras/stw664 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3ZJ UT WOS:000379840900022 ER PT J AU Lenkic, L Tzanavaris, P Gallagher, SC Desjardins, TD Walker, LM Johnson, KE Fedotov, K Charlton, J Hornschemeier, AE Durrell, PR Gronwall, C AF Lenkic, Laura Tzanavaris, Panayiotis Gallagher, Sarah C. Desjardins, Tyler D. Walker, Lisa May Johnson, Kelsey E. Fedotov, Konstantin Charlton, Jane Hornschemeier, Ann E. Durrell, Pat R. Gronwall, Caryl TI The ultraviolet and infrared star formation rates of compact group galaxies: an expanded sample SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: photometry; galaxies: star formation ID COLOR-MAGNITUDE DIAGRAM; ENERGY-DISTRIBUTIONS; LOCAL UNIVERSE; GREEN VALLEY; STELLAR MASS; RED SEQUENCE; COMA CLUSTER; SPITZER; SWIFT; EVOLUTION AB Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 mu m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 mu m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-'red'), also have bluer UV colours, higher specific SFRs, and tend to lie in H I-rich groups, while galaxies that are MIR-inactive (MIR-'blue') have redder UV colours, lower specific SFRs, and tend to lie in H I-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M-circle dot yr(-1), indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups. C1 [Lenkic, Laura; Gallagher, Sarah C.; Desjardins, Tyler D.; Fedotov, Konstantin] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Tzanavaris, Panayiotis; Hornschemeier, Ann E.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Tzanavaris, Panayiotis] Univ Maryland Baltimore Cty, Dept Phys, Joint Ctr Astrophys, 1000 Hilltop Cirlce, Baltimore, MD 21250 USA. [Tzanavaris, Panayiotis] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gallagher, Sarah C.] Univ Western Ontario, Ctr Planetary & Space Explorat, London, ON N6A 3K7, Canada. [Desjardins, Tyler D.] Univ Kansas, Dept Phys & Astron, Malott Room 1082,1251 Wescoe Hall Dr, Lawrence, KS 66045 USA. [Walker, Lisa May; Johnson, Kelsey E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Walker, Lisa May] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Charlton, Jane; Gronwall, Caryl] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Durrell, Pat R.] Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA. RP Lenkic, L (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM llenkic2@uwo.ca FU Natural Science and Engineering Research Council; Ontario Early Researcher Award Program FX This work was supported by the Natural Science and Engineering Research Council and the Ontario Early Researcher Award Program (LL, SG). We thank the anonymous referee for useful comments which improved the presentation of this work. We also thank T. Bitsakis, S. Rahmani and N. Vulic for helpful discussions. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. The original description of the VizieR service was published in Ochsenbein, Bauer & Marcout (2000). NR 77 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2016 VL 459 IS 3 BP 2948 EP 2963 DI 10.1093/mnras/stw779 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3ZJ UT WOS:000379840900051 ER PT J AU Karmakar, S Pandey, JC Savanov, IS Tas, G Pandey, SB Misra, K Joshi, S Dmitrienko, ES Sakamoto, T Gehrels, N Okajima, T AF Karmakar, Subhajeet Pandey, J. C. Savanov, I. S. Tas, G. Pandey, S. B. Misra, K. Joshi, S. Dmitrienko, E. S. Sakamoto, T. Gehrels, N. Okajima, T. TI LO Peg: surface differential rotation, flares, and spot-topographic evolution SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: activity; stars: flare; stars: imaging; stars: individual: (LO Peg); stars: late-type; starspots ID CHROMOSPHERICALLY ACTIVE STARS; FLIP-FLOP PHENOMENON; X-RAY SPECTROSCOPY; SOLAR-TYPE STARS; LATE-TYPE DWARFS; MAGNETIC ACTIVITY; TERM PHOTOMETRY; SPECTRAL-ANALYSIS; STELLAR ACTIVITY; TIME-SERIES AB Using the wealth of similar to 24 yr multiband data, we present an in-depth study of the star-spot cycles, surface differential rotations (SDR), optical flares, evolution of star-spot distributions, and coronal activities on the surface of young, single, main-sequence, ultrafast rotator LO Peg. From the long-term V-band photometry, we derive rotational period of LO Peg to be 0.4231 +/- 0.0001 d. Using the seasonal variations on the rotational period, the SDR pattern is investigated, and shows a solar-like pattern of SDR. A cyclic pattern with period of similar to 2.7 yr appears to be present in rotational period variation. During the observations, 20 optical flares are detected with a flare frequency of similar to 1 flare per two days and with flare energy of similar to 10(31-34) erg. The surface coverage of cool spots is found to be in the range of similar to 9-26 per cent. It appears that the high- and low-latitude spots are interchanging their positions. Quasi-simultaneous observations in X-ray, UV, and optical photometric bands show a signature of an excess of X-ray and UV activities in spotted regions. C1 [Karmakar, Subhajeet; Pandey, J. C.; Pandey, S. B.; Misra, K.; Joshi, S.] Aryabhatta Res Inst Observat Sci ARIES, Manora Peak 263002, Nainital, India. [Savanov, I. S.] Russian Acad Sci, Inst Astron, Ul Pyatniskaya 48, Moscow 119017, Russia. [Tas, G.] Ege Univ, Fac Sci, Astron & Space Sci Dept, TR-35100 Izmir, Turkey. [Dmitrienko, E. S.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Univ Skii Pr 13, Moscow 119992, Russia. [Sakamoto, T.] Aoyama Gakuin Univ, Dept Phys & Math, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. [Gehrels, N.; Okajima, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Karmakar, S (reprint author), Aryabhatta Res Inst Observat Sci ARIES, Manora Peak 263002, Nainital, India. EM subhajeet09@gmail.com; jeewan@aries.res.in; igs231@mail.ru FU Indo-Russian DST-RFBR project [INT/RUS/RFBR/P-167, RFBR Ind_a 14-02-92694, INT/RUS/RFBR/P-118] FX We thank the referee for his/her comments and suggestions that helped to considerably improve the manuscript. This research has been done under the Indo-Russian DST-RFBR project reference INT/RUS/RFBR/P-167 (for India) and Grant RFBR Ind_a 14-02-92694 (for Russia). SJ acknowledges the grant received under the Indo-Russian DST-RFBR project reference INT/RUS/RFBR/P-118. We acknowledge NASA Exoplanet Archive, All Sky Automated Survey archive, Hipparcos archive, Swift archive, and different telescope facilities we used to carry out our research. NR 82 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2016 VL 459 IS 3 BP 3112 EP 3129 DI 10.1093/mnras/stw855 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3ZJ UT WOS:000379840900064 ER PT J AU Chang, C Pujol, A Gaztanaga, E Amara, A Refregier, A Bacon, D Becker, MR Bonnett, C Carretero, J Castander, FJ Crocce, M Fosalba, P Giannantonio, T Hartley, W Jarvis, M Kacprzak, T Ross, AJ Sheldon, E Troxel, MA Vikram, V Zuntz, J Abbott, TMC Abdalla, FB Allam, S Annis, J Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Cunha, CE D'Andrea, CB da Costa, LN Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Estrada, J Evrard, AE Flaugher, B Frieman, J Goldstein, DA Gruen, D Gruendl, RA Gutierrez, G Honscheid, K Jain, B James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Marshall, JL Martini, P Melchior, P Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Rykoff, ES Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thomas, D Walker, AR AF Chang, C. Pujol, A. Gaztanaga, E. Amara, A. Refregier, A. Bacon, D. Becker, M. R. Bonnett, C. Carretero, J. Castander, F. J. Crocce, M. Fosalba, P. Giannantonio, T. Hartley, W. Jarvis, M. Kacprzak, T. Ross, A. J. Sheldon, E. Troxel, M. A. Vikram, V. Zuntz, J. Abbott, T. M. C. Abdalla, F. B. Allam, S. Annis, J. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Carrasco Kind, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Estrada, J. Evrard, A. E. Flaugher, B. Frieman, J. Goldstein, D. A. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. Jain, B. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Walker, A. R. TI Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; surveys; large-scale structure of Universe ID CHALLENGE LIGHTCONE SIMULATION; PHOTOMETRIC REDSHIFT PDFS; DIGITAL SKY SURVEY; SHEAR MEASUREMENT; HALO; LUMINOSITY; PARAMETER; MODEL; COLOR; INFORMATION AB We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a similar to 116 deg(2) area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later re-examined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1 sigma error bars in four photometric redshift bins to be 1.12 +/- 0.19 (z = 0.2-0.4), 0.97 +/- 0.15 (z = 0.4-0.6), 1.38 +/- 0.39 (z = 0.6-0.8), and 1.45 +/- 0.56 (z = 0.8-1.0). These measurements are consistent at the 2 sigma level with measurements on the same data set using galaxy clustering and cross-correlation of galaxies with cosmic microwave background lensing, with most of the redshift bins consistent within the 1 sigma error bars. In addition, our method provides the only sigma(8) independent constraint among the three. We forward model the main observational effects using mock galaxy catalogues by including shape noise, photo-z errors, and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution. C1 [Chang, C.; Amara, A.; Refregier, A.; Hartley, W.; Kacprzak, T.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Pujol, A.; Gaztanaga, E.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.] CSIC, IEEC, Inst Ciencies Espai, Fac Ciencies, Campus UAB,Torre C5 Par 2, E-08193 Barcelona, Spain. [Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Becker, M. R.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Becker, M. R.; Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Bonnett, C.; Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Giannantonio, T.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Jarvis, M.; Eifler, T. F.; Jain, B.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ross, A. J.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Troxel, M. A.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Optic Astron Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Estrada, J.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Burke, D. L.; Gruen, D.; Reil, K.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carrasco Kind, M.; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Carrasco Kind, M.; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.; Gruen, D.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain. RP Chang, C (reprint author), Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. EM chihway.chang@phys.ethz.ch RI Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Ogando, Ricardo/A-1747-2010; Gaztanaga, Enrique/L-4894-2014; OI Sobreira, Flavia/0000-0002-7822-0658; Ogando, Ricardo/0000-0003-2120-1154; Gaztanaga, Enrique/0000-0001-9632-0815; Pujol, Arnau/0000-0001-7288-6435; Abdalla, Filipe/0000-0003-2063-4345 FU Swiss National Science Foundation [200021-149442, 200021-143906]; beca FI; Generalitat de Catalunya [2009-SGR-1398]; MICINN [AYA2012-39620]; European Research Council [240672]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union's Seventh Framework Programme (FP7); ERC [240672, 291329, 306478] FX We thank Marc Manera, Donnacha Kirk, Andrina Nicola, Sebastian Seehars for useful discussion and feedback. CC, AA, AR, and TK are supported by the Swiss National Science Foundation grants 200021-149442 and 200021-143906. AP was supported by beca FI and 2009-SGR-1398 from Generalitat de Catalunya and project AYA2012-39620 from MICINN. JZ and SB acknowledge support from the European Research Council in the form of a Starting Grant with number 240672.; Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. NR 55 TC 6 Z9 6 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2016 VL 459 IS 3 BP 3203 EP 3216 DI 10.1093/mnras/stw861 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3ZJ UT WOS:000379840900070 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Buson, S Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Di Pierro, F Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Ramazani, VF Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Gora, D Guberman, D Hadasch, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Nogues, L Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Pedaletti, G Perri, L Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanin, R D'Ammando, F Berdyugin, A Hovatta, T Max-Moerbeck, W Raiteri, CM Readhead, ACS Reinthal, R Richards, JL Verrecchia, F Villata, M AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. de Almeida, U. Barres Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Buson, S. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. Wilhelmi, E. de Ona Di Pierro, F. Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Glawion, D. Eisenacher Elsaesser, D. Ramazani, V. Fallah Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Terrats, D. Garrido Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Gora, D. Guberman, D. Hadasch, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Rosillo, M. Nievas Nilsson, K. Nishijima, K. Noda, K. Nogues, L. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Pedaletti, G. Perri, L. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanin, R. D'Ammando, F. Berdyugin, A. Hovatta, T. Max-Moerbeck, W. Raiteri, C. M. Readhead, A. C. S. Reinthal, R. Richards, J. L. Verrecchia, F. Villata, M. CA MAGIC Collaboration Fermi LAT Collaboration TI Investigating the peculiar emission from the new VHE gamma-ray source H1722+119 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; BL Lacertae objects: individual: H1722+119; galaxies: distances and redshifts; gamma-rays: galaxies ID LARGE-AREA TELESCOPE; BL LACERTAE OBJECTS; ALL-SKY SURVEY; MAGIC TELESCOPES; LAC OBJECTS; DETECTED BLAZARS; SOURCE CATALOG; MAJOR UPGRADE; HELICAL JETS; CRAB-NEBULA AB The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100 GeV) gamma-ray band with a statistical significance of 5.9s. The integral flux above 150 GeV is estimated to be (2.0 +/- 0.5) per cent of the Crab nebula flux. We used contemporaneous high energy (HE, 100 MeV < E < 100 GeV) gamma-ray observations from Fermi-Large Area Telescope to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34 +/- 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the Owens Valley Radio Observatory telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution of H1722+119 shows surprising behaviour in the similar to 3 x 10(14)-10(18) Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] Univ Udine, INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Perri, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Univ Rijeka, Rudjer Boskov Inst, Croatian MAGIC Consortium, Rijeka, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Zagreb, Zagreb, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1-AF Bidhannagar,Sect 1, Kolkata 700064, India. [Bangale, P.; de Almeida, U. Barres; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [de Almeida, U. Barres] Brasileiro Pesquisas Fis CBPF MCTI, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, RJ, Brazil. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Dominguez, A.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Rosillo, M. Nievas] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Will, M.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Will, M.] Univ La Laguna, Dept Astrofis, E-38206 San Cristobal la Laguna, Tenerife, Spain. [Becerra Gonzalez, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Garczarczyk, M.; Gora, D.; Mallot, K.; Pedaletti, G.; Satalecka, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Bernardini, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Martinez, M.; Moralejo, A.; Nogues, L.; Palacio, J.; Rico, J.; Ward, J. E.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Bretz, T.; Dorner, D.; Glawion, D. Eisenacher; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Bretz, T.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.; Tescaro, D.] Univ Padua, I-35131 Padua, Italy. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.; Tescaro, D.] INFN, I-35131 Padua, Italy. [Wilhelmi, E. de Ona; Wu, M. H.] CSIC, IEEC, Inst Space Sci, E-08193 Barcelona, Spain. [Doert, M.; Einecke, S.; Elsaesser, D.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Finnish MAGIC Consortium, Turku, Finland. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Astron Div, Oulu, Finland. [Font, L.; Terrats, D. Garrido; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Bellaterra, Spain. [Font, L.; Terrats, D. Garrido; Gaug, M.] Univ Autonoma Barcelona, CERES, IEEC, E-08193 Bellaterra, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC, UB, E-08028 Barcelona, Spain. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Mazin, D.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.; Teshima, M.] Japanese MAGIC Consortium, Dept Phys, Tokyo, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Mazin, D.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.; Teshima, M.] Univ Tokyo, Kyoto Univ, Tokai Univ, Hakubi Ctr,Univ Tokushima,KEK, Tokyo, Japan. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Nilsson, K.] Finnish Ctr Astron, ESO FINCA, Turku, Finland. [Persic, M.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Moroni, P. G. Prada] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada] INFN Pisa, I-56126 Pisa, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Torres, D. F.] ICREA, E-08193 Barcelona, Spain. [Torres, D. F.] CSIC, IEEC, Inst Space Sci, E-08193 Barcelona, Spain. [D'Ammando, F.] Univ Bologna, Dip Fis & Astron, I-40127 Bologna, Italy. [D'Ammando, F.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Berdyugin, A.; Reinthal, R.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Turku, Finland. [Hovatta, T.] Aalto Univ, Metsahovi Radio Observ, Metsahovintie 114, FI-02540 Kylmala, Finland. [Hovatta, T.; Readhead, A. C. S.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Max-Moerbeck, W.; Villata, M.] NRAO, POB 0, Socorro, NM 87801 USA. [Raiteri, C. M.] INAF Osservatorio Astrofis Torino, I-10025 Pino Torinese, TO, Italy. [Richards, J. L.] Purdue Univ, Dept Phys, Northwestern Ave 525, W Lafayette, IN 47907 USA. [Verrecchia, F.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Verrecchia, F.] ASI Sci Data Ctr ASDC, I-00133 Rome, Italy. RP Terzic, T (reprint author), Univ Split, Univ Rijeka, Rudjer Boskov Inst, Croatian MAGIC Consortium, Rijeka, Croatia.; Terzic, T (reprint author), Univ Zagreb, Zagreb, Croatia. EM tterzic@phy.uniri.hr; dammando@ira.inaf.it; raiteri@oato.inaf.it RI Temnikov, Petar/L-6999-2016; Nievas Rosillo, Mireia/K-9738-2014; Font, Lluis/L-4197-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Miranda, Jose Miguel/F-2913-2013; Torres, Diego/O-9422-2016; Barrio, Juan/L-3227-2014; GAug, Markus/L-2340-2014; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; OI Temnikov, Petar/0000-0002-9559-3384; Nievas Rosillo, Mireia/0000-0002-8321-9168; Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Miranda, Jose Miguel/0000-0002-1472-9690; Torres, Diego/0000-0002-1522-9065; Barrio, Juan/0000-0002-0965-0259; GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Bonnoli, Giacomo/0000-0003-2464-9077; Doro, Michele/0000-0001-9104-3214; Poutanen, Juri/0000-0002-0983-0049; Mazin, Daniel/0000-0002-2010-4005; Prandini, Elisa/0000-0003-4502-9053 FU German BMBF; MPG; Italian INFN; INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; Spanish Consolider-Ingenio programme [CPAN CSD2007-00042, MultiDark CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0]; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d' Etudes Spatiales in France; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; INAF Senior Scientist programme of ASDC; Italian Ministry for Research and Scuola Normale Superiore; Marie Heim-Vogtlin grant of the Swiss National Science Foundation FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase from the following agencies is also gratefully acknowledged: the Istituto Nazionale di Astrofisica in Italy and the Centre National d' Etudes Spatiales in France.; The OVRO 40-m monitoring programme is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911.; Antonio Stamerra acknowledges financial support in the frame of the INAF Senior Scientist programme of ASDC and by the Italian Ministry for Research and Scuola Normale Superiore.; Elisa Prandini gratefully acknowledges the financial support of the Marie Heim-Vogtlin grant of the Swiss National Science Foundation. NR 76 TC 2 Z9 2 U1 10 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2016 VL 459 IS 3 BP 3271 EP 3281 DI 10.1093/mnras/stw689 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR3ZJ UT WOS:000379840900074 ER PT J AU Edgington, SG Spilker, LJ AF Edgington, Scott G. Spilker, Linda J. TI Cassini's Grand Finale SO NATURE GEOSCIENCE LA English DT Editorial Material ID RINGS C1 [Edgington, Scott G.; Spilker, Linda J.] NASA, Cassini Mission, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Edgington, SG (reprint author), NASA, Cassini Mission, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM scott.g.edgington@jpl.nasa.gov; linda.j.spilker@jpl.nasa.gov NR 9 TC 0 Z9 0 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUL PY 2016 VL 9 IS 7 BP 472 EP 473 DI 10.1038/ngeo2753 PG 2 WC Geosciences, Multidisciplinary SC Geology GA DR3SV UT WOS:000379823800002 ER PT J AU McLinden, CA Fioletov, V Shephard, MW Krotkov, N Li, C Martin, RV Moran, MD Joiner, J AF McLinden, Chris A. Fioletov, Vitali Shephard, Mark W. Krotkov, Nick Li, Can Martin, Randall V. Moran, Michael D. Joiner, Joanna TI Space-based detection of missing sulfur dioxide sources of global air pollution SO NATURE GEOSCIENCE LA English DT Article ID OZONE MONITORING INSTRUMENT; SATELLITE RETRIEVALS; EMISSIONS; SO2; NO2; OMI; ALGORITHM; LIFETIMES; COMPONENT AB Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants(1) that have significant adverse effects on human health(2-5), the environment1 and the economy(5). The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(-1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types. C1 [McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Moran, Michael D.] Environm & Climate Change Canada, Air Qual Res Div, Toronto, ON M3H 5T4, Canada. [Krotkov, Nick; Li, Can; Joiner, Joanna] NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Martin, Randall V.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. [Martin, Randall V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP McLinden, CA (reprint author), Environm & Climate Change Canada, Air Qual Res Div, Toronto, ON M3H 5T4, Canada. EM chris.mclinden@canada.ca RI Krotkov, Nickolay/E-1541-2012; OI Krotkov, Nickolay/0000-0001-6170-6750; Fioletov, Vitali/0000-0002-2731-5956 FU Environment and Climate Change Canada; NASA FX R.V.M. was supported by Environment and Climate Change Canada. N.K., C.L. and J.J. acknowledge NASA funding through the Aura science team programme for OMI SO2 product development and analysis. The Dutch-Finnish-built OMI instrument is part of the NASA's EOS Aura satellite payload. The OMI project is managed by KNMI and the Netherlands Space Office (NSO). The authors acknowledge ECMWF for the provision of their ERA-interim reanalysis data. C.A.M. thanks H. Morrison for commenting on earlier versions of the manuscript. NR 38 TC 9 Z9 9 U1 13 U2 28 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUL PY 2016 VL 9 IS 7 BP 496 EP + DI 10.1038/NGEO2724 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DR3SV UT WOS:000379823800010 ER PT J AU Luo, H Castelao, RM Rennermalm, AK Tedesco, M Bracco, A Yager, PL Mote, TL AF Luo, Hao Castelao, Renato M. Rennermalm, Asa K. Tedesco, Marco Bracco, Annalisa Yager, Patricia L. Mote, Thomas L. TI Oceanic transport of surface meltwater from the southern Greenland ice sheet SO NATURE GEOSCIENCE LA English DT Article ID FRESH-WATER; LABRADOR SEA; CLIMATE; MODEL; REANALYSIS; RUNOFF; SYSTEM; EXPORT AB The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamics(1) and the delivery of bioavailable micronutrients to the ocean(2). It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation(3). Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins. C1 [Luo, Hao; Castelao, Renato M.; Yager, Patricia L.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Rennermalm, Asa K.] Rutgers State Univ, Dept Geog, Piscataway, NJ 08854 USA. [Tedesco, Marco] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Tedesco, Marco] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bracco, Annalisa] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Mote, Thomas L.] Univ Georgia, Dept Geog, Athens, GA 30602 USA. RP Castelao, RM (reprint author), Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. EM castelao@uga.edu OI Mote, Thomas/0000-0002-0021-0134 FU NASA [NNX14AD98G, NNX14AM70G, NNX13AD80G]; NSF [PLR-01304807, OCE-1357373] FX We thank J. T. Hollibaugh for valuable comments and suggestions, which led to a greatly improved manuscript. We gratefully acknowledge support by NASA (NNX14AD98G, NNX14AM70G and NNX13AD80G). Additional support was provided by NSF (PLR-01304807 and OCE-1357373). NR 30 TC 4 Z9 4 U1 11 U2 23 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUL PY 2016 VL 9 IS 7 BP 528 EP + DI 10.1038/NGEO2708 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DR3SV UT WOS:000379823800018 ER PT J AU Bland, MT Raymond, CA Schenk, PM Fu, RR Kneissl, T Pasckert, JH Hiesinger, H Preusker, F Park, RS Marchi, S King, SD Castillo-Rogez, JC Russell, CT AF Bland, Michael T. Raymond, Carol A. Schenk, Paul M. Fu, Roger R. Kneissl, Thomas Pasckert, Jan Hendrik Hiesinger, Harry Preusker, Frank Park, Ryan S. Marchi, Simone King, Scott D. Castillo-Rogez, Julie C. Russell, Christopher T. TI Composition and structure of the shallow subsurface of Ceres revealed by crater morphology SO NATURE GEOSCIENCE LA English DT Article ID VISCOUS RELAXATION; WATER ICE; DIFFERENTIATION; DEFORMATION; SATELLITES; TOPOGRAPHY; VISCOSITY; EVOLUTION; MIXTURES; RHEOLOGY AB Before NASA's Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres's formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres's largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres's shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content. C1 [Bland, Michael T.] US Geol Survey, Astrogeol Sci Ctr, Flagsta, AZ 86001 USA. [Raymond, Carol A.; Park, Ryan S.; Castillo-Rogez, Julie C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Schenk, Paul M.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Fu, Roger R.] Columbia Univ, New York, NY 10027 USA. [Kneissl, Thomas] Free Univ Berlin, Inst Geol Sci, D-12249 Berlin, Germany. [Pasckert, Jan Hendrik; Hiesinger, Harry] Univ Munster, Inst Planetol, D-48149 Munster, Germany. [Preusker, Frank] German Aerosp Ctr DLR, D-12489 Berlin, Germany. [Marchi, Simone] Southwest Res Inst, Boulder, CO 80302 USA. [King, Scott D.] Virginia Inst Technol, Blacksburg, VA 24061 USA. [Russell, Christopher T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Bland, MT (reprint author), US Geol Survey, Astrogeol Sci Ctr, Flagsta, AZ 86001 USA. EM mbland@usgs.gov RI King, Scott/B-1220-2008 OI King, Scott/0000-0002-9564-5164 FU NASA [NNH15AZ85I] FX M.T.B. thanks Trent Hare for ArcGIS support. This work was supported by NASA's Dawn Guest Investigator Program (NNH15AZ85I). NR 41 TC 6 Z9 6 U1 10 U2 16 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUL PY 2016 VL 9 IS 7 BP 538 EP + DI 10.1038/NGEO2743 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DR3SV UT WOS:000379823800020 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Berti, A Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Buson, S Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Di Pierro, F Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Ramazani, VF Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Gora, D Guberman, D Hadasch, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Nogues, L Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Pedaletti, G Peresano, M Perri, L Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Reichardt, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Suric, T Takalo, L Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Vanzo, G Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanin, R AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Berti, A. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Buson, S. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. de Ona Wilhelmi, E. Di Pierro, F. Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Glawion, D. Eisenacher Elsaesser, D. Ramazani, V. Fallah Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Gora, D. Guberman, D. Hadasch, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Nogues, L. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Pedaletti, G. Peresano, M. Perri, L. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Reichardt, I. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Suric, T. Takalo, L. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Vanzo, G. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanin, R. TI Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astroparticle physics; stars: neutron; pulsars: general ID LARGE-AREA TELESCOPE; HIGH-ENERGY EMISSION; RAPIDLY SPINNING PULSARS; CRAB PULSAR; CURVATURE-RADIATION; MAJOR UPGRADE; 1E 0630+178; SLOT GAPS; MODEL; CATALOG AB The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula has been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 h of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 x 10(-13) TeV cm(-2) s(-1) for the Geminga pulsar and 3.5 x 10(-12) TeV cm(-2) s(-1) for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 yr of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Berti, A.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Peresano, M.; Persic, M.; Treves, A.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Berti, A.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Peresano, M.; Persic, M.; Treves, A.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Perri, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Croatian MAGIC Consortium, Zagreb, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Univ Rijeka, Rijeka, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Univ Split, Split, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Univ Zagreb, Zagreb, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, Sect 1, 1-AF Bidhannagar, Kolkata 700064, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Dominguez, A.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Vanzo, G.; Will, M.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Vanzo, G.; Will, M.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Garczarczyk, M.; Gora, D.; Mallot, K.; Pedaletti, G.; Satalecka, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Martinez, M.; Moralejo, A.; Nogues, L.; Palacio, J.; Rico, J.; Ward, J. E.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Bretz, T.; Dorner, D.; Glawion, D. Eisenacher; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Reichardt, I.; Schultz, C.; Tescaro, D.] Univ Padua, I-35131 Padua, Italy. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Reichardt, I.; Schultz, C.; Tescaro, D.] INFN, I-35131 Padua, Italy. [de Ona Wilhelmi, E.; Wu, M. H.] CSIC, IEEC, Inst Space Sci, Barcelona 08193, Spain. [Doert, M.; Einecke, S.; Elsaesser, D.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Finnish MAGIC Consortium, Turku, Finland. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Tuorla Observ, Piikkio, Finland. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, SF-20500 Turku, Finland. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Astron Div, Oulu, Finland. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC UB, Barcelona 08028, Spain. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Japanese MAGIC Consortium, Kyoto, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] ICRR, Kyoto, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Univ Tokyo, Tokyo 1138654, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Kyoto Univ, Dept Phys, Kyoto 6068501, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Kyoto Univ, Hakubi Ctr, Kyoto 6068501, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Tokai Univ, Hiratsuka, Kanagawa 25912, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Univ Tokushima, Tokushima, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] KEK, Tsukuba, Ibaraki, Japan. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Torres, D. F.] CSIC, IEEC, Inst Space Sci, Barcelona 08193, Spain. [Barres de Almeida, U.] MCTI, CBPF, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, Brazil. [Becerra Gonzalez, J.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardini, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Berti, A.; Longo, F.] Univ Trieste, Trieste, Italy. [Bretz, T.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Lopez-Coto, R.; Zanin, R.] Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany. [Mazin, D.; Teshima, M.] Japanese MAGIC Consortium, Kyoto, Japan. [Nilsson, K.] Finnish Ctr Astron ESO FINCA, Turku, Finland. [Persic, M.] INAF Trieste, Trieste, Italy. [Persic, M.] Univ Bologna, Dept Phys & Astron, Bologna, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. RP Bonnefoy, S; Lopez, M (reprint author), Univ Complutense, E-28040 Madrid, Spain.; Lopez-Coto, R (reprint author), Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain.; Saito, T (reprint author), Japanese MAGIC Consortium, Kyoto, Japan.; Saito, T (reprint author), ICRR, Kyoto, Japan.; Saito, T (reprint author), Univ Tokyo, Tokyo 1138654, Japan.; Saito, T (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068501, Japan.; Saito, T (reprint author), Kyoto Univ, Hakubi Ctr, Kyoto 6068501, Japan.; Saito, T (reprint author), Tokai Univ, Hiratsuka, Kanagawa 25912, Japan.; Saito, T (reprint author), Univ Tokushima, Tokushima, Japan.; Saito, T (reprint author), KEK, Tsukuba, Ibaraki, Japan.; Lopez-Coto, R (reprint author), Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany. EM simon@gae.ucm.es; marcos@gae.ucm.es; rlopez@ifae.es; tysaito@cr.scphys.kyoto-u.ac.jp RI Miranda, Jose Miguel/F-2913-2013; Torres, Diego/O-9422-2016; Barrio, Juan/L-3227-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Nievas Rosillo, Mireia/K-9738-2014; Font, Lluis/L-4197-2014; Reichardt, Ignasi/P-7478-2016; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; OI Miranda, Jose Miguel/0000-0002-1472-9690; Torres, Diego/0000-0002-1522-9065; Barrio, Juan/0000-0002-0965-0259; Temnikov, Petar/0000-0002-9559-3384; Nievas Rosillo, Mireia/0000-0002-8321-9168; Font, Lluis/0000-0003-2109-5961; Reichardt, Ignasi/0000-0003-3694-3820; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Doro, Michele/0000-0001-9104-3214; Poutanen, Juri/0000-0002-0983-0049; Prandini, Elisa/0000-0003-4502-9053 FU German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa project of the Spanish Consolider-Ingenio programme [SEV-2012-0234]; CPAN project of the Spanish Consolider-Ingenio programme [CSD2007-00042]; MultiDark project of the Spanish Consolider-Ingenio programme [CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823, SFB876]; Polish MNiSzW grant [745/N-HESS-MAGIC/2010/0] FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. NR 67 TC 1 Z9 1 U1 9 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A138 DI 10.1051/0004-6361/201527722 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300147 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Buson, S Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Dominguez, A Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Gora, D Guberman, D Hadasch, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Oramas, A Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Pedaletti, G Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanin, R Casares, J Herrero, A AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Buson, S. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. de Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Dominguez, A. Dominis Prester, D. Dorner, D. Doro, M. Einecke, S. Glawion, D. Eisenacher Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Terrats, D. Garrido Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Gora, D. Guberman, D. Hadasch, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Rosillo, M. Nievas Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Pedaletti, G. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanin, R. Casares, J. Herrero, A. CA MAGIC Collaboration TI Super-orbital variability of LS I+61 degrees 303 at TeV energies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astroparticle physics; binaries: general; gamma rays: general; stars: individual: LS I+61 degrees 303; X-rays: binaries; X-rays: individuals: LS I+61 degrees 303 ID GAMMA-RAY BINARY; X-RAY; MAGIC TELESCOPE; I+61 303; MULTIWAVELENGTH OBSERVATIONS; MICROQUASAR LS-I+61-303; CHANDRA OBSERVATIONS; VERITAS OBSERVATIONS; I +61-DEGREES-303; CRAB-NEBULA AB Context. The gamma-ray binary LS I +61 degrees 303 is a well-established source from centimeter radio up to very high energy (VHE; E > 100 GeV). The broadband emission shows a periodicity of similar to 26.5 days, coincident with the orbital period. A longer (super-orbital) period of 1667 +/- 8 days was proposed from radio variability and confirmed using optical and high-energy (HE; E > 100 MeV) gamma-ray observations. In this paper, we report on a four-year campaign performed by MAGIC together with archival data concentrating on a search for a long-timescale signature in the VHE emission from LS I +61 degrees 303. Aims. We focus on the search for super-orbital modulation of the VHE emission, similar to that observed at other energies, and on the search for correlations between TeV emission and an optical determination of the extension of the circumstellar disk. Methods. A four-year campaign has been carried out using the MAGIC telescopes. The source was observed during the orbital phases when the periodic VHE outbursts have occurred (phi = 0 : 55-0.75, one orbit = 26.496 days). Additionally, we included archival MAGIC observations and data published by the VERITAS collaboration in these studies. For the correlation studies, LS I +61 degrees 303 has also been observed during the orbital phases where sporadic VHE emission had been detected in the past (phi = 0 : 75-1.0). These MAGIC observations were simultaneous with optical spectroscopy from the LIVERPOOL telescope. Results. The TeV flux of the periodical outburst in orbital phases phi = 0 : 5-0.75 was found to show yearly variability consistent with the long-term modulation of similar to 4.5 years found in the radio band. This modulation of the TeV flux can be well described by a sine function with a best-fit period of 1610 +/- 58 days. The complete data, including archival observations, span two super-orbital periods. There is no evidence for a correlation between the TeV emission and the mass-loss rate of the Be star, but this may be affected by the strong, short-timescale (as short as intra-day) variation displayed by the H alpha fluxes. C1 [Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Rijeka, Croatian Magic Consortium, Rudjer Boskov Inst, Rijeka, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Split, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Zagreb, Zagreb 41000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1-AF Bidhannagar,Sect 1, Kolkata 700064, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Dominguez, A.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Rosillo, M. Nievas; Satalecka, K.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.; Casares, J.; Herrero, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.; Casares, J.; Herrero, A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Garczarczyk, M.; Gora, D.; Mallot, K.; Pedaletti, G.] DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.; Ward, J. E.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Bretz, T.; Dorner, D.; Glawion, D. Eisenacher; Elsaesser, D.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [de Ona Wilhelmi, E.; Wu, M. H.] CSIC, Inst Space Sci, IEEC, Barcelona 08193, Spain. [Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Terrats, D. Garrido; Gaug, M.] Univ Autonoma Barcelona, Unitat Fis Radiac, Dept Fis, Bellaterra 08193, Spain. [Font, L.; Terrats, D. Garrido; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokyo, Japanese Magic Consortium, ICRR, Dept Phys, Tokyo 1138654, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Kyoto Univ, Hakubi Ctr, Kyoto 6068501, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Tokai Univ, Hiratsuka, Kanagawa 25912, Japan. [Hadasch, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokushima, KEK, Tokushima, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Finnish Magic Consortium, SF-20500 Turku, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, SF-90100 Oulu, Finland. [Makariev, M.; Maneva, G.; Persic, M.; Temnikov, P.; Verguilov, V.] Inst Nucl Energy Res, Sofia 1784, Bulgaria. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Torres, D. F.] CSIC, IEEC, Inst Space Sci, Barcelona 08193, Spain. [Barres de Almeida, U.] Ctr Brasileiro Pesquisas Fis CBPF MCTI, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, RJ, Brazil. [Becerra Gonzalez, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardini, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Bretz, T.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Dominguez, A.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Mazin, D.; Teshima, M.] Japanese MAGIC Consortium, Tokyo, Japan. [Nilsson, K.] Finnish Ctr Astron ESO FINCA, Turku, Finland. INAF, Trieste, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Lopez-Oramas, A.] CEA Saclay, Lab AIM, Serv Astrophys, DSM IRFU, F-91191 Gif Sur Yvette, France. RP Lopez-Oramas, A (reprint author), Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain.; Hadasch, D (reprint author), Univ Tokyo, Japanese Magic Consortium, ICRR, Dept Phys, Tokyo 1138654, Japan.; Hadasch, D (reprint author), Kyoto Univ, Hakubi Ctr, Kyoto 6068501, Japan.; Hadasch, D (reprint author), Tokai Univ, Hiratsuka, Kanagawa 25912, Japan.; Hadasch, D (reprint author), Univ Tokushima, KEK, Tokushima, Japan.; Torres, DF (reprint author), ICREA, Barcelona 08193, Spain.; Torres, DF (reprint author), CSIC, IEEC, Inst Space Sci, Barcelona 08193, Spain.; Lopez-Oramas, A (reprint author), CEA Saclay, Lab AIM, Serv Astrophys, DSM IRFU, F-91191 Gif Sur Yvette, France. EM hadasch@icrr.u-tokyo.ac.jp; alopez@ifae.es; dtorres@ice.csic.es RI Barrio, Juan/L-3227-2014; Temnikov, Petar/L-6999-2016; GAug, Markus/L-2340-2014; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Font, Lluis/L-4197-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Miranda, Jose Miguel/F-2913-2013; Delgado, Carlos/K-7587-2014; Torres, Diego/O-9422-2016; Munoz, Alfonso/K-7823-2013; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; OI Barrio, Juan/0000-0002-0965-0259; Temnikov, Petar/0000-0002-9559-3384; GAug, Markus/0000-0001-8442-7877; Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Miranda, Jose Miguel/0000-0002-1472-9690; Delgado, Carlos/0000-0002-7014-4101; Torres, Diego/0000-0002-1522-9065; Munoz, Alfonso/0000-0003-3347-6518; Cortina, Juan/0000-0003-4576-0452; Bonnoli, Giacomo/0000-0003-2464-9077; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU German BMBF; German MPG; Italian INFN; Swiss National Fund SNF; ERDF funds under the Spanish MINECO; Academy of Finland [127740]; Croatian Science Foundation (HrZZ) Project [09/176]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW grant [745/N-HESS-MAGIC/2010/0]; Spanish Ministerio de Economia y Competividad (MINECO) [AYA2010-18080]; MINECO [AYA2012-39303]; Generalitat de Catalunya [SGR 2014-1073]; CPAN project of the Spanish Consolider-Ingenio programme [CSD2007-00042]; MultiDark project of the Spanish Consolider-Ingenio programme [CSD2009-00064] FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the ERDF funds under the Spanish MINECO is gratefully acknowledged. This work was also supported by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 127740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. J.C., and D.F.T. acknowledge support by the Spanish Ministerio de Economia y Competividad (MINECO) under grant AYA2010-18080, and by MINECO and the Generalitat de Catalunya under grants AYA2012-39303 and SGR 2014-1073, respectively. NR 50 TC 1 Z9 1 U1 9 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A76 DI 10.1051/0004-6361/201527964 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300085 ER PT J AU Aleksic, J Ansoldi, S Antonelli, LA Antoranz, P Arcaro, C Babic, A Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Caneva, G De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Eisenacher, D Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Godinovic, N Munoz, AG Gozzini, SR Hadasch, D Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Idec, W Kadenius, V Kellermann, H Knoetig, ML Kodani, K Konno, Y Krause, J Kubo, H Kushida, J La Barbera, A Lelas, D Lewandowska, N Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Lozano, I Makariev, M Mallot, K Maneva, G Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Munar-Adrover, P Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Reinthal, R Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Saito, K Satalecka, K Scalzotto, V Scapin, V Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Vogler, P Will, M Zanin, R Buson, S D'Ammando, F Lateenmaki, A Hovatta, T Kovalev, YY Lister, ML Max-Moerbeck, W Mundell, C Pushkarev, AB Rastorgueva-Foi, E Readhead, ACS Richards, JL Tammi, J Sanchez, DA Tornikoski, M Savolainen, T Steele, I AF Aleksic, J. Ansoldi, S. Antonelli, L. A. Antoranz, P. Arcaro, C. Babic, A. Bangale, P. Barres de Almeida, U. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Caneva, G. De Lotto, B. de Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Dominis Prester, D. Dorner, D. Doro, M. Einecke, S. Eisenacher, D. Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Godinovic, N. Gonzalez Munoz, A. Gozzini, S. R. Hadasch, D. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Idec, W. Kadenius, V. Kellermann, H. Knoetig, M. L. Kodani, K. Konno, Y. Krause, J. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lewandowska, N. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Lozano, I. Makariev, M. Mallot, K. Maneva, G. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Munar-Adrover, P. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Rodriguez Garcia, J. Saito, T. Saito, K. Satalecka, K. Scalzotto, V. Scapin, V. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Vogler, P. Will, M. Zanin, R. Buson, S. D'Ammando, F. Lateenmaki, A. Hovatta, T. Kovalev, Y. Y. Lister, M. L. Max-Moerbeck, W. Mundell, C. Pushkarev, A. B. Rastorgueva-Foi, E. Readhead, A. C. S. Richards, J. L. Tammi, J. Sanchez, D. A. Tornikoski, M. Savolainen, T. Steele, I. TI Insights into the emission of the blazar 1ES 1011+496 through unprecedented broadband observations during 2011 and 2012 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE BL Lacertae objects: individual: 1ES 1011+496; galaxies: active; galaxies: jets; radiation mechanisms: non-thermal; gamma rays: galaxies ID BL-LACERTAE OBJECTS; ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; X-RAY; TEV BLAZARS; LAC OBJECTS; MAGIC TELESCOPE; CRAB-NEBULA; ENERGY-DISTRIBUTION AB Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E > 100 GeV) gamma rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum. Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsahovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 +/- 0.22 and a flux above 150 GeV of (1.46 +/- 0.16) x 10(-11) ph cm(-2) s(-1). The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 +/- 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac. Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission. C1 [Aleksic, J.; Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Rico, J.; Sitarek, J.] Campus UAB, IFAE, Bellaterra 08193, Spain. [Ansoldi, S.; Biasuzzi, B.; De Angelis, A.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Angelis, A.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Arcaro, C.; Da Vela, P.; Marcote, B.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Barres de Almeida, U.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Rijeka, Rudjer Boskov Inst, Croatian MAGIC Consortium, Zagreb 10000, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Zagreb 10000, Croatia. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hose, J.; Kellermann, H.; Krause, J.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Noda, K.; Paneque, D.; Rodriguez Garcia, J.; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Lozano, I.; Nievas Rosillo, M.; Satalecka, K.; Scapin, V.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Tescaro, D.; Will, M.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; De Caneva, G.; Garczarczyk, M.; Gozzini, S. R.; Mallot, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Biland, A.; Knoetig, M. L.; Prandini, E.; Vogler, P.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Bretz, T.; Dorner, D.; Eisenacher, D.; Elsaesser, D.; Lewandowska, N.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [Arcaro, C.; Doro, M.; Mariotti, M.; Paiano, S.; Scalzotto, V.; Buson, S.] Univ Padua, I-35131 Padua, Italy. [Arcaro, C.; Doro, M.; Mariotti, M.; Paiano, S.; Scalzotto, V.; Buson, S.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Galindo, D.; Marcote, B.; Munar-Adrover, P.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.; Teshima, M.] Univ Tokyo, Univ Tokushima, Tokai Univ, Kyoto Univ,ICRR,Dept Phys,KEK,Japanese MAGIgfh, Tokyo, Japan. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.; Teshima, M.] Univ Tokyo, Univ Tokushima, Tokai Univ, Kyoto Univ,ICRR,Hakubi Ctr, Tokyo, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Finnish MAGIC Consortium, Oulu, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, Oulu, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.] Inst Nucl Res & Nucl, Energy, Sofia 1784, Bulgaria. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Torres, D. F.] Inst Space Sci, Barcelona 08193, Spain. [Treves, A.] Univ Insubria, I-22100 Como, Como, Italy. [Treves, A.] INFN Milano Bicocca, I-22100 Como, Como, Italy. [Becerra Gonzalez, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.] Univ Maryland, Dept Phys & Dept Astron, College Pk, MD 20742 USA. [Bretz, T.] Ecole Polytech Fed Lausanne, CH-1290 Lausanne, Switzerland. [Hadasch, D.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Lindfors, E.; Nilsson, K.] Finnish Ctr Astron ESO FINCA, Turku, Finland. [Persic, M.] INAF, Trieste, Italy. ISDC, Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Barres de Almeida, U.] CBPF MCTI, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, RJ, Brazil. [D'Ammando, F.] INAF IRA Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Lateenmaki, A.; Hovatta, T.; Rastorgueva-Foi, E.; Tammi, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ Kylmala, Metsahovintie, Finland. [Lateenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, Espoo, Finland. [Hovatta, T.; Readhead, A. C. S.] CALTECH, Cahill Ctr Astron & Astrophys, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Kovalev, Y. Y.] Lebedev Phys Inst, Ctr Astro Space, Profsoyuznaya 84-32, Moscow 117997, Russia. [Kovalev, Y. Y.; Pushkarev, A. B.; Richards, J. L.; Savolainen, T.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Lister, M. L.] Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA. [Max-Moerbeck, W.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Mundell, C.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5UX, Merseyside, England. [Pushkarev, A. B.] Pulkovo Observ, Pulkovskoe Chaussee 65-1, St Petersburg 196140, Russia. [Pushkarev, A. B.] Crimean Astrophys Observ, UA-98409 Nauchnyi, Crimea, Ukraine. [Sanchez, D. A.] Univ Savoie Mt Blanc, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RP Arcaro, C (reprint author), Univ Siena, I-53100 Siena, Italy. EM cornelia.arcaro@pd.infn.it; lisses@cbpf.br; simona.paiano@pd.infn.it RI Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Nievas Rosillo, Mireia/K-9738-2014; Font, Lluis/L-4197-2014; Pushkarev, Alexander/M-9997-2015; Contreras Gonzalez, Jose Luis/K-7255-2014; Kovalev, Yuri/J-5671-2013; Miranda, Jose Miguel/F-2913-2013; Delgado, Carlos/K-7587-2014; Torres, Diego/O-9422-2016; Barrio, Juan/L-3227-2014; GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; OI Temnikov, Petar/0000-0002-9559-3384; Nievas Rosillo, Mireia/0000-0002-8321-9168; Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Kovalev, Yuri/0000-0001-9303-3263; Miranda, Jose Miguel/0000-0002-1472-9690; Delgado, Carlos/0000-0002-7014-4101; Torres, Diego/0000-0002-1522-9065; Barrio, Juan/0000-0002-0965-0259; GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Savolainen, Tuomas/0000-0001-6214-1085; Bonnoli, Giacomo/0000-0003-2464-9077; Poutanen, Juri/0000-0002-0983-0049; Prandini, Elisa/0000-0003-4502-9053 FU German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa project of the Spanish Consolider-Ingenio programme [SEV-2012-0234]; CPAN project of the Spanish Consolider-Ingenio programme [CSD2007-00042]; MultiDark project of the Spanish Consolider-Ingenio programme [CSD2009-00064]; Academy of Finland [268740, 212656, 210338, 121148]; Croatian Science Foundation (HrZZ) [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW grant [745/N-HESS-MAGIC/2010/0]; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; NASA-Fermi grants [NNX12A087G] FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (Nos. 212656, 210338, 121148, and others). The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work made use of the Swinburne University of Technology software correlator (Deller et al. 2011), developed as part of the Australian Major National Research Facilities Programme and operated under licence. The MOJAVE project is supported under NASA-Fermi grants NNX12A087G. Part of this work is based on archival data provided by the ASI ASDC. NR 92 TC 1 Z9 1 U1 6 U2 10 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A10 DI 10.1051/0004-6361/201527176 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300019 ER PT J AU Ballhausen, R Kuhnel, M Pottschmidt, K Furst, F Hemphill, PB Falkner, S Gottlieb, AM Grinberg, V Kretschmar, P Kreykenbohm, I Rothschild, RE Wilms, J AF Ballhausen, Ralf Kuehnel, Matthias Pottschmidt, Katja Furst, Felix Hemphill, Paul B. Falkner, Sebastian Gottlieb, Amy M. Grinberg, Victoria Kretschmar, Peter Kreykenbohm, Ingo Rothschild, Richard E. Wilms, Joern TI Suzaku observations of the 2013 outburst of KS 1947+300 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE pulsars: individual: KS 1947+300; X-rays: binaries; accretion, accretion disks ID X-RAY SPECTROSCOPY; CYCLOTRON LINE; 4U 0115+63; ACCRETION COLUMNS; NUSTAR DISCOVERY; NEUTRON-STARS; CENTAURUS X-3; PHASE LAGS; 1A 1118-61; PULSAR AB We report on the timing and spectral analysis of two Suzaku observations with different flux levels of the high-mass X-ray binary KS 1947+300 during its 2013 outburst. In agreement with simultaneous NuSTAR observations, the continuum is well described by an absorbed power law with a cutoff and an additional blackbody component. In addition, we find fluorescent emission from neutral, He-like, and even H-like iron. We determine a pulse period of similar to 18.8 s with the source showing a spin-up between the two observations. Both Suzaku observations show very similar behavior of the pulse profile, which is strongly energy dependent. This profile has an evolution from a profile with one peak at low energies to a profile with two peaks of different widths toward higher energies seen in both the Suzaku and NuSTAR data. Such an evolution to a more complex profile at higher energies is rarely seen in X-ray pulsars, most cases show the opposite behavior. Pulse phase-resolved spectral analysis shows a variation in the absorbing column density, N-H, over pulse phase. Spectra taken during the pulse profile minima are intrinsically softer compared to the pulse phase-averaged spectrum. C1 [Ballhausen, Ralf; Kuehnel, Matthias; Falkner, Sebastian; Kreykenbohm, Ingo; Wilms, Joern] Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany. [Pottschmidt, Katja; Gottlieb, Amy M.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Pottschmidt, Katja; Gottlieb, Amy M.] CRESST, Code 661, Greenbelt, MD 20771 USA. [Pottschmidt, Katja; Gottlieb, Amy M.] NASA Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Furst, Felix] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hemphill, Paul B.; Rothschild, Richard E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA USA. [Grinberg, Victoria] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Kretschmar, Peter] ESAC, ESA, Sci Operat Dept, Sci Operat Div, Madrid 28692, Spain. RP Ballhausen, R (reprint author), Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany. RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Kretschmar, Peter/0000-0001-9840-2048; Falkner, Sebastian/0000-0001-5209-991X FU Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt [50OR1113, 50OR1207]; NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060] FX We thank the anonymous referee for very constructive comments that helped us to improve the quality of the paper. We acknowledge funding by the Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt grants 50OR1113 and 50OR1207. V.G. acknowledges support provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. We thank John E. Davis for the development of the SLXfig module, which was used to create all figures presented in this paper. This research has made use of ISIS functions (isisscripts) provided by ECAP/Remeis observatory and MIT4. NR 52 TC 1 Z9 1 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A65 DI 10.1051/0004-6361/201527193 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300074 ER PT J AU Christodoulou, DM Gabuzda, DC Knuettel, S Contopoulos, I Kazanas, D Coughlan, CP AF Christodoulou, Dimitris M. Gabuzda, Denise C. Knuettel, Sebastian Contopoulos, Ioannis Kazanas, Demosthenes Coughlan, Colm P. TI Dominance of outflowing electric currents on decaparsec to kiloparsec scales in extragalactic jets SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; galaxies: active; galaxies: jets; galaxies: magnetic fields; magnetic fields ID ACTIVE GALACTIC NUCLEI; FARADAY-ROTATION MEASURES; MAGNETICALLY DRIVEN JETS; FIELD POWER SPECTRUM; I RADIO GALAXIES; X-RAY BINARIES; COSMIC BATTERY; ACCRETION DISKS; GRADIENTS; CLUSTERS AB Context. Helical magnetic fields embedded in the jets of active galactic nuclei (AGNs) are required by the broad range of theoretical models that advocate for electromagnetic launching of the jets. In most models, the direction of the magnetic field is random, but if the axial field is generated by a Cosmic Battery generated by current in the direction of rotation in the accretion disk, there is a correlation between the directions of the spin of the AGN accretion disk and of the axial field, which leads to a specific direction for the axial electric current, azimuthal magnetic field, and the resulting observed transverse Faraday-rotation (FR) gradient across the jet, due to the systematic change in the line-of-sight magnetic field. Aims. We consider new observational evidence for the presence of a nested helical magnetic-field structure such as would be brought about by the operation of the Cosmic Battery, and make predictions about the expected behavior of transverse FR gradients observed on decaparsec and kiloparsec scales. Methods. We have jointly considered 27 detections of transverse FR gradients on parsec scales, four reports of reversals in the directions of observed transverse FR gradients observed on parsec-decaparsec scales, and five detections of transverse FR gradients on decaparsec-kiloparsec scales, one reported here for the first time. We also consider seven tentative additional examples of transverse FR gradients on kiloparsec scales, based on an initial visual inspection of published Very Large Array FR maps of 85 extragalactic radio sources, for three of which we have carried out quantitative analyses in order to quantitatively estimate the significances of the gradients. Results. The data considered indicate a predominance of transverse FR gradients in the clockwise direction on the sky (i.e., net axial current flowing inward in the jet) on parsec scales and in the counter-clockwise direction on the sky (i.e., net axial current flowing outward) on scales greater than about 10 pc, consistent with the expectations for the Cosmic Battery. The predominance of counter-clockwise FR gradients on larger scales has been established at the 3 sigma confidence level. Conclusions. The collected results provide evidence for a reversal in the direction of the net azimuthal magnetic field determining the ordered component of the observed FR images, with distance from the jet base. This can be understood if the dominant azimuthal field on parsec scales corresponds to an axial electric current flowing inward along the jet, whereas the (weaker) dominant azimuthal field on kiloparsec scales corresponds to a outward-flowing current in the outer sheath of the jet and/or an extended disk wind. This is precisely the current/magnetic field structure that should be generated by the Cosmic Battery. C1 [Christodoulou, Dimitris M.] Univ Massachusetts Lowell, Dept Math Sci, Lowell, MA 01854 USA. [Gabuzda, Denise C.; Knuettel, Sebastian] Univ Coll Cork, Dept Phys, Cork, Ireland. [Contopoulos, Ioannis] Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece. [Contopoulos, Ioannis] Natl Res Nucl Univ, 31 Kashirskoe Highway, Moscow 115409, Russia. [Kazanas, Demosthenes] NASA GSFC, Code 663, Greenbelt, MD 20771 USA. [Coughlan, Colm P.] Dublin Inst Adv Studies, Astron & Astrophys Sect, 31 Fitzwilliam Pl, Dublin 2, Ireland. RP Christodoulou, DM (reprint author), Univ Massachusetts Lowell, Dept Math Sci, Lowell, MA 01854 USA. EM dimitris_christodoulou@uml.edu OI Knuettel, Sebastian/0000-0001-7701-0432 FU General Secretariat for Research and Technology of Greece; Irish Research Council (IRC); European Social Fund in the framework of Action Excellence FX We acknowledge insights and assistance with data provided by Drs. Philip Best, Annalisa Bonafede, George Contopoulos, Federica Govoni, Christian Kaiser, and Preeti Kharb. We especially thank Annalisa Bonafede and Federica Govoni for presenting us with the calibrated data for A2142A and 5C4.152. We also acknowledge the assistance of Antonios Nathanail in the preparation of Fig. 2. This work was supported by the General Secretariat for Research and Technology of Greece, the Irish Research Council (IRC) and the European Social Fund in the framework of Action Excellence. We thank the referee whose comments have led to an expansion of the paper that helped improve the clarity and significance of our results. NR 70 TC 2 Z9 2 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A61 DI 10.1051/0004-6361/201527448 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300070 ER PT J AU Hacar, A Alves, J Burkert, A Goldsmith, P AF Hacar, A. Alves, J. Burkert, A. Goldsmith, P. TI Opacity broadening and interpretation of suprathermal CO linewidths: Macroscopic turbulence and tangled molecular clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: kinematics and dynamics; ISM: structure; radio lines: ISM ID PROBABILITY-DISTRIBUTION FUNCTIONS; CARBON-MONOXIDE ABUNDANCE; STAR-FORMING FILAMENTS; DENSE CORES; INTERSTELLAR TURBULENCE; DARK CLOUDS; LINE EMISSION; ORION-NEBULA; GOULD BELT; PHYSICAL CONDITIONS AB Context. Since their first detection in the interestellar medium, (sub-) millimeter line observations of different CO isotopic variants have routinely been employed to characterize the kinematic properties of the gas in molecular clouds. Many of these lines exhibit broad linewidths that greatly exceed the thermal broadening expected for the low temperatures found within these objects. These observed suprathermal CO linewidths are assumed to originate from unresolved supersonic motions inside clouds. Aims. The lowest rotational J transitions of some of the most abundant CO isotopologues, (CO)-C-12 and (CO)-C-13, are found to present large optical depths. In addition to well-known line saturation effects, these large opacities present a non-negligible contribution to their observed linewidths. Typically overlooked in the literature, in this paper we aim to quantify the impact of these opacity broadening effects on the current interpretation of the CO suprathermal line profiles. Methods. Combining large-scale observations and LTE modeling of the ground J = 1-0 transitions of the main (CO)-C-12, (CO)-C-13, (CO)-O-18 isotopologues, we have investigated the correlation of the observed linewidths as a function of the line opacity in different regions of the Taurus molecular cloud. Results. Without any additional contributions to the gas velocity field, a large fraction of the apparently supersonic (M similar to 2-3) linewidths measured in both (CO)-C-12 and (CO)-C-13 (J = 1-0) lines can be explained by the saturation of their corresponding sonic-like, optically thin (CO)-O-18 counterparts assuming standard isotopic fractionation. Combined with the presence of multiple components detected in some of our (CO)-O-18 spectra, these opacity effects also seem to be responsible for most of the highly supersonic linewidths (M > 8-10) detected in some of the broadest (CO)-C-12 and (CO)-C-13 spectra in Taurus. Conclusions. Our results demonstrate that most of the suprathermal (CO)-C-12 and (CO)-C-13 linewidths reported in nearby clouds like Taurus could be primarily created by a combination of opacity broadening effects and multiple gas velocity components blended in these saturated emission lines. Once corrected by their corresponding optical depth, each of these gas components present transonic intrinsic linewidths consistently traced by the three isotopologues, (CO)-C-12, (CO)-C-13, and (CO)-O-18, with differences within a factor of 2. Highly correlated and velocity-coherent at large scales, the largest and highly supersonic velocity differences inside clouds are generated by the relative motions between individual gas components. In contrast to the classical interpretation within the framework of microscopic turbulence, this highly discretized structure of the molecular gas traced in CO suggest that the gas dynamics inside molecular clouds could be better described by the properties of a fully resolved macroscopic turbulence. C1 [Hacar, A.; Alves, J.] Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria. [Burkert, A.] Univ Observ Munich USM, Scheinerstr 1, D-81679 Munich, Germany. [Burkert, A.] Max Planck Inst Extraterr Phys MPE, Giessenbachstr 1, D-85748 Garching, Germany. [Goldsmith, P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Hacar, A (reprint author), Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria. EM alvaro.hacar@univie.ac.at FU Austrian Science Fund (FWF); cluster of excellence "Origin and Structure of the Universe" FX The authors thank Mark Heyer for kindly sharing FCRAO data. A.H. gratefully acknowledges support from Ewine van Dishoeck, John Tobin, and Magnus Persson during his stay at the Leiden Observatory. A.H. thanks the insightful discussions and comments from Mario Tafalla and Jan Forbrich. This publication is supported by the Austrian Science Fund (FWF). This work was supported by the cluster of excellence "Origin and Structure of the Universe". This work was carried out in part at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology for NASA. NR 109 TC 2 Z9 2 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A104 DI 10.1051/0004-6361/201527319 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300113 ER PT J AU Heller, R Hippke, M Placek, B Angerhausen, D Agol, E AF Heller, Rene Hippke, Michael Placek, Ben Angerhausen, Daniel Agol, Eric TI Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE eclipses; methods: numerical; planets and satellites: detection; planets and satellites: terrestrial planets; planets and satellites: dynamical evolution and stability; techniques: photometric ID TIME-SERIES PHOTOMETRY; EXTRASOLAR PLANETS; MUTUAL TRANSITS; NEXT-GENERATION; LIGHT CURVES; SATELLITES; SYSTEM; KEPLER; MOONS; DETECTABILITY AB We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is sufficiently slow. We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio. We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10% moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star. C1 [Heller, Rene] Max Planck Inst Solar Syst Res, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [Hippke, Michael] Luiter Str 21b, D-47506 Neukirchen Vluyn, Germany. [Placek, Ben] Schenectady Cty Community Coll, Ctr Sci & Technol, Schenectady, NY 12305 USA. [Angerhausen, Daniel] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Agol, Eric] NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA 98195 USA. RP Heller, R (reprint author), Max Planck Inst Solar Syst Res, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. EM heller@mps.mpg.de; hippke@ifda.eu; placekbh@sunysccc.edu FU NASA [NNX13AF20G, NNX13AF62G]; NASA Astrobiology Institute's Virtual Planetary Laboratory - NASA [NNH05ZDA001C] FX We thank Katja Poppenhager for inspiring discussions and the referee for a swift and thorough report. E.A. acknowledges support from NASA grants NNX13AF20G, NNX13AF62G, and NASA Astrobiology Institute's Virtual Planetary Laboratory, supported by NASA under cooperative agreement NNH05ZDA001C. This work made use of NASA's ADS Bibliographic Services, of the Exoplanet Orbit Database, and of the Exoplanet Data Explorer at www.exoplanets.org NR 64 TC 0 Z9 0 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A67 DI 10.1051/0004-6361/201628573 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300076 ER PT J AU Krauss, F Wilms, J Kadler, M Ojha, R Schulz, R Trustedt, J Edwards, PG Stevens, J Ros, E Baumgartner, W Beuchert, T Blanchard, J Buson, S Carpenter, B Dauser, T Falkner, S Gehrels, N Grafe, C Gulyaev, S Hase, H Horiuchi, S Kreikenbohm, A Kreykenbohm, I Langejahn, M Leiter, K Lovell, JEJ Muller, C Natusch, T Nesci, R Pursimo, T Phillips, C Plotz, C Quick, J Tzioumis, AK Weston, S AF Krauss, F. Wilms, J. Kadler, M. Ojha, R. Schulz, R. Truestedt, J. Edwards, P. G. Stevens, J. Ros, E. Baumgartner, W. Beuchert, T. Blanchard, J. Buson, S. Carpenter, B. Dauser, T. Falkner, S. Gehrels, N. Graefe, C. Gulyaev, S. Hase, H. Horiuchi, S. Kreikenbohm, A. Kreykenbohm, I. Langejahn, M. Leiter, K. Lovell, J. E. J. Mueller, C. Natusch, T. Nesci, R. Pursimo, T. Phillips, C. Ploetz, C. Quick, J. Tzioumis, A. K. Weston, S. TI The TANAMI Multiwavelength Program: Dynamic spectral energy distributions of southern blazars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; BL Lacertae objects: general; quasars: general; relativistic processes ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BL-LACERTAE OBJECTS; BLACK-HOLE ACTIVITY; FERMI-DETECTED BLAZARS; GAMMA-RAY BLAZAR; ALL-SKY SURVEY; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; CELESTIAL REFERENCE FRAME; INFRARED STANDARD STARS AB Context. Simultaneous broadband spectral and temporal studies of blazars are an important tool for investigating active galactic nuclei (AGN) jet physics. Aims. We study the spectral evolution between quiescent and flaring periods of 22 radio-loud AGN through multiepoch, quasisimultaneous broadband spectra. For many of these sources these are the first broadband studies. Methods. We use a Bayesian block analysis of Fermi/LAT light curves to determine time ranges of constant flux for constructing quasi-simultaneous spectral energy distributions (SEDs). The shapes of the resulting 81 SEDs are described by two logarithmic parabolas and a blackbody spectrum where needed. Results. The peak frequencies and luminosities agree well with the blazar sequence for low states with higher luminosity implying lower peak frequencies. This is not true for sources in high states. The gamma-ray photon index in Fermi/LAT correlates with the synchrotron peak frequency in low and intermediate states. No correlation is present in high states. The black hole mass cannot be determined from the SEDs. Surprisingly, the thermal excess often found in FSRQs at optical/UV wavelengths can be described by blackbody emission and not an accretion disk spectrum. Conclusions. The so-called harder-when-brighter trend, typically seen in X-ray spectra of flaring blazars, is visible in the blazar sequence. Our results for low and intermediate states, as well as the Compton dominance, are in agreement with previous results. Black hole mass estimates using recently published parameters are in agreement with some of the more direct measurements. For two sources, estimates disagree by more than four orders of magnitude, possibly owing to boosting effects. The shapes of the thermal excess seen predominantly in flat spectrum radio quasars are inconsistent with a direct accretion disk origin. C1 [Krauss, F.; Wilms, J.; Schulz, R.; Truestedt, J.; Beuchert, T.; Dauser, T.; Falkner, S.; Graefe, C.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Krauss, F.; Kadler, M.; Schulz, R.; Truestedt, J.; Beuchert, T.; Graefe, C.; Kreikenbohm, A.; Langejahn, M.; Leiter, K.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Fischer Str 31, D-97074 Wurzburg, Germany. [Ojha, R.; Baumgartner, W.; Buson, S.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ojha, R.] Univ Maryland, Baltimore, MD 21250 USA. [Ojha, R.; Carpenter, B.] Catholic Univ Amer, Washington, DC 20064 USA. [Schulz, R.] ASTRON, Netherlands Inst Radio Astron, POB 2, NL-7990 AA Dwingeloo, Netherlands. [Edwards, P. G.; Stevens, J.; Phillips, C.; Tzioumis, A. K.] CSIRO Astron & Space Sci, ATNF, POB 76, Epping, NSW 1710, Australia. [Ros, E.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, C Dr Moliner 50, E-46100 Valencia, Spain. [Ros, E.] Univ Valencia, Observ Astron, C Catedrat Jose Beltran 2, E-46100 Valencia, Spain. [Blanchard, J.] Univ Concepcion, Dept Astron, Casilla 160, Concepcion, Chile. [Gulyaev, S.; Natusch, T.; Weston, S.] Auckland Univ Technol, Inst Radio Astron & Space Res, Auckland 1010, New Zealand. [Hase, H.] Bundesamt Kartog & Geodasie, D-93444 Bad Kotzting, Germany. [Horiuchi, S.] CSIRO Astron & Space Sci, Canberra Deep Space Commun Complex,POB 1035, Tuggeranong, ACT 2901, Australia. [Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Private Bag 37, Hobart, Tas 7001, Australia. [Mueller, C.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands. [Nesci, R.] INAF IAPS, Via Fosso Cavaliere 100, I-00033 Rome, Italy. [Pursimo, T.] Nordic Opt Telescope, Apartado 474, Santa Cruz De La Palma 38700, Spain. [Quick, J.] Hartebeesthoek Radio Astron Observ, Krugersdorp, South Africa. RP Krauss, F (reprint author), Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany.; Krauss, F (reprint author), Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Fischer Str 31, D-97074 Wurzburg, Germany. EM Felicia.Krauss@fau.de RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Falkner, Sebastian/0000-0001-5209-991X; Krauss, Felicia/0000-0001-6191-1244; Kadler, Matthias/0000-0001-5606-6154 FU Deutsche Forschungsgemeinschaft [WI 1860-10/1, GRK 1147]; Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 1311, 50 OR 1103]; Helmholtz Alliance for Astroparticle Physics (HAP); NASA [NNH09ZDA001N, NH10ZDA001N, NNH12ZDA001N, NNH13ZDA001N-FERMI]; NASA Postdoctoral Program at the Goddard Space Flight Center; Spanish MINECO project [AYA2012-38491-C02-01]; Generalitat Valenciana project [PROMETEO II/2014/057]; Commonwealth of Australia; National Aeronautics and Space Administration in the United States; Department of Energy in the United States; Commissariat a l'Energie Atomique in France; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana in Italy; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan; High Energy Accelerator Research Organization (KEK) in Japan; Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation in Sweden; Swedish Research Council in Sweden; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX We thank the referee for helpful comments. We thank S. Cutini for her useful comments. We thank S. Markoff for helpful discussions. We thank J. Perkins, L. Baldini, and S. Digel for carefully reading the manuscript. We thank M. Buxton for her help with the SMARTS data. We acknowledge support and partial funding by the Deutsche Forschungsgemeinschsft grant WI 1860-10/1 (TANAMI) and GRK 1147, Deutsches Zentrum fur Luft- und Raumfahrt grants 50 OR 1311 and 50 OR 1103, and the Helmholtz Alliance for Astroparticle Physics (HAP). This research was funded in part by NASA through Fermi Guest Investigator grants NNH09ZDA001N, NH10ZDA001N, NNH12ZDA001N, and NNH13ZDA001N-FERMI. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. E.R. was partially supported by the Spanish MINECO project AYA2012-38491-C02-01 and by the Generalitat Valenciana project PROMETEO II/2014/057. We thank J. E. Davis for the development of the slxfig module that was used to prepare the figures in this work. We thank T. Johnson for the Fermi/LAT SED scripts, which were used to calculate the Fermi/LAT spectra. This research has made use of a collection of ISIS scripts provided by the Dr. Karl Remeis-Observatory, Bamberg, Germany at http://www.sternwarte.uni-erlangen.de/isis/. The Long Baseline Array and Australia Telescope Compact Array are part of the Australia Telescope National Facility, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This paper has made use of up-to-date SMARTS optical/near-infrared light curves that are available at www.astro.yale.edu/smarts/glast/home.php. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 173 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A130 DI 10.1051/0004-6361/201628595 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300139 ER PT J AU Salinas, VN Hogerheijde, MR Bergin, EA Cleeves, LI Brinch, C Blake, GA Lis, DC Melnick, GJ Panic, O Pearson, JC Kristensen, L Yildiz, UA van Dishoeck, EF AF Salinas, Vachail N. Hogerheijde, Michiel R. Bergin, Edwin A. Cleeves, L. Ilsedore Brinch, Christian Blake, Geoffrey A. Lis, Dariusz C. Melnick, Gary J. Panic, Olja Pearson, John C. Kristensen, Lars Yildiz, Umut A. van Dishoeck, Ewine F. TI First detection of gas-phase ammonia in a planet-forming disk NH3, N2H+, and H2O in the disk around TW Hydrae SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE protoplanetary disks; astrochemistry; stars: individual: TW Hya ID HERBIG-AE STARS; PROTOPLANETARY DISKS; MIDINFRARED OBSERVATIONS; ROTATIONAL-EXCITATION; CIRCUMSTELLAR DISKS; IMAGING SURVEY; DM TAURI; HYA; CHEMISTRY; LINE AB Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH3, NH4+ and OCN- So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods. Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH3 in a protoplanetary disk around TW Hya. We used detailed models of the disk's physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results. The NH3 1(0)-0(0) line is detected simultaneously with H2O 1(10)-1(01) at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N2H+ 6-5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7 11.0 x 10(21) g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2-16.0 x 10(22) g, improving upon earlier literature estimates This corresponds to NH3/H2O abundance ratios of 7%-84%, assuming that water and ammonia are co-located. The inferred N2H+ gas mass of 4.9 x 10(21) g agrees well with earlier literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2-17.0 x 10-(11), 0.1-9.0 x 10(-10) and 7.6 x 10(-11) for NH3, H2O and N2H+ respectively. Conclusions. Only in the most compact and settled adopted configuration is the inferred NH3/H2O consistent with interstellar ices and solar system bodies of similar to 5%-10%; all other spatial distributions require additional gas-phase NH3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies. C1 [Salinas, Vachail N.; Hogerheijde, Michiel R.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Bergin, Edwin A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Cleeves, L. Ilsedore; Melnick, Gary J.; Kristensen, Lars] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Brinch, Christian] Niels Bohr Int Acad, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark. [Blake, Geoffrey A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Lis, Dariusz C.] Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS, F-75014 Paris, France. [Lis, Dariusz C.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Panic, Olja] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Pearson, John C.; Yildiz, Umut A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [van Dishoeck, Ewine F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Salinas, VN (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM salinas@strw.leidenuniv.nl RI Yildiz, Umut/C-5257-2011 OI Yildiz, Umut/0000-0001-6197-2864 FU NASA (Herschel OT funding); Netherlands Organization for Scientific Research (NWO); Netherlands Research School for Astronomy (NOVA) FX Herschel is a European Space Agency space observatory with science instruments provided by European-led principal investigator consortia and with important participation from NASA. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: IRAP (formerly CESR), LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronmico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHS. Support for this work was provided by NASA (Herschel OT funding) through an award issued by JPL/Caltech. This work was partially supported by grants from the Netherlands Organization for Scientific Research (NWO) and the Netherlands Research School for Astronomy (NOVA). The data presented here are archived at the Herschel Science Archive, http://archives.esac.esa.int/hda/ui, under OBSID 1342198337 and 1342201585. NR 61 TC 3 Z9 3 U1 5 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2016 VL 591 AR A122 DI 10.1051/0004-6361/201628172 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ3YZ UT WOS:000379141300131 ER PT J AU Parker, AH Buie, MW Grundy, WM Noll, KS AF Parker, Alex H. Buie, Marc W. Grundy, Will M. Noll, Keith S. TI DISCOVERY OF A MAKEMAKEAN MOON SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Kuiper belt objects: individual (Makemake); planets and satellites: detection ID TRANS-NEPTUNIAN OBJECTS; DWARF PLANET MAKEMAKE; KUIPER-BELT; 2005 FY9; METHANE; SURFACE; PLUTOS AB We describe the discovery of a satellite in orbit about the dwarf planet (136472) Makemake. This satellite, provisionally designated S/2015 (136472) 1, was detected in imaging data collected with the Hubble Space Telescope's Wide Field Camera 3 on UTC 2015 April 27 at 7.80 +/- 0.04 mag fainter than Makemake and at a separation of 0.'' 57. It likely evaded detection in previous satellite searches due to a nearly edge-on orbital configuration, placing it deep within the glare of Makemake during a substantial fraction of its orbital period. This configuration would place Makemake and its satellite near a mutual event season. Insufficient orbital motion was detected to make a detailed characterization of its orbital properties, prohibiting a measurement of the system mass with the discovery data alone. Preliminary analysis indicates that if the orbit is circular, its orbital period must be longer than 12.4 days and must have a semimajor axis greater than or similar to 21,000 km. We find that the properties of Makemake's moon suggest that the majority of the dark material detected in the system by thermal observations may not reside on the surface of Makemake, but may instead be attributable to S/2015 (136472) 1 having a uniform dark surface. This "dark moon hypothesis" can be directly tested with future James Webb Space Telescope observations. We discuss the implications of this discovery for the spin state, figure, and thermal properties of Makemake and the apparent ubiquity of trans-Neptunian dwarf planet satellites. C1 [Parker, Alex H.; Buie, Marc W.] Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. [Grundy, Will M.] Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA. [Noll, Keith S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Parker, AH (reprint author), Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM aparker@boulder.swri.edu NR 18 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2016 VL 825 IS 1 AR L9 DI 10.3847/2041-8205/825/1/L9 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ7DC UT WOS:000379366100009 ER PT J AU Fagan, ME DeFries, RS Sesnie, SE Arroyo-Mora, JP Chazdon, RL AF Fagan, Matthew E. DeFries, Ruth S. Sesnie, Steven E. Arroyo-Mora, J. Pablo Chazdon, Robin L. TI Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor SO ECOLOGICAL APPLICATIONS LA English DT Article DE Costa Rica; fragmentation; functional connectivity; Glyphorynchus spirurus; Henicorhina leucosticta; Myrmeciza exsul; payments for environmental services; reforestation; Thamnophilus atrinucha; tropical conservation; understory insectivores ID RAIN-FOREST BIRDS; COSTA-RICA; LANDSCAPE CONNECTIVITY; PLANTATION FORESTS; ATLANTIC FOREST; CLIMATE-CHANGE; LAND-USE; ANIMAL POPULATIONS; AGRICULTURAL LAND; TREE PLANTATIONS AB Re-establishing connectivity between protected areas isolated by habitat clearing is a key conservation goal in the humid tropics. In northeastern Costa Rica, payments for environmental services (PES) and a government ban on deforestation have subsidized forest protection and reforestation in the San Juan-La Selva Biological Corridor (SJLSBC), resulting in a decline in mature forest loss and the expansion of tree plantations. We use field studies and graph models to assess how conservation efforts have altered functional connectivity over the last 25 years for four species of insectivorous understory birds. Field playback studies assessed how reforestation habitat quality affected the willingness of Myrmeciza exsul, Henicorhina leucosticta, Thamnophilus atrinucha, and Glyphorynchus spirurus to travel outside forest habitat for territorial defense. Observed travel distances were greatest in non-native and native tree plantations with high understory stem density, regardless of overstory composition. In contrast, tree plantations with low stem density had travel responses comparable to open pasture for three of the four bird species. We modeled landscape connectivity for each species using graph models based on varying possible travel distances in tree plantations, gallery forests, and pastures. From 1986 to 2011, connectivity for all species declined in the SJLSBC landscape (5825 km(2)) by 14% to 21% despite only a 4.9% net loss in forest area and the rapid expansion of tree plantations over 2% of the landscape. Plantation placement in the landscape limited their potential facilitation of connectivity because they were located either far from forest cover or within already contiguous forest areas. We mapped current connectivity bottlenecks and identified priority areas for future reforestation. We estimate that reforestation of priority areas could improve connectivity by 2% with only a 1% gain in forest cover, an impressive gain given the small area reforested. Results indicate key locations where spatial targeting of PES within the SJLSBC study region would protect existing forest connectivity and enhance the connectivity benefits of reforestation. C1 [Fagan, Matthew E.] NASA, Biospher Sci, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DeFries, Ruth S.] Columbia Univ, Dept Ecol Evolut & Environm Biol, 10th Floor Schermerhorn Extens, New York, NY 10027 USA. [Sesnie, Steven E.] US Fish & Wildlife Serv, POB 1306, Albuquerque, NM 87103 USA. [Arroyo-Mora, J. Pablo] McGill Univ, Dept Geog, 805 Sherbrooke St, West Montreal, PQ H3A 2K6, Canada. [Chazdon, Robin L.] Univ Connecticut, Dept Ecol & Evolutionary Biol, U-3043 75 North Eagleville Rd, Storrs, CT 06269 USA. [Fagan, Matthew E.] Univ Maryland Baltimore Cty, Dept Geog & Environm Syst, 1000 Hilltop Circle, Baltimore, MD 21250 USA. RP Fagan, ME (reprint author), NASA, Biospher Sci, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Fagan, ME (reprint author), Univ Maryland Baltimore Cty, Dept Geog & Environm Syst, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM mfagan@umbc.edu FU National Aeronautics and Space Administration Earth System Science [NNX10AP49H]; NASA [NNH06CC03B]; ASPRS Ta Liang Memorial Award; The Earth Institute; Columbia Institute of Latin American Studies FX The authors would like to thank Maria Uriarte, Dustin Rubenstein, Ian Breckheimer, Amanda Wendt, Deborah Visco, Joel Alvarado, Justin Nowakowski, Jennifer Stynoski, Naiara Pinto, Bryan Sigel, Jeffrey Stratford, Jessie Williamson, and Raquel Lagundo for helpful conversations and advice on ornithology and landscape ecology. Field research was made possible by logistical support provided by FUNDECOR, the staff at the Organization for Tropical Studies La Selva Biological Station, and the hospitality of dozens of Costa Rican farmers, who generously allowed M. Fagan to work on their property. We would like to thank Andres Sanchhn, Jose Miranda, Marvin Paniagua, and Mauricio Gaitan for (occasionally life-saving) assistance in the field. We would also like to express our appreciation to Bonnie Tice and Sue Pickle. This work was funded by National Aeronautics and Space Administration Earth System Science Fellowship NNX10AP49H, NASA Postdoctoral Program Fellowship NNH06CC03B, the ASPRS Ta Liang Memorial Award, The Earth Institute, and the Columbia Institute of Latin American Studies. Finally, the authors wish to thank the two anonymous reviewers for their detailed comments, which markedly improved the original manuscript. NR 117 TC 2 Z9 2 U1 33 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1051-0761 EI 1939-5582 J9 ECOL APPL JI Ecol. Appl. PD JUL PY 2016 VL 26 IS 5 BP 1456 EP 1474 DI 10.1890/14-2188 PG 19 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA DR0NJ UT WOS:000379603900013 PM 27755750 ER PT J AU Zaman, K AF Zaman, Khairul TI Introduction SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Editorial Material C1 [Zaman, Khairul] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zaman, K (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM khairul.b.zaman@nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1475-472X EI 2048-4003 J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD JUL PY 2016 VL 15 IS 4-5 BP 340 EP 341 DI 10.1177/1475472X16642360 PG 2 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA DR0QJ UT WOS:000379611700001 ER PT J AU Groeneweg, JF AF Groeneweg, John F. TI A tribute to Edward J. Rice on his receipt of the AIAA Aeroacoustics Award SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Biographical-Item C1 [Groeneweg, John F.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Groeneweg, JF (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM Khairul.B.Zaman@nasa.gov NR 1 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1475-472X EI 2048-4003 J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD JUL PY 2016 VL 15 IS 4-5 BP 343 EP 351 DI 10.1177/1475472X16642124 PG 9 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA DR0QJ UT WOS:000379611700003 ER PT J AU Zaman, KBMQ Raman, G AF Zaman, Khairul B. M. Q. Raman, Ganesh TI Edward J Rice and flow control studies for jets and shear layers at NASA Glenn Research Center SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article DE Fan noise; noise control; turbulence; shear layers; flow control ID SUPERSONIC COAXIAL JETS; AXISYMMETRICAL JET; RECTANGULAR JETS; SCREECH TONES; OSCILLATING AIRFOIL; ACOUSTIC EXCITATION; VORTEX GENERATORS; COMPRESSIBLE JETS; COMPLEX-GEOMETRY; VELOCITY PROFILE AB Dr. Edward (Ed) J Rice's most notable technical contributions are in the areas of duct acoustics and sound-absorbing liner technology, which are the subjects of several of the articles in this special issue. Starting in 1984 until his retirement in 1993, Dr. Rice led a shear flow control effort at NASA Glenn Research Center. Both authors of this article were part of that effort under his supervision. This article provides a brief overview of the various aspects of that effort, in the form of a narrative with minimal technical details. It covers research areas in which Ed had direct and indirect contributions and includes some activities that continued after his retirement through the mid-1990s. C1 [Zaman, Khairul B. M. Q.] NASA, Glenn Res Ctr, Prop Div, Inlets & Nozzles Branch, Cleveland, OH 44135 USA. [Raman, Ganesh] IIT, Mech Mat & Aerosp Engn, Chicago, IL USA. RP Zaman, KBMQ (reprint author), NASA, Glenn Res Ctr, Prop Div, Inlets & Nozzles Branch, Cleveland, OH 44135 USA. EM khairul.b.zaman@nasa.gov FU Commercial Supersonic Technology (CST); Transformational Tools and Technologies (TTT); Advanced Air Transportation Technology (AATT) Projects of NASA's Advanced Air Vehicles Program FX Support from the Commercial Supersonic Technology (CST), Transformational Tools and Technologies (TTT), and Advanced Air Transportation Technology (AATT) Projects of NASA's Advanced Air Vehicles Program, for time spent in preparing this article and editing of this special issue, is gratefully acknowledged. NR 75 TC 0 Z9 0 U1 7 U2 8 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1475-472X EI 2048-4003 J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD JUL PY 2016 VL 15 IS 4-5 BP 352 EP 366 DI 10.1177/1475472X16642130 PG 15 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA DR0QJ UT WOS:000379611700004 ER PT J AU Envia, E AF Envia, Edmane TI Prediction of model scale turbofan exhaust tone noise SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article DE Aeroacoustics; Fan Noise; Rotor/Stator Interaction Tone Noise; Numerical Prediction ID SOUND; FAN; GENERATION AB This paper describes in detail the process for predicting, from first principles, the rotor-stator interaction tone levels for two realistic model-scale fans that are representative of high bypass ratio and ultrahigh bypass ratio turbofans. The prediction scheme relies on a suite of three-dimensional computational tools that include Reynolds Averaged Navier-Stokes aerodynamic models and linearized inviscid aeroacoustic models. The goal of the study was to assess the accuracy of tone-level predictions for realistic fans operating under realistic conditions. The predictions were carried out over a wide range of operating conditions that include, but were not limited to the approach, cutback, and sideline conditions for each of the two fans. The in-duct and external tonal sound fields were computed at a representative blade passing frequency harmonic tone. The predicted tone sound pressure level and sound power level have been compared with the measurements acquired at a NASA anechoic wind tunnel. The data-theory comparisons are primarily focused on the exhaust tone levels due to lack of validated models for predicting the three-dimensional tone acoustic transmission through a rotor. The data-theory comparisons show that it is possible to make accurate predictions of the exhaust rotor-stator interaction tone power levels starting with the geometry of the fan stage. Specifically, the results demonstrate that the exhaust rotor-stator interaction tone power levels can be predicted to within +/- 1 dB on a consistent basis for rotor at subsonic tip relative speeds by including the three-dimensional geometry of the fan stage and its flowfield. Furthermore, using the predicted in-duct sound pressure levels, the basic trends in the directivity of the exhaust tone sound pressure level can also be predicted despite the complex nature of tone directivity for realistic fans and the complicated physics of sound refraction through the exhaust shear layer. C1 [Envia, Edmane] NASA, Glenn Res Ctr, Acoust Branch, MS 54-3,21000 Brookpk Rd, Cleveland, OH 44135 USA. RP Envia, E (reprint author), NASA, Glenn Res Ctr, Acoust Branch, MS 54-3,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM edmane.envia-1@nasa.gov FU NASA Advanced Air Transportation Technology Project FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the NASA Advanced Air Transportation Technology Project. NR 51 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1475-472X EI 2048-4003 J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD JUL PY 2016 VL 15 IS 4-5 BP 395 EP 429 DI 10.1177/1475472X16642134 PG 35 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA DR0QJ UT WOS:000379611700006 ER PT J AU Sutliff, DL Dahl, MD AF Sutliff, Daniel L. Dahl, Milo D. TI Techniques for analyzing rotating rake mode measurements over passive treatment SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article DE duct mode measurement; rotating rake; turbo-machinery acoustics; passive treatment; acoustic liners ID DUCTS AB The NASA Glenn Research Center's rotating rake mode measurement system has been successful in measuring the modal content propagating in hard-wall ducts. This paper proposes an extension of the rotating rake measurement and analysis technique to treated sections by developing basis functions based on wall impedance boundary conditions for flow conditions (i.e. constant duct area and Mach number), where the closed-form analytical solution exists. Analytical equations developed to estimate mode power are incorporated. Using the impedance boundary conditions results in better mode measurement solutions. This method is verified by decomposing and analyzing radial pressure profiles generated numerically by the Eversman propagation code. Several modes, frequencies, and impedances are evaluated. For ducts with soft-walls and mean flow, the radial basis functions must be numerically computed. The linear companion matrix method is used to obtain both the eigenvalues of interest, without the need for an initial guess, and the radial basis functions. The governing equations allow for the mean flow to have a boundary layer at the wall. In addition, a nonlinear least-squares method is used to adjust the wall impedance to best fit the data in an attempt to use the rotating system as an in-duct wall impedance measurement tool. Simulated and measured data are used to show the effects of wall impedance and mean flow on the computed results. Data from an inlet of a low-speed ducted fan with several different impedance conditions on the outer wall were acquired and reduced to determine the best fit to the data. The methodology and analysis documented in this paper were directly inspired by the groundbreaking work of Dr. Edward J Rice. C1 [Sutliff, Daniel L.; Dahl, Milo D.] NASA, Glenn Res Ctr, Acoust Branch, 21000 Brookpk Rd,MS 45-3, Cleveland, OH 44135 USA. RP Sutliff, DL (reprint author), NASA, Glenn Res Ctr, Acoust Branch, 21000 Brookpk Rd,MS 45-3, Cleveland, OH 44135 USA. EM daniel.l.sutliff@nasa.gov FU NASA Vehicle Systems Integration program/Environmentally Responsible Aircraft project; Fundamental Aeronautics/Fixed Wing program FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the NASA Vehicle Systems Integration program/Environmentally Responsible Aircraft project and the Fundamental Aeronautics/Fixed Wing program. NR 24 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1475-472X EI 2048-4003 J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD JUL PY 2016 VL 15 IS 4-5 BP 430 EP 461 DI 10.1177/1475472X16642135 PG 32 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA DR0QJ UT WOS:000379611700007 ER PT J AU Horne, WC Burnside, NJ Panda, J Brodell, C AF Horne, William C. Burnside, Nathan J. Panda, Jayanta Brodell, Charles TI Measurements of unsteady pressure fluctuations in the near-field of a solid rocket motor plume SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article DE near-field rocket noise; launch vehicle acoustic loads AB Near-plume fluctuating pressures were measured during five static burns of a two-stage solid rocket motor. An array of 11 water-cooled dynamic pressure sensors was used for the near-field survey, and a condenser microphone was used to monitor the far-field acoustic fluctuations. During the initial high-thrust phase of the burn, the plume was nearly ideally expanded, while in the following low-thrust phase, it was highly over-expanded and showed the presence of clear shock patterns. This paper presents time histories and spectra measured for the two thrust conditions. Spectra from very close to the plume show high levels of low-frequency fluctuations which are known to produce significant vibro-acoustic response of the spacecraft structures. The far-field microphone signal was dominated by mixing noise with little evidence of contribution from shock-associated noise, even for the over-expanded condition. The work was performed in support of an effort to improve predictions of the acoustic environment of a manned spacecraft, such as NASA's Orion Crew Vehicle, during pad abort scenarios. C1 [Horne, William C.; Burnside, Nathan J.; Panda, Jayanta] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brodell, Charles] NASA Wallops Flight Facil, Wallops Isl, VA USA. RP Horne, WC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM clifton.horne@nasa.gov NR 14 TC 0 Z9 0 U1 6 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1475-472X EI 2048-4003 J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD JUL PY 2016 VL 15 IS 4-5 BP 554 EP 569 DI 10.1177/1475472X16642357 PG 16 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA DR0QJ UT WOS:000379611700014 ER PT J AU Turk, FJ Haddad, ZS You, Y AF Turk, F. Joseph Haddad, Z. S. You, Y. TI Estimating Nonraining Surface Parameters to Assist GPM Constellation Radiometer Precipitation Algorithms SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID TEMPERATURE DIURNAL CYCLE; SOUTHERN GREAT-PLAINS; MICROWAVE EMISSIVITY; SOIL-MOISTURE; RETRIEVAL ALGORITHMS; PROFILING ALGORITHM; LAND; SNOW; RADAR; WATER AB The joint National Aeronautics and Space Administration (NASA) and Japanese Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) is a constellation mission, centered upon observations from the core satellite dual-frequency precipitation radar (DPR) and its companion passive microwave (MW) GPM Microwave Imager (GMI). One of the key challenges for GPM is how to link the information from the single DPR across all passive MW sensors in the constellation, to produce a globally consistent precipitation product. Commonly, the associated surface emissivity and environmental conditions at the satellite observation time are interpolated from ancillary data, such as global forecast models and emissivity climatology, and are used for radiative transfer simulations and cataloging/indexing the brightness temperature (TB) observations and simulations within a common MW precipitation retrieval framework. In this manuscript, the feasibility of an update to the surface emissivity state at or near the satellite observation time, regardless of surface type, is examined for purposes of assisting these algorithms with specification of the surface and environmental conditions. Since the constellation MW radiometers routinely observe many more nonprecipitating conditions than precipitating conditions, a principal component analysis is developed from the noncloud GMI-DPR observations as a means to characterize the emissivity state vector and to consistently track the surface and environmental conditions. The method is demonstrated and applied over known complex surface conditions to probabilistically separate cloud and cloud-free scenes. The ability of the method to globally identify "self-similar'' surface locations from the TB observations without requiring any ancillary knowledge of geographical location or time is demonstrated. C1 [Turk, F. Joseph; Haddad, Z. S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 300-243, Pasadena, CA 91109 USA. [You, Y.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Turk, FJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 300-243, Pasadena, CA 91109 USA. EM jturk@jpl.nasa.gov RI Measurement, Global/C-4698-2015 FU NASA Precipitation Measurement Missions (PMM) science team FX The authors acknowledge support through the NASA Precipitation Measurement Missions (PMM) science team. GPM data were obtained via the NASA Precipitation Processing System (PPS), and MERRA data from the Modeling and Assimilation Data and Information Services Center (MDISC). The authors would like to acknowledge their colleagues from the PMM Land Surface Working Group, and Wes Berg, Mark Kulie, Pierre Kirstetter, Robert Meneghini, and Faisal Hossain for their constructive comments. The work of FJT and Z.S.H. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 46 TC 1 Z9 1 U1 7 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2016 VL 33 IS 7 BP 1333 EP 1353 DI 10.1175/JTECH-D-15-0229.1 PG 21 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DR0AU UT WOS:000379571200001 ER PT J AU Kubota, T Iguchi, T Kojima, M Liao, L Masaki, T Hanado, H Meneghini, R Oki, R AF Kubota, Takuji Iguchi, Toshio Kojima, Masahiro Liao, Liang Masaki, Takeshi Hanado, Hiroshi Meneghini, Robert Oki, Riko TI A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on board the GPM Core Observatory SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID SURFACE REFERENCE TECHNIQUE; RAINFALL MEASURING MISSION; FREQUENCY; SATELLITE; ALGORITHM AB A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients. The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work. C1 [Kubota, Takuji; Masaki, Takeshi; Oki, Riko] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. [Iguchi, Toshio; Hanado, Hiroshi] Natl Inst Informat & Commun Technol, Appl Electromagnet Res Inst, Koganei, Tokyo, Japan. [Kojima, Masahiro] Japan Aerosp Explorat Agcy, Chief Engineer Off, Tsukuba, Ibaraki, Japan. [Liao, Liang] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Meneghini, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Kubota, T (reprint author), Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. EM kubota@ieee.org RI Kubota, Takuji/E-6024-2011; PMM, JAXA/K-8537-2016 OI Kubota, Takuji/0000-0003-0282-1075; NR 22 TC 2 Z9 2 U1 6 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2016 VL 33 IS 7 BP 1413 EP 1428 DI 10.1175/JTECH-D-15-0202.1 PG 16 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DR0AU UT WOS:000379571200006 ER PT J AU Coy, L Wargan, K Molod, AM McCarty, WR Pawson, S AF Coy, Lawrence Wargan, Krzysztof Molod, Andrea M. McCarty, William R. Pawson, Steven TI Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2 SO JOURNAL OF CLIMATE LA English DT Article ID TOTAL COLUMN OZONE; 2-DIMENSIONAL MODEL; TROPICAL STRATOSPHERE; DATA ASSIMILATION; QBO; CIRCULATION; CLIMATOLOGY; SATELLITE; CHEMISTRY AB The structure, dynamics, and ozone signal of the quasi-biennial oscillation (QBO) produced by the 35-yr NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag (GWD), and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that MERRA-2 produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980-2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50-hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (from October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments. C1 [Coy, Lawrence; Wargan, Krzysztof; Molod, Andrea M.; McCarty, William R.; Pawson, Steven] NASA, GSFC, Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Coy, Lawrence; Wargan, Krzysztof] SSAI, Lanham, MD USA. [Molod, Andrea M.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Coy, L (reprint author), NASA, GSFC, Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM lawrence.coy@nasa.gov RI Pawson, Steven/I-1865-2014; OI Pawson, Steven/0000-0003-0200-717X; Wargan, Krzysztof/0000-0002-3795-2983 FU NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; NASA Modeling, Analysis, and Prediction (MAP) program FX The authors thank the three reviewers for their detailed reading of the manuscript and insightful suggestions. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. This work was supported by the NASA Modeling, Analysis, and Prediction (MAP) program. NR 32 TC 4 Z9 4 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2016 VL 29 IS 14 BP 5339 EP 5354 DI 10.1175/JCLI-D-15-0809.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DQ4YD UT WOS:000379209800017 ER PT J AU Nandal, P Yadav, N Sharma, RP Goldstein, ML AF Nandal, P. Yadav, N. Sharma, R. P. Goldstein, M. L. TI Potential role of kinetic Alfven waves and whistler waves in solar wind plasmas SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Wave-wave interaction; Ponderomotive nonlinearity; Turbulence ID IN-CELL SIMULATIONS; MAGNETIC HELICITY; DISSIPATION RANGE; MODE WAVES; TURBULENCE; MAGNETOHYDRODYNAMICS; IONOSPHERE; GENERATION; DYNAMICS; CASCADE AB Spacecraft observations indicate the signatures of highly oblique kinetic Alfven waves (KAWs) and whistler waves in the solar wind plasma. In the present work, we explore the possible role of KAWs and whistler waves in the observed solar wind magnetic turbulent spectrum. The nonlinear spatial evolution of KAW is studied including the effects of the ponderomotive force which results in intense localized structures due to the background density modification. Weak quasi-transverse whistler wave propagating through these localized structures also gets localized in the form of small-scale localized structures. We present numerically calculated magnetic power spectra for both KAW as well as for whistler wave. Our obtained results demonstrate the important role that KAWs and whistler waves play in the energy cascading from larger to smaller scales. The relevance of these results to recent spacecraft observations is also pointed out. C1 [Nandal, P.; Yadav, N.; Sharma, R. P.] Indian Inst Technol, Ctr Energy Studies, Delhi 110016, India. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. RP Nandal, P (reprint author), Indian Inst Technol, Ctr Energy Studies, Delhi 110016, India. EM priyanka.lathwal@gmail.com; nitnyadv@gmail.com; rpsharma@ces.iitd.ac.in; melvyn.l.goldstein@nasa.gov FU Indian Space Research Organization (ISRO) under RESPOND program; Department of Science and Technology (DST), India FX This work is partially supported by the Indian Space Research Organization (ISRO) under RESPOND program and the Department of Science and Technology (DST), India. NR 46 TC 0 Z9 0 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X EI 1572-946X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD JUL PY 2016 VL 361 IS 7 AR 239 DI 10.1007/s10509-016-2824-y PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DQ2AU UT WOS:000379003700035 ER PT J AU Goldberg, RK Carney, KS DuBois, P Hoffarth, C Harrington, J Rajan, S Blankenhorn, G AF Goldberg, Robert K. Carney, Kelly S. DuBois, Paul Hoffarth, Canio Harrington, Joseph Rajan, Subramaniam Blankenhorn, Gunther TI Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model Suitable for Impact Problems SO JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE Polymer matrix composites; Ballistic impact; Finite element method; Plasticity ID FIBER-REINFORCED COMPOSITES; CONTINUUM DAMAGE MODEL; LAMINATED COMPOSITES; CONSTITUTIVE MODEL; FAILURE MODELS; FLOW RULE; PART II; IMPLEMENTATION; EMPHASIS; CRITERIA AB The need for accurate material models to simulate the deformation, damage, and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. There are a variety of material models currently available within commercial transient dynamic finite-element codes to analyze the response of composite materials under impact conditions. However, there are several features that are lacking in the currently available models that could improve the predictive capability of the impact simulations. To address these needs, a combined elasto-plastic model with damage suitable for implementation within transient dynamic finite-element codes has been developed. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. Currently, the model development efforts have focused on creating the plasticity portion of the model. A commonly used composite failure model has been generalized and extended to a strain-hardening-based orthotropic yield function with a non-associative flow rule. The coefficients of the yield function are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients of the flow rule are determined in a systematic manner based on the available stress-strain data for the material. The evolution of the yield surface is examined, in detail, for a sample composite. A numerical algorithm based on the classic radial return method is employed to compute the evolution of the effective plastic strain. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed model. The developed material model is suitable for use within commercial transient dynamic finite-element codes for use in analyzing the nonlinear response of polymer composites. C1 [Goldberg, Robert K.; Carney, Kelly S.] NASA, Struct & Mat Div, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. [DuBois, Paul] George Mason Univ, 4400 Univ Dr, Fairfax, VA 22030 USA. [Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam] Arizona State Univ, Sch Sustainable Engn, 1151 S Forest Ave, Tempe, AZ 85287 USA. [Blankenhorn, Gunther] Livermore Software Technol Corp, 7374 Los Positas Rd, Livermore, CA 94551 USA. RP Goldberg, RK (reprint author), NASA, Struct & Mat Div, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. EM Robert.K.Goldberg@nasa.gov; Kelly.S.Carney@nasa.gov; paul.dubois@gmx.net; cmhoffar@asu.edu; jharrin4@asu.edu; s.rajan@asu.edu; gunther@lstc.com FU Federal Aviation Administration [12-G-001] FX Authors Hoffarth, Harrington, and Rajan gratefully acknowledge the support of the Federal Aviation Administration through Grant #12-G-001 entitled "Composite Material Model for Impact Analysis," William Emmerling, Technical Monitor. NR 19 TC 0 Z9 0 U1 9 U2 9 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0893-1321 EI 1943-5525 J9 J AEROSPACE ENG JI J. Aerosp. Eng. PD JUL PY 2016 VL 29 IS 4 AR 04015083 DI 10.1061/(ASCE)AS.1943-5525.0000580 PG 11 WC Engineering, Aerospace; Engineering, Civil SC Engineering GA DP9ZT UT WOS:000378857500006 ER PT J AU Li, FL Jo, YH Yan, XH Liu, WT AF Li, Feili Jo, Young-Heon Yan, Xiao-Hai Liu, W. Timothy TI Climate Signals in the Mid- to High-Latitude North Atlantic from Altimeter Observations SO JOURNAL OF CLIMATE LA English DT Article ID MERIDIONAL OVERTURNING CIRCULATION; EMPIRICAL MODE DECOMPOSITION; SEA-SURFACE HEIGHT; THERMOHALINE CIRCULATION; INTERANNUAL VARIABILITY; LABRADOR SEA; HEAT-TRANSPORT; BOTTOM PRESSURE; DEEP CONVECTION; TIME-SERIES AB The variability of the sea surface height anomaly (SSHA) in the mid-to high-latitude North Atlantic for the period of 1993-2010 was investigated using the ensemble empirical mode decomposition to identify the dominant time scales. Sea level variations in the North Atlantic subpolar gyre (SPG) are dominated by the annual cycle and the long-term increasing trend. In comparison, the SSHA along the Gulf Stream (GS) is dominated by variability at intraseasonal and annual time scales. Moreover, the sea level rise in the SPG developed at a reduced rate in the 2000s compared to rates in the 1990s, which was accompanied by a rebound in SSHA variability following a period of lower variability in the system. These changes in both apparent trend and low-frequency SSHA oscillations reveal the importance of low-frequency variability in the SPG. To identify the possible contributing factors for these changes, the heat content balance (equivalent variations in the sea level) in the subpolar region was examined. The results indicate that horizontal circulations may primarily contribute to the interannual to decadal variations, while the air-sea heat flux is not negligible at annual time scale. Furthermore, the low-frequency variability in the SPG relates to the propagation of Atlantic meridional overturning circulation (AMOC) variations from the deep-water formation region to midlatitudes in the North Atlantic, which might have the implications for recent global surface warming hiatus. C1 [Li, Feili; Jo, Young-Heon; Yan, Xiao-Hai] Univ Delaware, Coll Earth Ocean & Environm, 261 S Coll Ave, Newark, DE 19716 USA. [Yan, Xiao-Hai] Univ Delaware Xiamen Univ Joint Inst Coastal Res, Newark, DE USA. [Liu, W. Timothy] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Li, Feili] Duke Univ, Nicholas Sch Environm, Div Earth & Ocean Sci, Durham, NC 27708 USA. [Jo, Young-Heon] Pusan Natl Univ, Dept Oceanog, Busan, South Korea. RP Yan, XH (reprint author), Univ Delaware, Coll Earth Ocean & Environm, 261 S Coll Ave, Newark, DE 19716 USA. EM xiaohai@udel.edu FU NASA Physical Oceanography Program; NASA EPSCoR Program; NASA; NOAA FX The authors thank the editor and two anonymous reviewers for their helpful comments that greatly improved this manuscript. The authors also thank Autumn Kidwell for editorial assistance in English. This research was partially supported by NASA Physical Oceanography Program, NASA EPSCoR Program, NASA Space Grant, and NOAA Sea Grant. NR 85 TC 0 Z9 0 U1 7 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2016 VL 29 IS 13 BP 4905 EP 4925 DI 10.1175/JCLI-D-12-00670.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DQ4YO UT WOS:000379210900001 ER PT J AU Hakkinen, S Rhines, PB Worthen, DL AF Hakkinen, Sirpa Rhines, Peter B. Worthen, Denise L. TI Warming of the Global Ocean: Spatial Structure and Water-Mass Trends SO JOURNAL OF CLIMATE LA English DT Article ID NORTH-ATLANTIC OCEAN; HEAT-CONTENT CHANGE; CIRCULATION; STRATIFICATION; TEMPERATURE; REANALYSIS; ANOMALIES; PACIFIC; BALANCE; PATTERN AB This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (theta-S) relationship (known as "spice" variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten. C1 [Hakkinen, Sirpa; Worthen, Denise L.] NASA, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA. [Rhines, Peter B.] Univ Washington, Seattle, WA 98195 USA. [Worthen, Denise L.] Wyle STE Grp, Houston, TX USA. RP Hakkinen, S (reprint author), NASA, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA. EM sirpa.hakkinen@nasa.gov FU NASA Headquarters by Physical Oceanography Program; Ocean Surface Topography Mission FX We acknowledge the support of NASA Headquarters by the Physical Oceanography Program (SH, DLW) and its Ocean Surface Topography Mission (SH, PBR, and DLW). We also thank the reviewers for useful and constructive comments. NR 32 TC 1 Z9 1 U1 14 U2 34 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2016 VL 29 IS 13 BP 4949 EP 4963 DI 10.1175/JCLI-D-15-0607.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DQ4YO UT WOS:000379210900004 ER PT J AU Costa-Cabral, M Rath, JS Mills, WB Roy, SB Bromirski, PD Milesi, C AF Costa-Cabral, Mariza Rath, John S. Mills, William B. Roy, Sujoy B. Bromirski, Peter D. Milesi, Cristina TI Projecting and Forecasting Winter Precipitation Extremes and Meteorological Drought in California Using the North Pacific High Sea Level Pressure Anomaly SO JOURNAL OF CLIMATE LA English DT Article ID NINO-SOUTHERN-OSCILLATION; CONTIGUOUS UNITED-STATES; CLIMATE VARIABILITY; TEMPERATURE; ENSO; PATTERNS; TELECONNECTIONS; CIRCULATION; ENSEMBLE; RAINFALL AB Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical simulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the multivariate ENSO index (MEI), NiNo-3.4, and others. Furthermore, the authors show that the NPH anomaly more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of precipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation extremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies issued several months in advance is important for forecasting total winter precipitation and is expected to directly benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time predictability of NPH anomalies is an important direction for future research. C1 [Costa-Cabral, Mariza] Northwest Hydraul Consultants Inc, 16300 Christensen Rd,Suite 350, Seattle, WA 98188 USA. [Rath, John S.; Mills, William B.; Roy, Sujoy B.] Tetra Tech Inc, Res & Dev Grp, Lafayette, CA USA. [Bromirski, Peter D.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Milesi, Cristina] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Costa-Cabral, M (reprint author), Northwest Hydraul Consultants Inc, 16300 Christensen Rd,Suite 350, Seattle, WA 98188 USA. EM mcabral@nhcweb.com FU NASA ROSES program [NNX12AG33G]; NASA CASI program; Bay Area Environmental Research Institute; Northwest Hydraulic Consultants, Inc.; Tetra Tech, Inc.; SIO [c157002] FX Comments by Yoshimitsu Chikamoto, the journal's editor Mathew Barlow, and three anonymous reviewers have contributed to significant improvement of this manuscript and are gratefully acknowledged. This work was funded in part by the NASA ROSES program, under Grant NNX12AG33G, except for Cristina Milesi's work, which was funded by the NASA CASI program. The NASA ROSES grant was aimed at evaluating the impacts of climate change on NASA Ames Research Center's operations and facilities, and this manuscript reports on the portion of the grant dedicated to precipitation projections. Additional funding was provided by the Bay Area Environmental Research Institute, Northwest Hydraulic Consultants, Inc., and Tetra Tech, Inc. Additional support for Peter D. Bromirski under California Department of Parks and Recreation, Division of Boating and Waterways contract c157002 with SIO is gratefully acknowledged. NR 60 TC 0 Z9 0 U1 7 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2016 VL 29 IS 13 BP 5009 EP 5026 DI 10.1175/JCLI-D-15-0525.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DQ4YO UT WOS:000379210900008 ER PT J AU Busch, SE Yoon, WS Adams, JS Bailey, CN Bandler, SR Chervenak, JA Eckart, ME Ewin, AJ Finkbeiner, FM Kelley, RL Kilbourne, CA Lee, SJ Porst, JP Porter, FS Sadleir, JE Smith, SJ Sultana, M AF Busch, S. E. Yoon, W. S. Adams, J. S. Bailey, C. N. Bandler, S. R. Chervenak, J. A. Eckart, M. E. Ewin, A. J. Finkbeiner, F. M. Kelley, R. L. Kilbourne, C. A. Lee, S. -J. Porst, J. -P. Porter, F. S. Sadleir, J. E. Smith, S. J. Sultana, M. TI Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Low temperature detectors; Transition-edge sensor (TES); Anti-coincidence detector; X-ray spectroscopy; Quasiparticle AB For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 1.9 cm chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold 100 times lower than is needed to detect minimum ionizing particles. C1 [Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S. -J.; Porst, J. -P.; Porter, F. S.; Smith, S. J.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Adams, J. S.; Smith, S. J.] CRESST, Baltimore, MD 21250 USA. [Adams, J. S.; Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Chervenak, J. A.; Ewin, A. J.; Sadleir, J. E.; Sultana, M.] NASA, Goddard Space Flight Ctr, Detector Syst, Greenbelt, MD 20771 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. [Porst, J. -P.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Yoon, WS (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. EM wonsik.yoon@nasa.gov RI Porter, Frederick/D-3501-2012; Lee, Sang Jun/A-3892-2015; Smith, Stephen/B-1256-2008 OI Porter, Frederick/0000-0002-6374-1119; Lee, Sang Jun/0000-0002-8199-3993; Smith, Stephen/0000-0003-4096-4675 NR 4 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 23 EP 29 DI 10.1007/s10909-015-1414-7 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800005 ER PT J AU Li, DL Austermann, JE Beall, JA Becker, DT Duff, SM Gallardo, PA Henderson, SW Hilton, GC Ho, SP Hubmayr, J Koopman, BJ McMahon, JJ Nati, F Niemack, MD Pappas, CG Salatino, M Schmitt, BL Simon, SM Staggs, ST Van Lanen, J Ward, JT Wollack, EJ AF Li, Dale Austermann, Jason E. Beall, James A. Becker, Daniel T. Duff, Shannon M. Gallardo, Patricio A. Henderson, Shawn W. Hilton, Gene C. Ho, Shuay-Pwu Hubmayr, Johannes Koopman, Brian J. McMahon, Jeffrey J. Nati, Federico Niemack, Michael D. Pappas, Christine G. Salatino, Maria Schmitt, Benjamin L. Simon, Sara M. Staggs, Suzanne T. Van Lanen, Jeff Ward, Jonathan T. Wollack, Edward J. TI AlMn Transition Edge Sensors for Advanced ACTPol SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Transition edge sensor; AlMn; Bolometer; Thin film; Superconductor; Microfabrication; Heating; Critical temperature ID TEMPERATURE AB Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT. C1 [Li, Dale] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Hilton, Gene C.; Hubmayr, Johannes; Van Lanen, Jeff] NIST, 325 Broadway, Boulder, CO 80305 USA. [Gallardo, Patricio A.; Henderson, Shawn W.; Koopman, Brian J.; Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Ho, Shuay-Pwu; Pappas, Christine G.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [McMahon, Jeffrey J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Nati, Federico; Schmitt, Benjamin L.; Ward, Jonathan T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Li, DL (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Li, DL (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA. EM dale.li@slac.stanford.edu RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016 OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088 NR 14 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 66 EP 73 DI 10.1007/s10909-016-1526-8 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800011 ER PT J AU Giachero, A Day, PK Falferi, P Faverzani, M Ferri, E Giordano, C Maino, M Margesin, B Mezzena, R Nizzolo, R Nucciotti, A Puiu, A Zanetti, L AF Giachero, A. Day, P. K. Falferi, P. Faverzani, M. Ferri, E. Giordano, C. Maino, M. Margesin, B. Mezzena, R. Nizzolo, R. Nucciotti, A. Puiu, A. Zanetti, L. TI Development of Microwave Superconducting Microresonators for Neutrino Mass Measurement in the Holmes Framework SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE HOLMES; MKIDs; Superconductive microresonators; Neutrino physics ID HO-163; SENSITIVITY AB The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of Ho-163. The baseline for HOLMES are microcalorimeters coupled to transition edge sensors read-out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators that have undergone rapid development in the last decade. These detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of Ho-163. Superconductive multilayer films composed by a sequence of pure Titanium and stoichiometric TiN layers show many ideal properties for MKIDs, such as low loss, large sheet resistance, large kinetic inductance, and tunable critical temperature . We developed Ti/TiN multilayer microresonators with within the range from 70 mK to 4.5 K and with good uniformity. In this contribution, we present the design solutions adopted, the fabrication processes, and the characterization results. C1 [Giachero, A.; Faverzani, M.; Ferri, E.; Maino, M.; Nucciotti, A.; Puiu, A.] INFN Milano Bicocca, Milan, Italy. [Faverzani, M.; Ferri, E.; Giordano, C.; Maino, M.; Nizzolo, R.; Nucciotti, A.; Puiu, A.; Zanetti, L.] Univ Milano Bicocca, Milan, Italy. [Day, P. K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Falferi, P.] CNR Fdn Bruno Kessler, Ist Foton & Nanotecnol, Trento, Italy. [Margesin, B.] Fdn Bruno Kessler, Trento, Italy. [Mezzena, R.] Univ Trento, Dipartimento Fis, Trento, Italy. RP Giachero, A (reprint author), INFN Milano Bicocca, Milan, Italy. EM andrea.Giachero@mib.infn.it RI Ferri, Elena/L-8531-2014; Giachero, Andrea/I-1081-2013 OI Ferri, Elena/0000-0003-1425-3669; Giachero, Andrea/0000-0003-0493-695X NR 23 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 123 EP 130 DI 10.1007/s10909-015-1441-4 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800020 ER PT J AU McCarrick, H Flanigan, D Jones, G Johnson, BR Ade, PAR Bradford, K Bryan, S Cantor, R Che, G Day, P Doyle, S Leduc, H Limon, M Mauskopf, P Miller, A Mroczkowski, T Tucker, C Zmuidzinas, J AF McCarrick, H. Flanigan, D. Jones, G. Johnson, B. R. Ade, P. A. R. Bradford, K. Bryan, S. Cantor, R. Che, G. Day, P. Doyle, S. Leduc, H. Limon, M. Mauskopf, P. Miller, A. Mroczkowski, T. Tucker, C. Zmuidzinas, J. TI A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Kinetic inductance detectors; Cosmic microwave background; Millimeter-wave sensors AB We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector (LEKID) arrays for millimeter wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66 % on average, so the approach is effective and a viable candidate for future kilo-pixel arrays. C1 [McCarrick, H.; Flanigan, D.; Jones, G.; Johnson, B. R.; Limon, M.; Miller, A.] Columbia Univ, Dept Phys, New York, NY 10025 USA. [Mauskopf, P.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Day, P.; Leduc, H.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zmuidzinas, J.] CALTECH, Pasadena, CA 91109 USA. [Ade, P. A. R.; Doyle, S.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Cantor, R.] STAR Cryoelect, Santa Fe, NM 87508 USA. [Mroczkowski, T.] Naval Res Lab, Washington, DC 20375 USA. [Bradford, K.; Bryan, S.; Che, G.; Mauskopf, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP McCarrick, H (reprint author), Columbia Univ, Dept Phys, New York, NY 10025 USA. EM hlm2124@columbia.edu OI Limon, Michele/0000-0002-5900-2698; Mroczkowski, Tony/0000-0003-3816-5372 NR 7 TC 1 Z9 1 U1 2 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 154 EP 160 DI 10.1007/s10909-015-1424-5 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800025 ER PT J AU Hailey-Dunsheath, S Shirokoff, E Barry, PS Bradford, CM Chapman, S Che, G Glenn, J Hollister, M Kovacs, A LeDuc, H Mauskopf, P McKenney, C O'Brient, R Padin, S Reck, T Shiu, C Tucker, CE Wheeler, J Williamson, R Zmuidzinas, J AF Hailey-Dunsheath, S. Shirokoff, E. Barry, P. S. Bradford, C. M. Chapman, S. Che, G. Glenn, J. Hollister, M. Kovacs, A. LeDuc, H. G. Mauskopf, P. McKenney, C. O'Brient, R. Padin, S. Reck, T. Shiu, C. Tucker, C. E. Wheeler, J. Williamson, R. Zmuidzinas, J. TI Low Noise Titanium Nitride KIDs for SuperSpec: A Millimeter-Wave On-Chip Spectrometer SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Kinetic inductance detector; Millimeter-wave; Spectroscopy AB SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution ( 100-500), large bandwidth (), submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector operating at 100-200 MHz. We have tested a new prototype device that achieves the targeted resolving power, and has better detector sensitivity and optical efficiency than previous devices. We employ a new method for measuring photon noise using both coherent and thermal sources of radiation to cleanly separate the contributions of shot and wave noise. We report an upper limit to the detector NEP of W Hz, within 10 % of the photon noise-limited NEP for a ground-based spectrometer. C1 [Hailey-Dunsheath, S.; Hollister, M.; Kovacs, A.; McKenney, C.; Padin, S.; Shiu, C.; Zmuidzinas, J.] CALTECH, 1200 E Calif Blvd,Mail Code 301-17, Pasadena, CA 91125 USA. [Shirokoff, E.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Barry, P. S.; Mauskopf, P.; Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, 5 Parade, Cardiff CF24 3AA, S Glam, Wales. [Bradford, C. M.; LeDuc, H. G.; O'Brient, R.; Reck, T.; Williamson, R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Chapman, S.] Dalhousie Univ, Dept Phys & Atmospher Sci, Coburg Rd, Halifax, NS B3H 1A6, Canada. [Che, G.; Mauskopf, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Che, G.; Mauskopf, P.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Glenn, J.; Wheeler, J.] Univ Colorado, Ctr Astrophys & Space Astron, 1255 38th St, Boulder, CO 80303 USA. [Kovacs, A.] Univ Minnesota, Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA. RP Hailey-Dunsheath, S (reprint author), CALTECH, 1200 E Calif Blvd,Mail Code 301-17, Pasadena, CA 91125 USA. EM haileyds@caltech.edu OI Kovacs, Attila/0000-0001-8991-9088 NR 18 TC 1 Z9 1 U1 3 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 180 EP 187 DI 10.1007/s10909-015-1375-x PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800029 ER PT J AU Nagler, PC Canavan, E De Alba, R Stevenson, TR AF Nagler, P. C. Canavan, E. De Alba, R. Stevenson, T. R. TI Development of Superconducting Magnetic Heat Switches for an Ideal Integrating Bolometer SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Bolometers; Device physics; Microfabrication ID CALORIMETERS; PERFORMANCE AB We are developing an ideal integrating bolometer (IIB), a novel detector for far-infrared applications. An IIB consists of a dissipationless temperature sensor weakly coupled to a thermal bath through a heat switch. If the heat switch's thermal conductance in the "off" state is much smaller than its conductance in the "on" state, the thermometer temperature will depend linearly on integrated incident power, until the bolometer temperature is reset by changing the conductance to the "on" state. A key component of an IIB is the heat switch, the subject of this paper. We have fabricated and tested prototype IIB devices designed to demonstrate a superconducting magnetic heat switch on both solid substrates and membranes. In this work, we will present details on the design, fabrication, and experimental performance of our prototype IIB devices. C1 [Nagler, P. C.; Canavan, E.; De Alba, R.; Stevenson, T. R.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Nagler, P. C.] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. [De Alba, R.] Cornell Univ, Dept Phys, 109 Clark Hall, Ithaca, NY 14853 USA. RP Nagler, PC (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.; Nagler, PC (reprint author), Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. EM peter.c.nagler@nasa.gov NR 13 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 280 EP 285 DI 10.1007/s10909-015-1365-z PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800044 ER PT J AU Kim, SR Choi, J Jo, HS Kang, CS Kim, GB Kim, HL Kim, IW Lee, HJ Lee, JH Lee, MK Oh, SY Sala, E So, JH Yoon, WS Kim, YH AF Kim, S. R. Choi, J. Jo, H. S. Kang, C. S. Kim, G. B. Kim, H. L. Kim, I. W. Lee, H. J. Lee, J. H. Lee, M. K. Oh, S. Y. Sala, E. So, J. H. Yoon, W. S. Kim, Y. H. TI Development of Metallic Magnetic Calorimeters with a Critical Temperature Switch SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Metallic magnetic calorimeter; Persistent current; Johnson noise AB We report on the progress in the development of meander-shaped metallic magnetic calorimeters (MMCs) with a critical temperature switch. A niobium meander-shaped coil in an MMC is arranged to form a superconducting loop. It is to measure the change in magnetization and to apply a persistent current that magnetizes the MMC sensor material. In this work, part of the superconducting loop is fabricated with another superconducting material with its transition temperature () lower than that of niobium. A persistent current can be injected in the loop while reducing the temperature from above to below the of the switch. Aluminum (Al) wires and an alloy of molybdenum and germanium (MoGe) were tested as critical temperature switch. The test with the Al switch demonstrated the temperature switch concept for meander-shaped MMCs that require a large field current. Microfabricated MoGe switches showed a near 4.3 K, but only 7 mA of persistent current could be charged due to MoGe film discontinuity. This issue requires further improvement in the fabrication procedure. C1 [Kim, S. R.; Choi, J.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, H. L.; Kim, I. W.; Lee, H. J.; Lee, J. H.; Oh, S. Y.; Sala, E.; So, J. H.; Yoon, W. S.; Kim, Y. H.] Inst for Basic Sci Korea, Ctr Underground Phys, Daejeon 34047, South Korea. [Kim, S. R.; Kang, C. S.; Kim, I. W.; Lee, H. J.; Lee, M. K.; Oh, S. Y.; So, J. H.; Kim, Y. H.] Korea Res Inst Stand & Sci, Daejeon 34113, South Korea. [Lee, J. H.] KISTEP, Seoul 06775, South Korea. [Yoon, W. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kim, YH (reprint author), Inst for Basic Sci Korea, Ctr Underground Phys, Daejeon 34047, South Korea.; Kim, YH (reprint author), Korea Res Inst Stand & Sci, Daejeon 34113, South Korea. EM minkyu@kriss.re.kr; yhk@ibs.re.kr NR 10 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 356 EP 362 DI 10.1007/s10909-016-1479-y PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800055 ER PT J AU Busch, SE Adams, JS Bandler, SR Chervenak, JA Eckart, ME Finkbeiner, FM Fixsen, DJ Kelley, RL Kilbourne, CA Lee, SJ Moseley, SH Porst, JP Porter, FS Sadleir, JE Smith, SJ AF Busch, S. E. Adams, J. S. Bandler, S. R. Chervenak, J. A. Eckart, M. E. Finkbeiner, F. M. Fixsen, D. J. Kelley, R. L. Kilbourne, C. A. Lee, S. -J. Moseley, S. H. Porst, J. -P. Porter, F. S. Sadleir, J. E. Smith, S. J. TI Progress Towards Improved Analysis of TES X-ray Data Using Principal Component Analysis SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Low-temperature detectors; Transition-edge sensors (TES); Principal component analysis ID NONSTATIONARY NOISE; NONLINEAR DETECTORS AB The traditional method of applying a digital optimal filter to measure X-ray pulses from transition-edge sensor (TES) devices does not achieve the best energy resolution when the signals have a highly non-linear response to energy, or the noise is non-stationary during the pulse. We present an implementation of a method to analyze X-ray data from TESs, which is based upon principal component analysis (PCA). Our method separates the X-ray signal pulse into orthogonal components that have the largest variance. We typically recover pulse height, arrival time, differences in pulse shape, and the variation of pulse height with detector temperature. These components can then be combined to form a representation of pulse energy. An added value of this method is that by reporting information on more descriptive parameters (as opposed to a single number representing energy), we generate a much more complete picture of the pulse received. Here we report on progress in developing this technique for future implementation on X-ray telescopes. We used an Fe source to characterize Mo/Au TESs. On the same dataset, the PCA method recovers a spectral resolution that is better by a factor of two than achievable with digital optimal filters. C1 [Busch, S. E.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Fixsen, D. J.; Kelley, R. L.; Kilbourne, C. A.; Lee, S. -J.; Moseley, S. H.; Porst, J. -P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Adams, J. S.; Eckart, M. E.; Smith, S. J.] CRESST, Baltimore, MD 21250 USA. [Adams, J. S.; Eckart, M. E.; Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Bandler, S. R.] CRESST, College Pk, MD 20742 USA. [Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. [Porst, J. -P.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Bandler, SR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Bandler, SR (reprint author), CRESST, College Pk, MD 20742 USA.; Bandler, SR (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM Simon.R.Bandler@nasa.gov RI Porter, Frederick/D-3501-2012; Lee, Sang Jun/A-3892-2015; Smith, Stephen/B-1256-2008 OI Porter, Frederick/0000-0002-6374-1119; Lee, Sang Jun/0000-0002-8199-3993; Smith, Stephen/0000-0003-4096-4675 NR 7 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 382 EP 388 DI 10.1007/s10909-015-1357-z PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800059 ER PT J AU Akamatsu, H Gottardi, L de Vries, CP Adams, JS Bandler, SR Bruijn, MP Chervenak, JA Eckart, ME Finkbeiner, FM Gao, JR den Herder, JW den Hartog, R Hoevers, H Kelley, RE Khosropanah, P Kilbourne, CA van der Kuur, J Lee, SJ van den Linden, AJ Porter, FS Ravensberg, K Sadleir, JE Smith, SJ Suzuki, T Wassell, EJ Kiviranta, M AF Akamatsu, H. Gottardi, L. de Vries, C. P. Adams, J. S. Bandler, S. R. Bruijn, M. P. Chervenak, J. A. Eckart, M. E. Finkbeiner, F. M. Gao, J. R. den Herder, J. -W. den Hartog, R. Hoevers, H. Kelley, R. E. Khosropanah, P. Kilbourne, C. A. van der Kuur, J. Lee, S. -J. van den Linden, A. J. Porter, F. S. Ravensberg, K. Sadleir, J. E. Smith, S. J. Suzuki, T. Wassell, E. J. Kiviranta, M. TI TES-Based X-ray Microcalorimeter Performances Under AC Bias and FDM for Athena SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Transition edge sensors; X-ray microcalorimeter; Frequency domain multiplexing; Athena ID READ-OUT AB Athena is a European X-ray observatory, scheduled for launch in 2028. Athena will employ a high-resolution imaging spectrometer called X-ray integral field unit (X-IFU), consisting of an array of 4000 transition edge sensor (TES) microcalorimeter pixels. For the readout of X-IFU, we are developing frequency domain multiplexing, which is the baseline readout system. In this paper, we report on the performance of a TES X-ray calorimeter array fabricated at Goddard Space Flight Center (GSFC) at MHz frequencies for the baseline of X-IFU detector. During single-pixel AC bias characterization, we measured X-ray energy resolutions (at 6 keV) of about 2.9 eV at both 2.3 and 3.7 MHz. Furthermore, in the multiplexing mode, we measured X-ray energy resolutions of about 2.9 eV at 1.3 and 1.7 MHz. C1 [Akamatsu, H.; Gottardi, L.; de Vries, C. P.; Bruijn, M. P.; Gao, J. R.; den Herder, J. -W.; den Hartog, R.; Hoevers, H.; Khosropanah, P.; van der Kuur, J.; van den Linden, A. J.; Ravensberg, K.; Suzuki, T.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. E.; Kilbourne, C. A.; Lee, S. -J.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.] NASA, GSFC, Greenbelt Rd, Greenbelt, MD 20771 USA. [Kiviranta, M.] VTT, Espoo, Finland. RP Akamatsu, H (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. EM sp03103@gmail.com RI Porter, Frederick/D-3501-2012; Lee, Sang Jun/A-3892-2015; Smith, Stephen/B-1256-2008 OI Porter, Frederick/0000-0002-6374-1119; Lee, Sang Jun/0000-0002-8199-3993; Smith, Stephen/0000-0003-4096-4675 NR 14 TC 3 Z9 3 U1 2 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 436 EP 442 DI 10.1007/s10909-016-1525-9 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800068 ER PT J AU Pappas, CG Austermann, J Beall, JA Duff, SM Gallardo, PA Grace, E Henderson, SW Ho, SP Koopman, BJ Li, D McMahon, J Nati, F Niemack, MD Niraula, P Salatino, M Schillaci, A Schmitt, BL Simon, SM Staggs, ST Stevens, JR Vavagiakis, EM Ward, JT Wollack, EJ AF Pappas, C. G. Austermann, J. Beall, J. A. Duff, S. M. Gallardo, P. A. Grace, E. Henderson, S. W. Ho, S. P. Koopman, B. J. Li, D. McMahon, J. Nati, F. Niemack, M. D. Niraula, P. Salatino, M. Schillaci, A. Schmitt, B. L. Simon, S. M. Staggs, S. T. Stevens, J. R. Vavagiakis, E. M. Ward, J. T. Wollack, E. J. TI High-Density Superconducting Cables for Advanced ACTPol SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Atacama Cosmology Telescope; ACTPol; Detector; Flex; Superconductor; Wire bonding ID TRANSITION-EDGE SENSORS AB Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97. C1 [Pappas, C. G.; Grace, E.; Ho, S. P.; Niraula, P.; Salatino, M.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Dept Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Austermann, J.; Beall, J. A.; Duff, S. M.] NIST, Boulder, CO 80305 USA. [Gallardo, P. A.; Henderson, S. W.; Koopman, B. J.; Niemack, M. D.; Stevens, J. R.; Vavagiakis, E. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Li, D.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [McMahon, J.] Univ Michigan, Dept Phys, 1440 Randall Lab,450 Church St, Ann Arbor, MI 48109 USA. [Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Wollack, E. J.] Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Pappas, CG (reprint author), Princeton Univ, Dept Phys, Jadwin Hall, Princeton, NJ 08544 USA. EM christinegpappas@gmail.com RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016 OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088 NR 15 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 473 EP 479 DI 10.1007/s10909-015-1454-z PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800074 ER PT J AU Kher, A Day, PK Eom, BH Zmuidzinas, J Leduc, HG AF Kher, A. Day, P. K. Eom, B. H. Zmuidzinas, J. Leduc, H. G. TI Kinetic Inductance Parametric Up-Converter SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE Kinetic inductance; Nonlinear; TES readout; Current sensor AB We describe a novel class of devices based on the nonlinearity of the kinetic inductance of a superconducting thin film. By placing a current-dependent inductance in a microwave resonator, small currents can be measured through their effect on the resonator's frequency. By using a high-resistivity material for the film and nanowires as kinetic inductors, we can achieve a large coefficient of nonlinearity to improve device sensitivity. We demonstrate a current sensitivity of , making this device useful for transition-edge sensor (TES) readout and other cutting-edge applications. An advantage of these devices is their natural ability to be multiplexed in the frequency domain, enabling large detector arrays for TES-based instruments. A traveling-wave version of the device, consisting of a thin-film microwave transmission line, is also sensitive to small currents as they change the phase length of the line due to their effect on its inductance. We demonstrate a current sensitivity of for this version of the device, making it also suitable for TES readout as well as other current-detection applications. It has the advantage of multi-GHz bandwidth and greater dynamic range, offering a different approach to the resonator version of the device. C1 [Kher, A.; Eom, B. H.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Day, P. K.; Leduc, H. G.] NASA, Jet Prop Lab, Pasadena, CA USA. RP Kher, A (reprint author), CALTECH, Pasadena, CA 91125 USA. EM akher@caltech.edu OI Kher, Aditya/0000-0002-5994-428X NR 9 TC 1 Z9 1 U1 5 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 480 EP 485 DI 10.1007/s10909-015-1364-0 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800075 ER PT J AU Porter, FS Chiao, MP Eckart, ME Fujimoto, R Ishisaki, Y Kelley, RL Kilbourne, CA Leutenegger, MA McCammon, D Mitsuda, K Sawada, M Szymkowiak, AE Takei, Y Tashiro, M Tsujimoto, M Watanabe, T Yamada, S AF Porter, F. S. Chiao, M. P. Eckart, M. E. Fujimoto, R. Ishisaki, Y. Kelley, R. L. Kilbourne, C. A. Leutenegger, M. A. McCammon, D. Mitsuda, K. Sawada, M. Szymkowiak, A. E. Takei, Y. Tashiro, M. Tsujimoto, M. Watanabe, T. Yamada, S. TI Temporal Gain Correction for X-ray Calorimeter Spectrometers SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 16th International Workshop on Low Temperature Particle Detection (LTD) CY JUL 20-24, 2015 CL Grenoble, FRANCE SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA DE X-ray detector; X-ray spectrometer; X-ray calorimeter AB Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-H/SXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 10 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory. C1 [Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Watanabe, T.] NASA GSFC, Greenbelt, MD 20771 USA. [Fujimoto, R.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Ishisaki, Y.; Yamada, S.] Tokyo Metropolitan Univ, Tokyo, Japan. [McCammon, D.; Takei, Y.; Tsujimoto, M.] Univ Wisconsin, Madison, WI USA. [Mitsuda, K.] ISAS JAXA, Sagamihara, Kanagawa, Japan. [Sawada, M.] Aoyama Gakuin Univ, Fuchinobe, Japan. [Szymkowiak, A. E.] Yale Univ, New Haven, CT USA. [Tashiro, M.] Saitama Univ, Saitama, Japan. RP Porter, FS (reprint author), NASA GSFC, Greenbelt, MD 20771 USA. EM frederick.s.porter@nasa.gov RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 3 TC 5 Z9 5 U1 3 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2016 VL 184 IS 1-2 BP 498 EP 504 DI 10.1007/s10909-016-1503-2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DP7OX UT WOS:000378689800078 ER PT J AU Stephenson, JD Kenyon, JC Symmons, MF Lever, AML AF Stephenson, James D. Kenyon, Julia C. Symmons, Martyn F. Lever, Andrew M. L. TI Characterizing 3D RNA structure by single molecule FRET SO METHODS LA English DT Article DE Single-molecule; FRET; RNA structure; Fluorescence; 3D model ID SECONDARY STRUCTURE; ENERGY-TRANSFER; FLUORESCENCE SPECTROSCOPY; CAPILLARY-ELECTROPHORESIS; SHAPE; ORIENTATION; RESOLUTION; ACCURATE; REVEALS; PROBES AB The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Forster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model. (C) 2016 Elsevier Inc. All rights reserved. C1 [Stephenson, James D.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Kenyon, Julia C.; Lever, Andrew M. L.] Univ Cambridge, Addenbrookes Hosp, Dept Med, Hills Rd, Cambridge CB2 0QQ, England. [Symmons, Martyn F.] Univ Cambridge, Dept Biochem, 80 Tennis Court Rd, Cambridge CB2 1GA, England. RP Lever, AML (reprint author), Univ Cambridge, Addenbrookes Hosp, Dept Med, Hills Rd, Cambridge CB2 0QQ, England. EM amill1@medschl.cam.ac.uk OI Stephenson, James/0000-0002-6427-5703 FU NASA Postdoctoral Program Fellowship; Cambridge Biomedical Research Centre FX JDS is supported by a NASA Postdoctoral Program Fellowship.; AMLL and JCK are supported by the Cambridge Biomedical Research Centre. NR 67 TC 1 Z9 1 U1 5 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD JUL 1 PY 2016 VL 103 BP 57 EP 67 DI 10.1016/j.ymeth.2016.02.004 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DQ1ST UT WOS:000378981400008 PM 26853327 ER PT J AU Ray, H AF Ray, Hasi TI The dependence of scattering length on van der Waals interaction and reduced mass of the system in two-atomic collision at cold energies SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article DE Scattering length; reduced mass; interatomic potential; elastic collision; van der Waals interaction; non-adiabatic effect ID HYDROGEN-ATOMS; POSITRONIUM AB The static exchange model (SEM) and the modified static exchange model (MSEM) recently introduced by Ray in Pramana - J. Phys. 83, 907 (2014) are used to study the elastic collision between two hydrogen-like atoms when both are in ground states by considering the system as a four-body Coulomb system in the centre of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron exchange. The MSEM added in it, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g., the van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass (mu) dependence on the scattering length is observed. Again, applying the MSEM code on H(1s)-H(1s) elastic scattering and varying the minimum values of interatomic distance R-0, the dependence of scattering length on the effective interatomic potential consistent with the existing physics is observed. Both these basic findings in low and cold energy atomic collision physics are quite useful and are being reported for the first time. C1 [Ray, Hasi] Study Ctr, S-1-407-6,BP Township, Kolkata 700094, India. [Ray, Hasi] New Alipore Coll, Dept Phys, Kolkata 700053, India. [Ray, Hasi] NITTTR K, Dept Sci, Kolkata 700106, India. [Ray, Hasi] NASA, GSFC, Heliophys Div, Code 671, Greenbelt, MD 20771 USA. RP Ray, H (reprint author), Study Ctr, S-1-407-6,BP Township, Kolkata 700094, India.; Ray, H (reprint author), New Alipore Coll, Dept Phys, Kolkata 700053, India.; Ray, H (reprint author), NITTTR K, Dept Sci, Kolkata 700106, India.; Ray, H (reprint author), NASA, GSFC, Heliophys Div, Code 671, Greenbelt, MD 20771 USA. EM hasi_ray@yahoo.com FU DST, Government of India [SR/WOSA/PS-13/2009] FX The author would be glad to acknowledge the DST's support through Grant No. SR/WOSA/PS-13/2009, Government of India to carry on the investigation. The author is thankful for the close association and academic discussions of A K Bhatia, A Temkin, R J Drachman, J D Rienzi and others at GSFC NASA when the paper was revised during her visit from July to October 2015. NR 15 TC 0 Z9 0 U1 4 U2 8 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 EI 0973-7111 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD JUL PY 2016 VL 87 IS 1 DI 10.1007/s12043-016-1221-y PG 5 WC Physics, Multidisciplinary SC Physics GA DQ6II UT WOS:000379307600014 ER PT J AU Candon, S Loth, E Rybalko, M Hirt, S AF Candon, Sean Loth, Eric Rybalko, Michael Hirt, Stefanie TI Acoustically Induced Shock Oscillations in a Low-Boom Inlet SO AIAA JOURNAL LA English DT Article ID DETACHED-EDDY SIMULATION; DIFFUSER; BUZZ AB Experimental unsteady centerbody surface pressures measured in a low-boom inlet have been analyzed and compared with an unsteady computational flow approach. The experimental dataset was gathered at the 8x6ft supersonic wind tunnel at the NASA John H. Glenn Research Center in 2010. The axisymmetric external compression inlet considered herein featured a relaxed isentropic centerbody compression spike followed by a short subsonic diffuser to the aerodynamic interface plane. The axisymmetric inlet computational domain comprised a 10deg sector, starting with the freestream inflow region, and included both the internal flowpath up to the mass flow plug and the external flow past the sharp-edged cowl for external flow. The selected inlet test conditions were based on a 1.67 freestream Mach number at a zero angle of attack with a near-design spillage rate of approximately 4%. Both experiments and simulations revealed temporal shifts between pressure peaks at different streamwise locations, indicating upstream-running compression waves that moved at acoustic speeds. These waves became amplified near the geometric throat and produced streamwise oscillations of the external normal shock. The simulations also revealed a second smaller shock on the centerbody at the geometric throat, for which the complex dynamics suggested an opportunity for further study. C1 [Candon, Sean; Loth, Eric] Univ Virginia, Mech & Aerosp Engn, 122 Engn Way, Charlottesville, VA 22904 USA. [Rybalko, Michael] Univ Illinois, Aerosp Engn, 104 S Wright St, Urbana, IL 61801 USA. [Hirt, Stefanie] NASA John H Glenn Res Ctr, Inlets & Nozzles Branch, MS 5-12, Cleveland, OH 44135 USA. RP Candon, S (reprint author), Univ Virginia, Mech & Aerosp Engn, 122 Engn Way, Charlottesville, VA 22904 USA. FU NASA Supersonics Projects within the Fundamental Aeronautics Program FX The tests were funded by the NASA Supersonics Projects within the Fundamental Aeronautics Program. The authors would like to acknowledge the inlet test team led by members of NASA John H. Glenn Research Center (including Rod Chima, Manan Vyas, and Stephanie Simerly) and the Gulfstream Aerospace Corporation (including Tim Conners, Tom Wayman, and Don Howe), and the University of Illinois (J. Craig Dutton and Greg Elliott). Their valuable work to obtain these data is greatly appreciated. The authors would also like to thank Vance Dippold of NASA John H. Glenn Research Center for technical review of the manuscript. NR 20 TC 0 Z9 0 U1 4 U2 4 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD JUL PY 2016 VL 54 IS 7 BP 2134 EP 2148 DI 10.2514/1.J054300 PG 15 WC Engineering, Aerospace SC Engineering GA DP5FN UT WOS:000378521600010 ER PT J AU Arisman, CJ Johansen, CT Bathel, BF Danehy, PM AF Arisman, C. J. Johansen, C. T. Bathel, B. F. Danehy, P. M. TI Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers (vol 53, pg 3637, 2015) SO AIAA JOURNAL LA English DT Correction C1 [Arisman, C. J.; Johansen, C. T.] Univ Calgary, Calgary, AB T2N 1N4, Canada. [Bathel, B. F.; Danehy, P. M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Arisman, CJ (reprint author), Univ Calgary, Calgary, AB T2N 1N4, Canada. NR 1 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD JUL PY 2016 VL 54 IS 7 BP 2200 EP 2200 DI 10.2514/1.J055125 PG 1 WC Engineering, Aerospace SC Engineering GA DP5FN UT WOS:000378521600018 ER PT J AU Bella, D Culpepper, J Khaimova, J Ahmed, N Belkalai, A Arroyo, I Andrews, J Gentle, S Emmanuel, S Lahmouh, M Ealy, J King, Z Jenkins, O Fu, D Choi, Y Osterman, G Gruszczynski, J Skeete, D Blaszczak-Boxe, CS AF Bella, D. Culpepper, J. Khaimova, J. Ahmed, N. Belkalai, Adam Arroyo, I. Andrews, J. Gentle, S. Emmanuel, S. Lahmouh, M. Ealy, J. King, Zayna Jenkins, O. Fu, D. Choi, Y. Osterman, G. Gruszczynski, J. Skeete, D. Blaszczak-Boxe, C. S. TI Characterization of pollution transport into Texas using OMI and TES satellite, GIS and in situ data, and HYSPLIT back trajectory analyses: implications for TCEQ State Implementation Plans SO AIR QUALITY ATMOSPHERE AND HEALTH LA English DT Article DE Air quality; TCEQ; SIPs; HYSPLIT; TES; ArcGIS; OMI; In situ data ID TROPOSPHERIC EMISSION SPECTROMETER; AIR-POLLUTION; UNITED-STATES; CROP YIELD; OZONE; EUROPE; HOUSTON; QUALITY; DAMAGE; FIRES AB Transport of pollution from remote sources into the state of Texas has been shown by modeling techniques, satellite, and in situ data. Attaining a better understanding of the impact (i.e., temporally) of remote pollution sources will provide a more robust/quantifiable basis for State Implementation Plans (SIPs) that govern air quality. Utilizing Tropospheric Emission Spectrometer (TES) and Ozone Monitoring Instrument (OMI) and in situ data for ozone (O-3) and nitrogen dioxide (NO2) and Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT), we assess whether high-pollution events in Texas are primarily sourced locally (i.e., within Texas) or remotely. We focus on TES and OMI dates that exemplify high O-3 and NO2, over Texas's lower troposphere from August 5, 2006, to June 21, 2009. For all dates and altitudes, 4-day back trajectory analyses, exemplified by high TES O-3, show that remotely sourced from the Gulf of Mexico, Southeast USA, Midwest USA, Northeast USA, the Atlantic Ocean, Pacific Ocean, Mexico to Texas. The only exception is air at 1 km on July 22, 2006, which shows that air at this altitude is sourced within Texas. Throughout half of the eastern portion of Texas, TES shows O-3 enhancements in the boundary layer and OMI shows O-3 and NO2 enhancements via tropospheric column profiles (O-3 between 75 and 90 ppbv; NO2 >= 5.5 molecules cm(-2)). These enhancements complement the HYSPLIT 4-day trajectory analyses, which gives further indication that they are influenced by transport from remote sources. Dates with co-located satellite and in situ data (e.g., August 2, 2005) further exemplify the need to consider satellite and in situ data and modeling data/forecasts when creating SIPs for compliance with Environmental Protection Agency and the Texas Commission on Environmental Quality air quality standards. Despite the fact that quantifying local versus remote sources is in its early stages, Texas has become increasingly compliant with Environmental Protection Agency (EPA) regulations. Environmental Systems Research Institute's ArcGIS exemplifies the noticeable decrease in the number of days that locales in Texas exceed EPA's limit for O-3. From 2005 to 2009, population standard deviation and standard error of the mean, and true sample deviation of the sample mean for O-3 and NO2, at all 16 monitoring sites distributed throughout Texas, are temporally consistent and small-reinforcing the reliability of in situ data as they are consistent throughout. This investigation has global implications for regions within countries that enforce air quality mandates. Such governing bodies should consider utilizing data assimilation (of in situ data) for air quality prediction as a part of the governmental process that produces such laws. This could potentially keep regions more accountable for emissions both locally and far from high source points. C1 [Bella, D.; Culpepper, J.; Ealy, J.; King, Zayna; Skeete, D.; Blaszczak-Boxe, C. S.] CUNY Medgar Evers Coll, Dept Phys Environm & Comp Sci, 1638 Bedford Ave, Brooklyn, NY 11225 USA. [Khaimova, J.] CUNY Brooklyn Coll, New York, NY USA. [Ahmed, N.; Belkalai, Adam] Brooklyn Tech High Sch, Brooklyn, NY 11217 USA. [Arroyo, I.; Lahmouh, M.; Jenkins, O.] Khalil Gibran Int Acad, Brooklyn, NY 11217 USA. [Andrews, J.] CUNY Medgar Evers Coll, Preparatory Sch, Brooklyn, NY 11225 USA. [Gentle, S.] BASE, High Sch, Brooklyn, NY 11225 USA. [Emmanuel, S.; Blaszczak-Boxe, C. S.] Valley Stream South High Sch, Long Isl City, NY 11581 USA. [Fu, D.; Osterman, G.] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA. [Choi, Y.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA. [Gruszczynski, J.] I Liceum Ogolnoksztalcace Im Stanislawa Staszica, Aleje Raclawickie 26, PL-20043 Lublin, Poland. [Blaszczak-Boxe, C. S.] CUNY, Div Chem, Earth & Environm Sci Div, Grad Ctr, New York, NY 10016 USA. RP Blaszczak-Boxe, CS (reprint author), CUNY Medgar Evers Coll, Dept Phys Environm & Comp Sci, 1638 Bedford Ave, Brooklyn, NY 11225 USA.; Blaszczak-Boxe, CS (reprint author), Valley Stream South High Sch, Long Isl City, NY 11581 USA.; Blaszczak-Boxe, CS (reprint author), CUNY, Div Chem, Earth & Environm Sci Div, Grad Ctr, New York, NY 10016 USA. EM cboxe@mec.cuny.edu RI Culpepper, Johnathan/M-7230-2015 OI Culpepper, Johnathan/0000-0002-7660-1641 FU Con-Edison [1054322] FX We are thankful for the support, which funded the investigation described herein, via Con-Edison (Grant # 1054322). NR 57 TC 0 Z9 0 U1 14 U2 21 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1873-9318 EI 1873-9326 J9 AIR QUAL ATMOS HLTH JI Air Qual. Atmos. Health PD JUL PY 2016 VL 9 IS 5 BP 569 EP 588 DI 10.1007/s11869-015-0363-2 PG 20 WC Environmental Sciences SC Environmental Sciences & Ecology GA DP6AP UT WOS:000378579600011 ER PT J AU Barnes, JW Quarles, B Lissauer, JJ Chambers, J Hedman, MM AF Barnes, Jason W. Quarles, Billy Lissauer, Jack J. Chambers, John Hedman, Matthew M. TI Obliquity Variability of a Potentially Habitable Early Venus SO ASTROBIOLOGY LA English DT Article DE Planets and satellites; Venus ID LONG-TERM EVOLUTION; NEOPROTEROZOIC SNOWBALL EARTH; TERRESTRIAL PLANETS; DIVERSITY PATTERNS; CHAOTIC OBLIQUITY; SOLAR-SYSTEM; CLIMATE; MARS; EXOPLANETS; MODEL AB Venus currently rotates slowly, with its spin controlled by solid-body and atmospheric thermal tides. However, conditions may have been far different 4 billion years ago, when the Sun was fainter and most of the carbon within Venus could have been in solid form, implying a low-mass atmosphere. We investigate how the obliquity would have varied for a hypothetical rapidly rotating Early Venus. The obliquity variation structure of an ensemble of hypothetical Early Venuses is simpler than that Earth would have if it lacked its large moon (Lissauer et al., 2012), having just one primary chaotic regime at high prograde obliquities. We note an unexpected long-term variability of up to +/- 7 degrees for retrograde Venuses. Low-obliquity Venuses show very low total obliquity variability over billion-year timescales-comparable to that of the real Moon-influenced Earth. C1 [Barnes, Jason W.; Hedman, Matthew M.] Univ Idaho, Dept Phys, 875 Perimeter Dr,Stop 440903, Moscow, ID 83844 USA. [Quarles, Billy; Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Quarles, Billy] Univ Nebraska Kearney, Dept Phys & Phys Sci, Kearney, NE USA. [Chambers, John] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC USA. RP Barnes, JW (reprint author), Univ Idaho, Dept Phys, 875 Perimeter Dr,Stop 440903, Moscow, ID 83844 USA. EM jwbarnes@uidaho.edu RI Barnes, Jason/B-1284-2009 OI Barnes, Jason/0000-0002-7755-3530 FU NASA Exobiology Program [NNX14AK31G] FX The authors acknowledge support from the NASA Exobiology Program, grant #NNX14AK31G. NR 34 TC 2 Z9 2 U1 5 U2 16 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD JUL PY 2016 VL 16 IS 7 BP 487 EP 499 DI 10.1089/ast.2015.1427 PG 13 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DQ0PI UT WOS:000378901800001 PM 27328026 ER PT J AU Hu, RY Bloom, AA Gao, P Miller, CE Yung, YL AF Hu, Renyu Bloom, A. Anthony Gao, Peter Miller, Charles E. Yung, Yuk L. TI Hypotheses for Near-Surface Exchange of Methane on Mars SO ASTROBIOLOGY LA English DT Article DE Mars; Methane; Astrobiology; Regolith ID AQUEOUS-SOLUTIONS RELEVANT; HIGH-PRESSURE ADSORPTION; GALE CRATER; MARTIAN ATMOSPHERE; CARBON-DIOXIDE; SUBSURFACE LIFE; PERCHLORATE; VARIABILITY; MODEL; WATER AB The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol(-1) to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere. C1 [Hu, Renyu; Bloom, A. Anthony; Miller, Charles E.; Yung, Yuk L.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hu, Renyu; Gao, Peter; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Hu, RY (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM renyu.hu@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA) through Hubble Fellowship - Space Telescope Science Institute [51332.01]; NASA [NAS 5-26555]; NAI Virtual Planetary Laboratory grant from the University of Washington; California Institute of Technology FX Support was partially provided by the National Aeronautics and Space Administration (NASA) through Hubble Fellowship grant #51332.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Y.L.Y. was supported in part by a NAI Virtual Planetary Laboratory grant from the University of Washington to the Jet Propulsion Laboratory (JPL) and California Institute of Technology. The research was carried out at the JPL, California Institute of Technology, under a contract with NASA. NR 86 TC 0 Z9 0 U1 23 U2 31 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD JUL PY 2016 VL 16 IS 7 BP 539 EP 550 DI 10.1089/ast.2015.1410 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DQ0PI UT WOS:000378901800005 PM 27315136 ER PT J AU Fisher, JB Sweeney, S Brzostek, ER Evans, TP Johnson, DJ Myers, JA Bourg, NA Wolf, AT Howe, RW Phillips, RP AF Fisher, Joshua B. Sweeney, Sean Brzostek, Edward R. Evans, Tom P. Johnson, Daniel J. Myers, Jonathan A. Bourg, Norman A. Wolf, Amy T. Howe, Robert W. Phillips, Richard P. TI Tree-mycorrhizal associations detected remotely from canopy spectral properties SO GLOBAL CHANGE BIOLOGY LA English DT Article DE canopy; landscape; mycorrhizae; nutrients; remote sensing; species; spectral ID EASTERN UNITED-STATES; FOREST PRODUCTIVITY; SPECIES COMPOSITION; TEMPERATE FORESTS; INDIVIDUAL TREES; DECIDUOUS FOREST; CARBON STORAGE; NORTH-AMERICA; LAND MODEL; NITROGEN AB A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but donot require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high-resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across similar to 130000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P<0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes. C1 [Fisher, Joshua B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Fisher, Joshua B.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, 607 Charles Young Dr East,Young Hall 4242, Los Angeles, CA 90095 USA. [Sweeney, Sean; Evans, Tom P.] Indiana Univ, Ctr Study Inst Populat & Environm Change CIPEC, Bloomington, IN 47408 USA. [Brzostek, Edward R.] W Virginia Univ, Dept Biol, 53 Campus Dr, Morgantown, WV 26506 USA. [Evans, Tom P.] Indiana Univ, Dept Geog, Student Bldg 120, Bloomington, IN 47405 USA. [Johnson, Daniel J.] Yale Sch Forestry & Environm Studies, Kroon Hall,195 Prospect St, New Haven, CT 06511 USA. [Myers, Jonathan A.] Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA. [Bourg, Norman A.] Smithsonian Conservat Biol Inst, Conservat Ecol Ctr, Natl Zool Pk,1500 Remount Rd, Front Royal, VA 22630 USA. [Bourg, Norman A.] US Geol Survey, Natl Res Program, Eastern Branch, 12201 Sunrise Valley Dr,MS430, Reston, VA USA. [Wolf, Amy T.; Howe, Robert W.] Univ Wisconsin, Dept Nat & Appl Sci, 2420 Nicolet Dr, Green Bay, WI 54311 USA. [Wolf, Amy T.; Howe, Robert W.] Univ Wisconsin, Cofrin Ctr Biodivers, 2420 Nicolet Dr, Green Bay, WI 54311 USA. [Phillips, Richard P.] Indiana Univ, Dept Biol, 247 Jordan Hall,1001 E Third St, Bloomington, IN 47405 USA. RP Fisher, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Fisher, JB (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, 607 Charles Young Dr East,Young Hall 4242, Los Angeles, CA 90095 USA. EM joshbfisher@gmail.com OI Bourg, Norman/0000-0002-7443-1992; Fisher, Joshua/0000-0003-4734-9085 FU Indiana Academy of Sciences; CTFS-ForestGEO; 1923 Fund; Smithsonian Institution; Washington University in St. Louis' Tyson Research Center; International Center for Advanced Renewable Energy and Sustainability (I-CARES); US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program; US National Science Foundation Ecosystem Science Program; Indiana University's Research and Teaching Preserve; Indiana University's Office of the Vice Provost for Research; National Aeronautics and Space Administration FX Tree data were collected by many investigators at the Smithsonian Institution's CTFS-ForestGEO, a global network of forest dynamics plots coordinated by Stuart Davies, Richard Condit, Sean McMahon, and many others. We thank Jeremy Degler, Mark Sheehan, Anthony Sipes, and Andrew Quebbeman for mapping the plot data for LDW; funding for LDW was provided by the Indiana Academy of Sciences and CTFS-ForestGEO. We thank William McShea for providing the plot data for SCBI. Major contributors to the WFD data include Kathryn Corio, Juniper Sundance, and Gary Fewless, with funding from the 1923 Fund and Smithsonian Institution. TRCP is supported by Washington University in St. Louis' Tyson Research Center, with funding provided by the International Center for Advanced Renewable Energy and Sustainability (I-CARES); more than 60 high school students, undergraduate students, and researchers contributed to the TRCP. Anonymous reviewers provided useful suggestions. Funding for the remote sensing analysis was provided by the US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program; the US National Science Foundation Ecosystem Science Program; Indiana University's Research and Teaching Preserve; and Indiana University's Office of the Vice Provost for Research. JBF carried out the research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and at the University of California at Los Angeles. Government sponsorship acknowledged. NR 73 TC 2 Z9 2 U1 22 U2 40 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JUL PY 2016 VL 22 IS 7 BP 2596 EP 2607 DI 10.1111/gcb.13264 PG 12 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DP8BD UT WOS:000378722000025 PM 27282323 ER PT J AU Nearing, GS Tian, YD Gupta, HV Clark, MP Harrison, KW Weijs, SV AF Nearing, Grey S. Tian, Yudong Gupta, Hoshin V. Clark, Martyn P. Harrison, Kenneth W. Weijs, Steven V. TI A philosophical basis for hydrological uncertainty SO HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES LA English DT Article DE uncertainty; Bayesian; epistemic; aleatory; information ID GLUE METHODOLOGY; INFORMATION; MODELS; CALIBRATION; INFERENCE; MULTIPLE; PROBABILITY; INCOHERENCE; SCIENCE; SYSTEMS AB Uncertainty is an epistemological concept in the sense that any meaningful understanding of uncertainty requires a theory of knowledge. Therefore, uncertainty resulting from scientific endeavors can only be properly understood in the context of a well-defined philosophy of science. Our main message here is that much of the discussion about uncertainty in hydrology has lacked grounding in these foundational concepts, and has resulted in a controversy that is largely the product of logical errors rather than true (axiomatic) disagreement. As an example, we explore the current debate about the appropriate role of probability theory for hydrological uncertainty quantification. Our main messages are: (1) apparent (and/or claimed) limitations of probability theory are not actually consequences of that theory, but rather of deeper underlying epistemological (and ontological) issues; (2) questions about the appropriateness of probability theory are only meaningful if posed as questions about our preferred philosophy of science; and (3) questions about uncertainty may often be better posed as questions about available information and information use efficiency. Our purpose here is to discuss how hydrologists might ask more meaningful questions about uncertainty. C1 [Nearing, Grey S.; Clark, Martyn P.] Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA. [Nearing, Grey S.; Tian, Yudong; Harrison, Kenneth W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Tian, Yudong; Harrison, Kenneth W.] Univ Maryland, Earth Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Gupta, Hoshin V.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Weijs, Steven V.] Univ British Columbia, Dept Civil Engn, Vancouver, BC, Canada. RP Nearing, GS (reprint author), Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA.; Nearing, GS (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM grey.s.nearing@nasa.gov RI Gupta, Hoshin/D-1642-2010; Weijs, Steven/G-9530-2013 OI Gupta, Hoshin/0000-0001-9855-2839; Weijs, Steven/0000-0003-1311-3867 NR 82 TC 2 Z9 2 U1 9 U2 16 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0262-6667 EI 2150-3435 J9 HYDROLOG SCI J JI Hydrol. Sci. J.-J. Sci. Hydrol. PD JUL PY 2016 VL 61 IS 9 SI SI BP 1666 EP 1678 DI 10.1080/02626667.2016.1183009 PG 13 WC Water Resources SC Water Resources GA DP7SK UT WOS:000378699300009 ER PT J AU Palmieri, FL Belcher, MA Wohl, CJ Blohowiak, KY Connell, JW AF Palmieri, Frank L. Belcher, Marcus A. Wohl, Christopher J. Blohowiak, Kay Y. Connell, John W. TI Laser ablation surface preparation for adhesive bonding of carbon fiber reinforced epoxy composites SO INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES LA English DT Article DE Lap-shear; Aging; Durability; Failure mode; Nd:YAG pretreatment ID JOINTS AB Adhesive bonding of carbon fiber reinforced plastic (CFRP) epoxy composites provides many advantages over mechanical fastening for assembling aerospace structures including weight savings, reduced manufacturing flow, and added structural efficiency. To ensure the reliability of bonded joints in primary airframe structures, the surface preparation method and execution are critical. Surface preparation is widely recognized as a key step in the bonding process and is one element of a bonding method that must be controlled to produce robust and predictable bonds in a precise and repeatable manner. Laser ablation of composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. monitoring laser parameters), and automation of surface preparation. This paper describes a surface preparation technique using a nanosecond, frequency-tripled Nd:YAG laser source. Lap shear specimens were laser treated and tested and apparent shear strength and failure modes of lap shear specimens were used to assess mechanical performance over a three-year accelerated aging study by exposing bonded specimens to 71 degrees C (160 degrees F) and 85% relative humidity. Published by Elsevier Ltd. C1 [Palmieri, Frank L.; Wohl, Christopher J.; Connell, John W.] NASA, Langley Res Ctr, MS226, Hampton, VA 23681 USA. [Belcher, Marcus A.; Blohowiak, Kay Y.] Boeing Co, Seattle, WA 98124 USA. RP Palmieri, FL (reprint author), NASA, Langley Res Ctr, MS226, Hampton, VA 23681 USA. EM frank.l.palmieri@nasa.gov NR 24 TC 2 Z9 2 U1 11 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-7496 EI 1879-0127 J9 INT J ADHES ADHES JI Int. J. Adhes. Adhes. PD JUL PY 2016 VL 68 BP 95 EP 101 DI 10.1016/j.ijadhadh.2016.02.007 PG 7 WC Engineering, Chemical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DP4MQ UT WOS:000378470400012 ER PT J AU SanSoucie, MP Rogers, JR Kumar, V Rodriguez, J Xiao, X Matson, DM AF SanSoucie, M. P. Rogers, J. R. Kumar, V. Rodriguez, J. Xiao, X. Matson, D. M. TI Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel SO INTERNATIONAL JOURNAL OF THERMOPHYSICS LA English DT Article DE Containerless processing; Electrostatic levitation; High temperatures; Melting; Nickel; Oxygen; Surface tension; Thermophysical properties; Viscosity ID ADSORPTION; ALLOYS AB The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10(-28) to 10(-9) bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method. C1 [SanSoucie, M. P.; Rogers, J. R.] NASA, George C Marshall Space Flight Ctr, Environm Effects Branch EM50, MSFC, Huntsville, AL 35812 USA. [Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.] Tufts Univ, Dept Mech Engn, Medford, MA 02155 USA. RP SanSoucie, MP (reprint author), NASA, George C Marshall Space Flight Ctr, Environm Effects Branch EM50, MSFC, Huntsville, AL 35812 USA. EM michael.p.sansoucie@nasa.gov NR 13 TC 0 Z9 0 U1 10 U2 11 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0195-928X EI 1572-9567 J9 INT J THERMOPHYS JI Int. J. Thermophys. PD JUL PY 2016 VL 37 IS 7 AR 76 DI 10.1007/s10765-016-2085-6 PG 11 WC Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied SC Thermodynamics; Chemistry; Mechanics; Physics GA DP8KT UT WOS:000378747700013 ER PT J AU Goordial, J Davila, A Lacelle, D Pollard, W Marinova, MM Greer, CW DiRuggiero, J McKay, CP Whyte, LG AF Goordial, Jacqueline Davila, Alfonso Lacelle, Denis Pollard, Wayne Marinova, Margarita M. Greer, Charles W. DiRuggiero, Jocelyn McKay, Christopher P. Whyte, Lyle G. TI Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica SO ISME JOURNAL LA English DT Article ID ATACAMA DESERT; SOILS; MARS; DIVERSITY; ANALOG; ICE; PRODUCTIVITY; ASTROBIOLOGY; COMMUNITIES; BACTERIA AB Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 degrees C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. C1 [Goordial, Jacqueline; Whyte, Lyle G.] McGill Univ, Dept Nat Resource Sci, Macdonald Campus, Ste Anne De Bellevue, PQ H9X 3V9, Canada. [Davila, Alfonso; Marinova, Margarita M.; McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lacelle, Denis] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. [Pollard, Wayne] McGill Univ, Dept Geog, Montreal, PQ, Canada. [Greer, Charles W.] Natl Res Council Canada, Montreal, PQ, Canada. [DiRuggiero, Jocelyn] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. RP Goordial, J (reprint author), McGill Univ, Dept Nat Resource Sci, Macdonald Campus,21111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada. EM jacqueline.goordial@mail.mcgill.ca OI Lacelle, Denis/0000-0002-6691-8717 FU NASA ASTEP program; Natural Sciences and Engineering Research Council (NSERC) Discovery Grant Program; NSERC Northern Supplements Program; NSERC CREATE Canadian Astrobiology Training Program (CATP); [B-302-M]; [PRJNA240343] FX This work was supported by NASA ASTEP program and with field support via NSF/OPP (project B-302-M). Support was provided by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant Program, NSERC Northern Supplements Program and NSERC CREATE Canadian Astrobiology Training Program (CATP). We thank Jon Rask at NASA Ames for providing the permafrost and active layer samples from the Marambio Antarctic site. We thank the Whalen laboratory, McGill University for soil analyses. Pyrosequencing data sets have been deposited in the NCBI Sequence Read Archive (SRA) under project PRJNA240343. NR 37 TC 1 Z9 1 U1 14 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2016 VL 10 IS 7 BP 1613 EP 1624 DI 10.1038/ismej.2015.239 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DP2BC UT WOS:000378292100007 PM 27323892 ER PT J AU Johnson, GC Lyman, JM Loeb, NG AF Johnson, Gregory C. Lyman, John M. Loeb, Norman G. TI CORRESPONDENCE: Improving estimates of Earth's energy imbalance SO NATURE CLIMATE CHANGE LA English DT Letter ID SEA-LEVEL RISE; GLOBAL HEAT; UPPER-OCEAN; BUDGETS C1 [Johnson, Gregory C.; Lyman, John M.] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Lyman, John M.] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Loeb, Norman G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Johnson, GC (reprint author), NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM gregory.c.johnson@noaa.gov RI Johnson, Gregory/I-6559-2012 OI Johnson, Gregory/0000-0002-8023-4020 FU Climate Observation Division; Climate Program Office; National Oceanic and Atmospheric Administration (NOAA); US Department of Commerce; NOAA Research; NASA Science Mission Directorate FX Argo data are collected and made freely available by the International Argo Programme and the national programs that contribute to it. we also thank the CERES science, algorithm and data management team. G.C.J. and J.M.L. are supported by the Climate Observation Division, Climate Program Office, National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce and NOAA Research. N.G.L. is supported by the NASA Science Mission Directorate. PMEL Contribution 4461. NR 10 TC 3 Z9 3 U1 2 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JUL PY 2016 VL 6 IS 7 BP 639 EP 640 PG 3 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DP6LP UT WOS:000378608900004 ER PT J AU Lentz, EE Thieler, ER Plant, NG Stippa, SR Horton, RM Gesch, DB AF Lentz, Erika E. Thieler, E. Robert Plant, Nathaniel G. Stippa, Sawyer R. Horton, Radley M. Gesch, Dean B. TI Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood SO NATURE CLIMATE CHANGE LA English DT Article ID CLIMATE-CHANGE; NEW-YORK; NETWORK; ISLAND AB Sea-level rise (SLR) poses a range of threats to natural and built environmentsu, making assessments of SLR-induced hazards essential for informed decision making(3). We develop a probabilistic model that evaluates the likelihood that an area will inundate (flood) or dynamically respond (adapt) to SLR. The broad-area applicability of the approach is demonstrated by producing 30 x 30 m resolution predictions for more than 38,000 km(2) of diverse coastal landscape in the northeastern United States. Probabilistic SLR projections, coastal elevation and vertical land movement are used to estimate likely future inundation levels. Then, conditioned on future inundation levels and the current land-cover type, we evaluate the likelihood of dynamic response versus inundation. We find that nearly 70% of this coastal landscape has some capacity to respond dynamically to SLR, and we show that inundation models over-predict land likely to submerge. This approach is well suited to guiding coastal resource management decisions that weigh future SLR impacts and uncertainty against ecological targets and economic constraints. C1 [Lentz, Erika E.; Thieler, E. Robert; Stippa, Sawyer R.] US Geol Survey, Woods Hole, MA 02543 USA. [Plant, Nathaniel G.] US Geol Survey, St Petersburg, FL 33701 USA. [Horton, Radley M.] Columbia Univ, Ctr Climate Syst Res, Earth Inst, New York, NY 10025 USA. [Horton, Radley M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Gesch, Dean B.] US Geol Survey, Sioux Falls, SD 57030 USA. RP Lentz, EE (reprint author), US Geol Survey, Woods Hole, MA 02543 USA. EM elentz@usgs.gov RI wang, baylor09/C-5190-2009; OI Gesch, Dean/0000-0002-8992-4933 FU US Geological Survey Coastal and Marine Geology Program; Department of the Interior Northeast Climate Science Center; US Army Corps of Engineers Institute for Water Resources under the Responses to Climate Change Program FX This research was funded by the US Geological Survey Coastal and Marine Geology Program, the Department of the Interior Northeast Climate Science Center, and the US Army Corps of Engineers Institute for Water Resources under the Responses to Climate Change Program. We thank B. Strauss at Climate Central's surging Seas project for permission to use their base map in Fig. 2, and C. Ruppel and M. Gonneea for early reviews and discussion of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does nut imply endorsement by the US Government. NR 35 TC 4 Z9 4 U1 5 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JUL PY 2016 VL 6 IS 7 BP 696 EP + DI 10.1038/NCLIMATE2957 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DP6LP UT WOS:000378608900025 ER PT J AU Cook, BI Wolkovich, EM AF Cook, Benjamin I. Wolkovich, Elizabeth M. TI Climate change decouples drought from early wine grape harvests in France SO NATURE CLIMATE CHANGE LA English DT Article ID MANAGEMENT-PRACTICES; QUALITY; TEMPERATURE; BORDEAUX; EUROPE; CONSEQUENCES; VITICULTURE; PHENOLOGY; DATES AB Across the world, wine grape phenology has advanced in recent decades(1-3), in step with climate-change-induced trends in temperature the main driver of fruit maturation and drought. Fully understanding how climate change contributes to changes in harvest dates, however, requires analysing wine grape phenology and its relationship to climate over a longer-term context, including data predating anthropogenic interference in the climate system. Here, we investigate the climatic controls of wine grape harvest dates from 1600-2007 in France and Switzerland using historical harvest(4) and climate data(5-7). Early harvests occur with warmer temperatures (-6 days degrees C-1) and are delayed by wet conditions (+0.07 days mm(-1); +1.68 days PDSI-1) during spring and summer. In recent decades (1981-2007), however, the relationship between harvest timing and drought has broken down. Historically, high summer temperatures in Western Europe, which would hasten fruit maturation, required drought conditions to generate extreme heat. The relationship between drought and temperature in this region, however, has weakened in recent decades and enhanced warming from anthropogenic greenhouse gases can generate the high temperatures needed for early harvests without drought. Our results suggest that climate change has fundamentally altered the climatic drivers of early wine grape harvests in France, with possible ramifications for viticulture management and wine quality. C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.] Lamont Doherty Earth Observ, Div Ocean & Climate Phys, Palisades, NY 10964 USA. [Wolkovich, Elizabeth M.] Arnold Arboretum, Boston, MA 02131 USA. [Wolkovich, Elizabeth M.] Harvard Univ, Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.; Cook, BI (reprint author), Lamont Doherty Earth Observ, Div Ocean & Climate Phys, Palisades, NY 10964 USA. EM benjamin.i.cook@nasa.gov RI Cook, Benjamin/H-2265-2012 NR 34 TC 2 Z9 2 U1 17 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JUL PY 2016 VL 6 IS 7 BP 715 EP + DI 10.1038/NCLIMATE2960 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DP6LP UT WOS:000378608900031 ER PT J AU Eriksson, S Wilder, FD Ergun, RE Schwartz, SJ Cassak, PA Burch, JL Chen, LJ Torbert, RB Phan, TD Lavraud, B Goodrich, KA Holmes, JC Stawarz, JE Sturner, AP Malaspina, DM Usanova, ME Trattner, KJ Strangeway, RJ Russell, CT Pollock, CJ Giles, BL Hesse, M Lindqvist, PA Drake, JF Shay, MA Nakamura, R Marklund, GT AF Eriksson, S. Wilder, F. D. Ergun, R. E. Schwartz, S. J. Cassak, P. A. Burch, J. L. Chen, L. -J. Torbert, R. B. Phan, T. D. Lavraud, B. Goodrich, K. A. Holmes, J. C. Stawarz, J. E. Sturner, A. P. Malaspina, D. M. Usanova, M. E. Trattner, K. J. Strangeway, R. J. Russell, C. T. Pollock, C. J. Giles, B. L. Hesse, M. Lindqvist, P. -A. Drake, J. F. Shay, M. A. Nakamura, R. Marklund, G. T. TI Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection SO PHYSICAL REVIEW LETTERS LA English DT Article ID ASYMMETRIC RECONNECTION; EARTHS MAGNETOPAUSE; ACCELERATION AB We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E-parallel to)that is larger than predicted by simulations. The high-speed (similar to 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E-parallel to is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure. C1 [Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Goodrich, K. A.; Holmes, J. C.; Stawarz, J. E.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Trattner, K. J.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Ergun, R. E.; Goodrich, K. A.; Holmes, J. C.; Stawarz, J. E.; Sturner, A. P.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA. [Schwartz, S. J.] Imperial Coll, Blackett Lab, London SW7 2AZ, England. [Cassak, P. A.] W Virginia Univ, Morgantown, WV 26506 USA. [Burch, J. L.; Torbert, R. B.] SW Res Inst, San Antonio, TX 78238 USA. [Chen, L. -J.; Drake, J. F.] Univ Maryland, College Pk, MD 20742 USA. [Torbert, R. B.] Univ New Hampshire, Durham, NH 03824 USA. [Phan, T. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, F-31028 Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, Toulouse, France. [Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Pollock, C. J.; Giles, B. L.; Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lindqvist, P. -A.; Marklund, G. T.] KTH Royal Inst Technol, SE-11428 Stockholm, Sweden. [Shay, M. A.] Univ Delaware, Newark, DE 19716 USA. [Nakamura, R.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. RP Eriksson, S (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. RI Stawarz, Julia/L-7387-2016; Nakamura, Rumi/I-7712-2013; NASA MMS, Science Team/J-5393-2013; OI Stawarz, Julia/0000-0002-5702-5802; Nakamura, Rumi/0000-0002-2620-9211; NASA MMS, Science Team/0000-0002-9504-5214; Eriksson, Stefan/0000-0002-5619-1577 FU NASA MMS project; CNES; CNRS; Leverhulme Trust FX This work was funded by the NASA MMS project. The authors recognize the tremendous effort in developing and operating the MMS spacecraft and instruments and sincerely thank all involved. SJS thanks the Leverhulme Trust for their award of a Research Fellowship. IRAP contribution to MMS was supported by CNES and CNRS. NR 31 TC 5 Z9 5 U1 4 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 1 PY 2016 VL 117 IS 1 AR 015001 DI 10.1103/PhysRevLett.117.015001 PG 6 WC Physics, Multidisciplinary SC Physics GA DQ0SZ UT WOS:000378911900006 PM 27419573 ER PT J AU Lapotre, MGA Ewing, RC Lamb, MP Fischer, WW Grotzinger, JP Rubin, DM Lewis, KW Ballard, MJ Day, M Gupta, S Banham, SG Bridges, NT Des Marais, DJ Fraeman, AA Grant, JA Herkenhoff, KE Ming, DW Mischna, MA Rice, MS Sumner, DA Vasavada, AR Yingst, RA AF Lapotre, M. G. A. Ewing, R. C. Lamb, M. P. Fischer, W. W. Grotzinger, J. P. Rubin, D. M. Lewis, K. W. Ballard, M. J. Day, M. Gupta, S. Banham, S. G. Bridges, N. T. Des Marais, D. J. Fraeman, A. A. Grant, J. A. Herkenhoff, K. E. Ming, D. W. Mischna, M. A. Rice, M. S. Sumner, D. A. Vasavada, A. R. Yingst, R. A. TI Large wind ripples on Mars: A record of atmospheric evolution SO SCIENCE LA English DT Article ID MERIDIANI-PLANUM; SAND RIPPLES; BEDFORMS; CRATER; DUNES; WATER; MODEL AB Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter-to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere. C1 [Lapotre, M. G. A.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Fraeman, A. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ewing, R. C.; Ballard, M. J.] Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. [Rubin, D. M.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Lewis, K. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Day, M.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Gupta, S.; Banham, S. G.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Bridges, N. T.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Des Marais, D. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Fraeman, A. A.; Mischna, M. A.; Vasavada, A. R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Grant, J. A.] Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA. [Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Ming, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Rice, M. S.] Western Washington Univ, Dept Geol, Bellingham, WA 98225 USA. [Sumner, D. A.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Yingst, R. A.] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Lapotre, MGA (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM mlapotre@caltech.edu FU NASA; UK Space Agency; NASA MSL Participating Scientist program; KISS Prize Postdoctoral Fellowship; Caltech GPS Division Texaco Prize Postdoctoral Fellowship FX We thank the MSL engineering and science teams; the Mastcam team; Malin Space Science Systems, who made the rover observations possible; and B. Ehlmann and K. Edgett for insightful comments. Data presented in this paper are archived in the Planetary Data System (https://pds.nasa.gov/), and our compilation is available in the supplementary materials (data tables S1 and S2). Part of this research was carried out at the Propultion Laboutatory-Caltech, under a contract with NASA. Work in the United Kingdom was funded by the UK Space Agency. D.M.R. was funded by the NASA MSL Participating Scientist program, and A.A.F. by a KISS Prize Postdoctoral Fellowship and a Caltech GPS Division Texaco Prize Postdoctoral Fellowship. NR 38 TC 9 Z9 9 U1 12 U2 23 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUL 1 PY 2016 VL 353 IS 6294 BP 55 EP 58 DI 10.1126/science.aaf3206 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DP9KX UT WOS:000378816200033 PM 27365444 ER PT J AU Scott, JM Adams, SC Koelwyn, GJ Jones, LW AF Scott, Jessica M. Adams, Scott C. Koelwyn, Graeme J. Jones, Lee W. TI Cardiovascular Late Effects and Exercise Treatment in Breast Cancer: Current Evidence and Future Directions SO CANADIAN JOURNAL OF CARDIOLOGY LA English DT Review ID PRESERVED EJECTION FRACTION; RANDOMIZED CONTROLLED-TRIAL; ADJUVANT ENDOCRINE THERAPY; HEART-FAILURE PHENOTYPES; PHYSICAL-ACTIVITY; AEROBIC EXERCISE; INDUCED CARDIOTOXICITY; STRESS ECHOCARDIOGRAPHY; MYOCARDIAL DYSFUNCTION; CARDIAC DYSFUNCTION AB Advances in detection and supportive care strategies have led to improvements in cancer-specific and overall survival after a diagnosis of early-stage breast cancer. These improvements, however, are associated with an increase in competing forms of morbidity and mortality, particularly cardiovascular disease (CVD). Indeed, in certain subpopulations of patients, CVD is the leading cause of mortality after early breast cancer, and these women also have an increased risk of CVD-specific morbidity, including an elevated incidence of coronary artery disease and heart failure compared with their sex-and agematched counterparts. Exercise treatment is established as the cornerstone of primary and secondary prevention of CVD in multiple clinical populations. The potential benefits of exercise treatment to modulate CVD or CVD risk factors before, immediately after, or in the months/years after adjuvant therapy for early-stage breast cancer have received limited attention. We discuss the risk and extent of CVD in patients with breast cancer, review the pathogenesis of CVD, and highlight existing evidence from select clinical trials investigating the efficacy of structured exercise treatment across the CVD continuum in early breast cancer. C1 [Scott, Jessica M.] Univ Space Res Assoc, NASA, Johnson Space Ctr, Houston, TX USA. [Adams, Scott C.] Univ Alberta, Edmonton, AB, Canada. [Koelwyn, Graeme J.] New York Univ Langone Med Ctr, New York, NY USA. [Jones, Lee W.] Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10065 USA. RP Jones, LW (reprint author), Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10065 USA. EM jonesl3@mskcc.org FU National Cancer Institute; AKTIV Against Cancer Foundation FX L.W.J. is supported by research grants from the National Cancer Institute and from AKTIV Against Cancer Foundation. NR 89 TC 1 Z9 1 U1 9 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0828-282X EI 1916-7075 J9 CAN J CARDIOL JI Can. J. Cardiol. PD JUL PY 2016 VL 32 IS 7 BP 881 EP 890 DI 10.1016/j.cjca.2016.03.014 PG 10 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA DP3GP UT WOS:000378381500007 PM 27343744 ER PT J AU Raccanelli, A Bertacca, D Maartens, R Clarkson, C Dore, O AF Raccanelli, Alvise Bertacca, Daniele Maartens, Roy Clarkson, Chris Dore, Olivier TI Lensing and time-delay contributions to galaxy correlations SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article DE Galaxy clustering; Correlation function; Relativistic effects ID REDSHIFT-SPACE DISTORTIONS; CONSTRAINTS; COSMOLOGY; SAMPLE AB Galaxy clustering on very large scales can be probed via the 2-point correlation function in the general case of wide and deep separations, including all the lightcone and relativistic effects. Using our recently developed formalism, we analyze the behavior of the local and integrated contributions and how these depend on redshift range, linear and angular separations and luminosity function. Relativistic corrections to the local part of the correlation can be non-negligible but they remain generally sub-dominant. On the other hand, the additional correlations arising from lensing convergence and time-delay effects can become very important and even dominate the observed total correlation function. We investigate different configurations formed by the observer and the pair of galaxies, and we find that the case of near-radial large-scale separations is where these effects will be the most important. C1 [Raccanelli, Alvise; Dore, Olivier] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Raccanelli, Alvise; Dore, Olivier] CALTECH, Pasadena, CA 91125 USA. [Bertacca, Daniele; Maartens, Roy] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. [Maartens, Roy] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Clarkson, Chris] Univ Cape Town, Ctr Astrophys Cosmol & Gravitat, ZA-7701 Cape Town, South Africa. [Clarkson, Chris] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Cape Town, South Africa. RP Bertacca, D (reprint author), Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. EM daniele.bertacca@gmail.com OI Raccanelli, Alvise/0000-0001-6726-0438; Bertacca, Daniele/0000-0002-2490-7139 FU National Aeronautics and Space Administration; South African Square Kilometre Array Project; STFC (UK) [ST/H002774/1]; National Research Foundation (NRF, South Africa); Royal Society (UK)/NRF (SA); STFC; BIS FX We thank Guido Pettinari for useful suggestions and Nicola Bartolo, Francis-Yan Cyr-Racine, Ruth Durrer, Chris Hirata, Sabino Matarrese, Roland de Putter and Masahiro Takada for helpful discussions. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. DB and RM are supported by the South African Square Kilometre Array Project. RM is supported by the STFC (UK) (Grant No. ST/H002774/1). RM and CC are supported by the National Research Foundation (NRF, South Africa). DB, RM and CC were supported by a Royal Society (UK)/NRF (SA) exchange grant. Some of the numerical computations were performed on the COSMOS supercomputer, part of the DiRAC HPC, a facility funded by STFC and BIS. NR 58 TC 2 Z9 2 U1 2 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 EI 1572-9532 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD JUL PY 2016 VL 48 IS 7 AR 84 DI 10.1007/s10714-016-2076-8 PG 16 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DP5TW UT WOS:000378561600002 ER PT J AU Boyer, T Domingues, CM Good, SA Johnson, GC Lyman, JM Ishii, M Gouretski, V Willis, JK Antonov, J Wijffels, S Church, JA Cowley, R Bindoff, NL AF Boyer, Tim Domingues, Catia M. Good, Simon A. Johnson, Gregory C. Lyman, John M. Ishii, Masayoshi Gouretski, Viktor Willis, Josh K. Antonov, John Wijffels, Susan Church, John A. Cowley, Rebecca Bindoff, Nathaniel L. TI Sensitivity of Global Upper-Ocean Heat Content Estimates to Mapping Methods, XBT Bias Corrections, and Baseline Climatologies SO JOURNAL OF CLIMATE LA English DT Article ID SEA-LEVEL RISE; DATA ASSIMILATION SYSTEM; SUBSURFACE TEMPERATURE; EXPENDABLE BATHYTHERMOGRAPHS; SURFACE TEMPERATURE; VARIABILITY; PREDICTIONS; VARIABLES; PRESSURE; IMPACTS AB Ocean warming accounts for the majority of the earth's recent energy imbalance. Historic ocean heat content (OHC) changes are important for understanding changing climate. Calculations of OHC anomalies (OHCA) from in situ measurements provide estimates of these changes. Uncertainties in OHCA estimates arise from calculating global fields from temporally and spatially irregular data (mapping method), instrument bias corrections, and the definitions of a baseline climatology from which anomalies are calculated. To investigate sensitivity of OHCA estimates for the upper 700 m to these different factors, the same quality-controlled dataset is used by seven groups and comparisons are made. Two time periods (1970-2008 and 1993-2008) are examined. Uncertainty due to the mapping method is 16.5 ZJ for 1970-2008 and 17.1 ZJ for 1993-2008 (1 ZJ = 1 x 10(21) J). Uncertainty due to instrument bias correction varied from 8.0 to 17.9 ZJ for 1970-2008 and from 10.9 to 22.4 ZJ for 1993-2008, depending on mapping method. Uncertainty due to baseline mean varied from 3.5 to 14.5 ZJ for 1970-2008 and from 2.7 to 9.8 ZJ for 1993-2008, depending on mapping method and offsets. On average mapping method is the largest source of uncertainty. The linear trend varied from 1.3 to 5.0 ZJ yr(-1) (0.08-0.31 Wm(-2)) for 1970-2008 and from 1.5 to 9.4 ZJ yr(-1) (0.09-0.58 Wm(-2)) for 1993-2008, depending on method, instrument bias correction, and baseline mean. Despite these complications, a statistically robust upper-ocean warming was found in all cases for the full time period. C1 [Boyer, Tim] NOAA, Natl Ctr Environm Informat, Silver Spring, MD USA. [Domingues, Catia M.; Bindoff, Nathaniel L.] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia. [Domingues, Catia M.; Bindoff, Nathaniel L.] Antarctic Climate & Ecosyst Cooperat Res Inst, Hobart, Tas, Australia. [Domingues, Catia M.; Bindoff, Nathaniel L.] Australian Res Council, Ctr Excellence Climate Syst Sci, Hobart, Tas, Australia. [Good, Simon A.] Met Off, Exeter, Devon, England. [Johnson, Gregory C.; Lyman, John M.] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way Ne, Seattle, WA 98115 USA. [Lyman, John M.] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Ishii, Masayoshi] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan. [Gouretski, Viktor] Univ Hamburg, Ctr Earth Syst Res & Sustainabil, CliSAP, Integrated Climate Data Ctr, Hamburg, Germany. [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Church, John A.] Univ Corp Atmospheric Res, Boulder, CO USA. [Wijffels, Susan; Church, John A.; Cowley, Rebecca; Bindoff, Nathaniel L.] CSIRO, Hobart, Tas, Australia. RP Boyer, T (reprint author), Natl Ctr Environm Informat, Ocean Climate Lab, 1315 East West Highway, Silver Spring, MD 20910 USA. EM tim.boyer@noaa.gov RI Johnson, Gregory/I-6559-2012; Church, John/A-1541-2012 OI Johnson, Gregory/0000-0002-8023-4020; Church, John/0000-0002-7037-8194 FU Climate Observations and Monitoring Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce; Joint UK DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; Australian Government's Business Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC); Australian Research Council [FT130101532]; National Aeronautics and Space Administration; NOAA Research; NOAA Ocean Climate Observations Program FX TB was funded by the Climate Observations and Monitoring Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. SG was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). CMD was initially supported by the Australian Government's Business Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC) and subsequently by an Australian Research Council Future Fellowship (FT130101532). The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. GCJ and JML were supported by NOAA Research and the NOAA Ocean Climate Observations Program. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA. Data used herein are available upon request. NR 76 TC 4 Z9 4 U1 5 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2016 VL 29 IS 13 BP 4817 EP 4842 DI 10.1175/JCLI-D-15-0801.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DO9GB UT WOS:000378091900008 ER PT J AU Lee, M Kloog, I Chudnovsky, A Lyapustin, A Wang, YJ Melly, S Coull, B Koutrakis, P Schwartz, J AF Lee, Mihye Kloog, Itai Chudnovsky, Alexandra Lyapustin, Alexei Wang, Yujie Melly, Steven Coull, Brent Koutrakis, Petros Schwartz, Joel TI Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003-2011 SO JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY LA English DT Article DE empirical/statistical models; exposure modeling; particulate matter; personal exposure ID USE REGRESSION-MODELS; LEVEL PM2.5 CONCENTRATIONS; AIR-POLLUTION; MEASUREMENT ERROR; EXPOSURE; EPIDEMIOLOGY; AEROSOL; RETRIEVALS; MORTALITY; CITIES AB Numerous studies have demonstrated that fine particulate matter (PM2.5, particles smaller than 2.5 mu m in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM2.5 to assess personal exposure, however, induces measurement error. Land-use regression provides spatially resolved predictions but land-use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM2.5 exposures. In this paper, we used AOD data with other PM2.5 variables, such as meteorological variables, land-use regression, and spatial smoothing to predict daily concentrations of PM2.5 at a 1-km(2) resolution of the Southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 to 2011. We divided the study area into three regions and applied separate mixed-effect models to calibrate AOD using ground PM2.5 measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R-2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors of 2.89, 2.51, and 2.82 mu g/m(3) for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM2.5 concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM2.5. Our model results will also extend the existing studies on PM2.5 which have mostly focused on urban areas because of the paucity of monitors in rural areas. C1 [Lee, Mihye; Koutrakis, Petros; Schwartz, Joel] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Exposure Epidemiol & Risk Program, Boston, MA 02115 USA. [Kloog, Itai] Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel. [Chudnovsky, Alexandra] Tel Aviv Univ, Dept Geog & Human Environm, IL-69978 Tel Aviv, Israel. [Lyapustin, Alexei] NASA, Goddard Space Flight Ctr, GEST UMBC, Baltimore, MD USA. [Wang, Yujie] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Melly, Steven] Drexel Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Philadelphia, PA 19104 USA. [Coull, Brent] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA. RP Lee, M (reprint author), Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Exposure Epidemiol & Risk Program, Boston, MA 02115 USA. EM mil724@mail.harvard.edu FU NIEHS NIH HHS [P30 ES000002] NR 21 TC 6 Z9 6 U1 5 U2 10 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1559-0631 EI 1559-064X J9 J EXPO SCI ENV EPID JI J. Expo. Sci. Environ. Epidemiol. PD JUL-AUG PY 2016 VL 26 IS 4 BP 377 EP 384 DI 10.1038/jes.2015.41 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA DO9MX UT WOS:000378111800005 PM 26082149 ER PT J AU Putman, WM Ott, L Darmenov, A daSilva, A AF Putman, William M. Ott, Lesley Darmenov, Anton daSilva, Arlindo TI A global perspective of atmospheric carbon dioxide concentrations SO PARALLEL COMPUTING LA English DT Article DE Carbon dioxide; Global warming; Climate change; Global models; Parallel computing; Big data; Parallel visualization ID VOLUME DYNAMICAL CORE; MODEL AB A high-resolution (7 km) non-hydrostatic global mesoscale simulation using the Goddard Earth Observing System (GEOS-5) model is used to visualize the flow and fluxes of carbon dioxide throughout the year. Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. This visualization shows how column CO2 mixing ratios are strongly affected by local emissions and large-scale weather systems. In order to fully understand carbon flux processes, observations and atmospheric models must work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions. Published by Elsevier B.V. C1 [Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt Rd, Greenbelt, MD 20771 USA. RP Putman, WM (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt Rd, Greenbelt, MD 20771 USA. EM William.M.Putman@nasa.gov RI Ott, Lesley/E-2250-2012 FU Modeling, Analysis, and Prediction (MAP) Program within NASA's Earth Science Program FX The Global Modeling and Assimilation Office and this work are funded through the Modeling, Analysis, and Prediction (MAP) Program within NASA's Earth Science Program. Computing facilities at the NASA Center for Climate Simulation (NCCS) and funded through the NASA High End Computing program provided the platforms for all computations and visualizations presented in this work. NR 16 TC 2 Z9 2 U1 13 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JUL PY 2016 VL 55 SI SI BP 2 EP 8 DI 10.1016/j.parco.2016.03.001 PG 7 WC Computer Science, Theory & Methods SC Computer Science GA DP4KG UT WOS:000378464200002 ER PT J AU Woo, R AF Woo, Richard TI The Art and Science of Solar Eclipses After 150 years of expeditions, we have finally arrived at a definitive understanding of the corona revealed by solar eclipses SO AMERICAN SCIENTIST LA English DT Editorial Material C1 [Woo, Richard] CALTECH, NASA, Jet Prop Lab, Pasadena, CA USA. RP Woo, R (reprint author), CALTECH, NASA, Jet Prop Lab, Pasadena, CA USA. EM richard.woo@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 1 U2 1 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 EI 1545-2786 J9 AM SCI JI Am. Scientist PD JUL-AUG PY 2016 VL 104 IS 4 BP 208 EP 211 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DO6WU UT WOS:000377925000010 ER PT J AU Ruane, AC Hudson, NI Asseng, S Camarrano, D Ewert, F Martre, P Boote, KJ Thorburn, PJ Aggarwal, PK Angulo, C Basso, B Bertuzzi, P Biernath, C Brisson, N Challinor, AJ Doltra, J Gayler, S Goldberg, R Grant, RF Heng, L Hooker, J Hunt, LA Ingwersen, J Izaurralde, RC Kersebaum, KC Kumar, SN Muller, C Nendel, C O'Leary, G Olesen, JE Osborne, TM Palosuo, T Priesack, E Ripoche, D Rotter, RP Semenov, MA Shcherbak, I Steduto, P Stockle, CO Stratonovitch, P Streck, T Supit, I Tao, FL Travasso, M Waha, K Wallach, D White, JW Wolf, J AF Ruane, Alex C. Hudson, Nicholas I. Asseng, Senthold Camarrano, Davide Ewert, Frank Martre, Pierre Boote, Kenneth J. Thorburn, Peter J. Aggarwal, Pramod K. Angulo, Carlos Basso, Bruno Bertuzzi, Patrick Biernath, Christian Brisson, Nadine Challinor, Andrew J. Doltra, Jordi Gayler, Sebastian Goldberg, Richard Grant, Robert F. Heng, Lee Hooker, Josh Hunt, Leslie A. Ingwersen, Joachim Izaurralde, Roberto C. Kersebaum, Kurt Christian Kumar, Soora Naresh Mueller, Christoph Nendel, Claas O'Leary, Garry Olesen, Jorgen E. Osborne, Torn M. Palosuo, Taru Priesack, Eckart Ripoche, Dominique Roetter, Reimund P. Semenov, Mikhail A. Shcherbak, Iurii Steduto, Pasquale Stoeckle, Claudio O. Stratonovitch, Pierre Streck, Thilo Supit, Iwan Tao, Fulu Travasso, Maria Waha, Katharina Wallach, Daniel White, Jeffrey W. Wolf, Joost TI Multi-wheat-model ensemble responses to interannual climate variability SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Crop modeling; Uncertainty; Multi-model ensemble; Wheat; AgMIP; Climate impacts; Temperature; Precipitation; lnterannual variability ID SIMULATION-MODEL; CROP MODEL; NITROGEN DYNAMICS; WINTER-WHEAT; LARGE-AREA; SYSTEMS SIMULATION; FARMING SYSTEMS; YIELD RESPONSE; GROWTH; WATER AB We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R-2 <= 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts. Published by Elsevier Ltd. C1 [Ruane, Alex C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Hudson, Nicholas I.; Goldberg, Richard] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Asseng, Senthold; Camarrano, Davide; Boote, Kenneth J.] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL USA. [Camarrano, Davide] James Hutton Inst, Invergowrie, Dundee, Scotland. [Ewert, Frank; Angulo, Carlos] Univ Bonn, Inst Crop Sci & Resource Conservat, D-53115 Bonn, Germany. [Martre, Pierre] Natl Inst Agr Res INRA, Genet Divers & Ecophysiol Cereals GDEC UMR1095, F-63100 Clermont Ferrand, France. [Martre, Pierre] INRA, Montpellier SupAgro, LEASE UMR759, F-34060 Montpellier, France. [Thorburn, Peter J.; Waha, Katharina] CSIRO, St Lucia, Qld 4067, Australia. [Aggarwal, Pramod K.] Int Water Management Inst, Consultat Grp Int Agr Res, Res Program Climate Change Agr & Food Secur, New Delhi 110012, India. [Basso, Bruno] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA. [Basso, Bruno] Michigan State Univ, Kellogg Biol Stn, E Lansing, MI 48824 USA. [Bertuzzi, Patrick; Ripoche, Dominique] INRA, AgroClim US1116, F-84914 Avignon, France. [Biernath, Christian; Priesack, Eckart] German Res Ctr Environm Hlth, Inst Biochem Plant Pathol, Helmholtz Zentrum Munchen, D-85764 Neuherberg, Germany. [Brisson, Nadine] INRA, Agron UMR0211, F-78750 Thiverval Grignon, France. [Brisson, Nadine] AgroParisTech, Agron UMR0211, F-78750 Thiverval Grignon, France. [Challinor, Andrew J.] Univ Leeds, Inst Climate & Atmospher Sci, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Challinor, Andrew J.] Ctr Int Agr Trop, CGIAR ESSP Program Climate Change Agr & Food Secu, Cali 763537, Colombia. [Doltra, Jordi] Cantabrian Agr Res & Training Ctr, Muriedas 39600, Spain. [Gayler, Sebastian; Ingwersen, Joachim; Streck, Thilo] Univ Stuttgart Hohenheim, Inst Soil Sci & Land Evaluat, D-70599 Stuttgart, Germany. [Grant, Robert F.] Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2E3, Canada. [Heng, Lee] IAEA, A-1400 Vienna, Austria. [Hooker, Josh] Univ Reading, Sch Agr Policy & Dev, Reading RG6 6AR, Berks, England. [Hunt, Leslie A.] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada. [Izaurralde, Roberto C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20782 USA. [Ewert, Frank; Kersebaum, Kurt Christian; Nendel, Claas] Leibniz Ctr Agr Landscape Res ZALF, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany. [Kumar, Soora Naresh] Indian Agr Res Inst, Ctr Environm Sci & Climate Resilient Agr, New Delhi 110012, India. [Mueller, Christoph; Waha, Katharina] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany. [O'Leary, Garry] Landscape & Water Sci, Dept Primary Ind, Horsham, Vic 3400, Australia. [Olesen, Jorgen E.] Aarhus Univ, Dept Agroecol, DK-8830 Tjele, Denmark. [Osborne, Torn M.] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci, Reading RG6 6BB, Berks, England. [Palosuo, Taru; Roetter, Reimund P.; Tao, Fulu] Nat Resources Inst Finland Luke, Environm Impacts Grp, FI-01370 Vantaa, Finland. [Semenov, Mikhail A.; Stratonovitch, Pierre] Rothamsted Res, Computat & Syst Biol Dept, Harpenden AL5 2JQ, Herts, England. [Shcherbak, Iurii] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia. [Steduto, Pasquale] UN, Food & Agr Org, Rome, Italy. [Stoeckle, Claudio O.] Washington State Univ, Biol Syst Engn, Pullman, WA 99164 USA. [Supit, Iwan] Wageningen Univ, Earth Syst Sci Climate Change & Adapt Land Use &, NL-6700 AA Wageningen, Netherlands. [Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China. [Travasso, Maria] INTA CIRN, Inst Climate & Water, RA-1712 Castelar, Argentina. [Wallach, Daniel] INRA, Agrosyst & Dev Terr UMR1248, F-31326 Castanet Tolosan, France. [White, Jeffrey W.] USDA ARS, Arid Land Agr Res Ctr, Maricopa, AZ 85138 USA. [Wolf, Joost] Wageningen Univ, Plant Prod Syst, NL-6700 AA Wageningen, Netherlands. [Roetter, Reimund P.] Univ Gottingen, D-37073 Gottingen, Germany. RP Ruane, AC (reprint author), NASA, Goddard Inst Space Studies, Climate Impacts Grp, 2880 Broadway, New York, NY 10025 USA. EM Alexander.C.Ruane@nasa.gov RI Thorburn, Peter/A-6884-2011; Mueller, Christoph/E-4812-2016; Palosuo, Taru/B-9593-2012; Martre, Pierre/G-5399-2013; Olesen, Jorgen/C-2905-2016; Challinor, Andrew/C-4992-2008; Doltra, Jordi/C-2106-2015; OI Mueller, Christoph/0000-0002-9491-3550; Palosuo, Taru/0000-0003-4322-3450; Martre, Pierre/0000-0002-7419-6558; Olesen, Jorgen/0000-0002-6639-1273; Challinor, Andrew/0000-0002-8551-6617; Kersebaum, Kurt Christian/0000-0002-3679-8427; Grant, Robert/0000-0002-8890-6231; Boote, Kenneth/0000-0002-1358-5496; Priesack, Eckart/0000-0002-5088-9528; Wallach, Daniel/0000-0003-3500-8179 FU USDA grant on behalf of the UK Department for International Development [202108]; NASA Earth Sciences Research Program [281945.02.03.03.96]; NASA Modeling, Analysis, and Prediction Program [509496.02.08.04.24]; US National Institute for Food and Agriculture [2011-68002-30191] FX We acknowledge the efforts of AgMIP Leaders Cynthia Rosenzweig, Jim Jones, John Antle, and Jerry Hatfield in their efforts to initiate the AgMIP Wheat Pilot and encourage explorations such as these. AgMIP coordination and climate activities were funded in part by a USDA grant on behalf of the UK Department for International Development (program code 202108). Support for many European participants in the AgMIP Wheat Pilot was provided by the Modelling European Agriculture with Climate Change for Food Security (MACSUR) knowledge hub within the Joint Research Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI). Alex Ruane's contributions were supported by the NASA Earth Sciences Research Program (#281945.02.03.03.96) and the NASA Modeling, Analysis, and Prediction Program (#509496.02.08.04.24). Participation of Claudio Stockle and Crop-Syst simulations were supported by the project Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA), funded through award #2011-68002-30191 from the US National Institute for Food and Agriculture. NR 107 TC 2 Z9 2 U1 21 U2 39 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD JUL PY 2016 VL 81 BP 86 EP 101 DI 10.1016/j.envsoft.2016.03.008 PG 16 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA DO4CJ UT WOS:000377729100008 ER PT J AU Brodeur, RD Morgan, CA AF Brodeur, R. D. Morgan, C. A. TI Influence of a Coastal Riverine Plume on the Cross-shelf Variability in Hydrography, Zooplankton, and Juvenile Salmon Diets SO ESTUARIES AND COASTS LA English DT Article DE Oceanography; Zooplankton; Habitat; Riverine plume; Feeding habits; Juvenile salmon ID NORTHERN CALIFORNIA CURRENT; EARLY MARINE RESIDENCE; SPRING CHINOOK SALMON; COLUMBIA RIVER; ONCORHYNCHUS-TSHAWYTSCHA; VERTICAL-DISTRIBUTION; PACIFIC SALMON; ICHTHYOPLANKTON COMMUNITY; SPATIAL-DISTRIBUTION; FEEDING CHRONOLOGY AB Riverine plumes in nearshore coastal waters are areas of enhanced production and accumulation of prey and may increase availability of food during a critical period of juvenile salmon survival and hence serve as a nursery area for these juveniles. Physical and biological sampling was conducted along a cross-shelf transect through the Columbia River plume during May 1999. Based on cluster analyses of physical variables, stations considered to be within the core of the plume, at 27.8-46.3 km from shore, were distinct from inshore (7.4-18.5 km) and offshore (55.6-92.7 km) stations. Five variables (temperature at 10 m, salinity at 3 and 10 m, silicate, and chlorophyll) accounted for 92 % of this difference. Both surface neuston and subsurface plankton tows revealed differences in plankton composition at the plume core stations compared to non-plume stations. However, stomach contents of juvenile Chinook salmon were not significantly different inside and outside the plume core. Comparison of similarity indices showed that the stomach composition was more similar to the catch composition in the neuston than the meter net. Fishes, decapod larvae, and hyperiid amphipods occurred in greater proportions and copepods and euphausiids in lesser proportions in the stomachs than in the plankton. There appeared to be a distinctive plume signal, evident in both the physical environment and zooplankton resources sampled inside and outside the plume core, but the plume signature was not as evident in the salmon diets, possibly due to their higher mobility and shorter residence time within the plume. C1 [Brodeur, R. D.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. [Morgan, C. A.] Oregon State Univ, Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, Newport, OR 97365 USA. RP Brodeur, RD (reprint author), Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. EM Rick.Brodeur@noaa.gov FU Bonneville Power Administration [1998-014-00]; Northwest Fisheries Science Center, NOAA FX We thank Paul Bentley, Cindy Bucher, Joe Fisher, Julie Keister, Bill Peterson, and the captain and crew of the F/V Sea Eagle, who assisted in collecting the environmental data and in making the plankton and fish collections. We thank Jay Peterson, Curtis Roegner, Antonio Baptista, Ed Casillas, David Kimmel, and two anonymous reviewers for providing valuable comments on earlier versions of the manuscript. This study was funded by the Bonneville Power Administration (Project 1998-014-00) and the Northwest Fisheries Science Center, NOAA. NR 74 TC 2 Z9 2 U1 9 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD JUL PY 2016 VL 39 IS 4 BP 1183 EP 1198 DI 10.1007/s12237-015-0050-4 PG 16 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA DO5BM UT WOS:000377798600022 ER PT J AU Simon, DL Rinehart, AW AF Simon, Donald L. Rinehart, Aidan W. TI Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori (MAP) estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors (SSEE) in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate (CCR) for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies. C1 [Simon, Donald L.] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. [Rinehart, Aidan W.] Vantage Partners LLC, 3000 Aerosp Pkwy, Brookpark, OH 44142 USA. RP Simon, DL (reprint author), NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. EM Donald.L.Simon@nasa.gov; Aidan.W.Rinehart@nasa.gov NR 13 TC 1 Z9 1 U1 9 U2 15 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2016 VL 138 IS 7 AR 071201 DI 10.1115/1.4032339 PG 11 WC Engineering, Mechanical SC Engineering GA DO1LN UT WOS:000377539700001 ER PT J AU Burgin, MS Khankhoje, UK Duan, XY Moghaddam, M AF Burgin, Mariko S. Khankhoje, Uday K. Duan, Xueyang Moghaddam, Mahta TI Generalized Terrain Topography in Radar Scattering Models SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Electromagnetic scattering; modeling; radar terrain factors; remote sensing; vegetation ID SOIL-MOISTURE; GROUND PLANE; AREAS; BACKSCATTER; VEGETATION; FOREST AB Modeling of terrain topography is crucial for vegetated areas given that even small slopes impact and alter the radar wave interactions between the ground and the overlying vegetation. Current missions either exclude pixels with large topographic slopes or disregard the terrain topography entirely, potentially accumulating substantial modeling errors and therefore impacting the retrieval performance over such sloped pixels. The underlying terrain topography needs to be considered and modeled to obtain a truly general and accurate radar scattering model. In this paper, a flexible and modular model is developed: the vegetation is considered by a multilayered multispecies vegetation model capable of representing a wide range of vegetation cover types ranging from bare soil to dense forests. The ground is incorporated with the stabilized extended boundary condition method, allowing the representation of an N-layered soil structure with rough interfaces. Terrain topography is characterized by a 2-D slope with two tilt angles (alpha, beta). Simulation results for an evergreen forest show the impact of a 2-D slope for a range of tilt angles: a 10 degrees tilt in the plane of incidence translates to a change of up to 15 dB in HH, 10 dB in VV, and 1.5 dB in HV for the total radar backscatter. Terrain topography is shown to be crucial for accurate forward modeling, especially over forested areas. C1 [Burgin, Mariko S.; Duan, Xueyang] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Khankhoje, Uday K.] Indian Inst Technol Delhi, Elect Engn, New Delhi 110016, India. [Moghaddam, Mahta] Univ So Calif, Elect Engn, Los Angeles, CA 90007 USA. RP Moghaddam, M (reprint author), Univ So Calif, Elect Engn, Los Angeles, CA 90007 USA. EM mahta@usc.edu OI Khankhoje, Uday/0000-0002-9629-3922 FU Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; National Aeronautics and Space Administration FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, under a contract with the National Aeronautics and Space Administration. NR 18 TC 0 Z9 0 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2016 VL 54 IS 7 BP 3944 EP 3952 DI 10.1109/TGRS.2016.2532123 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DO0OO UT WOS:000377478400017 ER PT J AU Wang, KN Garrison, JL Acikoz, U Haase, JS Murphy, BJ Muradyan, P Lulich, T AF Wang, Kuo-Nung Garrison, James L. Acikoz, Ulvi Haase, Jennifer S. Murphy, Brian J. Muradyan, Paytsar Lulich, Tyler TI Open-Loop Tracking of Rising and Setting GPS Radio-Occultation Signals From an Airborne Platform: Signal Model and Error Analysis SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Atmosphere; global positioning system; radio occultation; remote sensing; signal processing ID GLOBAL POSITIONING SYSTEM; LOW-EARTH-ORBIT; ATMOSPHERE; TROPOSPHERE; RECEIVER AB Global Positioning System (GPS) radio-occultation (RO) is an atmospheric sounding technique utilizing the received GPS signal through the stratified atmosphere to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellites, which cannot provide high temporal and spatial resolution soundings necessary to observe localized transient events, such as tropical storms. An airborne RO (ARO) system has thus been developed for localized GPS-RO campaigns. RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading. These signal dynamics often cause the phase-locked loop in conventional GPS survey receivers to lose lock in the lower troposphere, and the open-loop (OL) tracking in postprocessing is used to overcome this problem. OL tracking also allows robust processing of rising GPS signals, approximately doubling the number of observed occultations. An approach for "backward" OL tracking was developed, in which the correlations are computed sequentially in reverse time so that the signal can be acquired and tracked at high elevations for rising occultations. Ultimately, the signal-to-noise ratio (SNR) limits the depth of tracking in the atmosphere. We have developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking. In this paper, we demonstrate the applicability of the phase variance model to airborne data. We then apply this model to set a threshold on refractivity retrieval based upon the cumulative unwrapping error bias to determine the altitude limit for reliable signal tracking. We also show consistency between the ARO SNR and collocated COSMIC satellite observations and use these results to evaluate the antenna requirements for an improved ARO system. C1 [Wang, Kuo-Nung; Garrison, James L.; Acikoz, Ulvi] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Haase, Jennifer S.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Murphy, Brian J.; Muradyan, Paytsar] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Lulich, Tyler] NASA, Goddard Space Flight Ctr, Code Space Geodesy 698, Greenbelt, MD 20771 USA. RP Wang, KN (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. EM wang839@purdue.edu; jgarriso@ecn.purdue.edu; uacikoz@purdue.edu; jhaase@ucsd.edu; bmurphy@purdue.edu; paytsar@gmail.com; tyler.d.lulich@nasa.gov FU National Aeronautics and Space Administration [NNX12AK30G]; National Science Foundation [AGS 1015904, 1301835]; Republic of Turkey Ministry of National Education; Ross Fellowship; Schlumberger Faculty for the Future Fellowship FX This work was supported in part by the National Aeronautics and Space Administration under Grant NNX12AK30G and the National Science Foundation under Grants AGS 1015904 and 1301835. The work of U. Acikoz was supported by a grant from the Republic of Turkey Ministry of National Education. The work of B. J. Murphy was supported in part by the Ross Fellowship. The work of P. Muradyan was supported by the Schlumberger Faculty for the Future Fellowship. NR 39 TC 2 Z9 2 U1 3 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2016 VL 54 IS 7 BP 3967 EP 3984 DI 10.1109/TGRS.2016.2532346 PG 18 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DO0OO UT WOS:000377478400019 ER PT J AU Zhao, GY Di Girolamo, L Diner, DJ Bruegge, CJ Mueller, KJ Wu, DL AF Zhao, Guangyu Di Girolamo, Larry Diner, David J. Bruegge, Carol J. Mueller, Kevin J. Wu, Dong L. TI Regional Changes in Earth's Color and Texture as Observed From Space Over a 15-Year Period SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Climate change; satellite remote sensing; regional trends ID SPATIAL-RESOLUTION; CLOUD FRACTION; COVER; MISR AB Earth-observing satellites provide global observations of many geophysical variables. As these variables are derived from measured radiances, the underlying radiance data are the most reliable sources of information for change detection. Here, we identify statistically significant trends in the color and spatial texture of the Earth as viewed from multiple directions from the Multi-angle Imaging SpectroRadiometer (MISR), which has been sampling the angular distribution of scattered sunlight since 2000. Globally, our results show that the Earth has been appearing relatively bluer (up to 1.6% per decade from both nadir and oblique views) and smoother (up to 1.5% per decade only from oblique views) over the past 15 years. The magnitude of the global blueing trends is comparable to that of uncertainties in radiometric calibration stability. Regional shifts in color and texture, which are significantly larger than global means, are observed, particularly over polar regions, along the boundaries of the subtropical highs, the tropical western Pacific, Southwestern Asia, and Australia. We demonstrate that the large regional trends cannot be explained either by uncertainties in radiometric calibration or variability in total or spectral solar irradiance; hence, they reflect changes internal to the Earth's climate system. The 15-year-mean true color composites and texture images of the Earth at both nadir and oblique views are also presented for the first time. C1 [Zhao, Guangyu; Di Girolamo, Larry] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Diner, David J.; Bruegge, Carol J.; Mueller, Kevin J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wu, Dong L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhao, GY (reprint author), Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. EM gyzhao@atmos.uiuc.edu FU Jet Propulsion Laboratory of the California Institute of Technology through MISR project FX The authors would like to thank the Jet Propulsion Laboratory of the California Institute of Technology for the support through the MISR project and the NASA Langley Atmospheric Science Data Center for providing the MISR radiance data product. They would also like to thank two anonymous reviewers and Dr. R. Kahn and J. Limbacher for their helpful comments. NR 39 TC 0 Z9 0 U1 7 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2016 VL 54 IS 7 BP 4240 EP 4249 DI 10.1109/TGRS.2016.2538723 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DO0OO UT WOS:000377478400040 ER PT J AU Liang, CR Fielding, EJ AF Liang, Cunren Fielding, Eric J. TI Interferometric Processing of ScanSAR Data Using Stripmap Processor: New Insights From Coregistration SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Advanced Land Observation Satellite 2 (ALOS-2); coregistration; full aperture; interferometry; scanning synthetic aperture radar (ScanSAR) ID SYNTHETIC APERTURE RADAR; GORKHA EARTHQUAKE; SAR IMAGES AB Processing scanning synthetic aperture radar (ScanSAR) data using a stripmap processor, which is called full-aperture processing, has been the choice of many researchers. ScanSAR data are known to require very high azimuth coregistration precision which is usually achieved by a geometrical coregistration followed by a spectral diversity coregistration on the ScanSAR burst. However, for full-aperture processing, since individual bursts are no longer available for spectral diversity coregistration, the cross-correlation method in practice is still used to coregister ScanSAR data as stripmap data. We analyze the azimuth coregistration precision requirement of full-aperture processing and find that its requirement can be significantly relaxed. This is confirmed by a number of experiments, including simulations and real data experiments whose results are in good agreement with each other. An additional experiment on the cross-correlation method supports its use in full-aperture processing. Concluding from the experimental results, we further propose a simple method to evaluate the azimuth coregistration precision requirement for practical use. Finally, we present examples with ALOS-2 ScanSAR data. C1 [Liang, Cunren; Fielding, Eric J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Liang, CR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Cunren.Liang@jpl.nasa.gov RI Fielding, Eric/A-1288-2007 OI Fielding, Eric/0000-0002-6648-8067 FU JAXA RA4 PI [P1372002, P1385002] FX The Envisat ASAR data are provided by the European Space Agency. The ALOS-2 ScanSAR original data are copyrighted by the JAXA and provided under JAXA RA4 PI Projects P1372002 and P1385002. NR 21 TC 1 Z9 1 U1 3 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2016 VL 54 IS 7 BP 4343 EP 4354 DI 10.1109/TGRS.2016.2539962 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DO0OO UT WOS:000377478400048 ER PT J AU Bernier, MC Alberici, RM Keelor, JD Dwivedi, P Zambrzycki, SC Wallace, WT Gazda, DB Limero, TF Symonds, JM Orlando, TM Macatangay, A Fernandez, FM AF Bernier, Matthew C. Alberici, Rosana M. Keelor, Joel D. Dwivedi, Prabha Zambrzycki, Stephen C. Wallace, William T. Gazda, Daniel B. Limero, Thomas F. Symonds, Josh M. Orlando, Thomas M. Macatangay, Ariel Fernandez, Facundo M. TI Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Plasma ionization; Microhollow cathode discharge; Direct analysis in real-time; Ion source miniaturization; Air quality monitoring ID SYNCHRONIZED DISCHARGE IONIZATION; AMBIENT MASS-SPECTROMETRY; ATMOSPHERIC-PRESSURE; GAS-PHASE; EMISSION; WATER AB Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 mu m diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. C1 [Bernier, Matthew C.; Alberici, Rosana M.; Keelor, Joel D.; Dwivedi, Prabha; Zambrzycki, Stephen C.; Orlando, Thomas M.; Fernandez, Facundo M.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Alberici, Rosana M.] Univ Estadual Campinas, Inst Chem, ThoMSon Mass Spectrometry Lab, BR-13083970 Campinas, SP, Brazil. [Wallace, William T.; Limero, Thomas F.] Wyle Sci Technol & Engn Grp, Houston, TX 77058 USA. [Gazda, Daniel B.; Macatangay, Ariel] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Symonds, Josh M.; Orlando, Thomas M.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. RP Fernandez, FM (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM facundo.fernandez@chemistry.gatech.edu FU NASA [NNX13AF51G, NAS 9-02078]; Center for Chemical Evolution; NSF; NASA Astrobiology Program [NSF CHE-1004570] FX M.C.B, P.D., J.M.S., and F.M.F. acknowledge support through NASA award number NNX13AF51G. J.D.K., T.M.O., and F.M.F. acknowledge additional support through the Center for Chemical Evolution, jointly sponsored by NSF and the NASA Astrobiology Program (NSF CHE-1004570). W.T.W and T.F.L. acknowledge funding under NASA contract no. NAS 9-02078. NR 33 TC 1 Z9 1 U1 15 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUL PY 2016 VL 27 IS 7 BP 1203 EP 1210 DI 10.1007/s13361-016-1388-y PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA DN9QX UT WOS:000377416200008 PM 27080004 ER PT J AU Lee, CC Kibblewhite, RE Paavola, CD Orts, WJ Wagschal, K AF Lee, Charles C. Kibblewhite, Rena E. Paavola, Chad D. Orts, William J. Wagschal, Kurt TI Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies SO MOLECULAR BIOTECHNOLOGY LA English DT Article DE Hemicellulose; Lignocellulases; Glucaric acid; Enzyme nanoassembly ID ALPHA-L-ARABINOFURANOSIDASES; PLANT-CELL WALLS; CELLULOSOME; PROTEIN; COMPLEX; DEGRADATION; HYDROLYSIS; MECHANISMS; CANCER; BIND AB Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes. C1 [Lee, Charles C.; Kibblewhite, Rena E.; Orts, William J.; Wagschal, Kurt] USDA ARS, Bioprod Res Unit, WRRC, 800 Buchanan St, Albany, CA 94710 USA. [Paavola, Chad D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lee, CC (reprint author), USDA ARS, Bioprod Res Unit, WRRC, 800 Buchanan St, Albany, CA 94710 USA. EM Charles.Lee@ars.usda.gov FU United States Department of Agriculture [CRIS 2030-41000-054-00]; National Institute of Food and Agriculture [2012-03998] FX We thank Bruce Mackey and Linda Whitehand for consultations on the statistical design of the experiments. This work was supported by the United States Department of Agriculture (CRIS 2030-41000-054-00) and National Institute of Food and Agriculture (Grant 2012-03998). The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned. USDA is an equal opportunity provider and employer. NR 42 TC 1 Z9 1 U1 7 U2 12 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 1073-6085 EI 1559-0305 J9 MOL BIOTECHNOL JI Mol. Biotechnol. PD JUL PY 2016 VL 58 IS 7 BP 489 EP 496 DI 10.1007/s12033-016-9945-y PG 8 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DO0KL UT WOS:000377467700005 PM 27198564 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Ansseau, I Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, GH Conrad, JM Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M De Young, T Diaz-Velez, JC di Lorenzo, V Dumm, JP Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Flis, S Fosig, CC Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glagla, M Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jones, BJP Jurkovic, M Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kruckl, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mandelartz, M Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Paua, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkart, S Schatto, K Schimp, M Schmidt, T Schoenen, S Schoneberg, S Schonwald, A Schulte, L Schumacher, L Seckel, D Seunarine, S Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Wiebe, K Wiebusch, CH Wille, L Williams, DR Wills, L Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Ansseau, I. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Collin, G. H. Conrad, J. M. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Rosendo, E. del Pino Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de wasseige, G. de With, M. De Young, T. Diaz-Velez, J. C. di Lorenzo, V. Dumm, J. P. Dunkman, M. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Flis, S. Foesig, C. -C. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jones, B. J. P. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Krueckl, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Luenemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mandelartz, M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Paua, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkart, S. Schatto, K. Schimp, M. Schmidt, T. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schulte, L. Schumacher, L. Seckel, D. Seunarine, S. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Stroem, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wills, L. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. TI Neutrino oscillation studies with IceCube-DeepCore SO NUCLEAR PHYSICS B LA English DT Article ID SOUTH-POLE; SYSTEM; MATTER; ICE AB IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed. (C) 2016 Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3). C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paua, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Tatar, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de wasseige, G.; Golup, G.; Kunnen, J.; Luenemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Collin, G. H.; Conrad, J. M.; Jones, B. J. P.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkart, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Boerner, M.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.] Tech Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. [de Andre, J. P. A. M.; De Young, T.; Hignight, J.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpulsculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paua, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C. -C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H. -G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Sarkart, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Kurahashi, N.; Richman, M.; Wills, L.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys & Astron, SE-10691 Stockholm, Sweden. [Bose, D.; In, S.; Jeong, M.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Aguilar, J. A.; Ansseau, I.; Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Koskinen, DJ (reprint author), Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.; Grant, D (reprint author), Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.; Boser, S (reprint author), Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany.; Clark, K (reprint author), Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. EM sboeser@uni-mainz.de; kclark@physics.utoronto.ca; drg@ualberta.ca; koskinen@nbi.ku.dk RI Tjus, Julia/G-8145-2012; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Koskinen, David/G-3236-2014; OI Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Koskinen, David/0000-0002-0514-5917; Sarkar, Subir/0000-0002-3542-858X; Arguelles Delgado, Carlos/0000-0003-4186-4182 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University Of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden; Danish National Research Foundation (DNRF), Denmark FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University Of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF), Denmark. NR 33 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD JUL PY 2016 VL 908 BP 161 EP 177 DI 10.1016/j.nuclphysb.2016.03.028 PG 17 WC Physics, Particles & Fields SC Physics GA DN8MU UT WOS:000377334000012 ER PT J AU Le Maistre, S Folkner, WM Jacobson, RA Serra, D AF Le Maistre, S. Folkner, W. M. Jacobson, R. A. Serra, D. TI Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Jupiter; Interior; Orientation; Orbit determination; Radio-science; Numerical simulations ID SATURN; SYSTEM; SPACECRAFT; ROTATION; TRACKING; MISSION; URANUS; MARS AB Through detailed and realistic numerical simulations, the present paper assesses the precision with which the Juno spacecraft can measure the normalized polar moment of inertia (MOI) of Jupiter. Based on Ka-band Earth-based Doppler data, created with realistic 10 mu m/s of white noise at 60 s of integration, this analysis shows that the determination of the precession rate of Jupiter is by far more efficient than the Lense-Thirring effect previously proposed to determine the moment of inertia and therefore to constrain the internal structure of the giant planet with Juno. We show that the Juno mission will allow the estimation of the precession rate of Jupiter's pole with an accuracy better than 0.1%. We provide an equation relating the pole precession rate and the normalized polar moment of inertia of Jupiter. Accounting for the uncertainty in the parameters affecting precession, we show that the accuracy of the MOI inferred from the precession rate is also better than 0.1%, and at least 50 times better than inferred from the Lense-Thirring acceleration undergone by Juno. This accuracy of the MOI determination should provide tight constraints on the interior structure of Jupiter, especially the core size and mass, helping to distinguish among competing scenarios of formation and evolution of the giant planet. In addition, though the Juno mission operations are already defined, the exact duration of the tracking and its occurrence with respect to the spacecraft pericenter pass are not definitely scheduled. The simulations performed here quantify the impact of this aspect of the mission on the Juno sensitivity to (in particular) the spin-pole precession rate of Jupiter. Finally, additional simulations have been performed to test the usefulness of combining Doppler data with VLBI data, showing the latter measurements to be 10(4)-10(5) times less sensitive than the former to our parameters of interest and therefore, obviously, totally needless. (C) 2016 Elsevier Ltd All rights reserved. C1 [Le Maistre, S.; Folkner, W. M.; Jacobson, R. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Serra, D.] Univ Pisa, Dept Math, I-56127 Pisa, Italy. RP Le Maistre, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sebastien.Le.Maistre@jpl.nasa.gov OI Serra, Daniele/0000-0001-9769-697X FU NASA FX The research carried out at the Jet Propulsion Laboratory was supported by an appointment to the NASA Post-doctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. We thank R. Helled for her useful comments. NR 34 TC 1 Z9 1 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUL PY 2016 VL 126 BP 78 EP 92 DI 10.1016/j.pss.2016.03.006 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN8FS UT WOS:000377315200008 ER PT J AU Bauschlicher, CW AF Bauschlicher, Charles W., Jr. TI A computational study of a phenolic based polymer with a spring-like structure SO CHEMICAL PHYSICS LETTERS LA English DT Article DE Hydrogen bond; DFT; Low density polymer; Stretching potentials ID APPROXIMATION; EXCHANGE AB We report the stretching potentials for a helical phenolic-based polymer with high symmetry and a spring-like structure that can be stretched by a factor of 4 along the spring direction and still return to its original structure. We hope that synthetic polymer chemists assess if this polymer or a similar one can be synthesized and tested. Published by Elsevier B.V. C1 [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bauschlicher, Charles W., Jr.] Entry Syst & Technol Div, Mail Stop 230-3, Moffett Field, CA USA. RP Bauschlicher, CW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Bauschlicher, CW (reprint author), Entry Syst & Technol Div, Mail Stop 230-3, Moffett Field, CA USA. EM Charles.W.Bauschlicher@nasa.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 1 PY 2016 VL 655 BP 76 EP 79 DI 10.1016/j.cplett.2016.05.036 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DN6XC UT WOS:000377218800014 ER PT J AU Liu, L Mishchenko, MI AF Liu, Li Mishchenko, Michael I. TI Optics of water microdroplets with soot inclusions: Exact versus approximate results SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 15th Conference on Electromagnetic and Light Scattering (ELS) CY JUN 21-26, 2015 CL Leipzig, GERMANY DE Cloud droplets; Soot inclusions; Electromagnetic scattering; Superposition T-matrix method; Ray-tracing method; Effective-medium approximation ID BLACK-CARBON; CLOUD DROPLETS; LIGHT-SCATTERING; ELECTROMAGNETIC SCATTERING; SPHERICAL-PARTICLES; REFERENCE DATABASE; SOLAR-RADIATION; ICE CRYSTALS; SIZE; ABSORPTION AB We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Liu, Li] Columbia Univ, 2880 Broadway, New York, NY 10025 USA. [Liu, Li; Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. RP Liu, L (reprint author), Columbia Univ, 2880 Broadway, New York, NY 10025 USA. EM ll360360@gmail.com NR 51 TC 3 Z9 3 U1 8 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2016 VL 178 SI SI BP 255 EP 262 DI 10.1016/j.jqsrt.2015.12.025 PG 8 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DM9SL UT WOS:000376705900024 ER PT J AU Mishchenko, MI Zakharova, NT Khlebtsov, NG Videen, G Wriedt, T AF Mishchenko, Michael I. Zakharova, Nadezhda T. Khlebtsov, Nikolai G. Videen, Gorden Wriedt, Thomas TI Comprehensive thematic T-matrix reference database: A 2014-2015 update SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 15th Conference on Electromagnetic and Light Scattering (ELS) CY JUN 21-26, 2015 CL Leipzig, GERMANY DE Electromagnetic scattering; T-matrix method; Maxwell's equations; Complex scattering objects ID DISCRETE-DIPOLE APPROXIMATION; RAINDROP SIZE DISTRIBUTION; EQUIVALENT COATED SPHERES; MIDLATITUDE CIRRUS CLOUDS; BOUNDARY-CONDITION METHOD; BAND POLARIMETRIC RADAR; DUAL-POLARIZATION RADAR; AXIS GAUSSIAN-BEAM; OPTICAL-PROPERTIES; LIGHT-SCATTERING AB The T-matrix method is one of the most versatile and efficient direct computer solvers of the macroscopic Maxwell equations and is widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper is the seventh update to the comprehensive thematic database of peer reviewed T-matrix publications initiated by us in 2004 and includes relevant publications that have appeared since 2013. It also lists a number of earlier publications overlooked previously. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Zakharova, Nadezhda T.] Trinnovim LLC, 2880 Broadway, New York, NY 10025 USA. [Khlebtsov, Nikolai G.] Russian Acad Sci, Inst Biochem & Physiol Plants & Microorganisms, 13 Entuziastov Ave, Saratov 410015, Russia. [Videen, Gorden] US Army, Res Lab, AMSRL IS EE, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. [Wriedt, Thomas] Inst Werkstofftech, Badgasteiner Str 3, D-28359 Bremen, Germany. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov RI Khlebtsov, Nikolai/D-6199-2017 NR 217 TC 4 Z9 4 U1 9 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2016 VL 178 SI SI BP 276 EP 283 DI 10.1016/j.jqsrt.2015.11.005 PG 8 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DM9SL UT WOS:000376705900027 ER PT J AU Mishchenko, MI Dlugach, JM Liu, L AF Mishchenko, Michael I. Dlugach, Janna M. Liu, Li TI Applicability of the effective-medium approximation to heterogeneous aerosol particles SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 15th Conference on Electromagnetic and Light Scattering (ELS) CY JUN 21-26, 2015 CL Leipzig, GERMANY DE Scattering; Effective-medium approximation; Heterogeneous aerosols; Mineral dust; T-matrix method ID MINERAL DUST PARTICLES; SCATTERING; DROPLETS; AFRICA; SIZE; TEM AB The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering matrix errors of the EMA start to grow with increasing the host size parameter and/or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.; Liu, Li] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Dlugach, Janna M.] Natl Acad Sci Ukraine, Main Astron Observ, 27 Zabolotny Str, UA-03680 Kiev, Ukraine. [Liu, Li] Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov NR 38 TC 5 Z9 5 U1 8 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2016 VL 178 SI SI BP 284 EP 294 DI 10.1016/j.jqsrt.2015.12.028 PG 11 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DM9SL UT WOS:000376705900028 ER PT J AU Tang, GL Yang, P Wu, DL AF Tang, Guanglin Yang, Ping Wu, Dong L. TI Sensitivity study of ice crystal optical properties in the 874 GHz submillimeter band SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 15th Conference on Electromagnetic and Light Scattering (ELS) CY JUN 21-26, 2015 CL Leipzig, GERMANY DE Ice crystals; Optical properties; 874 GHz; Submillimeter ID SINGLE-SCATTERING PROPERTIES; T-MATRIX METHOD; WATER ICE; MICROWAVE-FREQUENCIES; RADIATIVE-TRANSFER; CLOUD PROPERTIES; SNOW PARTICLES; CONSTANTS; MODEL; RETRIEVAL AB Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50-200 mu m. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Tang, Guanglin; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [Wu, Dong L.] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. EM pyang@tamu.edu RI Yang, Ping/B-4590-2011 NR 31 TC 1 Z9 1 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2016 VL 178 SI SI BP 416 EP 421 DI 10.1016/j.jqsrt.2015.12.008 PG 6 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DM9SL UT WOS:000376705900039 ER PT J AU Cervini-Silva, J Nieto-Camacho, A Kaufhold, S Ufer, K Palacios, E Montoya, A Dathe, W AF Cervini-Silva, Javiera Nieto-Camacho, Antonio Kaufhold, Stephan Ufer, Kristian Palacios, Eduardo Montoya, Ascencion Dathe, Wilfried TI Antiphlogistic effect by zeolite as determined by a murine inflammation model SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE Clinoptilolite; Histamine; Adsorption ID WATER-UPTAKE CAPACITY; ANTIINFLAMMATORY ACTIVITY; NATURAL ZEOLITES; MOUSE EAR; CLINOPTILOLITE; ANTIBACTERIAL; BENTONITES; HALLOYSITE; AGENTS; EDEMA AB Natural zeolites are microporous crystalline aluminosilicates with channels and cavities of molecular dimensions of interest for biomedical applications. The antiphlogistic effect was investigated on the basis of a murine inflammation model using 12-O-tetradecanoylphorbol-13-acetate (TPA) as inflammatory agent and the quantification of the activity of myeloperoxidase (MPO), an enzyme that serves as an indicator for neutrophil migration. The zeolite used in this study was collected from San Andres, Cuba, and it provided evidence to show the quantitative adsorption of histamine, a biogenic compound strongly involved in inflammation processes. Furthermore, a related work showed that this zeolite sample is free of hazardous materials and apt for health use. The zeolite of this study contained 65% clinoptilolite, 30% mordenite, and 5% smectite. The application of this zeolite reduced the edema formation induced by TPA within 24 h by 57.2 +/- 18%, while the migration of neutrophils was not altered. The anti-inflammatory activity of zeolite was explained in part due to the quantitative adsorption of histamine, whilst natural cell repair mechanisms appeared not to be influenced. The outcome of this work expanded on reports concluding that antiphlogistic properties of zeolite proven in vivo with mice for inflammatory diseases are important for both oral application (gastrointestinal tract) and topical treatment (skin), too. (C) 2016 Elsevier Inc. All rights reserved. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Av Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cervini-Silva, Javiera] NASA, Astrobiol Inst, New York, NY USA. [Nieto-Camacho, Antonio] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Ciudad Univ, Mexico City 04510, DF, Mexico. [Kaufhold, Stephan; Ufer, Kristian] BGR Bundesanstalt Geowissensch & Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany. [Palacios, Eduardo] Inst Mexicano Petr, Dept Microscopia Elect, Mexico City 07730, DF, Mexico. [Montoya, Ascencion] Inst Mexicano Petr, Direcc Invest & Posgrado, Mexico City 07730, DF, Mexico. [Dathe, Wilfried] Heck Biopharma GmbH, Gerberstr 15, D-73650 Winterbach, Germany. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Av Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico.; Dathe, W (reprint author), Heck Biopharma GmbH, Gerberstr 15, D-73650 Winterbach, Germany. EM jcervini@correo.cua.uam.mx; daweidoc@gmx.de FU Universidad Autonoma Metropolitana [UAM-C 33678] FX The authors thank Jaime Ortega Lechuga (UAM-Cuajimalpa), Claudia Rivera Cerecedo and Hector Malagon Rivero (Bioterio, Institute de Fisiologia Celular, UNAM), and Natascha Schleuning (Bundesanstalt fur Geowissenschaften and Rohstoffe, BGR) for the assistance; and the Universidad Autonoma Metropolitana for the support (Grant No. UAM-C 33678). NR 42 TC 0 Z9 0 U1 8 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 EI 1873-3093 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD JUL 1 PY 2016 VL 228 BP 207 EP 214 DI 10.1016/j.micromeso.2016.03.043 PG 8 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DN1DE UT WOS:000376805700024 ER PT J AU Oliva, R Daganzo, E Richaume, P Kerr, Y Cabot, F Soldo, Y Anterrieu, E Reul, N Gutierrez, A Barbosa, J Lopes, G AF Oliva, R. Daganzo, E. Richaume, P. Kerr, Y. Cabot, F. Soldo, Y. Anterrieu, E. Reul, N. Gutierrez, A. Barbosa, J. Lopes, G. TI Status of Radio Frequency Interference (RFI) in the 1400-1427 MHz passive band based on six years of SMOS mission SO REMOTE SENSING OF ENVIRONMENT LA English DT Article ID ALGORITHM AB European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission is perturbed by Radio Frequency Interference (RFI) that jeopardizes part of its scientific retrieval in certain areas of the world. Areas affected by RFI might experience data loss or underestimation of soil moisture and ocean salinity retrieval values. To alleviate this situation, the SMOS team has put several strategies into place that help improve the RFI situation, filter the SMOS data from RFI perturbed measurements and bring awareness to the RFI problem. (C) 2016 Elsevier Inc. All rights reserved. C1 [Oliva, R.] European Space Agcy, ESAC, E-28691 Madrid, Spain. [Daganzo, E.] European Space Agcy, ESTEC, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. [Richaume, P.; Kerr, Y.; Cabot, F.] UPS, IRD, CNRS, CESBIO,CNES, 18 Ave Edouard Belin, F-31401 Toulouse 9, France. [Soldo, Y.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Anterrieu, E.] Univ Toulouse, IRAP, 4 Ave Edouard Belin, F-31400 Toulouse, France. [Anterrieu, E.] CNRS, 4 Ave Edouard Belin, F-31400 Toulouse, France. [Reul, N.] IFREMER, Lab Oceanog Spatiale, CS 2033083507, La Seyne Sur Mer, France. [Gutierrez, A.; Barbosa, J.; Lopes, G.] DEIMOS Engn, Ave D Joao 2,Lote 1-17 Torre Zen,10, P-1998023 Lisbon, Portugal. RP Oliva, R (reprint author), European Space Agcy, ESAC, E-28691 Madrid, Spain. OI Reul, Nicolas/0000-0003-4881-2967 NR 38 TC 4 Z9 4 U1 7 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL PY 2016 VL 180 SI SI BP 64 EP 75 DI 10.1016/j.rse.2016.01.013 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DN1BJ UT WOS:000376801000005 ER PT J AU Yin, XB Boutin, J Dinnat, E Song, QT Martin, A AF Yin, Xiaobin Boutin, Jacqueline Dinnat, Emmanuel Song, Qingtao Martin, Adrien TI Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi-theoretical approach SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE SMOS; SSMIS; ECMWF; Emissivity; Foam ID SEA-SURFACE SALINITY; OCEANIC WHITECAP COVERAGE; WAVE-FIELD CONDITIONS; L-BAND; WIND-SPEED; MICROWAVE EMISSIVITY; BREAKING WAVES; WATER-SURFACE; VOID FRACTION; MODEL AB The influence of wind speed (WS) on sea surface emission at L-band is revisited using the updated version v6.2 of Soil Moisture and Ocean Salinity (SMOS) brightness temperatures (TB) and an incoherent two-layer foam emissivity model. The influence of the roughness effect due to surface waves is consistent with the one found with an older version of SMOS TB. The two-layer incoherent model of foam emissivity accounts for weak volume scatterings and multiple reflections within a medium with an exponential vertical permittivity profile. The foam emissivity simulated using this model at L band varies from 0.35 to close to 1 with thickness varying from 0.01 cm to 2 cm. The wind induced brightness temperature components deduced from the multi-angular SMOS TB is used to optimize the foam void fraction (defined as the fraction of a unit volume of seawater that is occupied by air) at the air-sea interface, an effective thickness of foam layer and the dependency of foam coverage with wind speed. A new set of parameters for the foam emissivity model and the foam coverage model that can be used for WS up to 22 m s(-1) for the SMOS sea surface salinity retrieval is proposed. Our foam coverage model derived from SMOS data is now in much better agreement with other estimates derived from other sensors, although it predicts slightly lower coverage at all winds speeds, likely due to the longer wavelength of SMOS measurements. (C) 2016 Elsevier Inn All rights reserved. C1 [Yin, Xiaobin] Chinese Acad Sci, Natl Space Sci Ctr, Key Lab Microwave Remote Sensing, Beijing, Peoples R China. [Yin, Xiaobin; Song, Qingtao] SOA, Key Lab Space Ocean Remote Sensing & Applicat, Beijing, Peoples R China. [Yin, Xiaobin; Boutin, Jacqueline] UPMC, Univ Paris 04, CNRS, LOCEAN,IRD,MNHN, Paris, France. [Dinnat, Emmanuel] Chapman Univ, Orange, CA USA. [Dinnat, Emmanuel] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Song, Qingtao] SOA, Natl Satellite Ocean Applicat Serv, Beijing, Peoples R China. [Martin, Adrien] Natl Oceanog Ctr, Marine Phys & Ocean Climate, Southampton, Hants, England. RP Yin, XB (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, Key Lab Microwave Remote Sensing, Beijing, Peoples R China.; Yin, XB (reprint author), SOA, Key Lab Space Ocean Remote Sensing & Applicat, Beijing, Peoples R China.; Yin, XB (reprint author), UPMC, Univ Paris 04, CNRS, LOCEAN,IRD,MNHN, Paris, France. RI Dinnat, Emmanuel/D-7064-2012; Boutin, Jacqueline/M-2253-2016 OI Dinnat, Emmanuel/0000-0001-9003-1182; FU European Space Agency (ESA); CNES/TOSCA/SMOS-GLOSCAL project; National Natural Science Foundation of China [41276019, 61501433]; NASA FX We thank Dr. Nicolas Reul for his very useful discussions about wind induced emissivity at high wind speed. This work, funded by the European Space Agency (ESA) expert support laboratory project, the CNES/TOSCA/SMOS-GLOSCAL project and the National Natural Science Foundation of China (Grant No. 41276019 and 61501433), was done at LOCEAN/Sorbone Universites. SSMIS data are produced by Remote Sensing Systems and sponsored by the NASA Earth Science MEaSUREs DISCOVER Project. NR 65 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL PY 2016 VL 180 SI SI BP 221 EP 233 DI 10.1016/j.rse.2016.02.005 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DN1BJ UT WOS:000376801000018 ER PT J AU Lievens, H De Lannoy, GJM Al Bitar, A Drusch, M Dumedah, G Franssen, HJH Kerr, YH Tomer, SK Martens, B Merlin, O Pan, M Roundy, JK Vereecken, H Walker, JP Wood, EF Verhoest, NEC Pauwels, VRN AF Lievens, H. De Lannoy, G. J. M. Al Bitar, A. Drusch, M. Dumedah, G. Franssen, H. -J. Hendricks Kerr, Y. H. Tomer, S. K. Martens, B. Merlin, O. Pan, M. Roundy, J. K. Vereecken, H. Walker, J. P. Wood, E. F. Verhoest, N. E. C. Pauwels, V. R. N. TI Assimilation of SMOS soil moisture and brightness temperature products into a land surface model SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE SMOS; Data assimilation; Soil moisture; Multi-scale; Brightness temperature ID SEQUENTIAL DATA ASSIMILATION; MICROWAVE EMISSION; PASSIVE MICROWAVE; BIAS CORRECTION; GLOBAL-SCALE; SOUTHEAST AUSTRALIA; DATA-SETS; RETRIEVALS; PARAMETERIZATION; DISAGGREGATION AB The Soil Moisture and Ocean Salinity (SMOS) mission has the potential to improve the predictive skill of land surface models through the assimilation of its observations. Several alternate products can be distinguished: the observed brightness temperature (TB) data at coarse scale, indirect estimates of soil moisture (SM) through the inversion of the coarse-scale TB observations, and fine-scale soil moisture through the a priori downscaling of coarse-scale soil moisture. The SMOS TB products include observations over a large range of incidence angles at both H- and V-polarizations, which allows the merit of assimilating the full set of multi-angular/polarization observations, as opposed to specific sub-sets of observations, to be assessed. This study investigates the performance of various observation scenarios with respect to soil moisture and streamflow predictions in the Murray Darling Basin. The observations are assimilated into the Variable Infiltration Capacity (VIC) model, coupled to the Community Microwave Emission Modeling (CMEM) platform, using the Ensemble Kalman filter. The assimilation of these various observation products is assessed under similar realistic assimilation settings, without optimization, and validated by comparison of the modeled soil moisture and streamflow to in situ measurements across the basin. The best results are achieved from assimilation of the coarse-scale SM observations. The reduced improvement using downscaled SM is probably due to a lower number of observations, as a result of cloud cover effects on the downscaling method. The assimilation of TB was found to be a promising alternative, which led to improvements in soil moisture prediction approaching those of the coarse-scale SM assimilation. (C) 2015 Elsevier Inc. All rights reserved. C1 [Lievens, H.; Martens, B.; Verhoest, N. E. C.] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium. [De Lannoy, G. J. M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Al Bitar, A.; Kerr, Y. H.; Tomer, S. K.; Merlin, O.] Ctr Etud Spatiales Biosphere, Toulouse, France. [Drusch, M.] European Space Agcy, NL-2200 AG Noordwijk, Netherlands. [Dumedah, G.; Walker, J. P.; Pauwels, V. R. N.] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia. [Franssen, H. -J. Hendricks; Vereecken, H.] Forschungszentrum Julich, Agrosphere IBG 3, D-52425 Julich, Germany. [Pan, M.; Wood, E. F.] Princeton Univ, Land Surface Hydrol Grp, Princeton, NJ 08544 USA. [Roundy, J. K.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. RP Lievens, H (reprint author), Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium. EM Han.Lievens@UGent.be RI Verhoest, Niko/C-9726-2010; OI Martens, Brecht/0000-0002-7368-7953; Verhoest, Niko/0000-0003-4116-8881; Pauwels, Valentijn/0000-0002-1290-9313 FU Belgian Science Policy (BELSPO) [SR/00/302]; CNES Terre, Ocean, Surfaces Continentales, Atmosphere (TOSCA) programme; Australian Research Council FX The work has been performed in the framework of the ESA-STSE project 'SMOS + Hydrology Study' and was partly funded through project SR/00/302 ('Hydras +') financed by the Belgian Science Policy (BELSPO), and the CNES Terre, Ocean, Surfaces Continentales, Atmosphere (TOSCA) programme. We would like to acknowledge the Australian Bureau of Meteorology for the provision of the streamflow data and the Julich Supercomputing Center for granting computation time on JUROPA. Hans Lievens is a postdoctoral research fellow of the Research Foundation Flanders (FWO). Valentijn Pauwels is currently a Future Fellow funded by the Australian Research Council. NR 74 TC 3 Z9 3 U1 20 U2 43 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL PY 2016 VL 180 SI SI BP 292 EP 304 DI 10.1016/j.rse.2015.10.033 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DN1BJ UT WOS:000376801000023 ER PT J AU Fournier, S Lee, T Gierach, MM AF Fournier, Severine Lee, Tong Gierach, Michelle M. TI Seasonal and interannual variations of sea surface salinity associated with the Mississippi River plume observed by SMOS and Aquarius SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Sea surface salinity; SMOS; Aquarius; River plume; Mississippi; Remote sensing ID GULF-OF-MEXICO; TROPICAL ATLANTIC-OCEAN; TEMPERATURE; RAIN AB We use sea surface salinity (SSS) from ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius/Satelite de Aplicaciones Cientificas (SAC)-D missions to study seasonal and interannual variations of SSS in the Gulf of Mexico near the Mississippi River outflow during 2010-2014. A seasonal cycle is clearly observed in SSS, with an SSS maximum during December April and an SSS minimum in July August. The averaged magnitude of the seasonal variation is about 4 pss. Interannual changes are also observed, with the lowest SSS in summer 2011 and the highest SSS in summer 2012 and a difference of 4.2 pss. Therefore, the magnitude of interannual changes can be comparable to that of the seasonal cycle. Our analysis suggests that the seasonal variations of SSS near the Mississippi River mouth are consistent with variations in Mississippi River discharge. Evaporation minus precipitation and ocean dynamics play a minor role. River discharge also contributes to the interannual variation of SSS, especially during summer 2011 and to some extent the highest summer minimum in 2012 in terms of timing, but not magnitude. For the latter, ocean dynamics and E-P also contribute. The implications of the findings to ocean modeling and hypoxic zone monitoring are also discussed. (C) 2016 Elsevier Inc All rights reserved. C1 [Fournier, Severine; Lee, Tong; Gierach, Michelle M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 300-323, Pasadena, CA 91109 USA. RP Fournier, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 300-323, Pasadena, CA 91109 USA. EM severine.fournier@jpl.nasa.gov FU NASA; U.S. Government FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA and in part supported by the NASA Postdoctoral Program administered by the Oak Ridge Associated Universities. We also acknowledge Dr. Peggy Li of JPL for downloading and processing the HYCOM outputs.; Copyright 2015 California Institute of Technology. U.S. Government sponsorship acknowledged. NR 26 TC 1 Z9 1 U1 8 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL PY 2016 VL 180 SI SI BP 431 EP 439 DI 10.1016/j.rse.2016.02.050 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DN1BJ UT WOS:000376801000033 ER PT J AU Ma, C Tschauner, O Beckett, JR Liu, Y Rossman, GR Sinogeikin, SV Smith, JS Taylor, LA AF Ma, Chi Tschauner, Oliver Beckett, John R. Liu, Yang Rossman, George R. Sinogeikin, Stanislav V. Smith, Jesse S. Taylor, Lawrence A. TI Ahrensite, gamma-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Ahrensite; gamma-Fe2SiO4; New high-pressure mineral; Shock metamorphism; Nanomineral; Ringwoodite group; Tissint meteorite; Martian shergottite; Synchrotron diffraction ID HIGH-PRESSURE MINERALS; TENHAM L6 CHONDRITE; INDUCED MELT VEIN; MARTIAN METEORITE; SOLAR-SYSTEM; OLIVINE METASTABILITY; SPINEL TRANSFORMATION; BILLION YEARS; RINGWOODITE; IMPACT AB Ahrensite (IMA 2013-028), gamma-Fe2SiO4, is the natural Fe-analog of the silicate-spinel ringwoodite (gamma-Mg2SiO4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Ferich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth double right arrow bridgmanite + wustite double right arrow ahrensite and/or ringwoodite double right arrow highly-deformed olivine + nanocrystalline ringwoodite double right arrow deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of type ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. Grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1-10 ms). (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ma, Chi; Beckett, John R.; Rossman, George R.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tschauner, Oliver] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Tschauner, Oliver] Univ Nevada, Dept Geosci, Las Vegas, NV 89154 USA. [Liu, Yang] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sinogeikin, Stanislav V.; Smith, Jesse S.] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA. [Taylor, Lawrence A.] Univ Tennessee, Planetary Geosci Inst, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Ma, C (reprint author), CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. EM chi@gps.caltech.edu FU NSF [EAR-0318518, DMR-0080065]; U.S. DOE [DE-AC02-06CH11357]; National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement [DE-NA0001982]; NASA Cosmochemistry grants [NNX11AG58G, NNX12AH63G]; NSF grant [EAR-1322082]; JPL FX SEM, EBSD and EPMA analyses were carried out at the Caltech GPS Division Analytical Facility, which is supported, in part, by NSF Grants EAR-0318518 and DMR-0080065. Synchrotron micro-diffraction was carried out at the 16-IDB beamline of the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. OT was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. LAT and JRB acknowledge the support from NASA Cosmochemistry grants NNX11AG58G and NNX12AH63G, respectively. GRR acknowledges the support from NSF grant EAR-1322082. YL acknowledges the support of JPL, which is managed by California Institute of Technology under a contract with NASA. We thank Tom Sharp, Makoto Kimura and an anonymous reviewer for their constructive reviews. NR 68 TC 5 Z9 5 U1 13 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2016 VL 184 BP 240 EP 256 DI 10.1016/j.gca.2016.04.042 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DM2HX UT WOS:000376168800014 ER PT J AU Silva, AP Burleigh, S Hirata, CM Obraczka, K AF Silva, Aloizio P. Burleigh, Scott Hirata, Celso M. Obraczka, Katia TI Congestion control in disruption-tolerant networks: A comparative study for interplanetary and terrestrial networking applications SO AD HOC NETWORKS LA English DT Review DE Delay and disruption tolerant networks; Interplanetary Networks; Congestion control; Network performance ID SPACE; INTERNET AB Controlling congestion is critical to ensure adequate network operation and performance. That is especially the case in networks operating in challenged- or extreme environments where episodic connectivity is part of the network's normal operation. Consequently, the "pure" end-to-end congestion control model employed by the Internet is not adequate. Our goal is to study congestion control mechanisms that have been proposed for these so-called disruption tolerant networks, or DTNs. In this paper, we conduct a performance study comparing existing DTN congestion control mechanisms for two main application domains, namely: inter-planetary (IPN) and terrestrial networking applications. Our results confirm that congestion control helps increase message delivery ratio, even in highly congested network scenarios. Furthermore, the results show that existing DTN congestion control mechanisms do not perform well in IPN scenarios. Our study also suggests that good design principles for congestion control in DTN scenarios include: combining reactive and proactive control, using local information instead of global knowledge, and employing mechanisms that are routing protocol independent. One important conclusion from our quantitative study is that there is currently no universal congestion control mechanism that fits all DTN scenarios and applications. (C) 2016 Elsevier B.V. All rights reserved. C1 [Silva, Aloizio P.; Hirata, Celso M.] Inst Tecnol Aeronaut, Sao Paulo, Brazil. [Burleigh, Scott] CALTECH, Jet Prop Lab, NASA, Pasadena, CA USA. [Obraczka, Katia] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. RP Silva, AP (reprint author), Inst Tecnol Aeronaut, Sao Paulo, Brazil. EM aloizio@ita.br; scott.c.burleigh@jpl.nasa.gov; hirata@ita.br; katia@soe.ucsc.edu FU Brazilian National Council for Scientific and Technological Development - CNPq [245492/2012-7]; Coordenacao de Aperfeicoamento de Pessoal de nivel Superior - CAPES [BEX 5063/14-0]; NSF [CNS 1321151] FX The Brazilian National Council for Scientific and Technological Development - CNPq (Process number 245492/2012-7) supported this project. And Coordenacao de Aperfeicoamento de Pessoal de nivel Superior - CAPES (Process number BEX 5063/14-0) has also supported this project.; This work was partially funded by NSF under project CNS 1321151. NR 31 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-8705 EI 1570-8713 J9 AD HOC NETW JI Ad Hoc Netw. PD JUL 1 PY 2016 VL 44 BP 1 EP 18 DI 10.1016/j.adhoc.2016.02.004 PG 18 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA DL3CI UT WOS:000375511400001 ER PT J AU Mackey, J Dynys, F Hudak, BM Guiton, BS Sehirlioglu, A AF Mackey, Jon Dynys, Frederick Hudak, Bethany M. Guiton, Beth S. Sehirlioglu, Alp TI Co (x) Ni4-x Sb12-y Sn (y) skutterudites: processing and thermoelectric properties SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID HIGH-PERFORMANCE THERMOELECTRICS AB N-type and p-type skutterudite samples with the composition Co (x) Ni4-x Sb12-y Sn (y) were synthesized with composition range 0 < x < 2 and 3 < y < 5. Samples were pre-processed by solidification into ingots. Skutterudite phase formation was achieved by mechanical alloying the crushed ingots. The milled powders were consolidated to dense pellets by hot pressing. Thermoelectric measurements showed limited high-temperature performance below 400 A degrees C. Skutterudite decomposition above 250 A degrees C was detrimental to Seebeck coefficient. The thermoelectric transport properties can be tuned by varying the Co and Sn level. The lowest lattice thermal conductivity measured was 1.0 W m(-1) K-1 for the Co level of 1.5. The Seebeck coefficient was positive for Co levels > 0.8 and negative otherwise. Seebeck coefficients were low, ranging from -40 to 58 A mu V K-1. The combination of transmission electron microscopy with electron energy loss spectroscopy and powder X-ray diffraction established that Sn can substitute on 2a and 24g sites in the skutterudite structure. Due to the low Seebeck coefficients, the alloys exhibited low figure of merits (ZT) < 0.05. C1 [Mackey, Jon; Sehirlioglu, Alp] Case Western Reserve Univ, Mat Sci & Engn, Cleveland, OH 44106 USA. [Dynys, Frederick] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Hudak, Bethany M.; Guiton, Beth S.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Guiton, Beth S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mackey, J (reprint author), Case Western Reserve Univ, Mat Sci & Engn, Cleveland, OH 44106 USA. EM jonathan.a.mackey@gmail.com; frederick.w.dynys@nasa.gov; bethany.hudak@uky.edu; beth.guiton@uky.edu; axs461@case.edu OI Mackey, Jonathan/0000-0003-1053-7007 FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy; NASA/USRA [04555-004]; NASA Radioisotope Power System Program; NASA Kentucky under NASA Award [NNX10AL96H] FX The authors would like to thank Ben Kowalski, Tom Sabo, Serene Farmer, Ray Babuder, and Dereck Johnson from NASA Glenn Research Center and Case Western Reserve University for help with the experimental portion of this work. The authors would also like to thank Sabah Bux and Jean-Pierre Fleurial from NASA JPL for helpful discussions and assistance with hot pressing some samples. This research was supported in part by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy. Funding for this work was provided by funding source NASA/USRA 04555-004, the NASA Radioisotope Power System Program, and by NASA Kentucky under NASA Award No: NNX10AL96H. NR 35 TC 0 Z9 0 U1 12 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JUL PY 2016 VL 51 IS 13 BP 6117 EP 6132 DI 10.1007/s10853-016-9868-9 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA DK1NB UT WOS:000374678400002 ER PT J AU Devi, VM Benner, DC Sung, K Brown, LR Crawford, TJ Miller, CE Drouin, BJ Payne, VH Yu, SS Smith, MAH Mantz, AW Gamache, RR AF Devi, V. Malathy Benner, D. Chris Sung, Keeyoon Brown, Linda R. Crawford, Timothy J. Miller, Charles E. Drouin, Brian J. Payne, Vivienne H. Yu, Shanshan Smith, Mary Ann H. Mantz, Arlan W. Gamache, Robert R. TI Line parameters including temperature dependences of self- and air-broadened line shapes of (CO2)-C-12-O-16: 1.6-mu m region SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 18th Symposium on High-Resolution Molecular Spectroscopy (HIghRus) CY JUN 30-JUL 04, 2015 CL Tomsk, RUSSIA SP RAS, V E Zuev Inst Atmospher Opt SB, Russian Fdn Basic Res DE CO2; Lorentz width; Pressure shift; Temperature dependence; Relaxation matrix element coefficients; Speed dependence ID CONSTRAINED MULTISPECTRUM ANALYSIS; MOLECULAR SPECTROSCOPIC DATABASE; PRESSURE SHIFT COEFFICIENTS; NEAR-INFRARED SPECTROSCOPY; CO2 RETRIEVAL ALGORITHM; CARBON-DIOXIDE; MU-M; SPEED DEPENDENCE; ATMOSPHERIC APPLICATIONS; LASER SPECTROSCOPY AB Pressure-broadened line shapes in the 300134 <- 00001 (nu(1)+4 nu(0)(2)+nu(3)) band of (CO2)-C-12-O-16 at 6228 cm(-1) are reanalyzed using new spectra recorded with sample temperatures down to 170 K. High resolution, high signal-to-noise (S/N) laboratory measurements of line shapes (Lorentz air- and self-broadened half-width coefficients, pressure-shift coefficients and off diagonal relaxation matrix element coefficients) as a function of gas sample temperatures for various pressures and volume mixing ratios are presented. The spectra were recorded using two different Fourier transform spectrometers (FTS): (1) the McMath-Pierce located at the National Solar Observatory on Kitt Peak, Arizona (and reported in Devi et al., J Mol Spectrosc 2007;245:52-80) and, (2) the Bruker IFS-125HR FTS at the Jet Propulsion Laboratory in Pasadena, California. The 19 spectra taken at Kitt Peak were all recorded near room temperature while the 27 Bruker spectra were acquired both at room temperature and colder temperatures (170-296 K). Various spectral resolutions (0.004-0.011 cm(-1)), absorption path lengths (2.46-121 m) and CO2 samples (natural and C-12-enriched) were included in the dataset. To maximize the accuracies of the various retrieved line parameters, a multispectrum nonlinear least squares spectrum fitting software program was used to adjust the ro-vibrational constants (G,B,D etc.) and intensity parameters (including Herman-Wallis terms) instead of directly measuring the individual line positions and intensities. To minimize systematic residuals, line mixing (via off-diagonal relaxation matrix elements) and quadratic speed dependence parameters were included in the analysis. Contributions from other weakly absorbing bands: the 300134 <- 00001 and 300124 <- 00001 bands of (CO2)-C-13-O-16, the 30013 <- 00001 band of (COO)-C-12-O-16-O-18, hot bands 311134 <- 01101 and 322124 <- 02201 Or (CO2)-C-12-O-16, as well as the 400134 <- 10001 and the 400144 <- 10002 bands of (CO2)-C-12-O-16, present within the fitted interval were also measured. Results from previous works and new calculations are compared to present measurements, where appropriate. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. [Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Miller, Charles E.; Drouin, Brian J.; Payne, Vivienne H.; Yu, Shanshan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Smith, Mary Ann H.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Mantz, Arlan W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Gamache, Robert R.] Univ Massachusetts, Off Acad Affairs, Student Affairs, Int Relat, One Beacon St, Boston, MA 02108 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM malathy.d.venkataraman@nasa.gov RI Yu, Shanshan/D-8733-2016; Sung, Keeyoon/I-6533-2015 NR 60 TC 2 Z9 2 U1 8 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2016 VL 177 SI SI BP 117 EP 144 DI 10.1016/j.jqsrt.2015.12.020 PG 28 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DL6GV UT WOS:000375738600011 ER PT J AU Devi, VM Benner, DC Sung, K Brown, LR Crawford, TJ Yu, SS Smith, MAH Mantz, AW Boudon, V Ismail, S AF Devi, V. Malathy Benner, D. Chris Sung, Keeyoon Brown, Linda R. Crawford, Timothy J. Yu, Shanshan Smith, Mary Ann H. Mantz, Arlan W. Boudon, Vincent Ismail, Syed TI Spectral line parameters including line shapes in the 2 nu(3) Q branch of (CH4)-C-12 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 18th Symposium on High-Resolution Molecular Spectroscopy (HIghRus) CY JUN 30-JUL 04, 2015 CL Tomsk, RUSSIA SP RAS, V E Zuev Inst Atmospher Opt SB, Russian Fdn Basic Res DE Methane; 2 nu(3) Q branch; Relaxation matrix element coefficients; Temperature dependences; Lorentz broadening; Pressure-induced shifts ID BAND Q-BRANCH; METHANE; AIR; CH4; DATABASE; REGION; CM(-1) AB In this study, we report the first experimental measurements of spectral line shape parameters (self- and air-broadened Lorentz half-widths, pressure-shifts, and line mixing (via off-diagonal relaxation matrix elements) coefficients and their temperature dependences, where appropriate) for transitions in the 2 nu(3) Q branch manifolds, Q(11)-Q(1) of methane ((CH4)-C-12), in the 5996.5-6007-cm(-1) region. The analysis included 23 high-resolution, high signal-to-noise laboratory absorption spectra recorded with the Bruker IFS-125HR Fourier transform spectrometer (FfS) at JPL The experimental data were obtained using C-12-enriched (CH4)-C-12 and dilute mixtures of (CH4)-C-12 in dry air in the 130-296 K range using a room-temperature long path absorption cell and, two custom-built coolable cells. In the analysis, an interactive multispectrum fitting software was employed where all the 23 spectra (11 self-broadened and 12 air-broadened) were fit simultaneously. By carefully applying reasonable constraints to the parameters for severely blended lines, we were able to determine a self-consistent set of broadening, shift and line mixing (relaxation matrix coefficients) parameters for CH4-CH4 and CH4-air collisions. In the majority of cases, a quadratic speed dependence parameter common for all transitions in each Q(I) manifold was determined. However, temperature dependences of the Q branch line mixing parameter could not be determined from the present data. Since no other experimental line shape measurements have been reported for this Q-branch, the present results are compared to available values in the HITRAN2012 database. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. [Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Yu, Shanshan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Smith, Mary Ann H.; Ismail, Syed] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Mantz, Arlan W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Boudon, Vincent] Univ Bourgogne Franche Comte, CNRS, UMR 6303, Lab Interdisciplinaire Carnot Bourgogne, 9 Ave Alain Savary,BP 47 870, F-21078 Dijon, France. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM malathy.d.venkataraman@nasa.gov RI Yu, Shanshan/D-8733-2016; Sung, Keeyoon/I-6533-2015 NR 20 TC 2 Z9 2 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2016 VL 177 SI SI BP 152 EP 169 DI 10.1016/j.jqsrt.2015.12.009 PG 18 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DL6GV UT WOS:000375738600013 ER PT J AU Predoi-Cross, A Devi, VM Sutradhar, P Sinyakova, T Buldyreva, J Sung, K Smith, MAH Mantz, AW AF Predoi-Cross, A. Devi, V. Malathy Sutradhar, P. Sinyakova, T. Buldyreva, J. Sung, K. Smith, M. A. H. Mantz, A. W. TI Temperature dependences of self- and N-2-broadened line-shape parameters in the nu(3) and nu(5) bands of (CH3D)-C-12: Measurements and calculations SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 18th Symposium on High-Resolution Molecular Spectroscopy (HIghRus) CY JUN 30-JUL 04, 2015 CL Tomsk, RUSSIA SP RAS, V E Zuev Inst Atmospher Opt SB, Russian Fdn Basic Res DE Methane; Mono-deuterated methane; Infrared spectra; Nitrogen-broadening; Temperature dependences of widths and shifts; Line mixing ID DIODE-LASER MEASUREMENTS; 6-10 MU-M; INFRARED-SPECTRUM; H-2-BROADENING COEFFICIENTS; MULTISPECTRUM ANALYSIS; SHIFT COEFFICIENTS; FITTING TECHNIQUE; CH3D; METHANE; ATMOSPHERE AB This paper presents the results of a spectroscopic line shape study of self- and nitrogen-broadened (CH3D)-C-12 transitions in the nu(3) and nu(5) bands in the Triad region. We combined five pure gas spectra with eighteen spectra of lean mixtures of (CH3D)-C-12 and nitrogen, all recorded with a Bruker IFS-125 HR Fourier transform spectrometer. The spectra have been analyzed simultaneously using a multispectrum nonlinear least squares fitting technique. N-2-broadened line parameters for 184 transitions in the nu(3) band and 205 transitions in the nu(5) band were measured. In addition, line positions and line intensities were measured for 168 transitions in the nu(3) band and 214 transitions in the nu(5) band. We have observed 10 instances of weak line mixing corresponding to K '' = 3 A1 or A2 transitions. Comparisons were made for the N-2-broadening coefficients and associated temperature exponents with corresponding values calculated using a semi-classical Robert Bonamy type formalism that involved an inter-molecular potential with terms corresponding to short- and long-range interactions, and exact classical molecular trajectories. The theoretical N-2-broadened coefficients are overestimated for high J values, but are in good agreement with the experimental values for small and middle range J values. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Predoi-Cross, A.; Sutradhar, P.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 6R4, Canada. [Devi, V. Malathy] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Sinyakova, T.; Buldyreva, J.] Univ Fed Bourgogne Franche Comte, CNRS, UMR 6213, Inst UTINAM, F-25030 Besancon, France. [Sung, K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Smith, M. A. H.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Mantz, A. W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. RP Predoi-Cross, A (reprint author), Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 6R4, Canada. EM adriana.predoicross@uleth.ca RI Sung, Keeyoon/I-6533-2015 NR 54 TC 2 Z9 2 U1 2 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2016 VL 177 SI SI BP 181 EP 215 DI 10.1016/j.jqsrt.2016.01.003 PG 35 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DL6GV UT WOS:000375738600015 ER PT J AU Nguyen, TTT Kundan, A Wayner, PC Plawsky, JL Chao, DF Sicker, RJ AF Nguyen, Thao T. T. Kundan, Akshay Wayner, Peter C., Jr. Plawsky, Joel L. Chao, David F. Sicker, Ronald J. TI Effects of cooling temperature on heat pipe evaporator performance using an ideal fluid mixture in microgravity SO EXPERIMENTAL THERMAL AND FLUID SCIENCE LA English DT Article DE Cooling temperature; Ideal liquid mixture; Interfacial heat transfer; Capillarity; Heat pipe ID THERMAL PERFORMANCE; FABRICATION; CAPILLARY; ANGLES AB The effect of cooling temperature on heat pipe performance has generally received little consideration. In this paper, we studied the performance of a Constrained Vapor Bubble (CVB) heat pipe using a liquid mixture of 94 vol%-pentane and 6 vol%-isohexane at different cooling temperatures in the microgravity environment of the International Space Station (ISS). Using a one-dimensional (1-D) heat transfer model developed in our laboratory, the heat transfer coefficient of the evaporator section was calculated and shown to decrease with increasing cooler temperature. Interestingly, the decreasing trend was not the same across the cooler settings studied in the paper. This trend corresponded with the change in the temperature profile along the cuvette. When the cooling temperature went from 0 to 20 degrees C, the temperature of the cuvette decreased monotonically from the heater end to the cooler end and the heat transfer coefficient decreased slowly from 456 to 401 (W m(-2) K-1) (at a rate of 2.75 W m(-2) K-2). However, when the cooling temperature increased from 25 to 35 degrees C, a minimum point formed in the temperature profile, and the heat transfer coefficient dramatically decreased from 355 to 236 (W m(-2)) (at a rate of 11.9 W m(-2) K-2). A similar change in decreasing trend was observed in the pressure gradient and liquid velocity profile. The reduced heat pipe performance at high cooling temperatures was consistent with the reduced evaporation which was indicated by the decreasing internal heat transfer and the increasing liquid film thickness along the cuvette as seen in the surveillance images. The result obtained is important for future heat pipe design because we now have a better understanding of the working temperature ranges of these devices. (C) 2016 Elsevier Inc. All rights reserved. C1 [Nguyen, Thao T. T.; Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. [Chao, David F.; Sicker, Ronald J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Plawsky, JL (reprint author), Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. EM nguyen.thaoche@gmail.com; akshaykundan@gmail.com; wayner@rpi.edu; plawsky@rpi.edu; david.f.chao@nasa.gov; ronald.j.sicker@nasa.gov OI Chao, David/0000-0001-7040-6522 FU National Aeronautics and Space Administration [NNX13AQ78G] FX This material is based on the work supported by the National Aeronautics and Space Administration under Grant number NNX13AQ78G. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of NASA. NR 49 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0894-1777 EI 1879-2286 J9 EXP THERM FLUID SCI JI Exp. Therm. Fluid Sci. PD JUL PY 2016 VL 75 BP 108 EP 117 DI 10.1016/j.expthermflusci.2016.01.016 PG 10 WC Thermodynamics; Engineering, Mechanical; Physics, Fluids & Plasmas SC Thermodynamics; Engineering; Physics GA DK4UY UT WOS:000374917000011 ER PT J AU Kowalski, B Sayir, A Sehirlioglu, A AF Kowalski, B. Sayir, A. Sehirlioglu, A. TI Aliovalent Mn-Ti and Ga-Ti substitution in high-temperature piezoelectric (x)Bi(Zn0.5Zr0.5)O-3-(y)BiScO3-(100-x - y)PbTiO3 SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID BISCO3-PBTIO3 CERAMICS; DIELECTRIC-PROPERTIES; SOLID-SOLUTION; SYSTEM; NB AB Aliovalent substitution of 1-2 % Mn and Ga for Ti has been carried out in the high-temperature ternary system (x)Bi(Zn0.5Zr0.5)O-3-y)BiScO3-(100-x-y)PbTiO3 near the morphotropic phase boundary, specifically 2.5BZZ-37.5BS-60PT in an attempt to reduce the loss tangent. Modifications of this particular composition were chosen due its high-Curie temperature of 420 A degrees C and excellent piezoelectric coefficient of 520 pm/V. Dielectric, piezoelectric, and electromechanical properties were characterized as a function of temperature, frequency, and electric field for all compositions. Small concentrations of Mn and Ga were shown to increase both the electrical and mechanical quality factors, with a Q (m) and Q (e) of 300 and 150, respectively, from room temperature up to 300 A degrees C for Mn-doped compositions. C1 [Kowalski, B.; Sehirlioglu, A.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sayir, A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kowalski, B (reprint author), Case Western Reserve Univ, Cleveland, OH 44106 USA. EM bak121@case.edu OI Kowalski, Ben/0000-0001-9324-1628 FU NASA GSRP [NNX11AL17H]; AFOSR [FA9550-0601-1-0260] FX Funding for this work was made by possible by NASA GSRP Fellowship NNX11AL17H with additional funding provided by AFOSR FA9550-0601-1-0260. NR 24 TC 0 Z9 0 U1 5 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JUL PY 2016 VL 51 IS 14 BP 6761 EP 6769 DI 10.1007/s10853-016-9963-y PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA DL0IX UT WOS:000375317100018 ER PT J AU Shemelya, C Zemba, M Liang, M Yu, XJ Espalin, D Wicker, R Xin, H MacDonald, E AF Shemelya, Corey Zemba, Mike Liang, Min Yu, Xiaoju Espalin, David Wicker, Ryan Xin, Hao MacDonald, Eric TI Multi-layer archimedean spiral antenna fabricated using polymer extrusion 3D printing SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS LA English DT Article DE 3D printing; Archimedean spiral; embedded electronics ID STRUCTURAL ELECTRONICS AB This work describes the design, fabrication, and testing of an Archimedean spiral or spiral antenna using polymer extrusion 3D printing of polycarbonate base material. The spiral antenna design was simulated using CST Microwave Studio (R), and the resulting 3D printed antenna characterized in terms of return loss, directivity, and polarization. The antenna design was embedded into a 3D printed structure using a unique ultrasonic method while a ground plane was inserted through a thermal embedding process. These fabrication methods provide process flexibility, which allows multiple conductive antenna layers to be additively constructed in a single build sequence. The method described can be used to create unique electromagnetic structures such as waveguides directly in a 3D printed dielectric part. The spiral antenna was tested with three variations of microstrip feed line used to match 50 impedance and introduce a 180 degrees phase shift between the two arms of the spiral. These include a Duroid balun attached to feed of the antenna after fabrication, a Duroid balun embedded into the polycarbonate during fabrication, and the same microstrip design fabricated out of copper mesh and embedded into the structure using the polycarbonate as a dielectric substrate. The results of these three approaches will be discussed. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:1662-1666, 2016 C1 [Shemelya, Corey; MacDonald, Eric] UTEP, ECE Dept, El Paso, TX USA. [Zemba, Mike] NASA, Glenn Res Ctr, El Paso, TX USA. [Liang, Min; Yu, Xiaoju; Xin, Hao] Univ Arizona, ECE Dept, El Paso, TX USA. [Espalin, David; Wicker, Ryan] UTEP, Dept Mech Engn, El Paso, TX USA. RP Shemelya, C (reprint author), UTEP, ECE Dept, El Paso, TX USA. EM cmshemelya@utep.edu FU America Makes Manufacturing Initiative; State of Texas Emerging Technology Fund; National Aeronautics and Space Administration [NNX13AB53G]; National Science Foundation [0925220]; State of Arizona under TRIF FX We would like to thank the Intelligence Community Postdoctoral Research Fellowship Program, the University of Texas at El Paso, the W. M. Keck Center for 3D Innovation, the University of Arizona, COSMIAC, and NASA Glenn Research Center. In particular, this work would like to acknowledge Craig Kief of COSMIAC and James Stegeman of NASA Glenn. The research presented here was performed as a result of funding in part from The America Makes Manufacturing Initiative, the State of Texas Emerging Technology Fund, the National Aeronautics and Space Administration under grant number NNX13AB53G, the National Science Foundation under Award 0925220, and the State of Arizona under TRIF. All statements of fact, opinion, or analysis expressed are those of the author and do not reflect the official positions or views of the Intelligence Community or any other U.S. Government agency. Nothing in the contents should be construed as asserting or implying U.S. Government authentication of information or Intelligence Community endorsement of the author's views. NR 19 TC 1 Z9 1 U1 16 U2 54 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0895-2477 EI 1098-2760 J9 MICROW OPT TECHN LET JI Microw. Opt. Technol. Lett. PD JUL PY 2016 VL 58 IS 7 BP 1662 EP 1666 DI 10.1002/mop.29881 PG 5 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA DK2WH UT WOS:000374774600036 ER PT J AU Guo, H Chen, S Bao, AM Behrangi, A Hong, Y Ndayisaba, F Hu, JJ Stepanian, PM AF Guo, Hao Chen, Sheng Bao, Anming Behrangi, Ali Hong, Yang Ndayisaba, Felix Hu, Junjun Stepanian, Phillip M. TI Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China SO ATMOSPHERIC RESEARCH LA English DT Article DE Global Precipitation Measurement; Remote sensing; Satellite; Precipitation ID RAIN-GAUGE OBSERVATIONS; CONTINENTAL UNITED-STATES; TIBETAN PLATEAU; SUMMER PRECIPITATION; PASSIVE MICROWAVE; GSMAP PROJECT; SATELLITE; RESOLUTION; PRODUCTS; VALIDATION AB Two post-real time precipitation products from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) are systematically evaluated over China with China daily Precipitation Analysis Product (CPAP) as reference. The IMERG products include the gauge-corrected IMERG product (IMERG_Cal) and the version of IMERG without direct gauge correction (IMERG_Uncal). The post-research TRMM Multisatellite Precipitation Analysis version 7 (TMPA-3B42V7) is also evaluated concurrently with IMERG for better perspective. In order to be consistent with CPAP, the evaluation and comparison of selected products are performed at 0.25 degrees and daily resolutions from 12 March 2014 through 28 February 2015. The results show that: Both IMERG and 3B42V7 show similar performances. Compared to IMERG_Uncal, IMERG_Cal shows significant improvement in overall and conditional bias and in the correlation coefficient. Both IMERG_Cal and IMERG_Uncal perform relatively poor in winter and over-detect slight precipitation events in northwestern China. As an early validation of the GPM-era IMERG products that inherit the TRMM-era global satellite precipitation products, these findings will provide useful feedbacks and insights for algorithm developers and data users over China and beyond. (C) 2016 Elsevier B.V. All rights reserved. C1 [Guo, Hao; Bao, Anming; Ndayisaba, Felix] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China. [Guo, Hao; Ndayisaba, Felix] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Chen, Sheng] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Guangdong, Peoples R China. [Chen, Sheng; Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73072 USA. [Behrangi, Ali] CALTECH, Jet Prop Labs, Pasadena, CA 91109 USA. [Hu, Junjun] Univ Oklahoma, Sch Comp Sci, Norman, OK 73072 USA. [Stepanian, Phillip M.] Univ Oklahoma, Adv Radar Res Ctr, Sch Meteorol, Norman, OK 73072 USA. RP Chen, S (reprint author), Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Guangdong, Peoples R China. EM casguohao@163.com; chenshengbj@gmail.com; baoam@ms.xjb.ac.cnl; ali.behrangi@jpl.nasa.gov; yanghong@ou.edu; davfelix@yahoo.fr; junjun.Hu-1@ou.edu; step@ou.edu RI Hong, Yang/D-5132-2009 OI Hong, Yang/0000-0001-8720-242X FU National Natural Science Foundation of China [41371419, 91437214, 41361022]; Special program for International Science & Technology Cooperation [2010DFA92720-04]; One Thousand Youth Talents Plan of China [374231001]; Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma, OK, USA FX This work was supported in part by the National Natural Science Foundation of China (Grant No. 41371419, No. 91437214 and No. 41361022), the Special program for International Science & Technology Cooperation (2010DFA92720-04), One Thousand Youth Talents Plan of China (Xinjiang Project: 374231001) and the Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma, OK, USA. The IMERG data were generated by the NASA/Goddard Space Flight Center's Mesoscale Atmospheric Processes Laboratory and PPS, which develop and compute IMERG as a contribution to GPM, and archived at the NASA PPS (https://stormpps.gsfc.nasa.gov/storm). The TRMM-3B42V7 data were provided by the NASA/Goddard Space Flight Center's Laboratory for Atmospheres and freely obtained online (ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/Derived_Products/3B42_V7/ Daily/). The reference dataset (CPAP) is provided by the National Meteorological Information Center (NMIC) and China Meteorological Administration (CMA) (http://cdc.nmic.cn/sksj.do?method=ssrjscp). NR 73 TC 5 Z9 5 U1 10 U2 37 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD JUL 1 PY 2016 VL 176 BP 121 EP 133 DI 10.1016/j.atmosres.2016.02.020 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DK0TM UT WOS:000374625100011 ER PT J AU Zambon, F Tosi, F Carli, C De Sanctis, MC Blewett, DT Palomba, E Longobardo, A Frigeri, A Ammannito, E Russell, CT Raymond, CA AF Zambon, F. Tosi, F. Carli, C. De Sanctis, M. C. Blewett, D. T. Palomba, E. Longobardo, A. Frigeri, A. Ammannito, E. Russell, C. T. Raymond, C. A. TI Lithologic variation within bright material on Vesta revealed by linear spectral unmixing SO ICARUS LA English DT Article DE Asteroid Vesta; Spectroscopy; Mineralogy ID ASTEROID 4 VESTA; HUBBLE-SPACE-TELESCOPE; DAWNS GAMMA-RAY; HED METEORITES; MINERAL MIXTURES; NEUTRON DETECTOR; INFRARED-SPECTRA; GRAIN-SIZE; OLIVINE; SURFACE AB Vesta's surface is mostly composed of pyroxene-rich lithologies compatible with howardite, eucrite and diogenite (HED) meteorites (e.g., McCord et al. [1970] Science, 168, 1445-1447; Feierberg & Drake [1980] Science, 209, 805-807). Data provided by the Visible and Infrared (VIR) spectrometer, onboard the NASA Dawn spacecraft, revealed that all Vesta reflectance spectra show absorption bands at similar to 0.9 and similar to 1.9 mu m, which are typical of iron-bearing pyroxenes (De Sanctis et al. [2012] Science, 336, 697-700). Other minerals may be present in spectrally significant concentrations; these include olivine and opaque phases like those found in carbonaceous chondrites. These additional components modify the dominant pyroxene absorptions. We apply linear spectral unmixing on bright material (BM) units of Vesta to identify HEDs and non-HED phases. We explore the limits of applicability of linear spectral unmixing, testing it on laboratory mixtures. We find that the linear method is applicable at the VIR pixel resolution and it is useful when the surface is composed of pyroxene-rich lithologies containing moderate quantities of carbonaceous chondrite, olivine, and plagioclase. We found three main groups of BM units: eucrite-rich, diogenite-rich, and olivine-rich. For the non-HED spectral endmember, we choose either olivine or a featureless component. Our work confirms that Vesta's surface contains a high content of pyroxenes mixed with a lower concentration of other phases. In many cases, the non-HED endmember that gives the best fit is the featureless phase, which causes a reduction in the strength of both bands. The anticorrelation between albedo and featureless endmember indicates that this phase is associated with low-albedo, CC-like opaque material. Large amounts of olivine have been detected in Bellicia, Arruntia and BU14 BM units. Other sites present low olivine content (<30%) mostly with a high concentration of diogenite. (C) 2016 Elsevier Inc. All rights reserved. C1 [Zambon, F.; Tosi, F.; Carli, C.; De Sanctis, M. C.; Palomba, E.; Longobardo, A.; Frigeri, A.] INAF IAPS Ist Astrofis & Planetol Spaziali, Via Fosso Cavaliere 100, I-00133 Rome, Italy. [Blewett, D. T.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Ammannito, E.; Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, 3845 Slichter Hall,603 Charles E Young Dr East, Los Angeles, CA 90095 USA. [Raymond, C. A.] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Raymond, C. A.] CALTECH, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Zambon, F (reprint author), INAF IAPS Ist Astrofis & Planetol Spaziali, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM francesca.zambon@iaps.inaf.it RI Frigeri, Alessandro/F-2151-2010; OI Frigeri, Alessandro/0000-0002-9140-3977; carli, cristian/0000-0002-4674-1029; Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434; Zambon, Francesca/0000-0002-4190-6592 FU Italian Space Agency (ASI); Dawn Science, Instrument, and Operations Teams; ASI; NASA FX VIR is funded by the Italian Space Agency (ASI) and was developed under the leadership of INAF-Istituto di Astrofisica e Planetologia Spaziale, Rome-Italy. The instrument was built by Selex-Galileo, Florence-Italy. The authors acknowledge the support of the Dawn Science, Instrument, and Operations Teams. This work was supported by ASI and NASA's. NR 80 TC 0 Z9 0 U1 3 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 1 PY 2016 VL 272 BP 16 EP 31 DI 10.1016/j.icarus.2016.01.009 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DK0QK UT WOS:000374617100002 ER PT J AU Quirico, E Moroz, LV Schmitt, B Arnold, G Faure, M Beck, P Bonal, L Ciarniello, M Capaccioni, F Filacchione, G Erard, S Leyrat, C Bockelee-Morvan, D Zinzi, A Palomba, E Drossart, P Tosi, F Capria, MT De Sanctis, MC Raponi, A Fonti, S Mancarella, F Orofino, V Barucci, A Blecka, MI Carlson, R Despan, D Faure, A Fornasier, S Gudipati, MS Longobardo, A Markus, K Mennella, V Merlin, F Piccioni, G Rousseau, B Taylor, F AF Quirico, E. Moroz, L. V. Schmitt, B. Arnold, G. Faure, M. Beck, P. Bonal, L. Ciarniello, M. Capaccioni, F. Filacchione, G. Erard, S. Leyrat, C. Bockelee-Morvan, D. Zinzi, A. Palomba, E. Drossart, P. Tosi, F. Capria, M. T. De Sanctis, M. C. Raponi, A. Fonti, S. Mancarella, F. Orofino, V. Barucci, A. Blecka, M. I. Carlson, R. Despan, D. Faure, A. Fornasier, S. Gudipati, M. S. Longobardo, A. Markus, K. Mennella, V. Merlin, F. Piccioni, G. Rousseau, B. Taylor, F. CA Rosetta VIRTIS Team TI Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer SO ICARUS LA English DT Article DE Comets; Organic chemistry; Infrared observations; Meteorites; Spectrophotometry ID INTERPLANETARY DUST PARTICLES; INFRARED-SPECTROSCOPY; ION IRRADIATION; CARBONACEOUS CHONDRITES; LABORATORY EXPERIMENTS; MURCHISON METEORITES; INTERSTELLAR-MEDIUM; GRAIN MANTLES; SOLAR-SYSTEM; MU-M AB The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument aboard the Rosetta spacecraft has performed extensive spectral mapping of the surface of comet 67P/Churyumov-Gerasimenko in the range 0.3-5 mu m. The reflectance spectra collected across the surface display a low reflectance factor over the whole spectral range, two spectral slopes in the visible and near-infrared ranges and a broad absorption band centered at 3.2 mu m. The first two of these characteristics are typical of dark small bodies of the Solar System and are difficult to interpret in terms of composition. Moreover, solar wind irradiation may modify the structure and composition of surface materials and there is no unequivocal interpretation of these spectra devoid of vibrational bands. To circumvent these problems, we consider the composition of cometary grains analyzed in the laboratory to constrain the nature of the cometary materials and consider results on surface rejuvenation and solar wind processing provided by the OSIRIS and ROSINA instruments, respectively. Our results lead to five main conclusions: (i) The low albedo of comet 67P/CG is accounted for by a dark refractory polyaromatic carbonaceous component mixed with opaque minerals. VIRTIS data do not provide direct insights into the nature of these opaque minerals. However, according to the composition of cometary grains analyzed in the laboratory, we infer that they consist of Fe-Ni alloys and FeS sulfides. (ii) A semi-volatile component, consisting of a complex mix of low weight molecular species not volatilized at T similar to 220 K, is likely a major carrier of the 3.2 p.m band. Water ice contributes significantly to this feature in the neck region but not in other regions of the comet. COOH in carboxylic acids is the only chemical group that encompasses the broad width of this feature. It appears as a highly plausible candidate along with the NH4+ ion. (iii) Photolytic/thermal residues, produced in the laboratory from interstellar ice analogs, are potentially good spectral analogs. (iv) No hydrated minerals were identified and our data support the lack of genetic links with the CI, CR and CM primitive chondrites. This concerns in particular the Orgueil chondrite, previously suspected to have been of cometary origin. (v) The comparison between fresh and aged terrains revealed no effect of solar wind irradiation on the 3.2 mu m band. This is consistent with the presence of efficient resurfacing processes such as dust transport from the interior to the surface, as revealed by the OSIRIS camera. (C) 2016 Elsevier Inc. All rights reserved. C1 [Quirico, E.; Schmitt, B.; Faure, M.; Beck, P.; Bonal, L.; Faure, A.] Univ Grenoble Alpes, CNRS, UMR 5274, IPAG, F-38041 Grenoble, France. [Moroz, L. V.] Univ Potsdam, Potsdam, Germany. [Moroz, L. V.; Arnold, G.; Markus, K.] German Aerosp Ctr DLR, Berlin, Germany. [Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Palomba, E.; Tosi, F.; Capria, M. T.; De Sanctis, M. C.; Raponi, A.; Longobardo, A.; Piccioni, G.] IAPS INAF, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. [Erard, S.; Leyrat, C.; Bockelee-Morvan, D.; Drossart, P.; Barucci, A.; Despan, D.; Fornasier, S.; Merlin, F.; Rousseau, B.] Univ Paris Diderot, Univ Paris 06, Sorbonne Univ, LESIA,Observ Paris,PSL Res Univ,CNRS,Sorbonne Par, Paris, France. [Zinzi, A.; Fonti, S.] INAF OAR, ASI Sci Data Ctr, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. [Mancarella, F.; Orofino, V.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Blecka, M. I.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Carlson, R.; Gudipati, M. S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mennella, V.] INAF, Osservatorio Capodimonte, Naples, Italy. [Taylor, F.] Univ Oxford, Dept Phys, Oxford, England. RP Quirico, E (reprint author), Univ Grenoble Alpes, CNRS, UMR 5274, IPAG, F-38041 Grenoble, France. EM eric.quirico@obs.ujf-grenoble.fr RI Gudipati, Murthy/F-7575-2011; quirico, eric/K-9650-2013; OI quirico, eric/0000-0003-2768-0694; ZINZI, Angelo/0000-0001-5263-5348; Schmitt, Bernard/0000-0002-1230-6627; Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434 FU Italian Space Agency (ASI - Italy); Centre National d'Etudes Spatiales (CNES- France); Deutsches Zentrum fur Luft- and Raumfahrt (DLR- Germany); National Aeronautic and Space Administration (NASA- USA); Science and Technology Facilities Council (UK); ASI; CNES; DLR; DFG [MO 3007/1-1]; Universite Grenoble Alpes FX We thank the following institutions and agencies that supported this work: the Italian Space Agency (ASI - Italy), Centre National d'Etudes Spatiales (CNES- France), Deutsches Zentrum fur Luft- and Raumfahrt (DLR- Germany), the National Aeronautic and Space Administration (NASA- USA) Rosetta Program and the Science and Technology Facilities Council (UK). VIRTIS was built by a consortium including Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali of INAF, Italy, which also guides scientific operations. The development of the VIRTIS instrument was funded and managed by ASI, with contributions from Observatoire de Meudon, financed by CNES, and from DLR. The computational resources used for this research were provided by INAF-IAPS through the DataWell project. Universite Grenoble Alpes (UGA) and CNES are warmly acknowledged for their support to instrumental facilities and activities at IPAG. We thank Jean-Noel Rouzaud (ENS Paris - France) for providing the coal tar samples and Arnaud Buch (Ecole Centrale de Paris) for performing the elemental analysis of these samples. We are grateful to Emmanuel Dartois and Rosario Brunetto for fruitful and stimulating discussions on ion irradiation and space weathering and George Flynn for stimulating discussions on the connection between stratospheric IDPs and comets. We thank Guillermo Munoz-Caro for providing electronic files of photolytic residues and for stimulating discussions on their synthesis. We also thank Gilles Montagnac and the INSU Raman National Facility at Ecole Nor male Superieure de Lyon where Raman analyses were performed. L.V.M. acknowledges the DFG grant MO 3007/1-1. Mathilde Faure acknowledges a Ph.D. grant from Universite Grenoble Alpes. We thank Driss Takir and an anonymous reviewer for their comments and suggestion that improved the manuscript. NR 82 TC 7 Z9 7 U1 7 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL 1 PY 2016 VL 272 BP 32 EP 47 DI 10.1016/j.icarus.2016.02.028 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DK0QK UT WOS:000374617100003 ER PT J AU Howett, CJA Spencer, JR Hurford, T Verbiscer, A Segura, M AF Howett, C. J. A. Spencer, J. R. Hurford, T. Verbiscer, A. Segura, M. TI Thermal properties of Rhea's poles: Evidence for a meter-deep unconsolidated subsurface layer SO ICARUS LA English DT Article DE Satellites, surfaces; Satellites, composition; Saturn, satellites; Infrared observations ID RADIOMETER OBSERVATIONS; SURFACE-PROPERTIES; ICY SATELLITES; SPECTRA; EUROPA; TEMPERATURES; INERTIA; MOONS AB Cassini's Composite Infrared Spectrometer (CIRS) observed both of Rhea's polar regions during a close (2000 km) flyby on 9th March 2013 during orbit 183. Rhea's southern pole was again observed during a more distant (51,000 km) flyby on 10th February 2015 during orbit 212. The results show Rhea's southern winter pole is one of the coldest places directly observed in our Solar System: surface temperatures of 25.4 +/- 7.4 K and 24.7 +/- 6.8 K are inferred from orbit 183 and 212 data, respectively. The surface temperature of the northern summer pole inferred from orbit 183 data is warmer: 66.6 +/- 0.6 K. Assuming the surface thermophysical properties of the two polar regions are comparable then these temperatures can be considered a summer and winter seasonal temperature constraint for the polar region. Orbit 183 will provide solar longitude (L-S) coverage at 133 degrees and 313 degrees for the summer and winter poles respectively, while orbit 212 provides an additional winter temperature constraint at L-S 337 degrees. Seasonal models with bolo-metric albedo values between 0.70 and 0.74 and thermal inertia values between 1 and 46 J m(-2) K-1 s(-1/2) (otherwise known as MKS units) can provide adequate fits to these temperature constraints (assuming the winter temperature is an upper limit). Both these albedo and thermal inertia values agree within the uncertainties with those previously observed on both Rhea's leading and trailing hemispheres. Investigating the seasonal temperature change of Rhea's surface is particularly important, as the seasonal wave is sensitive to deeper surface temperatures (similar to tens of centimeters to meter depths) than the more commonly reported diurnal wave (typically less than a centimeter), the exact depth difference dependent upon the assumed surface properties. For example, if a surface porosity of 0.5 and thermal inertia of 25 MKS is assumed then the depth of the seasonal thermal wave is 76 cm, which is much deeper than the similar to 0.5 cm probed by diurnal studies of Rhea (Howett et al., 2010). The low thermal inertia derived here implies that Rhea's polar surfaces are highly porous even at great depths. Analysis of a CIRS focal plane 1 (10-600 cm-(1)) stare observation, taken during the orbit 183 encounter between 16:22:33 and 16:23:26 UT centered on 71.7 degrees W, 58.7 degrees S provides the first analysis of a thermal emissivity spectrum on Rhea. The results show a flat emissivity spectrum with negligible emissivity features. A few possible explanations exist for this flat emissivity spectrum, but the most likely for Rhea is that the surface is both highly porous and composed of small particles ( 1 kHz). The data are used to validate an existing model for mechanically induced magnetic diffusion. Loss factors and magnetomechanical energy densities are also presented and discussed in terms of loss separation, magnetic diffusion, and energy conservation. Published by AIP Publishing. C1 [Scheidler, Justin J.] NASA, Univ Space Res Assoc, Glenn Res Ctr, Mat & Struct Div,Rotating & Drive Syst Branch, Cleveland, OH 44135 USA. [Asnani, Vivake M.] NASA, Glenn Res Ctr, Mat & Struct Div, Rotating & Drive Syst Branch, Cleveland, OH 44135 USA. [Dapino, Marcelo J.] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. RP Scheidler, JJ (reprint author), NASA, Univ Space Res Assoc, Glenn Res Ctr, Mat & Struct Div,Rotating & Drive Syst Branch, Cleveland, OH 44135 USA. EM justin.j.scheidler@nasa.gov FU NASA Aeronautics Scholarship Program [NNX14AE24H]; NASA's Revolutionary Vertical Lift Technology project; NASA Aeronautics Research Mission Directorate Seedling Fund; Smart Vehicle Concepts Center, a National Science Foundation Industry/University Cooperative Research Center FX This work was supported by the NASA Aeronautics Scholarship Program (Grant No. NNX14AE24H). Additional support was provided by NASA's Revolutionary Vertical Lift Technology project, the NASA Aeronautics Research Mission Directorate Seedling Fund, and the member organizations of the Smart Vehicle Concepts Center, a National Science Foundation Industry/University Cooperative Research Center. NR 18 TC 1 Z9 1 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 28 PY 2016 VL 119 IS 24 AR 244902 DI 10.1063/1.4954320 PG 5 WC Physics, Applied SC Physics GA DQ4HD UT WOS:000379163800034 ER PT J AU Morris, RV Vaniman, DT Blake, DF Gellert, R Chipera, SJ Rampe, EB Ming, DW Morrison, SM Downs, RT Treiman, AH Yen, AS Grotzinger, JP Achilles, CN Bristow, TF Crisp, JA Des Marais, DJ Farmer, JD Fendrich, KV Frydenvang, J Graff, TG Morookian, JM Stolper, EM Schwenzer, SP AF Morris, Richard V. Vaniman, David T. Blake, David F. Gellert, Ralf Chipera, Steve J. Rampe, Elizabeth B. Ming, Douglas W. Morrison, Shaunna M. Downs, Robert T. Treiman, Allan H. Yen, Albert S. Grotzinger, John P. Achilles, Cherie N. Bristow, Thomas F. Crisp, Joy A. Des Marais, David J. Farmer, Jack D. Fendrich, Kim V. Frydenvang, Jens Graff, Trevor G. Morookian, John-Michael Stolper, Edward M. Schwenzer, Susanne P. TI Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Mars; tridymite; Gale crater; lake; volcanism ID SATSUMA-IWOJIMA VOLCANO; X-RAY-DIFFRACTION; NEW-ZEALAND; MONOCLINIC TRIDYMITE; MARTIAN METEORITE; GEOTHERMAL FIELDS; IMPACT STRUCTURE; IWODAKE VOLCANO; HOT-SPRINGS; OPAL-A AB Tridymite, a low-pressure, high-temperature (>870 degrees C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has similar to 40 wt.% crystalline and similar to 60 wt.% X-ray amorphous material and a bulk composition with similar to 74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (similar to 17 wt.% of bulk sample), tridymite (similar to 14 wt.%), sanidine (similar to 3 wt.%), cation-deficient magnetite (similar to 3 wt.%), cristobalite (similar to 2 wt.%), and anhydrite (similar to 1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (similar to 39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (similar to 5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a "Lake Gale" catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill. C1 [Morris, Richard V.; Ming, Douglas W.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Vaniman, David T.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Blake, David F.; Bristow, Thomas F.; Des Marais, David J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gellert, Ralf] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Chipera, Steve J.] Chesapeake Energy, Oklahoma City, OK 73118 USA. [Rampe, Elizabeth B.] Aerodyne Ind, Houston, TX 77058 USA. [Morrison, Shaunna M.; Downs, Robert T.; Achilles, Cherie N.; Fendrich, Kim V.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Treiman, Allan H.; Schwenzer, Susanne P.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Yen, Albert S.; Crisp, Joy A.; Morookian, John-Michael] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Grotzinger, John P.; Stolper, Edward M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Farmer, Jack D.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Frydenvang, Jens] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Frydenvang, Jens] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Graff, Trevor G.] Jacobs, Houston, TX 77058 USA. [Schwenzer, Susanne P.] Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England. RP Morris, RV (reprint author), NASA, Johnson Space Ctr, Houston, TX 77058 USA.; Grotzinger, JP (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM richard.v.morris@nasa.gov; grotz@gps.caltech.edu RI Crisp, Joy/H-8287-2016; Frydenvang, Jens/D-4781-2013 OI Crisp, Joy/0000-0002-3202-4416; Frydenvang, Jens/0000-0001-9294-1227 FU NASA Mars Science Laboratory Mission; Canadian Space Agency; MacDonald Dettwiler & Assoc., Brampton; CSA [9F052-110786]; NASA; National Aeronautics and Space Administration; Danish Villum Foundation; UK Space Agency FX We acknowledge the unwavering support of the JPL engineering and MSL operations staff. This research was supported by the NASA Mars Science Laboratory Mission. The MSL APXS was financed and managed by the Canadian Space Agency, with MacDonald Dettwiler & Assoc., Brampton, as prime subcontractor for the construction of the instrument. Operation of the MSL APXS is supported by CSA Contract 9F052-110786 and by NASA. Some of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J.D.F. thanks the Danish Villum Foundation for support. S.P.S. acknowledges UK Space Agency funding. NR 78 TC 6 Z9 6 U1 18 U2 31 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 28 PY 2016 VL 113 IS 26 BP 7071 EP 7076 DI 10.1073/pnas.1607098113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DQ2LI UT WOS:000379033400043 PM 27298370 ER PT J AU Tiessen, CJ Trocchi, JA Hein, JD Dech, J Kedzierski, W McConkey, JW AF Tiessen, C. J. Trocchi, J. A. Hein, J. D. Dech, J. Kedzierski, W. McConkey, J. W. TI VUV study of electron impact dissociative excitation of thymine SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE thymine; electron-impact; dissociation; excitation; VUV ID GAS-PHASE; MOLECULES; FRAGMENTS; URACIL AB Dissociative excitation of thymine following electron impact was studied in the energy range up to 430 eV. Emissions in the vacuum ultra-violet spectral region below 150 nm were studied and found to be dominated by the hydrogen Lyman series. Emission cross section data reveal that Lyman-alpha excitation displays a broad maximum at an electron impact energy of 160 eV. The probability of extracting other excited atoms from the parent molecule is found to be insignificant. Possible excitation and dissociation mechanisms in the parent molecule are discussed. C1 [Tiessen, C. J.; Trocchi, J. A.; Hein, J. D.; Dech, J.; Kedzierski, W.; McConkey, J. W.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. [Tiessen, C. J.] Univ Ottawa, Dept Phys, 75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada. [Hein, J. D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP McConkey, JW (reprint author), Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. EM mcconk@uwindsor.ca RI Hein, Jeffrey/A-7171-2013 FU Natural Sciences and Engineering Research Council of Canada; University of Windsor FX We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support. CJT and JAT were the recipients of University of Windsor 'Outstanding Scholars' awards. The University of Windsor, Physics Department mechanical and electronic shops provided expert technical support. NR 28 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUN 28 PY 2016 VL 49 IS 12 AR 125204 DI 10.1088/0953-4075/49/12/125204 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA DN0XK UT WOS:000376790200013 ER PT J AU Briggs, RM Frez, C Fradet, M Forouhar, S Blanchard, R Diehl, L Pflugl, C AF Briggs, Ryan M. Frez, Clifford Fradet, Mathieu Forouhar, Siamak Blanchard, Romain Diehl, Laurent Pflugl, Christian TI Low-dissipation 7.4-mu m single-mode quantum cascade lasers without epitaxial regrowth SO OPTICS EXPRESS LA English DT Article AB We report continuous-wave operation of single-mode quantum cascade (QC) lasers emitting near 7.4 mu m with threshold power consumption below 1 W at temperatures up to 40 degrees C. The lasers were fabricated with narrow, plasma-etched waveguides and distributed-feedback sidewall gratings clad with sputtered aluminum nitride. In contrast to conventional buried-heterostructure (BH) devices with epitaxial sidewall cladding and in-plane gratings, the devices described here were fabricated without any epitaxial regrowth processes, yet they exhibit power consumption comparable to the lowest-dissipation BH QC lasers reported to date. These low-dissipation devices are designed primarily as light sources for infrared spectroscopy instruments with limited volume, mass, and power budgets. (C) 2016 All rights reserved. C1 [Briggs, Ryan M.; Frez, Clifford; Fradet, Mathieu; Forouhar, Siamak] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Blanchard, Romain; Diehl, Laurent; Pflugl, Christian] Pendar Technol LLC, Cambridge, MA 02138 USA. RP Briggs, RM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ryan.m.briggs@jpl.nasa.gov FU NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Program FX This work was performed at the Jet Propulsion Laboratory (JPL), operated by the California Institute of Technology (Caltech), under contract with the National Aeronautics and Space Administration. We gratefully acknowledge support through the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Program. We also acknowledge critical infrastructure provided by the JPL Microdevices Laboratory and the Caltech Kavli Nanoscience Institute. NR 19 TC 1 Z9 1 U1 4 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 27 PY 2016 VL 24 IS 13 BP 14589 EP 14595 DI 10.1364/OE.24.014589 PG 7 WC Optics SC Optics GA DT8RF UT WOS:000381759800078 PM 27410611 ER PT J AU Hashino, T Satoh, M Hagihara, Y Kato, S Kubota, T Matsui, T Nasuno, T Okamoto, H Sekiguchi, M AF Hashino, Tempei Satoh, Masaki Hagihara, Yuichiro Kato, Seiji Kubota, Takuji Matsui, Toshihisa Nasuno, Tomoe Okamoto, Hajime Sekiguchi, Miho TI Evaluating Arctic cloud radiative effects simulated by NICAM with A-train SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ANGULAR-DISTRIBUTION MODELS; MEASURING MISSION SATELLITE; ENERGY SYSTEM INSTRUMENT; FLUX ESTIMATION; ATMOSPHERE; CALIPSO; ICE; MICROPHYSICS; RADAR; ALGORITHM AB Evaluation of cloud radiative effects (CREs) in global atmospheric models is of vital importance to reduce uncertainties in weather forecasting and future climate projection. In this paper, we describe an effective way to evaluate CREs from a 3.5 km mesh global nonhydrostatic model by comparing it against A-train satellite data. The model is the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), and its output is run through a satellite-sensor simulator ( Joint Simulator for satellite sensors) to produce the equivalent CloudSat radar, CALIPSO lidar, and Aqua Clouds and the Earth's Radiant Energy System (CERES) data. These simulated observations are then compared to real observations from the satellites. Wefocus on the Arctic, which is a region experiencing rapid climate change over various surface types. The NICAM simulation significantly overestimates the shortwave CREs at top of atmosphere and surface as large as 24Wm(-2) for the month of June. The CREs were decomposed into cloud fractions and footprint CREs of cloud types that are defined based on the CloudSat-CALIPSO cloud top temperature and maximum radar reflectivity. It turned out that the simulation underestimates the cloud fraction and optical thickness of mixed-phase clouds due to predicting too little supercooled liquid and predicting overly large snow particles with too little mass content. This bias was partially offset by predicting too many optically thin high clouds. Offline sensitivity experiments, where cloud microphysical parameters, surface albedo, and single scattering parameters are varied, support the diagnosis. Aerosol radiative effects and nonspherical single scattering of ice particles should be introduced into the NICAM broadband calculation for further improvement. C1 [Hashino, Tempei; Satoh, Masaki] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan. [Hashino, Tempei; Hagihara, Yuichiro; Okamoto, Hajime] Kyushu Univ, Appl Mech Res Inst, Fukuoka, Japan. [Kato, Seiji] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Kubota, Takuji] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki, Japan. [Matsui, Toshihisa] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Nasuno, Tomoe] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. [Sekiguchi, Miho] Tokyo Univ Marine Sci & Technol, Tokyo, Japan. RP Hashino, T (reprint author), Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan.; Hashino, T (reprint author), Kyushu Univ, Appl Mech Res Inst, Fukuoka, Japan. EM hashino@riam.kyushu-u.ac.jp RI Kyushu, RIAM/F-4018-2015; Satoh, Masaki/G-3325-2015; Okamoto, Hajime/E-6510-2010 OI Satoh, Masaki/0000-0003-3580-8897; Okamoto, Hajime/0000-0002-4540-1698 FU JAXA/EarthCARE; Academia Sinica, Taiwan; Ministry of Education, Culture, Sports, Science and Technology of Japan [25247078] FX The CloudSat-CALIPSO merged data set used for this paper is available upon request from H. Okamoto at Kyushu University (http://atmosp.riam.kyushu-u.ac.jp/cloudsatcalipso). The CERES-MODIS-CALIPSO-CloudSat (CCCM) data set is available at NASA Langley Research Center Atmospheric Science Data Center (https://eosweb.larc.nasa.gov/project/ceres/cccm_table). The data set name is CER-NEWS_CCCM_Aqua-FM3-MODIS-CALCS RelB1. The CloudSat Project Level 2 combined radar cloud scenario classification product is available at CloudSat Data Processing Center (http://www.cloudsat.cira.colostate.edu). The data set name is 2B-CLDCLASS. The NICAM 3.5 km mesh simulation data used in this paper is available upon request from M. Satoh at The University of Tokyo. The Joint Simulator for Satellite Sensors is available from JAXA EORC Joint Simulator website (http://www.eorc.jaxa.jp/EARTHCARE/about/jointsimulator.html). This research was supported by the JAXA/EarthCARE 1st Research Announcement. T. Hashino was partially supported by the post doctoral fellowship from Academia Sinica, Taiwan. H. Okamoto and Y. Hagihara were supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan through Grant-in-Aid for Scientific Research (A) 25247078. The NICAM simulations were done using the Earth Simulator at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The authors thank P. Yang at Texas A&M University for kindly providing the nonspherical single-scattering database for broadband calculation. T. Hashino is grateful for helpful discussion with B.-J. Sohn at Seoul National University and A. Hamada at The University of Tokyo. Finally, the authors are thankful to the anonymous reviewers for their thorough and critical comments. NR 69 TC 0 Z9 0 U1 3 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7041 EP 7063 DI 10.1002/2016JD024775 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800021 ER PT J AU Yu, PF Toon, OB Bardeen, CG Bucholtz, A Rosenlof, KH Saide, PE Da Silva, A Ziemba, LD Thornhill, KL Jimenez, JL Campuzano-Jost, P Schwarz, JP Perring, AE Froyd, KD Wagner, NL Mills, MJ Reid, JS AF Yu, Pengfei Toon, Owen B. Bardeen, Charles G. Bucholtz, Anthony Rosenlof, Karen H. Saide, Pablo E. Da Silva, Arlindo Ziemba, Luke D. Thornhill, Kenneth L. Jimenez, Jose-Luis Campuzano-Jost, Pedro Schwarz, Joshua P. Perring, Anne E. Froyd, Karl D. Wagner, N. L. Mills, Michael J. Reid, Jeffrey S. TI Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL-PROPERTIES; ORGANIC AEROSOL; SMOKE; EMISSIONS; EVOLUTION; AIRCRAFT; CARBON; CLOUDS AB The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150Wm(-2) per unit aerosol optical depth in the midvisible at13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1 degrees resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region. C1 [Yu, Pengfei; Toon, Owen B.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Yu, Pengfei; Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Yu, Pengfei; Jimenez, Jose-Luis; Campuzano-Jost, Pedro; Schwarz, Joshua P.; Perring, Anne E.; Froyd, Karl D.; Wagner, N. L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Yu, Pengfei; Rosenlof, Karen H.; Schwarz, Joshua P.; Perring, Anne E.; Froyd, Karl D.; Wagner, N. L.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Boulder, CO USA. [Bardeen, Charles G.; Mills, Michael J.] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling Lab, POB 3000, Boulder, CO 80307 USA. [Bucholtz, Anthony; Reid, Jeffrey S.] Naval Res Lab, Monterey, CA USA. [Saide, Pablo E.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Da Silva, Arlindo] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Ziemba, Luke D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Thornhill, Kenneth L.] Sci Syst & Applicat Inc, Hampton, VA USA. [Jimenez, Jose-Luis; Campuzano-Jost, Pedro] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. RP Yu, PF (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.; Yu, PF (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.; Yu, PF (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.; Yu, PF (reprint author), Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Boulder, CO USA. EM pengfei.yu@colorado.edu RI Rosenlof, Karen/B-5652-2008; Perring, Anne/G-4597-2013; Reid, Jeffrey/B-7633-2014; Jimenez, Jose/A-5294-2008; schwarz, joshua/G-4556-2013; Yu, Pengfei/S-4596-2016; Manager, CSD Publications/B-2789-2015 OI Rosenlof, Karen/0000-0002-0903-8270; Perring, Anne/0000-0003-2231-7503; Reid, Jeffrey/0000-0002-5147-7955; Jimenez, Jose/0000-0001-6203-1847; schwarz, joshua/0000-0002-9123-2223; Yu, Pengfei/0000-0002-2774-1058; FU National Science Foundation; Office of Science (BER) of the U.S. Department of Energy; National Science Foundation [CNS-0821794]; NASA [NNX12AC03G, NNX15AT96G, NNX12AB78G, NNX12AC64G, NNX14AR56G] FX The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources (ark:/85065/d7wd3xhc) were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies. This work also utilized the Janus supercomputer, which is supported by the National Science Foundation (award CNS-0821794), the University of Colorado Boulder, the University of Colorado Denver, and the National Center for Atmospheric Research. The Janus supercomputer is operated by the University of Colorado Boulder. P.C.J. and J.L.J. were supported by NASA NNX12AC03G and NNX15AT96G. P.E.S. was supported by NASA grant NNX12AB78G. P.Y. and O.B.T. were supported by NASA awards NNX12AC64G and NNX14AR56G. The data used in this study are publicly available at NASA data achieve http://www-air.larc.nasa.gov/missions/seac4rs/index.html. NR 25 TC 1 Z9 1 U1 5 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7079 EP 7087 DI 10.1002/2015JD024702 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800023 PM 27867782 ER PT J AU Koffi, B Schulz, M Breon, FM Dentener, F Steensen, BM Griesfeller, J Winker, D Balkanski, Y Bauer, SE Bellouin, N Berntsen, T Bian, HS Chin, M Diehl, T Easter, R Ghan, S Hauglustaine, DA Iversen, T Kirkevag, A Liu, XH Lohmann, U Myhre, G Rasch, P Seland, O Skeie, RB Steenrod, SD Stier, P Tackett, J Takemura, T Tsigaridis, K Vuolo, MR Yoon, J Zhang, K AF Koffi, Brigitte Schulz, Michael Breon, Francois-Marie Dentener, Frank Steensen, Birthe Marie Griesfeller, Jan Winker, David Balkanski, Yves Bauer, Susanne E. Bellouin, Nicolas Berntsen, Terje Bian, Huisheng Chin, Mian Diehl, Thomas Easter, Richard Ghan, Steven Hauglustaine, Didier A. Iversen, Trond Kirkevag, Alf Liu, Xiaohong Lohmann, Ulrike Myhre, Gunnar Rasch, Phil Seland, Oyvind Skeie, Ragnhild B. Steenrod, Stephen D. Stier, Philip Tackett, Jason Takemura, Toshihiko Tsigaridis, Kostas Vuolo, Maria Raffaella Yoon, Jinho Zhang, Kai TI Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BIOMASS BURNING EMISSIONS; SPECTRAL-RESOLUTION LIDAR; BLACK CARBON; OPTICAL-PROPERTIES; INTERANNUAL VARIABILITY; AIRCRAFT OBSERVATIONS; CLIMATE INTERACTIONS; INITIAL ASSESSMENT; CALIPSO LIDAR; TRANSPORT AB The ability of 11 models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model intercomparison initiative (AeroCom II), is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded data set of aerosol extinction profiles built for this purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 subcontinental regions show that five models improved, whereas three degraded in reproducing the interregional variability in Z(alpha 0-6 km), the mean extinction height diagnostic, as computed from the CALIOP aerosol profiles over the 0-6 km altitude range for each studied region and season. While the models' performance remains highly variable, the simulation of the timing of the Z(alpha 0-6 km) peak season has also improved for all but two models from AeroCom Phase I to Phase II. The biases in Z(alpha 0-6 km) are smaller in all regions except Central Atlantic, East Asia, and North and South Africa. Most of the models now underestimate Z(alpha 0-6 km) over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Z(alpha 0-6 km) latitudinal variability over ocean than over land. Hypotheses for the performance and evolution of the individual models and for the intermodel diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties contributing to the differences between the simulations and observations. C1 [Koffi, Brigitte; Dentener, Frank; Diehl, Thomas] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, Italy. [Schulz, Michael; Steensen, Birthe Marie; Griesfeller, Jan; Iversen, Trond; Kirkevag, Alf; Seland, Oyvind] Norwegian Meteorol Inst, Oslo, Norway. [Breon, Francois-Marie; Balkanski, Yves; Hauglustaine, Didier A.; Vuolo, Maria Raffaella] Lab Sci Climat & Environm, Gif Sur Yvette, France. [Winker, David] NASA, Langley Res Ctr, MS-475, Hampton, VA 23665 USA. [Bauer, Susanne E.; Tsigaridis, Kostas] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Bauer, Susanne E.; Tsigaridis, Kostas] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bellouin, Nicolas] Univ Reading, Dept Meteorol, Reading, Berks, England. [Berntsen, Terje] Univ Oslo, Dept Geosci, Oslo, Norway. [Berntsen, Terje; Myhre, Gunnar; Skeie, Ragnhild B.] Ctr Int Climate & Environm Res Oslo CICERO, Oslo, Norway. [Bian, Huisheng; Chin, Mian; Rasch, Phil; Steenrod, Stephen D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Bian, Huisheng] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore Country, MD USA. [Easter, Richard; Ghan, Steven; Liu, Xiaohong; Yoon, Jinho; Zhang, Kai] Pacific NW Natl Lab, Richland, WA 99352 USA. [Iversen, Trond] Univ Oslo, Dept Geosci, Oslo, Norway. [Liu, Xiaohong] Univ Wyoming, Laramie, WY 82071 USA. [Lohmann, Ulrike] ETH Zentrum, Zurich, Switzerland. [Stier, Philip] Univ Oxford, Dept Phys, Oxford, England. [Tackett, Jason] Sci Syst & Applicat Inc, Hampton, VA USA. [Takemura, Toshihiko] Kyushu Univ, Inst Appl Mech, Fukuoka, Japan. [Vuolo, Maria Raffaella] Natl Inst Agron Res, Thiverval Grignon, France. [Yoon, Jinho] Gwangju Inst Sci & Technol, Gwangju, South Korea. [Zhang, Kai] Max Planck Inst Meteorol, Hamburg, Germany. RP Koffi, B (reprint author), Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, Italy. EM brigitte.koffi-lefeivre@jrc.ec.europa.eu RI Ghan, Steven/H-4301-2011; Stier, Philip/B-2258-2008; Myhre, Gunnar/A-3598-2008; Kyushu, RIAM/F-4018-2015; Zhang, Kai/F-8415-2010; Takemura, Toshihiko/C-2822-2009; Chin, Mian/J-8354-2012; YOON, JIN-HO/A-1672-2009; Liu, Xiaohong/E-9304-2011 OI Balkanski, Yves/0000-0001-8241-2858; Skeie, Ragnhild/0000-0003-1246-4446; Ghan, Steven/0000-0001-8355-8699; Stier, Philip/0000-0002-1191-0128; Myhre, Gunnar/0000-0002-4309-476X; Zhang, Kai/0000-0003-0457-6368; Takemura, Toshihiko/0000-0002-2859-6067; YOON, JIN-HO/0000-0002-4939-8078; Liu, Xiaohong/0000-0002-3994-5955 FU European Commission [070307/ENV/2012/636596/C3]; Research Council of Norway [207711/E10, 229771]; CRAICC; EU; Norwegian Space Center; US Department of Energy, Office of Science; DOE [DE-AC06-76RLO 1830]; NASA MAP program Modeling, Analysis, and Prediction Climate Variability and Change [NNH08ZDA001N-MAP]; Research Council of Norway FX This work was supported by the European Commission under the project IS-ENES (Infrastructure for the European Network for Earth System Modelling) and the Administrative Arrangement AMITO (070307/ENV/2012/636596/C3). We thank NASA teams and the ICARE Data and Services Center for providing access to the CALIOP CNES/NASA data used in this study and for providing continuous computing access and support. We are also very grateful to three reviewers for their valuable comments and suggestions that allowed improving the quality of the manuscript and reinforcing some of our findings. T. Iversen, A. Kirkevag, and O. Seland (and B. Koffi) were (also) supported by the Research Council of Norway through the EarthClim (207711/E10), EVA (229771), and NOTUR/NorStore projects, CRAICC, and through the EU projects PEGASOS and ACCESS. M. Schulz and A. Kirkevag also received funding from the Norwegian Space Center through the PM-VRAE and PM-MACS projects. S. Ghan, R. Easter, P. Rasch, J. Yoon and K. Zhang were funded by the US Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. S.E. Bauer and K. Tsigaridis acknowledge resources supporting this work by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center and support by the NASA MAP program Modeling, Analysis, and Prediction Climate Variability and Change (NNH08ZDA001N-MAP). M. Schulz, Jan Griesfeller, R.B. Skeie, T. Berntsen and G. Myhre were supported by the Research Council of Norway, through the grants SLAC, AEROCOM-P3 and ClimSense. K. Zhang acknowledges the German Climate Computing Center (Deutsches Klimarechenzentrum GmbH, DKRZ) for making the computational resources available for ECHAM5.5-HAM2 simulations. The CALIOP and AeroCom data and tools used to produce the aerosol extinction profiles analyzed in this paper are available on the AeroCom Database and User Server (aerocom-users.met.no). They are accessible upon request, following the AeroCom Policy and access conditions described under http://aerocom.met.no/data.html. NR 76 TC 1 Z9 1 U1 7 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7254 EP 7283 DI 10.1002/2015JD024639 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800033 ER PT J AU Orozco, D Beyersdorf, AJ Ziemba, LD Berkoff, T Zhang, Q Delgado, R Hennigan, CJ Thornhill, KL Young, DE Parworth, C Kim, H Hoff, RM AF Orozco, Daniel Beyersdorf, A. J. Ziemba, L. D. Berkoff, T. Zhang, Q. Delgado, R. Hennigan, C. J. Thornhill, K. L. Young, D. E. Parworth, C. Kim, H. Hoff, R. M. TI Hygrosopicity measurements of aerosol particles in the San Joaquin Valley, CA, Baltimore, MD, and Golden, CO SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LIGHT-SCATTERING ENHANCEMENT; MARINE BOUNDARY-LAYER; RELATIVE-HUMIDITY; HYGROSCOPIC PROPERTIES; WATER-UPTAKE; OPTICAL-PROPERTIES; AMMONIUM-SULFATE; ANTHROPOGENIC AEROSOLS; HUMIDIFICATION FACTORS; CHEMICAL-COMPOSITION AB Aerosol hygroscopicity was investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sscat) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (10 January to 6 February 2013), Baltimore, MD (3-30 July 2013), and Golden, CO (12 July to 10 August 2014). Observations in Porterville and Golden were part of the NASA-sponsored Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality project. The measured sscat under varying RH in the three sites was combined with ground aerosol extinction, PM2.5 mass concentrations, and particle composition measurements and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sscat( RH) at a certain RH divided by sscat at a dry value, was used to evaluate the aerosol hygroscopicity. Particles in Porterville showed low average f(RH=80%) (1.42) which was attributed to the high carbonaceous loading in the region where residential biomass burning and traffic emissions contribute heavily to air pollution. In Baltimore, the high average f(RH=80%) (2.06) was attributed to the large contribution of SO42- in the region. The lowest water uptake was observed in Golden, with an average f(RH=80%)=1.24 where organic carbon dominated the particle loading. Different empirical fits were evaluated using the f( RH) data. The widely used Kasten ( gamma) model was found least satisfactory, as it overestimates f( RH) for RH < 75%. A better empirical fit with two power law curve fitting parameters c and k was found to replicate f( RH) accurately from the three sites. The relationship between the organic carbon mass and the species that are affected by RH and f( RH) was also studied and categorized. C1 [Orozco, Daniel; Hoff, R. M.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [Orozco, Daniel; Delgado, R.; Hoff, R. M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Beyersdorf, A. J.; Ziemba, L. D.; Berkoff, T.; Thornhill, K. L.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Zhang, Q.; Young, D. E.; Parworth, C.] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA. [Hennigan, C. J.] Univ Maryland Baltimore Cty, Dept Chem Biochem & Environm Engn, Baltimore, MD 21228 USA. [Thornhill, K. L.] Sci Syst & Applicat Inc, Hampton, VA USA. [Kim, H.] Korea Inst Sci & Technol, Ctr Environm Hlth & Welf Res, Seoul, South Korea. RP Orozco, D (reprint author), Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA.; Orozco, D (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. EM orozco1@umbc.edu FU NASA DISCOVER-AQ grant [NNX10AR38G] FX The authors are grateful to all the reviewers and the Editor for their time and valuable comments and suggestions. The authors would like to thank the Penn State atmospheric sciences team, led by Anne Thompson, for hosting the UMBC instrumentation in their NATIVE trailer during the DISCOVER-AQ campaign in California (2013). In addition, the authors would like to thank NASA/GSFC MPLNET for the use of the Aerodyne extinction monitor. This study was funded by NASA DISCOVER-AQ grant (NNX10AR38G). The extinction coefficients, f(RH), PM2.5 concentrations, particle composition, and P3-B data used in this work are available upon request at http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html. NR 76 TC 3 Z9 3 U1 9 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7344 EP 7359 DI 10.1002/2015JD023971 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800037 ER PT J AU Delahaye, T Maxwell, SE Reed, ZD Lin, H Hodges, JT Sung, K Devi, VM Warneke, T Spietz, P Tran, H AF Delahaye, T. Maxwell, S. E. Reed, Z. D. Lin, H. Hodges, J. T. Sung, K. Devi, V. M. Warneke, T. Spietz, P. Tran, H. TI Precise methane absorption measurements in the 1.64 mu m spectral region for the MERLIN mission SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WAVE COHERENT TRANSIENTS; SPEED DEPENDENCE; LINE PARAMETERS; NU(3) BAND; CH4; N-2; RETRIEVALS; ATMOSPHERE; COLLISIONS; SOFTWARE AB In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2.3 band of (CH4)-C-12. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 mu mol mol(-1) and 12 mu mol mol(-1). All spectroscopicmodel parameters were simultaneously adjusted in amultispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of theMERLINmission. This is the first time that such fidelity has been reached in modelingmethane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations. C1 [Delahaye, T.; Tran, H.] Univ Paris Diderot, Univ Paris Est Creteil, Inst Pierre Simon, CNRS,LISA,UMR 7583, Creteil, France. [Maxwell, S. E.; Reed, Z. D.; Lin, H.; Hodges, J. T.] NIST, Gaithersburg, MD 20899 USA. [Lin, H.] Natl Inst Metrol, Beijing, Peoples R China. [Sung, K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Devi, V. M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23185 USA. [Warneke, T.] Univ Bremen, Inst Environm Phys, Bremen, Germany. [Spietz, P.] DLR German Aerosp Ctr, Inst Space Syst, Bremen, Germany. RP Tran, H (reprint author), Univ Paris Diderot, Univ Paris Est Creteil, Inst Pierre Simon, CNRS,LISA,UMR 7583, Creteil, France. EM ha.tran@lisa.u-pec.fr RI Tran, Ha/I-5076-2013; Sung, Keeyoon/I-6533-2015; OI Delahaye, Thibault/0000-0002-3807-4262 FU French Space Agency; Centre National d'Etudes Spatiales; Greenhouse Gas and Climate Sciences Measurement Program of the National Institute of Standards and Technology; National Aeronautics and Space Administration FX The authors would like to thanks B. Millet, C. Pierangelo, and J. M. Hartmann for helpful discussions. The research is partially supported by the French Space Agency, Centre National d'Etudes Spatiales. B. Drouin and C. Benner are acknowledged for helpful discussions about spectra intercomparison. S.E. Maxwell, Z.D. Reed, and J.T. Hodges were supported by the Greenhouse Gas and Climate Sciences Measurement Program of the National Institute of Standards and Technology. The research at the College of William and Mary and at the Jet Propulsion Laboratory, California Institute of Technology was performed under contracts and cooperative agreements with the National Aeronautics and Space Administration. The recorded laboratory spectra are available upon request to the corresponding author (ha.tran@lisa.u-pec.fr). NR 46 TC 1 Z9 1 U1 14 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7360 EP 7370 DI 10.1002/2016JD025024 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800038 PM 27551656 ER PT J AU Liu, XX Zhang, Y Huey, LG Yokelson, RJ Wang, Y Jimenez, JL Campuzano-Jost, P Beyersdorf, AJ Blake, DR Choi, Y St Clair, JM Crounse, JD Day, DA Diskin, GS Fried, A Hall, SR Hanisco, TF King, LE Meinardi, S Mikoviny, T Palm, BB Peischl, J Perring, AE Pollack, IB Ryerson, TB Sachse, G Schwarz, JP Simpson, IJ Tanner, DJ Thornhill, KL Ullmann, K Weber, RJ Wennberg, PO Wisthaler, A Wolfe, GM Ziemba, LD AF Liu, Xiaoxi Zhang, Y. Huey, L. G. Yokelson, R. J. Wang, Y. Jimenez, J. L. Campuzano-Jost, P. Beyersdorf, A. J. Blake, D. R. Choi, Y. St Clair, J. M. Crounse, J. D. Day, D. A. Diskin, G. S. Fried, A. Hall, S. R. Hanisco, T. F. King, L. E. Meinardi, S. Mikoviny, T. Palm, B. B. Peischl, J. Perring, A. E. Pollack, I. B. Ryerson, T. B. Sachse, G. Schwarz, J. P. Simpson, I. J. Tanner, D. J. Thornhill, K. L. Ullmann, K. Weber, R. J. Wennberg, P. O. Wisthaler, A. Wolfe, G. M. Ziemba, L. D. TI Agricultural fires in the southeastern US during SEAC(4)RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BIOMASS-BURNING EMISSIONS; TRANSFORM INFRARED-SPECTROSCOPY; IONIZATION MASS-SPECTROMETRY; ATMOSPHERIC BROWN CARBON; HIGH NORTHERN LATITUDES; LIGHT-ABSORPTION; UNITED-STATES; CROP RESIDUE; LABORATORY MEASUREMENTS; IN-SITU AB Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(4)RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for similar to 1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O-3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate ( PAN), and nitrate was observed with Delta O-3/Delta CO,Delta PAN/Delta NOy, and Delta nitrate/Delta NOy reaching similar to 0.1,similar to 0.3,and similar to 0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of similar to 2) to be equivalent to similar to 2% SO2 from coal combustion and similar to 1% NOx and similar to 9% CO from mobile sources. C1 [Liu, Xiaoxi; Zhang, Y.; Huey, L. G.; Wang, Y.; King, L. E.; Tanner, D. J.; Weber, R. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Yokelson, R. J.] Univ Montana, Dept Chem, Missoula, MT 59812 USA. [Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Palm, B. B.] Univ Colorado Boulder, Dept Chem & Biochem, Boulder, CO USA. [Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Palm, B. B.; Peischl, J.; Perring, A. E.; Pollack, I. B.] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Beyersdorf, A. J.; Choi, Y.; Diskin, G. S.; Sachse, G.; Thornhill, K. L.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Blake, D. R.; Meinardi, S.; Simpson, I. J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Choi, Y.] Sci Syst & Applicat Inc, Hampton, VA USA. [St Clair, J. M.; Crounse, J. D.; Wennberg, P. O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [St Clair, J. M.; Hanisco, T. F.; Wolfe, G. M.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [St Clair, J. M.; Wolfe, G. M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD USA. [Fried, A.] Univ Colorado Boulder, Inst Arctic & Alpine Res, Boulder, CO USA. [Hall, S. R.; Ullmann, K.] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling Lab, POB 3000, Boulder, CO 80307 USA. [Mikoviny, T.; Wisthaler, A.] Univ Oslo, Dept Chem, Oslo, Norway. [Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Schwarz, J. P.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Boulder, CO USA. [Wennberg, P. O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. RP Huey, LG (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM greg.huey@eas.gatech.edu RI Peischl, Jeff/E-7454-2010; Yokelson, Robert/C-9971-2011; Perring, Anne/G-4597-2013; Wolfe, Glenn/D-5289-2011; Pollack, Ilana/F-9875-2012; Jimenez, Jose/A-5294-2008; schwarz, joshua/G-4556-2013; Crounse, John/C-3700-2014; Manager, CSD Publications/B-2789-2015 OI Peischl, Jeff/0000-0002-9320-7101; Yokelson, Robert/0000-0002-8415-6808; Perring, Anne/0000-0003-2231-7503; Jimenez, Jose/0000-0001-6203-1847; schwarz, joshua/0000-0002-9123-2223; Crounse, John/0000-0001-5443-729X; FU NASA [NNX12AB77G, NNX12AC06G, NNX14AP46G-ACCDAM]; NASA Earth Science Division [NNX12AC20G, NNX14AP45G]; National Institute of Aerospace (NIA); NASA SEAC4RS [NNH10ZDA001N]; [NNX12AC03G]; [NNX15AT96G] FX This work was supported by NASA grant NNX12AB77G. R. Yokelson was supported by NASA Earth Science Division Awards NNX12AC20G and NNX14AP45G. PTR-MS measurements during SEAC4RS were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). A.W. and T.M. received support from the Visiting Scientist Program at the National Institute of Aerospace (NIA). P.C.J., D.A.D., and J.L.J. were supported by NNX12AC03G and NNX15AT96G. CIT-CIMS measurements were supported by NASA grants NNX12AC06G and NNX14AP46G-ACCDAM. ISAF HCHO observations were supported by NASA SEAC4RS grant NNH10ZDA001N. The authors would also like to thank the SEAC4RS science team and the DC-8 flight crews. Data from the SEAC4RS mission can be found at http://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs and http://www-air.larc.nasa.gov/missions/seac4rs/index.html. NR 155 TC 2 Z9 2 U1 21 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7383 EP 7414 DI 10.1002/2016JD025040 PG 32 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800040 ER PT J AU Fried, A Barth, MC Bela, M Weibring, P Richter, D Walega, J Li, Y Pickering, K Apel, E Hornbrook, R Hills, A Riemer, DD Blake, N Blake, DR Schroeder, JR Luo, ZJ Crawford, JH Olson, J Rutledge, S Betten, D Biggerstaff, MI Diskin, GS Sachse, G Campos, T Flocke, F Weinheimer, A Cantrell, C Pollack, I Peischl, J Froyd, K Wisthaler, A Mikoviny, T Woods, S AF Fried, A. Barth, M. C. Bela, M. Weibring, P. Richter, D. Walega, J. Li, Y. Pickering, K. Apel, E. Hornbrook, R. Hills, A. Riemer, D. D. Blake, N. Blake, D. R. Schroeder, J. R. Luo, Z. J. Crawford, J. H. Olson, J. Rutledge, S. Betten, D. Biggerstaff, M. I. Diskin, G. S. Sachse, G. Campos, T. Flocke, F. Weinheimer, A. Cantrell, C. Pollack, I. Peischl, J. Froyd, K. Wisthaler, A. Mikoviny, T. Woods, S. TI Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012DC3 study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PEM-TROPICS-B; AIRBORNE MEASUREMENTS; TROPOPAUSE REGION; AIR-POLLUTION; MODEL; CHEMISTRY; OZONE; IMPACT; SCALE; SPECTROMETER AB We have developed semi-independent methods for determining CH2O scavenging efficiencies (SEs) during strong midlatitude convection over the western, south-central Great Plains, and southeastern regions of the United States during the 2012 Deep Convective Clouds and Chemistry (DC3) Study. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) was employed to simulate one DC3 case to provide an independent approach of estimating SEs and the opportunity to study CH2O retention in ice when liquid drops freeze. Measurements of CH2O instorminflow and outflow were acquired on board the NASA DC-8 and the NSF/National Center for Atmospheric Research Gulfstream V (GV) aircraft employing cross-calibrated infrared absorption spectrometers. This study also relied heavily on the nonreactive tracers i-/n-butane and i-/n-pentane measured on both aircraft in determining lateral entrainment rates during convection as well as their ratios to ensure that inflow and outflow air masses did not have different origins. Of the five storm cases studied, the various tracer measurements showed that the inflow and outflow from four storms were coherently related. The combined average of the various approaches from these storms yield remarkably consistent CH2O scavenging efficiency percentages of: 54% +/- 3% for 29 May; 54% +/- 6% for 6 June; 58% +/- 13% for 11 June; and 41 +/- 4% for 22 June. The WRF-Chem SE result of 53% for 29 May was achieved only when assuming complete CH2O degassing from ice. Further analysis indicated that proper selection of corresponding inflow and outflow time segments is more important than the particular mixing model employed. C1 [Fried, A.; Weibring, P.; Richter, D.; Walega, J.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Barth, M. C.; Apel, E.; Hornbrook, R.; Hills, A.; Campos, T.; Flocke, F.; Weinheimer, A.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Bela, M.; Cantrell, C.] Univ Colorado, Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Li, Y.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Pickering, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Riemer, D. D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Blake, N.; Blake, D. R.; Schroeder, J. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Luo, Z. J.] CUNY, City Coll New York, New York, NY 10021 USA. [Crawford, J. H.; Olson, J.; Diskin, G. S.; Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Rutledge, S.; Pollack, I.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Betten, D.; Biggerstaff, M. I.] Univ Oklahoma, Sch Meteorol, Natl Weather Ctr, Norman, OK 73019 USA. [Peischl, J.; Froyd, K.] NOAA, ESRL, Boulder, CO USA. [Peischl, J.; Froyd, K.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, Innsbruck, Austria. [Wisthaler, A.; Mikoviny, T.] Univ Oslo, Dept Chem, Oslo, Norway. [Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Woods, S.] SPEC Inc, Boulder, CO USA. RP Fried, A (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. EM Alan.Fried@colorado.edu RI Peischl, Jeff/E-7454-2010; Pickering, Kenneth/E-6274-2012; Pollack, Ilana/F-9875-2012; Manager, CSD Publications/B-2789-2015 OI Peischl, Jeff/0000-0002-9320-7101; FU National Science Foundation [1261559]; NASA [NNX12AM08G]; Earth Observing Laboratory (EOL) of NCAR; NSF; National Science Foundation; Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG) FX The lead author wishes to acknowledge funding for this work from the National Science Foundation under award 1261559 in 2013 and from NASA under award NNX12AM08G in 2012. Data from the DC3 field project can be found at http://data.eol.ucar.edu/master_list/?project=DC3. The aircraft data are also located at http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs. The authors gratefully acknowledge support from the Earth Observing Laboratory (EOL) of NCAR and the NSF for supporting the development of our GV CAMS instrument with internal funds, and Gary Granger of EOL for extensive software development and support on the CAMS instrument. The authors wish to thank the NASA DC-8 and NSF/NCAR GV pilots, staffs, and ground crews for their invaluable support both before and during DC3. Finally, Fried and his group wish to acknowledge Frank K. Tittel at Rice University for his efforts in helping us transform DFG technology from the laboratory to the real world. The National Center for Atmospheric Research is sponsored by the National Science Foundation. The PTR-MS measurements aboard the NASA DC-8 were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). Tomas Mikoviny was supported by an appointment to the NASA Postdoctoral Program at the Langley Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 65 TC 0 Z9 0 U1 6 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7430 EP 7460 DI 10.1002/2015JD024477 PG 31 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800042 ER PT J AU Nicely, JM Anderson, DC Canty, TP Salawitch, RJ Wolfe, GM Apel, EC Arnold, SR Atlas, EL Blake, NJ Bresch, JF Campos, TL Dickerson, RR Duncan, B Emmons, LK Evans, MJ Fernandez, RP Flemming, J Hall, SR Hanisco, TF Honomichl, SB Hornbrook, RS Huijnen, V Kaser, L Kinnison, DE Lamarque, JF Mao, JQ Monks, SA Montzka, DD Pan, LL Riemer, DD Saiz-Lopez, A Steenrod, SD Stell, MH Tilmes, S Turquety, S Ullmann, K Weinheimer, AJ AF Nicely, Julie M. Anderson, Daniel C. Canty, Timothy P. Salawitch, Ross J. Wolfe, Glenn M. Apel, Eric C. Arnold, Steve R. Atlas, Elliot L. Blake, Nicola J. Bresch, James F. Campos, Teresa L. Dickerson, Russell R. Duncan, Bryan Emmons, Louisa K. Evans, Mathew J. Fernandez, Rafael P. Flemming, Johannes Hall, Samuel R. Hanisco, Thomas F. Honomichl, Shawn B. Hornbrook, Rebecca S. Huijnen, Vincent Kaser, Lisa Kinnison, Douglas E. Lamarque, Jean-Francois Mao, Jingqiu Monks, Sarah A. Montzka, Denise D. Pan, Laura L. Riemer, Daniel D. Saiz-Lopez, Alfonso Steenrod, Stephen D. Stell, Meghan H. Tilmes, Simone Turquety, Solene Ullmann, Kirk Weinheimer, Andrew J. TI An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; BIOMASS BURNING POLLUTION; CHEMISTRY TRANSPORT MODEL; EXPLORATORY MISSION-WEST; EARTH SYSTEM MODEL; LOWER STRATOSPHERE; TROPOPAUSE LAYER; IN-SITU; ATMOSPHERIC CHEMISTRY; METHYL CHLOROFORM AB Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O-3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January-February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O-3 reasonably well, they underestimate NOx (NO + NO2) by a factor of 2, resulting in OHCOL similar to 30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January-February (C) 2014 observed levels of O-3 and NO were considerably larger than previously reported values in the TWP. C1 [Nicely, Julie M.; Salawitch, Ross J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Nicely, Julie M.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Anderson, Daniel C.; Canty, Timothy P.; Salawitch, Ross J.; Dickerson, Russell R.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Salawitch, Ross J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Wolfe, Glenn M.; Duncan, Bryan; Hanisco, Thomas F.; Steenrod, Stephen D.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Wolfe, Glenn M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Apel, Eric C.; Bresch, James F.; Campos, Teresa L.; Emmons, Louisa K.; Hall, Samuel R.; Honomichl, Shawn B.; Hornbrook, Rebecca S.; Kaser, Lisa; Kinnison, Douglas E.; Lamarque, Jean-Francois; Montzka, Denise D.; Pan, Laura L.; Stell, Meghan H.; Tilmes, Simone; Ullmann, Kirk; Weinheimer, Andrew J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Arnold, Steve R.; Monks, Sarah A.] Univ Leeds, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England. [Atlas, Elliot L.; Riemer, Daniel D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Dept Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Blake, Nicola J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Evans, Mathew J.] Univ York, Natl Ctr Atmospher Sci, York, N Yorkshire, England. [Evans, Mathew J.] Univ York, Dept Chem, York, N Yorkshire, England. [Fernandez, Rafael P.; Saiz-Lopez, Alfonso] CSIC, Inst Phys Chem Rocasolano, Dept Atmospher Chem & Climate, Madrid, Spain. [Evans, Mathew J.] Natl Res Council CONICET, Mendoza, Argentina. [Flemming, Johannes] European Ctr Medium Range Weather Forecasts, Reading, Berks, England. [Huijnen, Vincent] Royal Netherlands Meteorol Inst, De Bilt, Netherlands. [Mao, Jingqiu] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Mao, Jingqiu] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Monks, Sarah A.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Monks, Sarah A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Steenrod, Stephen D.] Univ Space Res Assoc, Columbia, MD USA. [Stell, Meghan H.] Metropolitan State Univ Denver, Denver, CO USA. [Turquety, Solene] Univ Paris 06, Univ Sorbonne, IPSL, Lab Meteorol Dynam, Paris, France. RP Nicely, JM (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.; Nicely, JM (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. EM julie.m.nicely@nasa.gov RI Dickerson, Russell/F-2857-2010; Saiz-Lopez, Alfonso/B-3759-2015; Nicely, Julie/E-3668-2016; Wolfe, Glenn/D-5289-2011; Mao, Jingqiu/F-2511-2010; Duncan, Bryan/A-5962-2011; Emmons, Louisa/R-8922-2016; Salawitch, Ross/B-4605-2009; Canty, Timothy/F-2631-2010; Anderson, Daniel/I-4398-2014; OI Huijnen, Vincent/0000-0002-2814-8475; Dickerson, Russell/0000-0003-0206-3083; Saiz-Lopez, Alfonso/0000-0002-0060-1581; Nicely, Julie/0000-0003-4828-0032; Mao, Jingqiu/0000-0002-4774-9751; Emmons, Louisa/0000-0003-2325-6212; Salawitch, Ross/0000-0001-8597-5832; Canty, Timothy/0000-0003-0618-056X; Anderson, Daniel/0000-0002-9826-9811; Arnold, Steve/0000-0002-4881-5685; MONKS, SARAH/0000-0003-3474-027X FU National Science Foundation; NASA Modeling and Analysis Program; NASA Upper Atmospheric Research Program [NNH12ZDA001N-UACO]; NOAA Climate Program Office [NA13OAR4310071] FX We thank T. Robinson and O. Shieh for providing meteorology forecasts in the field and the pilots and crew of the CONTRAST Gulfstream V aircraft for their dedication and professionalism. We thank the three anonymous reviewers for their constructive comments that improved this manuscript. CONTRAST was funded by the National Science Foundation. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Work conducted at the University of Maryland was supported, in part, by the NASA Modeling and Analysis Program. G.M.W., D.C.A., and T.F.H. received support for the NASA Upper Atmospheric Research Program under NNH12ZDA001N-UACO. JM acknowledges support from the NOAA Climate Program Office grant NA13OAR4310071. CONTRAST data are publicly available for all researchers and can be obtained at http://data.eol.ucar.edu/master_list/?project=CONTRAST. The CAM-Chem-SD and POLMIP model simulations are available upon request to the authors (julie.m.nicely@nasa.gov). NR 103 TC 2 Z9 2 U1 13 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2016 VL 121 IS 12 BP 7461 EP 7488 DI 10.1002/2016JD025067 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YU UT WOS:000381631800043 ER PT J AU Hoglund, L Ting, DZ Khoshakhlagh, A Soibel, A Fisher, A Hill, CJ Keo, S Rafol, S Gunapala, SD AF Hoglund, L. Ting, D. Z. Khoshakhlagh, A. Soibel, A. Fisher, A. Hill, C. J. Keo, S. Rafol, S. Gunapala, S. D. TI Influence of proton radiation on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices SO APPLIED PHYSICS LETTERS LA English DT Article AB Influence of proton radiation on the minority carrier lifetime and on carrier concentrations in InAs/InAsSb superlattices has been studied for radiation doses up to 300 krad. The lifetime decreased from 1.8 mu s down to 430 ns as the dose was increased. A variation of the carrier concentration in the range 1-2 x 10(15) with increasing radiation dose was observed. The lifetime drop was however mainly caused by added Shockley-Read-Hall defects in the material. The position of these Shockley-Read-Hall centers was estimated to similar to 60 meV below the conduction band edge from comparison between calculated and measured temperature dependencies of the minority carrier lifetime. Published by AIP Publishing. C1 [Hoglund, L.; Ting, D. Z.; Khoshakhlagh, A.; Soibel, A.; Fisher, A.; Hill, C. J.; Keo, S.; Rafol, S.; Gunapala, S. D.] CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Hoglund, L (reprint author), CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 9 TC 1 Z9 1 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 27 PY 2016 VL 108 IS 26 AR 263504 DI 10.1063/1.4954901 PG 4 WC Physics, Applied SC Physics GA DQ4MO UT WOS:000379178200046 ER PT J AU Haas, R Ott, CD Szilagyi, B Kaplan, JD Lippuner, J Scheel, MA Barkett, K Muhlberger, CD Dietrich, T Duez, MD Foucart, F Pfeiffer, HP Kidder, LE Teukolsky, SA AF Haas, Roland Ott, Christian D. Szilagyi, Bela Kaplan, Jeffrey D. Lippuner, Jonas Scheel, Mark A. Barkett, Kevin Muhlberger, Curran D. Dietrich, Tim Duez, Matthew D. Foucart, Francois Pfeiffer, Harald P. Kidder, Lawrence E. Teukolsky, Saul A. TI Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code SO PHYSICAL REVIEW D LA English DT Article ID ADAPTIVE MESH REFINEMENT; GRAVITATIONAL-RADIATION; GENERAL-RELATIVITY; COMPACT BINARIES; HYDRODYNAMICS; MERGERS; PERTURBATIONS; ALGORITHM; EQUATIONS; EFFICIENT AB We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for approximate to 22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent BAM code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC. C1 [Haas, Roland; Dietrich, Tim] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Muhlenberg 1, D-14476 Golm, Germany. [Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Ott, Christian D.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 606, Japan. [Szilagyi, Bela] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Muhlberger, Curran D.; Kidder, Lawrence E.; Teukolsky, Saul A.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Duez, Matthew D.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Foucart, Francois; Pfeiffer, Harald P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Foucart, Francois] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Haas, R (reprint author), Max Planck Inst Gravitat Phys, Albert Einstein Inst, Muhlenberg 1, D-14476 Golm, Germany. OI Lippuner, Jonas/0000-0002-5936-3485 FU NSF [PHY-1068881, PHY-1151197, PHY-1306125, PHY-1404569, PHY-1402916, AST-1205732, AST-1333129, AST-1333520]; Alfred P. Sloan Foundation; Max-Planck Society; Sherman Fairchild Foundation; International Research Unit of Advanced Future Studies, Kyoto University; NASA through Einstein Postdoctoral Fellowship Grant [PF4-150122]; Chandra X-ray Center; NASA [NAS803060]; NSF MRI [PHY-0960291, loni_numre107, TG-PHY990007N, TG-PHY100033] FX We acknowledge helpful discussions with Sebastiano Bernuzzi, Michael Boyle [123], Alessandra Buonanno, M. Brett Deaton, Sarah Gossan, Tanja Hinderer, Kenta Kiuchi, Luis Lehner, Geoffrey Lovelace, Maria Okounkova, David Radice, Jocelyn Read, Masaru Shibata, Nick Tacik, and members of our Simulating eXtreme Spacetimes (SXS) collaboration (http://www.black-holes.org). This research is partially supported by NSF Grants No. PHY-1068881, No. CAREER PHY-1151197, No. PHY-1306125, No. PHY-1404569, No. PHY-1402916, No. AST-1205732, No. AST-1333129, and No. AST-1333520; by the Alfred P. Sloan Foundation; by the Max-Planck Society; by the Sherman Fairchild Foundation; and by the International Research Unit of Advanced Future Studies, Kyoto University. Support for F.F. was provided by NASA through Einstein Postdoctoral Fellowship Grant No. PF4-150122 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS803060. The simulations were performed on the Caltech compute cluster Zwicky (NSF MRI Grant No. PHY-0960291), on the Datura cluster of the AEI, on machines of the Louisiana Optical Network Initiative under Grant No. loni_numre107, and on Stampede at TACC under NSF XSEDE allocations No. TG-PHY990007N and No. TG-PHY100033. All 2D graphs were generated with the PYTHON-based MATPLOTLIB [124] and IPYTHON [125] packages. VISIT [126,127] was used for 3D and 2D sliced plots. This paper has been assigned Yukawa Institute for Theoretical Physics Report No. YITP-16-39. NR 134 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 24 PY 2016 VL 93 IS 12 AR 124062 DI 10.1103/PhysRevD.93.124062 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DP3ET UT WOS:000378376200005 ER PT J AU Leo, JP Minello, TJ Grant, WE Wang, HH AF Leo, Jennifer P. Minello, Thomas J. Grant, William E. Wang, Hsiao-Hsuan TI Simulating environmental effects on brown shrimp production in the northern Gulf of Mexico SO ECOLOGICAL MODELLING LA English DT Article DE Brown shrimp; Farfantepenaeus aztecus; Individual-based model; ODD protocol ID PENAEUS-AZTECUS IVES; TEXAS SALT-MARSH; POSTLARVAL BROWN; GALVESTON BAY; FARFANTEPENAEUS-AZTECUS; WHITE SHRIMP; LITOPENAEUS-SETIFERUS; DECAPOD CRUSTACEANS; NEKTON USE; ESTUARINE AB Brown shrimp (Farfantepenaeus aztecus) support a commercially important fishery in the northern Gulf of Mexico, and juveniles use coastal estuaries as nurseries. Production of young shrimp from any given bay system, and hence commercial harvest of sub-adults and adults from the Gulf, is highly variable from year to year. We describe development of a spatially-explicit, individual-based model representing the cumulative effects of temperature, salinity, and access to emergent marsh vegetation on the growth and survival of young brown shrimp, and we use the model to simulate shrimp production from Galveston Bay, Texas, U.S.A. under environmental conditions representative of those observed from 1983 to 2012. Simulated mean annual (January through August) production ranged from 27.5 kg ha(-1) to 43.5 kg ha(-1) with an overall mean of 34.3 kg ha(-1) (0.70 kg ha(-1) SE). Sensitivity analyses included changing values of key model parameters by +/- 10% relative to baseline. Increasing growth rates 10% caused a 16% increase in production, whereas a 10% decrease resulted in an 18% decrease in production. A 10% increase in mortality probabilities resulted in a production decrease of 15% while a 10% decrease resulted in an 18% increase in production. We also changed values of environmental input data by 10%. Mean production estimates increased 11% in response to increasing tide heights (and thus, marsh habitat access) and decreased 19% with a decrease in tide height (and marsh access). The thirty year mean production was affected negatively by both the 10% increase and decrease in air temperature (-2% and -14%, respectively). Simulations in which bay water salinities were entirely low (0-10 PSU), intermediate (10-20 PSU), or high (>20 PSU) resulted in mean baseline production rates being reduced by 55, 7, and 0%, respectively. Uncertainty in model estimates of shrimp production were related to the magnitude and the timing of postlarval shrimp recruitment to the bay system. Simulations indicated that mean production decreased when recruitment occurred earlier in the year under all environmental conditions. Mean production varied with environmental conditions, however, when recruitment was delayed. The model reproduced biomass and size distribution patterns observed in field data. Although annual variability of modeled shrimp production did not correlate well (R-2 = 0.005) with fisheries independent trawl data from Galveston Bay, there was a significant correlation with similar trawl data collected in the northern Gulf of Mexico (R-2 = 0.40; p = 0.0005). Identifying and representing spatially variable factors such as predator distribution and abundance among bays, therefore, may be the key to understanding bay-specific contributions to the adult stock. Published by Elsevier B.V. C1 [Leo, Jennifer P.; Minello, Thomas J.] Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, 4700 Ave U, Galveston, TX 77550 USA. [Leo, Jennifer P.; Grant, William E.; Wang, Hsiao-Hsuan] Texas A&M Univ, Dept Wildlife & Fisheries, College Stn, TX 77843 USA. RP Leo, JP (reprint author), Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, 4700 Ave U, Galveston, TX 77550 USA. EM jennifer.leo@noaa.gov FU NOAA Office of Science and Technology [11-006] FX This research was conducted through the NOAA National Marine Fisheries Service, Southeast Fisheries Science Center by personnel from the Fishery Ecology Branch (FEB) at the Galveston Laboratory. The assistance of everyone in the FEB was essential for the successful completion of this project. The model was developed with Habitat Assessment Improvement Plan funding from the NOAA Office of Science and Technology (Project # 11-006). We would like to acknowledge Dan Childers and Jenny Cutler for early work on a similar model. Salinity data from the TxBLEND model was provided by Carla Guthrie and Joe Trungale. The GIS analysis was performed by Philip A. Caldwell. Glenn Sutton and Harmon Brown provided shrimp abundance data from the Texas Parks and Wildlife Department trawl surveys. Rick Hart provided SEAMAP nominal data and brown shrimp abundance indices for the Gulf of Mexico. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of NOAA. NR 81 TC 0 Z9 0 U1 9 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD JUN 24 PY 2016 VL 330 BP 24 EP 40 DI 10.1016/j.ecolmodel.2016.02.017 PG 17 WC Ecology SC Environmental Sciences & Ecology GA DL7MJ UT WOS:000375824500003 ER PT J AU Lee, S Xu, HF AF Lee, Seungyeol Xu, Huifang TI Size-Dependent Phase Map and Phase Transformation Kinetics for Nanometric Iron(III) Oxides (gamma -> epsilon -> alpha Pathway) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-POWDER DIFFRACTION; GIANT COERCIVE FIELD; MAGNETIC-PROPERTIES; IRON-OXIDES; IN-SITU; CRYSTAL-STRUCTURE; WAVE ABSORBER; GAMMA-FE2O3; TEMPERATURE; NANOPARTICLES AB Nanometric iron(III) oxide has been of great interest in a wide range of fields due to its magnetic properties, eminent biochemical characteristics, and potential for technological applications. Among iron oxides, epsilon-Fe2O3 is considered as a remarkable phase due to its giant coercive field at room temperature and ferromagnetic resonance capability. Here we present the first size dependent phase map for epsilon-Fe2O3 via a gamma -> epsilon -> alpha pathway together with the activation energies for the phase transformations, based on X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). HRTEM images of epsilon-Fe2O3 nanocrystals show both inversion and pseudohexagonal twins, which are fundamentally important for understanding the correlation between its nanostructure and magnetic properties. Two activation energies for gamma-Fe2O3 -> alpha-Fe2O3 phase transformations are 186.37 +/- 9.89 and 174.58 +/- 2.24 kJ mol(-1), respectively. The results provide useful information about the size, crystal structure, and transformation of the nanometric iron oxide polymorphs for applications in areas of developing engineered materials. C1 [Lee, Seungyeol; Xu, Huifang] Univ Wisconsin, Dept Geosci, NASA, Astrobiol Inst, Madison, WI 53706 USA. RP Xu, HF (reprint author), Univ Wisconsin, Dept Geosci, NASA, Astrobiol Inst, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu FU NASA Astrobiology Institute [N07-5489] FX This study was supported by the NASA Astrobiology Institute (N07-5489). The authors thank Mr. Franklin Hobbs for reading the manuscript and two anonymous reviewers for providing many helpful suggestions. NR 36 TC 3 Z9 3 U1 9 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 23 PY 2016 VL 120 IS 24 BP 13316 EP 13322 DI 10.1021/acs.jpcc.6b05287 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DP7FE UT WOS:000378663800041 ER PT J AU Adrian-Martinez, S Albert, A Andre, M Anghinolfi, M Anton, G Ardid, M Aubert, JJ Avgitas, T Baret, B Barrios-Marti, J Basa, S Bertin, V Biagi, S Bormuth, R Bouwhuis, MC Bruijn, R Brunner, J Busto, J Capone, A Caramete, L Carr, J Celli, S Chiarusi, T Circella, M Coleiro, A Coniglione, R Costantini, H Coyle, P Creusot, A Deschamps, A De Bonis, G Distefano, C Donzaud, C Dornic, D Drouhin, D Eberl, T El Bojaddaini, I Elsasser, D Enzenhofer, A Fehn, K Felis, I Fusco, LA Galata, S Gay, P Geisselsoder, S Geyer, K Giordano, V Gleixner, A Glotin, H Gracia-Ruiz, R Graf, K Hallmann, S van Haren, H Heijboer, AJ Hello, Y Hernandez-Rey, JJ Hossl, J Hofestadt, J Hugon, C Illuminati, G James, CW de Jong, M Jongen, M Kadler, M Kalekin, O Katz, U Kiessling, D Kouchner, A Kreter, M Kreykenbohm, I Kulikovskiy, V Lachaud, C Lahmann, R Lefevre, D Leonora, E Loucatos, S Marcelin, M Margiotta, A Marinelli, A Martinez-Mora, JA Mathieu, A Melis, K Michael, T Migliozzi, P Moussa, A Mueller, C Nezri, E Pavalas, GE Pellegrino, C Perrina, C Piattelli, P Popa, V Pradier, T Racca, C Riccobene, G Roensch, K Saldana, M Samtleben, DFE Sanchez-Losa, A Sanguineti, M Sapienza, P Schnabel, J Schussler, F Seitz, T Sieger, C Spurio, M Stolarczyk, T Taiuti, M Trovato, A Tselengidou, M Turpin, D Tonnis, C Vallage, B Vallee, C Van Elewyck, V Vivolo, D Wagner, S Wilms, J Zornoza, JD Zuniga, J Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Ansseau, I Anton, G Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, GH Conrad, JM Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC di Lorenzo, V Dujmovic, H Dumm, JP Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Flis, S Fosig, CC Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glagla, M Gluesenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hansmann, T Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jones, BJP Jurkovic, M Kappes, A Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kim, M Kintscher, T Kiryluk, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kruckl, G Kunnen, J Kunwar, S Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lennarz, D Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mandelartz, M Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meier, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Paul, L Pepper, JA Heros, CPDL Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Schimp, M Schlunder, P Schmidt, T Schoenen, S Schoneberg, S Schonwald, A Schumacher, L Seckel, D Seunarine, S Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Wiebe, K Wiebusch, CH Wille, L Williams, DR Wills, L Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Belczynski, C Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, RT De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Adrian-Martinez, S. Albert, A. Andre, M. Anghinolfi, M. Anton, G. Ardid, M. Aubert, J-J. Avgitas, T. Baret, B. Barrios-Marti, J. Basa, S. Bertin, V. Biagi, S. Bormuth, R. Bouwhuis, M. C. Bruijn, R. Brunner, J. Busto, J. Capone, A. Caramete, L. Carr, J. Celli, S. Chiarusi, T. Circella, M. Coleiro, A. Coniglione, R. Costantini, H. Coyle, P. Creusot, A. Deschamps, A. De Bonis, G. Distefano, C. Donzaud, C. Dornic, D. Drouhin, D. Eberl, T. El Bojaddaini, I. Elsaesser, D. Enzenhoefer, A. Fehn, K. Felis, I. Fusco, L. A. Galata, S. Gay, P. Geisselsoeder, S. Geyer, K. Giordano, V. Gleixner, A. Glotin, H. Gracia-Ruiz, R. Graf, K. Hallmann, S. van Haren, H. Heijboer, A. J. Hello, Y. Hernandez-Rey, J. J. Hoessl, J. Hofestaedt, J. Hugon, C. Illuminati, G. James, C. W. de Jong, M. Jongen, M. Kadler, M. Kalekin, O. Katz, U. Kiessling, D. Kouchner, A. Kreter, M. Kreykenbohm, I. Kulikovskiy, V. Lachaud, C. Lahmann, R. Lefevre, D. Leonora, E. Loucatos, S. Marcelin, M. Margiotta, A. Marinelli, A. Martinez-Mora, J. A. Mathieu, A. Melis, K. Michael, T. Migliozzi, P. Moussa, A. Mueller, C. Nezri, E. Pavalas, G. E. Pellegrino, C. Perrina, C. Piattelli, P. Popa, V. Pradier, T. Racca, C. Riccobene, G. Roensch, K. Saldana, M. Samtleben, D. F. E. Sanchez-Losa, A. Sanguineti, M. Sapienza, P. Schnabel, J. Schuessler, F. Seitz, T. Sieger, C. Spurio, M. Stolarczyk, Th Taiuti, M. Trovato, A. Tselengidou, M. Turpin, D. Toennis, C. Vallage, B. Vallee, C. Van Elewyck, V. Vivolo, D. Wagner, S. Wilms, J. Zornoza, J. D. Zuniga, J. Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Ansseau, I. Anton, G. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K-H. Beiser, E. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H-P. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Collin, G. H. Conrad, J. M. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Rosendo, E. del Pino Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. di Lorenzo, V. Dujmovic, H. Dumm, J. P. Dunkman, M. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Flis, S. Foesig, C-C. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hansmann, T. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jones, B. J. P. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Katz, U. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kim, M. Kintscher, T. Kiryluk, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Krueckl, G. Kunnen, J. Kunwar, S. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lennarz, D. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Luenemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mandelartz, M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meier, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Sabbatini, L. Sander, H-G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Schimp, M. Schlunder, P. Schmidt, T. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schumacher, L. Seckel, D. Seunarine, S. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Stroem, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch Wendt, C. Westerhoff, S. Whelan, B. J. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wills, L. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Casanueva Diaz, J. Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Cerboni Baiardi, L. Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P-F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J-P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. T. De Rosa, R. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H-B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J-D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez Castro, J. M. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C-J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J-M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y-M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toeyrae, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J-Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L-W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J-P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA ANTARES Collaboration IceCube Collaboration LIGO Sci Collaboration Virgo Collaboration TI High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube SO PHYSICAL REVIEW D LA English DT Article ID GAMMA-RAY BURSTS; DATA-ACQUISITION SYSTEM; POINT-LIKE; TELESCOPE; TRANSIENTS; ASTRONOMY AB We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and ANTARES neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within +/- 500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and ANTARES were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event. C1 [Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain. [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France. [Andre, M.] Tech Univ Catalonia, Lab Appl Bioacoust, Barcelona 08800, Spain. Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C. W.; Kalekin, O.; Kiessling, D.; Lahmann, R.; Roensch, K.; Schnabel, J.; Seitz, T.; Sieger, C.; Wagner, S.; Altmann, D.; Classen, L.; Kappes, A.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Aubert, J-J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Turpin, D.; Vallee, C.] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Avgitas, T.; Baret, B.; Coleiro, A.; Creusot, A.; Donzaud, C.; Galata, S.; Gay, P.; Gracia-Ruiz, R.; Kouchner, A.; Lachaud, C.; Vallage, B.; Van Elewyck, V.; Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, CEA IRFU,CNRS IN2P3,APC, F-75205 Paris 13, France. [Barrios-Marti, J.; Hernandez-Rey, J. J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, Valencia 46980, Spain. [Basa, S.; Marcelin, M.; Nezri, E.] Pole Etoile Site Chateau Gombert, LAM, Rue Frederic Joliot Curie 38, F-13388 Marseille 13, France. [Biagi, S.; Coniglione, R.; Distefano, C.; Kulikovskiy, V.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.] Ist Nazl Fis Nucl, LNS, Via S Sofia 62, I-95123 Catania, Italy. [Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Heijboer, A. J.; de Jong, M.; Jongen, M.; Michael, T.; Samtleben, D. F. E.] Nikhef, Sci Pk, Amsterdam, Netherlands. [Bormuth, R.; de Jong, M.; Samtleben, D. F. E.] Leiden Univ, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Bruijn, R.; Melis, K.] Univ Amsterdam, Inst Voor Hoge Energie Fys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. [Capone, A.; Celli, S.; De Bonis, G.; Illuminati, G.; Perrina, C.] Ist Nazl Fis Nucl, Sez Roma, Ple Aldo Moro 2, I-00185 Rome, Italy. [Capone, A.; Celli, S.; De Bonis, G.; Illuminati, G.; Perrina, C.] Univ Roma La Sapienza, Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy. [Caramete, L.; Pavalas, G. E.; Popa, V.] Inst Space Sci, RO-077125 Bucharest, Magurele, Romania. [Celli, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale Francesco Crispi 7, I-67100 Laquila, Italy. [Chiarusi, T.; Fusco, L. A.; Margiotta, A.; Pellegrino, C.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Circella, M.] Ist Nazl Fis Nucl, Sez Bari, Via E Orabona 4, I-70126 Bari, Italy. [Deschamps, A.; Hello, Y.] UCA, CNRS, IRD, Observ Cote Azur,Geoazur, Sophia Antipolis, France. [Donzaud, C.] Univ Paris 11, F-91405 Orsay, France. [El Bojaddaini, I.; Moussa, A.] Univ Mohammed 1, Lab Phys Matter & Radiat, BP 717, Oujda 6000, Morocco. [Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Fischer Str 31, D-97074 Wurzburg, Germany. [Fusco, L. A.; Margiotta, A.; Pellegrino, C.; Spurio, M.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Gay, P.] Univ Clermont Ferrand, Clermont Univ, CNRS, IN2P3,Lab Phys Corpusculaire, BP 10448, F-63000 Clermont Ferrand, France. [Giordano, V.; Leonora, E.] Ist Nazl Fis Nucl, Sez Catania, Viale Andrea Doria 64, I-95125 Catania, Italy. [Glotin, H.] Aix Marseille Univ, CNRS, ENSAM, LSIS,UMR 7296, F-13397 Marseille, France. [Glotin, H.] Univ Toulon & Var, CNRS, LSIS, UMR 7296, F-83957 La Garde, France. [Glotin, H.; Kouchner, A.] Inst Univ France, F-75005 Paris, France. [van Haren, H.] Royal Netherlands Inst Sea Res NIOZ, Landsdiep 4, NL-1797 SZ Thorntje, Texel, Netherlands. [Hugon, C.; Sanguineti, M.; Taiuti, M.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. [Kreykenbohm, I.; Wilms, J.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany. [Kreykenbohm, I.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Kulikovskiy, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Lefevre, D.] Aix Marseille Univ, MIO, F-13288 Marseille 9, France. [Lefevre, D.] Univ Sud Toulon Var, F-83957 La Garde, France. [Lefevre, D.] CNRS, INSU IRD, UM 110, Paris, France. [Loucatos, S.; Schuessler, F.; Stolarczyk, Th; Vallage, B.] CEA Saclay, Serv Phys Particules, Inst Rech Lois Fondament Univers, Direct Rech Fondamentale, F-91191 Gif Sur Yvette, France. [Marinelli, A.] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy. [Marinelli, A.] Univ Pisa, Dipartimento Fis, Largo B Pontecorvo 3, I-56127 Pisa, Italy. [Migliozzi, P.; Vivolo, D.] Ist Nazl Fis Nucl, Sez Napoli, Via Cintia, I-80126 Naples, Italy. [Pradier, T.] Univ Strasbourg, IPHC, 23 Rue Loess, F-67037 Strasbourg, France. [Pradier, T.] CNRS, UMR7178, F-67037 Strasbourg, France. [Sanchez-Losa, A.] Ist Nazl Fis Nucl, Sez Bari, Via E Orabona 4, I-70126 Bari, Italy. [Vivolo, D.] Univ Naples Federico II, Dipartimento Fis, Via Cintia, Naples, Italy. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.; Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H-P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kintscher, T.; Kowalski, M.; Kunwar, S.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.] DESY, D-15735 Zeuthen, Germany. [Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch, New Zealand. [Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Fac Sci, CP230, B-1050 Brussels, Belgium. [Ahlers, M.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C-C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H-G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Arguelles, C.; Collin, G. H.; Conrad, J. M.; Jones, B. J. P.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K-H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [BenZvi, S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.; Tatar, J.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Bose, D.; Dujmovic, H.; In, S.; Jeong, M.; Kim, M.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Luenemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Lennarz, D.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pankova, D. V.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pankova, D. V.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Fazely, A. R.; Ter-Antonyan, S.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Homeier, A.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Kurahashi, N.; Richman, M.; Wills, L.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torres, C. V.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Diaz, M. C.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H-B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez Castro, J. M.; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez Castro, J. M.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Casanueva Diaz, J.; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, IN2P3,LAL, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J-P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C-J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toeyrae, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, MP, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P.; Dereli, H.; Fournier, J-D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y.; Wei, L-W.] Univ Cote Azur, Artemis, CNRS, Observ Cote Azur, CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Cerboni Baiardi, L.; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Cerboni Baiardi, L.; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P-F.; Deleglise, S.; Heidmann, A.; Isac, J-M.; Jacqmin, T.] UPMC, Univ Paris 04, ENS PSL Res Univ, Coll France,CNRS,Lab Kastler Brossel, F-75005 Paris, France. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, Inst Lumiere Matiere, UMR CNRS 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Lyon, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3 IEEC, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Ott, C. D.; Schmidt, P.; Thorne, K. S.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, IL 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y-M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Adrian-Martinez, S (reprint author), Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain. RI Katz, Uli/E-1925-2013; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; zhou, hua/A-6862-2017; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Wiebusch, Christopher/G-6490-2012; Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; James, Clancy/G-9178-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Marchesoni, Fabio/A-1920-2008; Strigin, Sergey/I-8337-2012; McClelland, David/E-6765-2010; Beatty, James/D-9310-2011; Schussler, Fabian/G-5313-2013; Hernandez-Rey, Juan Jose/N-5955-2014; Caramete, Laurentiu/C-2328-2011; Losurdo, Giovanni/K-1241-2014; Iyer, Bala R./E-2894-2012; Physics, Komet/C-9533-2016; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Rocchi, Alessio/O-9499-2015; Gemme, Gianluca/C-7233-2008; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; prodi, giovanni/B-4398-2010; Maruyama, Reina/A-1064-2013; Ciani, Giacomo/G-1036-2011; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Anton, Gisela/C-4840-2013; Garufi, Fabio/K-3263-2015; Groot, Paul/K-4391-2016; Zhu, Xingjiang/E-1501-2016; Wilms, Joern/C-8116-2013; Costa, Cesar/G-7588-2012; Strain, Kenneth/D-5236-2011; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Tjus, Julia/G-8145-2012; Conti, Livia/F-8565-2013; Capone, Antonio/F-1098-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Migliozzi, Pasquale/I-6427-2015; Zuniga, Juan/P-4385-2014; Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; OI Nelemans, Gijs/0000-0002-0752-2974; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Fusco, Luigi Antonio/0000-0001-8254-3372; Berry, Christopher/0000-0003-3870-7215; Piccinni, Ornella Juliana/0000-0001-5478-3950; Kadler, Matthias/0000-0001-5606-6154; Katz, Uli/0000-0002-7063-4418; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; James, Clancy/0000-0002-6437-6176; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Marchesoni, Fabio/0000-0001-9240-6793; McClelland, David/0000-0001-6210-5842; Beatty, James/0000-0003-0481-4952; Schussler, Fabian/0000-0003-1500-6571; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Biagi, Simone/0000-0001-8598-0017; Sanguineti, Matteo/0000-0002-7206-2097; Sanchez Losa, Agustin/0000-0001-9596-7078; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Rocchi, Alessio/0000-0002-1382-9016; Gemme, Gianluca/0000-0002-1127-7406; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; prodi, giovanni/0000-0001-5256-915X; Maruyama, Reina/0000-0003-2794-512X; Ciani, Giacomo/0000-0003-4258-9338; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Anton, Gisela/0000-0003-2039-4724; Garufi, Fabio/0000-0003-1391-6168; Boschi, Valerio/0000-0001-8665-2293; Papa, M.Alessandra/0000-0002-1007-5298; Perez de los Heros, Carlos/0000-0002-2084-5866; Guidi, Gianluca/0000-0002-3061-9870; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Groot, Paul/0000-0002-4488-726X; Zhu, Xingjiang/0000-0001-7049-6468; Wilms, Joern/0000-0003-2065-5410; Strain, Kenneth/0000-0002-2066-5355; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078; Conti, Livia/0000-0003-2731-2656; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Migliozzi, Pasquale/0000-0001-5497-3594; Zuniga, Juan/0000-0002-1041-6451; Sigg, Daniel/0000-0003-4606-6526; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Vocca, Helios/0000-0002-1200-3917; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517 FU Centre National de la Recherche Scientifique (CNRS); Commissariat a l'energie atomique et aux energies alternatives (CEA); Commission Europeenne (FEDER); Institut Universitaire de France (IUF); IdEx program; UnivEarthS Labex program at Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; Region Ile-de-France (DIM-ACAV); Region Alsace; Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO); Generalitat Valenciana; MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco; U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Natural Sciences and Engineering Research Council of Canada; WestGrid; Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF); United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Netherlands Organisation for Scientific Research; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat; Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation FX The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO), Prometeo and Grisolia programs of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council.; The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has LIGO document number LIGO-P1500271. NR 64 TC 19 Z9 19 U1 33 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 23 PY 2016 VL 93 IS 12 AR 122010 DI 10.1103/PhysRevD.93.122010 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DP2HE UT WOS:000378308200001 ER PT J AU Pan, YD Schimel, D AF Pan, Yude Schimel, David TI BIOGEOCHEMISTRY Synergy of a warm spring and dry summer SO NATURE LA English DT Editorial Material AB An analysis suggests that high carbon uptake by US land ecosystems during the warm spring of 2012 offset the carbon loss that resulted from severe drought over the summer - and hints that the warm spring could have worsened the drought. C1 [Pan, Yude] US Forest Serv, Res Unit Climate Fire & Carbon Cycle Sci, USDA, Newtown Sq, PA 19073 USA. [Schimel, David] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Pan, YD (reprint author), US Forest Serv, Res Unit Climate Fire & Carbon Cycle Sci, USDA, Newtown Sq, PA 19073 USA. EM ypan@fs.fed.us NR 6 TC 0 Z9 0 U1 6 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 23 PY 2016 VL 534 IS 7608 BP 483 EP 484 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DP1SS UT WOS:000378270300039 PM 27309806 ER PT J AU Feldman, MR Anderson, JD Schubert, G Trimble, V Kopeikin, SM Lammerzahl, C AF Feldman, Michael R. Anderson, John D. Schubert, Gerald Trimble, Virginia Kopeikin, Sergei M. Laemmerzahl, Claus TI Deep space experiment to measure G SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE experimental studies of gravity; gravitational constant; gravity train; numerical simulation ID GENERAL-RELATIVITY; CONSTANT; FORCE; ATOMS; LASER; EARTH; MASS AB Responding to calls from the National Science Foundation for new proposals to measure the gravitational constant G, we offer an interesting experiment in deep space employing the classic gravity train mechanism. Our setup requires three bodies: a larger layered solid sphere with a cylindrical hole through its center, a much smaller retroreflector which will undergo harmonic motion within the hole and a host spacecraft with laser ranging capabilities to measure round trip light-times to the retroreflector but ultimately separated a significant distance away from the sphere-retroreflector apparatus. Measurements of the period of oscillation of the retroreflector in terms of host spacecraft clock time using existing technology could give determinations of G nearly three orders of magnitude more accurate than current measurements here on Earth. However, significant engineering advances in the release mechanism of the apparatus from the host spacecraft will likely be necessary. Issues with regard to the stability of the system are briefly addressed. C1 [Feldman, Michael R.] MY Labs Inc, West Hollywood, CA 90046 USA. [Anderson, John D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Schubert, Gerald] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Trimble, Virginia] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Kopeikin, Sergei M.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Laemmerzahl, Claus] Univ Bremen, ZARM, D-28359 Bremen, Germany. RP Feldman, MR (reprint author), MY Labs Inc, West Hollywood, CA 90046 USA. EM mrf@m--y.us; jdalya2@gmail.com; schubert@ucla.edu; vtrimble@astro.umd.edu; kopeikins@missouri.edu; claus.laemmerzahl@zarm.uni-bremen.de RI Laemmerzahl, Claus/P-3552-2016; OI Laemmerzahl, Claus/0000-0002-8276-5415; Feldman, Michael/0000-0003-1567-9725 NR 46 TC 1 Z9 1 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 23 PY 2016 VL 33 IS 12 AR 125013 DI 10.1088/0264-9381/33/12/125013 PG 12 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DO0QA UT WOS:000377482200014 ER PT J AU Miller, SAE AF Miller, Steven A. E. TI Broadband shock-associated noise near-field cross-spectra SO JOURNAL OF SOUND AND VIBRATION LA English DT Article DE Broadband; Jet; Shock; Noise; Spectra; Near-field ID EXPANDED SUPERSONIC JETS; MODEL; PREDICTION AB The cross-spectral acoustic analogy is used to predict auto-spectra and cross-spectra of broadband shock-associated noise in the near-field and far-field from a range of heated and unheated supersonic off-design jets. A single equivalent source model is proposed for the near-field, mid-field, and far-field terms, that contains flow-field statistics of the shock wave shear layer interactions. Flow-field statistics are modeled based upon experimental observation and computational fluid dynamics solutions. An axisymmetric assumption is used to reduce the model to a closed-form equation involving a double summation over the equivalent source at each shock wave shear layer interaction. Predictions are compared with a wide variety of measurements at numerous jet Mach numbers and temperature ratios from multiple facilities. Auto-spectral predictions of broadband shock associated noise in the near-field and far-field capture trends observed in measurement and other prediction theories. Predictions of spatial coherence of broadband shock associated noise accurately capture the peak coherent intensity, frequency, and spectral width. Published by Elsevier Ltd. C1 [Miller, Steven A. E.] Natl Aeronaut & Space Adm, Langley Res Ctr, Aeroacoust Branch, 2 N Dryden St MS 461, Hampton, VA 23681 USA. RP Miller, SAE (reprint author), Natl Aeronaut & Space Adm, Langley Res Ctr, Aeroacoust Branch, 2 N Dryden St MS 461, Hampton, VA 23681 USA. EM s.miller@nasa.gov FU National Aeronautics and Space Administration (NASA), Advanced Air Vehicles Program, Commercial Supersonic Technology Project FX The author is grateful for continuous support from the National Aeronautics and Space Administration (NASA), Advanced Air Vehicles Program, Commercial Supersonic Technology Project. This research is possible due to the availability of measurement data from Alessandro Savarese of The Airbus Group, James Bridges of NASA Glenn Research Center, and Krishnamurthy Viswanathan of The Boeing Company. Alessandro Savarese is most gracious by providing tailored near-field measurements to the author. NR 36 TC 0 Z9 0 U1 2 U2 4 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD JUN 23 PY 2016 VL 372 BP 82 EP 104 DI 10.1016/j.jsv.2016.01.048 PG 23 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA DI0OL UT WOS:000373196300005 ER PT J AU Elsila, JE Aponte, JC Blackmond, DG Burton, AS Dworkin, JP Glavin, DP AF Elsila, Jamie E. Aponte, Jose C. Blackmond, Donna G. Burton, Aaron S. Dworkin, Jason P. Glavin, Daniel P. TI Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories SO ACS CENTRAL SCIENCE LA English DT Article ID CIRCULARLY-POLARIZED LIGHT; INTERSTELLAR ICE ANALOGS; TAGISH LAKE METEORITE; EARLY SOLAR SYSTEM; COMPOUND-SPECIFIC CARBON; MURCHISON METEORITE; ORGANIC-MATTER; ENANTIOMERIC EXCESSES; MASS-SPECTROMETRY; ALIPHATIC-AMINES AB The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large L-enantiomeric excesses of some extraterrestrial protein amino acids (up to similar to 60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. C1 [Elsila, Jamie E.; Aponte, Jose C.; Dworkin, Jason P.; Glavin, Daniel P.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Aponte, Jose C.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Blackmond, Donna G.] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA. [Burton, Aaron S.] NASA, Astromat Res & Explorat Sci Div, Johnson Space Ctr, Houston, TX 77058 USA. RP Elsila, JE (reprint author), NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Jamie.Elsila@nasa.gov RI Dworkin, Jason/C-9417-2012; OI Dworkin, Jason/0000-0002-3961-8997; Glavin, Daniel/0000-0001-7779-7765 FU NIAID NIH HHS [R43 AI070032] NR 113 TC 1 Z9 1 U1 16 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD JUN 22 PY 2016 VL 2 IS 6 BP 370 EP 379 DI 10.1021/acscentsci.6b00074 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA DP7OZ UT WOS:000378690000005 PM 27413780 ER PT J AU Che, HH AF Che, Haihong TI Electron two-stream instability and its application in solar and heliophysics SO MODERN PHYSICS LETTERS A LA English DT Review DE Beam instability; nonlinear effects; heating and emission ID NONLINEAR PLASMA-OSCILLATIONS; LANGMUIR WAVE-PACKETS; III RADIO-BURSTS; MAGNETIC-FIELDS; PARTICLE-ACCELERATION; CORONAL LOOPS; WIND STREAMS; TURBULENCE; COLLAPSE; EMISSION AB It is well known that electron beams accelerated in solar flares can drive two-stream instability and produce radio bursts in the solar corona as well as in the interplanetary medium. Recent observations show that the solar wind likely originates from nanoflare-like events near the surface of the Sun where locally heated plasma escapes along open field lines into space. Recent numerical simulations and theoretical studies show that electron two-stream instability (ETSI) driven by nanoflare-accelerated electron beams can produce the observed nanoflare-type radio bursts, the non-Maxwellian electron velocity distribution function of the solar wind, and the kinetic scale turbulence in solar wind. This brief review focus on the basic theoretical framework and recent progress in the nonlinear evolution of ETSI driven by electron beams, including the formation of electron holes, Langmuir wave generation in warm plasma, and the nonlinear modulation instability and Langmuir collapse. Potential applications in heliophysics and astrophysics are discussed. C1 [Che, Haihong] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Che, Haihong] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. RP Che, HH (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Che, HH (reprint author), NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. EM hche@umd.edu NR 112 TC 1 Z9 1 U1 5 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 EI 1793-6632 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD JUN 21 PY 2016 VL 31 IS 19 AR 1630018 DI 10.1142/S0217732316300184 PG 20 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA DQ3ZY UT WOS:000379143800001 ER PT J AU Lee, HJ Chatfield, RB Strawa, AW AF Lee, Hyung Joo Chatfield, Robert B. Strawa, Anthony W. TI Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID AEROSOL OPTICAL DEPTH; GROUND-LEVEL PM2.5; PARTICULATE MATTER CONCENTRATIONS; ABSOLUTE ERROR MAE; BLACK CARBON; FINE; RETRIEVALS; VARIABILITY; MODELS; POLLUTION AB We estimated daily ground-level PM2.5 concentrations combining Collection 6 deep blue (DB) Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) data (10 km resolution) with land use regression in California, United States, for the period 2006-2012. The Collection 6 DB method for AOD provided more reliable data retrievals over California's bright surface areas than previous data sets. Our DB AOD and PM2.5 data suggested that the PM2.5 predictability could be enhanced by temporally varying PM2.5 and AOD relations at least at a seasonal scale. In this study, we used a mixed effects model that allowed daily variations in DB AOD-PM2.5 relations. Because DB AOD might less effectively represent local source emissions compared to regional ones, we added geographic information system (GIS) predictors into the mixed effects model to further explain PM2.5 concentrations influenced by local sources. A cross validation (CV) mixed effects model revealed reasonably high predictive power for PM2.5 concentrations with R-2 = 0.66. The relations between DB AOD and PM2.5 considerably varied by day, and seasonally varying effects of GIS predictors on PM2.5 suggest season-specific source emissions and atmospheric conditions. This study indicates that DB AOD in combination with land use regression can be particularly useful to generate spatially resolved PM2.5 estimates. This may reduce exposure errors for health effect studies in California. We expect that more detailed PM2.5 concentration patterns can help air quality management plan to meet air quality standards more effectively. C1 [Lee, Hyung Joo] NASA, Ames Res Ctr, Postdoctoral Program, Moffett Field, CA 94035 USA. [Lee, Hyung Joo; Chatfield, Robert B.] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Strawa, Anthony W.] NASA, Ames Res Ctr, New Pursuits Off, Moffett Field, CA 94035 USA. RP Lee, HJ (reprint author), NASA, Ames Res Ctr, Postdoctoral Program, Moffett Field, CA 94035 USA.; Lee, HJ (reprint author), NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. EM hyungjoo.lee@nasa.gov FU NASA's Earth Venture Airborne mission DISCOVER-AQ FX This research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Dr. Robert B. Chatfield gratefully acknowledges the support of NASA's Earth Venture Airborne mission DISCOVER-AQ for his participation. NR 44 TC 2 Z9 2 U1 15 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 21 PY 2016 VL 50 IS 12 BP 6546 EP 6555 DI 10.1021/acs.est.6b01438 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DP4ML UT WOS:000378469900050 PM 27218887 ER PT J AU Chan, AA Bashir, M Rivas, MN Duvall, K Sieling, PA Pieber, TR Vaishampayan, PA Love, SM Lee, DJ AF Chan, Alfred A. Bashir, Mina Rivas, Magali N. Duvall, Karen Sieling, Peter A. Pieber, Thomas R. Vaishampayan, Parag A. Love, Susan M. Lee, Delphine J. TI Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors SO SCIENTIFIC REPORTS LA English DT Article ID RNA GENE DATABASE; BETA-GLUCURONIDASE; COLON-CANCER; COLORECTAL-CANCER; HEALTHY WOMEN; TUMOR-GROWTH; DISEASE; MICROENVIRONMENT; TUMORIGENESIS; INFLAMMATION AB The microbiome impacts human health and disease. Until recently, human breast tissue and milk were presumed to be sterile. Here, we investigated the presence of microbes in the nipple aspirate fluid (NAF) and their potential association with breast cancer. We compared the NAF microbiome between women with a history of breast cancer (BC) and healthy control women (HC) using 16S rRNA gene amplicon sequencing. The NAF microbiome from BC and HC showed significant differences in community composition. Two Operational Taxonomic Units (OTUs) showed differences in relative abundances between NAF collected from BC and HC. In NAF collected from BC, there was relatively higher incidence of the genus Alistipes. By contrast, an unclassified genus from the Sphingomonadaceae family was relatively more abundant in NAF from HC. These findings reflect the ductal source DNA since there were no differences between areolar skin samples collected from BC and HC. Furthermore, the microbes associated with BC share an enzymatic activity, Beta-Glucuronidase, which may promote breast cancer. This is the first report of bacterial DNA in human breast ductal fluid and the differences between NAF from HC and BC. Further investigation of the ductal microbiome and its potential role in breast cancer are warranted. C1 [Chan, Alfred A.; Rivas, Magali N.; Sieling, Peter A.; Lee, Delphine J.] Providence St Johns Hlth Ctr, John Wayne Canc Inst, Dirks Dougherty Lab Canc Res, Dept Translat Immunol, Santa Monica, CA USA. [Bashir, Mina; Vaishampayan, Parag A.] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA USA. [Bashir, Mina; Pieber, Thomas R.] Med Univ Graz, Div Endocrinol & Metab, Graz, Austria. [Duvall, Karen] Univ Calif Los Angeles, Breast Ctr, Los Angeles, CA USA. [Duvall, Karen; Love, Susan M.] Dr Susan Love Res Fdn, Encino, CA USA. RP Lee, DJ (reprint author), Providence St Johns Hlth Ctr, John Wayne Canc Inst, Dirks Dougherty Lab Canc Res, Dept Translat Immunol, Santa Monica, CA USA. EM LeeDJ@JWCI.org FU Avon Breast Cancer Crusade; Joseph B. Gould Foundation; Maria McClay Foundation; Fashion Footwear Association of New York (FFANY); Associates for Breast and Prostate Cancer Studies (ABCs); doctoral college of molecular inflammation (DK-MOLIN); Bank Austria Visiting Scientist program FX This study was supported by the Avon Breast Cancer Crusade. We are grateful to the members of the Army of Women who participated in this study. Many thanks to Drs. Caiyun Xuan and Eva Gordon who participated in the planning and early stages of this project. Dr. Xuan also extracted the DNA. Thank you to Dr. Ian Hutchinson for helpful discussion and review of manuscript. D.J.L. is supported by the Joseph B. Gould Foundation, Maria McClay Foundation, Fashion Footwear Association of New York (FFANY), and Associates for Breast and Prostate Cancer Studies (ABCs). Part of the work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, who has a contract with the National Aeronautics and Space Administration. M.B. is funded by the doctoral college of molecular inflammation (DK-MOLIN) and the Bank Austria Visiting Scientist program. NR 58 TC 2 Z9 2 U1 7 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 21 PY 2016 VL 6 AR 28061 DI 10.1038/srep28061 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DP1FU UT WOS:000378236700001 PM 27324944 ER PT J AU Sakurai, Y Vorobyov, EI Hosokawa, T Yoshida, N Omukai, K Yorke, HW AF Sakurai, Y. Vorobyov, E. I. Hosokawa, T. Yoshida, N. Omukai, K. Yorke, H. W. TI Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: formation; galaxies: formation; cosmology: theory; early Universe ID BLACK-HOLE FORMATION; ATOMIC COOLING HALOES; DIGITAL SKY SURVEY; DIRECT COLLAPSE; BURST MODE; 1ST STARS; Z-GREATER-THAN-5.7 QUASARS; MASSIVE PROTOSTARS; ADDITIONAL QUASARS; EVOLUTION AB The formation of supermassive stars (SMSs) is a potential pathway to seed supermassive black holes in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper, we study the evolution of an accreting SMS and its UV emissivity with realistic variable accretion from a circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the protostellar accretion until the stellar mass exceeds 10(4) M-aS (TM). The disc fragments by gravitational instability, creating many clumps that migrate inward to fall on to the star. The resulting accretion history is highly time-dependent: short episodic accretion bursts are followed by longer quiescent phases. We show that the disc for the direct collapse model is more unstable and generates greater variability than normal Pop III cases. Next, we conduct a stellar evolution calculation using the obtained accretion history. Our results show that, regardless of the variable accretion, the stellar radius monotonically increases with almost constant effective temperature atT(eff) a parts per thousand integral 5000 K as the stellar mass increases. The resulting UV feedback is too weak to hinder accretion due to the low flux of stellar UV photons. The insensitivity of stellar evolution to variable accretion is attributed to the fact that time-scales of variability, a parts per thousand(2)10(3) yr, are too short to affect the stellar structure. We argue that this evolution will continue until the SMS collapses to produce a black hole by the general relativistic instability after the mass reaches a parts per thousand(3)10(5) M-circle dot. C1 [Sakurai, Y.; Hosokawa, T.; Yoshida, N.] Univ Tokyo, Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Vorobyov, E. I.] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria. [Vorobyov, E. I.] Southern Fed Univ, Inst Phys Res, Rostov Na Donu 344090, Russia. [Hosokawa, T.] Univ Tokyo, Res Ctr Early Univ, Bunkyo Ku, Tokyo 1130033, Japan. [Yoshida, N.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Omukai, K.] Tohoku Univ, Astron Inst, Sendai, Miyagi 9808578, Japan. [Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sakurai, Y (reprint author), Univ Tokyo, Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. EM sakurai@utap.phys.s.u-tokyo.ac.jp FU Advanced Leading Graduate Course for Photon Science; Russian Ministry of Education and Science [3.961.2014/K]; JSPS-OEAD [21402003]; Ministry of Education, Science and Culture of Japan [15H00776, 25800102, 25287040, 25287050]; National Aeronautics and Space Administration (NASA) FX YS thanks the support from Advanced Leading Graduate Course for Photon Science. EIV acknowledges the support from the Russian Ministry of Education and Science Grant 3.961.2014/K. This work was financially supported by Grant-in-Aid for JSPS Fellows (15H00776: YS), by JSPS-OEAD short-term research grant #RC (21402003: EIV), and by the Grants-in-Aid for Basic Research by the Ministry of Education, Science and Culture of Japan (25800102, 15H00776: TH, 25287040: KO, 25287050: NY). Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). Numerical simulations were done on the Vienna Scientific Cluster (VSC-2), Atlantic Computational Excellence Network (ACEnet), and Shared Hierarchical Academic Research Computing Network (SHARC-NET). The stellar evolution calculations were partly conducted on a PC cluster at the Center for Computational Astrophysics, National Astronomical Observatory of Japan. NR 58 TC 4 Z9 4 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2016 VL 459 IS 2 BP 1137 EP 1145 DI 10.1093/mnras/stw637 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO0LU UT WOS:000377471200001 ER PT J AU Scowcroft, V Seibert, M Freedman, WL Beaton, RL Madore, BF Monson, AJ Rich, JA Rigby, JR AF Scowcroft, Victoria Seibert, Mark Freedman, Wendy L. Beaton, Rachael L. Madore, Barry F. Monson, Andrew J. Rich, Jeffrey A. Rigby, Jane R. TI The Carnegie Chicago Hubble Program: the mid-infrared colours of Cepheids and the effect of metallicity on the CO band-head at 4.6 mu m SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: abundances; stars: variables: Cepheids; infrared: stars ID PERIOD-LUMINOSITY RELATIONS; CLASSICAL CEPHEIDS; SPACE-TELESCOPE; CHEMICAL-COMPOSITION; DISTANCE SCALE; LEAVITT LAW; EFFECTIVE TEMPERATURES; MAGELLANIC-CLOUD; PULSATION MODELS; VARIABLE-STARS AB We compare mid-infrared (IR) 3.6 and 4.5 mu m Warm Spitzer observations for Cepheids in the Milky Way and the Large and Small Magellanic Clouds. Using models, we explore in detail the effect of the CO rotation-vibration band-head at 4.6 mu m on the mid-IR photometry. We confirm the temperature sensitivity of the CO band-head at 4.6 mu m and find no evidence for an effect at 3.6 mu m. We compare the ([3.6]-[4.5]) period-colour relations in the MW, LMC and SMC. The slopes of the period-colour relations for the three galaxies are in good agreement, but there is a trend in zero-point with metallicity, with the lowest metallicity Cepheids having redder mid-IR colours. Finally, we present a colour-[Fe/H] relation based on published spectroscopic metallicities. This empirical relation, calibrated to the metallicity system of Genovali et al., demonstrates that the ([3.6]-[4.5]) colour provides a reliable metallicity indicator for Cepheids, with a precision comparable to current spectroscopic determinations. C1 [Scowcroft, Victoria; Seibert, Mark; Beaton, Rachael L.; Madore, Barry F.; Rich, Jeffrey A.] Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Freedman, Wendy L.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Monson, Andrew J.] Penn State Univ, Dept Astron & Astrophys, 403 Davey Lab, University Pk, PA 16802 USA. [Rigby, Jane R.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Scowcroft, V (reprint author), Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. EM vs@obs.carnegiescience.edu OI Scowcroft, Victoria/0000-0001-8829-4653 FU NASA; NASA through JPL/Caltech FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 57 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2016 VL 459 IS 2 BP 1170 EP 1178 DI 10.1093/mnras/stw628 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO0LU UT WOS:000377471200004 ER PT J AU Rubin, RH Simpson, JP Colgan, SWJ Dufour, RJ Kader, J McNabb, IA Pauldrach, AWA Weber, JA AF Rubin, Robert H. Simpson, Janet P. Colgan, Sean W. J. Dufour, Reginald J. Kader, Justin McNabb, Ian A. Pauldrach, Adalbert W. A. Weber, Johann A. TI Spitzer observations of extragalactic H ii regions - III. NGC 6822 and the hot star, H ii region connection SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: atmospheres; ISM: abundances; H ii regions; galaxies: abundances; galaxies: individual: NGC 6822 ID TELESCOPE ECHELLE SPECTROPHOTOMETRY; ELECTRON COLLISION EXCITATION; ELEMENTAL ABUNDANCE RATIOS; RADIATION-DRIVEN WINDS; NEARBY GALAXIES SURVEY; FINE-STRUCTURE LEVELS; CHEMICAL-COMPOSITION; HII-REGIONS; SPACE-TELESCOPE; ATOMIC DATA AB Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S iv] 10.51, [Ne ii] 12.81, [Ne iii] 15.56, and [S iii] 18.71-mu m emission lines in nine H ii regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne++, Ne+) and sulphur (S3+, S++), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne+/Ne++ and S3+/S++. By extending our studies of H ii regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2 +/- 0.8). This value is in contrast to Asplund et al.'s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here, we employ a new grid of SEDs computed with different metallicities: solar, 0.4 solar, and 0.1 solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations. C1 [Rubin, Robert H.; Colgan, Sean W. J.; Kader, Justin; McNabb, Ian A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rubin, Robert H.] Orion Enterprises, Bombay, Maharashtra, India. [Simpson, Janet P.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Dufour, Reginald J.] Rice Univ, Dept Phys & Astron, MS 108, Houston, TX 77005 USA. [Kader, Justin] San Francisco State Univ, Dept Phys & Astron, 1600 Holloway Ave, San Francisco, CA 94132 USA. [McNabb, Ian A.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Pauldrach, Adalbert W. A.; Weber, Johann A.] Univ Sternwarte Muenchen, Scheinerstr 1, D-81679 Munich, Germany. RP Simpson, JP (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM janet.p.simpson@gmail.com FU NASA [40910]; Deutsche Forschungsgemeinschaft (DFG) [PA 477/19-1]; NASA through the JPL; Ames Research Center; National Aeronautics and Space Administration FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with NASA. Support for this work was provided by NASA for this Spitzer programme, 40910, and by the Deutsche Forschungsgemeinschaft (DFG) under grant PA 477/19-1. The IRS was a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the JPL and Ames Research Center. SMART was developed by the IRS Team at Cornell University and is available through the Spitzer Science Center at Caltech. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank Ted Kietzman, Spencer Ledoux, Divya Ramakrishnan, Vikram Sivaraja, and Scott Zhuge for their assistance with the data reduction and we thank the referee for the thoughtful comments that greatly improved the presentation of this paper. NR 70 TC 1 Z9 1 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2016 VL 459 IS 2 BP 1875 EP 1891 DI 10.1093/mnras/stw719 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO0LU UT WOS:000377471200056 ER PT J AU Litvak, ML Golovin, DV Jun, I Kozyrev, AS Mitrofanov, IG Sanin, AB Shvetsov, VN Timoshenko, GN Zontikov, A AF Litvak, M. L. Golovin, D. V. Jun, I. Kozyrev, A. S. Mitrofanov, I. G. Sanin, A. B. Shvetsov, V. N. Timoshenko, G. N. Zontikov, A. TI Implementation of gamma-ray instrumentation for solid solar system bodies using neutron activation method SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Active gamma spectrometer; Pulse neutron generator; Elemental abundances; Surface measurements ID ELEMENTAL CONCENTRATIONS; NUCLEAR TECHNIQUES; ACTIVE NEUTRON; DYNAMIC ALBEDO; DAN EXPERIMENT; MARS; SPECTROSCOPY; SPECTROMETER; SURFACE AB In this paper we present the results of ground tests performed with a flight model and with industry prototypes of passive and active gamma ray spectrometers with the objective of understanding their capability to distinguish the elemental composition of planetary bodies in the solar system. The gamma instrumentation, which was developed for future space missions was used in the measurements at a special ground test facility where a simulant of planetary material was fabricated with a martian-like composition. In this study, a special attention was paid to the gamma lines from activation reaction products generated by a pulsed neutron generator. The instrumentation was able to detect and identify gamma lines attributed to O, Na, Mg, Al, Si, K, Ca and Fe. (C) 2016 Elsevier B.V. All rights reserved. C1 [Litvak, M. L.; Golovin, D. V.; Kozyrev, A. S.; Mitrofanov, I. G.; Sanin, A. B.] RAS, Space Res Inst, Moscow 117997, Russia. [Jun, I.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Shvetsov, V. N.; Timoshenko, G. N.; Zontikov, A.] Joint Inst Nucl Res, Dubna, Russia. RP Litvak, ML (reprint author), RAS, Space Res Inst, Moscow 117997, Russia. EM litvak@mx.iki.rssi.ru FU Russian Science Foundation [14-22-00249] FX This work is supported by the Grant # 14-22-00249 from Russian Science Foundation. NR 38 TC 1 Z9 1 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 21 PY 2016 VL 822 BP 112 EP 124 DI 10.1016/j.nima.2016.03.087 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DK1GQ UT WOS:000374660900014 ER PT J AU Kasliwal, MM Cenko, SB Singer, LP Corsi, A Cao, Y Barlow, T Bhalerao, V Bellm, E Cook, D Duggan, GE Ferretti, R Frail, DA Horesh, A Kendrick, R Kulkarni, SR Lunnan, R Palliyaguru, N Laher, R Masci, F Manulis, I Miller, AA Nugent, PE Perley, D Prince, TA Quimby, RM Rana, J Rebbapragada, U Sesar, B Singhal, A Surace, J Van Sistine, A AF Kasliwal, M. M. Cenko, S. B. Singer, L. P. Corsi, A. Cao, Y. Barlow, T. Bhalerao, V. Bellm, E. Cook, D. Duggan, G. E. Ferretti, R. Frail, D. A. Horesh, A. Kendrick, R. Kulkarni, S. R. Lunnan, R. Palliyaguru, N. Laher, R. Masci, F. Manulis, I. Miller, A. A. Nugent, P. E. Perley, D. Prince, T. A. Quimby, R. M. Rana, J. Rebbapragada, U. Sesar, B. Singhal, A. Surace, J. Van Sistine, A. TI iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL- WAVE TRANSIENT GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational waves; methods: observational; techniques: spectroscopic; surveys ID ADVANCED LIGO; SUPERLUMINOUS SUPERNOVAE; TELESCOPE; MERGERS; EMISSION; CURVES AB The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg(2), after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. This end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves. C1 [Kasliwal, M. M.; Cao, Y.; Barlow, T.; Bellm, E.; Cook, D.; Duggan, G. E.; Kulkarni, S. R.; Lunnan, R.; Miller, A. A.; Prince, T. A.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Cenko, S. B.; Singer, L. P.; Miller, A. A.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Corsi, A.; Palliyaguru, N.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Bhalerao, V.; Rana, J.; Singhal, A.] IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. [Ferretti, R.] Stockholm Univ, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Horesh, A.; Manulis, I.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Kendrick, R.] Lockheed Martin Space Syst Co, Palo Alto, CA USA. [Laher, R.; Surace, J.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA. [Masci, F.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Miller, A. A.; Rebbapragada, U.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Nugent, P. E.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50B-4206, Berkeley, CA 94720 USA. [Perley, D.] Niels Bohr Inst, Dark Cosmol Ctr, Juliane Manes Vej 30, DK-2100 Copenhagen, Denmark. [Quimby, R. M.] San Diego State Univ, San Diego, CA 92182 USA. [Quimby, R. M.] Univ Tokyo, UTIAS, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Sesar, B.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Van Sistine, A.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. RP Kasliwal, MM (reprint author), CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. RI Horesh, Assaf/O-9873-2016; OI Horesh, Assaf/0000-0002-5936-1156; Bhalerao, Varun/0000-0002-6112-7609; Singer, Leo/0000-0001-9898-5597 FU National Science Foundation PIRE program [1545949]; Hubble Fellowship [HST-HF-51325.01]; DOE [DE-AC02-05CH11231]; NSF [1455090] FX Based on observations obtained with the Samuel Oschin Telescope 48 inch and the 60 inch Telescope at the Palomar Observatory as part of the iPTF project, a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin-Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the universe. M.M.K., R.L., and Y.C. acknowledge support from the National Science Foundation PIRE program grant 1545949. A.A.M. acknowledges support from the Hubble Fellowship HST-HF-51325.01. P.E.N. and Y.C. acknowledge support from the DOE under grant DE-AC02-05CH11231, Analytical Modeling for Extreme-Scale Computing Environments. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. A.C. and N.P. acknowledge support from NSF CAREER award 1455090. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. M.M.K. thanks Brian Metzger for providing us theoretical light curves for neutron-powered precursors. We thank the referee for constructive feedback. NR 41 TC 7 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2016 VL 824 IS 2 AR L24 DI 10.3847/2041-8205/824/2/L24 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DP0GU UT WOS:000378168200008 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Ansseau, I Anton, G Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, GH Conrad, JM Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC di Lorenzo, V Dujmovic, H Dumm, JP Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Flis, S Fosig, CC Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glagla, M Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hansmann, T Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jones, BJP Jurkovic, M Kappes, A Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kim, M Kintscher, T Kiryluk, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kruckl, G Kunnen, J Kunwar, S Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lennarz, D Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mandelartz, M Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meier, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Schimp, M Schlunder, P Schmidt, T Schoenen, S Schoneberg, S Schonwald, A Schumacher, L Seckel, D Seunarine, S Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Wiebe, K Wiebusch, CH Wille, L Williams, DR Wills, L Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Ansseau, I. Anton, G. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Collin, G. H. Conrad, J. M. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Rosendo, E. del Pino Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. di Lorenzo, V. Dujmovic, H. Dumm, J. P. Dunkman, M. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Flis, S. Foesig, C. -C. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hansmann, T. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jones, B. J. P. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Katz, U. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kim, M. Kintscher, T. Kiryluk, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Krueckl, G. Kunnen, J. Kunwar, S. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lennarz, D. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Lunemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mandelartz, M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meier, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Schimp, M. Schlunder, P. Schmidt, T. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schumacher, L. Seckel, D. Seunarine, S. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wills, L. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. CA IceCube Collaboration TI AN ALL-SKY SEARCH FOR THREE FLAVORS OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE NEUTRINO OBSERVATORY SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; methods: data analysis; neutrinos; telescopes ID HIGH-ENERGY NEUTRINOS; COSMIC-RAYS; TRACK RECONSTRUCTION; SPECTRAL CATALOG; MUON NEUTRINOS; TELESCOPE; ACCELERATION; EMISSION; PERFORMANCE; AMANDA AB We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs. C1 [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kintscher, T.; Kowalski, M.; Kunwar, S.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch, New Zealand. [Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Ahlers, M.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Ahlers, M.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Altmann, D.; Anton, G.; Classen, L.; Kappes, A.; Katz, U.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C. -C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H. -G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Arguelles, C.; Collin, G. H.; Conrad, J. M.; Jones, B. J. P.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Tatar, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [BenZvi, S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. [Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Bose, D.; Dujmovic, H.; In, S.; Jeong, M.; Kim, M.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Lunemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Clark, K.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Lennarz, D.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Homeier, A.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Kurahashi, N.; Richman, M.; Wills, L.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hellauer, R (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM hellauer@umd.edu RI Anton, Gisela/C-4840-2013; Beatty, James/D-9310-2011; Tjus, Julia/G-8145-2012; Katz, Uli/E-1925-2013; Maruyama, Reina/A-1064-2013; Wiebusch, Christopher/G-6490-2012; Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; OI Strotjohann, Nora Linn/0000-0002-4667-6730; Anton, Gisela/0000-0003-2039-4724; Beatty, James/0000-0003-0481-4952; Katz, Uli/0000-0002-7063-4418; Maruyama, Reina/0000-0003-2794-512X; Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; Perez de los Heros, Carlos/0000-0002-2084-5866 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid; Compute/Calcul Canada; Swedish Research Council, Sweden; Swedish Polar Research Secretariat, Sweden; Swedish National Infrastructure for Computing (SNIC), Sweden; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge the support from the following agencies: the U.S. National Science Foundation-Office of Polar Programs, the U.S. National Science Foundation-Physics Division, the University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; the U.S. Department of Energy, and the National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; the Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; the Swedish Research Council, the Swedish Polar Research Secretariat, the Swedish National Infrastructure for Computing (SNIC), and the Knut and Alice Wallenberg Foundation, Sweden; the German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), the Helmholtz Alliance for Astroparticle Physics (HAP), the Research Department of Plasmas with Complex Interactions (Bochum), Germany; the Fund for Scientific Research (FNRS-FWO), the FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), the Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; the Marsden Fund, New Zealand; the Australian Research Council; the Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; the National Research Foundation of Korea (NRF); and the Danish National Research Foundation, Denmark (DNRF). NR 77 TC 4 Z9 4 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 115 DI 10.3847/0004-637X/824/2/115 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800051 ER PT J AU Beaulieu, JP Bennett, DP Batista, V Fukui, A Marquette, JB Brillant, S Cole, AA Rogers, LA Sumi, T Abe, F Bhattacharya, A Koshimoto, N Suzuki, D Tristram, PJ Han, C Gould, A Pogge, R Yee, J AF Beaulieu, J. -P. Bennett, D. P. Batista, V. Fukui, A. Marquette, J. -B. Brillant, S. Cole, A. A. Rogers, L. A. Sumi, T. Abe, F. Bhattacharya, A. Koshimoto, N. Suzuki, D. Tristram, P. J. Han, C. Gould, A. Pogge, R. Yee, J. TI REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planets and satellites: detection; planets and satellites: gaseous planets ID GALACTIC BULGE; JUPITER/SATURN ANALOG; MAIN-SEQUENCE; M DWARF; SYSTEM; 2MASS; EARTH; OGLE-2005-BLG-169; CONFIRMATION; SEXTRACTOR AB Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B&C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a similar to 4-9 Gyr lens star of M-lens = 1.06 +/- 0.05 M circle dot at a distance of D-lens = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M-Jup and 0.86 +/- 0.06 M-Jup, with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system. C1 [Beaulieu, J. -P.; Batista, V.; Marquette, J. -B.] Univ Paris 06, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France. [Beaulieu, J. -P.; Batista, V.; Marquette, J. -B.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Bd Arago, F-75014 Paris, France. [Beaulieu, J. -P.] LESIA Observ Paris, Sect Meudon, 5 Pl Jules Janssen, F-92195 Meudon, France. [Beaulieu, J. -P.; Cole, A. A.; Bhattacharya, A.; Suzuki, D.] Univ Tasmania, Sch Phys Sci, Private Bag 37, Hobart, Tas 7001, Australia. [Bennett, D. P.; Bhattacharya, A.; Suzuki, D.] Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. [Bennett, D. P.] NASA, Goddard Space Flight Ctr, Lab Exoplanets & Stellar Astrophys, Greenbelt, MD 20815 USA. [Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, Asakuchi, Okayama 7190232, Japan. [Brillant, S.] European Southern Observ, Karl Schwarzschildst 2, D-85748 Garching, Germany. [Rogers, L. A.] Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Rogers, L. A.] Univ Calif Berkeley, Dept Earth & Planetary Sci, 501 Campbell Hall 3411, Berkeley, CA 94720 USA. [Sumi, T.; Koshimoto, N.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Abe, F.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Tristram, P. J.] Mt John Univ Observ, POB 56, Lake Tekapo 8770, New Zealand. [Han, C.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Gould, A.; Pogge, R.] Ohio State Univ, Dept Astron, 100 W 18th Ave, Columbus, OH 43210 USA. [Yee, J.] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS-15, Cambridge, MA 02138 USA. RP Beaulieu, JP (reprint author), Univ Paris 06, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France.; Beaulieu, JP (reprint author), CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Bd Arago, F-75014 Paris, France.; Beaulieu, JP (reprint author), LESIA Observ Paris, Sect Meudon, 5 Pl Jules Janssen, F-92195 Meudon, France.; Beaulieu, JP (reprint author), Univ Tasmania, Sch Phys Sci, Private Bag 37, Hobart, Tas 7001, Australia. EM beaulieu@iap.fr; bennett@nd.edu; batista@iap.fr; afukui@oao.nao.ac.jp; marquett@iap.fr; sbrillan@eso.org; Andrew.Cole@utas.edu.au; larogers@uchicago.edu; sumi@ess.sci.osaka-u.ac.jp; suzuki@nd.edu; cheongho@astroph.chungbuk.ac.kr; gould@osu.edu; pogge.1@osu.edu; jyee@cfa.harvard.edu OI Rogers, Leslie/0000-0003-0638-3455 FU CNES; DIM ACAV, Region Ile-de-France; PERSU Sorbonne Universite the Programme National de Planetologie and the labex ESEP; NASA [NNX12AF54G]; JPL-RSA [1453175]; NSF [AST-1211875]; Creative Research Initiative Program of the National Research Foundation of Korea [2009-0081561]; University of Tasmania; NASA Keck PI Data Award; WM Keck Foundation; NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute; National Aeronautics and Space Administration; National Science Foundation; [JSPS23340064] FX V.B. was supported by the CNES and the DIM ACAV, Region Ile-de-France. V.B., J.P.B., and J.B.M. acknowledge the support of PERSU Sorbonne Universite the Programme National de Planetologie and the labex ESEP. We are grateful to F. Naudin for discussions about the properties of this system. D.P.B. was supported by grants NASA-NNX12AF54G, JPL-RSA 1453175, and NSF AST-1211875. F. A. is supported by JSPS23340064. Work by C.H. was supported by the Creative Research Initiative Program (2009-0081561) of the National Research Foundation of Korea. J.P.B. thanks the University of Tasmania for support as part of their visiting scholar program. We thank David and Michelle Warren for their support. This work was partially supported by a NASA Keck PI Data Award, administered by the NASA Exoplanet Science Institute. The data presented herein were obtained at the WM Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the WM Keck Foundation. Work by J.C.Y. and L.A.R. was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL), funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. This research made use of astropy, a community-developed core Python package for Astronomy, astroML, and TOPCAT. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work is based on data products from observations made with ESO Telescopes at the La Silla or Paranal Observatories under ESO programme ID 179. B-2002. NR 36 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 83 DI 10.3847/0004-637X/824/2/83 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800019 ER PT J AU Defrere, D Hinz, PM Mennesson, B Hoffmann, WF Millan-Gabet, R Skemer, AJ Bailey, V Danchi, WC Downey, EC Durney, O Grenz, P Hill, JM McMahon, TJ Montoya, M Spalding, E Vaz, A Absil, O Arbo, P Bailey, H Brusa, G Bryden, G Esposito, S Gaspar, A Haniff, CA Kennedy, GM Leisenring, JM Marion, L Nowak, M Pinna, E Powell, K Puglisi, A Rieke, G Roberge, A Serabyn, E Sosa, R Stapeldfeldt, K Su, K Weinberger, AJ Wyatt, MC AF Defrere, D. Hinz, P. M. Mennesson, B. Hoffmann, W. F. Millan-Gabet, R. Skemer, A. J. Bailey, V. Danchi, W. C. Downey, E. C. Durney, O. Grenz, P. Hill, J. M. McMahon, T. J. Montoya, M. Spalding, E. Vaz, A. Absil, O. Arbo, P. Bailey, H. Brusa, G. Bryden, G. Esposito, S. Gaspar, A. Haniff, C. A. Kennedy, G. M. Leisenring, J. M. Marion, L. Nowak, M. Pinna, E. Powell, K. Puglisi, A. Rieke, G. Roberge, A. Serabyn, E. Sosa, R. Stapeldfeldt, K. Su, K. Weinberger, A. J. Wyatt, M. C. TI NULLING DATA REDUCTION AND ON-SKY PERFORMANCE OF THE LARGE BINOCULAR TELESCOPE INTERFEROMETER SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; techniques: interferometric; zodiacal dust ID MAIN-SEQUENCE STARS; BASE-LINE INTERFEROMETRY; KECK INTERFEROMETER; GAMMA-PERSEI; LUMINOSITY FUNCTION; DEBRIS DISKS; NULLER; EVOLUTION; PLANETS; MISSION AB The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 mu m). In this paper, we focus on the mid-infrared (8-13 mu m) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star beta Leo. This is equivalent to an exozodiacal disk density of 15-30. zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems. C1 [Defrere, D.; Hinz, P. M.; Hoffmann, W. F.; Skemer, A. J.; Bailey, V.; Downey, E. C.; Durney, O.; Grenz, P.; McMahon, T. J.; Montoya, M.; Spalding, E.; Vaz, A.; Arbo, P.; Brusa, G.; Gaspar, A.; Leisenring, J. M.; Powell, K.; Rieke, G.; Sosa, R.; Su, K.] Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Mennesson, B.; Bryden, G.; Serabyn, E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Millan-Gabet, R.; Nowak, M.] CALTECH, NASA Exoplanet Sci Inst, 770 South Wilson Ave, Pasadena, CA 91125 USA. [Bailey, V.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Danchi, W. C.; Roberge, A.; Stapeldfeldt, K.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Hill, J. M.] Univ Arizona, Large Binocular Telescope Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Absil, O.; Marion, L.] Univ Liege, Inst Astrophys & Geophys, 19c Allee Six Aout, B-4000 Sart Tilman Par Liege, Belgium. [Bailey, H.] Univ Arizona, Lunar & Planetary Lab, 1541 E,Univ Blvd, Tucson, AZ 85721 USA. [Esposito, S.; Pinna, E.; Puglisi, A.] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy. [Haniff, C. A.] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Kennedy, G. M.; Wyatt, M. C.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HE, England. [Nowak, M.; Weinberger, A. J.] Univ Paris Diderot, UPMC, CNRS, LESIA Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France. [Weinberger, A. J.] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. RP Defrere, D (reprint author), Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM ddefrere@email.arizona.edu OI Su, Kate/0000-0002-3532-5580; Kennedy, Grant/0000-0001-6831-7547; Bailey, Vanessa/0000-0002-5407-2806 FU National Aeronautics and Space Administration, Exoplanet Exploration Program; National Aeronautics and Space Administration; European Union through ERC [279973] FX The authors are grateful to M.. Colavita for helpful discussions on fringe sensing and nulling data reduction. The Large Binocular Telescope Interferometer is funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration Program. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Instituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. M.W. and G.K. acknowledge the support of the European Union through ERC grant number 279973. NR 58 TC 5 Z9 5 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 66 DI 10.3847/0004-637X/824/2/66 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800002 ER PT J AU Fegley, B Jacobson, NS Williams, KB Plane, JMC Schaefer, L Lodders, K AF Fegley, Bruce, Jr. Jacobson, Nathan S. Williams, K. B. Plane, J. M. C. Schaefer, L. Lodders, Katharina TI SOLUBILITY OF ROCK IN STEAM ATMOSPHERES OF PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: formation; planets and satellites: general; planets and satellites: terrestrial planets ID CROSS VIRIAL-COEFFICIENTS; EARTHS UPPER-MANTLE; CRITICAL END-POINT; EQUATION-OF-STATE; THERMODYNAMIC PROPERTIES; HIGH-TEMPERATURES; QUARTZ SOLUBILITY; WATER-VAPOR; ELEVATED-TEMPERATURES; HIGH-PRESSURES AB Extensive experimental studies show that all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky-element-bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)(4), Mg(OH)(2), Fe(OH)(2), Ni(OH)(2), Al(OH)(3), Ca(OH)(2), NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)(2)) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show that Earth's subsolar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude that hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure. C1 [Fegley, Bruce, Jr.; Lodders, Katharina] Washington Univ, McDonnell Ctr Space Sci, Planetary Chem Lab, St Louis, MO 63130 USA. [Fegley, Bruce, Jr.; Williams, K. B.; Lodders, Katharina] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Jacobson, Nathan S.] NASA, Div Mat, Glenn Res Ctr, MS106-1,21000 Brookpark Rd, Cleveland, OH 44135 USA. [Plane, J. M. C.] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England. [Schaefer, L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Fegley, B (reprint author), Washington Univ, McDonnell Ctr Space Sci, Planetary Chem Lab, St Louis, MO 63130 USA.; Fegley, B (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM bfegley@wustl.edu RI Plane, John/C-7444-2015 OI Plane, John/0000-0003-3648-6893 FU NSF Astronomy Program [AST-1412175]; NASA EPSCOR Program [NNX13AE52A]; NASA EPSCOR Program; NASA Glenn Research Center; McDonnell Center Roger B. Chaffee Fellowship; European Research Council [291332-CODITA]; Simons Foundation FX B.F. conceived the idea, integrated the models, and wrote much of the paper with help from K.L., L.S., and the other authors. K.L. developed the partition coefficient modeling and did the calculations for changes in the Si/Mg ratio due to atmospheric loss. B.F., N.S.J., and K.B.W. performed chemical equilibrium calculations with the IVTAN & MAGMA, FactSage, and MELTS codes, respectively. J.M.C.P. performed quantum chemical calculations for thermochemical and photochemical reactions described in the text. B.F. and K.L. were supported by grant AST-1412175 from the NSF Astronomy Program and by the NASA EPSCOR Program Grant NNX13AE52A (B.F.). The NASA EPSCOR Program and NASA Glenn Research Center supported N.S.J. K.B.W. was supported by the McDonnell Center Roger B. Chaffee Fellowship, J.M.C.P. was supported by European Research Council (project number 291332-CODITA), and L.S. was supported by the Simons Foundation. We thank Andrey Plyasunov for helpful discussions and his tabular data for orthosilicic acid vapor, Bob Pepin for helpful discussions on his model, Beth Opilia for comments on Figure 29, and the anonymous referee for their helpful comments that led us to clarify and expand our discussion of chemical interactions between steam atmospheres and magma oceans and its possible effects for planetary compositions. NR 190 TC 1 Z9 1 U1 4 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 103 DI 10.3847/0004-637X/824/2/103 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800039 ER PT J AU Fissel, LM Ade, PAR Angile, FE Ashton, P Benton, SJ Devlin, MJ Dober, B Fukui, Y Galitzki, N Gandilo, NN Klein, J Korotkov, AL Li, ZY Martin, PG Matthews, TG Moncelsi, L Nakamura, F Netterfield, CB Novak, G Pascale, E Poidevin, F Santos, FP Savini, G Scott, D Shariff, JA Soler, JD Thomas, NE Tucker, CE Tucker, GS Ward-Thompson, D AF Fissel, Laura M. Ade, Peter A. R. Angile, Francesco E. Ashton, Peter Benton, Steven J. Devlin, Mark J. Dober, Bradley Fukui, Yasuo Galitzki, Nicholas Gandilo, Natalie N. Klein, Jeffrey Korotkov, Andrei L. Li, Zhi-Yun Martin, Peter G. Matthews, Tristan G. Moncelsi, Lorenzo Nakamura, Fumitaka Netterfield, Calvin B. Novak, Giles Pascale, Enzo Poidevin, Frederick Santos, Fabio P. Savini, Giorgio Scott, Douglas Shariff, Jamil A. Soler, Juan Diego Thomas, Nicholas E. Tucker, Carole E. Tucker, Gregory S. Ward-Thompson, Derek TI BALLOON-BORNE SUBMILLIMETER POLARIMETRY OF THE VELA C MOLECULAR CLOUD: SYSTEMATIC DEPENDENCE OF POLARIZATION FRACTION ON COLUMN DENSITY AND LOCAL POLARIZATION-ANGLE DISPERSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; instrumentation: polarimeters; ISM: individual objects (Vela C); ISM: magnetic fields; stars: formation; techniques: polarimetric ID INTERMEDIATE-MASS CORES; STAR-FORMING REGIONS; MAGNETIC-FIELDS; GRAIN ALIGNMENT; INFRARED POLARIMETRY; DARK CLOUDS; EMISSION; TAURUS; BLAST; TURBULENCE AB We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 mu m. In this initial paper, we show our 500 mu m. data smoothed to a resolution of 2'.5 (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p proportional to N-0.45 S-0.60, where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p. with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations. C1 [Fissel, Laura M.; Ashton, Peter; Matthews, Tristan G.; Novak, Giles; Santos, Fabio P.] Northwestern Univ, CIERA, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Fissel, Laura M.; Ashton, Peter; Matthews, Tristan G.; Novak, Giles; Santos, Fabio P.] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ade, Peter A. R.; Pascale, Enzo; Tucker, Carole E.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Angile, Francesco E.; Devlin, Mark J.; Dober, Bradley; Galitzki, Nicholas; Klein, Jeffrey] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Benton, Steven J.; Netterfield, Calvin B.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Benton, Steven J.] Princeton Univ, Dept Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Fukui, Yasuo] Nagoya Univ, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Gandilo, Natalie N.; Netterfield, Calvin B.; Shariff, Jamil A.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Gandilo, Natalie N.] Johns Hopkins Univ, Dept Phys & Astron, 3701 San Martin Dr, Baltimore, MD 21218 USA. [Korotkov, Andrei L.; Tucker, Gregory S.] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. [Li, Zhi-Yun] Univ Virginia, Dept Astron, 530 McCormick Rd, Charlottesville, VA 22904 USA. [Martin, Peter G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Moncelsi, Lorenzo] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Nakamura, Fumitaka] Natl Astron Observ, Mitaka, Tokyo 1818588, Japan. [Poidevin, Frederick] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Poidevin, Frederick] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Savini, Giorgio] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Shariff, Jamil A.] Case Western Reserve Univ, Dept Phys, 2076 Adelbert Rd, Cleveland, OH 44106 USA. [Soler, Juan Diego] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR8617, Batiment 121, Orsay, France. [Thomas, Nicholas E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ward-Thompson, Derek] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. RP Fissel, LM (reprint author), Northwestern Univ, CIERA, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Fissel, LM (reprint author), Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. OI Pascale, Enzo/0000-0002-3242-8154; Savini, Giorgio/0000-0003-4449-9416 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G, NNX0-9AB98G, NNX14AB38G]; Canadian Space Agency (CSA); Leverhulme Trust [F/00 407/BN]; Natural Sciences and Engineering Research Council (NSERC) of Canada; Canada Foundation for Innovation; Ontario Innovation Trust; Dunlap Institute for Astronomy and Astrophysics; US National Science Foundation Office of Polar Programs; NSERC Postdoctoral Fellowship; NASA Earth and Space Science Fellowship; Canadian Institute for Advanced Research; CAPES [2397/13-7]; NSF [AST1313083]; Spanish Ministry of Economy and Competitiveness (MINECO) under the Consolider-Ingenio project [CSD2010-00064] FX The authors like to thank the referee for a detailed and thoughtful review that has helped to strengthen the paper. The BLASTPol collaboration acknowledges support from NASA (through grant numbers NAG5-12785, NAG5-13301, NNGO-6GI11G, NNX0-9AB98G, and the Illinois Space Grant Consortium), the Canadian Space Agency (CSA), the Leverhulme Trust through the Research Project Grant F/00 407/BN, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation, the Ontario Innovation Trust, the Dunlap Institute for Astronomy and Astrophysics, and the US National Science Foundation Office of Polar Programs. LMF was supported in part by an NSERC Postdoctoral Fellowship. BD is supported through a NASA Earth and Space Science Fellowship. CBN also acknowledges support from the Canadian Institute for Advanced Research. FPS is supported by the CAPES grant 2397/13-7. Z-YL is supported in part by NSF AST1313083 and NASA NNX14AB38G. FP thanks the Spanish Ministry of Economy and Competitiveness (MINECO) under the Consolider-Ingenio project CSD2010-00064. The authors would also like to thank Diego Falceta-Goncalves for making available line integral convolution code, which was used in making the drapery image shown in Figure 5. Finally, we thank the Columbia Scientific Balloon Facility (CSBF) staff for their outstanding work. NR 65 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 134 DI 10.3847/0004-637X/824/2/134 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800070 ER PT J AU Gandilo, NN Ade, PAR Angile, FE Ashton, P Benton, SJ Devlin, MJ Dober, B Fissel, LM Fukui, Y Galitzki, N Klein, J Korotkov, AL Li, ZY Martin, PG Matthews, TG Moncelsi, L Nakamura, F Netterfield, CB Novak, G Pascale, E Poidevin, F Santos, FP Savini, G Scott, D Shariff, JA Soler, JD Thomas, NE Tucker, CE Tucker, GS Ward-Thompson, D AF Gandilo, Natalie N. Ade, Peter A. R. Angile, Francesco E. Ashton, Peter Benton, Steven J. Devlin, Mark J. Dober, Bradley Fissel, Laura M. Fukui, Yasuo Galitzki, Nicholas Klein, Jeffrey Korotkov, Andrei L. Li, Zhi-Yun Martin, Peter G. Matthews, Tristan G. Moncelsi, Lorenzo Nakamura, Fumitaka Netterfield, Calvin B. Novak, Giles Pascale, Enzo Poidevin, Frederick Santos, Fabio P. Savini, Giorgio Scott, Douglas Shariff, Jamil A. Soler, Juan Diego Thomas, Nicholas E. Tucker, Carole E. Tucker, Gregory S. Ward-Thompson, Derek TI SUBMILLIMETER POLARIZATION SPECTRUM IN THE VELA C MOLECULAR CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; instrumentation: polarimeters; ISM: individual objects (Vela C); ISM: magnetic fields; submillimeter: ISM; techniques: polarimetric ID RADIATIVE GRAIN ALIGNMENT; INTERSTELLAR DUST; INFRARED POLARIZATION; STAR-FORMATION; DARK CLOUDS; MU-M; CORES; SPECTROPOLARIMETRY; EMISSION; ORION AB Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500 mu m during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850 mu m data from Planck to study the submillimeter spectrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at lambda similar to 350 mu m as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field. C1 [Gandilo, Natalie N.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Gandilo, Natalie N.; Netterfield, Calvin B.; Shariff, Jamil A.] Johns Hopkins Univ, Dept Phys & Astron, 3701 San Martin Dr, Baltimore, MD 21218 USA. [Ade, Peter A. R.; Pascale, Enzo; Tucker, Carole E.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Angile, Francesco E.; Devlin, Mark J.; Dober, Bradley; Galitzki, Nicholas; Klein, Jeffrey] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Ashton, Peter; Fissel, Laura M.; Matthews, Tristan G.; Novak, Giles; Santos, Fabio P.] Northwestern Univ, CIERA, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ashton, Peter; Fissel, Laura M.; Matthews, Tristan G.; Novak, Giles; Santos, Fabio P.] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Benton, Steven J.] Princeton Univ, Dept Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Benton, Steven J.; Netterfield, Calvin B.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Fukui, Yasuo] Nagoya Univ, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Korotkov, Andrei L.] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. [Li, Zhi-Yun; Tucker, Gregory S.] Univ Virginia, Dept Astron, 530 McCormick Rd, Charlottesville, VA 22904 USA. [Martin, Peter G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Moncelsi, Lorenzo] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Nakamura, Fumitaka] Natl Astron Observ, Mitaka, Tokyo 1818588, Japan. [Poidevin, Frederick] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Poidevin, Frederick] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Savini, Giorgio] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Shariff, Jamil A.] Case Western Reserve Univ, Dept Phys, 2076 Adelbert Rd, Cleveland, OH 44106 USA. [Soler, Juan Diego] Univ Paris 11, Inst Astrophys Spatiale, CNRS UMR8617, Batiment 121, Orsay, France. [Thomas, Nicholas E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ward-Thompson, Derek] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. RP Gandilo, NN (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada.; Gandilo, NN (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3701 San Martin Dr, Baltimore, MD 21218 USA. EM ngandil1@jhu.edu OI Savini, Giorgio/0000-0003-4449-9416 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G, NNX0-9AB98G]; Canadian Space Agency; Leverhulme Trust through the Research Project [F/00 407/BN]; Canada's Natural Sciences and Engineering Research Council; Canada Foundation for Innovation; Ontario Innovation Trust; US National Science Foundation Office of Polar Programs; ESA Member States, NASA, and Canada; Canadian Institute for Advanced Research; CAPES [2397/13-7]; Spanish Ministry of Economy and Competitiveness (MINECO) under the Consolider-Ingenio project [CSD2010-00064]; National Science Foundation [DGE-0948017] FX The BLASTPol collaboration acknowledges support from NASA (through grant numbers NAG5-12785, NAG5-13301, NNGO-6GI11G, NNX0-9AB98G, and the Illinois Space Grant Consortium), the Canadian Space Agency, the Leverhulme Trust through the Research Project Grant F/00 407/BN, Canada's Natural Sciences and Engineering Research Council, the Canada Foundation for Innovation, the Ontario Innovation Trust, and the US National Science Foundation Office of Polar Programs. Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. C.B.N. also acknowledges support from the Canadian Institute for Advanced Research. F.P.S. is supported by the CAPES grant 2397/13-7. F.P. thanks the Spanish Ministry of Economy and Competitiveness (MINECO) under the Consolider-Ingenio project CSD2010-00064. P.A. is supported through Reach for the Stars, a GK-12 program supported by the National Science Foundation under grant DGE-0948017. Finally, we thank the Columbia Scientific Balloon Facility staff for their outstanding work. NR 32 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 84 DI 10.3847/0004-637X/824/2/84 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800020 ER PT J AU Goldsmith, PF Pineda, JL Langer, WD Liu, T Requena-Torres, M Ricken, O Riquelme, D AF Goldsmith, Paul F. Pineda, Jorge L. Langer, William D. Liu, Tie Requena-Torres, Miguel Ricken, Oliver Riquelme, Denise TI L1599B: CLOUD ENVELOPE AND C EMISSION IN A REGION OF MODERATELY ENHANCED RADIATION FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article ID SURROUNDING LAMBDA-ORIONIS; LOCAL INTERSTELLAR-MEDIUM; NARROW SELF-ABSORPTION; TAURUS MOLECULAR CLOUD; DARK CLOUDS; COLLISIONAL EXCITATION; HETERODYNE INSTRUMENT; STAR-FORMATION; LINE EMISSION; HERSCHEL AB We study the effects of an asymmetric radiation field on the properties of a molecular cloud envelope. We employ observations of carbon monoxide ((CO)-C-12 and (CO)-C-13), atomic carbon, ionized carbon, and atomic hydrogen to analyze the chemical and physical properties of the core and envelope of L1599B, a molecular cloud forming a portion of the ring at similar or equal to 27 pc from the star A Ori. The 08 star provides an asymmetric radiation field that produces a moderate enhancement of the external radiation field. Observations of the [C II] fine structure line with the GREAT instrument on SOFIA indicate a significant enhanced emission on the side of the cloud facing the star, while the [C (CO)-C-12 and (CO)-C-13 J = 1-0 and 2-1, and (CO)-C-12 J = 3-2 data from the Purple Mountain Observatory and APEX telescopes suggest a relatively typical cloud interior. The atomic, ionic, and molecular line centroid velocities track each other very closely, and indicate that the cloud may be undergoing differential radial motion. The Hi data from the Arecibo GALFA survey and the SOFIA/GREAT [C II] data do not suggest any systematic motion of the halo gas, relative to the dense central portion of the cloud traced by (CO)-C-12 and (CO)-C-13. C1 [Goldsmith, Paul F.; Pineda, Jorge L.; Langer, William D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Liu, Tie] Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 34055, South Korea. [Requena-Torres, Miguel] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Ricken, Oliver; Riquelme, Denise] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Goldsmith, PF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM paul.f.goldsmith@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA) FX We express our gratitude to the Staff at Qinghai Station of the Purple Mountain Observatory for carrying out the observations of the 1-0 transitions of carbon monoxide. We are grateful to the staff of the Korean VLBI Network (KVN). The KVN is a facility operated by the Korea Astronomy and Space Science Institute. We thank Josh Peek and Marko Krco for assistance with the H t data and its interpretation, and B.-G. Anderson for discussions about the H t in L1599B. We are grateful to Franck Le Petit and Jacques Le Bourlot for assistance with using the latest version of the Meudon PDR code. An anonymous referee made very helpful comments that improved the paper. This research was conducted at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under contract with the National Aeronautics and Space Administration (NASA). (C) 2016 California Institute of Technology. NR 50 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 141 DI 10.3847/0004-637X/824/2/141 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800077 ER PT J AU Hirao, Y Udalski, A Sumi, T Bennett, DP Bond, IA Rattenbury, N Suzuki, D Koshimoto, N Abe, F Asakura, Y Bhattacharya, A Freeman, M Fukui, A Itow, Y Li, MCA Ling, CH Masuda, K Matsubara, Y Matsuo, T Muraki, Y Nagakane, M Ohnishi, K Oyokawa, H Saito, T Sharan, A Shibai, H Sullivan, DJ Tristram, PJ Yonehara, A Poleski, R Skowron, J Mroz, P Szymanski, MK Kozlowski, S Pietrukowicz, P Soszynski, I Wyrzykowski, L Ulaczyk, K AF Hirao, Y. Udalski, A. Sumi, T. Bennett, D. P. Bond, I. A. Rattenbury, N. Suzuki, D. Koshimoto, N. Abe, F. Asakura, Y. Bhattacharya, A. Freeman, M. Fukui, A. Itow, Y. Li, M. C. A. Ling, C. H. Masuda, K. Matsubara, Y. Matsuo, T. Muraki, Y. Nagakane, M. Ohnishi, K. Oyokawa, H. Saito, To. Sharan, A. Shibai, H. Sullivan, D. J. Tristram, P. J. Yonehara, A. Poleski, R. Skowron, J. Mroz, P. Szymanski, M. K. Kozlowski, S. Pietrukowicz, P. Soszynski, I. Wyrzykowski, L. Ulaczyk, K. CA MOA Collaboration OGLE Collaboration TI OGLE-2012-BLG-0724LB: A SATURN-MASS PLANET AROUND AN M DWARF SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID MICROLENSING OPTICAL DEPTH; PARALLAX SATELLITE MASS; GALACTIC BULGE; HIGH-MAGNIFICATION; HOST STAR; OGLE-2005-BLG-169; EVENTS; CONFIRMATION; METHODOLOGY; EXTINCTION AB We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high-cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio q = (1.58 +/- 0.15) x 10(-3). By conducting a Bayesian analysis, we estimate that the host star is an M dwarf with a mass of ML = 0.29 M M located at D-L = 6.7(-1.2)(+1.1) kpc away from the Earth and the companion's mass is mp = 0.47(-0.26)(+0.54) M-jup. The projected planet host separation is a(L) = 1.6 AU. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M dwarf, and such systems are commonly detected by gravitational microlensing. This adds another example of a possible pileup of sub-Jupiters (0.2 < m(p)/M-jup < 1) in contrast to a lack of Jupiters (similar to 1-2 M-jup) around M dwarfs, supporting the prediction by core accretion models that Jupiter mass or more massive planets are unlikely to form around M dwarfs. C1 [Hirao, Y.; Sumi, T.; Koshimoto, N.; Matsuo, T.; Nagakane, M.; Shibai, H.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. [Udalski, A.; Skowron, J.; Mroz, P.; Szymanski, M. K.; Kozlowski, S.; Pietrukowicz, P.; Soszynski, I.; Wyrzykowski, L.] Univ Warsaw Observ, A1 Ujazdowski 4, PL-00478 Warsaw, Poland. [Bennett, D. P.; Suzuki, D.; Bhattacharya, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bennett, D. P.; Suzuki, D.] NASA, Goddard Space Flight Ctr, Lab Exoplanets & Stellar Astrophys, Greenbelt, MD 20771 USA. [Bond, I. A.; Freeman, M.; Li, M. C. A.; Ling, C. H.; Sharan, A.] Massey Univ, Inst Informat & Math Sci, North Shore Mail Ctr, Private Bag 102-904, Auckland, New Zealand. [Rattenbury, N.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland, New Zealand. [Abe, F.; Asakura, Y.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Oyokawa, H.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, 3037-5 Honjo, Kamogatacho, Okayama 7190232, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Tristram, P. J.] Mt John Univ Observ, POB 56, Lake Tekapo 8770, New Zealand. [Yonehara, A.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan. [Poleski, R.] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. [Ulaczyk, K.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. RP Hirao, Y (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. RI Kozlowski, Szymon/G-4799-2013; Skowron, Jan/M-5186-2014 OI Kozlowski, Szymon/0000-0003-4084-880X; Skowron, Jan/0000-0002-2335-1730 FU JSPS [JSPS23103002, JSPS24253004, JSPS26247023]; National Science Centre, Poland [MAESTRO 2014/14/A/ST9/ 00121]; NSF [AST-1009621, AST-1211875]; NASA [NNX12AF54G, NNX13AF64G]; Marsden Fund of the Royal Society of New Zealand [MAU1104]; Royal Society of New Zealand Rutherford Discovery Fellow; Royal Society of New Zealand; [JSPS25103508]; [23340064] FX T.S. acknowledges the financial support from the JSPS, JSPS23103002, JSPS24253004, and JSPS26247023. The MOA project is supported by grants JSPS25103508 and 23340064. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/ 00121 to A.U. The OGLE Team thanks Profs. M. Kubiak and G. Pietrzyriski, former members of the OGLE team, for their contribution to the collection of the OGLE photometric data over the past years. D.P.B. acknowledges support from NSF grants AST-1009621 and AST-1211875, as well as NASA grants NNX12AF54G and NNX13AF64G. Work by I.A.B. was supported by the Marsden Fund of the Royal Society of New Zealand, contract no. MAU1104. N.J.R. is a Royal Society of New Zealand Rutherford Discovery Fellow. A.S., M.L., and M.D. acknowledge support from the Royal Society of New Zealand. A.S. is a University of Auckland Doctoral Scholar. N.K. is supported by Grant-in-Aid for JSPS Fellows. NR 45 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 139 DI 10.3847/0004-637X/824/2/139 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800075 ER PT J AU Hosokawa, T Hirano, S Kuiper, R Yorke, HW Omukai, K Yoshida, N AF Hosokawa, Takashi Hirano, Shingo Kuiper, Rolf Yorke, Harold W. Omukai, Kazuyuki Yoshida, Naoki TI FORMATION OF MASSIVE PRIMORDIAL STARS: INTERMITTENT UV FEEDBACK WITH EPISODIC MASS ACCRETION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; cosmology: theory; early universe; galaxies: formation; stars: formation ID SUPERMASSIVE BLACK-HOLES; POPULATION III BINARIES; LAMBDA-CDM UNIVERSE; 1ST STARS; MAGNETIC-FIELDS; DISK ACCRETION; HYDRODYNAMICS SIMULATIONS; GRAVITATIONAL-INSTABILITY; PROTOSTELLAR ACCRETION; VIRIAL TEMPERATURES AB We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 M-circle dot less than or similar to M-* less than or similar to 10(3) M-circle dot The formation of very massive (greater than or similar to 250 M-circle dot) stars is possible under weak UV feedback, whereas ordinary massive (a few x10 M-circle dot) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 M-circle dot yr(-1), causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H II region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars. C1 [Hosokawa, Takashi] Univ Tokyo, Res Ctr Early Universe, Tokyo 1130033, Japan. [Hosokawa, Takashi; Hirano, Shingo; Yoshida, Naoki] Univ Tokyo, Sch Sci, Dept Phys, Tokyo 1130033, Japan. [Kuiper, Rolf] Univ Tubingen, Inst Astron & Astrophys, Morgenstelle 10, D-72076 Tubingen, Germany. [Yorke, Harold W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Omukai, Kazuyuki] Tohoku Univ, Astron Inst, Sendai, Miyagi 9808578, Japan. [Yoshida, Naoki] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Chiba 2778583, Japan. RP Hosokawa, T (reprint author), Univ Tokyo, Res Ctr Early Universe, Tokyo 1130033, Japan.; Hosokawa, T (reprint author), Univ Tokyo, Sch Sci, Dept Phys, Tokyo 1130033, Japan. EM takashi.hosokawa@phys.s.u-tokyo.ac.jp FU Ministry of Education, Science and Culture of Japan [25800102, 15H00776, 25287040, 25287050]; Emmy Noether Research Group on "Accretion Flows and Feedback in Realistic Models of Massive Star Formation" - German Research Foundation (DFG) [KU 2849/3-1] FX The authors thank Hajime Susa, Eduard Vorobyov, Masayuki Umemura, Shu-ichiro Inutsuka, and Ken Nomoto for fruitful discussions and comments. The numerical simulations were performed on the Cray XC30 at the Center for Computational Astrophysics, CfCA, of the National Astronomical Observatory of Japan. Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). This work was financially supported by the Grants-in-Aid for Basic Research by the Ministry of Education, Science and Culture of Japan (25800102, 15H00776: TH, 25287040: KO, 25287050: NY) and by Grant-in-Aid for JSPS Fellows (SH). RK acknowledges funding within the Emmy Noether Research Group on "Accretion Flows and Feedback in Realistic Models of Massive Star Formation" granted by the German Research Foundation (DFG) under grant no. KU 2849/3-1. NR 112 TC 12 Z9 12 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 119 DI 10.3847/0004-637X/824/2/119 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800055 ER PT J AU Loyd, ROP France, K Youngblood, A Schneider, C Brown, A Hu, RY Linsky, J Froning, CS Redfield, S Rugheimer, S Tian, F AF Loyd, R. O. P. France, Kevin Youngblood, Allison Schneider, Christian Brown, Alexander Hu, Renyu Linsky, Jeffrey Froning, Cynthia S. Redfield, Seth Rugheimer, Sarah Tian, Feng TI THE MUSCLES TREASURY SURVEY. III. X-RAY TO INFRARED SPECTRA OF 11 M AND K STARS HOSTING PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: low-mass; ultraviolet: stars; X-rays: stars ID EARTH-LIKE PLANETS; SOLAR-TYPE STARS; POTENTIALLY HABITABLE PLANETS; FAR-ULTRAVIOLET CONTINUUM; EXOPLANET GJ 436B; M-DWARF STARS; PROPER-MOTION; SUPER-EARTHS; STELLAR PARAMETERS; SPACE-TELESCOPE AB We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 angstrom -5.5 mu m). These SEDs are composites of Chandra or XMM-Newton data from 5-similar to 50 angstrom, a plasma emission model from similar to 50-100 angstrom, broadband empirical estimates from 100-1170 angstrom, Hubble Space Telescope data from 1170-5700 angstrom, including a reconstruction of stellar Ly alpha emission at 1215.67 angstrom, and a PHOENIX model spectrum from 5700-55000 angstrom. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star's unattenuated flux ("unshielded" photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O-3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star epsilon Eri that shows an edge likely attributable to Si II recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres. C1 [Loyd, R. O. P.; France, Kevin; Youngblood, Allison] Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Schneider, Christian] European Space Res & Technol Ctr ESA ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Brown, Alexander] Univ Colorado, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. [Hu, Renyu] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hu, Renyu] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Linsky, Jeffrey] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA. [Linsky, Jeffrey] NIST, 440 UCB, Boulder, CO 80309 USA. [Froning, Cynthia S.] Univ Texas Austin, Dept Astron C1400, Austin, TX 78712 USA. [Redfield, Seth] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Redfield, Seth] Wesleyan Univ, Van Vleck Observ, Middletown, CT 06459 USA. [Rugheimer, Sarah] Univ St Andrews, Dept Earth & Environm Sci, Irvine Bldg,North St, St Andrews KY16 9AL, Fife, Scotland. [Tian, Feng] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China. RP Loyd, ROP (reprint author), Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM robert.loyd@colorado.edu RI Tian, Feng/C-1344-2015; OI Tian, Feng/0000-0002-9607-560X; Rugheimer, Sarah/0000-0003-1620-7658; Redfield, Seth/0000-0003-3786-3486; FRANCE, KEVIN/0000-0002-1002-3674 FU National Aeronautics and Space Administration; National Science Foundation; Simons Foundation [339489]; National Natural Science Foundation of China [41175039]; Startup Fund of the Ministry of Education of China [20131029170]; Smithsonian Astrophysical Observatory [GO4-15014X, GO5-16155X]; NASA XMM grant [NNX16AC09G]; HST Guest Observing programs [12464, 13650]; COS Science Team Guaranteed Time programs [12034, 12035]; NASA [HST-GO-12464.01, HST-GO-13650.01] FX The data presented here were obtained as part of the HST Guest Observing programs #12464 and #13650 as well as the COS Science Team Guaranteed Time programs #12034 and #12035. This work was supported by NASA grants HST-GO-12464.01 and HST-GO-13650.01 to the University of Colorado at Boulder. We thank Tom Woods and Chris Moore for useful discussions that provided a solar context to the work. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. S.R. would like to acknowledge support from the Simons Foundation (339489, Rugheimer). F.T. is supported by the National Natural Science Foundation of China (41175039) and the Startup Fund of the Ministry of Education of China (20131029170). This work was partially supported by Chandra grants GO4-15014X and GO5-16155X from Smithsonian Astrophysical Observatory and NASA XMM grant NNX16AC09G. NR 141 TC 5 Z9 5 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 102 DI 10.3847/0004-637X/824/2/102 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800038 ER PT J AU Miles, BE Roberge, A Welsh, B AF Miles, Brittany E. Roberge, Aki Welsh, Barry TI UV SPECTROSCOPY OF STAR-GRAZING COMETS WITHIN THE 49 CETI DEBRIS DISK SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; protoplanetary disks; stars: individual (49 Ceti) ID PICTORIS CIRCUMSTELLAR DISK; INFALLING EVAPORATING BODIES; A-TYPE STARS; BETA-PICTORIS; ABSORPTION-LINES; GAS; CO; ELEMENTS; SYSTEM AB We present the analysis of time-variable Doppler-shifted absorption features in far-UV spectra of the unusual 49. Ceti debris disk. This nearly edge-on disk is one of the brightest known and is one of the very few containing detectable amounts of circumstellar (CS) gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from CII and CIV but not for any of the other CS absorption lines. Similar variable features have long been seen in spectra of the well-studied beta Pictoris debris disk and attributed to the transits of star-grazing comets. We calculated the velocity ranges and apparent column densities of the 49. Cet variable gas, which appears to have been moving at velocities of tens to hundreds of km. s(-1) relative to the central star. The velocities in the redshifted variable event seen in the second visit show that the maximum distances of the infalling gas at the time of transit were about 0.05-0.2 au from the central star. A preliminary attempt at a composition analysis of the redshifted event suggests that the C/O ratio in the infalling gas is super-solar, as it is in the bulk of the stable disk gas. C1 [Miles, Brittany E.] Univ Calif Los Angeles, Dept Phys & Astron, 430 Portola Plaza,Box 951547, Los Angeles, CA 90095 USA. [Roberge, Aki] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Welsh, Barry] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. RP Roberge, A (reprint author), NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. EM Aki.Roberge@nasa.gov OI Roberge, Aki/0000-0002-2989-3725 FU NASA through the Space Telescope Science Institute [GO-12901]; Goddard Center for Astrobiology, NASA Astrobiology Institute; NASA [NAS5-26555] FX Support for program number GO-12901 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. A.R. also acknowledges support by the Goddard Center for Astrobiology, part of the NASA Astrobiology Institute. NR 19 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 126 DI 10.3847/0004-637X/824/2/126 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800062 ER PT J AU Novati, SC Scarpetta, G AF Novati, S. Calchi Scarpetta, G. TI MICROLENSING PARALLAX FOR OBSERVERS IN HELIOCENTRIC MOTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro ID SPITZER OBSERVATIONS; MACHO PARALLAXES; GALACTIC BULGE; SATELLITE; PLANET; MISSION; OGLE-2005-BLG-169; EVENTS; STAR; CONFIRMATION AB Motivated by the ongoing Spitzer observational campaign, and the forthcoming K2 one, we revisit, working in an heliocentric reference frame, the geometrical foundation for the analysis of the microlensing parallax, as measured with the simultaneous observation of the same microlensing event from two observers with relative distance of order au. For the case of observers at rest, we discuss the well-known fourfold microlensing parallax degeneracy and determine an equation for the degenerate directions of the lens trajectory. For the case of observers in motion, we write down an extension of the Gould relationship between the microlensing parallax and the observable quantities and, at the same time, highlight the functional dependence of these same quantities from the timescale of the underlying microlensing event. Furthermore, through a series of examples, we show the importance of taking into account themotion of the observers to correctly recover the parameters of the underlying microlensing event. In particular, we discuss the cases of the amplitude of the microlensing parallax and that of the difference of the timescales between the observed microlensing events, which are key to understand the breaking of the microlensing parallax degeneracy. Finally, we consider the case of the simultaneous observation of the same microlensing event from the ground and two satellites, a case relevant for the expected joint K2 and Spitzer observational programs in 2016. C1 [Novati, S. Calchi] CALTECH, NASA, Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA. [Novati, S. Calchi; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo 2, I-84084 Fisciano, SA, Italy. [Novati, S. Calchi; Scarpetta, G.] IIASS, Via G Pellegrino 19, I-84019 Vietri Sul Mare, SA, Italy. RP Novati, SC (reprint author), CALTECH, NASA, Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA.; Novati, SC (reprint author), Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo 2, I-84084 Fisciano, SA, Italy.; Novati, SC (reprint author), IIASS, Via G Pellegrino 19, I-84019 Vietri Sul Mare, SA, Italy. FU JPL grant [1500811] FX We thank A. Gould for valuable discussions. SCN acknowledges support by JPL grant 1500811. GS thanks NExScI for hospitality at Caltech during part of this work. NR 42 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 109 DI 10.3847/0004-637X/824/2/109 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800045 ER PT J AU Sengupta, S Marley, MS AF Sengupta, Sujan Marley, Mark S. TI DETECTING EXOMOONS AROUND SELF-LUMINOUS GIANT EXOPLANETS THROUGH POLARIZATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: planetary systems; occultations; planets and satellites: atmospheres; planets and satellites: detection; polarization; scattering ID EXTRASOLAR PLANETS; BETA-PICTORIS; BROWN DWARFS; T DWARFS; TRANSITS; ATMOSPHERES; POLARIMETRY; CLOUDS; MOTION; MASS AB Many of the directly imaged self-luminous gas-giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk-averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk-averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with a cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time-resolved linear polarization signal. The peak amplitude of such time- dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time- resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity that are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1% and 0.3% in the infrared. C1 [Sengupta, Sujan] Indian Inst Astrophys, Koramangala 2nd Block, Bangalore 560034, Karnataka, India. [Marley, Mark S.] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. RP Sengupta, S (reprint author), Indian Inst Astrophys, Koramangala 2nd Block, Bangalore 560034, Karnataka, India. EM sujan@iiap.res.in; Mark.S.Marley@NASA.gov NR 39 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 76 DI 10.3847/0004-637X/824/2/76 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800012 ER PT J AU Younes, G Kouveliotou, C Kargaltsev, O Gill, R Granot, J Watts, AL Gelfand, J Baring, MG Harding, A Pavlov, GG van der Horst, AJ Huppenkothen, D Gogus, E Lin, L Roberts, OJ AF Younes, G. Kouveliotou, C. Kargaltsev, O. Gill, R. Granot, J. Watts, A. L. Gelfand, J. Baring, M. G. Harding, A. Pavlov, G. G. van der Horst, A. J. Huppenkothen, D. Gogus, E. Lin, L. Roberts, O. J. TI THE WIND NEBULA AROUND MAGNETAR SWIFT J1834.9-0846 SO ASTROPHYSICAL JOURNAL LA English DT Article ID X-RAY-EMISSION; SOFT GAMMA-REPEATERS; QUASI-PERIODIC OSCILLATIONS; XMM-NEWTON OBSERVATIONS; SHORT RECURRING BURSTS; NEUTRON-STARS; GIANT FLARE; SGR 1806-20; GALACTIC-CENTER; RADIO OBSERVATIONS AB We report on the analysis of two deep XMM-Newton observations of the magnetar Swift J1834.9-0846 and its surrounding extended emission taken in 2014 March and October, 2.5 and 3.1 yr after the source went into outburst. The magnetar is only weakly detected in the first observation, with an absorption-corrected flux F0.5-10 keV approximate to 4 x 10(-14) erg s(-1) cm 2 and a 3 sigma upper limit during the second observation of about 3 x 10(-14) erg s(-1) cm. This flux level is more than 3 orders of magnitude lower than the flux measured at the outburst onset in 2011 September. The extended emission, centered at the magnetar position and elongated toward the southwest, is clearly seen in both observations; it is best fit by a highly absorbed power law (PL), with a hydrogen column density of N-H = 8.0 x 1022 cm(-2) and PL photon index Gamma = 2.2 +/- 0.2. Its flux is constant between the two observations at F0.5-10 keV = 1.3 x 10(-12) erg s-1 cm(-2). We find no statistically significant changes in the spectral shape or the flux of this extended emission over a period of 9 yr from 2005 to 2014. These new results strongly support the extended emission nature as a wind nebula and firmly establish Swift J1834.9-0846 as the first magnetar to show a surrounding wind nebula. Further, our results imply that such nebulae are no longer exclusive to rotation-powered pulsars and narrow the gap between these two subpopulations of isolated neutron stars. The size and spectrum of the nebula are compatible with those of pulsar-wind nebulae, but its radiative efficiency eta(x) = L-x/E 0.1 is markedly high, possibly pointing to an additional wind component in Swift J1834.9-0846. C1 [Younes, G.; Kouveliotou, C.; Kargaltsev, O.; van der Horst, A. J.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Gill, R.; Granot, J.] Open Univ Israel, Dept Nat Sci, 1 Univ Rd,POB 808, IL-43537 Raanana, Israel. [Watts, A. L.] Univ Amsterdam, Astron Inst Anton Pannekoek, Postbus 94249, NL-1090 GE Amsterdam, Netherlands. [Gelfand, J.] NYU Abu Dhabi, POB 903, New York, NY 10276 USA. [Baring, M. G.] Rice Univ, Dept Phys & Astron, MS-108,POB 1892, Houston, TX 77251 USA. [Harding, A.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pavlov, G. G.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Huppenkothen, D.] NYU, Ctr Data Sci, 726 Broadway,7th Floor, New York, NY 10003 USA. [Huppenkothen, D.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Gogus, E.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Lin, L.] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Roberts, O. J.] Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland. RP Younes, G (reprint author), George Washington Univ, Dept Phys, Washington, DC 20052 USA. RI Roberts, Oliver/N-6284-2016 OI Roberts, Oliver/0000-0002-7150-9061 FU ESA; WO Vidi [639.042.916]; Science Foundation Ireland [12/IP/1288]; NASA [NNHO7ZDA001-GLAST]; Israeli Science Foundation [719/14]; Postdoctoral Researcher Fellowship at the Open University of Israel FX Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. A.L.W. acknowledges support from NWO Vidi Grant No. 639.042.916. O.J.R. acknowledges support from Science Foundation Ireland under Grant No. 12/IP/1288. C.K. and G.Y. acknowledge support by NASA through grant NNHO7ZDA001-GLAST (PI: C. Kouveliotou). G.Y. thanks Dale Frail for insightful discussions on this project. We thank the referee for useful comments that improved the quality of the manuscript. J.G. and R.G. acknowledge support from the Israeli Science Foundation under Grant No. 719/14. R.G. is supported by an Outstanding Postdoctoral Researcher Fellowship at the Open University of Israel. NR 82 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 138 DI 10.3847/0004-637X/824/2/138 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800074 ER PT J AU Yukita, M Hornschemeier, AE Lehmer, BD Ptak, A Wik, DR Zezas, A Antoniou, V Maccarone, TJ Replicon, V Tyler, JB Venters, T Argo, MK Bechtol, K Boggs, S Christensen, FE Craig, WW Hailey, C Harrison, F Krivonos, R Kuntz, K Stern, D Zhang, WW AF Yukita, M. Hornschemeier, A. E. Lehmer, B. D. Ptak, A. Wik, D. R. Zezas, A. Antoniou, V. Maccarone, T. J. Replicon, V. Tyler, J. B. Venters, T. Argo, M. K. Bechtol, K. Boggs, S. Christensen, F. E. Craig, W. W. Hailey, C. Harrison, F. Krivonos, R. Kuntz, K. Stern, D. Zhang, W. W. TI A HARD X-RAY STUDY OF THE NORMAL STAR-FORMING GALAXY M83 WITH NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (M83); galaxies: starburst; galaxies: star formation; X-rays: galaxies ID XMM-NEWTON; STARBURST GALAXY; HOST GALAXIES; BROAD-BAND; ULTRALUMINOUS STATE; BINARY POPULATIONS; NUCLEAR STARBURST; FORMATION HISTORY; MAGELLANIC-CLOUD; CENTRAL REGION AB We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, which is consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC 253, NGC 3310, and NGC 3256. The NuSTAR observations constrain any active galactic nucleus (AGN) to be either highly obscured or to have an extremely low luminosity of less than or similar to 10(38) erg s(-1) (10-30 keV), implying that it is emitting at a very low Eddington ratio. An X-ray point source that is consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038 erg s(-1) may be a low-luminosity AGN but is more consistent with being an X-ray binary. C1 [Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.; Ptak, A.; Wik, D. R.; Kuntz, K.] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. [Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.; Ptak, A.; Wik, D. R.; Tyler, J. B.; Venters, T.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Lehmer, B. D.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Zezas, A.] Univ Crete, Dept Phys, Iraklion, Greece. [Zezas, A.; Antoniou, V.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Maccarone, T. J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Replicon, V.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Tyler, J. B.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Dept Phys, Washington, DC 20064 USA. [Argo, M. K.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Bechtol, K.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Boggs, S.; Krivonos, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hailey, C.] Columbia Univ, New York, NY USA. [Harrison, F.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Krivonos, R.] Russian Acad Sci, Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Yukita, M (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA.; Yukita, M (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. RI Boggs, Steven/E-4170-2015; Yukita, Mihoko/E-4135-2017; Zezas, Andreas/C-7543-2011; OI Boggs, Steven/0000-0001-9567-4224; Zezas, Andreas/0000-0001-8952-676X; Argo, Megan/0000-0003-3594-0214 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration [GO4-15086Z, NAS8-03060]; Russian Science Foundation [14-12-01315] FX We thank the referee for useful comments and suggests that improved this paper. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We sincerely thank Karl Forster and Brian Grefenstette for their work on the complicated stray light pattern and for assistance in designing the NuSTAR observational setup for minimizing this contamination. We also thank NuSTAR and Chandra mission planners for making the Chandra and NuSTAR observations simultaneous. We also thank P. Tzanavaris and D. Swartz for helpful discussion. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO4-15086Z issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. R.K. acknowledges support from Russian Science Foundation (grant 14-12-01315). NR 73 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 107 DI 10.3847/0004-637X/824/2/107 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800043 ER PT J AU Zahnle, K Marley, MS Morley, CV Moses, JI AF Zahnle, K. Marley, M. S. Morley, C. V. Moses, J. I. TI PHOTOLYTIC HAZES IN THE ATMOSPHERE OF 51 ERI B SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (51 Eri b) ID EXTRASOLAR GIANT PLANETS; THERMAL-DECOMPOSITION; HD 189733B; HYDROGEN-SULFIDE; BROWN DWARFS; HOT JUPITERS; SULFUR PHOTOCHEMISTRY; FLASH-PHOTOLYSIS; CARBON-MONOXIDE; CHEMICAL-MODEL AB We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter, 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S-8. In the cooler models, S-8 is predicted to condense in optically thick clouds of solid sulfur particles, while in the warmer models S-8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b. C1 [Zahnle, K.; Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Morley, C. V.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Moses, J. I.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. RP Zahnle, K (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Kevin.J.Zahnle@NASA.gov; Mark.S.Marley@NASA.gov; cmorley@ucolick.org; jmoses@spacescience.org RI Moses, Julianne/I-2151-2013 OI Moses, Julianne/0000-0002-8837-0035 FU NASA Origins Program; NASA Planetary Atmospheres Program; Virtual Planet Laboratory of the National Astrobiology Institute FX We thank Channon Visscher and Michael Line for insightful and incisive commentary, and we thank an anonymous reviewer for hinting that a previous draft of this paper that only addressed organic hazes was not really very interesting. MSM and CM gratefully acknowledge the support of the NASA Origins Program. JIM gratefully acknowledges the support of the NASA Planetary Atmospheres Program. KJZ acknowledge the support of the Virtual Planet Laboratory of the National Astrobiology Institute. NR 88 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 137 DI 10.3847/0004-637X/824/2/137 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800073 ER PT J AU Zanella, A Scarlata, C Corsini, EM Bedregal, AG Dalla Bonta, E Atek, H Bunker, AJ Colbert, J Dai, YS Henry, A Malkan, M Martin, C Rafelski, M Rutkowski, MJ Siana, B Teplitz, H AF Zanella, A. Scarlata, C. Corsini, E. M. Bedregal, A. G. Dalla Bonta, E. Atek, H. Bunker, A. J. Colbert, J. Dai, Y. S. Henry, A. Malkan, M. Martin, C. Rafelski, M. Rutkowski, M. J. Siana, B. Teplitz, H. TI THE ROLE OF QUENCHING TIME IN THE EVOLUTION OF THE MASS-SIZE RELATION OF PASSIVE GALAXIES FROM THE WISP SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; galaxies: high-redshift; galaxies: structure ID SIMILAR-TO 2; VELOCITY-DISPERSION EVOLUTION; ULTRA-DEEP-FIELD; QUIESCENT GALAXIES; ELLIPTIC GALAXIES; HIGH-REDSHIFT; POPULATION SYNTHESIS; EVOLVING GALAXIES; STELLAR MASSES; COMPACT AB We analyze how passive galaxies at z similar to 1.5 populate the mass-size plane as a function of their stellar age, to understand if the observed size growth with time can be explained with the appearance of larger quenched galaxies at lower redshift. We use a sample of 32 passive galaxies extracted from the Wide Field Camera 3 Infrared Spectroscopic Parallel (WISP) survey with spectroscopic redshift 1.3 less than or similar to z less than or similar to 2.05, specific star formation rates lower than 0.01 Gyr(-1), and stellar masses above 4.5 x 10(10) M-circle dot. All galaxies have spectrally determined stellar ages from fitting of their rest-frame optical spectra and photometry with stellar population models. When dividing our sample into young (age <= 2.1 Gyr) and old (age >= 2.1 Gyr) galaxies we do not find a significant trend in the distributions of the difference between the observed radius and that predicted by the mass-size relation. This result indicates that the relation between the galaxy age and its distance from the mass-size relation, if it exists, is rather shallow, with a slope alpha greater than or similar to -0.6. At face value, this finding suggests that multiple dry and/or wet minor mergers, rather than the appearance of newly quenched galaxies, are mainly responsible for the observed time evolution of the mass-size relation in passive galaxies. C1 [Zanella, A.; Scarlata, C.; Rutkowski, M. J.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Zanella, A.; Corsini, E. M.; Dalla Bonta, E.] Univ Padua, Dipartimento Fis & Astron G Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Zanella, A.] Univ Paris Diderot, CEA Saclay, CEA DSM CNRS, Irfu Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. [Corsini, E. M.; Dalla Bonta, E.] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Bedregal, A. G.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Atek, H.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Bunker, A. J.] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. [Bunker, A. J.] Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Colbert, J.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Dai, Y. S.] Infrared Proc & Anal Ctr, 770 South Wilson Ave, Pasadena, CA 91125 USA. [Henry, A.; Rafelski, M.] Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Malkan, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Martin, C.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Siana, B.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Teplitz, H.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. RP Zanella, A (reprint author), Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA.; Zanella, A (reprint author), Univ Padua, Dipartimento Fis & Astron G Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy.; Zanella, A (reprint author), Univ Paris Diderot, CEA Saclay, CEA DSM CNRS, Irfu Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. EM anita.zanella@cea.fr; cmartin@physics.ucsb.edu OI Zanella, Anita/0000-0001-8600-7008 FU Padua University [60A02-5857/13, 60A02-5833/14, 60A02-4434/15, CPDA133894] FX We thank the referee for constructive comments that improved the analysis of the results. We thank Francesco Valentino, Emeric Le Floc'h, and Emanuele Daddi for useful discussions. E.M.C. and E.D.B. are supported by Padua University through grants 60A02-5857/13, 60A02-5833/14, 60A02-4434/15, and CPDA133894. NR 51 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 68 DI 10.3847/0004-637X/824/2/68 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800004 ER PT J AU Zhao, YH Yan, L Tsai, CW AF Zhao, Yinghe Yan, Lin Tsai, Chao-Wei TI PROPERTIES OF INTERSTELLAR MEDIUM IN INFRARED-BRIGHT QSOs PROBED BY [O I] 63 mu m AND [C II] 158 mu m EMISSION LINES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: ISM; galaxies: starburst; infrared: galaxies; quasars: general ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; STAR-FORMING GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; MASSIVE MOLECULAR OUTFLOWS; HUBBLE-SPACE-TELESCOPE; SIMILAR-TO 1-2; HIGH-REDSHIFT; SUBMILLIMETER GALAXIES; EARLY UNIVERSE AB We present a study of the interstellar medium (ISM) in the host galaxies of nine QSOs at 0.1 < z < 0.2 with black hole masses of 3 x 10(7) M-circle dot to 3 x 10(9) M-circle dot based on the far-IR spectroscopy taken with Herschel Space Observatory. We detect the [O I] 63 mu m ([C II] 158 mu m) emission in 6 (8) out of 8 (9) sources. Our QSO sample has far-infrared luminosities (L-FIR) similar to several times 10(11) L-circle dot. The observed line-to-L-FIR ratios (L-[OI]63 mu m/L-FIR and L-[C (II])/L-FIR) are in the ranges of 2.6 x 10(-4) to 10(-2) and 2.8 x 10(-4) to 2 x 10(-3), respectively (including upper limits). These ratios are comparable to the values found in local ULIRGs, but higher than the average value published so far for z > 1 IR-bright QSOs. One target, W0752+19, shows an additional broad velocity component (similar to 720 km s(-1)) and exceptionally strong [O I] 63 mu m emission with L-[O I]63 mu m/L-FIR of 10(-2), an order of magnitude higher than the average value found among local (U)LIRGs. Combining with the analyses of the Sloan Digital Sky Survey optical spectra, we conclude that the [O I] 63 mu m emission in these QSOs is unlikely excited by shocks. We infer that the broad [O I] 63 mu m emission in W0752+19 could arise from the warm and dense ISM in the narrow-line region of the central active galactic nucleus. Another possible explanation is the existence of a dense gas outflow with n(H) similar to 10(4) cm(-3),where the corresponding broad [C II] emission is suppressed. Based on the far-IR [O I] and [C II] line ratios, we estimate constraints on the ISM density and UV radiation field intensity of n(H) less than or similar to 10(3.3) cm(-3) and 10(3) < G(0)less than or similar to 10(4.2), respectively. These values are consistent with those found in local Seyfert 1 ULIRGs. In contrast, the gas with broad velocity width in W0752+19 has n(H) greater than or similar to 10(4.3) cm(-3) and G(0) > 10(4). C1 [Zhao, Yinghe; Yan, Lin] Calif Inst Technol 100 22, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Zhao, Yinghe] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China. [Zhao, Yinghe] Chinese Acad Sci, Key Lab Radio Astron, Nanjing 210008, Jiangsu, Peoples R China. [Tsai, Chao-Wei] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Zhao, YH (reprint author), Calif Inst Technol 100 22, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.; Zhao, YH (reprint author), Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China.; Zhao, YH (reprint author), Chinese Acad Sci, Key Lab Radio Astron, Nanjing 210008, Jiangsu, Peoples R China. EM zhaoyinghe@gmail.com FU National Natural Science Foundation of China [11390373, 11420101002]; CAS pilot-b project [XDB09000000]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; National Aeronautics and Space Administration FX We thank the anonymous referee for her/his careful reading of the manuscript and the constructive comments/suggestions, which have helped to improve the paper. We also thank Dr. M.G. Wolfire for helpful discussion. Y.Z. is partially supported by the National Natural Science Foundation of China under grant nos. 11390373 and 11420101002, and the CAS pilot-b project #XDB09000000. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This paper also utilized the publicly available SDSS data sets. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 81 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2016 VL 824 IS 2 AR 146 DI 10.3847/0004-637X/824/2/146 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DU0RS UT WOS:000381912800082 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Andeen, K Anderson, T Ansseau, I Anton, G Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blot, S Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Burgman, A Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, GH Conrad, JM Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC di Lorenzo, V Dujmovic, H Dumm, JP Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Flis, S Fosig, CC Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gladstone, L Glagla, M Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hansmann, T Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jones, BJP Jurkovic, M Kappes, A Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kim, M Kintscher, T Kiryluk, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, M Kruckl, G Kruger, C Kunnen, J Kunwar, S Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lennarz, D Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mancina, S Mandelartz, M Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meier, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Penek, O Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Sabbatini, L Sandrock, A Sandroos, J Sarkar, S Satalecka, K Schimp, M Schlunder, P Schmidt, T Schoenen, S Schoneberg, S Schonwald, A Schumacher, L Seckel, D Seunarine, S Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Rossem, M van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wickmann, S Wiebe, K Wiebusch, CH Wille, L Williams, DR Wills, L Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Andeen, K. Anderson, T. Ansseau, I. Anton, G. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blot, S. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Burgman, A. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Collin, G. H. Conrad, J. M. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. del Pino Rosendo, E. Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. di Lorenzo, V. Dujmovic, H. Dumm, J. P. Dunkman, M. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Flis, S. Foesig, C. -C. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hansmann, T. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jones, B. J. P. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Katz, U. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kim, M. Kintscher, T. Kiryluk, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, M. Kruckl, G. Krueger, C. Kunnen, J. Kunwar, S. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lennarz, D. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Luenemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mancina, S. Mandelartz, M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meier, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Penek, O. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Sabbatini, L. Sandrock, A. Sandroos, J. Sarkar, S. Satalecka, K. Schimp, M. Schlunder, P. Schmidt, T. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schumacher, L. Seckel, D. Seunarine, S. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stossl, A. Stroem, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Rossem, M. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wickmann, S. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wills, L. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. CA IceCube Collaboration TI LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astroparticle physics; neutrinos ID COSMIC-RAYS; GAMMA-RAY; NEUTRINO TELESCOPE; ASTROPHYSICS AB Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background. C1 [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Blot, S.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kintscher, T.; Kowalski, M.; Kunwar, S.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stossl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch 1, New Zealand. [Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Fac Sci, CP230, B-1050 Brussels, Belgium. [Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Altmann, D.; Anton, G.; Classen, L.; Kappes, A.; Katz, U.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Andeen, K.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. [Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Anderson, T.; Archinger, M.; Baum, V.; Boeser, S.; del Pino Rosendo, E.; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C. -C.; Koepke, L.; Kruckl, G.; Sandroos, J.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Arguelles, C.; Collin, G. H.; Conrad, J. M.; Jones, B. J. P.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Auffenberg, J.; Bissok, M.; Glagla, M.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, O.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wickmann, S.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Tatar, J.; Whitehorn, N.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Berg Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [BenZvi, S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boersma, D. J.; Botner, O.; Burgman, A.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Bose, D.; Dujmovic, H.; In, S.; Jeong, M.; Kim, M.; Rott, C.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Luenemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Clark, K.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Lennarz, D.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Homeier, A.; Voge, M.] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Kurahashi, N.; Richman, M.; Wills, L.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Sarkar, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Aartsen, MG (reprint author), Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. RI Tjus, Julia/G-8145-2012; Maruyama, Reina/A-1064-2013; Anton, Gisela/C-4840-2013; Beatty, James/D-9310-2011; Katz, Uli/E-1925-2013; Wiebusch, Christopher/G-6490-2012; Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; OI Maruyama, Reina/0000-0003-2794-512X; Anton, Gisela/0000-0003-2039-4724; Beatty, James/0000-0003-0481-4952; Katz, Uli/0000-0002-7063-4418; Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; Perez de los Heros, Carlos/0000-0002-2084-5866 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF), Denmark FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF), Denmark. NR 42 TC 3 Z9 3 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2016 VL 824 IS 2 AR L28 DI 10.3847/2041-8205/824/2/L28 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DP0GU UT WOS:000378168200012 ER PT J AU Ackermann, M Anantua, R Asano, K Baldini, L Barbiellini, G Bastieri, D Gonzalez, JB Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Bruel, P Buehler, R Caliandro, GA Cameron, RA Caragiulo, M Caraveo, PA Cavazzuti, E Cecchi, C Cheung, CC Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Costanza, F Cutini, S D'Ammando, F De Palma, F Desiante, R Digel, SW Di Lalla, N Di Mauro, M Di Venere, L Drell, PS Favuzzi, C Fegan, SJ Ferrara, EC Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giordano, F Giroletti, M Grenier, IA Guillemot, L Guiriec, S Hayashida, M Hays, E Horan, D Johannesson, G Kensei, S Kocevski, D Kuss, M La Mura, G Larsson, S Latronico, L Li, J Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Magill, JD Maldera, S Manfreda, A Mayer, M Mazziotta, MN Michelson, PF Mirabal, N Mizuno, T Monzani, ME Morselli, A Moskalenko, IV Nalewajko, K Negro, M Nuss, E Ohsugi, T Orlando, E Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Principe, G Rando, R Razzano, M Razzaque, S Reimer, A Scargle, JD Sgro, C Sikora, M Simone, D Siskind, EJ Spada, F Spinelli, P Stawarz, L Thayer, JB Thompson, DJ Torres, DF Troja, E Uchiyama, Y Yuan, Y Zimmer, S AF Ackermann, M. Anantua, R. Asano, K. Baldini, L. Barbiellini, G. Bastieri, D. Gonzalez, J. Becerra Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Bruel, P. Buehler, R. Caliandro, G. A. Cameron, R. A. Caragiulo, M. Caraveo, P. A. Cavazzuti, E. Cecchi, C. Cheung, C. C. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Costanza, F. Cutini, S. D'Ammando, F. De Palma, F. Desiante, R. Digel, S. W. Di Lalla, N. Di Mauro, M. Di Venere, L. Drell, P. S. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giordano, F. Giroletti, M. Grenier, I. A. Guillemot, L. Guiriec, S. Hayashida, M. Hays, E. Horan, D. Johannesson, G. Kensei, S. Kocevski, D. Kuss, M. La Mura, G. Larsson, S. Latronico, L. Li, J. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Magill, J. D. Maldera, S. Manfreda, A. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mirabal, N. Mizuno, T. Monzani, M. E. Morselli, A. Moskalenko, I. V. Nalewajko, K. Negro, M. Nuss, E. Ohsugi, T. Orlando, E. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Principe, G. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Scargle, J. D. Sgro, C. Sikora, M. Simone, D. Siskind, E. J. Spada, F. Spinelli, P. Stawarz, L. Thayer, J. B. Thompson, D. J. Torres, D. F. Troja, E. Uchiyama, Y. Yuan, Y. Zimmer, S. TI MINUTE-TIMESCALE > 100 MeV gamma-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: jets; gamma rays: galaxies; quasars: individual (3C 279); radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; MULTIWAVELENGTH OBSERVATIONS; RAPID VARIABILITY; RELATIVISTIC JET; CRAB-NEBULA; EMISSION; BLAZARS; RADIATION; FLARES; LOCATION AB On 2015 June 16, Fermi- LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak >100 MeV flux of similar to 3.6 x 10(-5) photons cm(-2) s(-1), averaged over orbital period intervals. It is historically the highest gamma-ray flux observed from the source, including past EGRET observations, with the gamma-ray isotropic luminosity reaching similar to 10(49) erg s(-1). During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi- LAT. The source flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Gamma) of 35 is necessary to avoid both internal gamma-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization scenario, G should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this predicts extremely low magnetization (similar to 5 x 10(-4)). Equipartition requires Gamma as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider. rays originating as synchrotron radiation of gamma e similar to 1.6 x 10(6) electrons, in a magnetic field B similar to 1.3 kG, accelerated by strong electric fields E similar to B in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production of gamma-rays in hadronic processes. C1 [Ackermann, M.; Buehler, R.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Anantua, R.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Yuan, Y.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Anantua, R.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Thayer, J. B.; Yuan, Y.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.; Bellazzini, R.; Di Lalla, N.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Chiaro, G.; La Mura, G.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Gonzalez, J. Becerra; Ferrara, E. C.; Hays, E.; Kocevski, D.; Mirabal, N.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gonzalez, J. Becerra; Magill, J. D.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, J. Becerra; Magill, J. D.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bissaldi, E.; Caragiulo, M.; Costanza, F.; De Palma, F.; Di Venere, L.; Favuzzi, C.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Simone, D.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Negro, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.; Negro, M.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.] ASI, Sci Data Ctr, I-00133 Rome, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Cheung, C. C.; Lovellette, M. N.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Cohen-Tanugi, J.; Nuss, E.] Univ Montpellier, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France. [D'Ammando, F.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Telemat Pegaso, Piazza Trieste Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Kensei, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Funk, S.; Principe, G.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Grenier, I. A.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA,IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Guillemot, L.] Univ Orleans, CNRS, Lab Phys & Chim Environm & Espace, F-45071 Orleans 02, France. [Guillemot, L.] INSU, CNRS, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Larsson, S.] AlbaNova, KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Larsson, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] CSIC, Inst Space Sci IEEC, Campus UAB, E-08193 Barcelona, Spain. [Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France. [Mizuno, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Nalewajko, K.; Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzaque, S.] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa. [Reimer, A.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Torres, D. F.] ICREA, Barcelona, Spain. [Uchiyama, Y.] Dept Phys, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan. [Zimmer, S.] Univ Geneva, DPNC, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland. RP Madejski, GM (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.; Madejski, GM (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.; Hayashida, M (reprint author), Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan.; Nalewajko, K (reprint author), Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. EM mahaya@icrr.u-tokyo.ac.jp; madejski@slac.stanford.edu; knalew@camk.edu.pl RI Bissaldi, Elisabetta/K-7911-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017 OI Bissaldi, Elisabetta/0000-0001-9935-8106; Sgro', Carmelo/0000-0001-5676-6214; DI MAURO, MATTIA/0000-0003-2759-5625; Funk, Stefan/0000-0002-2012-0080; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X FU NASA (United States); DOE (United States); CEA/Irfu (France); IN2P3/CNRS (France); ASI (Italy); NFN (Italy); MEXT (Japan); KEK (Japan); JAXA (Japan); K.A. Wallenberg Foundation; Swedish Research Council; National Space Board (Sweden); INAF (Italy); CNES (France); JSPS KAKENHI [JP15K17640] FX The Fermi-LAT Collaboration acknowledges support for LAT development, operation, and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. M.H. acknowledges support by JSPS KAKENHI grant number JP15K17640. NR 38 TC 5 Z9 5 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2016 VL 824 IS 2 AR L20 DI 10.3847/2041-8205/824/2/L20 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DP0GU UT WOS:000378168200004 ER PT J AU Fortney, JJ Marley, MS Laughlin, G Nettelmann, N Morley, CV Lupu, RE Visscher, C Jeremic, P Khadder, WG Hargrave, M AF Fortney, Jonathan J. Marley, Mark S. Laughlin, Gregory Nettelmann, Nadine Morley, Caroline V. Lupu, Roxana E. Visscher, Channon Jeremic, Pavle Khadder, Wade G. Hargrave, Mason TI THE HUNT FOR PLANET NINE: ATMOSPHERE, SPECTRA, EVOLUTION, AND DETECTABILITY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Kuiper belt: general; planets and satellites: atmospheres; planets and satellites: detection; planets and satellites: physical evolution ID INFRARED-SURVEY-EXPLORER; GIANT PLANET; SOLAR-SYSTEM; THERMAL STRUCTURE; INTERIOR MODELS; BROWN DWARF; URANUS; JUPITER; OPACITIES; NEPTUNE AB We investigate the physical characteristics of the solar system's proposed Planet Nine using modeling tools with a heritage of studying Uranus and Neptune. For a range of plausible masses and interior structures, we find upper limits on the intrinsic T-eff, from similar to 35 to 50 K for masses of 5-20 M-circle plus and we also explore lower T-eff values. Possible planetary radii could readily span from 2.7 to 6 R-circle plus depending on the mass fraction of any H/He envelope. Given its cold atmospheric temperatures, the planet encounters significant methane condensation, which dramatically alters the atmosphere away from simple Neptune-like expectations. We find that the atmosphere is strongly depleted in molecular absorption at visible wavelengths, suggesting a Rayleigh scattering atmosphere with a high geometric albedo approaching 0.75. We highlight two diagnostics for the atmosphere's temperature structure: (1) the value of the methane mixing ratio above the methane cloud and (2) the wavelength at which cloud scattering can be seen, which yields the cloud-top pressure. Surface reflection may be seen if the atmosphere is thin. Due to collision-induced opacity of H-2 in the infrared, the planet would be extremely blue instead of red in the shortest wavelength WISE colors if methane is depleted and would, in some cases, exist on the verge of detectability by WISE. For a range of models, thermal fluxes from similar to 3 to 5 mu m are similar to 20 orders of magnitude larger than blackbody expectations. We report a search of the AllWISE Source Catalog for Planet Nine, but find no detection. C1 [Fortney, Jonathan J.; Laughlin, Gregory; Morley, Caroline V.; Jeremic, Pavle; Khadder, Wade G.; Hargrave, Mason] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Marley, Mark S.; Lupu, Roxana E.] NASA, Ames Res Ctr, Mountain View, CA USA. [Nettelmann, Nadine] Univ Rostock, D-18055 Rostock, Germany. [Lupu, Roxana E.] Bay Area Environm Res Inst, Petaluma, CA USA. [Visscher, Channon] Dordt Coll, Sioux Ctr, IA USA. RP Fortney, JJ (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM jfortney@ucsc.edu OI Marley, Mark/0000-0002-5251-2943 NR 39 TC 7 Z9 7 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2016 VL 824 IS 2 AR L25 DI 10.3847/2041-8205/824/2/L25 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DP0GU UT WOS:000378168200009 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Girolamo, T Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gaur, G Gehrels, N Gemme, G Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Grado, A Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, EL Merzougui, M Meshkov, S Messenger, C Messick, C Metzdorff, R Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, AL Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, KN Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Pereira, R Perreca, A Phelps, M Piccinni, OJ Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, OES Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sieniawska, M Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stiles, D Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ Van Den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, DV Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J Archibald, AM Banaszak, S Berndsen, A Boyles, J Cardoso, RF Chawla, P Cherry, A Dartez, LP Day, D Epstein, CR Ford, AJ Flanigan, J Garcia, A Hessels, JWT Hinojosa, J Jenet, FA Karako-Argaman, C Kaspi, VM Keane, EF Kondratiev, VI Kramer, M Leake, S Lorimer, D Lunsford, G Lynch, RS Martinez, JG Mata, A McLaughlin, MA McPhee, CA Penucci, T Ransom, S Roberts, MSE Rohr, MDW Stairs, IH Stovall, K van Leeuwen, J Walker, AN Wells, BL AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Girolamo, T. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gaur, G. Gehrels, N. Gemme, G. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Grado, A. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, Chunglee Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. L. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Metzdorff, R. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, K. N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Pereira, R. Perreca, A. Phelps, M. Piccinni, O. J. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Purrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. E. S. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sieniawska, M. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stiles, D. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van Den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. V. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. Archibald, A. M. Banaszak, S. Berndsen, A. Boyles, J. Cardoso, R. F. Chawla, P. Cherry, A. Dartez, L. P. Day, D. Epstein, C. R. Ford, A. J. Flanigan, J. Garcia, A. Hessels, J. W. T. Hinojosa, J. Jenet, F. A. Karako-Argaman, C. Kaspi, V. M. Keane, E. F. Kondratiev, V. I. Kramer, M. Leake, S. Lorimer, D. Lunsford, G. Lynch, R. S. Martinez, J. G. Mata, A. McLaughlin, M. A. McPhee, C. A. Penucci, T. Ransom, S. Roberts, M. S. E. Rohr, M. D. W. Stairs, I. H. Stovall, K. van Leeuwen, J. Walker, A. N. Wells, B. L. CA LIGO Sci Collaboration Virgo Collaboration TI Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013 SO PHYSICAL REVIEW D LA English DT Article ID GAMMA-RAY BURSTS; NEUTRON-STARS; COSMIC STRINGS; SCIENCE RUN; PULSARS; TELESCOPE; ORIGIN; PLASMA; PULSES; ENERGY AB We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Di Girolamo, T.; Garufi, F.; Grado, A.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Miller, A. L.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D. V.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, CNRS IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Pletsch, H. J.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] NIKHEF H, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, K. N.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Pankow, C.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.; Banaszak, S.; Day, D.; Flanigan, J.; Rohr, M. D. W.; Walker, A. N.; Wells, B. L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Robinet, F.] Univ Paris Saclay, CNRS IN2P3, Univ Paris 11, LAL, Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Palomba, C.; Piccinni, O. J.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Singh, A.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, CNRS IN2P3, CEA Irfu, Observ Paris,Sorbonne Paris Cite,AstroParticule &, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Hoak, D.; Hofman, D.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E. L.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Pereira, R.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.; Sieniawska, M.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, CNRS, Observ Cote Azur, Artemis, CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.; Wang, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.; Metzdorff, R.] Univ Paris 06, Sorbonne Univ, Lab Kastler Brossel, CNRS,ENS PSL Res Univ,Coll France, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] CNRS IN2P3, LMA, F-69622 Villeurbanne, France. [Cagnoli, G.] Univ Lyon 1, F-69622 Villeurbanne, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC IAC3, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Di Girolamo, T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O. E. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Ott, C. D.; Schmidt, P.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Chunglee; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Pace, S.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Piccinni, O. J.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Coughlin, S. B.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Purrer, M.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.; Dartez, L. P.; Ford, A. J.; Garcia, A.; Hinojosa, J.; Jenet, F. A.; Leake, S.; Lunsford, G.; Martinez, J. G.; Mata, A.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tiwari, S.; Tiwari, V.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Stiles, D.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Grado, A.] Ist Nazl Fis Nucl, Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5006, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Pedurand, R.] Univ Lyon, F-69361 Lyon, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Archibald, A. M.; Hessels, J. W. T.; Kondratiev, V. I.; van Leeuwen, J.] ASTRON, Netherlands Inst Radio Astron, Postbus 2, NL-7990 AA Dwingeloo, Netherlands. [Berndsen, A.; Cherry, A.; McPhee, C. A.; Stairs, I. H.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Boyles, J.] Western Kentucky Univ, Dept Phys & Astron, Bowling Green, KY 42101 USA. [Cardoso, R. F.; Lorimer, D.; McLaughlin, M. A.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Chawla, P.; Karako-Argaman, C.; Kaspi, V. M.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Chawla, P.; Karako-Argaman, C.; Kaspi, V. M.] McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Epstein, C. R.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. [Hessels, J. W. T.; van Leeuwen, J.] Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Keane, E. F.] SKA Org, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England. [Kondratiev, V. I.] Lebedev Phys Inst, Astro Space Ctr, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Kramer, M.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Kramer, M.] Univ Manchester, Oxford Rd, Manchester M13 9PL, Lancs, England. [Lynch, R. S.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Penucci, T.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Ransom, S.] Natl Radio Astron Observ, Edgemont Rd, Charlottesville, VA 22903 USA. [Roberts, M. S. E.] Eureka Sci Inc, 2452 Delmer St,Suite 100, Oakland, CA 94602 USA. [Stovall, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Wells, B. L.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Strigin, Sergey/I-8337-2012; McClelland, David/E-6765-2010; Kondratiev, Vladislav/N-1105-2015; Losurdo, Giovanni/K-1241-2014; Iyer, Bala R./E-2894-2012; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Leonardi, Matteo/G-9694-2015; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; prodi, giovanni/B-4398-2010; Ciani, Giacomo/G-1036-2011; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Bell, Angus/E-7312-2011; Garufi, Fabio/K-3263-2015; Marchesoni, Fabio/A-1920-2008; Zhu, Xingjiang/E-1501-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Rocchi, Alessio/O-9499-2015; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Costa, Cesar/G-7588-2012; Gemme, Gianluca/C-7233-2008; Strain, Kenneth/D-5236-2011; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; OI Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Del Pozzo, Walter/0000-0003-3978-2030; Granata, Massimo/0000-0003-3275-1186; Piccinni, Ornella Juliana/0000-0001-5478-3950; Nelemans, Gijs/0000-0002-0752-2974; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Khan, Sebastian/0000-0003-4953-5754; Dolique, Vincent/0000-0001-5644-9905; Boschi, Valerio/0000-0001-8665-2293; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; McClelland, David/0000-0001-6210-5842; Kondratiev, Vladislav/0000-0001-8864-7471; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; prodi, giovanni/0000-0001-5256-915X; Ciani, Giacomo/0000-0003-4258-9338; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Marchesoni, Fabio/0000-0001-9240-6793; Zhu, Xingjiang/0000-0001-7049-6468; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Rocchi, Alessio/0000-0002-1382-9016; De Laurentis, Martina/0000-0002-3815-4078; Conti, Livia/0000-0003-2731-2656; Gemme, Gianluca/0000-0002-1127-7406; Strain, Kenneth/0000-0002-2066-5355; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Mastrogiovanni, Simone/0000-0003-1606-4183; Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397 FU United States National Science Foundation (NSF); LIGO Laboratory and Advanced LIGO; Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Netherlands Organisation for Scientific Research; EGO consortium; Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science and Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation, Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; European Research Council [617199]; NSF; STFC; MPS; INFN; CNRS FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science and Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; the National Science Centre of Poland; the European Commission; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. Some authors were supported by the European Research Council, including Grant No. 617199 to J. v. L. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. NR 71 TC 1 Z9 1 U1 18 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 20 PY 2016 VL 93 IS 12 AR 122008 DI 10.1103/PhysRevD.93.122008 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DP0UF UT WOS:000378204700001 ER PT J AU Sejas, SA Cai, M Liu, GS Taylor, PC Tung, KK AF Sejas, Sergio A. Cai, Ming Liu, Guosheng Taylor, Patrick C. Tung, Ka-Kit TI A Lagrangian view of longwave radiative fluxes for understanding the direct heating response to a CO2 increase SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC TEMPERATURE TRENDS; WELL-MIXED GASES; CARBON-DIOXIDE; CLIMATE MODELS; FEEDBACKS; OZONE; ATMOSPHERE AB This study puts forward a Lagrangian view of downward and upward longwave (LW) fluxes to improve our physical understanding of the influence of key factors on the downward and upward LW fluxes' response to an increase of CO2. To facilitate such a Lagrangian view, we introduce a new saturation-level concept based on the LW radiative transfer theory. The Lagrangian view and the new saturation-level concept enable us to provide, under a single framework, a general radiative transfer explanation of the spatial variation (e.g., stratospheric cooling and lower tropospheric warming) of the direct radiative heating response to an increase of the CO2 concentration. Following the saturation-level concept, the radiatively unsaturated nature of the downward LW flux in the upper stratosphere, due to the lack of a LW source at the top of the atmosphere, is attributed as the root factor that leads to a cooling of the upper stratosphere in direct response to a CO2 increase. The upward LW flux perturbation further enhances the cooling as a result of the negative lapse rate in the stratosphere but is of secondary importance. Furthermore, this study indicates that ozone is not a necessary ingredient for stratospheric cooling to occur, and the stratospheric cooling is therefore a fundamental consequence of a CO2 increase. The unperturbed vertical profile of water vapor is important only in the lower troposphere, where the relatively large concentration of water vapor leads to a downward LW flux perturbation that warms the lower troposphere at the expense of the surface warming. C1 [Sejas, Sergio A.; Cai, Ming; Liu, Guosheng] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Taylor, Patrick C.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Tung, Ka-Kit] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA. RP Cai, M (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. EM mcai@fsu.edu RI Liu, Guosheng/D-3479-2011; Taylor, Patrick/D-8696-2015 OI Liu, Guosheng/0000-0001-7899-6125; Taylor, Patrick/0000-0002-8098-8447 FU National Science Foundation [AGS-1262173, AGS-1354834]; NASA Interdisciplinary Studies Program [NNH12ZDA001N-IDS]; NASA PMM [NNX13AG34G]; NASA Living With a Star Program [781 NNX13AF91G] FX The authors are grateful for the constructive and informative comments from the two anonymous reviewers. This research was in part supported by grants from the National Science Foundation (AGS-1262173 and AGS-1354834), NASA Interdisciplinary Studies Program grant NNH12ZDA001N-IDS, NASA PMM grant NNX13AG34G, and NASA Living With a Star Program under grant 781 NNX13AF91G. All data for this study are produced by the radiative transfer model which is properly cited and referred to in the reference list. Data used in this paper are available upon request from the corresponding author (mcai@fsu.edu) NR 29 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 16 PY 2016 VL 121 IS 11 BP 6191 EP 6214 DI 10.1002/2015JD024738 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YT UT WOS:000381631700005 ER PT J AU Huntrieser, H Lichtenstern, M Scheibe, M Aufmhoff, H Schlager, H Pucik, T Minikin, A Weinzierl, B Heimerl, K Futterer, D Rappengluck, B Ackermann, L Pickering, KE Cummings, KA Biggerstaff, MI Betten, DP Honomichl, S Barth, MC AF Huntrieser, H. Lichtenstern, M. Scheibe, M. Aufmhoff, H. Schlager, H. Pucik, T. Minikin, A. Weinzierl, B. Heimerl, K. Fuetterer, D. Rappengluck, B. Ackermann, L. Pickering, K. E. Cummings, K. A. Biggerstaff, M. I. Betten, D. P. Honomichl, S. Barth, M. C. TI On the origin of pronounced O-3 gradients in the thunderstorm outflow region during DC3 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MESOSCALE CONVECTIVE SYSTEMS; TROPOSPHERIC OZONE PRODUCTION; NITROGEN-OXIDES; DEEP CONVECTION; NORTH-AMERICA; AIRBORNE MEASUREMENTS; CARBON-MONOXIDE; NOX PRODUCTION; LIGHTNING NOX; MIDLATITUDE CONVECTION AB Unique in situ measurements of CO, O-3, SO2, CH4, NO, NOx, NOy, VOC, CN, and rBC were carried out with the German Deutsches Zentrum fur Luft- und Raumfahrt (DLR)-Falcon aircraft in the central U.S. thunderstorms during the Deep Convective Clouds and Chemistry experiment in summer 2012. Fresh and aged anvil outflow (9-12 km) from supercells, mesoscale convective systems, mesoscale convective complexes, and squall lines were probed over Oklahoma, Texas, Colorado, and Kansas. For three case studies (30 May and 8 and 12 June) a combination of trace species, radar, lightning, and satellite information, as well as model results, were used to analyze and design schematics of major trace gas transport pathways within and in the vicinity of the probed thunderstorms. The impact of thunderstorms on the O-3 composition in the upper troposphere/lower stratosphere (LS) region was analyzed. Overshooting cloud tops injected high amounts of biomass burning and lightning-produced NOx emissions into the LS, in addition to low O-3 mixing ratios from the lower troposphere. As a dynamical response, O-3-rich air from the LS was transported downward into the anvil and also surrounded the outflow. The Delta O-3/Delta CO ratio was determined in the anvil outflow region. A pronounced in-mixing of O-3-rich stratospheric air masses was observed in the outflow indicated by highly positive or even negative Delta O-3/Delta CO ratios (+1.4 down to -3.9). Photochemical O-3 production (Delta O-3/Delta CO = +0.1) was found to be minor in the recently lofted pollution plumes. O-3 mixing ratios within the aged anvil outflow were mainly enhanced due to dynamical processes. C1 [Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Fuetterer, D.] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Wessling, Germany. [Pucik, T.] Masaryk Univ, Dept Geog, Brno, Czech Republic. [Weinzierl, B.] Univ Vienna, Fac Phys, Vienna, Austria. [Rappengluck, B.; Ackermann, L.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA. [Pickering, K. E.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Cummings, K. A.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Biggerstaff, M. I.; Betten, D. P.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Honomichl, S.; Barth, M. C.] NCAR, Boulder, CO USA. RP Huntrieser, H (reprint author), Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Wessling, Germany. EM Heidi.Huntrieser@dlr.de RI Pickering, Kenneth/E-6274-2012 FU National Science Foundation (NSF); NASA; NOAA; DLR; NSF; Deutsche Forschungsgemeinschaft (DFG) [MI 583/4-1]; National Science Foundation FX The DC3 field campaign was established by a collaborative effort of NCAR, NASA, the U.S. university community, NOAA, and DLR. The National Science Foundation (NSF), NASA, NOAA, and DLR were the primary funders for DC3. NCAR is supported by the NSF. Detailed information on the scientific goals and a link to the field data is available from the DC3 web site, https://www.eol.ucar.edu/field_projects/dc3. We greatly acknowledge the excellent collaboration with the DC3 principal investigators and all the support the DLR team received during the field phase from M. C. Barth (NCAR), C. A. Cantrell (University of Colorado), W. H. Brune (The Pennsylvania State University), S. A. Rutledge (Colorado State University), and J. H. Crawford (NASA/LaRC). Furthermore, the logistical support from NCAR-EOL by V. Salazar, J. Moore, G. Stossmeister, and B. Baeuerle is greatly appreciated. We thank the Falcon pilots (R. Welser and P. Weber), A. Hausold for the logistics, the engineers, and scientists of the DLR flight department for the excellent support during the field phase. We express our gratitude to the DLR colleagues who supported the trace gas and aerosol measurements: U. Schumann, J. Kim, A. Reiter, A. Roiger, H. Ziereis, and the financial support from the Deutsche Forschungsgemeinschaft (DFG, project number MI 583/4-1). Furthermore, the ETH Zurich (T. Peters) is greatly acknowledged for providing the NO instrument, J. Brioude (NOAA) for providing FLEXPART model products, and S. Kondragunta (NOAA/NESDIS) for providing GOME-2 NO2 retrieval products. The GOES data were provided by NCAR/EOL under sponsorship of the National Science Foundation (http://data.eol.ucar.edu/). We thank L. L. Pan and C. R. Homeyer (NCAR Boulder) for fruitful discussions. Finally, we are grateful to A. Roiger (DLR) and the three anonymous reviewers for their helpful comments and suggestions, which greatly helped to improve the manuscript. NR 103 TC 2 Z9 2 U1 19 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 16 PY 2016 VL 121 IS 11 BP 6600 EP 6637 DI 10.1002/2015JD024279 PG 38 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YT UT WOS:000381631700028 ER PT J AU Huntrieser, H Lichtenstern, M Scheibe, M Aufmhoff, H Schlager, H Pucik, T Minikin, A Weinzierl, B Heimerl, K Pollack, IB Peischl, J Ryerson, TB Weinheimer, AJ Honomichl, S Ridley, BA Biggerstaff, MI Betten, DP Hair, JW Butler, CF Schwartz, MJ Barth, MC AF Huntrieser, H. Lichtenstern, M. Scheibe, M. Aufmhoff, H. Schlager, H. Pucik, T. Minikin, A. Weinzierl, B. Heimerl, K. Pollack, I. B. Peischl, J. Ryerson, T. B. Weinheimer, A. J. Honomichl, S. Ridley, B. A. Biggerstaff, M. I. Betten, D. P. Hair, J. W. Butler, C. F. Schwartz, M. J. Barth, M. C. TI Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MESOSCALE CONVECTIVE COMPLEX; SPECTRAL-RESOLUTION LIDAR; CLOUD-SCALE MODEL; UPPER TROPOSPHERE; AIRBORNE MEASUREMENTS; NITROGEN-OXIDES; UNITED-STATES; LOWERMOST STRATOSPHERE; DEEP CONVECTION; GENERATED NOX AB During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum fur Luft-und Raumfahrt (DLR)-Falcon in situ measurements (CO, O-3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid-and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O-3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O-3 air (similar to 80 nmol mol(-1)) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O-3-rich stratospheric air masses (similar to 100-200 nmol mol(-1)) were present around and below the thunderstorm outflow and enhanced UT-O-3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS. C1 [Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, Oberpfaffenhofen, Germany. [Pucik, T.] Masaryk Univ, Brno, Czech Republic. [Weinzierl, B.] Univ Vienna, Fac Phys, Vienna, Austria. [Pollack, I. B.; Peischl, J.; Ryerson, T. B.] NOAA, Boulder, CO USA. [Pollack, I. B.; Peischl, J.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Pollack, I. B.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Barth, M. C.] NCAR, Boulder, CO USA. [Biggerstaff, M. I.; Betten, D. P.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Hair, J. W.; Butler, C. F.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Schwartz, M. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Huntrieser, H (reprint author), Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, Oberpfaffenhofen, Germany. EM Heidi.Huntrieser@dlr.de RI Peischl, Jeff/E-7454-2010; Pollack, Ilana/F-9875-2012; Manager, CSD Publications/B-2789-2015 OI Peischl, Jeff/0000-0002-9320-7101; FU National Science Foundation (NSF); NASA; NOAA; DLR; NSF; Deutsche Forschungsgemeinschaft (DFG) [MI 583/4-1]; National Science Foundation FX The DC3 field campaign was established by a collaborative effort of NCAR, NASA, the U.S. university community, NOAA, and DLR. The National Science Foundation (NSF), NASA, NOAA, and DLR were the primary funders for DC3. NCAR is supported by the NSF. Detailed information on the scientific goals and a link to the field data is available from the DC3 website, https://www.eol.ucar.edu/field_projects/dc3. We greatly acknowledge the excellent collaboration with the DC3 principal investigators and all the support the DLR team received during the field phase from M.C. Barth (NCAR), C.A. Cantrell (University of Colorado), W.H. Brune (Pennsylvania State University), S.A. Rutledge (Colorado State University), and J.H. Crawford (NASA/LaRC). Furthermore, the logistical support from NCAR-EOL by V. Salazar, J. Moore, G. Stossmeister, and B. Baeuerle is greatly appreciated. We thank the Falcon pilots (R. Welser and P. Weber), A. Hausold for the logistics, the engineers and scientists of the DLR flight department for the excellent support during the field phase, and the DC8 pilots for their great collaboration during the intercomparison flight. We are grateful to G. Diskin (NASA Langley Research Center) for providing CO data from the intercomparison flight. We express our gratitude to the DLR and NCAR colleagues who supported the airborne measurements, U. Schumann, D. Futterer, J. Kim, A. Reiter, A. Roiger, H. Ziereis, T.L. Campos, F.M. Flocke, D.J. Knapp, D.D. Montzka, and A. Schanot, and the financial support from the Deutsche Forschungsgemeinschaft (DFG, project MI 583/4-1). The ETH Zurich (T. Peters) is greatly acknowledged for providing the NO instrument. The GOES data were provided by NCAR/EOL under sponsorship of the National Science Foundation (http://data.eol.ucar.edu/). We thank L.L. Pan and C.R. Homeyer (NCAR Boulder) for their fruitful discussions and for providing tropopause heights from NCEP GFS-FNL model analyses. Finally, we are grateful to A. Roiger (DLR), K.A. Cummings (University of Maryland College Park), K.E. Pickering (NASA Goddard Space Flight Center Greenbelt), and to the three anonymous reviewers for their helpful comments and suggestions, which greatly helped to improve the manuscript. NR 101 TC 2 Z9 2 U1 6 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 16 PY 2016 VL 121 IS 11 BP 6638 EP 6668 DI 10.1002/2015JD024273 PG 31 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DT6YT UT WOS:000381631700029 ER PT J AU Oieroset, M Phan, TD Haggerty, C Shay, MA Eastwood, JP Gershman, DJ Drake, JF Fujimoto, M Ergun, RE Mozer, FS Oka, M Torbert, RB Burch, JL Wang, S Chen, LJ Swisdak, M Pollock, C Dorelli, JC Fuselier, SA Lavraud, B Giles, BL Moore, TE Saito, Y Avanov, LA Paterson, W Strangeway, RJ Russell, CT Khotyaintsev, Y Lindqvist, PA Malakit, K AF Oieroset, M. Phan, T. D. Haggerty, C. Shay, M. A. Eastwood, J. P. Gershman, D. J. Drake, J. F. Fujimoto, M. Ergun, R. E. Mozer, F. S. Oka, M. Torbert, R. B. Burch, J. L. Wang, S. Chen, L. J. Swisdak, M. Pollock, C. Dorelli, J. C. Fuselier, S. A. Lavraud, B. Giles, B. L. Moore, T. E. Saito, Y. Avanov, L. A. Paterson, W. Strangeway, R. J. Russell, C. T. Khotyaintsev, Y. Lindqvist, P. A. Malakit, K. TI MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; particle acceleration; magnetopause; flux rope; magnetospheric multiscale ID SOLAR-WIND; PLASMA; ACCELERATION AB We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(i)) width) current sheet (at similar to 12 d(i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection. C1 [Oieroset, M.; Phan, T. D.; Mozer, F. S.; Oka, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Haggerty, C.; Shay, M. A.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Eastwood, J. P.] Imperial Coll London, Blackett Lab, London, England. [Gershman, D. J.; Wang, S.; Chen, L. J.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Avanov, L. A.; Paterson, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gershman, D. J.; Wang, S.; Chen, L. J.; Avanov, L. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Drake, J. F.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Drake, J. F.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Fujimoto, M.; Saito, Y.] ISAS JAXA, Sagamihara, Kanagawa, Japan. [Ergun, R. E.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Torbert, R. B.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durnham, NH USA. [Torbert, R. B.; Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. [Swisdak, M.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Pollock, C.] Denali Sci, Healy, AK USA. [Fuselier, S. A.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, Toulouse, France. [Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Khotyaintsev, Y.] Swedish Inst Space Phys, Uppsala, Sweden. [Lindqvist, P. A.] Royal Inst Technol, Stockholm, Sweden. [Malakit, K.] Mahidol Univ, Dept Phys, Bangkok, Thailand. RP Oieroset, M (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM oieroset@ssl.berkeley.edu RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU STFC (UK) [ST/K001051/1, ST/N000692/1]; NSF [AGS-1103303]; NASA at UC Berkeley [NNX13AD72G, NNX08AO83G]; NASA at U Delaware [NNX15AW58G]; CNES; CNRS FX This research was supported by STFC (UK) grants ST/K001051/1 and ST/N000692/1 and NSF grant AGS-1103303 and NASA grants NNX13AD72G and NNX08AO83G at UC Berkeley and NASA grant NNX15AW58G at U Delaware. Simulations and analysis were performed at the National Center for Atmospheric Research Computational and Information System Laboratory (NCAR-CISL) and at the National Energy Research Scientific Computing Center (NERSC). IRAP contribution to MMS was supported by CNES and CNRS. Data source: MMS Science Data Center at lasp.colorado.edu/mms/sdc/public/ NR 33 TC 8 Z9 8 U1 8 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5536 EP 5544 DI 10.1002/2016GL069166 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800001 ER PT J AU Khotyaintsev, YV Graham, DB Norgren, C Eriksson, E Li, W Johlander, A Vaivads, A Andre, M Pritchett, PL Retino, A Phan, TD Ergun, RE Goodrich, K Lindqvist, PA Marklund, GT Le Contel, O Plaschke, F Magnes, W Strangeway, RJ Russell, CT Vaith, H Argall, MR Kletzing, CA Nakamura, R Torbert, RB Paterson, WR Gershman, DJ Dorelli, JC Avanov, LA Lavraud, B Saito, Y Giles, BL Pollock, CJ Turner, DL Blake, JD Fennell, JF Jaynes, A Mauk, BH Burch, JL AF Khotyaintsev, Yu. V. Graham, D. B. Norgren, C. Eriksson, E. Li, W. Johlander, A. Vaivads, A. Andre, M. Pritchett, P. L. Retino, A. Phan, T. D. Ergun, R. E. Goodrich, K. Lindqvist, P. -A. Marklund, G. T. Le Contel, O. Plaschke, F. Magnes, W. Strangeway, R. J. Russell, C. T. Vaith, H. Argall, M. R. Kletzing, C. A. Nakamura, R. Torbert, R. B. Paterson, W. R. Gershman, D. J. Dorelli, J. C. Avanov, L. A. Lavraud, B. Saito, Y. Giles, B. L. Pollock, C. J. Turner, D. L. Blake, J. D. Fennell, J. F. Jaynes, A. Mauk, B. H. Burch, J. L. TI Electron jet of asymmetric reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; diffusion region; electron dynamics; lower hybrid waves; Buneman instability ID MAGNETIC RECONNECTION; SEPARATRIX REGIONS; DIFFUSION REGION; MAGNETOPAUSE; WAVES; CURRENTS; HOLES AB We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E-vertical bar amplitudes reaching up to 300mVm(-1) and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection. C1 [Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.] Swedish Inst Space Phys, Uppsala, Sweden. [Norgren, C.; Eriksson, E.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Pritchett, P. L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Retino, A.; Le Contel, O.] CNRS, LPP, Palaiseau, France. [Phan, T. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Ergun, R. E.; Goodrich, K.; Jaynes, A.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Lindqvist, P. -A.; Marklund, G. T.] KTH Royal Inst Technol, Stockholm, Sweden. [Plaschke, F.; Magnes, W.; Nakamura, R.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Vaith, H.; Argall, M. R.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Paterson, W. R.; Gershman, D. J.; Dorelli, J. C.; Avanov, L. A.; Giles, B. L.; Pollock, C. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gershman, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lavraud, B.] CNRS, IRAP, Toulouse, France. [Saito, Y.] JAXA, Chofu, Tokyo, Japan. [Turner, D. L.; Blake, J. D.; Fennell, J. F.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. [Mauk, B. H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. RP Khotyaintsev, YV (reprint author), Swedish Inst Space Phys, Uppsala, Sweden. EM yuri@irfu.se RI Nakamura, Rumi/I-7712-2013; NASA MMS, Science Team/J-5393-2013; Mauk, Barry/E-8420-2017; OI Nakamura, Rumi/0000-0002-2620-9211; NASA MMS, Science Team/0000-0002-9504-5214; Mauk, Barry/0000-0001-9789-3797; Retino, Alessandro/0000-0001-5824-2852; Eriksson, Elin/0000-0003-4040-9663 FU Swedish National Space Board [139/12, 175/15]; CNES FX For MMS data visit https://lasp.colorado.edu/mms/sdc/public/. We thank the entire MMS team and instrument PIs for data access and support. This work was supported by the Swedish National Space Board, grants 139/12 and 175/15. IRAP contribution to MMS was supported by CNES. NR 42 TC 8 Z9 8 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5571 EP 5580 DI 10.1002/2016GL069064 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800005 ER PT J AU Kitamura, N Hasegawa, H Saito, Y Shinohara, I Yokota, S Nagai, T Pollock, CJ Giles, BL Moore, TE Dorelli, JC Gershman, DJ Avanov, LA Paterson, WR Coffey, VN Chandler, MO Sauvaud, JA Lavraud, B Torbert, RB Russell, CT Strangeway, RJ Burch, JL AF Kitamura, N. Hasegawa, H. Saito, Y. Shinohara, I. Yokota, S. Nagai, T. Pollock, C. J. Giles, B. L. Moore, T. E. Dorelli, J. C. Gershman, D. J. Avanov, L. A. Paterson, W. R. Coffey, V. N. Chandler, M. O. Sauvaud, J. A. Lavraud, B. Torbert, R. B. Russell, C. T. Strangeway, R. J. Burch, J. L. TI Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; magnetopause; dipole tilt; MMS mission; Geotail spacecraft ID INTERPLANETARY MAGNETIC-FIELD; DIPOLE TILT; DAYSIDE MAGNETOPAUSE; PLASMA; DEPENDENCE AB At 02:13 UT on 18 November 2015 when the geomagnetic dipole was tilted by -27 degrees, the MMS spacecraft observed southward reconnection jets near the subsolar magnetopause under southward and dawnward interplanetary magnetic field conditions. Based on four-spacecraft estimations of the magnetic field direction near the separatrix and the motion and direction of the current sheet, the location of the reconnection line was estimated to be similar to 1.8 R-E or further northward of MMS. The Geotail spacecraft at GSM Z similar to 1.4 R-E also observed southward reconnection jets at the dawnside magnetopause 30-40min later. The estimated reconnection line location was northward of GSM Z similar to 2 R-E. This crossing occurred when MMS observed purely southward magnetic fields in the magnetosheath. The simultaneous observations are thus consistent with the hypothesis that the dayside magnetopause reconnection line shifts from the subsolar point toward the northern (winter) hemisphere due to the effect of geomagnetic dipole tilt. C1 [Kitamura, N.; Hasegawa, H.; Saito, Y.; Shinohara, I.; Yokota, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Nagai, T.] Tokyo Inst Technol, Tokyo, Japan. [Pollock, C. J.; Giles, B. L.; Moore, T. E.; Dorelli, J. C.; Gershman, D. J.; Avanov, L. A.; Paterson, W. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Pollock, C. J.] Denali Sci, Healy, AK USA. [Gershman, D. J.] Oak Ridge Associated Univ, Washington, DC USA. [Coffey, V. N.; Chandler, M. O.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Sauvaud, J. A.; Lavraud, B.] IRAP, Toulouse, France. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. RP Kitamura, N (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. EM kitamura@stp.isas.jaxa.jp RI Hasegawa, Hiroshi/A-1192-2007; NASA MMS, Science Team/J-5393-2013 OI Hasegawa, Hiroshi/0000-0002-1172-021X; NASA MMS, Science Team/0000-0002-9504-5214 FU CNES FX The Geotail data are available from DARTS (https://darts.isas.jaxa.jp/stp/geotail/). Wind data were obtained from CDAweb (http://cdaweb.gsfc.nasa.gov/). We acknowledge Vassilis Angelopoulos for use of ARTEMIS data. We acknowledge Eric Grimes and the developing team of the SPEDAS software for the use. IRAP contribution to MMS was supported by CNES. MMS Level-2 data (FPI version 2.1.0 and FGM version 4.18.0) are available from the MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/public/). NR 38 TC 0 Z9 0 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 16 PY 2016 VL 43 IS 11 BP 5581 EP 5588 DI 10.1002/2016GL069095 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DR4DN UT WOS:000379851800006 ER EF